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Abstract. The aim of this work is to obtain an interactive proof en-
vironment based on Isabelle/HOL for reasoning formally about crypto-
graphic protocols, expressed as processes of the spi calculus (a π-calculus
with cryptographic primitives). To this end, we formalise syntax, se-
mantics, and hedged bisimulation, an environment-sensitive bisimulation
which can be used for proving security properties of protocols. In order
to deal smoothly with binding operators and reason up-to α-equivalence
of bound names, we adopt the new Nominal datatype package. This sim-
plifies both the encoding, and the formal proofs, which turn out to cor-
respond closely to “manual proofs”.

1 Introduction

It is well known that proving security properties of communication protocols is
difficult and error-prone. Since Paulson’s seminal work [19], interactive (semi-
automatised) proof assistants (such as Isabelle [18]) have been recognised as valid
aid tools to this end. In principle, (a model of) the system can be formalised in a
proof assistant, the security property can be formally stated as a “theorem”, and
a formal proof can be carried out interactively by the user, and checked by the
environment. Sophisticated semi-automatic proof search tactics may simplify
some derivation steps. This approach should be seen as complementary, and
not in contrast, to the many fully automatised tools, such as those based on
(symbolic) model checking, SAT solvers, etc.; see e.g. [3,6,10,16]. Actually, both
approaches have strong and weak points: automatic tools are quite successful
on particular finite-state systems, but they naturally suffer of state-explosion
problems and usually cannot be used for proving general properties. On the
other hand, interactive tools may be tedious and slow to use, but in principle
can be used for proving any valid property. In fact, the best solution would be
integrated proof assistants, that is semi-automatic interactive tools where the
verification of decidable subgoals can be left to automatic proof search tools; see
e.g. [17,24] for some application of this approach to model checking problems.
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Among the many formal models for security, a particularly successful one is
the spi calculus [2], a process calculus intended to describe and reason about
the behaviour of cryptographic protocols; security properties can be expressed
rigorously as statements of behavioural equivalence between processes. These
equivalences can be characterised by environmental (i.e. context-sensitive) bisim-
ulations, where the environment keeps track of the knowledge accumulated by
an attacker that observes the evolution of the protocols. Some fully automa-
tised approaches for deciding these equivalences have been proposed (notably
[6,8,14]), but their applicability is limited to small decidable fragments.

In this paper, we intend to complement these tools with an interactive proof
assistant for spi calculus. More precisely, we give a formalisation of the spi cal-
culus in the proof assistant Isabelle/HOL, using the recently developed Nomi-
nal package. We formalise syntax, operational semantics, and two environmental
bisimulations. In our opinion this work is useful for many reasons. First, we read-
ily obtain an interactive environment which can be effectively used for proving
(formally and error-free) security properties of protocols expressed as spi calculus
processes, as well as meta-theoretic results about the spi calculus itself. Secondly,
the rigorous encoding of a calculus in the metalanguage of a logical framework
is normative, since it forces to spell out in full detail all aspects of the calculus,
thus giving the possibility of identifying and fixing problematic issues which may
be overlooked on paper. Thirdly, this formalisation can be used for integrating
automatised tactics and proof search strategies, as described above. Fourthly,
this is the first application of these techniques to environmental bisimulations,
and this study can be ported to other environmental bisimulations such as those
recently studied for higher-order languages in [21]. Finally, extensive case studies
like this are useful test-beds for state-of-art and still under development logical
frameworks and proof assistants.

Regarding this last aspect, one feature of our work is that we use Isabelle/HOL
extended with the Nominal package [22] (or Isabelle/Nominal for short). The
Nominal package implements in Isabelle/HOL the ideas of Nominal Logic, in-
troduced in the seminal works by Gabbay and Pitts [11,20]. These techniques
aim to simplify the manipulation and reasoning of data with binding operators,
by automatically identifying terms up to α-equivalence of bound names. This
aspect is fundamental in the spi calculus, where (bound) variables and names
are crucially used for representing channels, keys, nonces, etc. Of course other
encoding methodologies are possible in principle, but the hassle of dealing explic-
itly with different representations of the same process would hinder the usability
of the resulting encoding in interactive proofs.

Although it is still under development, the Nominal package is already quite
usable; see [4] for an extensive implementation of the theory of π-calculus in
Isabelle/Nominal, which have been inspiration for the present work. In fact, we
think that case studies like the present work can give useful insights for further
improvements of the Nominal package, thanks to the several distinguishing fea-
tures of spi calculus with respect to π-calculus (such as message passing and
peculiar context-sensitive bisimulations).
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Synopsis. In Section 2 we recall the spi calculus: its syntax, semantics and hedged
bisimilarity. In Section 3 we give a brief introduction to the Nominal package. In
Section 4 we describe the implementation of the spi calculus in Isabelle/Nominal,
together with an example of a formal proof. Section 5 concludes the paper with
some future and related work.

The complete Isabelle source code, with further examples and an encoding of
“framed bisimulation” (which we cannot report in this paper due to lack of space),
can be found at http://www.cs.swan.ac.uk/∼csteme/SpiInIsabelle/.

2 Spi Calculus

The spi calculus [2] is a process calculus extending π-calculus [15] with primitives
for describing and reasoning about the behaviour of cryptographic protocols.
Security properties, such as secrecy, authenticity (and also authentication via a
reduction to secrecy [5]), can be expressed as statements of behavioral equiva-
lence. In this section we recall the syntax and the semantics of the shared-key
spi-calculus, following [9].1

Syntax. We assume an infinite set of names N , ranging from a, b, c, . . . k, l,m, n
and x, y, z. The set of expressions is defined by the following grammar:

ζ, η ::= a | Eη(ζ) | Dη(ζ) expressions E
δ ::= a | Eδ(δ) decryption-free expressions D

M,N ::= a | Ek(M) messages M

Eη(ζ) represents the cipher-text obtained by encrypting the expression ζ with
the expression η as key, using some given (perfect) shared-key cryptosystem.
Dη(ζ) represents the decryption of ζ using the key η, if successful.

The guards G are defined by the following grammar:

φ, ψ ::= tt | φ ∧ ψ | ¬φ | let z = ζ in φ | is Name(δ) | [δ = δ]

Decryption constructors can occur only in the ζ of the “let” construct: the for-
mula let z = ζ in φ evaluates the expression ζ, and if evaluation succeeds (i.e., ζ
contains no encrypted expressions which cannot be decrypted), binds its value to
z and evaluates φ. Equality and name tests can be performed only on decryption-
free expressions; this means that before comparing two expressions, or checking
whether an expression is a name, all pending decryptions have to be solved.

Finally, the set of processes is defined as follows:

P,Q,R ::=0 | δ〈N〉.P | δ(x).P | P + P | P | Q
| (νn)P |!P | φP | let x = ζ in P

1 Of course more expressive languages, e.g. with primitives for public-key cryptogra-
phy, can be dealt with easily; for the sake of simplicity, in this paper we prefer to
consider a simpler language.

http://www.cs.swan.ac.uk/~csteme/SpiInIsabelle/
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The name n is bound in (νn)P , and x is bound in P by let x = ζ in P
and M(x).P . For an intuitive description of spi calculus processes, see [1]. Some
syntactic conventions: fn(P ) indicates the sets of names free in process P . A
concretion is an expression of the form νm1, . . . ,mk〈M〉P , where M is a term, P
is a process, k ≥ 0, and the names m1, . . . ,mk are bound in M and P . An agent
is a process or a concretion. The meta-variables A and B range over arbitrary
agents, and fn(A) stands for the sets of free names of an agent A. An action
is either a name a with a message M (representing input), or a co-name m
(representing output) or the distinguished silent action τ .

Operational semantics. Expressions and boolean guards are evaluated by two
functions �.� : E → M ∪ {⊥}, �.� : G → {tt,ff}. The behaviour of processes is
described by the commitment relation (P α−→ A), where P is a process, α is an
action, and A is an agent. See [9] for a complete description of these two notions.

Environment-sensitive bisimulations. Bisimulations for spi calculus are based
on the idea of an environment observing a pair of processes, trying to distin-
guish one from the other using the knowledge accumulated during the evolution
of these processes. The environment typically observes the transitions derived
from the operational semantics of the processes. Hedged bisimulation is an im-
proved form of environment-sensitive bisimulation. It has been introduced in
[9], following ideas of [7], in order to highlight the differences between different
environment-sensitive bisimulation. The main idea of hedges is to keep track of
the correspondence of different names which play the same role.

Definition 1. A hedge is a finite subset of M × M. H denotes the set of all
hedges.

A hedge h is consistent iff for (M,N) ∈ h:

1. M ∈ N iff N ∈ N ;
2. if (M ′, N ′) ∈ h then M = M ′ iff N = N ′
3. if M = EM2(M1) and N = EN2(N1) then M2 /∈ π1(h) and N /∈ π2(h), where

M1,M2, N1 and N2 are expressions (and π1(h) is the first projection).

The synthesis S(.) of a hedge is defined inductively. We write h 
 M ↔ N for
(M,N) ∈ S(h). Intuitively, h 
M ↔ N means that, using the knowledge h, the
environment is unable to distinguish two processes P and Q, if the first emits
M and the second N . The rules for synthesis are the following:

(Synth. hedge)
(m,n) ∈ h

h 
 m↔ n
(Synth. enc)

h 
M ↔M ′ h 
 N ↔ N ′

h 
 EN (M) ↔ EN ′(M ′)

The analysis A(h) is the smallest subset of M×M containing h and satisfying
the following rule:

(Ea(M),Eb(N)) ∈ A(h) (a, b) ∈ A(h)
(M,N) ∈ A(h)

The irreducibles I(h) of a hedge h is I(h) � A(h)\{(Ea(M),Eb(N)) | (a, b) ∈
A(h)∧M,N ∈ N}. Intuitively, the analysis decrypts as much as possible pairs of
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messages using pairs of names that are considered equivalent by the environment;
irreducibles terms are those which cannot be decrypted further.

Definition 2 (Hedged simulation). A hedged relation R is a subset of H×
P × P . We say that R is consistent if h 
 PRQ implies that h is consistent.

A consistent hedged relation R is a hedged simulation if whenever h 
 PRQ
the following conditions hold:

1. If P τ−→ P ′ then there exists a process Q′ such that Q =⇒ Q′ and h 
 P ′RQ′.
2. If P a M−−−→ P ′, h 
 a ↔ b, B is a finite set of names disjoint from fn(P ) ∪

fn(Q)∪ fn(h), and N is a message such that h∪ IdB 
M ↔ N , then there
exists Q′ such that Q b N=⇒ Q′ and h ∪ IDB 
 P ′RQ′

3. If P ā−→ (ν�c)〈M〉P ′, h 
 a ↔ b and �c is disjoint from fn(P ) ∪ fn(π1(h)),
then there exists Q′, N, �d with �d disjoint from fn(Q) ∪ fn(π2(h)) such that

Q
b̄=⇒ (ν �d)〈N〉Q′ and I(h ∪ {(M,N}) 
 P ′RQ′.

R is a hedged bisimulation if both R and R−1 are hedged simulations. The hedged
bisimilarity is the greatest hedged bisimulation, and it is denoted by ∼h.

It turns out that hedged bisimilarity corresponds to barbed equivalence [9].

3 Isabelle/Nominal

The Nominal package [22] for Isabelle/HOL aims to provide a framework for rea-
soning about process calculi and programming languages with binding operators
in a convenient way, so that formal proofs should be easy to carry out as infor-
mal “pencil-and-paper” proofs. The work is based on the nominal logic [20]; the
main technical novelty introduced by Urban et al. [22] is that the construction
for α-equivalent terms is done without adding any axiom to the Isabelle/HOL
logic; therefore the theory is implemented just as a package of Isabelle/HOL,
without the need of changing the underlying proof assistant.

A nominal datatype definition is like an ordinary datatype, but it explic-
itly tags the binding occurrences of names. For instance, in the syntax of the
usual untyped λ-calculus the notation <<name>>term stands for “a term ab-
stracted over name”, that is, with a name bound in term. The package au-
tomatically provide the α-equivalence between terms; e.g., (lam x (var x))
and (lam y (var y)) are equal. Moreover, the package generates automatically
powerful induction rules over terms up-to α-equivalence (among other useful
properties). This saves the user much hassle in large proofs.

The core of the nominal logic relies on the notion of name swapping. Atoms
(i.e., names) are manipulated not by renaming substitutions but by permutations
(bijective mappings from atoms to atoms). In the Nominal package, permuta-
tions are represented as finite lists of atom swappings (i.e, pairs of atoms). The
operation of permutation applies to all names in a term, including the binding
and bound occurrences: if T be a term, and a and b are names then (a b) • T
denotes the term where all instances of a in T becomes b and vice versa. For
further details, the reader can refer to http://isabelle.in.tum.de/nominal/.

http://isabelle.in.tum.de/nominal/
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4 Encoding Spi Calculus in Isabelle/Nominal

In this section, we describe the implementation of spi calculus in the general
purpose proof assistant Isabelle [18], using its instantiation HOL-Nominal im-
plementing higher-order intuitionistic logic and including the Nominal package.
For improving readability of theories and proofs, we use Isar [23] (Intelligible
semi-automatized reasoning), with occasionally some syntactic sugar.

4.1 Implementation of Syntax and Semantics

We introduce one type of nominal atoms name, which will be used in binders.
Expressions, decryption free expressions, messages and processes are declared as
nominal datatypes; actually, only processes have binders, but in the current ver-
sion of the Nominal package, building nominal datatypes over normal datatypes
is not easy.2

Due to the use of Isabelle syntax, there may be a slight change of notation
from Section 2, but the rationale will be clear.

nominal datatype expr = Name name | Sk enc expr expr | Sk dec expr expr
nominal datatype dfexpr = Df Name name | Df Sk enc dfexpr dfexpr
nominal datatype mess = M Name name | M Sk enc name mess
nominal datatype Proc = Pnil | in pref dfexpr �name�Proc

| out pref dfexpr dfexpr Proc | par Proc Proc
| res �name�Proc | bang Proc
| boolean guard guard Proc | letp expr �name�Proc

Sk enc and Sk dec represent Eη(ζ) and Dη(ζ) respectively. By declaring those
datatypes as nominal datatype, the nominal package generates a powerful induc-
tion rule, where bound names occurring in the inductive cases will be automati-
cally chosen to be different from any name (or variable) already used in a proof.
Thus, naming clashing are avoided automatically. The Nominal package derives
several proofs so that Isabelle’s type system can in most circumstances automat-
ically infer when a type is a permutation type. Nominal datatypes are always
permutation types and their elements are finitely supported.

Substitution operators for the different datatypes are implemented as func-
tions by using the recursion combinator that is automatically generated by the
Nominal package for the datatypes terms defined above; this allows us to define
recursively functions that respect α-equivalence classes.

subst mess Name :: mess ⇒ name ⇒ name ⇒ mess
subst mess Name m n ≡ λa. (M Name a)

subst mess enc :: mess ⇒ name ⇒ name ⇒ mess ⇒ mess ⇒ mess
subst mess enc m n ≡ λt m2 . (M Sk enc t m2 )

2 The problem is that datatypes used within nominal datatypes must satisfy several
“equivariance properties”. These properties are automatically proved for nominal
datatypes, but are left to the user for normal datatypes.
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subst mess :: mess ⇒ mess ⇒ name ⇒ mess ( [ ∼∼ ])
e[m ∼∼ n] ≡ (mess rec (subst mess Name m n) (subst mess enc m n)) e

mess rec denote the recursion combinator for mess. The notation e[m ∼∼
n] is a syntactic sugar, and it can be read as e with m for n, and represent
the substitution of all occurances of n of type name in the message e with m.
Evaluation operators for expressions and boolean guards �.� are implemented
as a nominal partial recursive function(nominal-primrec). The output of the
function that evaluates expressions is of type mess option, i.e. if the evaluation
is succesfull we expect a message otherwise an error. In Isabelle/HOL the type
t option models the result of a computation that may terminate with an error
(represented by None) or return the value v (represented by Some v).

consts
eval expr :: expr ⇒ mess option

nominal-primrec
eval expr (Name a) = Some (M Name a)
eval expr (Sk enc e1 e2 )= (case eval expr(e2 ) of

None ⇒ None
| Some M ⇒ (case eval expr(e1 ) of
None ⇒ None
| Some k ⇒ mess case k (%l . Some(M Sk enc l M )) (%x y . None)))

eval expr (Sk-dec e1 e2 )= (case eval-expr(e2 ) of
None ⇒ None
|Some X ⇒ (mess case X (%l . None)

(%k M . (case eval expr(e1 ) of
None ⇒ None

|Some N ⇒ mess case N (%k ′.(if k=k ′ then (Some M ) else None))
(%x y . None)))))

eval expr (Sk enc e1 e2) asserts if the evaluation of e2 is None then the
evaluation of (Sk enc e1 e2) is None; otherwise if the evaluation is of type
(SomeM) we make a case distinction: if the evaluation of e2 isNone the function
return None otherwise if the evaluation is of type (Some k) it returns M Sk enc
l M otherwise it returns None. eval expr (Sk dec e1 e2) follows the same kind
of evaluation. In Isabelle “case” expressions are just sugared syntax for a special
case combinator which is automatically defined whenever we define a datatype.
For nominal datatypes, however, this is not yet supported, hence we define a
case combinator (mess case) for this purpose.

consts mess case :: mess ⇒ (name ⇒ ′a) ⇒ (name ⇒ mess ⇒ ′a) ⇒ ′a
nominal-primrec

mess case (M Name n) c1 c2 = c1 n
mess case (M Sk enc n m) c1 c2 = c2 n m

The commitment relation is defined by induction; as an example, we report
the commitment of (guard) rule.

comm guard : [[ eval guard(g); P − α �−→ P ′ ]] =⇒ (g γ P) − α �−→ P ′



Implementing Spi Calculus Using Nominal Techniques 301

In �. . .� we have both the precondition and the side condition of the rule.
P − α �−→ P ′ stands for the commitment of P doing an action α and then
behaves like P ′. Guards are evaluated to a boolean value by eval guard, which is
the (encoding of) evaluation of guards defined in Section 2. eval guard is defined
by recursion on the syntax of guards, much like eval dfexpr; notice that the
guards have a binder. (gγP is the guarded process, denoted by φP in Section 2.)

4.2 Implementation of Hedged Bisimulation

In Isabelle/Nominal, hedges are just sets of term pairs. The consistency of hedges
(Cons H) is defined by a predicate formed by three clauses corresponding to Defi-
nition 1. The notions of analysis (Analysis H) and irreducibles (Irreducibles H)
are implemented as inductive sets, via the least fixed point.

Let us focus now on hedged bisimilarity, which is defined by coinduction. We
describe in detail the second condition (about input transitions):

consts HedgedBisim :: (hedge × Proc × Proc) set
coinductive HedgedBisim
intros

HedgedBisim Def : [[H ∈ Finites; (Cons H );
(clauses for τ , omitted)

∀P ′ a b M N B .(P − (a M ) �−→ P ′)∧ (H	(a↔ b)) ∧ (B∈ Finites) ∧ (B �
(H ,P ,Q)) ∧ (((H∪(ID B)))	(M↔N )) −→ (∃Q ′.(Q ,b,N ,Q ′)∈ commIn ∧ (((H∪(ID
B)),P ′,Q ′) ∈ HedgedBisim));

(symmetric clause for input, omitted)
∀P ′ (c::name list) a b M .(c � (H ,P)) −→(P − cobarb(a) �−→ (concAgent

(ConcChain c M P ′))) ∧ ((H )	((M Name a)↔(M Name b))) −→ (∃Q ′ (d ::name
list) N .(d � (H ,Q)) ∧ ((Q ,b,(ConcChain d N Q ′))∈ commOut) ∧ (((Irreducibles(H
∪{(M ,N )})),P ′, Q ′) ∈ HedgedBisim));

(symmetric clause for output, omitted) ]] =⇒ (H ,P ,Q) ∈ HedgedBisim

(H ∈ Finites) and (Cons H) require the hedge H to be a consistent finite set
of message pairs. (Q, b,N,Q′) ∈ commIn, where b is of type name and N is of
type mess, stands for the commitment relation of the process Q and abstraction
Q′ under the input b N , possibly preceded by τ transitions. Notice that the
freshness of the names in B is easily ensured by the hypothesis (B#(H,P,Q)).

The clauses for the output transitions are represented similarly; here again,
we use the freshness predicate from Nominal package, to encode the freshness of
locally scoped (i.e., newly created) names c, d.

4.3 Example: “Perfect Encryption”

In order to explain how the implementation of spi calculus presented above can
be used, we give an example proof by proving a simple bisimilarity, that is the
simple encryption property taken from [1]. We want to prove that for all M,M ′,
the processes

(νk)c〈Ek(M)〉 and (νk)c〈Ek(M ′)〉 (1)
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are hedged bisimilar. This means that there is no way to distinguish the cleartext
message if the encryption key is kept secret.

In the proof given in [1], a bisimulation S is defined, such that

({c, n}, {}) 
 (ν k)c〈Ek(M)〉 S (ν k)c〈Ek(M ′)〉
However, instead of explicitly define such S and prove that it is a bisimulation, we
can take advantage of the coinductive support provided by the Isabelle/Nominal
environment to directly prove that

({c, n}, (ν k)c〈Ek(M)〉, (ν k)c〈Ek(M ′)〉) ∈ HedgedBisim

and the Isar proof sketch is the following:

lemma perfectEncyption:
shows ({c, n},(〈ν(a)〉( c<(a

�
M

�
)>.PNil)), (〈ν(a)〉(c<(a

�
N
�

)>.PNil))) ∈ Hedged-
Bisim (is ?x ∈ )
proof −
have ?x : {?x} by simp
then show ?thesis
proof coinduct
case (HedgedBisim z)
have ?HedgedBisim Def sorry

then show ?case by blast
qed

qed

Let us analyze how the proof proceeds. Basically, the proof is done by using
forward reasoning, through the coinduct proof method; then the proof splits
into several sub-cases, before working towards one of the disjuncts. We also need
to fill in a sensible starting point ?x : {?x} and take special care of the types
here. ?x : {?x} is solved by simp (an Isabelle method that solves the goal using
simplification rules); ?thesis stands for the current goal to be proved. At this
point the proofs is done by case analysis. Applying the rule HedgedBisim Def, we
are left with eight subgoals (the 6 clauses of coinductive definition, plus finiteness
and consistency of hedge). Each case is then proved on its own (quite tediously);
in the proof sketch above, this part is replaced by the command sorry (which
proves anything but it is very convenient for top down proof development; this
command can be replaced by the actual proofs later on). In particular, the proof
of these cases exploits the features provided by the Nominal package for handling
freshness of bound names. We are able to finish the coinduction step, working
from the case assumptions to the conclusion ?case, via the blast method (a
classical reasoner which tries to solve automatically the current goal).

5 Conclusions and Future Work

In this paper we have presented a formalization of the spi calculus, a calculus
of cryptographic processes, in the Isabelle/HOL proof assistant using the new
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Nominal package. The proof environment so obtained allows for formal proofs
which closely correspond to the (traditional) manual proofs, and in some sense
are even simpler because we don’t have to figure out and define explicitly bisim-
ulations beforehand, thanks to the support provided by Isabelle to coinductive
proofs. The Nominal package really played an important role to this end: it al-
lows for a smooth handling of binding operators, thus reducing the overhead in
encoding the system and conducting a formal proof.

However, although the Nominal package is already usable and fruitful, in our
opinion some details need to be improved, in particular the support for recur-
sively defined functions and case analysis over nominal datatypes. Moreover, at
the moment is not possible to do reflection, i.e. implementing computations in-
side the logic rather than in the meta-language, and this due to the fact that
the current version does not support co-generation.

Related work. Theorem provers and proof assistants have been widely used to
model process algebra and reason about correctness. Paulson’s work [19] is ar-
guably the first application of Isabelle to the verification of cryptographic proto-
cols. Actually, the π-calculus is a paradigmatic example for proof environments
and encoding techniques designed to handle binding operators. The closest de-
velopment to ours is [4], where Bengtson and Parrow have formalised the π-
calculus in Isabelle/HOL using the Nominal package, providing a library which
allows users to carry proofs about π-calculus. Other approaches to binding man-
agement are de Bruijn indexes [12], and (weak) higher order abstract syntax [13].
De Bruijn indexes are quite cumbersome to use in interactive proofs, because
names disappear completely. On the other hand, the (weak) HOAS approach
needs to postulate some key properties (the so called Theory of Contexts) as
axioms. Although proved to be consistent with (classical) higher order logic,
the Theory of Contexts is inconsistent with the Axiom of Choice; therefore, its
portability to the Isabelle environment is still under discussion.

Future work. A first research stemming from the present work is to prove some
general meta-theoretic results about spi-calculus, similarly to the work done by
Briais in Coq [8]. Another interesting possibility is to implement special tactics
to be used during the proof developments for proving decidable equivalences.
These new commands can be written completely inside Isabelle; a possible way,
following ProVerif approach, is to translate the protocol and the goal into clas-
sical logic, and then take advantage of the powerful support provided by Is-
abelle/HOL to classical reasoning. Alternatively (and more efficiently), the new
commands can call auxiliary tools, external to Isabelle. To this end, the recent
works about symbolic bisimulation of spi calculus [8] may be useful.
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