
Curriculum Vitae of

Marco Comini∗

born in Brescia, Italy on Feb 21, 1970

Contents

1 Personal Data 1

2 Education, Academic Positions
and Awards 1

3 Scientific Activities 2
3.1 The Research Group 2
3.2 Description of the Research

Activity 3
3.3 Research Projects 8
3.4 PhD. Thesis Supervision . . . 9
3.5 Publications 9
3.6 Conference Committees . . . 12
3.7 Invited Talks 13
3.8 Referee Activities 13
3.9 Conference Session Chairman 13
3.10 Conference Talks 14

3.11 Conference Participation . . . 14
3.12 Local Scientific Activities . . 15

4 Academic/Institutional Duties 16

5 Implementation Projects 17

6 Teaching and Working Activi-
ties 18
6.1 Thesis Supervision 18

6.1.1 Supervisor of Master’s
Theses 18

6.1.2 Supervisor of Batche-
lor’s Theses 18

6.2 PhD Teaching Activities . . . 18
6.3 Undergraduate Teaching Ac-

tivities 19

7 Exam scores 21

1 Personal Data

Address via Tricesimo, 123 – 33100 Udine

Nationality Italian

Military Service absolved with civil service on November 7, 1996

Home page http://www.dimi.uniud.it/comini/

telephone Tel: +39.043.255.8447 – Fax: +39.043.255.8499

address Dipartimento di Matematica e Informatica
Università Di Udine
Via Delle Scienze, 206
33100 Udine
Italy

2 Education, Academic Positions and Awards

1989 • High School: “Perito Industriale” Diploma spec. Computer Science, Is-
tituto Tecnico Industriale Statale “B.Castelli”, Brescia, Italy (qualifying
exam score 60/60).

∗Updated on May 21, 2013

http://www.dimi.uniud.it/comini/

2 3 SCIENTIFIC ACTIVITIES

1989–93 • Master’s Candidate: Corso di Laurea in Scienze dell’Informazione
(Computer Science), University of Pisa

• Enrolled as a Student at Scuola Normale Superiore di Pisa in
the “Classe di Scienze” (School of Sciences).

1993 • (5 months) Master’s candidates grant by Consiglio Nazionale delle Ricerche.
(01/09/93–01/02/94)

• Master’s Degree in “ Scienze dell’Informazione” (Computer Sci-
ence), University of Pisa on July 16, 1993 (score 110/110 Cum Laude).
Master’s Thesis Title: A Generalized Semantics for Positive Logic Pro-
grams. Supervisor: Prof. G. Levi. Referee: Prof. F. Rossi.

• Diploma di Licenza (Special Master’s Degree) in Scienze dell’Informazione
(Computer Science), Scuola Normale Superiore di Pisa. (01/11/93)

1993–97 (4 years) Ph.D. Student in Computer Science at the Computer Science Depart-
ment, University of Pisa.

1997 Discussion of the Ph.D. Thesis to Collegio docenti of the Computer Sci-
ence Department, University of Pisa. Thesis title: An abstract interpretation
framework for Semantics and Diagnosis of logic programs. Supervisor Prof.
G. Levi; International Referees: Prof. G. Ferrand, Prof. J. Maluszynski; Local
Opponents: Prof. R. Barbuti, Prof. G. Gallo.

1998 • (7 months) Guest-researcher at Institutionen för Datavetenskap, Linköping
Universitet, Sweden (IDA, Linköping University, Sweden). (01/02/98–
31/08/98)

• (4 months) Post-Doctoral grant by Institut National de Recherche en Infor-
matique et en Automatique, Rocquencourt-Paris, France (INRIA, Rocquencourt-
Paris, France). (01/10/98–31/01/99)

• Ph.D. Degree in Computer Science on May 12, 1998. National Judging
Commission: Prof. A. De Santis, Prof. S. Martini and Prof. V. Ambriola.

1999-00 • (5 months) Van Vleck Visiting Assistant Professor of Mathematics in the
Department of mathematics, Wesleyan University, Middletown CT, USA.
(01/01/99–31/05/99)

• (2 years) Post-Doctoral research activity grant by University of Pisa (Italy),
A.Y. 1998-99 and 1999-00,

2000-05 Assistant professor at Università di Udine (University of Udine). Employed
since July 3, 2000.

2005-now Associate professor at Università di Udine (University of Udine). Employed
since November 2, 2005.

3 Scientific Activities

3.1 The Research Group

I’m coordinating the FLIT research group. We work on development of Sematics-Based
Formal Methods to be applied for the realization of (automatic) programming support tools.
In particular the topics where we concentrate our efforts are the following:

Analysis, Verification and Correction of Declarative Languages:

• Abstract Diagnosis, Abstract Verification and Analysis of Functional-Logic Lan-
guages.

• Abstract Diagnosis, Abstract Verification and Analysis of Timed Concurrent Con-
straint Languages.

• Abstract Diagnosis, Abstract Verification and Analysis of Logic Languages.
• Type Inference of Functional, Logic and Functional-Logic Languages.

http://www.sns.it
http://flit.dimi.uniud.it

3.2 Description of the Research Activity 3

• Verification&Correction of Functional-Logic Languages.

Formal Methods for the Web and Software Engineering:

• Linguaggi di interrogazione e filtering approssimato di documenti semistrutturati.
• Metodi formali per l’analisi e verifica di siti Web.
• UML consistency: Consistency Analysis of UML diagrams.
• UML quality: Quality Analysis of UML diagrams.

Group Members

• Marco Comini (Associate Professor)
• Demis Ballis (Assistant Professor)
• Andrea Baruzzo (Post-Doc)
• Giovanni Bacci (Post-Doc)
• Laura Titolo (PhD student)
• Luca Torella (PhD student)

Scientific Collaborations

The group members collaborate with

• Moreno Falaschi, Michele Baggi. Dipartimento di Scienze Matematiche e Informatiche,
Università degli Studi di Siena
• Maria Alpuente, Salvador Lucas, Alicia Villanueva, Santiago Escobar, Daniel Romero.

Departamento de Sistemas Informàticos y Computaciòn, Universidad Politécnica de
Valencia.
• Ferruccio Damiani. Dipartimento di Informatica, Università di Torino.
• Makoto Tatsuta. National Institute of Informatics, Giappone.

3.2 Description of the Research Activity

Research Topics

• Semantics of Declarative Languages.
• Abstract Interpretation.
• Abstract (Declarative) Diagnosis of Logic Programs.
• Abstract Verification of Logic Programs.
• Abstract Verification/Diagnosis of Functional Programs.
• Abstract Verification/Diagnosis of Functional-Logic Programs.
• Abstract Verification/Diagnosis of Timed Concurrent Constraint Languages.
• Automatic Synthesis of Specifications for Declarative Languages
• Type Inference of Functional, Logic and Functional-Logic Languages.
• Verification of UML diagrams with OCL constraints.
• Quality Analysis of UML diagrams with OCL constraints.

Motivations/Overview

Definite logic programs have a very elegant declarative semantics, i.e., the least Herbrand
model. However, some semantics-based techniques (such as program analysis, debugging and
transformation) require more traditional semantics which are able to capture computational
rather than declarative properties .

Several ad-hoc semantics modeling various abstraction of SLD-trees (abstract properties)
have been defined, including the ones specifically designed for static program analysis.

The first motivation of this work was to develop a framework to systematically derive the
semantics modeling an abstract property; to address problems such as the relation between
the operational and the denotational semantics and to reason about their properties (e.g.
compositionality, correctness and precision degree).

One interesting example of semantics-based technique (concerned with model-theoretic
properties) which can take advantage of more concrete semantics is declarative debugging.

http://www.dimi.uniud.it/comini
http://www.dimi.uniud.it/demis
http://www.dimi.uniud.it/baruzzo
http://people.cs.aau.dk/~giovbacci/
http://users.dimi.uniud.it/~laura.titolo
http://users.dimi.uniud.it/~luca.torella
http://www.mat.unisi.it/personalpages/falaschi/public_html/
http://users.dimi.uniud.it/~michele.baggi/
http://www.dsic.upv.es/~alpuente
http://www.dsic.upv.es/~slucas
http://www.dsic.upv.es/~villanue
http://www.dsic.upv.es/~sescobar
http://www.dsic.upv.es/~dromero
http://www.di.unito.it/~damiani
http://research.nii.ac.jp/~tatsuta/index-e.html

4 3 SCIENTIFIC ACTIVITIES

Our second motivation was that of applying the results of the theoretical framework to
extend sematic-based techniques (declarative debugging, verification and transformation) to
cope with the analysis of abstract operational properties described by finite domains, such
as groundness dependencies and lot of others.

All my constructions are based on Abstract Interpretation

Abstract interpretation in pills

Abstract interpretation is a theory of the approximation of discrete systems conceived at the
end of the 1970s by P. and R. Cousot. This theory allows to formally specify provably correct
approximation processes for the behavior of any computing system. For example, abstract
interpretation provides methods that are general enough to specify static program analyzers,
automatic verifiers of software and hardware systems, automatic verifiers of the properties
of communication protocols, type systems and so forth. The abstract interpretation re-
search field is extremely lively: the International Static Analysis Symposium (SAS) and
the International Conference on Verification, Model Checking and Abstract Interpretation
(VMCAI) are the annual conferences dedicated to this sector, but numerous contributions
are presented also at the International Conference on Computer Aided Verification (CAV),
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL)
and other conferences/symposia. There is a significant research community, especially in
Europe (and in Italy, in particular, as witnessed by numerous PRIN projects on abstract
interpretation or related themes), the United States and Asia. Abstract interpretation is
having a considerable industrial impact due to the inescapable necessity of guaranteeing the
quality of safety critical software. For example, the PolySpace static analyzer, which works
on C, C++ and Ada programs, was conceived and entirely designed by means of abstract
interpretation and it is a product quite successfully commercialized by the multinational
company TheMathWorks. The Microsoft Visual Studio development environment includes
a module for the static analysis of .NET bytecode for the automatic inference of correct-
ness specifications (the so-called Code Contracts). Finally, but this list could continue, we
can mention the ASTRÉE static analyzer, developed by the research team of Patrick and
Radhia Cousot, commercialized by the German company AbsInt, and used by the Airbus
consortium for the certification of safety critical, on-board software for the Airbus A340 e
A380 airplanes.

Semantics of Logic Languages by Abstract Interpretation [5,2,1,14,13,11] 1

The idea of using abstract interpretation techniques as unifying framework for various se-
mantics is well-known [CousotC92]. However the originality of our work is that we fully
exploit this idea and provide a real flexible framework which provides useful theoretical
bases for new semantic-based applications.

The first contribution of our work is a uniform framework for the reconstruction of
existing semantics and for the systematic design of new semantics able to deal also with the
approximation typical of static program analysis.

The ingredients of our semantic framework are a concrete semantics (modeling SLD-
trees) and an abstract property (abstraction of SLD-trees). The denotational semantics and
the transition system for SLD-trees are defined in terms of four semantic operators, directly
related to the syntactic structure of language. This allows us to reason about properties of
the SLD-trees via an algebraic construction which gives new insights in the clarification of
the proof space.

Using abstract interpretation techniques to model abstraction allows us to state algebraic
conditions on several classes of abstract properties w.r.t. the four basic semantic operators.
These conditions guarantee the validity of several general theorems, once the correctness of
the abstraction has been proven. Depending on the class, we automatically obtain a new
denotational semantics, transition system, top-down and bottom-up denotations, together
with several interesting theorems (equivalence, compositionality w.r.t. the various syntac-
tic operators, correctness and minimality of the denotations and precision degree). The

1For an explanation about CiteSeer.IST - Scientific Literature Digital Library service look at the beginning
of Section 3.5.

http://citeseer.ist.psu.edu/

3.2 Description of the Research Activity 5

taxonomy models, within the same framework, both standard semantics than non-standard
ones, typical of program analysis. Moreover it permits to reason about its compositionality
properties (condensing, OR-compositionality, existence of an abstract transition system).

Our taxonomy is useful to design a new semantics with some a priori given properties.
Since the axioms for a class are sufficient conditions for the derived semantics to have the
required properties, one needs only to define an abstract property and check if it belongs to
the right class. If it does not, thanks to abstract interpretation composition and refinement,
one can compute a more concrete abstract property which does belong to the desired class.

The results of this research have been published in some international conferences [14,13,11],
in the PhD Thesis [1], on the journal “Theoretical Computer Science” [2] and on the journal
“Information and Computation” [5].

Abstract Diagnosis of (Constraint) Logic Programs [3,33,1,17,32,16,15,30,12]

The results of theoretical framework described in the previous section have been successfully
applied to declarative debugging.

Declarative debugging is concerned with model-theoretic properties. The related declar-
ative semantics is the least Herbrand model in [Shapiro82], the set of program completion
models in [Lloyd87] and the set of atomic logical consequences in [Ferrand87]. The idea
behind declarative debugging is to collect information about what the program is intended
to do and compare this with what it actually does. By using these symptoms, a diagnoser
can find errors.

By applying our framework we have obtained a new diagnosis technique (Abstract Diag-
nosis) which extends declarative debugging to the case where the intended behavior (spec-
ification) of the diagnosed program is finite and defines a program property rather than
its semantics. The resulting technique leads to elegant bottom-up and top-down verifica-
tion methods, which do not require to determine the symptoms in advance, and which are
effective in the case of abstract properties described by finite domains.

By investigating on some special instancies we proposed some diagnosis techniques which
would be of practical interest.

Partial diagnosis can be used whenever we have a (finite) partial knowledge about the
intended behavior. This knowledge can be derived from symptom detection and
symptom-directed queries to the user, as in the symptom-directed debuggers.

Diagnosis w.r.t. approximate observables is instead useful when one performs the di-
agnosis w.r.t. properties which can be modeled by abstractions over finite (Noetherian)
domains. Finite specifications lead to the systematic derivation of the diagnosis algo-
rithms from the underlying theory with no need for symptom detection.

Modular diagnosis shows that the diagnosis method does not need to be extended to per-
form the diagnosis in a modular way. We can verify and debug incomplete programs,
once we have the specifications for the missing program components.

The theoretical results on partial correctness, completeness and bug derivation are valid
for the diagnosis algorithms too. I have developed some prototype implementation of the
algorithms by means of Prolog meta-programs. Their source code is available on my Home
page.

Besides the obtained practical results, the Abstract Diagnosis technique shows that our
approach is useful to define new elegant and powerful semantic-based techniques for pro-
gramming tools.

The results of this research have been published in some international conferences [17,16,15,12],
in the PhD Thesis [1], on the “Journal of Logic Programming” [3].

Within the european Esprit DiSCiPL project the same approach has been applied to
Constraint Logic Languages. Some results of this research have been published in an inter-
national workshop [33].

http://www.dimi.uniud.it/~comini/Projects/
http://www.dimi.uniud.it/~comini/Projects/

6 3 SCIENTIFIC ACTIVITIES

Abstract Verification of (Constraint) Logic Programs [7,4,20,6,19,18]

During the development of Abstract Diagnosis we noted that some of its characteristics
were typical of program verification. Thus we have applied the concepts of the theoretical
framework to various problems related to the verification of logic programs.

The aim of verification is to define conditions which allow us to formally prove that a
program behaves as expected, i.e., that the program is correct w.r.t. a given specification,
a description of the program’s expected behavior. We have successfully used the frame-
work (and abstract interpretation) techniques to organize and synthesize proof methods for
program verification. Verification techniques inherit the nice features of abstract interpre-
tation. Namely, the resulting verification framework (Abstract Verification framework) is
parametric with respect to the (abstract) property we want to model. Given a specific prop-
erty, the corresponding verification conditions are systematically derived from the framework
and guaranteed to be indeed sufficient partial correctness conditions. By choosing a suit-
able domain, which leads to finite specifications, these sufficient conditions are effectively
computable.

I have developed, as a case study, a prototype implementation of the verification algo-
rithms on a type domain [20]. Its source code is available on my Home page.

We have shown that within the framework we can reconstruct well-known methods, using
extensional semantics w.r.t. pre-post conditions, such as success-correctness [Clark79, Der-
ansart93], I/O correctness [Drabent97] and I/O and call correctness [DrabentM88, BossiC89,
AptM94].

The verification framework can be instantiated to specifications given in terms of asser-
tions (which can be viewed as an intensional semantics). We have shown that assertions
can indeed be handled as abstract domains and have shown two applications with different
specification languages.

The first one is a simple decidable assertion language, which is able to express properties
of terms, including types and other properties relevant to static analysis. An open interesting
issue is the definition of more expressive (still decidable) specification languages.

The second one allows the user to specify properties to be used in the assertions by means
of CLP programs. We have shown, through some examples, how the resulting sufficient veri-
fication conditions can be derived and proved by using program transformations techniques.
Most of the verification conditions can very easily be proven by using a few unfolding steps,
while other transformation techniques, such as goal replacement, are needed to prove more
complex properties. As we have shown in the examples, the generation of the intermediate
lemmata needed for goal replacement can often be obtained by using an unfold/fold proof
method, as stated in [PettorossiP99]. Our examples together with these considerations sug-
gest that the process of proving verification conditions can easily be semi-automatized by
using, for example, the tool MAP [PettorossiP99] as we showed in our examples.

The results of this research have been published in some international conferences [20,6,19,18]
and are illustrated in detail in a paper published on journal “Science of Computer Program-
ming” [7].

Verification/Diagnosis of Functional Programs [39,9,21]

The approach to Semantics, Diagnosis and Verification of Logic Programs can be generalized
to other paradigms. We just need to define a fixpoint semantics on the concrete domain. The
compositionality properties will be of course different and related to the language syntactic
operators. Recently we have obtained some promising results for Functional Programming.

In [21] we have obtained a generic scheme for the declarative debugging of functional
programs modeled as term rewriting systems. We can use (depending on the needs) two
different concrete semantics which models the computed values or the normal forms. With
these semantics we developed a finitely terminating bottom-up diagnosis method, which can
be used statically. Our debugging framework does not require the user to either provide
error symptoms in advance or answer questions concerning program correctness. We have
considered, as a case study, an instance of the method over the depth(k) domain and made
available a prototypical implementation in Haskell which has been tested on some non trivial
examples.

http://www.dimi.uniud.it/comini/Projects/

3.2 Description of the Research Activity 7

This work is motivated by the fact that a “compact” semantics for term rewriting sys-
tems, which is essential for the development of effective semantics-based program manipu-
lation tools (e.g. automatic program analyzers and debuggers), does not exist.

Thus in [9] we have developed such a “compact” semantics for term rewriting systems.
The big-step rewriting semantics that is most commonly considered in functional program-
ming is the set of values/normal forms that the program is able to compute for any input
expression. Such a big-step semantics is unnecessarily oversized, as it contains many “se-
mantically useless” elements that can be retrieved from a smaller set of terms. Therefore,
in this article, we present a compressed, goal-independent collecting fixpoint semantics that
contains the smallest set of terms that are sufficient to describe, by semantic closure, all
possible rewritings. The compactness of the semantics makes it suitable for applications.
Actually, our semantics can be finite whereas the big-step semantics is generally not, and
even when both semantics are infinite, the fixpoint computation of our semantics produces
fewer elements at each step. To support this claim we report several experiments performed
with a prototypical implementation (URL http://safe-tools.dsic.upv.es/zipit)

It is interesting to note that the resulting methodology can be applied to a class of Term
Rewriting Systems much bigger than previous approaches (like Echahed and Hanus).

The results of this research have been published in an international conference [21] on
the journal “Theoretical Computer Science” [9].

Given the interest of the scientific community and the still open possibilities of this
research topic I’m going to deeply develop this framework in the future.

39

Verification/Diagnosis of Functional-Logic Programs [37,26]

As already said, the approach to Semantics, Diagnosis and Verification of Logic Programs
can be can be generalized to other paradigms. We are now working on an extension of the
framework to cope with (integrated) functional-logic languages.

Given the absence in literature of previous candidates to work on, in [37] we opted for
the systematic use of Abstract Interpretation. Thus

1. we defined, for the first order fragment of Curry, a (very) concrete semantics which
models completely needed narrowing derivations;

2. then, we have defined the abstraction for computed answers and derived “automat-
ically” its semantics, which turned out to be imprecise. Thus we have successively
refined such an abstraction till we have obtained a precise refinement.

Thanks to this semantics in [26] we could apply the Abstract Diagnosis methodology.

Verification/Diagnosis of Functional-Logic Programs [38,10, 41]

We are now working on an extension of the framework to cope with timed concurrent
constraint logic languages.

Given the absence in literature of previous candidates to work on, we have started to
develop one in [38].

Thanks to this semantics we could apply the Abstract Diagnosis methodology in [10,41].

Automatic Synthesis of Specifications for Declarative Languages [40,29,27,28]

Type-Inference via Abstract Interpretation [25]

The results of this research have been published in an international conference [25] .

Verification/Quality of UML diagrams with OCL constraints [23,8,35,36,24,22]

With the advent of Model-Driven Development, models has become a central component
in the software development process. As code can be (semi)automatically generated from
models, the quality of models has a direct impact on the quality of the final product. Further-
more, detecting defects at the model level allows correcting them early in the development
process, when it is easier and cheaper.

http://safe-tools.dsic.upv.es/zipit

8 3 SCIENTIFIC ACTIVITIES

Formal methods provide many approaches and tools with mathematically sound foun-
dations that can be used to automatically assess model quality. However, there are sev-
eral barriers in the adoption of formal methods within the software engineering community
(amongst others, the mathematics expertise required to software practitioner in order to
apply them effectively).

Thus, the main goal of this thesis is the development of light-weight formal methods that
can be used to assess the quality of a UML model by means of automatic model analysis.

Two different methods are presented in this work:

1. Model Verification for Consistency
2. Model Verification for Quality Critiquing

The first one is a preliminary step in a more ambitious direction of Model Verification for
Correctness and it is aimed to identify inconsistences between different diagrams in the
model. This method is an attempt to analyze UML diagrams and OCL specifications in
order to discover errors (i.e. assertion violations) or warnings (i.e. incomplete specifications)
in the model or possibly in the assertions themselves.

The second method is aimed to analyze a UML model in order to automatically check if it
embodies software design best practices (e.g., design patterns) by means of design critiques.

Common to both the verification approaches discussed here is the observation that re-
covering from faulty reasoning after the time in which the fault is firstly introduced is a
very common, but tedious and expensive practice. Therefore, the spirit of this thesis is to
develop suitable verification methods which should aid the designer to catch those critical
aspects of a model as early as possible, and in a possibly non-obtrusive way.

In order to achieve these results, the aforementioned methods are presented in the context
of a suitable methodology which describes how they can be integrated in a typical Model-
Driven Development environment.

The results of this research have been published in some international conferences [23,8,22].

3.3 Research Projects

European

1998 Member of the ESPRIT (EU information technologies programme) project “De-
bugging systems for constraint programming”

2004–2005 Member of the EU project “ICT for EU-India Cross-Cultural Dissemination”
(grant ALA/95/23/2003/077-054)

National

1998–2000 • Member of the MURST co-financed project “Sistemi formali per la speci-
fica, l’analisi, la verifica, la sintesi e la trasformazione di sistemi software”
(Formal Systems for the specification, analysis, verification, synthesis and
transformation of software systems). MURST is the Ministry for the Sci-
entific and Technologic Research. [coordinator G. Levi]

• Member of the CNR co-financed project “Verifica, analisi e trasformazione
di programmi logici” (Verification, analysis and transformation of Logic
Programs). CNR is the National Council for Research. [coordinator
G. Levi]

2000–2001 Member of the MURST co-financed project “Certificazione Automatica di Pro-
grammi mediante Interpretazione Astratta” (Automatic program certification
by abstract interpretation). [coordinator R. Giacobazzi]

2001–2002 Member of the MURST co-financed project “Interpretazione astratta, sistemi di
tipo e analisi Control-Flow” (Abstract Interpretation, type systems and control-
flow analysis). [coordinator G. Levi]

http://www.ercim.org/activity/projects/discipl.html
http://www.ercim.org/activity/projects/discipl.html
http://strudel.di.unipi.it/p40/p40.html
http://strudel.di.unipi.it/p40/p40.html
http://theory.sci.univr.it/projects/p40/
http://theory.sci.univr.it/projects/p40/
http://strudel.di.unipi.it/cofin00/
http://strudel.di.unipi.it/cofin00/

3.4 PhD. Thesis Supervision 9

2004–2005 Member of the MURST co-financed project “Rappresentazione e gestione di
dati spaziali e geografici in WEB” (WEB-based management and representation
of spatial and geographic data) [coordinator E. Bertino]

2005–2006 Member of the MURST co-financed project “Interpretazione Astratta: Sviluppo
e Applicazioni” (AIDA - Abstract Interpretation: Design and Applications) [co-
ordinator R. Giacobazzi]

2007–2008 Member of the MURST co-financed project “Sistemi e calcoli di ispirazione
biologica e loro applicazioni” (BISCA - Bio-Inspired Systems and Calculi with
Applications) [coordinator P. Degano]

Regional

2002–2003 Member of the Regione FVG co-financed project “Verifica formale, certifi-
cazione e model checking per sistemi reattivi, concorrenti ed embedded” (Formal
verification, certification and Model-Checking for reactive, concurrent and em-
bedded systems). Regione FVG is the Friuli Venezia Giulia Regional Council.
[coordinator A. Policriti]

3.4 PhD. Thesis Supervision

2005-08 “A Unified Framework for Automated UML Model Analysis”, Dipartimento di
matematica e Informatica, Università di Udine (Andrea Baruzzo).

2009-12 “Abstract Diagnosis and Verification of Functional and Functional-Logic Pro-
grams”, Dipartimento di matematica e Informatica, Università di Udine (Gio-
vanni Bacci).

2010- “An Abstract Interpretation Framework for Semantics and Diagnosis of Term
Rewriting Systems, Dipartimento di Ingegneria dell’Informazione e Scienze Matem-
atiche, Università di Siena (Luca Torella).

2011- “An Abstract Interpretation Framework for Semantics and Verification of Timed
Concurrent Constraint Languages, Dipartimento di matematica e Informatica,
Università di Udine (Laura Titolo).

3.5 Publications

Ph.D. Thesis

1. M. Comini. An abstract interpretation framework for Semantics and Diagnosis of
logic programs. Ph.D. thesis TD-5/98, Dipartimento di Informatica, Università di
Pisa, 1998.

Journals (ISI Science Citation Index, with referee)

2. M. Comini and M. C. Meo. Compositionality properties of SLD-derivations. Theo-
retical Computer Science, 211(1-2):275–309, 1999.

3. M. Comini, G. Levi, M. C. Meo, and G. Vitiello. Abstract diagnosis. Journal of Logic
Programming, 39(1-3):43–93, 1999.

4. M. Comini, R. Gori, G. Levi, and P. Volpe. Abstract Interpretation based Verification
of Logic Programs. Electronic Notes in Theoretical Computer Science, 30:1–17, 1999.

5. M. Comini, G. Levi, and M. C. Meo. A Theory of Observables for Logic Programs.
Information and Computation, 169:23–80, 2001.

6. M. Comini, R. Gori, and G. Levi. Logic programs as specifications in the inductive
verification of logic programs. Electronic Notes in Theoretical Computer Science,
48:1–16, 2001.

7. M. Comini, R. Gori, G. Levi, and P. Volpe. Abstract Interpretation based Verification
of Logic Programs. Science of Computer Programming, 49(1–3):89–123, 2003.

10 3 SCIENTIFIC ACTIVITIES

8. D. Ballis, A. Baruzzo, and M. Comini. A rule-based method to match Software
Patterns against UML Models. Electronic Notes in Theoretical Computer Science,
219:51–66, 2007.

9. M. Alpuente, M. Comini, S. Escobar, M. Falaschi, and J. Iborra. A Compact Fixpoint
Semantics for Term Rewriting Systems. Theoretical Computer Science, 411(37):3348–
3371, 2010.

10. M. Comini, L. Titolo, and A. Villanueva. Abstract Diagnosis for Timed Concurrent
Constraint programs. Theory and Practice of Logic Programming, 11(4-5):487–502,
2011.

International Conference/Workshop Proceedings (with 3 referees at least)

11. M. Comini and G. Levi. An algebraic theory of observables. In M. Bruynooghe, editor,
Proceedings of the 1994 International Symposium on Logic Programming, pages 172–
186. The MIT Press, 1994.

12. M. Comini, G. Levi, and G. Vitiello. Abstract debugging of logic programs. In L. Fri-
bourg and F. Turini, editors, Proceedings Logic Program Synthesis and Transformation
and Meta-programming in Logic 1994, volume 883 of Lecture Notes in Computer Sci-
ence, pages 440–450. Springer-Verlag, 1994.

13. M. Comini and G. Levi. Beyond the s-semantics: a theory of observables. In A. Ursini
and P. Aglianò, editors, Logic and Algebra, volume 180 of Lecture Notes in Pure and
Applied Mathematics, pages 25–67. Marcel Dekker, Incorporated, New York, 1995.

14. M. Comini, G. Levi, and M. C. Meo. Compositionality of SLD-derivations and their
abstractions. In J. Lloyd, editor, Proceedings of the 1995 International Symposium on
Logic Programming, pages 561–575. The MIT Press, 1995.

15. M. Comini, G. Levi, and G. Vitiello. Declarative diagnosis revisited. In J. Lloyd,
editor, Proceedings of the 1995 International Symposium on Logic Programming, pages
275–287. The MIT Press, 1995.

16. M. Comini, G. Levi, and G. Vitiello. Efficient Detection of Incompleteness Errors
in the Abstract Debugging of Logic Programs. In M. Ducassé, editor, Proc. 2nd
International Workshop on Automated and Algorithmic Debugging, AADEBUG’95,
pages 1–17, 1995.

17. M. Comini, G. Levi, M. C. Meo, and G. Vitiello. Proving properties of logic programs
by abstract diagnosis. In M. Dams, editor, Analysis and Verification of Multiple-
Agent Languages, 5th LOMAPS Workshop, number 1192 in Lecture Notes in Computer
Science, pages 22–50. Springer-Verlag, 1996.

18. M. Comini, R. Gori, and G. Levi. Assertion based Inductive Verification Methods
for Logic Programs. In A. K. Seda, editor, Proceedings of MFCSIT’2000, volume 40
of Electronic Notes in Theoretical Computer Science, pages 1–18. Elsevier Science
Publishers, 2001. 2

19. M. Comini, R. Gori, and G. Levi. How to Transform an Analyzer into a Verifier. In
R. Nieuwenhuis and A. Voronkov, editors, Proceedings LPAR 2001, volume 2250 of
Lecture Notes in Artificial Intelligence, pages 595–609. Springer-Verlag, 2001.

20. M. Comini. VeriPolyTypes: a tool for Verification of Logic Programs with respect to
Type Specifications. In M. Falaschi, editor, Proceedings of 11th International Work-
shop on Functional and (constraint) Logic Programming, number UDMI/18/2002/RR
in Research Reports, pages 233–236, Udine, Italy, 2002. Dipartimento di Matematica
e Informatica, Università di Udine.

21. M. Alpuente, M. Comini, S. Escobar, M. Falaschi, and S. Lucas. Abstract Diagnosis
of Functional Programs. In M. Leuschel, editor, Logic Based Program Synthesis
and Transformation – 12th International Workshop, LOPSTR 2002, Revised Selected
Papers, volume 2664 of Lecture Notes in Computer Science, pages 1–16, Berlin, 2003.
Springer-Verlag.

22. A. Baruzzo and M. Comini. Static Verification of UML Model Consistency. In
D. Hearnden, J. G. Süß, B. Baudry, and N. Rapin, editors, MoDeV2a: Model Devel-
opment, Validation and Verification. University of Queensland, Le Commissariat à

2Available at URL: http://www.elsevier.nl/locate/entcs/volume40.html

http://www.elsevier.nl/locate/entcs/volume40.html

3.5 Publications 11

l’Energie Atomique - CEA, October 2006.
23. D. Ballis, A. Baruzzo, and M. Comini. A Minimalist Visual Notation for Design Pat-

terns and Antipatterns. In 5th International Conference on Information Technology:
New Generations, pages 51–56. IEEE Computer Society, 2008.

24. A. Baruzzo and M. Comini. A Methodology for UML Models V&V. In Proceedings
of First International Conference on Software Testing, Verification, and Validation,
pages 513–516. IEEE Computer Society, 2008.

25. M. Comini, F. Damiani, and S. Vrech. On Polymorphic Recursion, Type Systems,
and Abstract Interpretation. In M. Alpuente and G. Vidal, editors, Static Analysis –
15th International Symposium, SAS 2008, volume 5079 of Lecture Notes in Computer
Science, pages 144–158, Berlin, 2008. Springer-Verlag.

26. G. Bacci and M. Comini. Abstract Diagnosis of First Order Functional Logic Pro-
grams. In M. Alpuente, editor, Logic-based Program Synthesis and Transformation,
20th International Symposium, volume 6564 of Lecture Notes in Computer Science,
pages 215–233, Berlin, 2011. Springer-Verlag.

27. G. Bacci, M. Comini, M. A. Feliú, and A. Villanueva. The additional difficulties
for the automatic synthesis of specifications posed by logic features in functional-logic
languages. In A. Dovier and V. S. Costa, editors, Technical Communications of the
28th International Conference on Logic Programming (ICLP’12), volume 17 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 144–153, Dagstuhl, Germany,
2012. Schloss Dagstuhl–Leibniz-Zentrum Fuer Informatik.

28. G. Bacci, M. Comini, M. A. Feliú, and A. Villanueva. Automatic Synthesis of Spec-
ifications for First Order Curry Programs. In Proceedings of the 14th symposium on
Principles and practice of declarative programming, pages 25–34, New York, NY, USA,
2012. ACM.

29. M. Comini and L. Torella. TRSynth: a Tool for Automatic Inference of Term Equiv-
alence in Left-linear Term Rewriting Systems. In ACM SIGPLAN 2013 Workshop on
Partial Evaluation and Program Manipulation (PEPM’13). ACM, 2013. To appear.

National Conference/Workshop Proceedings

30. M. Comini, G. Levi, and G. Vitiello. On the Abstract Diagnosis of Logic Programs.
In M.I. Sessa, editor, Proceedings GULP-PRODE’95, pages 41–57, 1995.

31. R. Bagnara, M. Comini, F. Scozzari, and E. Zaffanella. The AND-compositionality
of CLP computed answer constraints. In M. Navarro, editor, Proceedings of the
APPIA-GULP-PRODE’96 Joint Conference on Declarative Programming, pages 355–
366, 1996.

32. M. Comini, G. Levi, and G. Vitiello. Modular abstract diagnosis. In J. L. Freire and
M. Falaschi, editors, Proceedings of the APPIA-GULP-PRODE’98 Joint Conference
on Declarative Programming, pages 409–420, 1998.

33. M. Comini, W. Drabent, and P. Pietrzak. Diagnosis of CHIP programs using type
information. In M. C. Meo and M. Vilares Ferro, editors, Appia-Gulp-Prode’99, Joint
Conference on Declarative Programming, pages 337–349, L’Aquila, Italy, 1999.

34. A. Baruzzo and M. Comini. Checking UML Model Consistency. In Proceedings of
CILC 2006 - Convegno Italiano di Logica Computazionale, 2006.

Submitted papers

35. A. Baruzzo and M. Comini. A Framework for Computer Aided Consistency Verifica-
tion of UML Models. 3

36. A. Baruzzo and M. Comini. Toward a Unified Framework for Quality and Consistency
Verification of UML Models. 4

37. G. Bacci and M. Comini. A Fully-Abstract Condensed Goal-Independent Bottom-Up
Fixpoint Modeling of the Behaviour of First Order Curry. Technical Report DIMI-
UD/06/2010/RR, Dipartimento di Matematica e Informatica, Università di Udine,

3Available at URL: http://www.dimi.uniud.it/comini/Papers/FramCAConVerUML/FramCAConVerUML.pdf
4Available at URL: http://www.dimi.uniud.it/comini/Papers/FrameworkQualConsUML/FrameworkQualConsUML.pdf

http://www.dimi.uniud.it/comini/Papers/FramCAConVerUML/FramCAConVerUML.pdf
http://www.dimi.uniud.it/comini/Papers/FrameworkQualConsUML/FrameworkQualConsUML.pdf

12 3 SCIENTIFIC ACTIVITIES

2010. 5.
38. M. Comini, L. Titolo, and A. Villanueva. A Condensed Goal-Independent Bottom-

Up Fixpoint Modeling the Behavior of tccp. Technical report, DSIC, Universitat
Politècnica de València, 2013. URL: http://riunet.upv.es/handle/10251/8351.

39. M. Comini and L. Torella. A Condensed Goal-Independent Fixpoint Semantics Mod-
eling the Small-Step Behavior of Rewriting. Technical Report DIMI-UD/01/2013/RR,
Dipartimento di Matematica e Informatica, Università di Udine, 2013. URL: http:
//www.dimi.uniud.it/comini/Papers/.

40. M. Comini and L. Torella. Automatic Inference of Term Equivalence in Term Rewrit-
ing Systems. Technical Report DIMI-UD/02/2013/RR, Dipartimento di Matematica e
Informatica, Università di Udine, 2013. URL: http://www.dimi.uniud.it/comini/
Papers/.

41. M. Comini, L. Titolo, and A. Villanueva. Abstract Diagnosis for tccp using a Linear
Temporal Logic. URL: http://www.dimi.uniud.it/comini/Papers/.

Supervied PhD thesis

42. A. Baruzzo. A Unified Framework for Automated UML Model Analysis. PhD thesis,
Dipartimento di matematica e Informatica, 2008.

43. G. Bacci. An Abstract Interpretation Framework for Semantics and Diagnosis of Lazy
Functional-Logic Languages. PhD thesis, Dipartimento di matematica e Informatica,
2011.

3.6 Conference Committees

1. Chairman of the program committee International Workshop Tools and Envi-
ronments for (Constraint) Logic Programming. Post-conference workshop International
Symposium on Logic Programming, Port Jefferson, NY (USA), October 1997.

2. AGP01 Program Committee member of Joint International Conference Appia-
Gulp-Prode’01, Evora (PT), Settembre 2001.

3. WFLP02 Chairman organizing committee 11th International Workshop Func-
tional and (Constraint) Logic Programming, Grado, Giugno 2002.

4. WFLP02 Guest Editor of Selected Papers from WFLP’02 – 11th International
Workshop on Functional and (Constraint) Logic Programming, volume 76 of Electronic
Notes in Theoretical Computer Science. Elsevier Science Publishers, 2002. Available
at URL: http://www.elsevier.nl/locate/entcs/volume76.html.

5. WFLP08 Program Committee member of 17th Int’l Workshop on Functional
and (Constraint) Logic Programming, Siena (Italy), July, 2008.

6. VALID09 Program Committee member of First International Conference on
Advances in System Testing and Validation Lifecycle, Porto (Portugal), September,
2009.

7. LOPSTR10 Program Committee member of 20th International Symposium
on Logic-Based Program Synthesis and Transformation, Hagenberg (Austria), July,
2010.

8. VALID10 Program Committee member of Second International Conference
on Advances in System Testing and Validation Lifecycle, Nice (France), August, 2010.

9. TAP11 Program Committee member of 5th International Conference on Tests
and Proofs, Zurich (Switzerland), June, 2011.

10. TAP12 Program Committee member of 6th International Conference on Tests
and Proofs, Prague (Czech Republic), May, 2012.

11. TAP13 Program Committee member of 7th International Conference on Tests
and Proofs, Budapest (Hungary), June, 2013.

5Available at URL: http://www.dimi.uniud.it/comini/Papers/

http://riunet.upv.es/handle/10251/8351
http://www.dimi.uniud.it/comini/Papers/
http://www.dimi.uniud.it/comini/Papers/
http://www.dimi.uniud.it/comini/Papers/
http://www.dimi.uniud.it/comini/Papers/
http://www.dimi.uniud.it/comini/Papers/
http://www.elsevier.nl/locate/entcs/volume76.html
http://www.risc.uni-linz.ac.at/conferences/lopstr2010/
http://www.risc.uni-linz.ac.at/conferences/lopstr2010/
http://www.tap2011.informatik.uni-bremen.de/
http://www.tap2011.informatik.uni-bremen.de/
http://lifc.univ-fcomte.fr/tap2012
http://lifc.univ-fcomte.fr/tap2012
http://www.spacios.eu/TAP2013
http://www.spacios.eu/TAP2013
http://www.dimi.uniud.it/comini/Papers/

3.7 Invited Talks 13

3.7 Invited Talks

1. Una caratterizzazione algebrica degli Osservabili. Dipartimento di Informatica, Uni-
versità di Salerno, Jan 20, 1995.

2. An abstract interpretation framework for semantics of logic programs. IDA, Linköping
Universitet, Sweden, April 24, 1998.

3. Abstract Diagnosis, an abstract interpretation framework for diagnosis of logic pro-
grams. IDA, Linköping Universitet, Sweden, May 20, 1998.

4. The approach of Abstract Diagnosis and its recent extensions to type diagnosis of
CHIP programs. Rocquencourt research unit, INRIA, France, June 23, 1998.

5. (Cycle of 5 seminars) Abstract Diagnosis. LIFO project, Université d’Orleans, France,
November’98-January’99.

6. An abstract interpretation framework for semantics of logic programs. Sèminaire
“Semantique et Interpretation Abstraite”, Ecole Normale Superieure, Paris, France,
November 20, 1998.

7. An abstract interpretation framework for abstract diagnosis of logic programs. Sèminaire
“Semantique et Interpretation Abstraite”, Ecole Normale Superieure, Paris, France,
November 27, 1998.

8. Abstract Diagnosis. Université d’Orleans, France, December 14, 1998.
9. Abstract Interpretation based Verification and Diagnosis of Logic Programs. Univer-

sidad Politecnica de Valencia, Spain, May 15, 2002.
10. Applications of Abstract Verification. Universidad Politecnica de Valencia, Spain,

May 22, 2002.
11. A Static Approach to Consistency Verification of UML Models. Universidad Politec-

nica de Valencia, Spain, June 1, 2006.

3.8 Referee Activities

Journals

1. TCS (2008,2010)
2. TPLP (2000-2001,2003,2004)

Conferences

1. APPIA-GULP-PRODE’96, AGP’01, AGP’02
2. ESOP’99
3. FLOPS’02
4. ICLP’99, ICLP’02, ICLP’03, ICLP’08
5. ICTCS’01, ICTCS’07
6. LICS’02
7. LOPSTR’10
8. LPAR’06
9. PEPM’08

10. PLILP/ALP’98
11. PPDP’03, PPDP’04, PPDP’08
12. SAC’05
13. TAP’11, TAP’12, TAP’13
14. TECLP’97
15. VALID’09, VALID’10
16. WFLP’01, WFLP’02, WFLP’07, WFLP’08
17. WWV’05

3.9 Conference Session Chairman

1. Joint International Conference Appia-Gulp-Prode’00, La Havana (Cuba), December
2000.

14 3 SCIENTIFIC ACTIVITIES

2. International Workshop Functional and (Constraint) Logic Programming, Grado (I),
June 2002.

3. Joint International Conference Appia-GULP-PRODE 2002, Madrid (Spain), September
2002.

4. 17th Int’l Workshop on Functional and (Constraint) Logic Programming, Siena (Italy),
July, 2008.

3.10 Conference Talks

1. “A Generalized Semantic Framework for CLP”, Workshop progetto nazionale “Modelli
della Computazione e dei Linguaggi di Programmazione”, Volterra (I), September 1993.

2. “An Algebraic Theory of Observables”, International Symposium on Logic Programming,
Ithaca (USA), November 1994.

3. “Compositionality of SLD-derivations”, International workshop Abstract Interpretation
of Logic Languages, Eilat (Israel), June 1995.

4. “Compositionality of SLD-derivations and their abstractions”, GULP-PRODE’95, Vie-
tri (I), September 1995.

5. “Approximated Abstract Compositional Semantics”, International Workshop on Ab-
stract Interpretation of Logic Languages (WAILL’96 I), Pisa (I), February 1996.

6. “Proving Properties of Logic Programs by Abstract Diagnosis”, International Work-
shop on Abstract Interpretation of Logic Languages (WAILL’96 II), Jerusalem (Israel),
December 1996.

7. “Diagnosis of CHIP programs using type information”, International workshop Types
for Constraint Logic Programming, Manchester (UK), June 1998.

8. “Diagnosis of CHIP programs using type information”, Joint International Conference
Appia-Gulp-Prode’99, L’Aquila (I), September 1999.

9. “Design of Verification Methods by Abstract Interpretation”, Concluding Workshop
of the Project “Tecniche formali per la specifica, l’analisi, la verifica, la sintesi e la
trasformazione di sistemi software.” Venezia (I), January 2000.

10. “Logic programs as specifications in the inductive verification of Logic Programs”,
Joint International Conference Appia-Gulp-Prode’00, La Havana (Cuba), December
2000.

11. “Abstract Interpretation based Verification Methods”, Workshop of the Project “Cer-
tificazione Automatica di Programmi mediante Interpretazione Astratta” Venezia (I),
February 2001.

12. “How to transform an analyzer into a verifier”, Joint International Conference Appia-
Gulp-Prode’01, Evora (PT), September 2001.

13. “VeriPolyTypes: a tool for Verification of Logic Programs w.r.t. Type Specifications”,
International Workshop Functional and (Constraint) Logic Programming WFLP’02, Grado
(I), June 2002.

14. “The perspective of the Udine’s Research Group within the AIDA project”, Aida
Febbraio 2005, Verona.

15. “An Effective Fixpoint Semantics for General Term Rewriting Systems”, Aida 2005,
Pisa.

16. “A Static Approach to Consistency Verification of UML Models”, Aida 2006, Venezia.
17. “A Static Approach to Consistency Verification of UML Models”, CILC 2006, Bari.
18. “On Polymorphic Recursion, Type Systems, and Abstract Interpretation”, SAS 2008,

Valencia.

3.11 Conference Participation

1. IV Convegno Nazionale di Informatica Teorica, L’Aquila (I), October 1992.
2. EQUADIFF 8: Czecho-Slovak Conference on Differential Equations and their Applications,

Bratislava (Slovakia), August 1993.
3. Workshop progetto nazionale “Modelli della Computazione e dei Linguaggi di Program-

mazione”, Volterra (I), September 1993.
4. International Conference on Logic Programming, S. Margherita Ligure (I), July 1994.

3.12 Local Scientific Activities 15

5. International Symposium on Logic Programming, Ithaca (USA), November 1994.
6. International workshop Abstract Interpretation of Logic Languages, Eilat (Israel), June

1995.
7. GULP-PRODE’95, Vietri (I), September 1995.
8. International Workshop on Abstract Interpretation of Logic Languages (WAILL’96 I), Pisa

(I), February 1996.
9. International Workshop on Abstract Interpretation of Logic Languages (WAILL’96 II),

Jerusalem (Israel), December 1996.
10. APPIA-GULP-PRODE’97, Grado (I), June 1997.
11. International Workshop on Abstract Interpretation of Logic Languages (WAILL’97), Gra-

do (I), June 1997.
12. Joint International Conference and Symposium on Logic Programming (JICSLP’98), Manch-

ester (UK), June 1998.
13. International workshop Types for Constraint Logic Programming, Manchester (UK),

June 1998.
14. Joint International Symposia SAS and PLILP/ALP’98, Pisa (I), September 1998.
15. Joint International Conference Appia-Gulp-Prode’99, L’Aquila (I), September 1999.
16. Concluding Workshop of the Project “Tecniche formali per la specifica, l’analisi, la

verifica, la sintesi e la trasformazione di sistemi software.” Venezia (I), January 2000.
17. Joint International Conference Appia-Gulp-Prode’00, La Havana (Cuba), December

2000.
18. Workshop of the Project “Certificazione Automatica di Programmi mediante Inter-

pretazione Astratta” Venezia (I), February 2001.
19. International Workshop Functional and (Constraint) Logic Programming, Kiel (D), Septem-

ber 2001.
20. Joint International Conference Appia-Gulp-Prode’01, Evora (PT), September 2001.
21. International Workshop Functional and (Constraint) Logic Programming WFLP’02, Grado

(I), June 2002.
22. Joint International Conference SAS-LOPSTR-AGP 2002, Madrid (Spain), September

2002.
23. Workshop “Giornata GULP 2002”. Bologna (I), October 2002.
24. Workshop Progetto Cofinanziato “COVER” Bologna (I), February 2003.
25. International Workshop Functional and (Constraint) Logic Programming WFLP’03, Va-

lencia (S), June 2003.
26. “Convegno Italiano di Logica Computazionale” CILC04, Parma (I), June 2004.
27. Aida Febbraio 2005, Verona.
28. Aida 2005, Pisa.
29. Aida 2006, Venezia.
30. CILC 2006, Bari.
31. WFLP 2008, Siena.
32. LOPSTR 2008, Valencia.
33. SAS 2008, Valencia.
34. LOPSTR 2010, Hagenberg.

3.12 Local Scientific Activities

1. A. Baruzzo, M. Comini, Seminars on UML and OCL, Università degli Studi di Udine,
Italy, June-July 2006.
M. Comini:

(a) Introduzione ad OCL. July 6, 2006.
(b) Caratterisitiche di OCL. July 14, 2006.
(c) Invarianti, Collections, Pre/Post-condizioni. July 20, 2006.

A. Baruzzo:

(a) Diagrammi di Struttura. May 30, 2006.
(b) Diagrammi di Sequenza. June 13, 2006.
(c) Diagrammi di Attività/Casi d’Uso. June 20, 2006.

16 4 ACADEMIC/INSTITUTIONAL DUTIES

(d) Diagrammi di Stato. June 4, 2006.
(e) Caso di Studio I. June 11, 2006.
(f) Caso di Studio II. June 18, 2006.

4 Academic/Institutional Duties

1. Rappresentante Associati in Giunta di Dipartimento del Dipartimento di Matematica
e Informatica di Udine dal Novembre 2007 ad oggi.

2. Componente del Consiglio di Classe della Scuola Superiore, dal Settembre 2007 ad
oggi.

3. Coordinatore Borse SOCRATES/ERASMUS con Universidad Politecnica de Valencia
dal 2005 ad oggi.

4. Coordinatore Borse SOCRATES/ERASMUS con Universidad de Castilla la Mancha
dal 2005 ad oggi.

5. Membro designato (dal Consiglio di Corso di Laurea) della Commissione Piani di
Studio dei Corsi di Laurea in Informatica della Facoltà di Scienze, Università di Udine
dall’Ottobre 2004 ad oggi.

6. Membro Rappresentante designato (dalla Facoltà di Scienze) nella Commissione Per-
manente delle Facoltà dell’Università di Udine dal 2004 ad oggi.

7. Membro del Collegio Docenti del Dottorato in Informatica del Dipartimento di Matem-
atica e Informatica di Udine dal Novembre 2005 ad oggi.

8. Responsabile d’Ateneo del Centro di Competenza Universitario del progetto EUCIP4U
(coord. Facoltà di Scienze e Facoltà di Ingegneria), dal Febbraio 2006 ad oggi.

9. Commissario concorso d’ammissione alla Scuola Superiore dell’Università di Udine,
Settembre 2008.

10. Commissario concorso d’ammissione alla Scuola Superiore dell’Università di Udine,
Settembre 2007.

11. Commissario concorso d’ammissione alla Scuola Superiore dell’Università di Udine,
Settembre 2006.

12. Commissario concorso d’ammissione alla Scuola Superiore dell’Università di Udine,
Settembre 2005.

13. Commissario a Procedura di Valutazione Comparativa a un posto di Ricercatore
INF/01, facoltà di Medicina e Chirurgia, Università di Torino, Ottobre-Dicembre 2005.

14. Rappresentante eletto dei ricercatori nel Consiglio di Facoltà di Scienze dall’Ottobre
2003 all’Ottobre 2005.

15. Rappresentante dei Ricercatori in Giunta di Dipartimento del Dipartimento di Matem-
atica e Informatica di Udine dal 13 Novembre 2002 al 31 Ottobre 2005.

16. secretary of the national association for Logic Programming (Gruppo Utenti Logic
Programming – GULP) from june 2000 to 2005.

17. Rappresentante della Facoltà di Scienze Matematiche Fisiche e Naturali nella Com-
missione Permanente delle Facoltà dell’Università di Udine dal Dicembre 2004.

18. Membro della commissione Gestione Spazi Dipartimentali del Dipartimento di Matem-
atica e Informatica di Udine negli anni 2001-2003.

19. web master, since year 2000, of the Web Site of the GULP association (http://www.dimi.uniud.it/gulp/)

http://www.dimi.uniud.it/gulp/

17

20. web master, since year 2002, of the Web Site of the 11th International Workshop on
Functional and (constraint) Logic Programming
(http://www.dimi.uniud.it/~wflp2002/)

21. during years 2001-2003 manager of the scientific publication departmental database.

5 Implementation Projects

Microprocessor control of a robotic arm. The Z80 system I realized can acquire sym-
bolic information (via a RS-232 serial line) about the intended 3D-coordinate locations
of the hand of the robotic arm and elaborates run-time a strategy to drive the step-
by-step motors of the arm to reach the desired point.

Syntax-driven editor. Realized in SSL language can drive the user to write syntactically
correct Pascal programs.

Constructive negation interpreter. Realized in Prolog language, implements the theo-
retical model “Constructive negation via equational constraint with negation”.

Multimedia application. Realized with DIRECTOR 5.0 on Macintosh PowerPC plat-
form for the exhibition Scultura Lignea, Lucca, December 95 – June 96. The user can
look the technical folders of the sculptures, the pictures taken during the restoration
and the location place inside the exhibition rooms.

Abstract diagnosis debugger. Abstract diagnosis consists in comparing a program and
its intended meaning and determining the wrong program components. Our debug-
ger do not need to start from symptoms and it systematically derive all the incorrect
clauses and uncovered elements, by asking the user questions about the intended mean-
ing of some atomic calls.

This is one of the main issues of my Ph.D. thesis.

Type Verifier. This tool is an evolution of the Abstract diagnosis debugger which can
perform verification of Logic Programs w.r.t. type information specifications. The
tool is based on sufficient verification conditions obtained by abstract interpretation.

Following the theoretical foundation in some of our papers, the tool is obtained by
transforming a static analyzer on a type domain for Logic Programs designed by
Codish and Lagoon.

ZipIt. http://safe-tools.dsic.upv.es/zipit An Haskell program that computes a com-
pact goal-independent semantics for Term Rewriting Systems as defined in [9]. The
tools accepts TRS in two input formats: either TPDB or the equational subset of
Maude.

AbsSpec http://safe-tools.dsic.upv.es/absspec/ A tool to automatically infer spec-
ifications from Curry programs. It statically infers from the source code of a Curry
program a specification which consists of a set of equations relating (nested) operation
calls that have the same behavior. We propose a (white-box) semantic-based infer-
ence method which relies on the (fully-abstract condensed) semantics of [43,27,28] for
achieving, to some extent, the correctness of the inferred specification.

TRSynth http://safe-tools.dsic.upv.es/trsynth/ A tool (based on [40,29]) to auto-
matically infer specifications from TRS programs. It statically infers from the source
code of a TRS program a specification which consists of a set of equations relating
(nested) operation calls that have the same behavior.

http://safe-tools.dsic.upv.es/zipit
http://safe-tools.dsic.upv.es/absspec/
http://safe-tools.dsic.upv.es/trsynth/

18 6 TEACHING AND WORKING ACTIVITIES

6 Teaching and Working Activities

6.1 Thesis Supervision

6.1.1 Supervisor of Master’s Theses

A.Y.02-03 “Diagnosi Astratta di Linguaggi Funzionali”, Corso di Laurea in Scienze dell’Informazione
(Matteo Salsilli).

A.Y.05-06 “Una semantica bottom-up goal-independent per programmi tccp”, Corso di
Laurea Specialistica in Informatica (Stefano Pramparo).

A.Y.06-07 “Investigazioni su sisitemi di tipi per linguaggi funzionali con ricorsione polimorfa”,
Corso di Laurea Specialistica in Informatica (Samuel Vrech).

A.Y.06-07 “Filtering approssimato di documenti XML”, Corso di Laurea Specialistica in
Informatica (Michele Baggi).

A.Y.06-07 “Presentazione ragionata dell’implementazione MCC di Curry”, Corso di Lau-
rea Specialistica in Informatica (Marco Girol).

A.Y.07-08 “Diagnosi Astratta di Curry al prim’ordine”, Corso di Laurea Specialistica in
Informatica (Giovanni Bacci).

A.Y.09-10 “Analisi statica di Sistemi Reattivi Bigrafici tramite Interpretazione Astratta”,
Corso di Laurea Specialistica in Informatica (Emanuele D’Osualdo).

6.1.2 Supervisor of Batchelor’s Theses

A.Y.03-04 (double) “Progettazione ed implementazione di nuovi domini astratti per la
verifica di programmi”, Corso di Laurea (triennale) in Informatica (Samuel
Vrech e Stefano Pramparo).

A.Y.04-05 “Progettazione ed implementazione di un dominio astratto di tipi per linguaggi
dichiarativi”, Corso di Laurea (triennale) in Informatica (Matteo Dri).

A.Y.04-05 “Uno strumento di Debugging per Full Haskell”, Corso di Laurea (triennale) in
Informatica (Angelo De Falco).

A.Y.05-06 “Un tool per la conversione semi-automatica di programmi Curry in Haskell e
viceversa”, Corso di Laurea (triennale) in Informatica (Mauro Jacopo).

A.Y.06-07 “Le costruzioni categoriali dei meccanismi di Haskell”, Corso di Laurea (trien-
nale) in Informatica (Emanuele D’Osualdo).

A.Y.06-07 (triple) “Estensione di GHC per supportare Curry”, Corso di Laurea (triennale)
in Informatica (Dario Meloni, Gianluca Sant e Luca Torella).

A.Y.06-07 “Implementazione distribuita del linguaggio Pascal”, Corso di Laurea (trien-
nale) in Informatica (Matteo Cicuttin).

A.Y.07-08 “Semantica Algebrica di CLP(FD)”, Corso di Laurea (triennale) in Informatica
(Laura Titolo).

6.2 PhD Teaching Activities

2005 Abstract Interpretation and Applications to Program Verification, PhD course
in Computer Science, Dipartimento di Matematica e Informatica, Università di
Udine. [20h]

2006 Abstract Interpretation, PhD course in Computer Science, Dipartimento di
Scienze Matematiche e Informatiche “R. Magari”, Università di Siena. [20h]

6.3 Undergraduate Teaching Activities 19

6.3 Undergraduate Teaching Activities

A.Y.97-98 Tutorial session of the class Programmazione I (Programming I), Computer
Science, Faculty of Sciences, University of Pisa. [20h]

A.Y.99-00 Cycle of lectures within the class of Programming I, Computer Science, Faculty
of Sciences, University of Pisa. [20h]

A.Y.00-01 1. Laboratory of Computer Architecture, Computer Science, Faculty of Sci-
ences, University of Udine. [48h]

2. Laboratory of Data Bases, Computer Science, Faculty of Sciences, Univer-
sity of Udine. [48h]

3. Introduction to Abstract Interpretation, Computer Science, Faculty of Sci-
ences, University of Udine. [8h]

A.Y.01-02 1. Cycle of lectures within the class of Computer Architecture, Computer
Science, Faculty of Sciences, University of Udine. [48h]

2. Laboratory of Computer Architecture, Computer Science, Faculty of Sci-
ences, University of Udine. [48h]

3. Introduction to Abstract Interpretation (within the class of Computer Lan-
guages), Computer Science, Faculty of Sciences, University of Udine. [8h]

4. Laboratory of Computer Languages (within the class of Computer Lan-
guages), Computer Science, Faculty of Sciences, University of Udine. [4h]

A.Y.02-03 1. Cycle of lectures within the class of Computer Architecture, Computer
Science, Faculty of Sciences, University of Udine. [48h]

2. Laboratory of Computer Architecture, Computer Science, Faculty of Sci-
ences, University of Udine. [48h]

3. Cycle of lectures and laboratory within the class of Computer Languages
I, Computer Science, Faculty of Sciences, University of Udine. [8h]

4. Cycle of lectures and laboratory within the class of Computer Languages
II, Computer Science, Faculty of Sciences, University of Udine. [8h]

A.Y.03-04 1. Laboratory of Computer Architecture (twin courses, A and B), Computer
Science, Faculty of Sciences, University of Udine. [96h]

2. Esercitazioni . . . Esercitazioni e laboratorio del corso di Linguaggi di Pro-
grammazione I, Corso di Laurea in Informatica, Facoltà di Scienze Matem-
atiche, Fisiche e Naturali, Università di Udine. [8h]

3. Esercitazioni . . . Esercitazioni e laboratorio del corso di Linguaggi di Pro-
grammazione II, Corso di Laurea in Informatica, Facoltà di Scienze Matem-
atiche, Fisiche e Naturali, Università di Udine. [8h]

4. . . . Fondamenti di Informatica (Parte 1 e 2), master I livello “sistemi in-
formativi territoriali”, ENAIP - FVG, Università di Udine, Comune di
Tolmezzo, Associazione degli Industriali - Tolmezzo, Agemont [50h]

A.Y.04-05 1. Formal techniques for Software Engeneering, Corso di Laurea Specialis-
tica in Informatica, Facoltà di Scienze Matematiche, Fisiche e Naturali,
Università di Udine. [48h]

2. Esercitazioni . . . Esercitazioni e laboratorio del corso di Linguaggi di Pro-
grammazione I, Corso di Laurea in Informatica, Facoltà di Scienze Matem-
atiche, Fisiche e Naturali, Università di Udine. [8h]

3. Esercitazioni . . . Esercitazioni e laboratorio del corso di Linguaggi di Pro-
grammazione II, Corso di Laurea in Informatica, Facoltà di Scienze Matem-
atiche, Fisiche e Naturali, Università di Udine. [8h]

4. Operating Systems, Corso di Laurea in Informatica, Facoltà di Scienze
Matematiche, Fisiche e Naturali, Università di Udine. [64h]

5. Programming in the Constraint Logic Paradigm, Scuola Superiore, Uni-
versità di Udine. Reading Course [16h]

20 6 TEACHING AND WORKING ACTIVITIES

A.Y.05-06 1. Formal techniques for Software Engeneering, Corso di Laurea Specialis-
tica in Informatica, Facoltà di Scienze Matematiche, Fisiche e Naturali,
Università di Udine. [48h]

2. Programming Languages I, Corso di Laurea Specialistica in Informatica,
Facoltà di Scienze Matematiche, Fisiche e Naturali, Università di Udine.
[48h]

3. Programming Languages II, Corso di Laurea Specialistica in Informatica,
Facoltà di Scienze Matematiche, Fisiche e Naturali, Università di Udine.
[48h]

4. The Functional-Logic Paradigm, Scuola Superiore, Università di Udine.
Reading Course [16h]

A.Y.06-07 1. Formal techniques for Software Engeneering, Corso di Laurea Specialis-
tica in Informatica, Facoltà di Scienze Matematiche, Fisiche e Naturali,
Università di Udine. [48h]

2. Programming Languages I, Corso di Laurea Specialistica in Informatica,
Facoltà di Scienze Matematiche, Fisiche e Naturali, Università di Udine.
[48h]

3. Programming Languages II, Corso di Laurea Specialistica in Informatica,
Facoltà di Scienze Matematiche, Fisiche e Naturali, Università di Udine.
[48h]

A.Y.07-08 1. Abstract Interpretation and Software Analysis, Corso di Laurea Special-
istica in Informatica, Facoltà di Scienze Matematiche, Fisiche e Naturali,
Università di Udine. [48h]

2. Programming Languages I, Corso di Laurea Specialistica in Informatica,
Facoltà di Scienze Matematiche, Fisiche e Naturali, Università di Udine.
[48h]

3. Programming Languages II, Corso di Laurea Specialistica in Informatica,
Facoltà di Scienze Matematiche, Fisiche e Naturali, Università di Udine.
[48h]

4. Algorithms and Programming in Declarative Paradigms, Scuola Superiore,
Università di Udine. Reading Course [16h]

5. Algebraic Semantics of CLP, Scuola Superiore, Università di Udine. Read-
ing Course [16h]

A.Y.08-09 1. Abstract Interpretation and Software Analysis, Corso di Laurea Special-
istica in Informatica, Facoltà di Scienze Matematiche, Fisiche e Naturali,
Università di Udine. [48h]

2. Programming Languages I, Corso di Laurea Specialistica in Informatica,
Facoltà di Scienze Matematiche, Fisiche e Naturali, Università di Udine.
[48h]

3. Programming Languages II, Corso di Laurea Specialistica in Informatica,
Facoltà di Scienze Matematiche, Fisiche e Naturali, Università di Udine.
[48h]

4. Elements of semantics and programming, Scuola Superiore, Università di
Udine. [16h]

5. Algorithms and Programming in Declarative Paradigms, Scuola Superiore,
Università di Udine. Reading Course [16h]

6. Insights of course on Elements of semantics and programming, Scuola Su-
periore, Università di Udine. Reading Course [16h]

A.Y.09-10 1. Programming Languages I, Corso di Laurea Specialistica in Informatica,
Facoltà di Scienze Matematiche, Fisiche e Naturali, Università di Udine.
[48h]

2. Programming Languages II, Corso di Laurea Specialistica in Informatica,
Facoltà di Scienze Matematiche, Fisiche e Naturali, Università di Udine.
[48h]

21

3. Compilers, Corso di Laurea Specialistica in Informatica, Facoltà di Scienze
Matematiche, Fisiche e Naturali, Università di Udine. [48h]

4. Algorithms and Programming in Declarative Paradigms, Scuola Superiore,
Università di Udine. Reading Course [16h]

A.Y.10-11 → now Each year

1. Programming Languages and Compilers I, Corso di Laurea Specialistica
in Informatica, Facoltà di Scienze Matematiche, Fisiche e Naturali, Uni-
versità di Udine. [72h]

2. Programming Languages and Compilers II, Corso di Laurea Specialistica
in Informatica, Facoltà di Scienze Matematiche, Fisiche e Naturali, Uni-
versità di Udine. [72h]

3. Abstract Interpretation and Automatic Software Verification, Corso di
Laurea Specialistica in Informatica, Facoltà di Scienze Matematiche, Fisiche
e Naturali, Università di Udine. [48h]

7 Exam scores

Ph.D. course classes final scores

Teoria della Dimostrazione 20/20 (Proof Theory)
Proof Theory and Logic Programming 20/20
Logica Matematica 20/20 (Mathematical Logics)
Programmazione Logica 20/20 (Logic Programming)
Scuola di Pontignano 20/20 (Pontignano’s Summer School)
Complessità Computazionale 20/20 (Computational Complexity)
Proof Theory of Concurrency 20/20
Verification of Logic and PROLOG programs 20/20
Constraint Programming 20/20
Interpretazione Astratta 20/20 (Abstract Interpretation)
Metalogica 20/20 (Meta logics)

Scuola Normale Superiore classes final scores

Seminario Fisico Matematico I 25/30 (Mathematics and Physics I)
Lettorato di Lingua Russa I 27/30 (Russian I)
Lettorato di Lingua Inglese III 28/30 (English III)
Seminario Fisico Matematico II 27/30 (Mathematics and Physics II)
Lettorato di Lingua Russa II 24/30 (Russian II)
Word Problems 29/30
Calcolo delle Probabilità 30/30 (Probability Theory)
Analisi Superiore 30/30 (Advanced Calculus)

22 7 EXAM SCORES

Master course classes final scores

Geometria (Geometry) 30/30
Teoria ed Applicazioni delle Macchine Calcolatrici 30/30

(Theory and Applications of Computing Machines)
Teoria degli Algoritmi e della Calcolabilità 27/30

(Algorithms and Computability Theory)
Algebra 30/30 e lode (cum laude)
Analisi Matematica I (Calculus I) 29/30
Sistemi per l’Elaborazione dell’Informazione I 30/30 e lode (cum laude)

(Computer Systems I)
Ricerca Operativa e Gestione Aziendale 28/30

(Operations Research)
Fisica I (Physics I) 30/30
Calcolo delle Probabilità e Statistica 30/30

(Probability Theory and Statistics)
Calcolo Numerico (Numerical Analysis) 25/30
Analisi Matematica II (Calculus II) 27/30
Metodi per il Trattamento dell’Informazione 30/30

(Theory of Computation)
Sistemi per l’Elaborazione dell’Informazione II 29/30

(Computer Systems II)
Linguaggi Speciali di Programmazione 30/30

(Special Programming Languages)
Fisica II (Physics II) 30/30
Linguaggi Formali e Compilatori 30/30 e lode (cum laude)

(Formal Languages and Compilers)
Elaborazione dell’Informazione Non Numerica 30/30 e lode (cum laude)

(Artificial Intelligence)
Progetto di Sistemi Numerici 26/30

(Computer Architectures)

Date, May 21, 2013 Signature

(Marco Comini)

	Personal Data
	Education, Academic Positions and Awards
	Scientific Activities
	The Research Group
	Description of the Research Activity
	Research Projects
	PhD. Thesis Supervision
	Publications
	Conference Committees
	Invited Talks
	Referee Activities
	Conference Session Chairman
	Conference Talks
	Conference Participation
	Local Scientific Activities

	Academic/Institutional Duties
	Implementation Projects
	Teaching and Working Activities
	Thesis Supervision
	Supervisor of Master's Theses
	Supervisor of Batchelor's Theses

	PhD Teaching Activities
	Undergraduate Teaching Activities

	Exam scores

