MPI in Perl

The Beginning of Parallel
Programming

What is MPI

@ MPI stands for Message Passing Interface

@It is one of the standard API’s (Application
Programmer’s Interface) for writing code
that can run in parallel, on a cluster.

@MPI is available in a variety of languages,
including Fortran, C, and C++ and Perl

What About Perl?

@ Perl, although not directly supported by
MPI, can use an exported version of a C
library.

@ For our purposes, we will be using a port
by Josh Wilmes and Chris Stevens.
Link

Subroutine Walkthrough

@ The following slides will contain a brief
description and syntax usage for each of
the functions.

Basic Functions Needed to
Write MPI Programs

@ MPI_Init = Initialize MPI

@ MPI|_Finalize = Finalize MPI

@ MPI_Comm_size = # of Processors working
@ MPIl_Comm_rank = Identification Number
@ MPI|_Send = Send Message

@ MPI|_Recv = Receive Message

MPI Initalization

MP!_Init()

@ Initializes the MPI execution environment. This
function must be called before any MPI
functions are used. It is called just once in the
program.

Communicator

@ A MPI environment is defined by its
communicator.

@ The default communicator is
MPI_COMM_WORLD

@ The default communicator is aptly named
because it describes the processing “world”.
Processes can only communicate inside of this.

Cluster Size

$size = MPI_Comm_size(communicator)

@ Returns the number of computers in the
cluster available to be used.

@ $size stores this number so that it can be
referred to later in a program.

Node numbers

SmyID = MPI_Comm_rank(communicator)

@ Returns the rank of the computer that
executed this function.

@ The node number is stored in $myID so
that it can be referred to later in the
program.

Send information

MPI_Send(\$message, length, datatype,
destination, tag, communicator)

@ The function MPI_Send sends a reference to a
particular node in the cluster.

@ The length parameter is an non-negative integer
and specifies the number of elements that will
be sent to the node.

@ Using the datatype parameter, the programmer
can specify the type of data they are sending.

MPI|_Send continued

@ For the destination parameter, each computer in
the cluster is assigned a number from 0 — n,
where n = the number of computers in the

cluster minus 1.

@ The tag parameter allows the programmer to
specify a message tag for use when sending

the data.

Some Supported Data Types

MPI_INT MPI’s defined data type
forints. i.e. 5, 302

MPI_DOUBLE MPI’s defined data type
for doubles. i.e. 5.32,
72.49

MPI_CHAR MPI’s defined data type

for chars. i.e. ‘'c’, ‘a

Receiving Information

MPI_Recv(\$message, length, datatype, source, tag,
communicator)

@ The function MPI_Recv receives a particular reference
from another node in the cluster.

@ The length, datatype, tag and communicator parameters
are the same as those for MP|_Send, i.e. datatype
specifies the type of data that is being received.

@ The source parameter is the number of the node that
the computer is receiving the reference from, i.e. source
= 2 if node 2 is sending information to the computer that
receives it.

Checking to See if a Message is
Waiting

MPI_Iprobe(source, tag, communicator, \%status)

@ Status is a reference to a hash. If you want to see if any
message is waiting for a node, it could use:
MPI_Iprobe(MPI_ANY_SOURCE,
MPI_ANY_TAG,MPI_COMM_WORLD, \%status)

@ MPI_lprobe returns a 1 if it found something, and a O if it
had not. This means it could be used in an if statement.

@ MPI_lprobe only checks to see if there is a message, it
does not receive that message. To clear the message
from the receive buffer, an MPl_Recv must be called.

Status

Status, as mentioned on the previous
slide, is a has that contains several fields:

@MPI_TAG: The tag on which a message
was received.

@MPI_ERROR: An error code, if any.
@ count: The number of elements coming.

@MPI_SOURCE: The source of the
message.

Broadcasting Messages

MPI_Bcast(\$from, count, datatype, root, communicator)

@ This function call broadcasts a message to all nodes in
the cluster.

@ The count parameter specifies the number of data
elements to be sent.

@ The root parameter specifies the head node.

MPI finalization

MPI_Finalize();

@ This function should be called once at the
end of the MPI program.

@ Terminates the MPI execution
environment.

More Datatypes

MPI|_ANY_SOURCE

@ The source parameter in the function
MPI_Recv can be replaced by
MPI_ANY_SOURCE.

@ This allows the node to receive
information from any computer that sends
it.

More Datatypes
MPI_ANY_TAG

@Like MPlI_ANY_SOURCE, this datatype
can be placed in the tag parameter for
MPI_Recv or MPI_Iprobe.

@ This allows the node to receive
information from another node that sends
it using any tag.

Basic “Hello World” Program

g Perl #!/usr/bin/perl

use Parallel::MPI gw(:all);
MPI Init();
my ($rank, S$size);

Srank = MPI_Comm_rank (MPI_COMM WORLD) ;
Ssize = MPI_Comm_size (MPI_COMM WORLD) ;

Stag = 1137;

if($rank != 0) {
my $send = “Season’s Greetings from process S$rank!";
MPI_Send(\$send, length($send), MPI_CHAR, 0, Stag,
MPI_COMM WORLD) ;
} else {
my ($x, Srecv);
for($x = 1; $x < S$size; Sx++) {
MPI Recv(\S$recv, 35, MPI_CHAR, S$x, Stag,
MPI_COMM WORLD) ;
print "Received $recv \n";
}
}

MPI_Finalize();

10

Output of The “Hello World”
Program

@ To run the program, one must specify the
number of processors that you would like to run
the program with.

@ i.e. mpirun —np 4 mpi_test.pl would yield:
“‘Season’s Greetings from process 1~
“‘Season’s Greetings from process 2”
“‘Season’s Greetings from process 3”

11

