
Modal Logics for Brane Calculus

Marino Miculan
(joint work with G. Bacci)

University of Udine

CMSB 2006
Trento, October 18-19, 2006

1

Introduction and Motivations

2

Abstract Machines of Systems Biology

• Cardelli [2005] has proposed three levels of (highly interacting)
abstract machines

• Protein machine

• Gene machine

• Membrane machine

•Strategic approach: formalize and study each of these,
and their interaction, as discrete reactive systems using
tools and techniques from (Theoretical) Computer Science

!""#$"%$!&'(!)*")(('*'

!""#$%&'()&"*()+,-.%"

+,'!"#$%!&$'(!&)*+,'-.'/'0-12-3,/4'-,0356/2-3,$75318..-,9':8;-18'2</2'1/,='-,'75-,1-748='</;8'/'

,>6?85' 30' :-00858,2' 7<@.-1/4' 58/4-A/2-3,.' B681</,-1/4=' 8481253,-1=' ?-3439-1/4=' 35' 8;8,'

.302C/58DE'+,'/?.25/12'6/1<-,8'-.'1</5/1285-A8:'?@)'
'

•! +'1344812-3,'30':-.15828'.2/28.E'

•! +'1344812-3,'30'3785/2-3,.'B35'8;8,2.D'2</2'1/>.8':-.15828'25/,.-2-3,.'?82C88,'.2/28.E'
'

F<8'8;34>2-3,'30'.2/28.'2<53>9<'25/,.-2-3,.'1/,'-,'98,85/4'</778,'13,1>558,24@E'F<8'/:8G>/1@'

30'2<-.'98,85-1'63:84'035':8.15-?-,9'136748H'.@.286.'-.'/59>8:='8E9E='-,'I!!JE'
'

K/1<'30' 2<8'1<86-1/4' 2334L-2.'C8'</;8' M>.2':8.15-?8:'1/,'?8'.88,'/.'/'.87/5/28'/?.25/12'

6/1<-,8' C-2<' /,' /775375-/28' .82' 30' .2/28.' /,:' 3785/2-3,.E' F<-.' /?.25/12' -,2857582/2-3,.' 30'

1<86-.25@'-.'?@':80-,-2-3,'0-12-3,/4='/,:'C8'6>.2'?8'/C/58'30'-2.'4-6-2/2-3,E'N3C8;85='C8'6>.2'

/4.3'?8'/C/58'30'2<8'4-6-2/2-3,.'30'+-$'/?.25/12-,9='?81/>.8'2<8,'C8'/58'-,'98,85/4'4-6-28:'23'

C35L'/2' 2<8' 43C8.2' 48;84'30' 58/4-2@'BG>/,2>6'681</,-1.D'C-2<3>2'/,@'<378'30'>,:85.2/,:-,9'

<-9<85'75-,1-748.'30'359/,-A/2-3,E'F<8'/?.25/12'6/1<-,8.'C8'13,.-:85'/58'8/1<'953>,:8:'-,'/'

:-00858,2'1<86-1/4'2334L-2'B,>14832-:8.='/6-,3'/1-:.='/,:'7<3.7<34-7-:.D='/,:'<8,18'</;8'.368'

953>,:-,9' -,' 58/4-2@E' O3583;85=' 8/1<' /?.25/12' 6/1<-,8' 13558.73,:.' 23' /' :-00858,2' L-,:' 30'

-,0356/4' !./-%*$)(*&' +-$!$*-+' 2</2' ?-3439-.2.' </;8' :8;84378:' ' BP-9>58' !=' ?>??48.D)' 2<-.' -.'

0>52<85'8;-:8,18'2</2'/?.25/12'75-,1-748.'30'359/,-A/2-3,'/58'/2'C35LE'

F<8'0,+,'1!&)*+,' B?82285'L,3C,'/.'Q8,8'R89>4/235@'S82C35L.D'7850356.' -,0356/2-3,'

75318..-,9' 2/.L.' C-2<-,' 2<8' 1844E' T2' 589>4/28.' /44' 32<85' /12-;-2-8.=' -,14>:-,9' /..86?4@' /,:'

6/-,28,/,18' 30' 2<8' 32<85'6/1<-,8.=' /,:' 2<8' 137@-,9' 30' -2.840E' F<8'2%-$,*+'1!&)*+,' B?82285'

L,3C,'/.'U-31<86-1/4'S82C35L.D'7850356.'/44'681</,-1/4'/,:'682/?34-1'2/.L.='/,:'/4.3'.368'

.-9,/4'75318..-,9E'F<8'1,("%!+,'1!&)*+,' B?82285'L,3C,'/.'F5/,.7352'S82C35L.D' .87/5/28.'

:-00858,2'?-31<86-1/4'8,;-53,68,2.='/,:'/4.3'3785/28.':@,/6-1/44@'23'25/,.7352'.>?.2/,18.';-/'

136748H=':-.15828='6>42-$.287'75318..8.E'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

/,01'."2! #$%&'()&"*()+,-.%3"*45.)15('"6(%,%3"(-7"84&(&,4-%"
'

"#$#

%&'()$#

*+,-#)$

%&'()$#

%
&
.
#
/
!0
+,
-#
)$
/
1

2
(
#
+#
32
(
#
$
3(
,
2
4
5
'
(6

)+#
'
-/
!4
#
4
7
+&
$
#
!'
,
$
/
-+5
'
-),
$
!

&
$
8
!0
+,
-#
)$
!#
4
7
#
8
8
)$
9

:#95;&-),$

%#-&7,;)/41!*+,05;/),$

<)9$&;!*+,'#//)$9

%,;#'5;&+!=+&$/0,+-

<
)9
$
&
;/
!'
,
$
8
)-
),
$
/
!&
$
8
!#
>#
$
-/ ?

,
;8
/
!9
#
$
,
4
#
@/
A1

'
,
$
B)$
#
/
!+#
9
5
;&
-,
+/

C,$B)$#4#$-

<-,+&9#

D5;.!=+&$/0,+-

E40;#4#$-/!B5/),$1!B)//),$

?,;8/!+#'#0-,+/1!&'-5&-,+/!

(,/-/!+#&'-),$/

*(,/0(,;)0)8/

F5';#,-)8#/

G4)$,&')8/

%,8#;!E$-#9+&-),$
6)BB#+#$-!-)4#!

&$8!/0&'#!/'&;#/
* H

%&'()$#
*(,/0(,;)0)8/

%#47+&$#!

3

Abstract Models for Systems Biology

•Abstract models have been proposed for each machine
(various calculi, statecharts, Petri nets…)

•These models can be used for many aims, such as:

• formalizing biological systems (at various levels)

• implementing tools for simulating behavior of systems

•help biologists to understand what is really relevant

•But in Computer Science, also logics have been used for
a while…

4

Formal Methods in Comp.Sci. vs Sys.Bio.

In CS, the object system to model is man-made; in
SysBio this is generally not true (for the moment)

•Ultimately we do not know how the “real thing” works

• If the model does not fit the system, we cannot ask the
Designer to change His choices

•We can only test the model against the real world, and
refine it if something goes wrong (cf. physics)

5

Models as (Scientific) Theories

• Models of SysBio have to be validate experimentally: they
hold until they are falsified by an experiment

1.formalize a system in the calculus

2.choose some property which holds for the formal version

3.try an experiment to verify if the property holds also in the
real world (predictive biology)

4.if holds, go to 2; else go to 1 (or 0)

How to express
these properties?

How to
check this?

6

Logics for Systems Biology?

Logics allow to express formally the properties of biological
systems, usually written in natural language. Some applications:

• System specification and verification (possibly automatic):
“check whether a given system P satisfies a given property A”

• System synthesis: “find a system which satisfies a given
property A” (synthetic biology)

• System characterization: “find the formula which
characterizes the behaviour of a given system P”

• Model validation: predict a property which should hold in a
system and mount an experiment to verify it (predictive biology)

MISS
ING

7

In this talk: Brane Logic

•Brane Logic: a logic for expressing membrane-level
properties of systems described in Brane Calculus

•Plan of the rest of the talk:

•Short recall of Brane Calculus

•Short intro to Brane Logic

•Examples and conclusions

8

Brane Calculus

• Introduced by Cardelli (2004) as an abstract model for the
membrane machine

• Similar to Ambient Calculus (due to the hierarchical structure), but
computations take place on the membranes, not inside

• Actions are those observed at the membrane level

• membrane structure interactions

• intra- and inter-membrane communications (not considered here)

9

Basic Brane calculus: Syntax

• Fluidity of solutions and membranes is rendered by the usual monoidal
laws of parallel compositions !""#$"%$&# &"&

!"#$%&'#()*(+

!"#$$%%& ! ' !"#$' (!$' σ#!$)*+,+$-.$/*/012)*+

σ"τ %%& 3 ' σ'τ ' (σ ' 24σ 5-/06)2,6-)+$-.$25,6-)+

2$%%& 7 ' 8 9.6::$6)$2+$)**;*;<

012)*+

+=+,*/+

25,6-)+

>4?4$@*+,165,6-)$9ν)<$5-A:;$0*$2;;*;$,-$0-,B$+=+,*/+$2);$012)*+4$C,$A+A2::=$D-A:;$-16E6)2,*$6)$012)*+"$0A,$D-A:;$*F,1A;*$,-$DB-:*$
+=+,*/+4

!σ

/*/012)*

5-),*),+

!σ

τ
'(')*+,(

-+./0(1

/*/012)*
G2,5B*+

σ#!$ σ'τ#!$ 24σ'τ &$924σ<'τ

7H$.:A6;+$9σ<$6)+6;*$2IH.:A6;$9!<
JKL$5-//A,2,6M*$/-)-6;+$6)+,*2;$-.$

L>N$-.$)-1/2:$G1-5*++$52:5A:6

the meaning of a statement. Secondly, such a logical formalism can be used for
defining specifications of systems, i.e. requirements that a system must satisfy.
These specifications can be used in (semi)automatic verification of existing sys-
tems (using model-checking or static analysis techniques), or in (semi)automatic
synthesis of new systems (meeting the given specification). Finally, the logical
formalism yields naturally a formal notion of system equivalence: two systems
are equivalent if they satisfy precisely the same properties. Often this equiva-
lence implies observational equivalence (depending on the expressive power of
the logical formalism), so a subsystem can be replaced with a logically equivalent
one (possibly synthetic) without altering the behaviour of the whole system.

The aim of this work is to take a step in this direction. We introduce the
Brane Logic, a modal logic specifically designed for expressing properties about
systems described using the Brane Calculus. Modal logics are commonly used in
concurrency theory for describing behaviour of concurrent systems. In particu-
lar, we take inspiration from Ambient Logic, the logic for Ambient calculus [5].
Like Ambient Logic, our logic features spatial and temporal modalities, which
are specific logical operators for expressing properties about the topology and
the dynamic behaviour of nested systems. However, differently from Ambient
Logic, we need to define also a specific logic for expressing properties of mem-
branes themselves. Each membrane can be seen as a flat surface where different
agents can interact, but without nestings. Thus membranes are more similar to
CCS than to Ambients; as a consequence, the logic for membranes is similar to
Hennessy-Milner’s logic [8], extended with spatial connectives as in [2].

After having defined Brane Logic and its formal interpretation over the
Brane Calculus (Section 3), in Section 4 we consider sequents, and introduce
a set of valid inference rules (with many derivable corollaries). Several examples
throughout the paper will illustrate the expressive power of the logic. Finally, in
Section 5, we single out a fragment of the calculus and of the logic for which the
satisfiability problem is decidable and for which we give a model checker algo-
rithm. Conclusions, final remarks and directions for future work are in Section 6.

In this paper we focus on the basic version of Brane Calculus without commu-
nication primitives and molecular complexes. For a description of the intuitive
meaning of the language and the reduction rules, we refer the reader to [3].

Syntax of (Basic) Brane Calculus
Systems Π : P,Q ::= k | σhPi | P m Q |!P
Membranes Σ : σ, τ ::= 0 | σ|τ | a.σ |!σ
Actions Ξ : a, b ::= Jn | JI

n(σ) | Kn | KI
n | G(σ)

where n is taken from a countable set Λ of names. We will write a, hPi and
σhi, instead of a.0, 0hPi and σhki, respectively.

The set of free names of a system P , of a membrane σ and of an action a,
denoted by FN(P), FN(σ), FN(a) respectively, are defined as usual; notice that
in this syntax there are no binders.

2 M. Miculan and G. Bacci

2 Summary of Brane Calculus

B
al

lo
ns

 fr
om

 [C
ar

de
lli

04
]

10

Brane Calculus: PEP Semantics

!""#$"%$&# &"'

!!ρ"#τ

"!!ρ"#τ

!σ

τ

ρ

"#σ

!"#$%&'%#()*+$,

$%&&' () "*) "!
!ρ"%) #) #!

*) !!ρ" +,$-.%"/%01.%#/%+2*.%!()*+,-.

!
"

!#$%& !ρ σ3

τ

"

!
"

'(&

##σ
#!#τ

!
"

σ τ

!)*&σ!

456%78+.*9$*0.:8; %$-+ 8+5298%2*9.%
+,$-.<=9.828%!./#0+/%.>90*%89255%
+?.*.:*<06%0*6."%$*6%+2*.<=9.828%!.*$+"#

σ3 τ3

τ3σ3

σ

τ3

τ3
σ3

<..?62*$92.*%9$-8
8.@092@08%.@29906

!""#$"%$&# &"'

!!ρ"#τ

"!!ρ"#τ

!σ

τ

ρ

"#σ

!"#$%&'%#()*+$,

$%&&' () "*) "!
!ρ"%) #) #!

*) !!ρ" +,$-.%"/%01.%#/%+2*.%!()*+,-.

!
"

!#$%& !ρ σ3

τ

"

!
"

'(&

##σ
#!#τ

!
"

σ τ

!)*&σ!

456%78+.*9$*0.:8; %$-+ 8+5298%2*9.%
+,$-.<=9.828%!./#0+/%.>90*%89255%
+?.*.:*<06%0*6."%$*6%+2*.<=9.828%!.*$+"#

σ3 τ3

τ3σ3

σ

τ3

τ3
σ3

<..?62*$92.*%9$-8
8.@092@08%.@29906

!""#$"%$&# &"'

!"#$% !!"σ#σ$"%# $!!
!&ρ'"τ#τ$"(# % τ#τ$"ρ"σ#σ$"%##$(#

&'% &!
!"τ#τ$"&!"σ#σ$"%#$(# % %)$ σ#σ$#τ#τ$"(#

!()% '&ρ'"σ#σ$"%# % σ#σ$"ρ"(#$%#

!

*"+",)-./)0123-4)56)!/7-3!8)56)%)1!9)()37)02/7/2:/9;)
-.37)<1=/7)-./)2/1>-35!7)02/7/2:/)?3-5!1@3-4"

*+, 0A $ 0A&0B'!CA&CB'"α#σ"0B $ %# % CA $ α#σ"CB $ %#

&<D@-37/-)2/E23-3!8F)3!739/)1!9)5D-739/)</<?21!/7'

!""#$"%$&# &"#

!"#

!"#$%&'%#()*+$,&-.#")++$,/

$
%

$
%

$

$
%

$&'(# $
%

$)*#$

$
%

$

$
%

!"#$%&'()*+,-./0/".1'($1(/"
23$4& 5+%%&/%&6

!""#$"%$&# &"#

!"#

!"#$%&'%#()*+$,&-.#")++$,/

$
%

$
%

$

$
%

$&'(# $
%

$)*#$

$
%

$

$
%

!"#$%&'()*+,-./0/".1'($1(/"
23$4& 5+%%&/%&6

!""#$"%$&# &"#

!"#

!"#$%&'%#()*+$,&-.#")++$,/

$
%

$
%

$

$
%

$&'(# $
%

$)*#$

$
%

$

$
%

!"#$%&'()*+,-./0/".1'($1(/"
23$4& 5+%%&/%&6

B
al

lo
ns

 fr
om

 [C
ar

de
lli

04
]

11

Brane Logic:
A logic for Membrane-level properties

12

Design principle: “capture what we are talking of”

• The logic should be able to express properties of the membrane
machine, such as those found in normal biology books:

• “If a macrophage is exposed to target cells […] coated with antibody,
it ingests the coated cells.”

• “The Rous sarcoma virus […] can transform a cell into a cancer cell.”

• “Eventually, the virus escapes from the endosome”

(From Alberts et al., Molecular biology of the cell, 1989)

(Instead, system equivalence does not appear to be a central notion…)

Relative
Position

State
change

Surface
information

Time

Movement

Space

13

A Bi-Spatial-Temporal Modal Logic

•There are two interacting logics: one for membranes
and one for systems

•Spatial logic for systems deals with compartments,
like Ambient Logic - but with some differences

As in many process calculi, terms of the Brane Calculus can be rearranged
according to a structural congruence relation (≡). For a formal definition see [3].

The dynamic behaviour of Brane Calculus is specified by means of a reduction
relation (“reaction”) between systems P } Q, whose rules are the following:

Operational Semantics
J

I
n(ρ).τ |τ0hQi m Jn.σ|σ0hPi}τ |τ0hρhσ|σ0hPii m Qi (React phago)
K

I
n.τ |τ0hKn.σ|σ0hPi m Qi}σ|σ0|τ |τ0hQi m P (React exo)

G(ρ).σ|σ0hPi}σ|σ0hρhki m Pi (React pino)
P } Q

σhPi} σhQi

P } Q

P m R } Q m R
(React loc, React comp)

P ≡ P ′ P ′ } Q′ Q′ ≡ Q

P } Q
(React equiv)

We denote by }∗ the usual reflexive and transitive closure of }.
As in [3], the Mate-Bud-Drip calculus is easily encoded, as follows:

Derived membrane constructors and reaction
Mate : maten.σ ! Jn.Kn′ .σ mateIn.τ ! JI

n(KI
n′ .Kn′′).KI

n′′ .τ
maten.σ|σ0hPi m mateIn.τ |τ0hQi}∗ σ|σ0|τ |τ0hP m Qi

Bud : budn.σ ! Jn.σ budIn(ρ).τ ! G(JI
n(ρ).Kn′).KI

n′ .τ
budIn(ρ).τ |τ0hbudn.σ|σ0hPi m Qi}∗ ρhσ|σ0hPii m τ |τ0hQi

Drip : dripn.(ρ).σ ! G(G(ρ).Kn).KI
n.σ

dripn(ρ).σ|σ0hPi}∗ ρhi m σ|σ0hPi

3 The Brane Logic

In this section we introduce a logic for expressing properties of systems of the
Brane Calculus, called Brane Logic. Like similar temporal-spatial logics, such
as Ambient Logic [5] and Separation Logic [14], Brane Logic features special
modal connectives for expressing spatial properties (i.e., about relative positions)
and behavioural properties. The main difference between its closest ancestor
(Ambient Logic), is that Brane Logic can express properties about the actions
which can take place on membranes, not only in systems. Thus, there are actually
two spatial logics, interacting each other: one for reasoning about membranes
(called membrane logic) and one for reasoning about systems (the system logic).
Syntax The syntax of the Brane Logic is the following:

Syntax of Brane Logic
System formulas Φ
A,B ::= T | ¬A | A ∨ B (classical propositional fragment)

k (void system)
MhAi | A@M (compartment, compartment adjoint)
A m B | A " B (spatial composition, composition adjoint)
NA | mA (eventually modality, somewhere modality)
∀x.A (quantification over names)

Modal Logics for Brane Calculus 3

Formulas
in place of

names

14

Logic for membranes

• Membranes are much like CCS: their logic is a kind of
Hennessy-Milner (i.e. dynamic) logic with connectives for
composition but not for compartment

• Problem: Hennessy-Milner logics need a labeled
transition system. What is α, the observable action?

Membrane formulas Ω
M,N ::= T | ¬M | M ∨N (classical propositional fragment)

0 (void membrane)
M|N | M ! N (spatial composition, composition adjoint)
)α*M (action modality)

Action formulas Θ
α, β ::= Jη | JI

η(M) (phago, co-phago)
Kη | KI

η (exo, co-exo)
G(M) (pino)

η ::= n | x (terms)

Given a formula A, its free names FN(A) are easily defined, since there are no
binders for names. Similarly, we can define the set of free variables FV(A), notic-
ing that the only binder for variables is the universal quantifier. As usual, a
formula A is closed if FV(A) = ∅.

For sake of simplicity, we will use the shorthands Mhi and)α* in place of
Mhki and)α*0 respectively.

We give next an intuitive explanation of the most unusual constructors.
- P satisfies MhAi if P ≡ σhQi, where σ and Q satisfy M and A respectively.
- @ e " are very useful for expressing security and safety properties.

A system P satisfies A@M if, when P is enclosed in a membrane satisfying
M, the resulting system satisfies A. Similarly, a system P satisfies A " B if,
when P is put aside a system enjoying B, the whole system satisfies A.

- A membrane σ satisfies)α*M if σ can perform an action satisfying α, yielding
a residual satisfying M.

- M|N and its adjoint M ! N are analogous to A ◦ B and A " B respectively.

Satisfaction Formally, the meaning of a formula is defined by means of a family
of satisfaction relations, one for each syntactic sort of logical formulas1

#⊆ Π × Φ #⊆ Σ ×Ω #⊆ Ξ ×Θ

These relations are defined by induction on the syntax of the formulas. Let us
start with satisfaction of systems. First, we have to introduce the subsystem
relation P ↓ Q (read “Q is an immediate subsystem of P”), defined as

P ↓ Q $ ∃P ′ : Π,σ : Σ.P ≡ σhQi|P ′

We denote by ↓∗ the reflexive-transitive closure of ↓.
Then, we can define the satisfaction of system formulas.

Satisfaction of System Formulas
∀P : Π P # T
∀P : Π,A : Φ P # ¬A $ P " A
∀P : Π,A,B : Φ P # A ∨ B $ P # A ∨ P # B
∀P : Π P # k $ P ≡ k

∀P : Π,A : Φ,M : Ω P # MhAi $ ∃P ′ : Π,σ : Σ.P ≡ σhP ′i ∧ P ′ # A ∧ σ # M
1 We will use the same symbol ! for the three relations, since they are easily distin-

guishable from the context.

4 M. Miculan and G. Bacci

15

Which observations?

• In Hennessy-Milner logic, modalities are indexed the
actions of the underlying calculus (CCS); the LTS is

• In Brane calculus, actions may contain membranes

•We would observe membranes themselves in the formulas

•Not good: too fine-grained and intensional

∀P : Π,A,B : Φ P ! A m B " ∃P ′, P ′′ : Π.P ≡ P ′ m P ′′ ∧ P ′ ! A ∧ P ′′ ! B
∀P : Π,A : Φ, x : ϑ P ! ∀x.A " ∀m : Λ.P ! A{x ← m}
∀P : Π,A : Φ P ! NA " ∃P ′ : Π.P }∗ P ′ ∧ P ′ ! A
∀P : Π,A : Φ P ! mA " ∃P ′ : Π.P ↓∗ P ′ ∧ P ′ ! A
∀P : Π,A : Φ,M : Ω P ! A@M " ∀σ : Σ.σ ! M⇒ σhPi ! A
∀P : Π,A,B : Φ P ! A # B " ∀P ′ : Π.P ′ ! A⇒ P m P ′ ! B

This definition relies on the satisfaction of membrane formulas, which we define
next. To this end, we need to introduce a notion of membrane observation, by
means of a labelled transition system (LTS) σ

l−→ τ for membranes. A crucial
point is how to define correctly the labels (i.e., the observations) l of this LTS.

The evident similarity between membranes and Milner’s CCS [12] could sug-
gest to define observations simply as actions; e.g., we could take a.σ

a−→ σ.
However, an important difference between membranes and CCS is that in latter
case, the labels are τ and communications over channels, i.e. names (possibly
together with terms, which are separated from processes in any case). On the
other hand, actions in membranes form a whole language, which incorporates
also the membranes themselves. Thus, observing actions over the membranes
would mean to observe explicitly (also) membranes instead of some abstract

logical property. For instance, in the transition J(σ).τ
J(σ)−−−→ τ we have a spe-

cific membrane σ in the label. This kind of observation is too “fine-grained” and
intensional with respect to the rest of the logic, which never deals with specific
membranes but only with their properties.

Therefore, we choose to take as labels the action formulas, instead of actions.
Thus the LTS is a relation σ

α−→ τ , which reads as “σ performs an action satisfying
α, and reduces to τ”. This LTS is defined by the following rules:

Labelled Transition System for Membranes

a ! α

a.σ
α−→ σ

(prefix)
σ

α−→ σ′

σ|τ α−→ σ′|τ
(par)

σ ≡ σ′ σ′ α−→ τ ′ τ ′ ≡ τ

σ
α−→ τ

(equiv)

Notice that in the (prefix) rule we use the satisfaction relation for actions:

Satisfaction of action formulas
∀a : Γ, n : Λ a ! Jn " a = Jn

∀a : Γ, n : Λ,M : Ω a ! JI
n(M) " ∃σ : Σ.a = JI

n(σ) ∧ σ ! M
∀a : Γ, n : Λ a ! Kn " a = Kn

∀a : Γ, n : Λ a ! KI
n " a = KI

n

∀a : Γ,M : Ω a ! G(M) " ∃σ : Σ.a = G(σ) ∧ σ ! M

This relation is defined in terms of the satisfaction of membrane formulas:

Satisfaction of membrane formulas
∀σ : Σ σ ! T
∀σ : Σ,M : Ω σ ! ¬M " σ ! M
∀σ : Σ,M,N : Ω σ ! M ∨N " σ ! M ∨ σ ! M

Modal Logics for Brane Calculus 5

∀P : Π,A,B : Φ P ! A m B " ∃P ′, P ′′ : Π.P ≡ P ′ m P ′′ ∧ P ′ ! A ∧ P ′′ ! B
∀P : Π,A : Φ, x : ϑ P ! ∀x.A " ∀m : Λ.P ! A{x ← m}
∀P : Π,A : Φ P ! NA " ∃P ′ : Π.P }∗ P ′ ∧ P ′ ! A
∀P : Π,A : Φ P ! mA " ∃P ′ : Π.P ↓∗ P ′ ∧ P ′ ! A
∀P : Π,A : Φ,M : Ω P ! A@M " ∀σ : Σ.σ ! M⇒ σhPi ! A
∀P : Π,A,B : Φ P ! A # B " ∀P ′ : Π.P ′ ! A⇒ P m P ′ ! B

This definition relies on the satisfaction of membrane formulas, which we define
next. To this end, we need to introduce a notion of membrane observation, by
means of a labelled transition system (LTS) σ

l−→ τ for membranes. A crucial
point is how to define correctly the labels (i.e., the observations) l of this LTS.

The evident similarity between membranes and Milner’s CCS [12] could sug-
gest to define observations simply as actions; e.g., we could take a.σ

a−→ σ.
However, an important difference between membranes and CCS is that in latter
case, the labels are τ and communications over channels, i.e. names (possibly
together with terms, which are separated from processes in any case). On the
other hand, actions in membranes form a whole language, which incorporates
also the membranes themselves. Thus, observing actions over the membranes
would mean to observe explicitly (also) membranes instead of some abstract

logical property. For instance, in the transition J(σ).τ
J(σ)−−−→ τ we have a spe-

cific membrane σ in the label. This kind of observation is too “fine-grained” and
intensional with respect to the rest of the logic, which never deals with specific
membranes but only with their properties.

Therefore, we choose to take as labels the action formulas, instead of actions.
Thus the LTS is a relation σ

α−→ τ , which reads as “σ performs an action satisfying
α, and reduces to τ”. This LTS is defined by the following rules:

Labelled Transition System for Membranes

a ! α

a.σ
α−→ σ

(prefix)
σ

α−→ σ′

σ|τ α−→ σ′|τ
(par)

σ ≡ σ′ σ′ α−→ τ ′ τ ′ ≡ τ

σ
α−→ τ

(equiv)

Notice that in the (prefix) rule we use the satisfaction relation for actions:

Satisfaction of action formulas
∀a : Γ, n : Λ a ! Jn " a = Jn

∀a : Γ, n : Λ,M : Ω a ! JI
n(M) " ∃σ : Σ.a = JI

n(σ) ∧ σ ! M
∀a : Γ, n : Λ a ! Kn " a = Kn

∀a : Γ, n : Λ a ! KI
n " a = KI

n

∀a : Γ,M : Ω a ! G(M) " ∃σ : Σ.a = G(σ) ∧ σ ! M

This relation is defined in terms of the satisfaction of membrane formulas:

Satisfaction of membrane formulas
∀σ : Σ σ ! T
∀σ : Σ,M : Ω σ ! ¬M " σ ! M
∀σ : Σ,M,N : Ω σ ! M ∨N " σ ! M ∨ σ ! M

Modal Logics for Brane Calculus 5

16

Solution: a Logic of Actions	

• What we observe are properties of actions, not actions themselves

• action formulas α are the label of the membrane LTS

• we need to introduce a logic of actions:

Membrane formulas Ω
M,N ::= T | ¬M | M ∨N (classical propositional fragment)

0 (void membrane)
M|N | M ! N (spatial composition, composition adjoint)
)α*M (action modality)

Action formulas Θ
α, β ::= Jη | JI

η(M) (phago, co-phago)
Kη | KI

η (exo, co-exo)
G(M) (pino)

η ::= n | x (terms)

Given a formula A, its free names FN(A) are easily defined, since there are no
binders for names. Similarly, we can define the set of free variables FV(A), notic-
ing that the only binder for variables is the universal quantifier. As usual, a
formula A is closed if FV(A) = ∅.

For sake of simplicity, we will use the shorthands Mhi and)α* in place of
Mhki and)α*0 respectively.

We give next an intuitive explanation of the most unusual constructors.
- P satisfies MhAi if P ≡ σhQi, where σ and Q satisfy M and A respectively.
- @ e " are very useful for expressing security and safety properties.

A system P satisfies A@M if, when P is enclosed in a membrane satisfying
M, the resulting system satisfies A. Similarly, a system P satisfies A " B if,
when P is put aside a system enjoying B, the whole system satisfies A.

- A membrane σ satisfies)α*M if σ can perform an action satisfying α, yielding
a residual satisfying M.

- M|N and its adjoint M ! N are analogous to A ◦ B and A " B respectively.

Satisfaction Formally, the meaning of a formula is defined by means of a family
of satisfaction relations, one for each syntactic sort of logical formulas1

#⊆ Π × Φ #⊆ Σ ×Ω #⊆ Ξ ×Θ

These relations are defined by induction on the syntax of the formulas. Let us
start with satisfaction of systems. First, we have to introduce the subsystem
relation P ↓ Q (read “Q is an immediate subsystem of P”), defined as

P ↓ Q $ ∃P ′ : Π,σ : Σ.P ≡ σhQi|P ′

We denote by ↓∗ the reflexive-transitive closure of ↓.
Then, we can define the satisfaction of system formulas.

Satisfaction of System Formulas
∀P : Π P # T
∀P : Π,A : Φ P # ¬A $ P " A
∀P : Π,A,B : Φ P # A ∨ B $ P # A ∨ P # B
∀P : Π P # k $ P ≡ k

∀P : Π,A : Φ,M : Ω P # MhAi $ ∃P ′ : Π,σ : Σ.P ≡ σhP ′i ∧ P ′ # A ∧ σ # M
1 We will use the same symbol ! for the three relations, since they are easily distin-

guishable from the context.

4 M. Miculan and G. Bacci

∀P : Π,A,B : Φ P ! A m B " ∃P ′, P ′′ : Π.P ≡ P ′ m P ′′ ∧ P ′ ! A ∧ P ′′ ! B
∀P : Π,A : Φ, x : ϑ P ! ∀x.A " ∀m : Λ.P ! A{x ← m}
∀P : Π,A : Φ P ! NA " ∃P ′ : Π.P }∗ P ′ ∧ P ′ ! A
∀P : Π,A : Φ P ! mA " ∃P ′ : Π.P ↓∗ P ′ ∧ P ′ ! A
∀P : Π,A : Φ,M : Ω P ! A@M " ∀σ : Σ.σ ! M⇒ σhPi ! A
∀P : Π,A,B : Φ P ! A # B " ∀P ′ : Π.P ′ ! A⇒ P m P ′ ! B

This definition relies on the satisfaction of membrane formulas, which we define
next. To this end, we need to introduce a notion of membrane observation, by
means of a labelled transition system (LTS) σ

l−→ τ for membranes. A crucial
point is how to define correctly the labels (i.e., the observations) l of this LTS.

The evident similarity between membranes and Milner’s CCS [12] could sug-
gest to define observations simply as actions; e.g., we could take a.σ

a−→ σ.
However, an important difference between membranes and CCS is that in latter
case, the labels are τ and communications over channels, i.e. names (possibly
together with terms, which are separated from processes in any case). On the
other hand, actions in membranes form a whole language, which incorporates
also the membranes themselves. Thus, observing actions over the membranes
would mean to observe explicitly (also) membranes instead of some abstract

logical property. For instance, in the transition J(σ).τ
J(σ)−−−→ τ we have a spe-

cific membrane σ in the label. This kind of observation is too “fine-grained” and
intensional with respect to the rest of the logic, which never deals with specific
membranes but only with their properties.

Therefore, we choose to take as labels the action formulas, instead of actions.
Thus the LTS is a relation σ

α−→ τ , which reads as “σ performs an action satisfying
α, and reduces to τ”. This LTS is defined by the following rules:

Labelled Transition System for Membranes

a ! α

a.σ
α−→ σ

(prefix)
σ

α−→ σ′

σ|τ α−→ σ′|τ
(par)

σ ≡ σ′ σ′ α−→ τ ′ τ ′ ≡ τ

σ
α−→ τ

(equiv)

Notice that in the (prefix) rule we use the satisfaction relation for actions:

Satisfaction of action formulas
∀a : Γ, n : Λ a ! Jn " a = Jn

∀a : Γ, n : Λ,M : Ω a ! JI
n(M) " ∃σ : Σ.a = JI

n(σ) ∧ σ ! M
∀a : Γ, n : Λ a ! Kn " a = Kn

∀a : Γ, n : Λ a ! KI
n " a = KI

n

∀a : Γ,M : Ω a ! G(M) " ∃σ : Σ.a = G(σ) ∧ σ ! M

This relation is defined in terms of the satisfaction of membrane formulas:

Satisfaction of membrane formulas
∀σ : Σ σ ! T
∀σ : Σ,M : Ω σ ! ¬M " σ ! M
∀σ : Σ,M,N : Ω σ ! M ∨N " σ ! M ∨ σ ! M

Modal Logics for Brane Calculus 5

Membrane
formulas here, not

membranes!
17

Satisfaction

•Satisfaction relations for the three logics are then
defined as usual for spatial/temporal/HM logics.
Some clauses:

Membrane formulas Ω
M,N ::= T | ¬M | M ∨N (classical propositional fragment)

0 (void membrane)
M|N | M ! N (spatial composition, composition adjoint)
)α*M (action modality)

Action formulas Θ
α, β ::= Jη | JI

η(M) (phago, co-phago)
Kη | KI

η (exo, co-exo)
G(M) (pino)

η ::= n | x (terms)

Given a formula A, its free names FN(A) are easily defined, since there are no
binders for names. Similarly, we can define the set of free variables FV(A), notic-
ing that the only binder for variables is the universal quantifier. As usual, a
formula A is closed if FV(A) = ∅.

For sake of simplicity, we will use the shorthands Mhi and)α* in place of
Mhki and)α*0 respectively.

We give next an intuitive explanation of the most unusual constructors.
- P satisfies MhAi if P ≡ σhQi, where σ and Q satisfy M and A respectively.
- @ e " are very useful for expressing security and safety properties.

A system P satisfies A@M if, when P is enclosed in a membrane satisfying
M, the resulting system satisfies A. Similarly, a system P satisfies A " B if,
when P is put aside a system enjoying B, the whole system satisfies A.

- A membrane σ satisfies)α*M if σ can perform an action satisfying α, yielding
a residual satisfying M.

- M|N and its adjoint M ! N are analogous to A ◦ B and A " B respectively.

Satisfaction Formally, the meaning of a formula is defined by means of a family
of satisfaction relations, one for each syntactic sort of logical formulas1

#⊆ Π × Φ #⊆ Σ ×Ω #⊆ Ξ ×Θ

These relations are defined by induction on the syntax of the formulas. Let us
start with satisfaction of systems. First, we have to introduce the subsystem
relation P ↓ Q (read “Q is an immediate subsystem of P”), defined as

P ↓ Q $ ∃P ′ : Π,σ : Σ.P ≡ σhQi|P ′

We denote by ↓∗ the reflexive-transitive closure of ↓.
Then, we can define the satisfaction of system formulas.

Satisfaction of System Formulas
∀P : Π P # T
∀P : Π,A : Φ P # ¬A $ P " A
∀P : Π,A,B : Φ P # A ∨ B $ P # A ∨ P # B
∀P : Π P # k $ P ≡ k

∀P : Π,A : Φ,M : Ω P # MhAi $ ∃P ′ : Π,σ : Σ.P ≡ σhP ′i ∧ P ′ # A ∧ σ # M
1 We will use the same symbol ! for the three relations, since they are easily distin-

guishable from the context.

4 M. Miculan and G. Bacci

∀P : Π,A,B : Φ P ! A m B " ∃P ′, P ′′ : Π.P ≡ P ′ m P ′′ ∧ P ′ ! A ∧ P ′′ ! B
∀P : Π,A : Φ, x : ϑ P ! ∀x.A " ∀m : Λ.P ! A{x ← m}
∀P : Π,A : Φ P ! NA " ∃P ′ : Π.P }∗ P ′ ∧ P ′ ! A
∀P : Π,A : Φ P ! mA " ∃P ′ : Π.P ↓∗ P ′ ∧ P ′ ! A
∀P : Π,A : Φ,M : Ω P ! A@M " ∀σ : Σ.σ ! M⇒ σhPi ! A
∀P : Π,A,B : Φ P ! A # B " ∀P ′ : Π.P ′ ! A⇒ P m P ′ ! B

This definition relies on the satisfaction of membrane formulas, which we define
next. To this end, we need to introduce a notion of membrane observation, by
means of a labelled transition system (LTS) σ

l−→ τ for membranes. A crucial
point is how to define correctly the labels (i.e., the observations) l of this LTS.

The evident similarity between membranes and Milner’s CCS [12] could sug-
gest to define observations simply as actions; e.g., we could take a.σ

a−→ σ.
However, an important difference between membranes and CCS is that in latter
case, the labels are τ and communications over channels, i.e. names (possibly
together with terms, which are separated from processes in any case). On the
other hand, actions in membranes form a whole language, which incorporates
also the membranes themselves. Thus, observing actions over the membranes
would mean to observe explicitly (also) membranes instead of some abstract

logical property. For instance, in the transition J(σ).τ
J(σ)−−−→ τ we have a spe-

cific membrane σ in the label. This kind of observation is too “fine-grained” and
intensional with respect to the rest of the logic, which never deals with specific
membranes but only with their properties.

Therefore, we choose to take as labels the action formulas, instead of actions.
Thus the LTS is a relation σ

α−→ τ , which reads as “σ performs an action satisfying
α, and reduces to τ”. This LTS is defined by the following rules:

Labelled Transition System for Membranes

a ! α

a.σ
α−→ σ

(prefix)
σ

α−→ σ′

σ|τ α−→ σ′|τ
(par)

σ ≡ σ′ σ′ α−→ τ ′ τ ′ ≡ τ

σ
α−→ τ

(equiv)

Notice that in the (prefix) rule we use the satisfaction relation for actions:

Satisfaction of action formulas
∀a : Γ, n : Λ a ! Jn " a = Jn

∀a : Γ, n : Λ,M : Ω a ! JI
n(M) " ∃σ : Σ.a = JI

n(σ) ∧ σ ! M
∀a : Γ, n : Λ a ! Kn " a = Kn

∀a : Γ, n : Λ a ! KI
n " a = KI

n

∀a : Γ,M : Ω a ! G(M) " ∃σ : Σ.a = G(σ) ∧ σ ! M

This relation is defined in terms of the satisfaction of membrane formulas:

Satisfaction of membrane formulas
∀σ : Σ σ ! T
∀σ : Σ,M : Ω σ ! ¬M " σ ! M
∀σ : Σ,M,N : Ω σ ! M ∨N " σ ! M ∨ σ ! M

Modal Logics for Brane Calculus 5

∀σ : Σ σ ! 0 " σ ≡ 0
∀σ : Σ,N ,M : Ω σ ! M|N " ∃σ′,σ′′ : Σ.σ ≡ σ′|σ′′ ∧ σ′ ! M ∧ σ′′ ! N
∀σ : Σ,α : Θ σ !)α*M " ∃σ′ : Σ.σ

α−→ σ′ ∧ σ′ ! M
∀σ : Σ,M,N : Ω σ ! M # N " ∀σ′ : Σ.σ′ ! M⇒ σ|σ′ ! N

Notice that the truth of)α*M is defined using the LTS we defined before. Thus,
the LTS, the satisfaction of action formulas, and the satisfaction of membrane
formulas are three mutually defined judgments.

Derived connectives In the following table, we introduce several useful derived
connectives which can be defined as shorthands of longer formulas, together with
an intuitive description of their meaning. This description can be easily checked
by unfolding the formal meaning, using the satisfaction relations above.

Some derived connectives

A ! B " ¬(¬A m ¬B) system decomposition
A∀ " A ! F every subsystem (also non proper) satisfies A
A∃ " A m T some subsystem satisfies A

A ∝ B " ¬(B $ ¬A) system fusion
Am⇒ B " ¬(A m ¬B) fusion adjoint

M ‖ N " ¬(¬M|¬N) membrane decomposition
M∀ " M ‖ F every part of the membrane satisfies M
M∃ " M|T some part of the membrane satisfies M

M!N " ¬(N # ¬M) membrane fusion
M "⇒ N " ¬(M|¬N) fusion adjoint

Derived connectives for Mate-Bud-Drip

)mateη*M ")Jη*)Kη′*M mate
)mateIη*N ")JI

η()KI
η′*)Kη′′*)*)KI

η′′*N co-mate

)budη*M ")Jη*M bud
)budIη(K)*N ")G()JI

η(K)*)Kη′*)*)KI
η′*N co-bud

)dripη(N)*M ")G()G(N)*)Kη*)*)KI
η*M drip

Let us describe shortly the meaning of the most important derived connectives;
not surprisingly, these are close to similar ones in the Ambient Logic.

System decomposition is the dual of composition, and it is useful to describe
invariant properties of systems. A system satisfies A!B if, for any decomposition
of the system in two parts, a part satisfies A or the other B. As a consequence,
the formula A∀ means that any decomposition satisfies A, or satisfies F. Since
F is never satisfied, this means that in every possible decomposition, a part
satisfies A; hence, every immediate subsystem satisfies A. Thus, the formula

6 M. Miculan and G. Bacci

∀P : Π,A,B : Φ P ! A m B " ∃P ′, P ′′ : Π.P ≡ P ′ m P ′′ ∧ P ′ ! A ∧ P ′′ ! B
∀P : Π,A : Φ, x : ϑ P ! ∀x.A " ∀m : Λ.P ! A{x ← m}
∀P : Π,A : Φ P ! NA " ∃P ′ : Π.P }∗ P ′ ∧ P ′ ! A
∀P : Π,A : Φ P ! mA " ∃P ′ : Π.P ↓∗ P ′ ∧ P ′ ! A
∀P : Π,A : Φ,M : Ω P ! A@M " ∀σ : Σ.σ ! M⇒ σhPi ! A
∀P : Π,A,B : Φ P ! A # B " ∀P ′ : Π.P ′ ! A⇒ P m P ′ ! B

This definition relies on the satisfaction of membrane formulas, which we define
next. To this end, we need to introduce a notion of membrane observation, by
means of a labelled transition system (LTS) σ

l−→ τ for membranes. A crucial
point is how to define correctly the labels (i.e., the observations) l of this LTS.

The evident similarity between membranes and Milner’s CCS [12] could sug-
gest to define observations simply as actions; e.g., we could take a.σ

a−→ σ.
However, an important difference between membranes and CCS is that in latter
case, the labels are τ and communications over channels, i.e. names (possibly
together with terms, which are separated from processes in any case). On the
other hand, actions in membranes form a whole language, which incorporates
also the membranes themselves. Thus, observing actions over the membranes
would mean to observe explicitly (also) membranes instead of some abstract

logical property. For instance, in the transition J(σ).τ
J(σ)−−−→ τ we have a spe-

cific membrane σ in the label. This kind of observation is too “fine-grained” and
intensional with respect to the rest of the logic, which never deals with specific
membranes but only with their properties.

Therefore, we choose to take as labels the action formulas, instead of actions.
Thus the LTS is a relation σ

α−→ τ , which reads as “σ performs an action satisfying
α, and reduces to τ”. This LTS is defined by the following rules:

Labelled Transition System for Membranes

a ! α

a.σ
α−→ σ

(prefix)
σ

α−→ σ′

σ|τ α−→ σ′|τ
(par)

σ ≡ σ′ σ′ α−→ τ ′ τ ′ ≡ τ

σ
α−→ τ

(equiv)

Notice that in the (prefix) rule we use the satisfaction relation for actions:

Satisfaction of action formulas
∀a : Γ, n : Λ a ! Jn " a = Jn

∀a : Γ, n : Λ,M : Ω a ! JI
n(M) " ∃σ : Σ.a = JI

n(σ) ∧ σ ! M
∀a : Γ, n : Λ a ! Kn " a = Kn

∀a : Γ, n : Λ a ! KI
n " a = KI

n

∀a : Γ,M : Ω a ! G(M) " ∃σ : Σ.a = G(σ) ∧ σ ! M

This relation is defined in terms of the satisfaction of membrane formulas:

Satisfaction of membrane formulas
∀σ : Σ σ ! T
∀σ : Σ,M : Ω σ ! ¬M " σ ! M
∀σ : Σ,M,N : Ω σ ! M ∨N " σ ! M ∨ σ ! M

Modal Logics for Brane Calculus 5

18

Deciding Satisfaction

• Proposition: The satisfaction problem (“P ⊨ A ?”) is undecidable.

Proof similar to that of Ambient Logic (reduction to PSP)

• Proposition: The fragment without adjoints, against the calculus
without replication, is decidable. (Model checkers for the three
logics are given in the paper.)

• Conjecture: the result can be extended to finite processes against
formulas with adjoints but without quantifiers (along DalZilio,
Charatonik et al.)

19

Proof System

•A (sound) proof system for deriving valid sequents
(i.e, universally valid properties) has been given

•There are rules (induced by reduction semantics)
explaining the interplay between the different logics

Logical rules for reactions
()J*)

)Jn*MhAi m)JI
n(K)*NhBi ! NNhKhMhAii m Bi

()K*)
)KI

n*Nh)Kn*MhAi m Bi ! N(M|NhBi mA)
()G*)

)G(N)*MhAi ! NMhNhki mAi

Some corollaries about reactions
()mate*)

)maten*MhAi m)mateIn*NhBi ! NM|NhA m Bi
()bud*)

)budIn(K)*Nh)budn*MhAi m Bi ! N(KhMhAii mNhBi)
()drip*)

)dripn(N)*MhAi ! N(Nhki mMhAi)

These rules show the connections between action modalities)a* (in the logic of
membranes) and temporal modalities N (in the logic of systems). These rules
are very useful in verifying dynamic properties of systems and membranes.
Predicates We need to extend the notion of validity to open formulas. Let
FV(A) = {x1 . . . xk} be the set of free variables of a formula A, and φ ∈
FV(A) → Λ a substitution of names for variables; Aφ denotes the formula
A{x1 ← φ(x1), . . . , xn ← φ(xk)} obtained by applying the substitution φ. Then,

vld(A) ! ∀φ ∈ FV(A)→ Λ.∀P ∈ Π.P " Aφ

Using this notion of validity of formulas, the definitions of sequents and rules do
not need to be changed. Then, the rules for the quantifiers are the usual ones:

Rules for the universal quantifier

(∀L)
A{x← η} ! B
∀x.A ! B (∀R)

A ! B
A ! ∀x.B (x /∈ FV(A))

With respect to Ambient Logic, name quantification has a slightly different
meaning. In the Brane Calculus, different names are intended to denote dif-
ferent proteine complexes on membranes; an action and a coaction can trigger a
reaction only if they are using matching complexes, i.e., names. Given this inter-
pretation, using the quantifiers we can express properties which are schematic
with respect to the names involved, that is, they do not depend on the specific
complexes. For instance, ∀x.()KI

x*h)Kx*hkii ⇒ Nk) means “if, for any given
complexes, the system exhibits a matching exo and co-exo capabilities in the
right places, then it can evolve (into the empty system)”.

Name equality We can encode name equality just using logical constructors,
and in particular the adjoint of compartment:

η = µ !)Kη*hTi@)Kµ*

10 M. Miculan and G. Bacci

20

Example: Semliki Forest Viral Infection

• Formalized in Brane Calculus [Cardelli 2004]

4.4 Example: Viral Infection

As an example of the expressivity of Brane Logic, we give the formulas describing
a viral infection. We borrow the example of the Semliki Forest virus in [3].

Viral infection system

virus ! Jn.Kkhnucapi

cell ! membranehcytosoli
membrane ! !JI

n(matem)|!KI
w

cytosol ! endosome m Z
endosome ! !mateIm|!KI

khi

infected cell ! membranehnucap m cytosoli

It is simple to show that cell, if placed next to virus, evolves into infected cell

virus m cell }∗ infected cell

The system describe in detail an infection of the Semliki Forest virus; however,
it is almost impossible to abstract from the structure of the system, for instance
if we are interested only in its dynamic behaviour. There are entire subsystems
(e.g. Z) or parts of mebranes (e.g. !Kw) in cell that are not involved in the
infection process. These are only a burden in explaining what happens in the
infection process. The logic can help us to abstract from these irrelevant details:
the formulas describe only what is really needed for the viral attack to take
place. This kind of abstraction is very important in more complex systems or
for focusing only about certain aspects of their evolution.

Virus !)Jn*)Kk*ThNucapi

InfectableCell ! ∃x.Membrane(x)hEndosome(x)∃i
Membrane(x) !)JI

n()matex*T)*T
Endosome(x) !)mateIx*T|)KI

k*ThTi

InfectedCell ! ThNucap∃i

A system satisfies Virus if and only if it can be phagocitated by cells revealing
a co-phago action with key n on their surface, and, after that, it can release its
nucleocapsid if enveloped in a membrane revealing a co-exo action with key k.
An infectable cell is a cell containing an endosome, such that their respective
membranes have matching mate and mateI actions and which exhibit the keys
requested by J and K actions of the virus. Notice that the existential quantifier
allow us to abstract from the specific key x in the membrane and the endosome:
it is not important which is the specific key, only that it is the same.

Using the logical rules, we can derive that “an infectable cell can become
infected if it gets close to a virus”:

InfectableCell " Virus " NInfectedCell

12 M. Miculan and G. Bacci

4.4 Example: Viral Infection

As an example of the expressivity of Brane Logic, we give the formulas describing
a viral infection. We borrow the example of the Semliki Forest virus in [3].

Viral infection system

virus ! Jn.Kkhnucapi

cell ! membranehcytosoli
membrane ! !JI

n(matem)|!KI
w

cytosol ! endosome m Z
endosome ! !mateIm|!KI

khi

infected cell ! membranehnucap m cytosoli

It is simple to show that cell, if placed next to virus, evolves into infected cell

virus m cell }∗ infected cell

The system describe in detail an infection of the Semliki Forest virus; however,
it is almost impossible to abstract from the structure of the system, for instance
if we are interested only in its dynamic behaviour. There are entire subsystems
(e.g. Z) or parts of mebranes (e.g. !Kw) in cell that are not involved in the
infection process. These are only a burden in explaining what happens in the
infection process. The logic can help us to abstract from these irrelevant details:
the formulas describe only what is really needed for the viral attack to take
place. This kind of abstraction is very important in more complex systems or
for focusing only about certain aspects of their evolution.

Virus !)Jn*)Kk*ThNucapi

InfectableCell ! ∃x.Membrane(x)hEndosome(x)∃i
Membrane(x) !)JI

n()matex*T)*T
Endosome(x) !)mateIx*T|)KI

k*ThTi

InfectedCell ! ThNucap∃i

A system satisfies Virus if and only if it can be phagocitated by cells revealing
a co-phago action with key n on their surface, and, after that, it can release its
nucleocapsid if enveloped in a membrane revealing a co-exo action with key k.
An infectable cell is a cell containing an endosome, such that their respective
membranes have matching mate and mateI actions and which exhibit the keys
requested by J and K actions of the virus. Notice that the existential quantifier
allow us to abstract from the specific key x in the membrane and the endosome:
it is not important which is the specific key, only that it is the same.

Using the logical rules, we can derive that “an infectable cell can become
infected if it gets close to a virus”:

InfectableCell " Virus " NInfectedCell

12 M. Miculan and G. Bacci

Not
involved in
infection

Must be
matching

21

Example (continued)

•The infection, specified in Brane Logic

•Only the strictly necessary parts have to be specified

•Quantifiers take care of parametric names

•We can formally derive the following sequent:

4.4 Example: Viral Infection

As an example of the expressivity of Brane Logic, we give the formulas describing
a viral infection. We borrow the example of the Semliki Forest virus in [3].

Viral infection system

virus ! Jn.Kkhnucapi

cell ! membranehcytosoli
membrane ! !JI

n(matem)|!KI
w

cytosol ! endosome m Z
endosome ! !mateIm|!KI

khi

infected cell ! membranehnucap m cytosoli

It is simple to show that cell, if placed next to virus, evolves into infected cell

virus m cell }∗ infected cell

The system describe in detail an infection of the Semliki Forest virus; however,
it is almost impossible to abstract from the structure of the system, for instance
if we are interested only in its dynamic behaviour. There are entire subsystems
(e.g. Z) or parts of mebranes (e.g. !Kw) in cell that are not involved in the
infection process. These are only a burden in explaining what happens in the
infection process. The logic can help us to abstract from these irrelevant details:
the formulas describe only what is really needed for the viral attack to take
place. This kind of abstraction is very important in more complex systems or
for focusing only about certain aspects of their evolution.

Virus !)Jn*)Kk*ThNucapi

InfectableCell ! ∃x.Membrane(x)hEndosome(x)∃i
Membrane(x) !)JI

n()matex*T)*T
Endosome(x) !)mateIx*T|)KI

k*ThTi

InfectedCell ! ThNucap∃i

A system satisfies Virus if and only if it can be phagocitated by cells revealing
a co-phago action with key n on their surface, and, after that, it can release its
nucleocapsid if enveloped in a membrane revealing a co-exo action with key k.
An infectable cell is a cell containing an endosome, such that their respective
membranes have matching mate and mateI actions and which exhibit the keys
requested by J and K actions of the virus. Notice that the existential quantifier
allow us to abstract from the specific key x in the membrane and the endosome:
it is not important which is the specific key, only that it is the same.

Using the logical rules, we can derive that “an infectable cell can become
infected if it gets close to a virus”:

InfectableCell " Virus " NInfectedCell

12 M. Miculan and G. Bacci

4.4 Example: Viral Infection

As an example of the expressivity of Brane Logic, we give the formulas describing
a viral infection. We borrow the example of the Semliki Forest virus in [3].

Viral infection system

virus ! Jn.Kkhnucapi

cell ! membranehcytosoli
membrane ! !JI

n(matem)|!KI
w

cytosol ! endosome m Z
endosome ! !mateIm|!KI

khi

infected cell ! membranehnucap m cytosoli

It is simple to show that cell, if placed next to virus, evolves into infected cell

virus m cell }∗ infected cell

The system describe in detail an infection of the Semliki Forest virus; however,
it is almost impossible to abstract from the structure of the system, for instance
if we are interested only in its dynamic behaviour. There are entire subsystems
(e.g. Z) or parts of mebranes (e.g. !Kw) in cell that are not involved in the
infection process. These are only a burden in explaining what happens in the
infection process. The logic can help us to abstract from these irrelevant details:
the formulas describe only what is really needed for the viral attack to take
place. This kind of abstraction is very important in more complex systems or
for focusing only about certain aspects of their evolution.

Virus !)Jn*)Kk*ThNucapi

InfectableCell ! ∃x.Membrane(x)hEndosome(x)∃i
Membrane(x) !)JI

n()matex*T)*T
Endosome(x) !)mateIx*T|)KI

k*ThTi

InfectedCell ! ThNucap∃i

A system satisfies Virus if and only if it can be phagocitated by cells revealing
a co-phago action with key n on their surface, and, after that, it can release its
nucleocapsid if enveloped in a membrane revealing a co-exo action with key k.
An infectable cell is a cell containing an endosome, such that their respective
membranes have matching mate and mateI actions and which exhibit the keys
requested by J and K actions of the virus. Notice that the existential quantifier
allow us to abstract from the specific key x in the membrane and the endosome:
it is not important which is the specific key, only that it is the same.

Using the logical rules, we can derive that “an infectable cell can become
infected if it gets close to a virus”:

InfectableCell " Virus " NInfectedCell

12 M. Miculan and G. Bacci

22

Conclusions

• Introduced Brane Logic, a bi-spatial temporal modal logic for reasoning
about Brane Calculus

• Proof system given; can be used for deriving general properties of
membrane systems

• Model checker given, for a decidable fragment

• Future work:

• Extend the logic with connectives for communications (bind&release)

• Model checker for larger subset of the logic

• Implementation: e.g. extending Delzanno work about LTL in Maude

• Experiments…

23

Thanks.

24

