
An Algebraic Theory of
Observables
Marco Comini and Giorgio Levi
Dipartimento di Informatica
Università di Pisa
Corso Italia 40, 56125 Pisa, Italy
{comini, levi}@di.unipi.it
Abstract

We give an algebraic formalization of SLD-trees and their abstractions (ob
servables). We can state and prove in the framework several useful theo-
rems (AND-compositionality, correctness and full abstraction of the deno-
tation, equivalent top-down and bottom-up constructions) about semantic
properties of various observables. Observables are represented by Galois
co-insertions and can be used to model abstract interpretation. The con-
structions and the theorems are inherited by all the observables which can
be formalized in the framework. The power of the framework is shown by
reconstructing some known examples (answer constraints, call patterns, cor-
rect call patterns and ground dependencies call patterns).

1 Introduction

SLD-trees are structures used to describe the operational semantics of logic
programs. From an SLD-tree we can derive several operational proper-
ties which are useful for reasoning about programs. Examples are SLD-
derivations, resultants, call patterns, partial answers, computed answers.
All these properties, that we call observables, can be obtained as abstrac-
tions of the SLD-tree. Let for example T be an SLD-tree with initial goal
g0. Then, an SLD-derivation is any path of T ; a call pattern is any atom
selected in T ; a partial answer is the substitution associated to any node n in
T (restricted to g0), while a computed answer is the substitution associated
to any node n, such that gn is the empty clause.

The behavior of a program p (via selection rule r) with respect to a given
observable can be understood by observing the corresponding properties for
all possible goals. We know from recent results on the semantics [11, 15, 2]
that we can characterize this behavior just by observing the property for
some specific atomic goals, namely the “most general” atomic goals. This
result was first obtained for computed answers in the s-semantics framework
[9, 10] and then proved for other less abstract observables, such as resul-
tants, call patterns and partial answers in [11, 15]. The behaviors for most
general atomic goals can then be considered a program denotation. In [15]
this approach is used to define a semantic framework, where one can define
denotations modeling various observables, by inheriting from the framework



the basic constructions and theorems. Some of the denotations enjoy addi-
tional properties, such as full abstraction. The technical tool used to define
the abstractions is the definition of suitable equivalence relations.

We approach here the same problem with a different emphasis and a
different technical tool. Our main objective is in fact the formalization of the
observable, while our abstractions will be based on abstract interpretation
techniques [8]. This will allow us to model, within the same framework,
the approximation which is involved in the abstractions used for program
analysis. A similar approach can be found in [18]. Our main results are
the definition of an algebraic framework for reasoning about SLD-trees and
their abstractions (observables) in the case of Constraint Logic Programs.
The framework is provided with several general theorems (AND-composition
ality, correctness and full abstraction, equivalent top-down and bottom-up
constructions), which are valid for any abstraction, possibly in a weaker form
in the case of abstract interpretation. We give the reconstruction of several
existing constructions to show the expressive power of the framework.

The paper is organized as follows. Section 2 characterizes the general
theory in the case of SLD-trees. Section 3 formalizes the main class of ob
servables, i.e. the S-observables for which all the general results are valid.
Finally section 4 considers the I-observables, where the results are weaker
yet meaningful from the abstract interpretation theory viewpoint. All the
proofs can be found in [6].

For a comprehensive description of the semantics of (positive) logic pro-
grams see [21, 1]. Σ, Π and V denote a set of function symbols, a set of
predicate symbols and a denumerable set of variables respectively. Tuples
of variables and terms are sometimes denoted by x̃, ỹ, . . . and t̃, s̃, . . .. We
denote by t̃ both the tuple and the set of corresponding syntactic objects.
x̃i denotes x̃i1, . . . , x̃ini . b̃ denotes a (possibly empty) conjunction of atoms
b1, . . . , bn and b̃, b̃ ′ denotes the conjunction b1, . . . , bm, b ′1, . . . , b

′
n. For a

comprehensive description of abstract interpretation see [8]. For a compre-
hensive description of term systems, closed semirings and constraints systems
see [17]. In this paper we consider Constraint Logic Programs over a generic
constraint system A (CLP(A)).

2 The basic framework

When we want to formalize program execution we must take into account, in
addition to the inference rules which specify how derivations are made, the
properties we observe in a computation (observables). An observable is any
property which can be extracted from a goal computation, i.e. observables
are abstractions of SLD-trees. We assume the reader to be familiar with the
notions of SLD-resolution and SLD-tree (see [21, 1]). We represent here, for
notational convenience, SLD-trees as sets of nodes.



Definition 2.1 (well-formed sets of nodes) Let T be an SLD-tree rooted
at the goal g. A node in T is a triple 〈g; c� b̃; ks〉, where c� b̃ is the goal
associated to the node (c is the accumulated constraint and b̃ is a conjunc-
tion of atoms), and ks is the sequence of (renamed apart) clauses used in
the derivation of c� b̃ from g. Nod r;gp is the set of all the nodes of g in p

via r. We define a partial order ≤ on nodes: 〈g; c� b̃; ks〉 ≤ 〈g; c ′� b̃ ′; ks ′〉
iff ks ′ = ks :: ks ′′ for some ks ′′.

A set A of nodes is well-formed if ρ ∈ A implies ∀ρ ′ ≤ ρ, ρ ′ ∈ A.

We define the domain R of all the well-formed sets of nodes partially or-
dered by set inclusion. This partial order formalizes the evolution of the
computation process. It is easy to prove that (R,⊆) is a complete lattice.

2.1 The observables

An observable property domain is a set of properties of the derivation with an
ordering relation which can be viewed as an approximation structure. An
observation consists in looking at an SLD-tree, and then extracting some
property (abstraction). An SLD-tree is represented as a well formed set
of nodes. R is the domain of all the well formed sets of nodes. Therefore
the observable is a function from R to a suitable property domain D, which
preserves the approximation structure. Such a function must be a Galois
connection.

Definition 2.2 (observable) Let R be the domain of SLD-trees and D be
an observable domain. α : R → D is an observable when there exists γ s.t.
(α, γ) : R → D is a Galois co-insertion.

We denote by the same symbol an observable and the Galois connection it
can be extended to.

Since we are interested in all the SLD-trees of a program p, we define
the behavior of p as Br(p) = ∪g∈GNod r;gp ∈ R, i.e. the set of all the nodes
of SLD-trees of g in p, for any goal g. The abstract behavior Br

�(p) w.r.t.
the observable α is simply defined as α(Br(p)). α induces an observational
equivalence =� on programs. Namely p1 =� p2 iff α (Br(p1)) = α (Br(p2)),
i.e. if p1 and p2 cannot be distinguished by looking at their abstract be-
haviors. Observational equivalences can be used to define a partial order ≤
on observables. Namely α ′ ≤ α (α is stronger than α ′) if p1 =� p2 implies
p1 =� ′ p2. This in turn means that there exists a Galois connection between
the domains of the observables. Hence an observable α : R → D approxi-
mates α ′ : R → D ′ if there exists a co-insertion β : D → D ′ s.t. α ′ = β ◦ α.

Let (O,≤) be the set of observables ordered by approximation. It follows
from [8] that (O,≤) is a complete lattice.

Example 2.3 If ξ denotes computed answer constraints we can take D =

(P(G×A),⊆) as properties domain and extend to a connection the function



ξ : R → D, ξ(A) = { (g; c) | 〈g; c� ; ks〉 ∈ A }. It is easy to see that p1 =� p2
iff for any goal g, g has the same answer constraints in p1 and in p2.

2.2 Semantic properties of SLD-trees

The goal we want to achieve is to develop a denotation modeling SLD-trees.
We follow the approach in [14, 2], by first defining a “syntactic” semantic
domain (π-interpretation). Our modeling of SLD-trees is essentially the
basic denotation defined in terms of clauses in [11, 15], extended to handle
constraint systems in the style of [17, 19, 20]. In the following for the sake
of simplicity we consider the PROLOG leftmost selection rule (denoted by
lm). All our results can be generalized to local selection rules [22].

Let us consider the equivalence relation of variance extended to nodes ≡.

Definition 2.4 A π-interpretation I is an element of R=≡. We denote by
R the set of π-interpretations. (R,⊆) is a complete lattice.

A denotation of the program characterizing its SLD-trees computed by
using the rule lm might be the set of the SLD-trees for all the possible
goals modulo variance, i.e. Blm(p)=≡. Because of the AND-compositionality
theorem 2.6 below, this set can be obtained from the top-down SLD-trees
denotation, which is the set of SLD-trees for the most general atomic goals.

Definition 2.5 (top-down SLD-trees denotation) Let p be a program.
The top-down SLD-trees denotation of p according to lm is the π-interpre
tation

O(p) = { 〈q(x̃); c� b̃; ks〉 ∈ Nod lm
p | q ∈ Πn, x̃ ∈ Vn }=≡.

It is easy to see that O(p) is well-formed. Now we prove that this denotation
fully characterizes all the SLD-trees of p. This is obtained by first proving
a lemma which relates the SLD-trees of an atomic goal to the SLD-trees of
the corresponding most general atomic goal. The second step, i.e. the AND-
compositionality theorem, relates the SLD-trees of a conjunctive goal to the
SLD-trees of the atomic goals.

Theorem 2.6 (AND-compositionality) Let g = cg�q1(t̃1), . . . , qn(t̃n)

be a goal and p be a program. Then g
ks
 c� b̃ if and only if ∃ rj = 〈qj(x̃j);

cj� ; ksj〉 ∈ O(p), 1 ≤ j < m, ∃ rm = 〈qm(x̃m); cm� b̃m; ksm〉 ∈ O(p) s.t.
c = ∃

(
cg ⊗ x̃1=t̃1 ⊗ . . .⊗ x̃m=t̃m ⊗ c1 ⊗ . . .⊗ cm

)
g;b̃

, b̃ = b̃m, qm+1(t̃m+1),

. . . , qn(t̃n) and ks = ks1 :: . . . :: ksm.

The above closure property allows us to show that the semantics O(p) is
correct and fully abstract for the identity observable.

Corollary 2.7 (correctness and full abstraction) Let p1, p2 be two pro-
grams. Then p1 =id p2 ⇐⇒ O(p1) = O(p2).



The restriction to local rules plays a fundamental role in the definition of
the bottom-up denotation. By using local rules we are able to reconstruct
a derivation “from the bottom”, because the local rule chooses only among
the atoms introduced in the last derivation step and then “forgets” about
the previous steps, which, in a bottom-up construction, are not available
yet. This is the definition of the immediate consequences operator for the
leftmost case.

Definition 2.8 (immediate consequences operator Tp) Let I be a π-
interpretation and p be a program. The immediate consequences operator
Tp : R → R of p via lm is:

Tp(I) = { 〈q(x̃); c� b̃; ks〉 |

ks = [k] :: ks1 :: . . . :: ksm, b̃ = b̃m, am+1, . . . , an,

k = q(t̃) :− ck�q1(t̃1), . . . , qm(t̃m), am+1, . . . , an ∈ p,

〈qm(x̃m); cm� b̃m; ksm〉 ∈ I, 〈qj(x̃j); cj� ; ksj〉 ∈ I, 1 ≤ j < m,

c = ∃
(
x̃=t̃⊗ ck ⊗ x̃1=t̃1 ⊗ c1 ⊗ . . .⊗ x̃m=t̃m ⊗ cm

)
x̃;b̃

}.

Since Tp is continuous we can define the fixpoint denotation of the program
p according to lm as the π-interpretation F(p) = Tp ↑ ω. The following
theorem states the equivalence between the top-down and the bottom-up
constructions, and shows that F(p) is also correct and fully-abstract w.r.t.
the identity observable.

Theorem 2.9 Let p be a program. Then F(p) = O(p).

2.3 An algebraic formalization of SLD-trees semantic prop-
erties

The properties we found for O and F allow us to claim that we have a
good denotation modeling SLD-trees. Our goal however is to find the same
results for the denotations modeling more abstract observables. We want
then to develop a theory according to which the semantic properties of SLD-
trees shown in subsection 2.2 are inherited by the denotations which model
abstractions of the SLD-trees.

In order to define the denotation as a function of the observable, we
need a mathematical formalization where one can model the abstraction
process and specify properties which have to be shared by the constructions
associated to the various abstractions. The first interesting property is the
lifting one, which can be modeled only if we can instantiate variables in the
derivation by means of constraints. Thus we can define an operation · which
adds a constraint to a denotation:

c ·A = { 〈c⊗ c ′� b̃ ′; c⊗ c ′′� b̃ ′′; ks〉 | 〈c ′� b̃ ′; c ′′� b̃ ′′; ks〉 ∈ A }

This operation is related to ⊗ by the following property: ∀v ∈ R and c1, c2 ∈
A, (c1 ⊗ c2) · v = c1 · (c2 · v).



The next relevant property is AND-compositionality. We assume that
there exists an operation ×, defined over the set of denotations, which com-
putes the AND-composition of two denotations. In the case of SLD-trees
denotations, the definition of × is shown by the following equation.

A× B = { 〈c1 ⊗ c2� b̃1, b̃2; c
′
1 ⊗ c ′2� b̃ ′1, b̃

′
2; ks1 :: ks2〉 |

〈c1� b̃1; c
′
1� b̃ ′1; ks1〉 ∈ A, 〈c2� b̃2; c

′
2� b̃ ′2; ks2〉 ∈ B }.

× is related to the operation ⊗ defined over A, to the conjunction of atom
sequences and to the AND-compositionality property of theorem 2.6.

Another essential feature that we want to preserve is the SLD-trees
branching structure. The operation which puts together two denotations
nondeterministically is the union of well-formed sets of nodes. By using an
algebraic notation, for each pair A,B of well-formed sets of nodes we write
A + B = A ∪ B. The operation + is related to the operation ⊕ defined
over the constraint system A by the properties: (c1 ⊕ c2)d = c1d+ c2d and
c (d1 + d2) = cd1 + cd2. In analogy to what happens in A for ⊕ and ⊗,
the product × is (left and right) distributive w.r.t. +, i.e. d1 × (d2 + d3) =

d1×d2+d1×d3. This property shows that the answers of conjunctive goals
are all the compositions of the answers of the conjuncts.

The last issue we must be concerned with is that all the properties must
hold “modulo variance”. This property is usually modeled by renamings.
Therefore we define a “renaming operation” ∇ on the objects of the do
main. ∇ commutes with + and × and is defined as a family of renamings
∇# depending on the renaming ϑ. In order to satisfy the usual properties
of renamings, ∇# ◦ ∇# ′ = ∇#◦# ′ must hold. Furthermore ∇# must be an
extension of the renaming operation ∂# of the constraint system A, on which
the domain is defined. For each well-formed set A we define

∇#(A) = { 〈∂#(c)� b̃ϑ; ∂#(c
′)� b̃ ′ϑ; ksϑ〉 | 〈c� b̃; c ′� b̃ ′; ks〉 ∈ A }.

∇ is a renaming operator. Let (Θ, ◦, id) be the group of renamings. A
renaming operator ∇ on D is an injective group homomorphism (Θ, ◦, id) →
(D → D, ◦, id) s.t. for each c ∈ A, d ∈ D and ϑ ∈ Θ ∇# (cd) = ∂#(c)∇#(d).

A renaming operator induces a “variance” relation =∇. Namely x =∇
y ⇐⇒ ∃ ϑ : ∇#x = y. Note that the above renaming operator on R induces
exactly the variance relation ≡, i.e. x =∇ y ⇔ x ≡ y.

We will appreciate the power of the above algebraic construction in the
following section where the operations +, × and ∇ will play a relevant role
in the definition of abstract denotations.

3 The abstraction framework

We consider two classes of observables, namely S-observables and I-ob
servables. The S-observables (Semantic observables) are observables for
which we can define a denotation, which generalizes the properties of the



s-semantics [2]. This denotation provides a correct and complete charac-
terization of the (abstract) program behavior. The program denotation is
defined by collecting the behaviors for most general atomic goals, i.e. goals
consisting of the application of a predicate symbol to a tuple of distinct
variables. We show how we can reconstruct within the framework some ex-
isting semantics, such as the answer constraint semantics [13] and the call
patterns semantics [15, 16], thus obtaining all the relevant theorems simply
by specializing the theorems which are valid in the framework.

The I-observables (abstract Interpretation observables) are meant to
capture the abstractions involved in abstract interpretation, where approxi-
mation is the rule of the game. Theorems valid for I-observables are there-
fore weaker and denotations provide characterizations of semantic properties
which are correct in the sense of abstract interpretation theory. We show
how we can reconstruct the abstract semantics defined in [12], which allows
us to derive groundness relations among the arguments of procedure calls.

3.1 An algebraic formalization of observables: the S-observ
ables

Given an observable we want to be able to observe computations of conjunc-
tive goals from the single conjuncts computations. Moreover we do not want
to loose the non-deterministic structure and the independence of the results
upon renaming. We enforce all these properties by using an S-domain.

Definition 3.1 (S-domain) A nonempty set D is an S-domain on a con-
straint system A (⊗,⊕, 1, 0), and is denoted by D(+,×,∇), if there exist two
operations +, × on D, a renaming ∇ (on D), and two elements 0, 1 in D

s.t. (D,×,+, 1, 0) is a closed semiring. Moreover for each c ∈ A and v ∈ D

there exists an element c · v in D s.t. for each v1, v2 ∈ D

1) c · (v1 + v2) = c · v1 + c · v2, 4) c1 · (c2 · v) = (c1 ⊗ c2) · v,
2) (c1 ⊕ c2) · v = c1 · v + c2 · v, 5) 1 · v = v.
3) 0 · v = 0,

Furthermore for each ϑ1, ϑ2 ∈ Θ, there exists ϑ ∈ Θ s.t.

a) ∇#1v1 ×∇#2v2 = ∇# (v1 × v2), b) ∇#1v1 +∇#2v2 = ∇# (v1 + v2).

We can define, for each S-domain D, a canonical ordering as follows: v1 ≤ v2
iff v1 + v2 = v2. It is easy to see that (D,≤) is a complete lattice.

Example 3.2 The set R of SLD-trees of section 2 is an S-domain. Moreover
the set D = P(G × A) (the domain of ξ : R → D of example 2.3) is an S-
domain. In fact c · A = { (c ⊗ c ′� b̃; c ⊗ s) | (c ′� b̃; s) ∈ A, c ⊗ s > 0 } and
A× B = { (c⊗ c ′� b̃, b̃ ′; s⊗ s ′) | (c� b̃; s) ∈ A, (c ′� b̃ ′; s ′) ∈ B, s⊗ s ′ > 0 },

where in case of conflict variables are renamed. The sum operation is set
union, while the renaming operation is the usual renaming of CLP , i.e.
∇#(A) = { (∂#(c)� b̃ϑ; ∂#(s)) | (c� b̃; s) ∈ A }.



We want now to define a notion of (forgetful) morphism between S-
domains.

Definition 3.3 (S-observable) A morphism between S-domains (S-mor
phism), α : D(+,×,∇) → D̄(+̄, ×̄, ∇̄) is a surjective mapping α : D → D̄

s.t. ∀x, y ∈ D, c ∈ A, ϑ ∈ Θ

1) α (x + y) = α (x) +̄α (y) , α (0) = 0̄, 3) α (c · x) = c · α (x) ,

2) α (x× y) = α (x) ×̄α (y) , α (1) = 1̄, 4) α (∇#(x)) = ∇̄# (α(x)) .

A morphism α : R(+,×,∇) → D̄(+̄, ×̄, ∇̄) is an observable and we call it S-
observable. Os denotes the set of S-observables.

Additivity and surjectivity allow the morphism to associate the right obser-
vation in D̄ to any concrete object in D. This is because S-morphisms are
Galois co-insertions with respect to the canonical orderings.

Example 3.4 The observable ξ of example 2.3 is an S-morphism.

3.2 Semantic properties of S-observables

S-domains are strongly related to semantic domains. The operations +,× of
R(+,×,∇) are similar to those of R defined in subsection 2.2 (that we will
still denote by +,×). We can map an S-domain D in a semantic domain
D = D==∇ by using the canonical equivalence induced by ∇: [·]∇ : D → D,
[x]∇ = [x]==∇ . We have that ∀ [v1]∇ , [v2]∇ ∈ R [v1]∇ + [v2]∇ = [v1 + v2]∇
and [v1]∇ × [v2]∇ = [v1 × v2]∇.

These properties can be generalized to each S-domain D(+,×,∇) simply
by defining for each [x]∇ , [y]∇ ∈ D [x]∇ +̄ [y]∇ = [x + y]∇ and [x]∇ ×̄ [y]∇ =

[x× y]∇. The set D(+̄, ×̄) inherits from D all the properties we have dis-
cussed in section 2.2 for R. From now on, we will call the structure D(+̄, ×̄)

semantic domain, and denote by D the set of all the semantic domains.
Each morphism α : R → D can be transformed into a “semantic domains

morphism” (that we still denote by α) from R to the semantic domain
D = D==∇ . We only need to set α ([x]∇) = [α(x)]∇ . This morphism is
well defined thanks to axiom 4 in definition 3.3 which states compatibility
between α and =∇. Thus we have a syntactic abstraction which preserves
the interesting semantic properties of R. Now we show how the algebraic
construction can be used to easily derive these properties. First define the
α-top-down denotation O�(p) of a program p as α (O(p)).

Theorem 3.5 (abstract AND-compositionality) Let p be a program, α :

R(+,×) → D(+̄, ×̄) be an S-observable. Then v̄ ∈ Blm
� (p) ⇐⇒ ∃ c ∈ A, ē1,

. . . , ēn ∈ O�(p) s.t. v̄ = c · ({ ē1 }×̄ . . . ×̄{ ēn }).

Corollary 3.6 (correctness and full abstraction) Let α : R → D be
an S-observable and p1, p2 be programs. Then p1 =� p2 ⇐⇒ O�(p1) =

O�(p2).



In the bottom-up case the best approximation for the immediate conse-
quences operator is Tp;� = α◦Tp◦γ. If ≤ is the canonical ordering on D, Tp;�
is continuous on the lattice (D,≤). Then we define the fixpoint semantics
as F�(p) = Tp;� ↑ ω.

Definition 3.7 (compatibility) α is compatible with Tp if Tp;� ◦ α = α ◦
Tp.

Theorem 3.8 (bottom-up vs top-down) Let p be a program and α be
an S-observable. Then O�(p) ≤ F�(p). Moreover if α is compatible with Tp
then O�(p) = F�(p).

Some remarks about the above results are necessary. The top-down abstract
denotation, which is defined simply as the abstraction of the top-down de-
notation, has exactly the same properties of the top-down SLD-trees deno-
tation, namely AND-compositionality, correctness and full abstraction. The
bottom-up abstract denotation is in general less precise. The loss of preci-
sion is due to the fact that the abstract immediate consequences operator
Tp;� is obtained by specializing the general immediate consequences oper-
ator Tp. It is exactly this specialization which may sometimes result in a
loss of precision. However, if the observable α is compatible with Tp, the
two constructions are equivalent. It is worth noting that most reasonable
observables are indeed compatible with Tp (see the examples below). A sim-
ilar relation between the top-down and bottom-up constructions was already
noted for abstractions of the answer constraint in [17, 19, 20]. In that frame-
work the equivalence was guaranteed in the case of distributive constraint
systems. In such a case, our compatibility condition is always satisfied.

Let us finally note that, when the two constructions are equivalent, the
bottom-up one is indeed more efficient, since abstraction is used at every
step of the fixpoint construction, thus deriving only the minimal amount of
information about the SLD-trees which is needed to characterize the observ
able property. The top-down construction, on the contrary, is always forced
to build complete SLD-trees which have later to be abstracted to get the
observation.

Example 3.9 We show now how to reconstruct the CLP version of the S-
semantics [9, 10]. We have already shown in example 3.4 that ξ is an S-
observable. We can than apply theorem 3.5 and the definition of node, to
obtain the following denotations:

Blm
� (p) = { (g; c)=≡ | g

ks
 c� }, O�(p) = { (q(x̃); c)=≡ | q(x̃)

ks
 c� }.

Note that Blm
� (p) contains all the answer constraints of p, while O�(p) is

exactly the CLP version of the top-down definition of the S-semantics [13].
Corollary 3.6 tells us that O� is correct and fully abstract w.r.t. answer
constraints. Moreover theorem 3.5 tells us that answer constraints for any



goal can be derived from the answer constraints of the most general atomic
goals. For the bottom-up case, by applying the construction, we obtain

Tp;�(X) = { (q(x̃); c) | ∃q(t̃) :− cp�q1(t̃1), . . . , qn(t̃n) ∈ p, (qi(x̃i); ci) ∈ X,

c = x̃=t̃⊗ cp ⊗ x̃1=t̃1 ⊗ c1 ⊗ . . .⊗ x̃n=t̃n ⊗ cn }.

Moreover Tp is compatible with ξ, and, because of theorem 3.8, O� = F�.
This result shows the power of our theory. In fact the proof of the same
result, using classical methods [13], needs much more effort.

Example 3.10 The call patterns of a program p for a goal g and a selection
rule r are the atoms selected in any SLD-derivation of g in p via r. We define
the S-domain CPA made of objects of the form (g, c�a), where g is a goal
and c�a is an atom. The interpretation is “the execution of the goal g

generates a procedure call a with state (constraint) c”. The operations can
be defined as follows: A + B = A ∪ B,

c ·A = { (c⊗ c ′� b̃; c⊗ c ′′�a) | (c ′� b̃; c ′′�a) ∈ A, c⊗ c ′′ > 0 },

A× B = { (g, g ′; c�a) | (g; c�a) ∈ A } ∪
{ (g, g ′; c⊗ c ′�a ′) | (g; c� ) ∈ A, (g ′; c ′�a ′) ∈ B },

∇#(A) = { (∂#(c)� b̃ϑ; ∂#(c
′)�aϑ) | (c� b̃; c ′�a) ∈ A }.

The abstraction which allows us to obtain the call patterns is η(A) = { (g;

c�a) | 〈g; c�a, b̃; ks〉 ∈ A }. By using the definition of node, we have that

Blm
� (p) = { (g; c�a) | g

ks
 c�a, b̃ }, which is exactly the set of all the call

patterns of p. The top-down denotation is O�(p) = { (q(x̃); c�a) | q(x̃)
ks
 

c�a, b̃ }, while the immediate consequences operator turns out to be

Tp;�(X) = { (q(x̃); c�a) | ∃q(t̃) :− cp�q1(t̃1), . . . , qn(t̃n) ∈ p, and
c = x̃=t̃⊗ cp, a = q1(t̃1) or
c = x̃=t̃⊗ cp ⊗ t̃1=ỹ⊗ c ′, (q1(ỹ); c ′�a) ∈ X }.

Since Tp is compatible with η, F� is correct and fully abstract w.r.t. =�. We
obtained the call pattern semantics defined in [16, 11, 15].

3.3 Other observables

For a generic observable α : R → D, the previous theorems state that if α

is not an S-observable then we cannot have a correct and fully abstract de-
notation which is AND-compositional. Instead we can have a correct AND-
compositional denotation which is minimal w.r.t. the content of information.
In analogy to what we did in the case of observables, we can consider the set
S of AND-compositional denotations S : P → D with D ∈ D. We can par-
tially order S by approximation. A denotation S : P → D ∈ S approximates
S ′ : P → D ′ if there exists a Galois co-insertion α : D → D ′ s.t. S ′ = α ◦ S.

Note that every denotation which approximates another denotation which
is correct w.r.t. an observable is still correct w.r.t. the same observable.



Theorem 3.11 (the denotation) For each observable α there exists a min-
imal AND-compositional denotation correct w.r.t. it, i.e. which is approxi-
mated by all the other AND-compositional correct denotations.

4 Abstract interpretation

One more motivation for our algebraic construction can be found in ab-
stract interpretation. The essence of abstract interpretation is to give a
non–standard interpretation to the language. In the CLP case, as shown in
[5, 17], we only need to give a non–standard interpretation to constraints.

In general a constraint system is an interpretation (in a semi-closed semi-
ring) for constraint formulas. According to the approach of [19, 17, 20] con-
straint systems are related by means of constraint system semi-morphisms.
The program interpretation process is expressed in terms of a set of algebraic
operators which model how data objects are collected during the computa-
tion. An abstract interpretation for a given CLP(A) program is then the
semantics of an abstract program in CLP(A ′) where A ′ is a suitable con-
straint system correct w.r.t. A.

In our framework, abstract interpretation can be viewed as the compo-
sition of a constraint system semi-morphism (the abstraction of the domain
interpretation) and of an S-observable, which chooses an adequate abstrac-
tion of SLD-trees. The construction is based on semi-morphisms on con-
straint systems. A constraint system semi-morphism µ : A → A ′ can be
extended to an S-domain semi-morphism µD : DA → DA ′ in a natural way.

Definition 4.1 (S-semi-morphism) Let DA, D ′
A ′ be S-domains, with A ′

correct w.r.t. A. An S-semi-morphism α� : DA → D ′
A ′, based on the con-

straint system semi-morphism µ : A → A ′, is the composition of µD and an
S-morphism α : DA ′ → D ′

A ′, i.e. α� = α ◦ µD.

Note that S-semi-morphisms are Galois co-insertion. Since they are strongly
related to abstract interpretation, we will call them I-observables.

The following discussion on the abstract denotations relies on the notion
of “abstracting the program”. The idea is to replace the constraints (defined
on the constraint system A) in the original program with their abstract
version (defined on a constraint system A ′ correct w.r.t. A), thus obtaining
a CLP program on a different constraint system. If µ : A → A ′ is the
semi-morphism which formalizes the (correct) constraint system abstraction
we denote by µP : PA → PA ′ the homomorphism obtained by extending µ

to programs in the natural way, i.e. by applying µ to the constraints and
terms occurring in the program. The abstract denotation of p is simply
the denotation O(µP(p)) of the abstract program µP(p). When clear from
the context we denote µP by µ. The following theorem generalizes a result
in [17] and states that the semantics of the “abstract program” is a safe
approximation of the abstraction of the semantics of the program.



Theorem 4.2 (abstract program) Let µ : A → A ′ be a constraint system
semi-morphism. Then µR(O(p)) ≤ O(µ(p)).

Since an I-observable on the constraint system A is obtained by an S-
observable on the constraint system A ′ we expect the semantics construction
to be almost the same for the abstract interpretation case. Obviously the
theorems are weaker, because of the lack of precision of the denotations.

Definition 4.3 (abstract denotations) The ideal top-down denotation of
an I-observable α� : RA → DA ′ is O��(p) = α�(O(p)), while the abstract
top-down denotation is O�(µ(p)) = α(O(µ(p))). The ideal immediate con-
sequences operator is Tp;�� = α� ◦ Tp ◦ γ�, while the abstract immediate
consequences operator is T�(p);� = α ◦ T�(p) ◦ γ. The ideal bottom-up deno-
tation is F��(p) = Tp;�� ↑ ω, while the abstract bottom-up denotation is
F�(µ(p)) = T�(p);� ↑ ω.

The following theorem relates the different abstract interpretation mech-
anisms, i.e. the bottom-up execution of the abstract program F�(µ(p)),
the top-down abstract execution of the abstract program O�(µ(p)), the ab-
straction of the top-down concrete execution O��(p) and the (specialized)
bottom-up execution of the concrete program F��(p). As one could expect,
the ideal top-down denotation is (safely) approximated by all the other de-
notations. F�(µ(p)) is the least precise and, in the case of compatibility,
we have the usual equivalence between top-down and bottom-up executions.
This is shown by the following theorem.

Theorem 4.4 Let p be a program, α� : RA → DA ′ be an I-observable.
Then F�(µ(p)) ≥ O�(µ(p)), F�(µ(p)) ≥ F��(p), O�(µ(p)) ≥ O��(p)

and F��(p) ≥ O��(p). Moreover, if α is compatible with T�(p), we have
F�(µ(p)) = O�(µ(p)) ≥ F��(p) = O��(p).

The next theorem shows that AND-compositionality holds in the denotation
based on the abstract program.

Theorem 4.5 (AND-compositionality) Let p be a program, α� : RA(+,

×) → DA ′(+̄, ×̄) an I-observable. Then v ′ ∈ Blm
� (µ(p)) ⇐⇒ ∃ c ′ ∈ A ′, e ′1,

. . . , e ′n ∈ O�(µ(p)) s.t. v ′ = c ′ · ({ e ′1 }×̄ . . . ×̄{ e ′n }), v ′ ∈ Blm
��(p) ⇐⇒ ∃ c ′ ∈

A ′, e ′1, . . . , e
′
n ∈ O��(p) s.t. v ′ ≤ c ′ · ({ e ′1 }×̄ . . . ×̄{ e ′n }) .

Example 4.6 Let AH be the Herbrand constraint system. We show how
to reconstruct the ground dependency analysis for call patterns described
in [12]. The abstract domain of computation is Prop [7], consisting of
propositional formulas which provide a concise representation of abstract
substitutions which describe ground dependency relations among arguments
of a procedure call. AProp is the algebra of possibly existentially quantified
disjunctions of formulas

(
Prop,∧,∨, true, false,∃x, ∂tx, Λ(t) ↔ Λ(t ′)

)
, where

each t belongs to Vn (for some n) and Λ(t) = x1 ∧ . . . ∧ xn for t = {x1, . . . ,

xn} (Λ(∅) = true).



We define a constraint system semi-morphism µ : AH → AProp as

µ(c) =


false if c = 0

Λ(var(c)) if c is a simple constraint
Λ(µ(t)) ↔ Λ(µ(t ′)) if c = t=t ′

µ(c1) ∧ µ(c2) if c = c1 ⊗ c2
µ(c1) ∨ µ(c2) if c = c1 ⊕ c2

and extend it to well-formed sets of nodes as µR(A) = {〈µ(c)�µ(b);µ(c ′)�
µ(b ′);ks〉 | 〈c�b; c ′�b ′; ks〉 ∈ A }. Since the call pattern observable η of
example 3.10 was defined for any constraint system A, we can compose it
with µR: η�(A) = (η ◦ µR)(A) = { (g; c�a) | 〈g; c�a, b̃; ks〉 ∈ µR(A) } and
obtain an abstract interpretation in Prop. The ground dependencies call
patterns denotation are

O��(p) = { (q(x̃); c��q1(t̃�)) | q(x̃)
ks
 c�q1(t̃), b̃, c� = µ(c), t̃� = µ(t̃) },

O�(µ(p)) = { (q(x̃); c�a) | q(x̃
ks
 
�(p)

c�a, b̃ },

Tp;��(X) = { (q(x̃); c��q1(t̃�)) | ∃q(t̃) :− cp�q1(t̃1), . . . , qn(t̃n) ∈ p, and
c� = Λ(x̃) ↔ Λ(t̃) ∧ µ(cp), t̃� = µ(t̃1) or
c� = Λ(x̃) ↔ Λ(t̃) ∧ µ(cp) ∧ Λ(t̃1) ↔ Λ(ỹ) ∧ c ′�,

(q1(ỹ); c ′��q1(t̃�)) ∈ X },

T�(p);�(X) = { (q(x̃); c�a) | ∃q(t̃) :− cp�q1(t̃1), . . . , qn(t̃n) ∈ µ(p), and
c = Λ(x̃) ↔ Λ(t̃) ∧ cp, a = q1(t̃1) or
c = Λ(x̃) ↔ Λ(t̃) ∧ cp ∧ Λ(t̃1) ↔ Λ(ỹ) ∧ c ′,
(q1(ỹ); c ′�a) ∈ X }.

Since T�(p) is compatible with η, F�(µ(p)) = O�(µ(p)). The semantics ob-
tained in [12] and, through a magic set like transformation, in [4] isO�(µ(p)).
It is a goal independent denotation computable either top-down or bottom-
up.

5 Conclusions

We have defined an algebraic framework which allows us to prove several
properties of concrete and abstract SLD-trees. The framework provides:
a) a denotation consisting of all the SLD-trees obtained from most gen-
eral atomic goals, with an equivalent alternative fixpoint construction; b)
a set of important theorems which show that the denotation characterizes
the SLD-trees for any goal; c) a mechanism (S-observable) for abstracting
the semantics, which guarantees that the general theorems do hold for any
abstraction and always leads to the best (correct and fully abstract) denota-
tion; d) a mechanism (I-observable) to model abstraction by approximation,



which guarantees that a weaker form of the general theorems is still valid
and provides the semantic basis for abstract interpretation.

We have not considered yet two issues that could be discussed within the
framework. The first one is related to OR-compositionality [3], which is a
relevant property if we want to be able to reason about programs in a modu-
lar way. SLD-trees are indeed OR-compositional. However, the abstraction
process can destroy this property. For example, two of the abstractions that
we have considered, namely computed answer constraints and call patterns,
are not OR-compositional. The theory should be extended with a char-
acterization of OR-compositional observables. For non-OR-compositional
observables there should be a result similar to the one of theorem 3.11. The
second issue is related to the computation rule. The current results apply to
the case of local selection rules, even if we have considered the leftmost selec-
tion rule only. The property that could be analyzed within the framework is
the independence from the selection rule. SLD-trees do depend on the selec-
tion rule. However, more abstract observables, such as answer constraints,
are independent from the selection rule. A second relevant extension of the
framework might be the definition of conditions which guarantee that the
abstractions are independent from the selection rule.

References

[1] K. R. Apt. Introduction to Logic Programming. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, volume B: Formal Models and Se-
mantics, pages 495–574. Elsevier, Amsterdam and The MIT Press, Cambridge,
1990.

[2] A. Bossi, M. Gabbrielli, G. Levi, and M. Martelli. The s-semantics approach:
Theory and applications. Journal of Logic Programming, 1994. to appear.

[3] A. Bossi, M. Gabbrielli, G. Levi, and M. C. Meo. A Compositional Semantics
for Logic Programs. Theoretical Computer Science, 122(1-2):3–47, 1994.

[4] M. Codish and B. Demoen. Analysing Logic Programs using “prop”-ositional
Logic Programs and a Magic Wand. In D. Miller, editor, Proc. 1993 Int’l
Symposium on Logic Programming, pages 114–129. The MIT Press, Cambridge,
Mass., 1993.

[5] P. Codognet and G. Filè. Computations, Abstractions and Constraints. In
Proc. Fourth IEEE Int’l Conference on Computer Languages. IEEE Press,
1992.

[6] M. Comini and G. Levi. An algebraic theory of observables. Technical report,
Dipartimento di Informatica, Università di Pisa, 1994.

[7] A. Cortesi, G. Filè, and W. Winsborough. Prop revisited: Propositional For-
mula as Abstract Domain for Groundness Analysis. In Proc. Sixth IEEE Symp.
on Logic In Computer Science, pages 322–327. IEEE Computer Society Press,
1991.

[8] P. Cousot and R. Cousot. Systematic Design of Program Analysis Frameworks.
In Proc. Sixth ACM Symp. Principles of Programming Languages, pages 269–
282, 1979.



[9] M. Falaschi, G. Levi, M. Martelli, and C. Palamidessi. A new Declarative
Semantics for Logic Languages. In R. A. Kowalski and K. A. Bowen, editors,
Proc. Fifth Int’l Conf. on Logic Programming, pages 993–1005. The MIT Press,
Cambridge, Mass., 1988.

[10] M. Falaschi, G. Levi, M. Martelli, and C. Palamidessi. Declarative Modeling of
the Operational Behavior of Logic Languages. Theoretical Computer Science,
69(3):289–318, 1989.

[11] M. Gabbrielli. The Semantics of Logic Programming as a Programming Lan-
guage. PhD thesis, Dipartimento di Informatica, Università di Pisa, 1992.

[12] M. Gabbrielli and R. Giacobazzi. Goal independency and call patterns in the
analysis of logic programs. In Proc. SAC’94, 1994.

[13] M. Gabbrielli and G. Levi. Modeling Answer Constraints in Constraint Logic
Programs. In K. Furukawa, editor, Proc. Eighth Int’l Conf. on Logic Program-
ming, pages 238– 252. The MIT Press, Cambridge, Mass., 1991.

[14] M. Gabbrielli and G. Levi. On the Semantics of Logic Programs. In J. Leach
Albert, B. Monien, and M. Rodriguez-Artalejo, editors, Automata, Languages
and Programming, 18th International Colloquium, volume 510 of Lecture Notes
in Computer Science, pages 1–19. Springer-Verlag, Berlin, 1991.

[15] M. Gabbrielli, G. Levi, and M. C. Meo. Observational Equivalences for Logic
Programs. In K. Apt, editor, Proc. Joint Int’l Conf. and Symposium on Logic
Programming, pages 131–145. The MIT Press, Cambridge, Mass., 1992.

[16] M. Gabbrielli and M. C. Meo. Fixpoint Semantics for Partial Computed
Answer Substitutions and Call Patterns. In H. Kirchner and G. Levi, edi-
tors, Algebraic and Logic Programming, Proceedings of the Third International
Conference, volume 632 of Lecture Notes in Computer Science, pages 84–99.
Springer-Verlag, Berlin, 1992.

[17] R. Giacobazzi. Semantic Aspects of Logic Program Analysis. PhD thesis,
Dipartimento di Informatica, Università di Pisa, 1992.

[18] R. Giacobazzi. On the Collecting Semantics of Logic Programs. In F. S. de Boer
and M. Gabbrielli, editors, Verification and Analysis of Logic Languages, Proc.
of the Post-Conference ICLP Workshop, pages 159–174, 1994.

[19] R. Giacobazzi, S. K. Debray, and G. Levi. A Generalized Semantics for Con-
straint Logic Programs. In Proceedings of the International Conference on
Fifth Generation Computer Systems 1992, pages 581–591, 1992.

[20] R. Giacobazzi, G. Levi, and S. K. Debray. Joining Abstract and Concrete
Computations in Constraint Logic Programming. In M. Nivat, C. Rattray,
T. Rus, and G. Scollo, editors, Algebraic Methodology and Software Technology
(AMAST’93), Proceedings of the Third International Conference on Algebraic
Methodology and Software Technology, Workshops in Computing, pages 111–
127. Springer-Verlag, Berlin, 1993.

[21] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, Berlin,
1987. Second edition.

[22] L. Vieille. Recursive query processing: the power of logic. Theoretical Computer
Science, 69:1–53, 1989.


