
1

MPI in Perl
The Beginning of Parallel

Programming

What is MPI

MPI stands for Message Passing Interface

It is one of the standard API’s (Application
Programmer’s Interface) for writing code
that can run in parallel, on a cluster.

MPI is available in a variety of languages,
including Fortran, C, and C++ and Perl

2

What About Perl?

Perl, although not directly supported by
MPI, can use an exported version of a C
library.

For our purposes, we will be using a port
by Josh Wilmes and Chris Stevens.
Link

Subroutine Walkthrough

The following slides will contain a brief
description and syntax usage for each of
the functions.

3

Basic Functions Needed to
Write MPI Programs

MPI_Init = Initialize MPI
MPI_Finalize = Finalize MPI
MPI_Comm_size = # of Processors working
MPI_Comm_rank = Identification Number
MPI_Send = Send Message
MPI_Recv = Receive Message

MPI Initalization

MPI_Init()

Initializes the MPI execution environment. This
function must be called before any MPI
functions are used. It is called just once in the
program.

4

Communicator

A MPI environment is defined by its
communicator.

The default communicator is
MPI_COMM_WORLD

The default communicator is aptly named
because it describes the processing “world”.
Processes can only communicate inside of this.

Cluster Size

$size = MPI_Comm_size(communicator)

Returns the number of computers in the
cluster available to be used.

$size stores this number so that it can be
referred to later in a program.

5

Node numbers

$myID = MPI_Comm_rank(communicator)

Returns the rank of the computer that
executed this function.

The node number is stored in $myID so
that it can be referred to later in the
program.

Send information
MPI_Send(\$message, length, datatype,
destination, tag, communicator)

The function MPI_Send sends a reference to a
particular node in the cluster.

The length parameter is an non-negative integer
and specifies the number of elements that will
be sent to the node.

Using the datatype parameter, the programmer
can specify the type of data they are sending.

6

MPI_Send continued

For the destination parameter, each computer in
the cluster is assigned a number from 0 – n,
where n = the number of computers in the
cluster minus 1.

The tag parameter allows the programmer to
specify a message tag for use when sending
the data.

Some Supported Data Types

MPI’s defined data type
for chars. i.e. ‘c’, ‘a’

MPI_CHAR

MPI’s defined data type
for doubles. i.e. 5.32,
72.49

MPI_DOUBLE

MPI’s defined data type
for ints. i.e. 5, 302

MPI_INT

7

Receiving Information
MPI_Recv(\$message, length, datatype, source, tag,
communicator)

The function MPI_Recv receives a particular reference
from another node in the cluster.

The length, datatype, tag and communicator parameters
are the same as those for MPI_Send, i.e. datatype
specifies the type of data that is being received.

The source parameter is the number of the node that
the computer is receiving the reference from, i.e. source
= 2 if node 2 is sending information to the computer that
receives it.

Checking to See if a Message is
Waiting

MPI_Iprobe(source, tag, communicator, \%status)

Status is a reference to a hash. If you want to see if any
message is waiting for a node, it could use:
MPI_Iprobe(MPI_ANY_SOURCE,
MPI_ANY_TAG,MPI_COMM_WORLD, \%status)
MPI_Iprobe returns a 1 if it found something, and a 0 if it
had not. This means it could be used in an if statement.
MPI_Iprobe only checks to see if there is a message, it
does not receive that message. To clear the message
from the receive buffer, an MPI_Recv must be called.

8

Status

Status, as mentioned on the previous
slide, is a has that contains several fields:
MPI_TAG: The tag on which a message
was received.
MPI_ERROR: An error code, if any.
count: The number of elements coming.
MPI_SOURCE: The source of the
message.

Broadcasting Messages
MPI_Bcast(\$from, count, datatype, root, communicator)

This function call broadcasts a message to all nodes in
the cluster.

The count parameter specifies the number of data
elements to be sent.

The root parameter specifies the head node.

9

MPI finalization

MPI_Finalize();

This function should be called once at the
end of the MPI program.

Terminates the MPI execution
environment.

More Datatypes

MPI_ANY_SOURCE

The source parameter in the function
MPI_Recv can be replaced by
MPI_ANY_SOURCE.

This allows the node to receive
information from any computer that sends
it.

10

More Datatypes
MPI_ANY_TAG

Like MPI_ANY_SOURCE, this datatype
can be placed in the tag parameter for
MPI_Recv or MPI_Iprobe.

This allows the node to receive
information from another node that sends
it using any tag.

Basic “Hello World” Program
Perl: #!/usr/bin/perl

use Parallel::MPI qw(:all);

MPI_Init();

my ($rank, $size);

$rank = MPI_Comm_rank(MPI_COMM_WORLD);
$size = MPI_Comm_size(MPI_COMM_WORLD);

$tag = 1137;

if($rank != 0) {
 my $send = “Season’s Greetings from process $rank!";
 MPI_Send(\$send, length($send), MPI_CHAR, 0, $tag,
MPI_COMM_WORLD);
} else {
 my ($x, $recv);
 for($x = 1; $x < $size; $x++) {

MPI_Recv(\$recv, 35, MPI_CHAR, $x, $tag,
MPI_COMM_WORLD);

print "Received $recv \n";
 }
}

MPI_Finalize();

11

Output of The “Hello World”
Program

To run the program, one must specify the
number of processors that you would like to run
the program with.

i.e. mpirun –np 4 mpi_test.pl would yield:
“Season’s Greetings from process 1 ”
“Season’s Greetings from process 2”
“Season’s Greetings from process 3”

