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Abstract. We present a generic scheme for the abstract debugging of
functional logic programs. We associate to programs a semantics based
on a (continuous) immediate consequence operator, P JRK, which mod-
els correctly the powerful features of modern functional logic languages
(non-deterministic, non-strict functions defined by non-confluent pro-
grams and call-time choice behaviour). Then, we develop an effective
debugging methodology which is based on abstract interpretation: by
approximating the intended specification of the semantics of R we de-
rive a finitely terminating bottom-up diagnosis method, which can be
used statically. Our debugging framework does not require the user to
provide error symptoms in advance and is applicable with partial speci-
fications and even partial programs.

1 Introduction

Finding program bugs is a long-standing problem in software development,
even for highly expressive declarative functional logic languages because of lazi-
ness. There has been a lot of work on debugging for functional logic languages,
amongst all [1,9,6,7,17,8], mostly following the declarative debugging approach.

Declarative debugging is a semi-automatic debugging technique where the
debugger tries to locate the node in an execution tree which is ultimately respon-
sible for a visible bug symptom. This is done by asking questions on correctness
of solutions to the user, which assumes the role of the oracle. When debugging
real code, the questions are often textually large and may be difficult to answer
(as noted also by [1,18]).

Abstract diagnosis for Logic Programs [12,11,13] is a framework parametric
w.r.t. an abstract program property which can be considered as an extension of
declarative debugging since there are instances of the framework that deliver the
same results. It is based on the use of an immediate consequence operator TP
to identify bugs in logic programs. The framework is goal independent and does
not require the determination of symptoms in advance.

In this paper, we develop an abstract diagnosis method for functional logic
programs using the ideas of [12]. Since this technique is inherently based on the
use of an immediate consequence operator, the (top-down) operational semantics
for functional logic languages in the literature are not suited for this purpose.
Thus we first introduce a (continuous) immediate consequence operator P JRK
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to a given functional logic program R which allows us to derive the concrete
semantics forR. Then, we formulate an efficacious debugging methodology based
on abstract interpretation which proceeds by approximating the P JRK operator
producing an “abstract immediate consequence operator” PαJRK. We show that,
given the abstract intended specification Sα of the semantics of a program R,
we can check the correctness of R by a single application of PαJRK and thus, by
a simple static test, we can determine all the rules which are wrong w.r.t. the
considered abstract property.

The diagnosis is based on the detection of incorrect rules and uncovered
elements, which both have been defined in terms of one application of PαJRK
to the abstract specification. It is worth noting that no fixpoint computation
is required, since the abstract semantics does not need to be computed. The
key issue of this approach is the goal-independence of the concrete semantics,
meaning that the semantics is defined by collecting the observable properties
about “most general” calls, while still providing a complete characterization of
the program behavior.

Among other valuable facilities, this debugging approach supports the devel-
opment of efficacious diagnostic tools that detect program errors without having
to determine symptoms in advance. By using suitable abstract domains sev-
eral details of the computation can be hidden and thus the information that is
required to the user about the (abstract) intended behaviour can be dramat-
ically reduced. Obviously if we use more abstract domains we can detect less
errors: for example an erroneous integer value cannot be detected by looking
at groundness information. The choice of an abstract domain is thus a tradeoff
between the precision of errors that can be detected and the effort in providing
the specification.

2 Notations and Assumptions

Let us briefly introduce the notations used in the paper. Since we are interested
in modern first-order functional logic programs we will use the formalism of [15]
because the class of GRSs that they consider is a good fit for our programs. In
the following a program is a special case of Graph Rewriting System (Σ,R),
where the signature is partitioned into two disjoint sets Σ := C ]D, where term
graphs (simply terms) are just labelled DAGs (instead of general admissible term
graphs), without multiple occurrences of the same variable and where the left
hand side of program rules l→ r is a pattern.

A term π is a pattern if it is of the form f(−→cn) where f/n ∈ D and −→cn is

a n-tuple of constructor terms (not sharing subterms).
−→
tn denotes a generic n-

tuple of terms t1, . . . , tn. Symbols in C are called constructors and symbols in
D are called defined functions. T (Σ,V) denotes the terms built over signature
Σ and variables V, T (C,V) are called constructor terms. Ng denotes the nodes
of a term g. Each node in Ng is labelled with a symbol in Σ or a variable in
V. Lg : Ng → Σ ∪ V, Sg and Rootg denote the labeling, successor and root
functions, respectively. g1⊕ g2 denotes the sum of two terms. g|p is the subterm
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at the position p of g. g[s]p denotes the replacement by a term s of the subterm
rooted by a node p in a term g.

Throughout this paper, V denotes a (fixed) countably infinite set of variables
and N a (fixed) countable set of nodes.

By V (s) we denote the set of variables occurring in the syntactic object s. A
fresh variable is a variable that appears nowhere else. s� S indicates that the
syntactic object s is a fresh variant of an object in S.

θ�s denotes the restriction of the substitution θ to the set of variables in the
syntactic object s. The empty substitution is denoted by ε. By h : g1 → g2 we
denote a (rooted) homomorphism h from a term g1 to a term g2. If h : g1 → g2 is
an homomorphism and g is a term, h[g] is the term built from g by replacing all
the subterms shared between g and g1 by their corresponding subterms in g2. In
the rest of the paper, with an abuse of notation, we use the same name to denote
an homomorphism h : g1 → g2 and its extension h′ on g that preserves the nodes
not belonging to Ng1 , i.e., h′(n) = n if n 6∈ Ng1 , h′(n) = h(n) otherwise. Given
a homomorphism h : g1 → g2, we indicate with σh the substitution such that for
every x ∈ V (g1) which labels some node p ∈ Ng1 , xσh = g2|h(p).

mgu(t, s) denotes “the” most general unifier homomorphism h : t ⊕ s → g
of terms t and s. By abuse of notation it denotes also its induced substitution.
We will also denote by mgu(σ1, . . . , σn) the most general unifier of substitutions

σ1, . . . , σn [19]. t0
σ
 
R

∗ tn denotes a needed narrowing derivation (see [15]) t0
σ1 
R

. . .
σn 
R
tn such that σ = (σ1 . . . σn)�t. If t

σ
 
R

∗ s the pair σ · s is said a partial

answer for t and when s ∈ T (C,V) we call it a computed answer.

3 The semantic framework

In this section we introduce the concrete semantics of our framework, which is
suitable to model correctly the typical cogent features of (the first-order fragment
of) modern functional logic languages:

– non-deterministic, non-strict functions defined by non-confluent programs;
– the call-time choice behaviour (where the values of the arguments of an

operation are determined before the operation is evaluated)

Actually in [4] we have obtained this semantics by optimal abstraction of a
(much more) concrete semantics modeling needed narrowing trees, thus its cor-
rectness w.r.t. needed narrowing comes by construction (and standard abstract
interpretation results [14]).

3.1 Incremental Answer Semantics

To deal with non-strict operations, as done by [8], we consider signatures Σ⊥
that are extended by a special constructor symbol ⊥ to represent undefined
values, e.g. S(S(⊥)) denotes a number greater than 1 where the exact value is
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undefined. Such partial terms are considered as finite approximations of possibly
infinite values. We denote by T (C⊥,V) the set of partial constructor terms.

Our fixpoint semantics is based on interpretations that consist of families of
Incremental Answer Trees for the “most general calls” of a program. Intuitively
an Incremental Answer Tree collects the “relevant history” of the computation
of all computed answers of a goal, abstracting from function calls and focusing
only on the way in which the answer is (incrementally) constructed.

Definition 1 (Incremental Answer Trees). Given a term t over signature
Σ = C ] D, an incremental answer tree for t is a tree of partial answers T s.t.

1. its root is ε ·τ⊥(t), where τ⊥(t) denotes the partial constructor term obtained
by replacing all D-rooted subterms of t with the ⊥ symbol,

2. for any partial answer σ ·s that is a parent of σ′ ·s′ there exists a constructor
substitution θ, a position p and t ∈ T (C⊥,V)\{⊥} such that σ′ = σθ, s|p = ⊥
and s′ = (sθ)[t]p,

3. there is no pair a, b of sibling nodes such that a and b are variants and
4. for any pair a, b of sibling nodes if a has a son (labelled) c which could be a

son of b (in the sense of Item 2) then b has also a son (labelled) c.

Given two incremental answer trees T and T ′ for t, T v T ′ if and only if
every path in T starting from the root, is also a path of T ′.

The semantic domain T is the set of all incremental answer trees ordered by
v. T is a complete lattice. We denote its bottom ε · ⊥ by ⊥T.

The intuition is that for any parent node we choose an occurrence of a ⊥ and
we evaluate it until at least another constructor is added. All narrowing steps
that do not introduce a constructor are collapsed together (see Example 1).

Item 3 ensures that there is no duplicated information (which will have to
be collapsed by our semantics constructions).

Item 4 ensures that a certain evaluation performed on a subterm in a certain
node is also performed in all other occurrences of the same subterm in all other
nodes.

The idea behind our proposal is that of building a family of incremental
answer trees “modulo variance”, one tree for each most general call f(x1, . . . , xn)
(which are a finite number). We quotient w.r.t. variance because the actual
choice of variables names in f(x1, . . . , xn) has to be irrelevant. For notational
convenience we represent this family as a function in the following way.

Definition 2 (Interpretations). Let MGC := {f(−→xn) | f ∈ D, −→xn are distinct
variables }. An interpretation I is a function MGC → T modulo variance such
that, for every π ∈ MGC, I (π) is an incremental answer tree for π. Two func-
tions I, J are variants if for each π ∈MGC there exists an isomorphism ι (i.e.,
a renaming of variables and node names) such that I(ι[π]) = ι[J(π)].

The semantic domain IΣ is the set of all interpretations ordered by the point-
wise extension (modulo variance) of v. IΣ is a complete lattice. Its bottom is
the constant function λf(−→xn).⊥T.
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plus(x, y)

ε · ⊥

{x/0} · y {x/S(x′)} · S(⊥)

{x/S(0)} · S(y) {x/S(S(x′′))} · S(S(⊥))

leq(x, y)

ε · ⊥

{x/0} · true{
x/Sm(0)
y/Sm(y′)

}
· true

{
x/S(x′)
y/0

}
· false

{
x/Sn(S(x′))
y/Sn(0)

}
· false

. . .
. . .

Figure 1. Semantics for plus and leq

An interpretation I is implicitly extended to constructors as I (c(−→xn)) :=
ε · c(−→xn) 1.

Example 1. The incremental answer trees depicted in Figure 1 denote the se-
mantics of the program

plus 0 y = y l eq 0 = True
p lus (S x ) y = S ( p lus x y ) l eq (S x ) 0 = False

l eq (S x ) (S y ) = l eq x y

Notice that both trees are infinite in different ways. The one associated to
plus(x, y) has infinite height, since plus builds the solution one S at a time.
The one associated to leq(x, y) has infinite width, since leq delivers just value
true or false. ut

While trees are easy to understand and to manage in implementations, they
are quite big to show in a paper and technical definitions tends to be more
cluttered. Thus, for the sake of compactness and comprehension, we prefer to
use in the following an isomorphic representation where we collect in a set all
the nodes of a tree but annotating with • the new root constructors introduced
by expanding a ⊥ in a parent node. This annotation conveys all the needed
information about inner tree nodes. We call these sets annotated-sets.

For example, the annotated-set representation of the trees of Figure 1 is

plus(x, y) 7→
{
ε · ⊥, {x/0} ·

•
y, {x/S(x′)} ·

•

S(⊥),

{x/S(0)} ·
•

S(
•
y), {x/S(S(x′))} ·

•

S(
•

S(⊥)), . . .
}

leq(x, y) 7→
{
ε · ⊥, {x/0} ·

•
true, . . . , {x/Si(0), y/Si(y′)} ·

•
true, . . .

{x/S(x′), y/0} ·
•

false, . . . , {x/Si+1(x′), y/Si(0)} ·
•

false, . . .
}

1 The evaluation of a constructor symbol can be considered as a degenerate case of a
defined symbol that is just interpreted as itself. This technical assumption is useful
in the following to have much compact definitions.
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Solutions for plus have
•

S everywhere, because S are introduced one at a time.
For a rule like doub(x) → S(S(doub(x))), where two S are introduced in each

step, solutions are instead {⊥,
•

S(S(⊥)),
•

S(S(
•

S(S(⊥)))), . . .}.
Note that any annotated partial answer in an annotated-set corresponds (at

least) to a path from the root to a given node of an incremental answer tree.
An important ingredient of the definition of our semantics is the evaluation

of concrete terms occurring in the body of a program rule w.r.t. a current inter-
pretation as defined next.

Definition 3 (Evaluation of terms). Given an interpretation I we define by
syntactic induction the semantic evaluation of a term t in I as

E JxKI := {ε · x}

E Jf(
−→
tn)KI :=

(ϑηh)�−→
tn
· h[r]

∣∣∣∣∣∣∣∣∣
σi · si ∈ E JtiKI for i = 1, . . . , n

ϑ = mgu(σ1, . . . , σn),

µ · r � I (f(−→xn))

∃h = m̊guV (r)(f(−→xn)µ, f(−→sn)ϑ)

 (3.1)

where m̊guV (t, s), for an annotation-free pattern t, a term s with no node in
common with t and a set V of variables, is defined as the mgu homomorphism
h for t and s, h : t⊕ s→ r, such that the following conditions hold:

1. every p ∈ Nr is annotated if and only if h−1(p) has an annotated node
2. for every x ∈ V (t) \ V if p is an annotated node of ηh(x), then

– p is shared with ηh(y) for some y ∈ V , or
– there exists q ∈ Nt ∩ h−1(p) such that Lt(q) ∈ C

m̊guV (t, s) is a most general unifier on terms which takes into account anno-
tations and a target set of variables V (t) \ V . A variable in the target cannot
be bound with an annotated term t′, unless t′ is unified with another non-
variable term. Intuitively, when we perform m̊guV (t, s), variables not in the
target V (t) \ V are those which will be bound to outermost-needed terms in
subsequent narrowing steps, thus we have to evaluate them. On the contrary,
variables in the target should not be evaluated to preserve laziness.

Equation (3.1) is the core of all the evaluation: first it “mounts” together all

possible contributions of (the evaluations of) subterms
−→
tn , ensuring that their

local instantiations are compatible with each other, then it takes a fresh partial
answer2 µ · r from I (f(−→xn)) and performs unification respecting annotations
by m̊guV (r)(f(−→xn)µ, f(−→sn)ϑ). This ensures that only the evaluations of terms
−→
tn which are necessary to evaluate f(

−→
tn) are used. In other words, (3.1) uses

the partial answer µ · r ∈ I (f(−→xn)) as “big-step” rule for f , namely f(−→xn)µ →
r. Moreover the existence of the homomorphism h = m̊guV (r)(f(−→xn)µ, f(−→sn))
ensures that any annotated term in the co-domain of ηh corresponds to a term
which is root-needed for f(

−→
tn).

2 Note that in the case the symbol f is a constructor c the partial answer is ε · c(−→xn).
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Example 2. Consider the following program and its interpretation I :

co in = 0
co in = S 0
sub2 (S (S x ) ) = x
f (C x y ) = 0
f (C x 0) = S x
pa i r ( x ) = C x x

I :=



coin 7→
{
ε · ⊥, ε ·

•
0, ε ·

•

S(0)
}

sub2 (x) 7→
{
ε · ⊥, {x/S(S(x′))} ·

•

x′
}

f (z) 7→
{
ε · ⊥, {z/C(x, y)} ·

•
0,

{z/C(x, 0)} ·
•

S(x)
}

pair(x) 7→
{
ε · ⊥, ε ·

•

C(x, x)
}

For the goal term g := pair(sub2(s(coin))), we have ε ·
•

C(
•
0,
•
0) ∈ E JgKI . In order

to evaluate E Jf(g)KI we have to decide if there exist h1 := m̊gu{x}(s1, t) and
h2 := m̊gu∅(s2, t) respectively, where

f

C

x 0

f

C

•
0

f

C

•
0

s1 = = t f

C

x y

f

C

•
0

f

C

•
0

s2 = = t

we see that h1 exists and is equal to {x/
•
0}, while h2 does not exists. Even if t

and s2 unify in the standard sense, x and y have to be bound to an annotated

term, namely
•
0, but y is not in V = ∅. ut

Now we can define our concrete semantics.

Definition 4 (Concrete Fixpoint Semantics). Let I be an interpretation
and R be a program. The immediate consequence operator is

P JRKI := λf(−→xn). {ε · ⊥} ∪

{
({−→xn/

−→
tn}σ)�−→xn ·

•
s

∣∣∣∣∣ f(
−→
tn)→ r � R,

σ · s ∈ E JrKI , s 6= ⊥

}

Since P JRK is continuous (as proved in [4]), we can define our fixpoint se-
mantics as F JRK := lfp P JRK = P JRK↑ω.

Example 3. Let R be the program

from n = n : from (S n)
take 0 = [ ]
take (S n) ( x : xs ) = x : take n xs
m1 = take (S (S 0) ) ( from n) where n f r e e
m2 = take (S (S 0) ) ( from co in )
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The second iteration of the fixpoint computation P JRK↑2 is

from(n) 7→
{
ε · ⊥, ε · n•:⊥, ε · n•:S(n)

•
:⊥
}

coin 7→
{
ε · ⊥, ε ·

•
0, ε ·

•

S(0)
}

take(n, xs) 7→
{
ε · ⊥, {n/0} ·

•

[ ], {n/S(n′), xs/x′:xs′} · x′•:⊥,

{n/S(0), xs/x′:xs′} · x′•:
•

[ ],

{n/S(S(n′′)), xs/x′:x′′:xs′′} · x′•:x′′•:⊥
}

m1 7→
{
ε · ⊥, ε · n•:⊥

}
m2 7→

{
ε · ⊥, ε · ⊥•:⊥, ε ·

•
0
•
:⊥, ε ·

•

S(0)
•
:⊥)
}

while the resulting semantics F JRK is

from(n) 7→
{
ε · ⊥, ε · n•:⊥, ε · n•:S(n)

•
:⊥, ε · n•:S(n)

•
:S(S(n))

•
:⊥, . . .

}
coin 7→

{
ε · ⊥, ε ·

•
0, ε ·

•

S(0)
}

take(n, xs) 7→
{
ε · ⊥, {n/0} ·

•

[ ], {n/S(n′), xs/x′:xs′} · x′•:⊥,

{n/S(0), xs/x′:xs′} · x′•:
•

[ ],

{n/S(S(n′′)), xs/x′:x′′:xs′′} · x′•:x′′•:⊥,

{n/S(S(0)), xs/x′:x′′:xs′′} · x′•:x′′•:
•

[ ], . . .
}

m1 7→
{
ε · ⊥, ε · n•:⊥, ε · n•:S(n)

•
:⊥, ε · n•:S(n)

•
:
•

[ ]
}

m2 7→
{
ε · ⊥, ε · ⊥•:⊥, ε · ⊥•:S(⊥)

•
:⊥, ε ·

•
0
•
:⊥, ε ·

•
0
•
:S(

•
0)
•
:⊥,

ε ·
•
0
•
:S(

•
0)
•
:
•

[ ], ε ·
•

S(0)
•
:⊥, ε ·

•

S(0)
•
:S(

•

S(0))
•
:⊥, ε ·

•

S(0)
•
:S(

•

S(0))
•
:
•

[ ]
}

It is worth noting that several fixpoint semantics proposed in the literature are
defined on subclasses of programs (e.g. almost orthogonal, right linear, topmost,
. . . ) while we require only left linearity and construction basedness (conditions
that are satisfied by most functional logic languages). This is particularly impor-
tant in view of application of the semantics in abstract diagnosis, where buggy
programs cannot reasonably satisfy a priori any condition at all.

Our semantics is sound and complete w.r.t. needed narrowing in the sense of
the following theorem.

Theorem 1 (Correctness and completeness [4]). Let t be a term, and let
R be a functional logic program. The following statements hold:

1. if σ · s⊥ ∈ E JtKF JRK then ∃s ∈ T (Σ,V) such that t
σ
 
R

∗ s and τ⊥(s) = s⊥

2. if t
σ
 
R

∗ s then ∃ϑ ≤ σ and s⊥ = τ⊥(s)ϑ such that ϑ · s⊥ ∈ E JtKF JRK

Each partial answer in the semantics corresponds to a term in a needed narrowing
derivation and, viceversa, for each derivation there is a “more general” partial
answer in the semantics.
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3.2 Abstraction Scheme

In this section, starting from the fixpoint semantics in Section 3.1, we develop an
abstract semantics which approximates the observable behavior of the program.
Program properties which can be of interest are Galois Insertions between the
concrete domain T and the abstract domain chosen to model the property. We
assume familiarity with basic results of abstract interpretation [14].

We will focus our attention now on a special class of abstract interpretations
which are obtained from what we call an incremental answer abstraction that is
a Galois Insertion (T,v) −−−→−→←−−−−

α

γ
(A,≤). This abstraction can be systematically

lifted to a Galois Insertion I −−−→−→←−−−−
ᾱ

γ̄
[MGC → A] by function composition (i.e.,

ᾱ(f) = α ◦ f).

Now we can derive the optimal abstract version of PαJRK simply as PαJRK :=
ᾱ ◦ P JRK ◦ γ̄. Abstract interpretation theory assures that FαJRK := PαJRK↑ω
is the best correct approximation of F JRK. Correct means α(F JRK) ≤ FαJRK
and best means that it is the minimum (w.r.t. ≤) of all correct approximations.
If A is Noetherian the abstract fixpoint is reached in a finite number of steps,
that is, there exists a finite natural number h such that PαJRK↑ω = PαJRK↑h.

A case study: The domain depth(k) An interesting finite abstraction of
an infinite set of constructor terms are sets of terms up to a particular depth k,
which has already been used in call-pattern analysis for functional logic programs
[16], the abstract diagnosis of functional programs [3] and logic programs [12] or
in the abstraction of term rewriting systems [5] (with k = 1).

Domains typical for analysis, like POS, or domain of types, which lead to
(very) compact specifications, could probably be better suited to show interesting
instancies of our method. On the contrary specifications over depth(k) tend to
be quite big and certainly do not scale well as k grows. However we decided
to present this particular instance in order to relate our proposal with the ones
in the literature: in Section 4 we can provide diagnosis examples that can be
compared both with current abstract approaches (like [16,5]) and concrete ones
(like [9,7,3]) when the depth of terms that show an error is less than the chosen k.
Instead the comparison of the much abstract instancies with the more concrete
one in the literature would obviously be unfair.

Now we show how to approximate an infinite set of incremental answer trees
by means of a depth(k) cut  k which cuts terms having a depth greater than k.
Terms are cut by replacing each subterm rooted at depth k with a new variable
taken from the set V̂ (disjoint from V). depth(k) terms represent each term

obtained by instantiating the variables of V̂ with terms built over V.

We extend  k to partial answers {x1/t1, . . . , xn/tn} · t0 essentially by cutting
all ti. However in case there is a shared term s between t0 and another ti and
s is at depth greater than k in one of the two, in both terms we replace s with
two (different) fresh variables from V̂. Thus it can happen that variables from V̂
appear at depth less than k.
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For example, given α = {x/S(x′), y/A(z, S(S(y)))} ·
•

B(y, S(t), t, x′) where

t =
•

S(S(
•
z)), its cut α 2 is {x/S(x′), y/A(v̂1, S(v̂2))} ·

•

B(v̂3, S(
•

v̂4),
•

S(
•

v̂5), x′).
We define the order ≤ for this domain by successive lifting of the order s.t.

x̂ ≤ t for every term t and variable x̂ ∈ V̂. First we extend ≤ by structural
induction on the structure over terms, then we extend it to substitutions by
pointwise extension and then over partial answers. Finally given two depth(k)
partial answers trees T1 and T2, T1 ≤ T2 iff for any α ∈ T1 exists a β ∈ T2

such that α ≤ β. The set of all depth(k) partial answers trees ordered by ≤ is a
complete lattice. Let

∨
be its join.

The depth(k) cut of a tree T is κ(T ) :=
∨
{β k | β ∈ T}. For example, given

T = {ε · ⊥, x/S3(y) ·
•
y, x/S3(y) ·

•

A}, for k = 2, κ(T ) = {ε · ⊥, x/S3(y) ·
•
y}

The resulting (optimal) abstract immediate consequence operator is

PκJRKIκ = λf(−→xn). {ε·⊥}∨
∨{

(({−→xn/
−→
tn}σ)�−→xn ·

•
s) k

∣∣∣∣∣ f(
−→
tn)→ r � R,

σ · s ∈ EκJrKIκ , s 6= ⊥

}

where EκJxKIκ := {ε · x} and

EκJf(
−→
tn)KIκ :=

(ϑηh)�−→
tn
· h[r]

∣∣∣∣∣∣∣∣∣
σi · si ∈ EκJtiKIκ for i = 1, . . . , n

ϑ = mgu(σ1, . . . , σn),

µ · r � Iκ(f(−→xn)),

∃h = m̊gu
V (r)∪V̂(f(−→xn)µ, f(−→sn)ϑ)


Note that all examples that we show in the following are obtained by a proof

of concept prototype.

Example 4. Consider the program in Example 3 and take k = 3. According to
the previous definition, the abstract semantics of function from is: from(n) 7→

{
ε · ⊥, ε · n•:⊥, ε · n•:S(x̂1)

•
:⊥,

ε · n•:S(x̂1)
•
:x̂2
•
:x̂3, ε · n

•
:S(x̂1)

•
:x̂2
•
:
•

x̂3

}
Example 5. Consider the program Rplus of Example 1. For k = 1 FκJRplusK is{

plus(x, y) 7→
{
ε · ⊥, {x/0} ·

•
y, {x/S(x̂1)} ·

•

S(x̂2), {x/S(x̂1)} ·
•

S(
•

x̂2)
}

This is essentially the same result that can be obtained by [5], with the head
upper-closure operator, that derives the following abstract TRS:

plusa(0a, 0a)→ 0a plusa(0a, sa(>nat))→ sa(>nat)
plusa(sa(>nat), 0a)→ sa(>nat) plusa(sa(>nat), sa(>nat))→ sa(>nat)

Note that the first two rules of the abstract TRS are subsumed by the partial

answer {x/0} ·
•
y in our semantics. ut
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Example 6. Let R be the program obtained by adding to the one of Example 2
the following rules

main = d i s j m1
d i s j (C 0 (S x ) ) = True
m1 = pa i r ( sub2 (S co in ) )

For k = 2, the abstract analysis of R reaches the fixpoint in 3 steps, giving

sub2 (x) 7→
{
ε · ⊥, x/S(S(x̂1)) ·

•

x̂2

}
pair(x) 7→

{
ε · ⊥, ε ·

•

C(x, x)
}

disj 7→
{
ε · ⊥, ε ·

•

C(⊥,⊥), ε ·
•

C(
•

x̂2,
•

x̂2)
}

main 7→
{
ε · ⊥

}
For the same program and same k [16] reaches the call pattern disj(>,>)

.
= true

causing main
.
= true to be observed, which does not correspond to a concrete

call pattern. However for k ≥ 3 this false call pattern is not observed. ut

It is worth noting that the resulting abstract semantics encompasses some limi-
tations of previous works

– Since we use a “truly” goal-independent concrete semantics we obtain a much
compact abstract semantics than [3]. This is exactly the reason why we are
developing a compact semantics for generic TRS [2].

– For k = 1 if we consider TRS admissible to apply the technique of [5] we
obtain the same results. However the abstract rewriting methodology of [5]
requires canonicity, stratification, constructor discipline, and complete de-
finedness for the analyses. This class of TRS is very restricted (even for func-
tional programming) and certainly cannot cover functional logic programs.
On the contrary we require only left linearity and construction basedness.

– Since we use a careful definition of the abstraction function that uses depth(k)
variables instead of just a > symbol like does [16] we have some slightly bet-
ter results. For the same k we do not produce all false answers which are
produced by [16]. These answers won’t be generated by [16] for k + 1, but
due to the quickly growing size of depth(k) our improvement can be worthy.

4 Abstract diagnosis of functional logic programs

Now, following the approach of [12], we define abstract diagnosis of functional
logic programs. The framework of abstract diagnosis [12] comes from the idea
of considering the abstract versions of Park’s Induction Principle3. It can be
considered as an extension of declarative debugging since there are instances
of the framework that deliver the same results. However, in the general case,
diagnosing w.r.t. abstract program properties relieves the user from having to

3 a concept of formal verification that is undecidable in general
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specify in excessive detail the program behavior (which could be more error-
prone than the coding itself).

There have been several proposals about Declarative Diagnosis of functional
logic languages, like [17,8,7,9]. The approach has revealed much more problem-
atic in this paradigm than in the logic paradigm. As can be read from [8] “A more
practical problem with existing debuggers for lazy functional (logic) languages
is related to the presentation of the questions asked to the oracle”. Actually the
call-time choice model and the peculiarity of the needed narrowing strategy can-
not be tackled by pure declarations about expected answers. Roughly speaking,
the oracle must “understand” neededness.

As already noted by [8], the “simplification” proposed in [17] to adopt the
generic approach to FLP is not well-suited. [8] aims at a debugging method that
asks the oracle about computed answers that do not involve function calls, plus
possible occurrences of an “undefined symbol”. However this is exactly the kind
of information we have in our concrete semantics, which then makes it a suitable
starting point for our diagnosis methodology.

In the following, Sα is the specification of the intended behavior of a program
w.r.t. the property α.

Definition 5. Let R be a program, α be a property over domain A and Sα ∈ A.

1. R is (abstractly) partially correct w.r.t. Sα if α(F JRK) ≤ Sα.
2. R is (abstractly) complete w.r.t. Sα if Sα ≤ α(F JRK).
3. R is totally correct w.r.t. Sα, if it is partially correct and complete.

It is worth noting that the above definition is given in terms of the abstraction
of the concrete semantics α(F JRK) and not in terms of the (possibly less pre-
cise) abstract semantics FαJRK. Sα is the abstraction of the intended concrete
semantics of R. Thus, the user can only reason in terms of the properties of
the expected concrete semantics without being concerned with (approximate)
abstract computations. Note also that our notion of total correctness does not
concern termination (as well as finite failures). We cannot address termination
issues here, since the concrete semantics we use is too abstract.

The diagnosis determines the “originating” symptoms and, in the case of
incorrectness, the relevant rule in the program. This is captured by the definitions
of abstractly incorrect rule and abstract uncovered element.

Definition 6. Let R be a program, R a rule and e,Sα ∈ A.
R is abstractly incorrect w.r.t. Sα if PαJ{R}KSα 6≤ Sα.
e is an uncovered element w.r.t. Sα if e ≤ Sα and e ∧ PαJRKSα = ⊥ 4.

Informally, R is abstractly incorrect if it derives a wrong abstract element from
the intended semantics. e is uncovered if there are no rules deriving it from the
intended semantics. It is worth noting that checking these conditions requires one
application of PαJRK to Sα, while the standard detection based on symptoms
would require the construction of α(F JRK) and therefore a fixpoint computation.

4 Note that e ∧ PαJRKSα = ⊥ implies e 6≤ PαJRKSα , but the converse is not true.
Thus this definition is meant to detect “atomic” uncovered elements.
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It is worth noting that correctness and completeness are defined in terms of
α(FαJRK), i.e., in terms of abstraction of the concrete semantics. On the other
hand, abstractly incorrect rules and abstract uncovered elements are defined di-
rectly in terms of abstract computations (the abstract immediate consequence
operator PαJRK). In this section, we are left with the problem of formally es-
tablishing the relation between the two concepts.

Theorem 2. If there are no abstractly incorrect rules in R, then R is partially
correct w.r.t. Sα.

Proof. By hypothesis ∀r ∈ R. PαJ{r}KSα ≤ Sα. Hence PαJRKSα ≤ Sα, i.e.,
Sα is a pre-fixpoint of PαJRK. Since α(F JRK) ≤ FαJRK = lfp PαJRK, by
Knaster–Tarski’s Theorem α(F JRK) ≤ FαJRK ≤ Sα. The thesis follows by
Point 1 of Definition 5. ut

Theorem 3. Let R be partially correct w.r.t. Sα. If R has abstract uncovered
elements then R is not complete.

Proof. By construction α◦P JRK◦γ ≤ PαJRK, hence α◦P JRK◦γ◦α ≤ PαJRK◦α.
Since id v γ ◦ α, it holds that α ◦ P JRK ≤ α ◦ P JRK ◦ γ ◦ α and α ◦ P JRK ≤
PαJRK ◦ α. Hence,

α(F JRK) = [ since F JRK is a fixpoint ]

α(P JRKF JRK) ≤ [ by α ◦ P JRK ≤ PαJRK ◦ α ]

PαJRKα(F JRK) ≤ [ since PαJRK is monotone and R is partially correct ]

PαJRKSα

Now, ifR has an abstract uncovered element e i.e., e ≤ Sα and e∧PαJRKSα = ⊥,
then e ∧ α(F JRK) = ⊥ and Sα 6≤ α(F JRK). The thesis follows from Point 2 of
Definition 5. ut

Abstract incorrect rules are in general just a warning about a possible source of
errors. Because of the approximation, it can happen that a (concretely) correct
rule is abstractly incorrect.

However, as shown by the following theorems, all concrete errors — that are
“visible”5 in the abstract domain — are detected as they lead to an abstract
incorrectness or abstract uncovered.

Theorem 4. Let r be a rule, S a concrete specification. If P J{r}KS 6v S and
α(P J{r}KS ) 6≤ α(S ) then r is abstractly incorrect w.r.t. α(S ).

Proof. Since S v γ ◦α(S ), by monotonicity of α and the correctness of PαJ{r}K,
it holds that α(P J{r}KS ) ≤ α(P J{r}Kγ◦α(S )) ≤ PαJ{r}Kα(S ). By hypothe-
sis α(P J{r}KS ) 6≤ α(S ), therefore PαJ{r}Kα(S ) 6≤ α(S ), since α(P J{r}KS ) ≤
PαJ{r}Kα(S ). The thesis holds by Definition 6. ut
5 A concrete symptom is visible if its abstraction is different from the abstraction of

correct answers. For example if we abstract to the length of lists, an incorrect rule
producing wrong lists of the same length of the correct ones is not visible.
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Theorem 5. Let S be a concrete specification. If there exists an abstract uncov-
ered element a w.r.t. α(S ), such that γ(a) v S and γ(⊥) = ⊥, then there exists
a concrete uncovered element e w.r.t. S (i.e., e v S and e u P JRKS = ⊥).

Proof. By hypothesis a ≤ α(S ) and a∧PαJRKα(S ) = ⊥. Hence, since γ(⊥) = ⊥
and γ preserves greatest lower bounds, γ(a) u γ(PαJRKα(S )) = ⊥. By construc-
tion PαJRK = α◦P JRK ◦γ, thus γ(a)uγ(α(P JRKγ(α(S )))) = ⊥. Since id v γ ◦α
and by monotonicity of P JRK, γ(a) ∧ P JRKS = ⊥. By hypothesis γ(a) v S
hence γ(a) is a concrete uncovered element. ut

The diagnosis w.r.t. approximate properties over Noetherian domains is al-
ways effective, because the abstract specification is finite. However, as one can
expect, the results may be weaker than those that can be achieved on concrete
domains just because of approximation. Namely,

– absence of abstractly incorrect rules implies partial correctness,
– every incorrectness error is identified by an abstractly incorrect rule. However

an abstractly incorrect rule does not always correspond to a bug.
– every uncovered is identified by an abstract uncovered. However an abstract

uncovered does not always correspond to a bug.
– there exists no sufficient condition for completeness.

It is important to note that our method, since it has been derived by (prop-
erly) applying abstract interpretation techniques, is correct by construction.

Another property of our proposal, which is particularly useful for application,
is that

– it can be used with partial specifications,
– it can be used with partial programs.

Obviously one cannot detect errors in rules involving functions which have not
been specified. But for the rules that involve only functions that have a specifi-
cation the check can be made, even if the whole program has not been written
yet. This includes the possibility of applying our “local” method to all parts of
a program not involving constructs which we cannot handle (yet). With other
“global” approaches such programs could not be checked at all.

We now show the depth(k) instance of our methodology to provide a demon-
strative application of our abstract diagnosis framework. It shows some encour-
aging results. Thus it will be interesting in the future to experiment also with
other possible instances over more sophisticated domains.

Our case study: abstract diagnosis on depth(k) Now we show how we
can derive an efficacious debugger by choosing suitable instances of the general
framework described above. We consider the depth(k) abstraction κ presented
in Section 3.2.

Note that depth(k) partial answers that do not contain variables belonging

to V̂ actually are concrete answers. Thus an additional benefit w.r.t. the general
results is that errors exhibiting symptoms without variables belonging to V̂ are
actually concrete (real) errors (see Theorem 4).
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Example 7. Consider the buggy program for from (proposed in [7]) with rule
R : from(n) → n : from(n) and as intended specification Sκ the fixpoint from
Example 4. We detect that rule R is abstractly incorrect since

PκJ{R}KSκ =

 from(n) 7→
{
ε · ⊥, ε · n•:⊥, ε · n•:n•:⊥,

ε · n•:n•:x̂2
•
:x̂3, ε · n

•
:n
•
:x̂2
•
:
•

x̂3

} 6≤ Sκ

Example 8. Consider the buggy program Rbug
main = C (h ( f x ) ) x
h (S x ) = 0

R: f (S x ) = S 0

where rule R should have been f x = S (h x) to be correct w.r.t. the intended
semantics on depth(k), with k > 2,

Sκ =


f(x) 7→

{
ε · ⊥, ε ·

•

S(⊥), {x/S(x′)} ·
•

S(
•
0)
}

h(x) 7→
{
ε · ⊥, {x/S(x′)} ·

•
0
}

main 7→
{
ε · ⊥, ε ·

•

C(⊥, x), ε ·
•

C(
•
0, x)

}
This error preserves the computed answer behavior both for h and f , but not
for main. In fact, main evaluates to {x/S(x′)}·C(0, S(x′)). Rule R is abstractly
incorrect.

Note that the diagnosis method of [9,7] does not report incorrectness errors
(as there are no incorrectness symptoms) while it reports the missing answer
ε · C(0, 0). ut

Example 9. Consider the following buggy program for double w.r.t. the depth(2)
specification Sκ.

R1 : double 0 = s 0
R2 : double (S x ) = S ( double x )

Sκ :=

 double(x) 7→
{
ε · ⊥, {x/0} ·

•
0, {x/S(x′)} ·

•

S(S(ŷ)),

{x/S(0)} ·
•

S(S(
•

ŷ)), {x/S(S(x̂1)} ·
•

S(S(
•

ŷ))
}

We can detect that both R1 and R2 are abstractly incorrect, since

PκJ{R1}KSκ(double(x)) =
{
ε · ⊥, {x/0} ·

•

S(0)
}

PκJ{R2}KSκ(double(x)) =
{
ε · ⊥, ε ·

•

S(⊥), {x/S(0)} ·
•

S(
•
0)

{x/S(S(x̂1)} ·
•

S(
•

S(
•

ŷ)) {x/S(S(x̂1)} ·
•

S(
•

S(
•

ŷ))
}

However the debugger in [3] is not able to determine for k = 2 that rule R2 is
incorrect. This is because the errors in both the rules interfere with each other,
making the goal double(S(0)) asymptomatic. ut
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We run our prototype on the possible benchmarks from the NOFIB-Buggy col-
lection available at http://einstein.dsic.upv.es/nofib-buggy. Not all benchmarks
can be checked yet since errors are in rules using higher-order or I/O or arith-
metical features, which our semantic framework can not handle. However, since
our methodology processes each rule independently, we can anyway find errors
in the first-order rules of general programs, giving a partial specification. Indeed
we discovered the incorrect rule in boyer at depth-4; we detected at depth-1
the incorrect rules of clausify, knights and lift6; we found some uncovered
elements for pretty, sorting and fluid7 at depth-8, depth-3 and depth-2, re-
spectively.

The case of boyer is particularly interesting, because the error introduces
non-termination and prevents declarative debuggers to be applied. Our method-
ology is not concerned by this kind of errors because it does not compute fix-
points.

The selection of the appropriate depth for the abstraction is a sensitive point
of this instance, since the abstraction might not be precise enough. For example
if we consider k = 2 in Example 7 we do not detect the incorrectness. The
question of whether an optimal depth exists such that no additional errors are
detected by considering deeper cuts is an interesting open problem which we
plan to investigate as further work.

It is important to note that the resulting abstract diagnosis encompasses
some limitations of other works on declarative diagnosis:

– Symptoms involving infinite answers cannot be directly tackled by [9,7],
while, if the error manifests in the first part of the infinite answer we detect
it (Example 7).

– If we just compare the actual and the intended semantics of a program some
incorrectness bugs can be “hidden” because of an incompleteness bug. Our
technique does not suffer of error interference (Examples 8 and 9), as each
possible source of error is checked in isolation. Moreover we detect all errors
simultaneously.

– It can be applied on partial programs.

5 Applicability of the framework

Depending on the chosen abstract domain very different scenarios arise about
the pragmatic feasibility of our proposal. The main difference depends on the
size of the abstract domain.

Small domains Specifications are small (and thus it is quite practical for the
user to write them directly). However, due to the great amount in approxi-
mation,
– the number of false positives (abstract errors not corresponding to con-

crete ones) increases;

6 An adjustment for some rules was needed in order to simulate Haskell selection rule.
7 Minor changes has been done to replace arithmetic operations with Peano’s notation.

http://einstein.dsic.upv.es/nofib-buggy
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– the number of not visible concrete errors increases.

For the former issue it is possible to adapt a multi-domain approach that
uses, in addition to the first, other more concrete abstract domains. For
all abstract incorrect rules detected with the first abstract domain the user
can be asked to write a (partial) more concrete specification limited to the
functions involved in the abstract incorrect rules. The overhead of giving a
more concrete specification is just localized by need.
We have made some experiments on a small domain, namely the domain
POS for groundness dependencies analysis. This experiments showed that
manually writing the specification is certainly affordable in this case. How-
ever, as expected, the resulting instance it is not very powerful in detecting
errors.
Details about the abstraction over this domain can be found in [4].

Big domains Due to the good precision of these domains, we can detect errors
more precisely. However in these cases it is unreasonable to provide the whole
specification manually. One possible solution to this issue is to compute the
fixpoint of the buggy program and then present the user with the actual
semantics so he can inspect it and just modify the results that he does not
expect. All the explicit information given directly by the user can be saved
(within the code itself) and then reused in successive sessions.

The pragmatical choice of an abstract domain is thus a tradeoff between the
precision of errors that can be detected and the effort in providing the specifi-
cation.

As a final remark about applicability of the current proposal beyond the first
order fragment, let us note that we can tackle higher-order features and primitive
operations of functional (logic) languages in the same way proposed by [16]: by
using the technique known as “defunctionalization” and by approximating, very
roughly, calls to primitive operations, that are not explicitly defined by rewrite
rules, just with variables over V̂.

6 Conclusions

We have presented a fixpoint semantics P JRK for functional programs. Our
semantics allows us to model correctly non-determinism, non-strict functions
defined by non-confluent programs and call-time choice behaviour.

Then, we formulated an efficacious generic scheme for the declarative debug-
ging of functional logic programs based on approximating the P JRK operator
by means of an abstract PαJRK operator obtained by abstract interpretation.
Our approach is based on the ideas of [3,12] which we apply to the diagnosis of
functional logic programs.

We showed that, given the intended abstract specification Sα of the semantics
of a program R, we can check the correctness of R by a single step of PαJRK
and, by a simple static test, we can determine all the rules which are wrong
w.r.t. the considered abstract property.
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We presented a particular instance of our methodology in order to compare
our proposal with [5,8,7,9,16] and showed several examples where we have better
results.

For future work, on the abstract domains side, we intend to derive the in-
stancies of the framework for the reduced products between depth(k) and several
domain typical of program analysis, like POS, sharing, types, etc.. This could
provide better tradeoffs between precision and size of specifications.

On the concrete semantics side, we intend to extend the base semantics to
directly incorporate higher-order functions and residuation, in order to develop
abstract diagnosis for full multi-paradigm languages like Curry and T OY.

We also plan to develop a more concrete base semantics which can model
“functional dependencies” (in order to tackle pre-post conditions) that could be
employed to define abstract verification [10] for functional logic programs.
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