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1 Introduction

In recent years, categories of sets, i.e. categories where objects are sets (classes)

of a possible non-wellfounded universe and morphisms are set (class) functions,

have been used as convenient settings for studying the foundations of coalgebraic

semantics, see e.g. [1,2,7,8,10,18,15,12,3,4].

In this paper, we discuss the structure of endofunctors on categories of sets, in

the light of [3,9]. First, we investigate inclusion preserving functors, then we study

continuity properties of set functors. The notion of inclusion preserving functor

has been extensively investigated in [5]. The main result of [5] about inclusion

preserving functors is the following:

Theorem Any set endofunctor is naturally isomorphic up-to-∅ to a functor which

is inclusion preserving.

Building on the above theorem, we show the following strong continuity result:

Theorem (κ-continuity) Any set endofunctor is naturally isomorphic up-to-∅ to

a functor G such that, for all |X| = κ infinite,

|GX| ≤ κ =⇒ GX =
⋃

{GY | |Y | < κ ∧ Y ⊆ X} .

The κ-continuity result above strengthens Theorem 2.2 of [3].

As a consequence of the κ-continuity Theorem, we derive the following:

Theorem (Class Continuity) Any class endofunctor is naturally isomorphic up-

to-∅ to a functor G which is continuous on classes, i.e., for all proper classes X,

GX =
⋃
{GY | Y set ∧ Y ⊂ X}.

The above class continuity result corresponds to the fact that any class endo-

functor is set based, as was recently proved in [3], and in [9], independently.

An interesting application of the general κ-continuity theorem above is the fact

that, as we show in this paper, we can rule out the existence of functorial extensions

of a class of set operators, satisfying certain cardinality conditions. This result can

be viewed as a contribution to the theory of “non-existing functors” developed in

[16,19].

By the Class Continuity Theorem above, using Aczel’s Final Coalgebra Theo-

rem [1,2], we obtain that any class endofunctor has final coalgebra. However, the

construction of the final coalgebra given in [1,2] and in other existence theorems

is quite abstract, and hence not particularly useful in applications, where we are

interested in computing and studying properties of elements of a coinductive type,

and in developing formal tools for reasoning about them. Thus, it is important to

identify classes of functors whose final coalgebras have conceptually independent

characterizations. The main result in this area is Aczel’s Special Final Coalgebra

Theorem, [1], which applies to a non-wellfounded universe and states that if a func-

tor is uniform on maps, then the greatest fixpoint of the operator underlying the

functor, together with the identity map, is a final coalgebra. Many of the functors

which arise naturally are uniform on maps, or at least naturally isomorphic to a
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functor which is uniform on maps. However, we show that:

Theorem There exist functors which are

(i) not naturally isomorphic to a functor uniform on maps;

(ii) not (naturally isomorphic to functors) uniform on maps, but admitting the

greatest fixed point (together with the identity map) as final coalgebra;

(iii) inclusion preserving and whose final coalgebras are not the greatest fixpoints;

(iv) uniform on maps and isomorphic on objects, but not naturally isomorphic.

All the counterexamples used for proving the above theorem rely on odd be-

haviours of functors on non-injective functions. Hence, we are led to the following

open problems:

Problems

(i) Are all functors naturally isomorphic on injective functions to a functor which

is uniform on maps?

(ii) Let F,G coincide on objects and on injective functions. Do F,G admit the

same final coalgebra?

Moreover, as we will show, it is somewhat remarkable to notice that, if we work

“up-to natural isomorphisms”, the following results hold:

Theorem Any endofunctor on a class category is naturally isomorphic to a functor

whose unique fixpoint, together with the identity, is a final coalgebra.

Theorem Any endofunctor on a class category is naturally isomorphic to a functor

which has no fixpoints.

Summary

In Section 2, we provide set theory and categorical preliminaries. In Section 3,

we investigate properties of inclusion preserving functors. In Section 4, we discuss

continuity properties of set functors. In Section 5, using the continuity properties

previously investigated, we rule out the existence of functorial extensions for a class

of set operators. In Section 6, we investigate functors uniform on maps and charac-

terizations of final coalgebras as (greatest) fixpoints. Final remarks and directions

for future work appear in Section 7.
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2 Preliminaries

2.1 Set Theory Preliminaries

We will work in a universe of sets and classes satisfying the theory NBG of von

Neumann-Bernays-Gödel. The theory NBG is closely related to the more familiar
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set theory ZFC of Zermelo-Fraenkel with choice. The primary difference between

ZFC and NBG is that NBG has proper classes among its objects. NBG and ZFC

are actually equiconsistent, NBG being a conservative extension of ZFC. In NBG,

the proper classes are differentiated from sets by the fact that they do not belong to

other classes. Moreover, NBG classes satisfy the Axiom N of von Neumann, stating

that all proper classes have the same cardinality of the set theoretic universe, which

we denote by Ord.

We will consider both set theoretic universes of wellfounded sets and non-

wellfounded sets. In non-wellfounded universes, the Foundation Axiom is replaced

by an Antifoundation Axiom, such as X1 of Forti and Honsell, [11], or AFA by

Aczel, [1]. Non-wellfounded sets, also called hypersets, have been used to model

circular phenomena in Computer Science and in various other fields, see e.g. [8].

Throughout this paper, we will denote by V the universe of (non-)wellfounded

sets.

Remark. In this paper we will refer not only to large objects, such as proper classes,

but also to very large objects, such as functors over categories whose objects are

classes. A foundational formal theory which can accommodate naturally all our

arguments is not readily available. A substantial formalistic effort would be needed

to “cross all our t’s” properly. We shall therefore adopt a pragmatic attitude and

freely assume that we have classes and functors over classes at hand. Worries

concerning consistency can be eliminated by assuming that our ambient theory is

a Set Theory with an inaccessible cardinal κ, and the model of our object theory

consists of those sets whose hereditary cardinal is less than κ, Vκ say, the classes of

our model are the subsets of Vκ, and functors live at the appropriate ranks of the

ambient universe.

2.2 Categorical Preliminaries

In this paper, we will deal both with categories of pure sets and with categories of

classes. By a category of pure sets we mean a category whose objects are the sets

of a (possibly non-wellfounded) universe, and where morphisms are set theoretic

functions. By a category of classes, we mean a category whose objects are sets

and classes of a (possibly non-wellfounded) universe, and where morphisms are set

(class) functions between them. We will use the term category of sets for indicating

a category of pure sets or a category of classes, indifferently, and we will denote it

by C.

Throughout this paper, we use the following basic notation about functions:

Notation.

Let f : X → Y be any function on sets (or classes), and let X ′ ⊆ X, then:

• gr(f) denotes the graph of f ;

• img f denotes the image of f ;

• f|img f : X → img f denotes the function obtained from f by restricting the
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codomain Y to the image of f ;

• fX′ : X ′ → Y denotes the function obtained from f by restricting the domain of

f to X ′.

3 Inclusion Preserving Functors

In this section, we focus on inclusion preserving functors, i.e. functors which pre-

serve inclusion maps. Inclusion preserving functors satisfy many interesting prop-

erties, which we collect in this section. In particular, we provide an alternative

proof of the main result of [5] about inclusion preserving functors, i.e. any functor

on a set category is naturally isomorphic (up-to ∅) to a functor which is inclusion

preserving. The results in Proposition 3.2 below appear also in [5], but for the

fact that values on morphisms of inclusion preserving functors depend only on the

graphs of the morphisms and not on the targets. Interestingly, this turns out to be

a necessary and sufficient condition for a functor to be inclusion preserving.

In the next definition, we recall the notion of inclusion preserving functor:

Definition 3.1 F : C → C is inclusion preserving if

∀X,Y. X ⊆ Y =⇒ F (ιX,Y ) = ιF (X),F (Y ) ,

where ιX,Y : X → Y is the inclusion map from X to Y.

Inclusion preserving functors satisfy the following properties:

Proposition 3.2 Let F : C → C be inclusion preserving. Then

(i) The operator underlying F is monotone, i.e. X ⊆ Y =⇒ FX ⊆ FY .

(ii) F preserves images of functions, i.e., for any f : X → Y , F (img f) =

img F (f) .

(iii) The value of F on any morphism depends only on the graph of the morphism,

i.e. for all f : X → Y , f
′

: X → Y
′

, gr(f) = gr(f
′

) ⇒ gr(F (f)) = gr(F (f
′

)) .

Vice versa, if for all f : X → Y , f
′

: X → Y
′

, gr(f) = gr(f
′

) ⇒ gr(F (f)) =

gr(F (f
′

)), then F is inclusion preserving.

(iv) For all X
′

⊆ X and for all f : X → Y , gr(FfX
′ ) = gr(Ff)FX

′ .

(v) F preserves non-empty finite intersections, i.e. for all X,Y such that X ∩Y �=
∅, F (X ∩ Y ) = FX ∩ FY .

Proof.

(i) Straightforward.

(ii) Let f : X → Y . Then F (f) = F (ιimgf,Y ◦ f|imgf ) = ιF (imgf),FY ◦ F (f|imgf ),

since F is inclusion preserving. Therefore, img F (f) = img F (f|imgf ) =

F (img f), since f|imgf is surjective and any set functor preserves surjective

functions.

(iii) (⇒) Let f : X → Y , f
′

: X → Y
′

be such that gr(f) = gr(f
′

). Then img(f) =
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img(f
′

), hence f|img f = f
′

|img f
′ , f = ιimg f,Y ◦ f|img f , and f

′

= ιimg f,Y
′ ◦

f|img f . Hence, since F is inclusion preserving, F (f) = ιF (img f),FY ◦F (f|img f )

and F (f
′

) = ιF (img f),FY
′ ◦ F (f|img f ), i.e. gr(F (f)) = gr(F (f

′

)).

(⇐) Let X ⊆ Y . Then gr(ιX,Y ) = gr(idX), and hence gr(F (ιX,Y )) = gr(F (idX )) =

gr(idFX). Therefore, F (X) ⊆ F (Y ) and gr(F (ιX,Y )) = gr(ιFX,FY ), and hence

F (ιX,Y ) = ιFX,FY . �

(iv) The following diagram commutes:

Y
id �� Y

X
′

ι
��

f
X

′

��

X

f

��

Hence, using the fact that F is inclusion preserving, also the following dia-

gram commutes:

FY
id �� FY

FX
′

F (f
X

′ )

��

ι
�� FX

Ff

��

Thus, gr(FfX
′ ) = gr(Ff)FX

′ .

(v) By Proposition 2.1 of V. Trnkovà, [17], every set functor F : C → C preserves

non-empty finite intersections in the following sense: let X,Y ⊆ Z be such that

X∩Y �= ∅, then img(F (ιX∩Y,Z)) = img(F (ιX,Z))∩img(F (ιY,Z)). By item (iii),

img(F (ιX∩Y,Z)) = F (X ∩Y ), img(F (ιX,Z)) = FX, img(F (ιY,Z)) = FY . Thus

F (X ∩ Y ) = FX ∩ FY .

�

Trivially, not every functor is inclusion preserving. Just consider any functor

obtained by mapping isomorphically the value on a given set into a set which is

disjoint from the value of the functor on a subset.

However, in the following, we will prove that any functor is naturally isomorphic

to an inclusion preserving functor, up-to the value on ∅. To this end, we first

introduce the notion of strict functor :

Definition 3.3 (Strict Functor) • A functor F : C → C is strict if F∅ = ∅.

• Let F : C → C be a functor, and let F∅ : C → C be the strict functor defined as

F apart from the value on ∅, where F∅∅ = ∅; moreover, for any X and empty

function εX : ∅ → X, F (εX) = εFX .

Theorem 3.4 Any functor F : C → C is naturally isomorphic up-to-∅ to a functor

which is inclusion preserving.

Proof. Let G : C → C be the functor defined by: for all X, G(X) = img(F∅(ιX,V )),
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and for all f : X → Y , G(f) = G(X) → G(Y ), G(f) = F∅(ιY,V )|imgF∅(ιY,V ) ◦F∅(f) ◦

(F∅(ιX,V )|imgF∅(ιX,V ))
−1.

• We prove that G is well defined. By definition, G preserves identities. Now we

show that G preserves composition. Let f : X → Y and g : Y → Z,

G(g ◦ f) = F∅(ιZ,V )|imgF∅(ιZ,V ) ◦ F∅(g ◦ f) ◦ (F∅(ιX,V )|imgF∅(ιX,V ))
−1

= F∅(ιZ,V )|imgF∅(ιZ,V ) ◦ F∅(g) ◦ F∅(f) ◦ (F∅(ιX,V )|imgF∅(ιX,V ))
−1

= F∅(ιZ,V )|imgF∅(ιZ,V ) ◦ F∅(g) ◦ (F∅(ιY,V )|imgF∅(ιY,V ))
−1 ◦

◦F∅(ιY,V )|imgF∅(ιY,V ) ◦ F∅(f) ◦ (F∅(ιX,V )|imgF∅(ιX,V ))
−1

= G(g) ◦ G(f)

• We prove that the functor G is naturally isomorphic to F∅. Let τ = {τX :

GX → F∅X}X be the family of bijective functions, which are defined by τX =

(F∅(ιX,V )|imgF∅(ιX,V ))
−1. We prove that τ is a natural isomorphism. Let f : X → Y .

We show that τY ◦ G(f) ◦ τ−1
X = F (f). By substitution on Gf ,

τY ◦ G(f) ◦ τ−1
X = τY ◦ F∅(ιY,V )|imgF∅(ιY,V ) ◦ F∅(f) ◦ (F∅(ιX,V )|imgF∅(ιX,V ))

−1 ◦ τ−1
X

= F∅(f) by definition of τX , τY .

• We are left to prove that G is inclusion preserving, that is, G(ιX,Y ) = ιGX,GY .

Let X ⊆ Y and let ιX,Y : X → Y . Then,

G(ιX,Y ) = F∅(ιY,V )|imgF∅(ιY,V ) ◦ F∅(ιX,Y ) ◦ (F∅(ιX,V )|imgF∅(ιX,V ))
−1

= F∅(ιY,V ◦ ιX,Y )|imgF∅(ιY,V ) ◦ (F∅(ιX,V )|imgF∅(ιX,V ))
−1

= (F∅(ιX,V ) ◦ (F∅(ιX,V )|imgF∅(ιX,V ))
−1)|imgF∅(ιY,V )

= ιGX,GY

�

4 Continuity Properties of Set Functors

This section is devoted to the investigation of continuity properties for general

endofunctors on set categories. We introduce two notions of continuity at a cardinal

κ: the notion of κ-based functor, which generalizes Aczel’s notion of set based

functor, and the apparently weaker notion of κ-reachable functor, which essentially

corresponds to Koubek’s notion of “attainable cardinal”, [14]. The two notions of

κ-based and κ-reachable functor turn out to be equivalent.

The main result of this section is the κ-continuity Theorem stated in Section 1,

i.e.:

Any set endofunctor is naturally isomorphic up-to-∅ to a functor G such that, for

all |X| = κ infinite, if |GX| ≤ κ, then GX =
⋃
{GY | |Y | < κ ∧ Y ⊆ X}.
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The proof of this result is rather difficult and it makes use of a result on almost

disjoint systems.

An interesting consequence of the above continuity result and of Axiom N is the

following class continuity result, recently proved in [3,9]:

Any class endofunctor is naturally isomorphic up-to-∅ to a functor G which is

continuous on classes, i.e., for all proper classes X, GX =
⋃
{GY | Y set ∧ Y ⊂ X}.

We start by introducing the definitions of κ-based and κ-reachable functor.

Definition 4.1 (κ-based) Let κ be a cardinal. The functor F : C → C is κ-based

if, for each object X and each x ∈ FX, there exists Y ⊆ X, |Y | < κ such that

x ∈ img(F (ιY,X)), i.e. FX =
⋃
{img(F (ιY,X )) | Y ⊆ X ∧ |Y | < κ}.

In virtue of Axiom N , Aczel-Mendler’s notion of set based functor amounts to

our notion of Ord -based functor.

Definition 4.2 (κ-reachable) Let κ > 1.

• x ∈ FX is κ-reachable from Y if |Y | < κ and there exists f : Y → X such that

x ∈ img(Ff).

• x ∈ FX is κ-reachable if there exists Y such that x is κ-reachable from Y .

• x ∈ FX is κ-unreachable if it is not κ-reachable.

• FX is κ-reachable if for all x ∈ FX, x is κ-reachable.

• The functor F is κ-reachable if for all X, FX is κ-reachable.

The following are immediate consequences of the above definition:

Lemma 4.3

(i) If |X| < κ, then FX is κ-reachable.

(ii) If |Y | ≤ |X| and FX is κ-reachable, then also FY is κ-reachable.

(iii) If FX is κ-reachable, then FX =
⋃
{img(Ff) | f : Y → X ∧ |Y | < κ}.

Trivially, any κ-based functor is also κ-reachable. We show that also the con-

verse implication holds, by exploiting properties of inclusion preserving functors and

Theorem 3.4:

Lemma 4.4 Let F : C → C. Then F is κ-reachable if and only if F is κ-based.

Proof.

(⇐) By definition.

(⇒) We prove the thesis for F inclusion preserving, then the thesis in its full generality

follows from Theorem 3.4, since the property of being κ-based is preserved under

natural isomorphism.

Let x ∈ FX. Since F is κ-reachable, for a set Y , |Y | < κ, there exists a function

f : Y → X such that x ∈ imgF (f). Let Y0 = img (f), then |Y0| < κ and, by

Proposition 3.2 (ii), F (f)|imgF (f) : F (Y ) → F (Y0). But if x ∈ img(F (f)), then

x ∈ F (Y0) = img(F (ιY0,X)). �
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Here we introduce the definition of almost disjoint system:

Definition 4.5 (Almost Disjoint System) Let |X| = κ infinite. An almost dis-

joint system X on X is a system X ⊆ PX such that |Y | = κ, for all Y ∈ X , and

|Y1 ∩ Y2| < κ, for all distinct Y1, Y2 ∈ X .

Generalizing Jech ([13], Lemma 24.7), we have:

Lemma 4.6 Let |X| = κ, κ infinite. Then there exists an almost disjoint system

X on X such that |X | > κ.

Proof. Following [13], Lemma 24.7, we prove a slightly more general statement,

namely that there exists a family F of almost disjoint functions f : κ → κ such that

|F| > κ. Functions f, g : κ → κ are almost disjoint if |{α | f(α) = g(α)}| < κ.

Assume that all maximal sets of almost disjoint functions over κ, which exist by

Zorn’s Lemma, have cardinality at most κ, then we derive a contradiction by di-

agonalization over κ. Let |{fα | α < κ}| ≤ κ be a maximal set, we define a new

element f by f(α) = μβ.∀γ < α. β �= fγ(α). Clearly, for all α < κ we have that

|{γ | f(γ) = fα(γ)}| = |α| < κ.

The original statement now is straightforward once we consider the graphs of the

functions in F , which are subsets of κ × κ = κ. �

In order to prove the κ-continuity Theorem 4.9 below, we still need a couple of

technical results:

Lemma 4.7 Let F : C → C be inclusion preserving and let κ be infinite. Let

{Yα}α≤κ′ be a family of κ′ ≥ 2 sets such that |Yα| = |X| = κ. If FX is κ-

unreachable, then for any family of injective functions {fα : Yα → X}α≤κ′ such

that |img(fα) ∩ img(fβ)| < κ for all α �= β, there exists a family of κ′ distinct

κ-unreachable elements {xα ∈ F (img(fα))}α≤κ′ .

Proof. We start by defining a family of functions {gα : X → X}α as follows:

gα(x) =

{
x if x ∈ img(fα)

x0 otherwise
, where x0 is any element in img(fα). Now |img(gα ◦

fα)| = |img(fα)| = κ, since fα is injective, while |img(gα ◦ fβ)| < κ, for α �=
β, since |img(fα) ∩ img(fβ)| < κ and κ is infinite. Thus F (img(gα ◦ fβ)) is κ-

reachable for α �= β, while F (img(gα ◦ fα)) contains a κ-unreachable element xα.

By Proposition 3.2 (ii), F (img(gα ◦ fα)) = img(F (gα ◦ fα)), hence there exists

xα ∈ img(F (fα)) κ-unreachable such that gα(xα) = xα. Now we show that xα �∈
img(F (fβ)), for all β �= α. Namely, assume by contradiction that xα ∈ img(F (fβ)),

then xα ∈ img(F (gα ◦ fβ)). That is, using Proposition 3.2 (ii), xα ∈ F (img(gα ◦
fβ)). Hence, since xα is κ-reachable as an element of F (img(gα ◦ fβ)), then it

is also κ-reachable as an element of F (img(gα ◦ fα)), through the inclusion map

i : img(gα ◦ fβ) → img(gα ◦ fα). Contradiction 5 . �

The following proposition 6 is a consequence of Lemma 4.6 and of the above

5 This proof uses the hypothesis κ infinite. However, Lemma 4.7 holds also if we drop this hypothesis. In
this case, the proof can be carried out by induction on κ.
6 An essentially equivalent statement appears in [19], but without proof, and in [14], but under GCH.
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Lemma:

Proposition 4.8 Let |X| = κ infinite. If FX contains κ-unreachable elements,

then there exists κ
′

> κ such that FX contains κ
′

κ-unreachable elements.

Proof. We prove the thesis in the case of F inclusion preserving. The result for

a generic functor follows then from Theorem 3.4, by observing that κ-unreachable

elements are preserved under natural isomorphism. Let F be inclusion preserving.

By Lemma 4.6, there exists an almost disjoint system X on X such that |X | = κ′ >

κ. For each Y ∈ X , let us consider the inclusion map ιY,X : Y → X. By Lemma 4.7,

we get that FX contains κ
′

κ-unreachable elements. �

Finally, by Proposition 4.8 and Theorem 3.4, we have:

Theorem 4.9 (κ-continuity) Any set endofunctor is naturally isomorphic up-to-

∅ to a functor G such that, for all |X| = κ infinite,

|GX| ≤ κ =⇒ GX =
⋃

{GY | |Y | < κ ∧ Y ⊆ X} .

A consequence of the κ-continuity Theorem 4.9 above is:

Theorem 4.10 (Class Continuity) Any class endofunctor is naturally isomor-

phic up-to-∅ to a functor G which is continuous on classes, i.e., for all proper

classes X, GX =
⋃
{GY | Y set ∧ Y ⊂ X}.

Proof. We proceed by contradiction, i.e. we assume that F is not Ord-based. That

is, there exists a class X such that FX contains Ord-unreachable elements. Then,

by Theorem 4.9, |FX| > Ord, contradicting the Axiom N of NBG, i.e. the fact that

all classes have cardinality Ord. �

Remark. Notice that, if GCH does not hold, then Theorem 4.9 above can be

strengthened to the case where |FX| ≤ κ′ ≤ 2|X|, for κ′ > |X|, under the hypothesis

that there exists an almost disjoint system of cardinality κ′. Such cases are known

to exist.

5 Non-existing Functors

Since set functors preserve injective maps with non-empty domain, then the operator

underlying any functor is monotone w.r.t. object cardinalities, up-to-∅. Thus non-

monotone operators, such as X �→ {x | x ∩ X = ∅}, are not extensible to functors.

In Section 4, we have proved that operators underlying set functors also satisfy

various continuity properties. Here we capitalize on these, and we show that some

(monotone) set operators are not extensible to functors. Or, equivalently, that

functors satisfying certain (cardinality) conditions on the object part do not exist.

This problem has been addressed in previous papers for different classes of functors

satisfying a system of cardinality equations on the object part, [16,19]. Here we

focus on the case of cardinality conditions expressed by inequations. For example,

we are able to prove that there is no functor F : C → C such that
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|FX| =

⎧⎨⎩ 1 if |X| < ω

2 if |X| ≥ ω

Namely, assume by contradiction that such an F exists. By Theorem 3.4, w.l.o.g.

we may assume F to be inclusion preserving. Now, let X ≥ ω and let FX =

{x1, x2}. Then, by Theorem 4.9, FX is ω-based. That is, there must be two finite

sets Y1, Y2 ⊆ X such that FY1 = {x1} and FY2 = {x2}. But then, since F is

monotone, F (Y1 ∪ Y2) = {x1, x2}, contradicting the fact that |Y1 ∪ Y2| < ω.

The above example of a non-existing functor is an instance of a more general

situation captured in Theorem 5.1 below. We recall that a cardinal κ is weakly

inaccessible if it is a limit cardinal which is regular, i.e. κ is greater than the sup

of a chain of length less than κ of cardinals less than κ. The proof of Theorem 5.1

follows the same line of the proof of the example above.

Theorem 5.1 There is no functor F : C → C such that

|FX| =

⎧⎨⎩ κ1 if |X| < κ
′

1

κ2 otherwise ,

where κ1 < κ2 < κ
′

1 and κ1, κ
′

1 are successor and weakly inaccessible cardinals,

respectively.

6 Characterizations of Final Coalgebras

In this section, we discuss characterizations of final coalgebras as (greatest) fix-

points. In particular, we start by analyzing Aczel’s Special Final Coalgebra Theo-

rem [1], and the notion of functor uniform on maps. We present and discuss various

examples of functors which are not (naturally isomorphic to a functor) uniform on

maps, and we provide alternative characterization theorems for various classes of

functors. Aczel’s Special Final Coalgebra Theorem focusses on inclusion preserving

functors on Class∗ which are uniform on maps. We recall that the category Class∗ is

the category of classes on a non-wellfounded universe of sets. Aczel’s Theorem pro-

vides a characterization of the final coalgebra as the greatest fixpoint of the operator

underlying the functor.

An instance of a functor uniform on maps is the powerset P : Class∗ → Class∗.

It is well-known that the non-wellfounded universe of sets V can be viewed both

as the greatest fixpoint of the powerset, and as a final P-coalgebra, (V, idV ), see

e.g. [1,18] for more details. Before introducing the definition of functor uniform on

maps, we recall that the universe expanded with atoms in A is a universe of sets

whose elements can be atoms of a given class A. The non-wellfounded universe

expanded with atoms in A, denoted by VA, turns out to be the greatest fixpoint

of the functor P(A + ), i.e. VA = νX.P(A + X). Moreover, one can prove that

(VA, id) is a final P(A + )-coalgebra. Actually, also the functor P(A + ) is an

instance of a functor uniform on maps.
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Definition 6.1 (Uniform on Maps) Let F : Class∗ → Class∗. Then F is uni-

form maps if ∀A . ∃φA : F (A) → VA such that

∀f : A → B, ∀a ∈ F (A), F (f)(a) = f̂ ◦ φA(a), i.e.:

F (A)

F (f)
��

φA �� VA

bf

��
F (B) ιF (B),V

�� V

where VA is the expanded universe with atoms in A, and, for any f : A → V ,

f̂ : VA → V is defined by

f̂(x) = {f(y) | y ∈ x ∩ A} ∪ {f̂(y) | y ∈ x ∩ VA} . 7

Notice that the above definition of functor uniform on maps is not exactly the

definition of [1], the difference being that in the original definition the commutativ-

ity of the diagram is required only for functions f : A → V . Our definition has the

advantage of implying that any functor uniform on maps is also inclusion preserv-

ing. Otherwise, this has to be added as hypothesis in the Special Final Coalgebra

Theorem.

A functor uniform on maps is a functor for which the behaviour on morphisms

is determined by the behaviour on objects. Namely, by Definition 6.1, the action of

F on morphisms is given in terms of the family {φA}A. But one can show that this

family is in turn determined by the action of F on objects, see [9] for more details.

Aczel’s Special Final Coalgebra Theorem generalizes the fact that the greatest

fixpoint of the powerset functor together with the identity map is a final coalgebra:

Theorem 6.2 (Special Final Coalgebra Theorem, [1]) Let F : Class∗ → Class∗

be uniform on maps. Then (JF , id) is a final F -coalgebra, where JF is the greatest

fixpoint of the set operator underlying F , i.e. JF = νX.FX.

The definition of functor uniform on maps and the proof of the above theorem

make essential use of the fact that the universe of sets underlying Class∗ is non-

wellfounded (see [1] for more details). Thus the Special Final Coalgebra Theorem

is not directly generalizable to a generic class category.

Various questions naturally arise on the collection of functors uniform on maps.

It is well-known that there are functors which are not uniform on maps, i.e. the

Identity functor Id . However, Id is naturally isomorphic to a functor uniform on

maps, i.e. the functor Sing defined by Sing(X) = {{x} | x ∈ X}. So, the ques-

tion naturally arises whether all functors on Class∗ are naturally isomorphic to a

functor which is uniform on maps. The answer is negative; in what follows we give

various counterexamples. The first counterexample is given by the subfunctor of the

powerset, which yields all subsets of a given cardinality. Other counterexamples are

obtained by considering the functor R3, which amounts to the 3-bounded powerset,

7 By a slight abuse of notation, in the diagram above, we use the same symbol f to denote both the function
f : A → B and the function f : A → V .
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i.e. the powerset of all sets of at most three elements. The functor R3 is studied in

[6] for different reasons. This functor is special, because, contrary to all the other

functors Rn for n �= 3, it admits two variants, the functors F1, F2, with the same

behaviour on objects, but with a different behaviour on morphisms. While R3 is

uniform on maps, neither F1 nor F2 are naturally isomorphic to a functor uniform

on maps. Finally, our last example of a functor which is not naturally isomorphic

to a functor uniform on maps, is a variant of the iterated powerset functor. Here

we provide precise definitions:

Definition 6.3

(i) κ-Powerset. Let Bκ : C → C for any cardinal κ, be defined by: BκX = {u ⊆
X | |u| = κ} ∪ {∅}. For all f : X → Y , Bκf : BκX → BκY is defined by

Bκf(u) =

⎧⎨⎩ f+(u) = {fx | x ∈ u} if |fu| = κ

∅ otherwise .

(ii) 3-Bounded Powerset. Let R3 : C → C be such that R3X = {u | 0 < |u| ≤ 3},
and, for any f : X → Y , R3f = f+.

Let F1X = R3X = {u ⊆ X | 0 < |u| ≤ 3}. For all f : X → Y ,

F1f(u) =

⎧⎨⎩ {fa} if |f+(u)| = 2 ∧ u = {a, b, c} ∧ fa = fb

f+(u) otherwise .

Let F2X = R3X = {u ⊆ X | 0 < |u| ≤ 3}. For all f : X → Y ,

F2f(u) =

⎧⎨⎩ {fc} if |f+(u)| = 2 ∧ u = {a, b, c} ∧ fa = fb

f+(u) otherwise .

(iii) Iterated Powerset. Let G be the iterated contravariant powerset functor

defined by G(X) = P (P (X)) for all classes X, and for all f : X → Y , Gf :

P (P (X)) → P (P (Y )), is such that G(f) = f◦, where f◦ is defined by

f◦(α) = {y ⊆ f+(∪α) | f−1(y) ∈ α},

where by f−1(y), for y ∈ PY , we denote the inverse image of y under f .

One can check that the functors above are all inclusion preserving. However,

Proposition 6.4 The functors Bκ, F1, F2, G : Class∗ → Class∗, for 2 ≤ κ < ω, are

not naturally isomorphic to a functor uniform on maps.

Proof.

Bκ We proceed by contradiction. Let F : C → C be a uniform on maps functor such

that Bκ
∼= F . Then there exists {τX : BκX

∼
−→ FX}X . In particular, for any

f : X → X, we have:
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BκX
τX ��

Bκf

��

FX

Ff

��

φX �� VX

bf
��

BκX τX
�� FX ι

�� V

Let f : X → X be the identity on X, then, by the commutativity of the above

diagrams we have: φX ◦ τX(u) = τX(u), for all u ∈ BκX. Thus, in particular

φX ◦ τX is injective. Moreover, one can easily check that φX ◦ τX(∅) = τX(∅) = ∅
(by considering a suitable non-injective function f ′ : X → X). Now, let u ∈ BκX,

|u| = κ, and let f ′ be such that |f ′+(u)| = κ − 1. Then Bκf
′

(u) = ∅ and, by the

commutativity of the above diagrams, f̂ ′ ◦ φX ◦ τX(u) = τX(∅). Now, since u �= ∅
and φX ◦ τX is injective, then φX ◦ τX(u) �= ∅ and hence f̂ ′ ◦ φX ◦ τX(u) �= ∅,
contradicting the fact that τX(∅) = ∅.

F1 We proceed by contradiction. Let F be a uniform on maps functor such that

τ : F1
∼= F . Then, in particular, for any f : X → X, we have:

F1X
τX ��

F1f

��

FX

Ff

��

φX �� VX

bf
��

F1X τX
�� FX ι

�� V

Let f : X → X be the identity on X, then we have: φX ◦ τX(u) = τX(u), for

all u ∈ F1X. Thus φX ◦ τX is injective. Now, let u = {a, b, c}, u′ = {a, b, c′},
u, u′ ⊆ X, and let f

′

: X → X be the identity on X, but for f
′

b = a′. Since

φX ◦ τX is injective, φX ◦ τX(u) �= φX ◦ τX(u′). But, by commutativity of the

above diagrams, we have: f̂ ′ ◦φX ◦ τX(u) = f̂ ′ ◦φX ◦ τX(u′). Thus, since φX ◦ τX

is injective, then φX ◦ τX(u) = {a} ∪ v and φX ◦ τX(u′) = {b} ∪ v, for some v for

which a �∈ v ∨ b �∈ v (or vice versa).

Now one can check that, by considering f
′′

: X → X to be the identity on X, but

for f
′′

c = f
′′

c′ = b, we get a contradiction.

F2 Analogous to F1 above.

G The functor G behaves as P2, where P2 is the composition of the standard pow-

erset functor with itself, on injective functions, while on non-injective functions

f , G(f) behaves as P2(f) only on f -saturated elements, otherwise it yields ∅. By

an f -saturated element u ∈ P2(X) we mean an element such that P(f)(α) =

P(f)(β) ∧ α ∈ u ⇒ β ∈ u. Hence G cannot be naturally isomorphic to a

functor which is uniform on maps. �

Now the question naturally arises whether the functors above still admit the

greatest fixpoint as final coalgebra.

The answer is positive, but for the case of the functor B2 for which the least

fixpoint is a final coalgebra:

Proposition 6.5

(i) The set {∅} is the least fixpoint of Bκ, for all κ ≥ 2. Moreover ({∅}, id) is a
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final coalgebra for Bκ, for all κ ≥ 2.

(ii) For all κ > 2, {∅} is the unique fixpoint of Bκ; while B2 admits other fixpoints.

The greatest fixpoint of B2 is the least set A closed under the following rules:

∅ ∈ A
x, y ∈ A

{x, y} ∈ A
x ∈ A

z = {x, z} ∈ A
. 8

(iii) The set {x}, where x is a self-singleton set, i.e. x = {x}, is the greatest fixpoint

of both F1 and F2. Moreover, ({x}, id) is a final coalgebra for F1, F2.

(iv) The universe V is the greatest fixpoint of G and (V, id) is a final G-coalgebra.

Notice that, however, in all the above cases, final coalgebras are fixpoints. When

this is the case, and the functor is inclusion preserving, one can prove that the

greatest fixpoint is a weakly final coalgebra. This holds on a generic class category:

Theorem 6.6 Let F be an inclusion preserving endofunctor on a class category

C 9 . If F admits a fixpoint as final coalgebra, then the greatest fixpoint JF together

with the identity is a weakly final coalgebra.

Proof. Let X̄ be a fixpoint of F such that (X̄, id) is final F -coalgebra, let (X,α) be

an F -coalgebra, and let f : (X,α) → (X̄, id) be the final morphism. Then diagram

(1) below commutes since (X̄, id) is final, while diagram (2) commutes since F is

inclusion preserving. Thus, ιX̄,JF
◦ f is an F -coalgebra morphism from (X,α) into

(JF , id).

X

(1)α

��

f �� X̄

(2)id

��

ιX̄,JF �� JF

id

��
FX

Ff
�� FX̄ F (ιX̄,JF

)
�� FJF

�

Both in the cases of the functors Bκ and F1, F2 in Proposition 6.5 above, the

fixpoints which are final coalgebras amount to singleton sets. Actually, these are

instances of a general situation: when a functor on a class category has a singleton

fixpoint, then this is a final coalgebra.

Theorem 6.7 Let F be an endofunctor on a class category C. If F admits a fixpoint

X̄ which is a singleton set, then (X̄, id) is a final F -coalgebra.

Proof. Let (X,α) be an F -coalgebra. Then the unique coalgebra morphism from

(X,α) to (X̄, id) is the function f : X → X̄ which maps all elements of X into the

unique element X̄. �

If we work “up-to natural isomorphism”, then the following strong result holds:

8 Another fixpoint of B2 is x = {x, ∅}.
9 The assumption C class category is necessary for ensuring that F admits greatest fixpoint in C.
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Theorem 6.8 Let F be an endofunctor on a class category C. Then F is naturally

isomorphic to a functor whose unique fixpoint, together with the identity, is a final

coalgebra.

Proof. By the strengthening of Aczel’s Final Coalgebra Theorem, F admits final

coalgebra (Ω, αΩ), where αΩ : Ω → F (Ω) is an isomorphism. Let us define the

functor G as follows. Let GΩ = Ω. For any X �= Ω, choose GX such that there

exists αX : GX → FX bijective, but GX �= X. Moreover, if f : X → Y , let

Gf = (αY )−1 ◦ f ◦ αX .

One can easily check that G is naturally isomorphic to F , Ω is the unique fixpoint

of G, and (Ω, id) is a final G-coalgebra. �

But using an analogous technique to that used to prove Theorem 6.8 above, one

can also show that:

Theorem 6.9 Let F be an endofunctor on a class category C. Then F is naturally

isomorphic to a functor which has no fixpoints.

Finally, we list a number of remarks and problems arising from the investigation

of this section.

• The hypothesis F uniform on maps in Aczel’s Special Final Coalgebra Theorem

gives a sufficient but not a necessary condition for an inclusion preserving functor

to have the greatest fixpoint as final coalgebra. The functors F1, F2 previously

considered are counterexamples to the necessity. Thus another approach is that

of generalizing the definition of functor uniform on maps, in order to capture a

wider collection of functors. Actually, by analyzing the proof of the Special Final

Coalgebra Theorem, one can axiomatize the properties of the function operator

,̂ which allow to prove that the greatest fixpoint is a (weakly) final coalgebra.

This leads us to introduce a notion of functor generally uniform on maps, where

the function f̂ is substituted by f∗, for ( )∗ a generic function operator which

is “well-behaved”, i.e. it satisfies the axiomatized properties. Then the greatest

fixpoint of a functor generally uniform on maps is a (weakly) final coalgebra.

This should allow us to comprise also the cases of the functors F1, F2 (and Bκ,

for weakly final coalgebras). Here we omit the details.

• All non-uniform on maps functors considered in Section 6 miss the uniformity

property because of their “strange” behaviour on non-injective functions, while

on injective functions they are well-behaved. Thus the question naturally arises

whether all inclusion preserving functors are well-behaved on injective functions,

i.e. they are always uniform on maps w.r.t. injective functions.

• Moreover, all (non-uniform on maps) functors of Section 6 admit as final coalgebra

a fixpoint (although not necessarily the greatest one), together with the identity.

Therefore, another question which arises is whether this is always the case for

inclusion preserving functors.

• The functor G considered in Section 6 behaves as the standard iterated powerset

P2 on objects and on injective functions. Moreover, both G and P2 admit (V, id)

as final coalgebra. We conjecture that this is an instance of a general situation,
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where functors which coincide on objects and on injective functions have the same

final coalgebras.

7 Final Remarks and Directions For Future Work

We conclude the paper with a list of final comments and lines for future work.

• In this paper, we have addressed the problem of the existence of final coalgebras

and we have explored characterizations of (weakly) final coalgebras as fixpoints.

Another problem which is relevant for the Semantics of Programming Languages

is that of studying the equivalences induced by the final morphisms, i.e. mor-

phisms into the final coalgebra. If the functor is “well-behaved”, i.e. if it preserves

weak pullbacks, then the equivalences induced by final morphisms can be char-

acterized as greatest coalgebraic bisimulations. However, there are functors which

do not preserve weak pullbacks, such as for example the functor B2 studied in

Section 6. It would be interesting to explore coinductive characterizations of

final equivalences, possibly in terms of bisimulations which are not necessarily

coalgebraic bisimulations, e.g. in the line of [2,12].

• We have seen that the analysis carried out in Section 3 on inclusion preserving

functors, and the general continuity results discussed in Section 4 can be fruitfully

put to use for proving many interesting properties of set functors, inter alia the

(non-)existence of functorial extensions for various set operators. In a forthcom-

ing paper, we use them to study the uniqueness (up-to natural isomorphism) of

functorial extensions of various classes of set operators, extending previous works

on DVO functors (i.e. functors Determined by their Value on Objects), see [6].

• In Section 5, we have given a contribution to the theory of non-existing functors,

by considering a special system of cardinality inequations which cannot be satis-

fied by any functor. It would be interesting to explore in greater generality the

systems of cardinality inequations which can be satisfied by a functor. In the

literature, this has been done for systems of equations, see [16,19], but, as far as

we know, a treatment of inequations is still missing.
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