
PicNIc - Pi-calculus Non-Interference checker∗
(Tool paper)

S. Crafa
Univ. di Padova

Italy

M. Mio
Univ. of Edinburgh

UK

M. Miculan, C. Piazza
Univ. di Udine

Italy

S. Rossi
Univ. Ca’ Foscari
di Venezia, Italy

Abstract

PICNIC is a tool for verifying security properties of sys-
tems, namely non-interference properties of processes ex-
pressed as terms of the π-calculus with two security levels
and declassification primitives. More precisely, it checks
whether inserting a process into two different high contexts
no information leakage to the low level observers occurs.
These properties are decidable over finite control processes,
but decidability can be extended by compositionality also
to some infinite state processes. Notably, PICNIC has been
developed in Fresh O’CaML, a dialect of CaML with native
support for binders and fresh/local names; thus, this work
can be seen also as a non-trivial case study about the ap-
plicability of these new programming languages.

1. Introduction

PICNIC (Pi-calculus Non-Interference checker) is a tool
for verifying security properties of concurrent systems de-
scribed as terms of a typed π-calculus with two security
levels and declassification primitives. It is freely avail-
able, together with some basic instructions and examples, at
http://www.dimi.uniud.it/mio/picnic/. The
basic tool’s functionalities are the verification of the non-
interference properties NI(∼=L) and NI(∼=dec

L) presented
in [1] and the compositional property NI(mdec

L) we in-
troduce here. Intuitively, a system with two security lev-
els, high (confidential) and low (public), satisfies the non-
interference property NI(∼=L) if, when inserted into dif-
ferent high level contexts it always exhibits the same low
level behaviour (w.r.t. ∼=L). Hence, even if the system
interacts with a high level malicious process (e.g., a tro-
jan horse) confidential information is not leaked to the low
level. However, in many real-world applications strong
non-interference is neither achievable nor desirable. In-
deed, partial controlled flows are often part of the intended

∗Partially supported by MIUR Projects PRIN 2005 grants 2005015491,
2005015785 and 2005015824.

behaviour of systems. To model intentional information
leakages, declassification primitives have been added to the
π-calculus and the security property NI(∼=dec

L) (based on
the low level observation ∼=dec

L) has been defined to ensure
that only explicitly authorized flows occur. The properties
NI(∼=L) andNI(∼=dec

L) coincide over the calculus without
declassifications.

While NI(∼=L) is compositional with respect to the
language operators, NI(∼=dec

L) is not. As a consequence,
NI(∼=L) can be efficiently verified by decomposing the
system into its sub-components, while to check NI(∼=dec

L)
it is necessary to examine the entire system. To improve
space/time performances, we introduce the compositional
propertyNI(mdec

L) that is stronger thanNI(∼=dec
L) and co-

incides with NI(∼=L) when no declassifications occur.
PICNIC allows one also to check the low level observa-

tion relations ∼=L, ∼=dec
L and mdec

L . This capability can be
used, for instance, in the developing of complex systems;
indeed the concrete final system can be obtained from an
initial abstract specification through stepwise refinements
which can be proved to preserve the low level behaviour
and the security guarantees of the initial specification.

The tool PICNIC consists of a graphical interface (writ-
ten in JAVA) and a kernel module which is composed of
three main parts: (1) the parser which checks for syntax
errors and builds the syntax tree out of the π-calculus pro-
cesses; (2) the semantic module calculating the transition
relations from a process to its sequents; (3) the verifier
which checks the special observation relations used to infer
the security properties. As far as∼=dec

L (and then∼=L) is con-
cerned, the implemented algorithm computes its coinduc-
tive characterization, that is the early weak partial bisimi-
larity on low level actions presented in [1]. This is done in
an on-the-fly fashion, implementing the ideas presented by
Lin in [5]. Moreover, in order to improve the performances,
the tool allows one to adopt the compositionality proper-
ties of NI(mdec

L) to both drastically reduce the space/time
complexities and check some infinite state processes.

Notably, the PICNIC kernel is implemented in FRESH
O’CAML, a new programming language extending OBJEC-

http://www.dimi.uniud.it/mio/picnic/

TIVE CAML with data-types and primitives for dealing with
names, binders and the α-equivalence of processes (see [9]
and http://www.fresh-ocaml.org/). Thus, the
present work is also interesting as a testbed and case study
for this language.

2. Non-Interference in the π-calculus

The concept of non-interference [4] has been introduced
to formalize the absence of information flow in multilevel
systems: it demands that the low level observation of the
system is independent from the behaviour of its high com-
ponents. Our tool aims at verifying non-interference prop-
erties of processes described as terms of a multilevel typed
π-calculus with declassification primitives. Types are used
to assign secrecy levels to channels and to statically check
that low level channels do not carry high level values. The
low level behaviour of processes is captured by the observa-
tion relation ∼=dec

L (which coincides with ∼=L in the calculus
without declassifications). This is a partial equivalence re-
lation (per model, see [8]) , that is symmetric and transitive
but not reflexive. The security property NI(∼=dec

L) is de-
fined as the reflexive closure of ∼=dec

L and characterizes the
class of processes whose observable behavior is indepen-
dent from the surrounding high context. Formally, this is
expressed by the following contextual property: if P is non-
interfering then for all low contexts CL[] (interacting with
the process filling the hole just through low channels) and
for all high contexts C1

H [] and C2
H [] (interacting with the

process filling the hole just through high channels carrying
either bound values or high free names)

CL[C1
H [P]] ∼=dec

L CL[C2
H [P]].

Interestingly, ∼=dec
L has a coinductive characterization

that is a bisimulation-based relation on typed labelled tran-
sition systems. This is decidable for the recursion-free cal-
culus and even for the finite-control π-calculus where the
number of parallel components in any process is bounded
by a constant.

In order to present the coinductive characterizations of
our security properties as they are implemented in PICNIC,
let us first briefly introduce our calculus.

The calculus we consider is a synchronous, monadic,
typed π-calculus where types are used to assign secrecy le-
vels to channels. PICNIC implements the simplest case of
two security levels, high (H) and low (L) with L � H .
We presuppose a countably-infinite sets of names and a
countably-infinite sets of variables, ranged over by n, . . . , q
and x, . . . , y, respectively. We often use a, b, c to range over
both names and variables.

The syntax is as follows:

Types T ::= H | L | H[T] | L[T]
Prefixes π ::= a〈b〉 | a(x:T)

Processes P ::= π.P | if a = b then P else P | P |P
| (νn : T)P | !P | 0

We consider the type system of [1] which prevents low
channels from carrying high values. Indeed, a channel of
type L[H[T]] is not admitted, ensuring that confidential in-
formation is not explicitly leaked to low. A type environ-
ment Γ is a finite mapping from names and variables to
types. A judgment of the form Γ ` P means that the pro-
cess P uses all channels as input/output devices in accor-
dance with their types, as given in Γ.

Intuitively, the propertyNI(∼=L) states that a process P
is secure if whenever P is inserted into two different high
contexts C1

H [] and C2
H [], which can use only high level

channels, the two processes C1
H [P] and C2

H [P] cannot be
distinguished, in the sense of∼=L, by any low context CL[],
which uses only low level channels. However, this formula-
tion is not effective and our tool PICNIC implements a coin-
ductive characterization of our security properties given in
terms of a typed operational semantics.

Typed actions are parametrized over security levels and
take the form Γ.P

α
−−→δ Γ′.P ′ indicating that in the type

environment Γ, the process P performs the action α of level
δ and evolves to P ′ in the possibly modified environment
Γ′. Below we report the rules for output and input actions.

Γ ` n : δ1[T] δ1 � δ

Γ . n〈m〉.P
n〈m〉
−−→δ Γ . P

Γ ` n : δ1[T] Γ ` m : T δ1 � δ

Γ . n(x:T).P
n(m)
−−→δ Γ . P{x := m}

Notice that if the channel n is low these actions are both
low and high, while if n is high they are high level actions.

In the following, we write =⇒ for the reflexive and tran-
sitive closure of

τ
−−→δ , and α̂==⇒δ for =⇒ if α = τ

and for =⇒
α

−−→δ =⇒ otherwise. The coinductive char-
acterization ofNI(∼=L) is based on the following notion of
partial bisimilarity on low actions.

Partial bisimilarity on low actions is the largest symme-
tric relation

.
≈L, such that whenever Γ � P

.
≈L Q (i.e., P

and Q are
.
≈L-equivalent in the type environment Γ):

(1) if Γ.P
α

−−→LΓ′.P ′, then ∃Q′: Γ.Q α̂==⇒L Γ′.Q′

with Γ′ � Q′
.
≈L P ′;

http://www.fresh-ocaml.org/

(2) if Γ . P
α

−−→HΓ′ . P ′ with α ∈ {n〈m〉, n(m), (νp :
H)n〈m〉, (νp : H)n(m)}, then ∃Q′: Γ.Q =⇒ Γ.Q′

with Γ′ � Q′
.
≈L P ′;

(3) if Γ.P
α

−−→H Γ′.P ′ with α ∈ {(νp : L)n〈m〉, (νp :
L)n(m)}, then ∃Q′: Γ.Q =⇒ Γ.Q′ with Γ � Q′

.
≈L

(νp : L)P ′.

Intuitively, a process P is secure if, whenever it performs
a high level action leading to a state P ′, it is also able to
perform a number of invisible τ -steps reaching a state P ′′

which is equivalent to P ′.
To give an intuition of the different manner to deal

with high actions depending on whether they carry high
or low bounded names, consider the processes P =
(ν`)(h〈`〉.`〈〉.R) and Q = (νk)(h〈k〉.k〈〉.R) in the type
environment Γ = h:H, k:H, `:L. In both processes a name
is extruded along a high level channel, then only high level
contexts can receive that name and use it to synchronize on
the second action. However, when the extruded name is low
the high context cannot read from it, hence no context will
ever interact with R. On the other hand, when the extruded
name is high the high context can synchronize on the second
action and possibly interact with the process R.

In [1] the authors proved thatNI(∼=L) coincide with the
class of processes Γ . P such that Γ � P

.
≈L P . Moreover,

NI(∼=L) is compositional with respect to the language op-
erators, e.g., if Γ . P1 and Γ . P2 are both inNI(∼=L), then
also Γ . P1|P2 is in NI(∼=L).

In order to introduce a mechanism into the π-calculus for
the secure downgrading of information, in [1] the syntax of
the language has been enriched with a family of declassi-
fied actions of the form decL n〈m〉 (declassified output on
the channel n) and decL n(x : T) (declassified input on
the channel n), where n is a high level channel. The infor-
mation arising from declassified actions is allowed to flow
downwards to the low level observers. As far as synchro-
nization is concerned, a declassified action can synchronize
only with its corresponding declassified co-action, i.e., both
the sender and the receiver have to agree on the downgrad-
ing of information. Moreover, according to the literature,
we assume that only programmers may enable the down-
grading of secret information, while external entities cannot
synchronize on declassified actions.

The non-interference property NI(∼=L)scales to the π-
calculus with declassification primitives, which also in-
herits the coinductive proof technique. More precisely,
NI(∼=dec

L) identifies the class of processes Γ . P such that
Γ � P

.
≈dec
L P , where

.
≈dec
L is a partial bisimulation re-

lation defined exactly as
.
≈L, but over a different LTS that

now contains also declassified actions. The declassified ac-
tions need not to be matched by τ -steps. This capture the
intuition that they cannot neither be performed by high level
users (since they are controlled only by the programmers)

nor be observed by the low level users (they only observe
the low level flow caused by the declassification).

Differently form NI(∼=L), the property NI(∼=dec
L) is

not compositional with respect to the parallel operator.
However, compositionality is desirable to both reduce the
space/time complexities and check some infinite state pro-
cesses. To this end we introduce the compositional property
NI(mdec

L) expressed in terms of the partial relation mdec
L

that is a slight variation of the early weak partial bisimilar-
ity on low level actions presented above. More precisely,
the partial relation mdec

L defined exactly as
.
≈L with the ad-

ditional condition:

(4) if Γ . P
α

−−→HΓ′ . P ′ where α is a declassified ac-
tion, i.e., α belongs to the set {decLn(m), decL n〈m〉,
(νm:T) decL n(m), (νm:T) decL n〈m〉}, then Γ′ �
P ′ mdec

L P ′.

This condition checks that the process P ′ reached after a
declassification is still a secure process, and this leads to
compositionality.

We define the property NI(mdec
L) as the class of pro-

cesses Γ . P such that Γ � P
.
≈dec
L P . Even if there

is no contextual characterization of NI(mdec
L), it provides

a valuable proof technique for NI(∼=dec
L). The property

NI(mdec
L) is clearly stronger than NI(∼=dec

L) but it enjoys
the desired compositionality properties, i.e., if Γ . P and
Γ.Q belong toNI(mdec

L), then also Γ.P |Q and Γ.!P do.
Again, in the case of processes without declassifications,
the two classes NI(∼=L) and NI(mdec

L) coincide.

3. The tool PICNIC

The tool PICNIC checks the early weak partial relations
.
≈dec
L and mdec

L , and as a consequence the security proper-
ties NI(∼=L), NI(∼=dec

L), and NI(mdec
L). The algorithms

implemented in PICNIC generalize those proposed by Lin
in [5] for computing bisimulations on-the-fly over the finite
control π-calculus.

First, since we deal with a typed semantics, a PICNIC
algorithm computes, at each step, the current type environ-
ment and checks its consistency. Then, when comparing
two processes P and Q the algorithm generates a transi-
tion from P and tries to simulate it with the successors of
Q. Since the observation relations checked by the tool are
weak, the computation of Q-successors requires the com-
putation of a transitive closure of τ actions. In the current
version this computation is performed each time a process is
considered; we are working on a more efficient implemen-
tation in which the τ -successors of a process are stored and
reused. Notice that we cannot simply store the τ -successors
of Q, but we also need to check their consistency with the
current environment. As far as input transitions are con-
cerned the algorithm instantiates the input variable with all

Figure 1. PICNIC screen-shot.

the free names of the process and with a symbolic new
name. Finally, the algorithm keeps track of the already vis-
ited nodes and of the pairs of nodes assumed to be bisimilar
to guarantee termination over finite state processes. Some
basic optimizations have been introduced in the implemen-
tation to reduce the branching when actions visible at both
high and low levels are considered.

To assess the time complexity of our algorithms, we re-
call that the complexity of Lin’s algorithm for strong bisim-
ulation is bounded by O(N2M2), where N and M are the
number of states in the symbolic LTS’s of the analyzed pro-
cesses. Hence, due to the τ -successors computations, our
bound for time complexity to check both Γ � P ∼=dec

L P
and Γ � P mdec

L P is O(N6), where N is the size of the
symbolic LTS of P .

In order to improve efficiency, our implementation ex-
ploits the compositionality ofNI(mdec

L) with respect to the
parallel composition and replication operators. Indeed, to
prove that P |Q is secure we can first check the security of
P andQ, and then if these tests are positive we can conclude
that P |Q is secure. These considerations drastically reduce
the size of the symbolic LTS’s that we need to consider and
allow us to verify also some infinite state processes.

To model recursive processes PICNIC allows also the use
of recursive definitions with constants occurring on both the
left and right hand sides of a definition. Recursive defini-
tions are not present in the syntax described in the previous
section and their introduction does not augment the expres-
sive power of the language. However, in many cases, their
use simplify the modeling phase.

A screen-shot of the tool is shown in Figure 1: a process
has been typed in the edit pane on the top and the composi-
tionality heuristic has been selected. The process is secure
as shown in the log panel on the bottom.

The kernel of PICNIC is written in Fresh Objective
Caml [9], a programming language extending Objective
Caml with a special support for data-types with binders,
based on recent developments on the so called nominal
syntax [3]. More precisely, Fresh O’Caml offers spe-

cific types of names for representing object-level bind-
able names (such as names or channels of the π-calculus);
abstraction expressions for representing object-level bind-
ing (such as input prefixes, or restrictions), and pattern-
matching for deconstructing abstraction values. Notably,
two α-equivalent terms are automatically equated by
the language; e.g., the terms (in c [x](out c x))
and (in c [y](out c y)) (representing the π-terms
c(x).c〈x〉.0 and c(y).c〈y〉.0) are considered equal. Also
α-conversion is automatically performed, to avoid name
clashing/capture. Still, we can make pattern matching and
recursion over objects of nominal data-types. Hence, us-
ing Fresh O’Caml the programmer is freed from the bur-
den of implementing α-conversions, or to work with awk-
ward representation of binders such as de Bruijn indexes,
without renouncing to performance. In fact, supported by
our positive experience in effectiveness, easiness, and effi-
ciency, we can definitely assert that languages with native
support for binders, such as Fresh O’Caml, should be the
natural choice for implementing algorithms dealing with the
π-calculus and similar calculi.

Some Installation and Use Instructions. The PICNIC
web page contains several pre-compiled versions. The
sources of the kernel are also available; they can be com-
piled with Fresh O’Caml which is available at http://
www.fresh-ocaml.org/. The compiled GUI (a jar
file) should work well in every Java compatible system. The
GUI contains some working examples which are available
in the Syntax Help window. The GUI offers two text areas.
The largest one is the edit pane where π-calculus processes
can be either typed or loaded from a file or saved into a
file (Figure 2). The smallest one, at the bottom, is used to
display the output.

The menu bar on the top allows one to select either
NI(∼=dec

L) or NI(mdec
L), to enable the compositionality

heuristic (that works only in the case ofNI(mdec
L)), to start

the verification pressing the button ”TEST”, and to stop the
computation. In particular, the compositionality heuristic

http://www.fresh-ocaml.org/
http://www.fresh-ocaml.org/

Figure 2. The Editor panel.

exploits the compositinal property NI(mdec
L) allowing one

to reduce, in many cases, the search space and the time
needed for the verification process. It allows also to ver-
ify some infinite state processes. The Settings option in the
Edit menu allows one to (1) set the path of the kernel, (2)
set the state space limit (i.e., the maximum number of π-
calculus states to be visited) and (3) view the successors
of the process under testing to better understand the pro-
cess behaviour. The Help menu contains the Syntax Help
item. It can be used to view the PICNIC syntax grammar
and some working examples. More detailed instructions
and suggestions can be found in the tool’s site.

4. Two Illustrating Examples

Consider the following communication protocol in
which an agent A intending to send a message m to B refers
to a system S to create a communication channel with B.
In particular, A sends to S over a private channel cas the
name of the new channel cab. The system S sends to B
over a private channel cbs the name cab. The process B
receives cab and waits for a message over it. The process
A sends to B the message m over the channel cab. Since the
channels cas and cbs with a trusted system S are private
we model them as high level channels, while we imagine
that the new channel cab and the message m are low. Using
the syntax of PICNIC the protocol can be modeled as:

TYPES cas:H[L[L[]]], cab:L[L[]],
cbs:H[L[L[]]], m:L[], n:L[];;

AGENT A(cas,m):=
ˆcab:L[L[]].(cas<cab>.cab<m>);

AGENT S(cas,cbs):= cas(x:L[L[]]).cbs<x>.0;
AGENT B(cbs,n):=cbs(x:L[L[]]).x(y:L[]);

AGENT P(m,n,cas,cbs):=
A(cas,m)|S(cas,cbs)|B(cbs,n);

AGENT Q(m,n):=ˆcas:H[L[L[]]].ˆcbs:H[L[L[]]].
P(m,n,cas,cbs);

The agent P(m,n,cas,cbs) is not secure, since the
high level channels cas and cbs are visible to possible
malicious high level processes which can use them to modi-
fy the low level behaviour of P(m,n,cas,cbs). On the
other hand, the process Q(m,n) is secure since cas and
cbs can be used only by A, B, and S.

As a second example, consider a simplified version of a
protocol in which a client sends its data to the bank (e.g.,
the pin code); if the data are correct the bank sends a posi-
tive acknowledgement together with the money to the client,
otherwise it sends a negative answer and no money. We start
by assuming that all the involved channels are high, but the
acknowledgement one.

TYPES ck:H[H[]], id:H[],ack:L[L[]], money:H[L[]],
ten:L[], zer:L[], trans:H[L[]],
ok:L[], no:L[];;

AGENT Client(ck,id,ack,money):=
ck<id>.ack(x:L[]).money(y:L[]).0;

AGENT Bank(ck,id,ack,ok,no,trans,money,ten,zer):=
ck(z:H[]).if z=id then {ack<ok>.trans<ok>.0}

else {ack<no>.trans<no>.0}|
trans(w:L[]).if w=ok then {money<ten>.0}

else {money<zer>.0};
AGENT System(ck,id,ack,ok,no,trans,money,ten,zer):=

Bank(ck,id,ack,ok,no,trans,money,ten,zer)|
Client(ck,id,ack,money);

TEST System(ck,id,ack,ok,no,trans,money,ten,zer);;

The agent System(ck,id,ack,ok,no,trans,money,
ten,zer) is not secure. However, if we replace both the
occurrences of ck with dec ck we get a secure system.

5. Comparisons and Time Performance

In the literature there are other tools that compute bisi-
mulation relations in the π-calculus, namely, the MOBILITY
WORKBENCH (http://www.it.uu.se/research/
group/mobility/mwb) and the ABC (http://
lamp.epfl.ch/˜sbriais/abc/abc.html) tools.
They both check open bisimulation equivalence relations;
differently, our security properties are based on weak early
bisimulation relations.

Another related tool is MIHDA (http://www.cs.
le.ac.uk/people/et52) which aims at reducing the
finite control π-calculus processes with respect to the early
bisimulation using a partition refinement algorithm. We no-
ticed that PICNIC is always faster than MIHDA on our test-
cases (e.g., MIHDA on 8 copies of the process P4 in the
table below terminates after 2.964 seconds). However, the
purpose of Mihda is that of computing the labeled transi-
tion system of the reduced process. Hence, it cannot stop
the computation when two non-bisimilar states are found.

COSEC [2] and COPS (http://www.dsi.unive.
it/˜mefisto/CoPS) are two tools that check non-
interference security properties for CCS processes. The
security property NI(∼=L) is a generalization to the π-
calculus of the P BNDC property defined over CCS and
checked by both COSEC and COPS, while the property
NI(mdec

L) is an extension to the π-calculus of the CCS
property DP BNDC. Finally the tool COPS [7] checks a
property similar to NI(∼=L) over the set of CCS processes
exploiting Paige-Tarjan bisimulation algorithm [6]. Some
comparisons between COSEC and COPS can be found
in [7].

Interestingly, we run some benchmarks to compare the
time performance of PICNIC and COPS. We considered
five simple processes belonging to both CCS and π-calculus
(i.e., we used only the prefix operator and the recursion
one) and we composed them through parallel composition
to build larger processes. In both tools we disabled the
compositionality heuristics. The results of these tests are
reported in tables below. We can notice that in the case
of insecure processes PICNIC outperforms COPS, while,
as far as secure processes is concerned, PICNIC is slower
than COPS only in one case. Indeed, since COPS exploits
the Paige-Tarjan bisimulation algorithm [6], it always builds
the complete LTS of the process before starting the bisim-
ulation computation. Hence, it has the same performance
both over insecure processes (P1 and P2) and over secure
processes (P3 and P4). On the other hand, PICNIC using an
on-the-fly algorithm does not generate the whole LTS. This
fact in the case of insecure processes allows to save time
when transitions which cannot be simulated are found early
during the computation.

Process CCS π-calculus
P1 h.l.0 h〈new〉.l〈new〉.0
P2 h.l.P2 h〈new〉.l〈new〉.P2
P3 h.h.0 h〈new〉.h〈new〉.0
P4 h.h.P4 h〈new〉.h〈new〉.P4
P5 l.h.0 l〈new〉.h〈new〉.0

where l, new are low level actions (names); h is high

Process #Nodes #Edges CoPS PICNIC

10 copies P1 2,047 18,434 44.42 s 0.06 s
60 copies P1 – – > 5 m 22.86 s
11 copies P2 2,049 22,539 45.61 s 4.57 s
13 copies P2 8,193 106,509 > 5 m 21.77 s
8 copies P3 511 3586 1.46 s 8.80 s
8 copies P4 1,050 10,250 6.81 s 0.15 s
10 copies P5 2,047 18,434 50.69 s 1.18 s

Finally, we mention the tool PIET (http://piet.
sourceforge.net/) developed by Matteo Mio. PIET
allows one to verify ten different bisimulations on the π-
calculus. PIET and PICNIC works on different calculi and
different semantics, they only share the idea of implement-
ing on-the-fly bisimulation algorithms in FRESH O’CAML.

References

[1] S. Crafa and S. Rossi. P-Congruences as Non-Interference for
the Pi-calculus. In Proc. of the ACM work. on Formal Meth.
in Security Engineering (FMSE’06), pages 13–22, 2006.

[2] R. Focardi and R. Gorrieri. The Compositional Security
Checker: A Tool for the Verification of Information Flow Se-
curity Properties. IEEE Transactions on Software Engineer-
ing, 23(9):550–571, 1997.

[3] M. J. Gabbay and A. M. Pitts. A new approach to abstract
syntax with variable binding. Formal Aspects of Computing,
13:341–363, 2002.

[4] J. A. Goguen and J. Meseguer. Security Policies and Security
Models. In Proc. of the IEEE Symp. on Security and Privacy
(SSP’82), pages 11–20. IEEE Computer Society Press, 1982.

[5] H. Lin. Computing Bisimulations for Finite-Control π-
Calculus. Journal of Computer Science and Technology,
15(1):1–9, 2000.

[6] R. Paige and R. E. Tarjan. Three Partition Refinement Algo-
rithms. SIAM Journal on Computing, 16(6):973–989, 1987.

[7] C. Piazza, E. Pivato, and S. Rossi. Cops - Checker of Persis-
tent Security. In Proc. of Int. Conf. on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS’04),
volume 2988 of LNCS, pages 144–152. Springer, 2004.

[8] A. Sabelfeld and D. Sands. A Per Model of Secure Iinforma-
tion Flow in Sequential Programs. In Proc. of European Sym-
posium on Programming (ESOP’99), volume 1576 of LNCS,
pages 40–58. Springer-Verlag, 1999.

[9] M. R. Shinwell. Fresh o’caml: Nominal abstract syntax for
the masses. Electr. Notes Theor. Comput. Sci., 148(2):53–77,
2006.

http://www.it.uu.se/research/group/mobility/mwb
http://www.it.uu.se/research/group/mobility/mwb
http://lamp.epfl.ch/~sbriais/abc/abc.html
http://lamp.epfl.ch/~sbriais/abc/abc.html
http://www.cs.le.ac.uk/people/et52
http://www.cs.le.ac.uk/people/et52
http://www.dsi.unive.it/~mefisto/CoPS
http://www.dsi.unive.it/~mefisto/CoPS
http://piet.sourceforge.net/
http://piet.sourceforge.net/

	. Introduction
	. Non-Interference in the -calculus
	. The tool PicNIc
	. Two Illustrating Examples
	. Comparisons and Time Performance

