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INTRODUCTION



Temporal Logics

Temporal logics are mathematical formalisms to reason about time.

They are extensively used in some of the main fields of Computer Science and
Artificial Intelligence (AI), including, for instance, formal verification and machine
learning.

The course
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Temporal Logics

Temporal logics are mathematical formalisms to reason about time.

Temporal logics are traditionally partitioned into:
• those modeling time as a linear order (i.e., a sequence),
• or as a tree

Linear Temporal Logic (LTL) is the de-facto standard for reasoning over infinite
linear time.

Reference
Amir Pnueli (1977). “The temporal logic of programs”. In: 18th Annual Symposium
on Foundations of Computer Science (sfcs 1977). IEEE, pp. 46–57. DOI:
10.1109/SFCS.1977.32

The course
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Formal Verification
While simulation and testing explore some of the possible behaviors and scenarios
of a system, leaving the question of whether the unexplored trajectories may
contain the fatal bug open, formal verification conducts an exhaustive exploration of
all possible behaviors.

Reference
Edmund M Clarke et al. (2018). Model checking. MIT press

Important techniques in formal verification:

• consistency checking
• model checking

• reactive synthesis
• . . .

The course
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Relationship between Linear Temporal Logic and Formal Verification

We are interested in infinite linear time:
specification of Reactive Systems.

Picture taken from: Alessandro Abate et al.
(2021). “Rational verification: game-theoretic
verification of multi-agent systems”. In: Applied
Intelligence 51.9, pp. 6569–6584

The course
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Relationship between Linear Temporal Logic and Formal Verification

event

time

{r} {r} {r, g} {r} {r, g} {r}

0 1 2 3 4 5

r = request
g = grant

The course
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The Safety Fragment

The safety fragment includes those properties stating that “something bad never
happens”, like, for instance, a deadlock or a simultaneous access to a critical section.

The Cosafety Fragment

The cosafety fragment is the dual of the safety one. It is defined as the set of
properties asking that “something good will eventually happen”, e.g., termination of a
program.

The course
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Safety

Property: ”The program never enters a deadlock”

event

time

{i} {i} {i} {d}

0 1 2 3 4 5

i = instruction
d = deadlock

Given a safety property, a prefix of a
sequence suffices to establish whether it does
not satisfy the property.

Cosafety

Property: ”The program terminates”

event

time

{i} {i} {i} {i} {i} {t}

0 1 2 3 4 5

i = instruction
t = termination

Given a cosafety property, a prefix of
a sequence suffices to establish
whether it does satisfy the property.

The course
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A crucial feature of both the safety fragment and the cosafety one is that they
allow one to reason on finite sequences instead of infinite ones.

This feature has been exploited to design efficient techniques in formal
verification:
• Model Checking

• we can exploit (forward or background) reachability analysis, that is,
reachability of an error state (invariance checking)

• a counterexample is always a finite trace: often more helpful than an infinite
errore trace

The course
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A crucial feature of both the safety fragment and the cosafety one is that they
allow one to reason on finite sequences instead of infinite ones.

This feature has been exploited to design efficient techniques in formal
verification:
• Monitoring

• model checking is not always applicable (the system is too complex, some parts
of the system are not observable, etc.);

• runtime verification and monitoring are viable alternatives: we can monitor at
runtime the trace generated so far by the system (such a trace is always finite);

• we cannot monitor arbitrary properties;
• safety and cosafety properties are monitorable

The course
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A crucial feature of both the safety fragment and the cosafety one is that they
allow one to reason on finite sequences instead of infinite ones.

This feature has been exploited to design efficient techniques in formal
verification:
• Reactive Synthesis

• determinization can be done using classic subset construction instead of the
complicated Safra’s construction

• . . .

The course
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1 Background
1.1 Regular and ω-regular languages
1.2 The First- and Second-order Theory of One Successor
1.3 Automata over finite and infinite words
1.4 Linear Temporal Logic

2 The safety fragment of LTL and its theoretical features
2.1 Definition of Safety and Cosafety
2.2 Characterizations and Normal Forms
2.3 Kupferman and Vardi’s Classification

Outline
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3 Recognizing safety
3.1 Recognizing safety Büchi automata
3.2 Recognizing safety formulas of LTL
3.3 Construction of the automaton for the bad prefixes

4 Algorithms and Complexity
4.1 Satisfiability
4.2 Model Checking
4.3 Reactive Synthesis

5 Succinctness and Pastification
5.1 Succinctness of Safety Fragments
5.2 Pastification Algorithms

Outline
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BACKGROUND



We fix a finite alphabet Σ.

Finite Words

• Modal interpretation:
• First-order interpretation:

Infinite Words

• Modal interpretation:
• First-order interpretation:

Finite and Infinite Words
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We fix a finite alphabet Σ.

Finite Words

• Modal interpretation:

σ ∈ Σ∗

σ = ⟨σ0, . . . , σn⟩ for some n ∈ N

σ0 σ1 σ2 σ3 σ4 σ5

0 1 2 3 4 5

Infinite Words

• Modal interpretation:

σ ∈ Σω

σ = ⟨σ0, σ1, σ2, . . .⟩

σ0 σ1 σ2 σ3 σ4 σ5

0 1 2 3 4 5

Finite and Infinite Words
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We fix a finite alphabet Σ.

Finite Words

• Modal interpretation:

σ ∈ Σ∗

σ = ⟨σ0, . . . , σn⟩ for some n ∈ N

σ0 σ1 σ2 σ3 σ4 σ5

0 1 2 3 4 5

• length of σ: |σ| = n + 1
• word = synonym of finite word

Infinite Words

• Modal interpretation:

σ ∈ Σω

σ = ⟨σ0, σ1, σ2, . . .⟩

σ0 σ1 σ2 σ3 σ4 σ5

0 1 2 3 4 5

• length of σ: |σ| = ω
• ω-word = synonym of infinite

word

Finite and Infinite Words
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We fix a finite alphabet Σ.

Finite Words

• Modal interpretation:

σ ∈ Σ∗

σ = ⟨σ0, . . . , σn⟩ for some n ∈ N

σ0 σ1 σ2 σ3 σ4 σ5

0 1 2 3 4 5

Example
Σ := {a, b} and σ = ababab

Infinite Words

• Modal interpretation:

σ ∈ Σω

σ = ⟨σ0, σ1, σ2, . . .⟩

σ0 σ1 σ2 σ3 σ4 σ5

0 1 2 3 4 5

Example
Σ := {a, b, c} and σ = aaabaaacaaab . . .

Finite and Infinite Words
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We fix a finite alphabet Σ.

Finite Words

• Modal interpretation: . . .
• First-order interpretation:

⟨D, 0,+1, <,=, {P}P∈Σ⟩

• D = [a, b] (for some a, b ∈ N) is the
domain

• the constant 0, the +1 function,
and the relations < and = have
their natural interpretation

• each P is a unary predicate

Infinite Words

• Modal interpretation: . . .
• First-order interpretation:

⟨N, 0,+1, <,=, {P}P∈Σ⟩

• N is the domain
• the constant 0, the +1 function,

and the relations < and = have
their natural interpretation

• each P is a unary predicate

Finite and Infinite Words
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Finite Words

• A regular expression is an expression
built starting from
• ∅: the empty set
• ε: the word of length 0
• a (for some a ∈ Σ): any word of

lenght 1
using the following operations:
• L1 ∪ L2: union
• L1 · L2: concatenation
• L: complementation
• L∗: Kleene’s star

• Example: a∗ · b · Σ∗

• A language is a set of finite words.
• A regular language is a language that

can be built using a regular
expression.
• We denote with RE the set of regular

languages.

Regular Languages
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Infinite Words

• Given a regular language L, we
define its ω-closure, denoted by (L)ω,
as the set of ω-words built starting
from elements in L.
• A ω-regular expression is an

expression of the form:⋃
i=1,...,n

Ui · (Vi)
ω

where Ui and Vi are regular
languages, for i = 1, . . . ,n.

Example

(a∗ · b) · (Σ)ω

• A ω-language is a set of ω-words.
• A ω-regular language is a ω-language

that can be built using a ω-regular
expression.
• We denote with ω-RE the set of
ω-regular languages.

ω-Regular Languages
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Finite Words

• A regular expression is called
star-free iff it is devoid of Kleene’s
star.
• A regular language is called star-free

iff it can be built by a star-free
regular expression.
• We call SF the set of star-free regular

languages.

Example

Σ∗ · a · Σ∗ · b · Σ∗

Note that Σ∗ := ∅.

Infinite Words

• An ω-regular expression is called
star-free iff it is of the form:⋃

i=1,...,n

Ui · (Vi)
ω

where Ui and Vi are star-free regular
expressions, for i = 1, . . . ,n.
• An ω-regular language is called

star-free iff it can be built by a
star-free ω-regular expression.
• We call ω-SF the set of star-free
ω-regular languages.

Star-free Languages and Star-free ω-languages
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The monadic second-order theory of one successor (S1S, for short) is a fragment of
second-order logic in which we fix this alphabet:

0︸︷︷︸
constant

, +1︸︷︷︸
function

, <, =︸ ︷︷ ︸
binary

predicates

, {P}P∈Σ︸ ︷︷ ︸
unary

predicates

The Monadic Second-order Theory of One Successor
S1S
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The monadic second-order theory of one successor (S1S, for short) is a fragment of
second-order logic in which we fix this alphabet:

0︸︷︷︸
constant

, +1︸︷︷︸
function

, <, =︸ ︷︷ ︸
binary

predicates

, {P}P∈Σ︸ ︷︷ ︸
unary

predicates

Its syntax is the following. Let V = {x, y, z, . . .} be a set of first-order variables. Let
V ′ = {X,Y,Z, . . .} be a set of second-order variables.

(terms) t := x | 0 | t + 1
(formulas) ϕ := P(t)︸︷︷︸

with P∈Σ

| X(t)︸︷︷︸
with X

monadic
variable

| t < t′ | t = t′ | ¬ϕ | ϕ ∨ ϕ | ∃x . ϕ︸ ︷︷ ︸
first-order
quantifier

| ∃X . ϕ︸ ︷︷ ︸
monadic

second-order
quantifier

The Monadic Second-order Theory of One Successor
S1S
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The monadic second-order theory of one successor (S1S, for short) is a fragment of
second-order logic in which we fix this alphabet:

0︸︷︷︸
constant

, +1︸︷︷︸
function

, <, =︸ ︷︷ ︸
binary

predicates

, {P}P∈Σ︸ ︷︷ ︸
unary

predicates

Semantics:

Words

⟨D, 0,+1, <,=, {P}P∈Σ⟩

ω-Words

⟨N, 0,+1, <,=, {P}P∈Σ⟩

The Monadic Second-order Theory of One Successor
S1S
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The monadic second-order theory of one successor (S1S, for short) is a fragment of
second-order logic in which we fix this alphabet:

0︸︷︷︸
constant

, +1︸︷︷︸
function

, <, =︸ ︷︷ ︸
binary

predicates

, {P}P∈Σ︸ ︷︷ ︸
unary

predicates

• Let ϕ(x, y, z,X,Y,Z, . . . ) be an S1S formula with free variables
x, y, z,X,Y,Z, . . . and let ρ be a variable evaluation function.
• We write ⟨D, 0,+1, <,=, {P}P∈Σ⟩, ρ |= ϕ(x, y, z,X,Y,Z, . . . ) to denote the fact

that the finite word ⟨D, 0,+1, <,=, {P}P∈Σ⟩ satisfies ϕ(x, y, z,X,Y,Z, . . . )
under the evaluation ρ of the free variables.
• The same holds for ω-words ⟨N, 0,+1, <,=, {P}P∈Σ⟩.

The Monadic Second-order Theory of One Successor
S1S
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Example

There exists a position in which both P1 and P2 hold.

∃x . (P1(x) ∧ P2(x))

Example

Each position where P1 holds is followed by a position where P2 holds (by using
+1 and second-order quantification).

∀x .
(

P1(x)→ ∀X .
(

X(x) ∧ ∀y . (X(y)→ X(y + 1))→ ∃z . (X(z) ∧ P2(z))
))

The Monadic Second-order Theory of One Successor
S1S
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• We call S1S[FO] (the first-order fragment of S1S) the fragment of S1S devoid of
second-order quantifiers.

• We denote with S1Sf the logic S1S interpreted over finite words.

The First-order fragment of S1S
S1S[FO]
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• We are interested on S1S[FO] formula ϕ(x) with exactly one free variable x.
• x is meant to represent the initial time point.

• The language over finite words of ϕ(x), denoted with L<ω(ϕ(x)) is defined as:

L<ω(ϕ(x)) :=
{
⟨D, 0,+1, <,=, {P}P∈Σ⟩, x 7→ 0 |= ϕ(x)

}
• The language over ω-words of ϕ(x), denoted with L(ϕ(x)) is defined as:

L(ϕ(x)) :=
{
⟨D, 0,+1, <,=, {P}P∈Σ⟩, x 7→ 0 |= ϕ(x)

}

The First-order fragment of S1S
S1S[FO]
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Theorem (Büchi’s Theorem over ω-words)

• For each S1S formula ϕ, the language L(ϕ) is an ω-regular language.
• For each ω-regular language L, there exists an S1S formula ϕ such that L = L(ϕ).

Theorem (Büchi’s Theorem over finite words)

• For each S1Sf formula ϕ, the language L<ω(ϕ) is a regular language.
• For each regular language L, there exists an S1Sf formula ϕ such that L = L<ω(ϕ).

The Monadic Second-order Theory of One Successor
S1S
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Reference:
J. R. Buechi (1960). “On a decision method in restricted second-order arithmetics”.
In: Proc. Internat. Congr. on Logic, Methodology and Philosophy of Science, 1960

Reference:
Calvin C Elgot (1961). “Decision problems of finite automata design and related
arithmetics”. In: Transactions of the American Mathematical Society 98.1, pp. 21–51.
DOI: 10.1090/S0002-9947-1961-0139530-9

The Monadic Second-order Theory of One Successor
S1S
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ω-Words

ω-RE

S1S

NBAETL

finite
monoids

Characterizations of ω-Regular Languages
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Finite
Words

RE

S1Sf

NFAETLf

finite
monoids

Characterizations of Regular Languages
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Theorem (Expressive Equivalence over ω-words)

• For each S1S[FO] formula ϕ, the language L(ϕ) is a star-free ω-language.
• For each star-free ω-language L(ϕ), there exists an S1S[FO] formula ϕ such that
L = L(ϕ).

Theorem (Expressive Equivalence over finite words)

• For each S1S[FO]f formula ϕ, the language L<ω(ϕ) is a star-free language.
• For each star-free language L, there exists an S1S[FO]f formula ϕ such that
L = L<ω(ϕ).

The First-order fragment of S1S
S1S[FO]
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Reference:
Richard E Ladner (1977). “Application of model theoretic games to discrete linear
orders and finite automata”. In: Information and Control 33.4, pp. 281–303. DOI:
10.1016/S0019-9958(77)90443-0

Reference:
Wolfgang Thomas (1981). “A combinatorial approach to the theory of
ω-automata”. In: Information and Control 48.3, pp. 261–283. DOI:
10.1016/S0019-9958(81)90663-X

The First-order fragment of S1S
S1S[FO]
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ω-Words

ω-SF

S1S[FO]

cf-DRALTL

aperiodic
finite

monoids

Characterizations of ω-Star-free Languages
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Finite
Words

SF

S1S[FO]f

cf-DFALTLf

aperiodic
finite

monoids

Characterizations of Star-free Languages
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Definition (Nondeterministic Automaton)

A nondeterministic automaton A is a tuple ⟨Q,Σ, I,∆,F⟩where:
• Q is the set of states;
• Σ is the alphabet;
• I ⊆ Q is the set of initial states;
• ∆ ⊆ Q× Σ×Q is the transition relation;
• F ⊆ Q is the set of final states;

q0 q1

a, b

b

a

b
• Q = {q0, q1}; • Σ = {a, b}; • I = {q0};

• ∆ = {(q0, a, q0), (q0, b, q0), (q0, b, q1), (q1, b, q1), (q1, a, q0)};
• F = {q1};

Automata
over finite and infinite words
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Definition (Nondeterministic Automaton)

A nondeterministic automaton A is a tuple ⟨Q,Σ, I,∆,F⟩where:
• Q is the set of states;
• Σ is the alphabet;
• I ⊆ Q is the set of initial states;
• ∆ ⊆ Q× Σ×Q is the transition relation;
• F ⊆ Q is the set of final states;

A nondeterministic automaton is deterministic iff ∆ is a function, that is:

|∆(q, a)| = 1 for each q ∈ Q, a ∈ Σ

Automata
over finite and infinite words
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Let A be a nondeterministic automaton with alphabet Σ.

Words

• Given a word σ ∈ Σ∗ with
σ = ⟨σ0, σ1, . . . , σn⟩, a run π of A over
σ is a finite sequence of states
⟨q0, q1, . . . , qn+1⟩ ∈ Q∗ such that:
• q0 ∈ I;
• (qi, σi, qi+1) ∈ ∆, for each 0 ≤ i ≤ n

ω-Words

• Given an ω-word σ ∈ Σω with
σ = ⟨σ0, σ1, . . .⟩, a run π of A over σ is
an infinite sequence of states
⟨q0, q1, . . .⟩ ∈ Qω such that:
• q0 ∈ I;
• (qi, σi, qi+1) ∈ ∆, for each i ≥ 0

Finite Automata and Büchi automata
NFA and NBA
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Let A be a nondeterministic automaton with alphabet Σ.

Words

Definition (NFA)

A Nondeterministic Finite Automaton
(NFA, for short) ⟨Q,Σ, I,∆,F⟩ is a
nondeterministic automaton in which a
run π := ⟨π0, . . . , πn+1⟩ ∈ Q∗ is said to be
accepting iff πn+1 ∈ F.

ω-Words

Definition (NBA)

A Nondeterministic Büchi Automaton
(NBA, for short) ⟨Q,Σ, I,∆,F⟩ is a
nondeterministic automaton in which a
run π := ⟨π0, π1, . . .⟩ ∈ Qω is said to be
accepting iff Inf(π) ∩ F ̸= ∅.

Inf(π) is the set of states that occur
infinitely often in the infinite run π.

Finite Automata and Büchi automata
NFA and NBA
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Let A be a nondeterministic automaton with alphabet Σ.

Words

Definition (NFA)

A Nondeterministic Finite Automaton
(NFA, for short) ⟨Q,Σ, I,∆,F⟩ is a
nondeterministic automaton in which a
run π := ⟨π0, . . . , πn+1⟩ ∈ Q∗ is said to be
accepting iff πn+1 ∈ F.

ω-Words

Definition (NBA)

A Nondeterministic Büchi Automaton
(NBA, for short) ⟨Q,Σ, I,∆,F⟩ is a
nondeterministic automaton in which a
run π := ⟨π0, π1, . . .⟩ ∈ Qω is said to be
accepting iff Inf(π) ∩ F ̸= ∅.

A run is accepting for a Büchi automaton
iff it reaches a final state infinitely often.

Finite Automata and Büchi automata
NFA and NBA
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Let A be a nondeterministic automaton with alphabet Σ.

Words

Let A = ⟨Q,Σ, I,∆,F⟩ be an NFA.
• A word σ ∈ Σ∗ is accepted by A iff

there exists at least one accepting
run of A over σ.
• The language of A, denoted as
L<ω(A), is the set of words in Σ∗

accepted by A.

ω-Words

Let A = ⟨Q,Σ, I,∆,F⟩ be an NBA.
• An ω-word σ ∈ Σω is accepted by A

iff there exists at least one accepting
run of A over σ.
• The language of A, denoted as L(A),

is the set of ω-words in Σω accepted
by A.

Finite Automata and Büchi automata
NFA and NBA
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Let A be a nondeterministic automaton with alphabet Σ.

Words

Example

q0 q1A

a, b

b

a

b

L<ω(A) = {σ ∈ Σ∗ |
each a is eventually followed by b}

ω-Words

Example

q0 q1A

a, b

b

a

b

L(A) = {σ ∈ Σω |
each a is eventually followed by b}

Finite Automata and Büchi automata
NFA and NBA
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An important difference

NFA

• A DFA is a deterministic NFA
• NFA are closed under

determinization: for each NFA A there
exists a DFA A′ such that
L<ω(A) = L<ω(A′).
• Subset construction.

NBA

• A DBA is a deterministic NBA
• NBA are not closed under

determinization: there exists a NBA A
for which all DBA A′ are such that
L(A) ̸= L(A′).

Finite Automata and Büchi automata
NFA and NBA
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An important difference

NFA

• A DFA is a deterministic NFA
• NFA are closed under

determinization: for each NFA A there
exists a DFA A′ such that
L<ω(A) = L<ω(A′).
• Subset construction.

NBA

Example

Let Σ := {a, b}. The language
L = {σ ∈ Σω | ∃<ωi . σi = a} is not
accepted by any DBA. However, it is
accepted by the following NBA.

q0 q1

a, b

b

b

Finite Automata and Büchi automata
NFA and NBA
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Theorem (Expressive Equivalence for NBA)

For each ω-language L ⊆ Σω, it holds that:

L is ω-regular
iff

L = L(A) for some NBA A

Theorem (Expressive Equivalence for NFA/DFA)

For each language L ⊆ Σ∗, it holds that:

L is regular
iff

L = L<ω(A) for some NFA/DFA A

Finite Automata and Büchi automata
NFA and NBA
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Reference:
Robert McNaughton (1966). “Testing and generating infinite sequences by a finite
automaton”. In: Information and control 9.5, pp. 521–530. DOI:
10.1016/S0019-9958(66)80013-X

Finite Automata and Büchi automata
NFA and NBA
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ω-Words

ω-RE

S1S

NBAETL

finite
monoids

Characterizations of ω-Regular Languages
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Finite
Words

RE

S1Sf

NFAETLf

finite
monoids

Characterizations of Regular Languages
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• Let A = ⟨Q,Σ, I, δ,F⟩ be a deterministic finite automaton (DFA).
• For each ⟨σ0, σ1, . . . , σn⟩ ∈ Σ∗ and for each q ∈ Q, we define

δ∗(q, ⟨σ0, σ1, . . . , σn⟩) =

{
δ(q, σ0) if n = 0
δ(δ∗(q, ⟨σ0, . . . , σn−1⟩), σn) otherwise

• For any word σ ∈ Σ∗ and any i ∈ N, we define (σ)i as the word obtained from
i concatenations of σ.

Counter-free Automata over finite words
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Definition (Nontrivial cycle)

A word σ ∈ Σ∗ (with σ ̸= ε) defines a
nontrivial cycle in A if there exists a state
q ∈ Q such that:
• δ∗(q, σ) ̸= q
• δ∗(q, (σ)i) = q.

for some i > 1.

Definition (Counter-free DFA)

A DFA A is called counter-free if there are
no words that define a nontrivial cycle.
We denote this class by cf-DFA.

q0

q2

q1

q3

q4

a

b

a

b

a

b

This automaton is not counter-free. The
word ab defines the nontrivial cycle:

q0
ab−→ q4

ab−→ q2
ab−→ q0.

Counter-free Automata over finite words
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• The definition of counter-free
automaton requires a deterministic
automaton.
• NBA are not closed under

determinization.
• We change the type of automata

over ω-words which we work with.
⇒ Rabin Automata

Definition (DRA)

A Deterministic Rabin Automaton (DRA,
for short) is a tuple ⟨Q,Σ, q0, δ,F⟩where

F = ⟨(A1,B1), . . . , (An,Bn)⟩

with Ai,Bi ⊆ Q.
A run π := ⟨π0, π1, . . .⟩ ∈ Qω is said to be
accepting iff there exists some i ∈ [1,n]
such that
• Inf(π) ∩ Bi ̸= ∅ and
• Inf(π) ∩ Ai = ∅.

Counter-free Automata over infinite words
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Theorem
Deterministic Rabin Automata are
equivalent to Nondeterministic Büchi
Automata.

Definition (Counter-free DRA)

A DRA A is called counter-free if there are
no words that define a nontrivial cycle.
We call cf-DRA this class.

Definition (DRA)

A Deterministic Rabin Automaton (DRA,
for short) is a tuple ⟨Q,Σ, q0, δ,F⟩where

F = ⟨(A1,B1), . . . , (An,Bn)⟩

with Ai,Bi ⊆ Q.
A run π := ⟨π0, π1, . . .⟩ ∈ Qω is said to be
accepting iff there exists some i ∈ [1,n]
such that
• Inf(π) ∩ Bi ̸= ∅ and
• Inf(π) ∩ Ai = ∅.

Counter-free Automata over infinite words

33/203 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences



Theorem (Expressive Equivalence for cf-DRA)

For each ω-language L ⊆ Σω, it holds that:

L is star-free
iff

L = L(A) for some cf-DRA A

Theorem (Expressive Equivalence for cf-DFA)

For each language L ⊆ Σ∗, it holds that:

L is star-free
iff

L = L<ω(A) for some cf-DFA A

Counter-free Automata
cf-DFA and cf-DRA
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Reference:
Robert McNaughton and Seymour A Papert (1971). Counter-Free Automata (MIT
research monograph no. 65). The MIT Press

Reference:
Wolfgang Thomas (1979). “Star-free regular sets of ω-sequences”. In: Information
and Control 42.2, pp. 148–156. DOI: 10.1016/S0019-9958(79)90629-6

Reference:
Ina Schiering and Wolfgang Thomas (1996). “Counter-free automata, first-order
logic, and star-free expressions extended by prefix oracles”. In: Developments in
Language Theory, II (Magdeburg, 1995), Worl Sci. Publishing, River Edge, NJ,
pp. 166–175

Counter-free Automata
cf-DFA and cf-DRA
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finite

monoids

Characterizations of ω-Star-free Languages
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Finite
Words

SF

S1S[FO]f

cf-DFALTLf

aperiodic
finite

monoids

Characterizations of Star-free Languages

36/203 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences



Temporal logic is the de-facto standard language for specifying properties of
systems in formal verification and artificial intelligence.
• born in the ’50s as a tool for philosophical argumentation about time

Reference:
Arthur N Prior (2003). Time and modality. John Locke Lecture

• the idea of its use in formal verification can be traced back to the ’70s

Reference:
Amir Pnueli (1977). “The temporal logic of programs”. In: 18th Annual Symposium
on Foundations of Computer Science (sfcs 1977). IEEE, pp. 46–57. DOI:
10.1109/SFCS.1977.32

Temporal Logics
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In artificial intelligence, when do we need to use logic to talk about time?

• automated planning
• temporally extended goals

(Bacchus and Kabanza 1998)
• temporal planning (Fox and Long

2003)
• timeline-based planning (Della

Monica et al. 2017)
• automated synthesis (Jacobs et al.

2017)
• autonomy under uncertainty

(Brafman and De Giacomo 2019)
• specification of goals for planning

over MDPs and POMDPs

• reinforcement learning (De
Giacomo, Favorito, et al. 2020;
Hammond et al. 2021)
• specification of reward functions

and safety conditions

• knowledge representation
• temporal description logics

(Artale, Kontchakov, et al. 2014)

• multi-agent systems
• temporal epistemic logics (van

Benthem et al. 2009)

Temporal logic in AI
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There are many choices to be made for the representation of time.

BranchingLinear

Representing time
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There are many choices to be made for the representation of time.

FiniteInfinite

Representing time
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There are many choices to be made for the representation of time.

t = 1 t = 1.5 t = 2.3 t = 3.4 t = 4.2

Real-timeQualitative

Representing time
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There are many choices to be made for the representation of time.

DenseDiscrete

Representing time
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There are many choices to be made for the representation of time.

We focus here on:
• linear-time
• discrete-time
• qualitative-time
• infinite-time

• sometimes also finite-time

Representing time
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Linear Temporal Logic with Past (LTL+P, for short) is a modal logic.
• introduced by Pnueli in the ’70s
• interpreted over discrete, infinite state sequences (infinite words)
• it extends classical propositional logic
• temporal operators are used to talk about how propositions

change over time

Linear Temporal Logic with Past
LTL+P
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Let AP := {p, q, r, . . .} be a set of atomic propositions. The syntax of LTL+P is
defined as follows:

ϕ := p | ¬ϕ | ϕ ∨ ϕ Boolean Modalities
| Xϕ | ϕ U ϕ Future Temporal Modalities
| Yϕ | ϕ S ϕ Past Temporal Modalities

where p ∈ AP .
• X is called tomorrow (or next)
• U is called until
• Y is called yesterday (or previous)
• S is called since

Linear Temporal Logic with Past
LTL+P Syntax
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• We focus on the infinite-time interpretation of LTL+P.
• Given a set of atomic propositions AP , any LTL+P formula defined over AP

is interpreted over infinite words σ ∈ (2AP)ω.
• In this context, sequences in (2AP)ω are also called state sequences or traces.

AP := {r, g}

{r} {r} {r, g} {r} {r, g} {r}

0 1 2 3 4 5

Linear Temporal Logic with Past
LTL+P Semantics
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We say that σ satisfies at position i the LTL+P formula ϕ, written σ, i |= ϕ, iff:

• σ, i |= p iff p ∈ σi

i

p holds at position i

p

Linear Temporal Logic with Past
LTL+P Semantics
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We say that σ satisfies at position i the LTL+P formula ϕ, written σ, i |= ϕ, iff:

• σ, i |= ¬ϕ iff σ, i ̸|= ϕ

i

ϕ does not hold at position i

¬ϕ

Linear Temporal Logic with Past
LTL+P Semantics
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We say that σ satisfies at position i the LTL+P formula ϕ, written σ, i |= ϕ, iff:

• σ, i |= ϕ1 ∧ ϕ2 iff σ, i |= ϕ1 and σ, i |= ϕ2

i

ϕ1 and ϕ2 hold at position i

ϕ1 ∧ ϕ2

Linear Temporal Logic with Past
LTL+P Semantics
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We say that σ satisfies at position i the LTL+P formula ϕ, written σ, i |= ϕ, iff:

• σ, i |= Xϕ iff σ, i + 1 |= ϕ

i

ϕ holds at the next position of i

ϕ

Linear Temporal Logic with Past
LTL+P Semantics
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We say that σ satisfies at position i the LTL+P formula ϕ, written σ, i |= ϕ, iff:

• σ, i |= ϕ1 U ϕ2 iff ∃j ≥ i . σ, j |= ϕ2 and ∀i ≤ k < j . σ, k |= ϕ1

i

ϕ1 holds until ϕ2 holds

ϕ1 ϕ1 ϕ1

ϕ2

Linear Temporal Logic with Past
LTL+P Semantics
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We say that σ satisfies at position i the LTL+P formula ϕ, written σ, i |= ϕ, iff:

• σ, i |= Yϕ iff i > 0 and σ, i− 1 |= ϕ

i

position i has a predecessor and ϕ holds at the previous position of i

ϕ

Note: σ, 0 |= Yϕ is always false.

Linear Temporal Logic with Past
LTL+P Semantics
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We say that σ satisfies at position i the LTL+P formula ϕ, written σ, i |= ϕ, iff:

• σ, i |= ϕ1 S ϕ2 iff ∃j ≤ i . σ, j |= ϕ2 and ∀j < k ≤ i . σ, k |= ϕ1

i

ϕ1 holds since ϕ2 held

ϕ1ϕ1ϕ1

ϕ2

Linear Temporal Logic with Past
LTL+P Semantics
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Shortcuts:

• (eventually) Fϕ ≡ ⊤ U ϕ

i

ϕ will eventually hold

ϕ

Linear Temporal Logic with Past
LTL+P Shortcuts
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Shortcuts:

• (globally) Gϕ ≡ ¬F¬ϕ

i

ϕ holds always

ϕ ϕ ϕ ϕ ϕ

Linear Temporal Logic with Past
LTL+P Shortcuts
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Shortcuts:

• (once) Oϕ ≡ ⊤ S ϕ

i

ϕ once held

ϕ

Linear Temporal Logic with Past
LTL+P Shortcuts
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Shortcuts:

• (historically) Hϕ ≡ ¬O¬ϕ

i

ϕ holds always in the past

ϕ ϕ ϕ ϕ

Linear Temporal Logic with Past
LTL+P Shortcuts
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Shortcuts:

• (weak yesterday) Ỹϕ ≡ ¬Y¬ϕ

0

ϕ holds at the previous position of i, if any

Ỹϕ

Note: σ, i |= Ỹ⊥ is true iff i = 0.

Linear Temporal Logic with Past
LTL+P Shortcuts
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Definition (Negation Normal Form)

We define the nnf(·) : LTL→ LTL (Negation Normal Form) function as follows:
• nnf(p) = p
• nnf(ϕ1 ∧ ϕ2) = nnf(ϕ1) ∧ nnf(ϕ2)

• nnf(ϕ1 ∨ ϕ2) = nnf(ϕ1) ∨ nnf(ϕ2)

• nnf(Xϕ) = X(nnf(ϕ))
• nnf(ϕ1 U ϕ2) = (nnf(ϕ1)) U (nnf(ϕ2))

• nnf(ϕ1 R ϕ2) = (nnf(ϕ1)) R (nnf(ϕ2))

For any ϕ ∈ LTL, the formula nnf(ϕ) has negation only applied to atomic propositions.

Linear Temporal Logic with Past
Negation Normal Form
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Definition (Negation Normal Form)

We define the nnf(·) : LTL→ LTL (Negation Normal Form) function as follows:
• nnf(¬p) = ¬p
• nnf(¬¬ϕ) = nnf(ϕ)
• nnf(¬(ϕ1 ∧ ϕ2)) = nnf(¬ϕ1) ∨ nnf(¬ϕ2)

• nnf(¬(ϕ1 ∨ ϕ2)) = nnf(¬ϕ1) ∧ nnf(¬ϕ2)

• nnf(¬Xϕ) = X(nnf(¬ϕ))
• nnf(¬(ϕ1 U ϕ2)) = (nnf(¬ϕ1)) R (nnf(¬ϕ2))

• nnf(¬(ϕ1 R ϕ2)) = (nnf(¬ϕ1)) U (nnf(¬ϕ2))

For any ϕ ∈ LTL, the formula nnf(ϕ) has negation only applied to atomic propositions.

Linear Temporal Logic with Past
Negation Normal Form
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• We say that σ satisfies ϕ (written σ |= ϕ) iff σ, 0 |= ϕ.
• For any LTL+P formula ϕ, we define the language of ϕ over infinite words as:

L(ϕ) = {σ ∈ (2AP)ω | σ |= ϕ}

• We say that ϕ is satisfiable iff L(ϕ) ̸= ∅.
• We say that ϕ is valid iff L(ϕ) = (2AP)ω.

Linear Temporal Logic with Past
LTL+P Languages
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Example:

Each request (r) is eventually followed by a grant (g).

G(r→ F(g))

Example:

Each grant (g) is preceeded by a request (r).

G(g→ O(r)))

Linear Temporal Logic with Past
Examples
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LTL+P over finite words is interpreted over finite state sequences σ ∈ (2AP)+, that is
finite, nonempty sequences of subsets of AP .
For the interpretation of LTL+P over finite words it suffices to consider the
following cases:

• σ, i |= Xϕ iff i < |σ| − 1 and σ, i + 1 |= ϕ

i

ϕ hold at the next position of i

ϕ

Note: σ, n |= Xϕ is always false when n = |σ| − 1.

Linear Temporal Logic with Past
On Finite Words
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LTL+P over finite words is interpreted over finite state sequences σ ∈ (2AP)+, that is
finite, nonempty sequences of subsets of AP .
For the interpretation of LTL+P over finite words it suffices to consider the
following cases:

• σ, i |= ϕ1 U ϕ2 iff ∃i ≤ j < |σ| . σ, j |= ϕ2 and ∀i ≤ k < j . σ, k |= ϕ1

i

ϕ1 holds until ϕ2 holds

ϕ1 ϕ1 ϕ1

ϕ2

Linear Temporal Logic with Past
On Finite Words
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Shortcuts:

• (weak tomorrow) X̃ϕ ≡ ¬X¬ϕ

σ, i |= X̃ϕ iff (i < |σ| − 1 implies σ, i + 1 |= ϕ)

i

ϕ holds at the next position of i, if any

ϕ

• Note: σ, i |= X̃⊥ is true iff i = |σ| − 1.
• Note: over infinite traces, X and X̃ coincide.

Linear Temporal Logic with Past
LTL+P Shortcuts over finite traces
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• We say that σ satisfies ϕ (written σ |= ϕ) iff σ, 0 |= ϕ.
• For any LTL+P formula ϕ, we define the language of ϕ over finite words as:

L<ω(ϕ) = {σ ∈ (2AP)+ | σ |= ϕ}

Linear Temporal Logic with Past
LTL+P Semantics over finite traces
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Words

• We denote with LTLf+P the set of
formulas of LTL+P that we will
interpret on finite words

• We denote with LTLf the set of
formulas of LTLf+P devoid of past
temporal operators.
• Given a logic L (e.g., LTLf or

LTLf+P), we denote with
JLK<ω = {L<ω(ϕ) | ϕ ∈ L}

ω-Words

• We denote with LTL+P the set of
formulas of LTL+P that we will
interpret on infinite words

• We denote with LTL the set of
formulas of LTL+P devoid of past
temporal operators.

• Given a logic L (e.g., LTL or LTLf),
we denote with
JLK = {L(ϕ) | ϕ ∈ L}

Linear Temporal Logic with Past
Notation
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Words

• We denote with LTLf+P the set of
formulas of LTL+P that we will
interpret on finite words
• We denote with LTLf the set of

formulas of LTLf+P devoid of past
temporal operators.

• Given a logic L (e.g., LTLf or
LTLf+P), we denote with
JLK<ω = {L<ω(ϕ) | ϕ ∈ L}

ω-Words

• We denote with LTL+P the set of
formulas of LTL+P that we will
interpret on infinite words
• We denote with LTL the set of

formulas of LTL+P devoid of past
temporal operators.

• Given a logic L (e.g., LTL or LTLf),
we denote with
JLK = {L(ϕ) | ϕ ∈ L}

Linear Temporal Logic with Past
Notation
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Words

• We denote with LTLf+P the set of
formulas of LTL+P that we will
interpret on finite words
• We denote with LTLf the set of

formulas of LTLf+P devoid of past
temporal operators.
• Given a logic L (e.g., LTLf or

LTLf+P), we denote with
JLK<ω = {L<ω(ϕ) | ϕ ∈ L}

ω-Words

• We denote with LTL+P the set of
formulas of LTL+P that we will
interpret on infinite words
• We denote with LTL the set of

formulas of LTL+P devoid of past
temporal operators.
• Given a logic L (e.g., LTL or LTLf),

we denote with
JLK = {L(ϕ) | ϕ ∈ L}

Linear Temporal Logic with Past
Notation
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Theorem

• JLTLf+PK<ω = JLTLfK<ω

• JLTL+PK = JLTLK

Reference:
Dov M. Gabbay et al. (1980). “On the Temporal Analysis of Fairness”. In:
Conference Record of the Seventh Annual ACM Symposium on Principles of
Programming Languages, Las Vegas, Nevada, USA, January 1980. Ed. by
Paul W. Abrahams, Richard J. Lipton, and Stephen R. Bourne. ACM Press,
pp. 163–173. URL: https://doi.org/10.1145/567446.567462

Linear Temporal Logic with Past
Past modalities do not add expressive power
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Definition (Pure-past LTL)

Pure-past LTL (pLTL, for short) is the set of LTL+P formulas devoid of future
operators.

Example:

p ∧ O(q ∧ O(p ∧ Ỹ⊥))

pLTL formulas are naturally interpreted on the last position of a finite trace.

p ∧ O(q ∧ O(p ∧ Ỹ⊥))q ∧ O(p ∧ Ỹ⊥)p ∧ Ỹ⊥

Pure-past LTL
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Theorem
JpLTLK<ω = JLTLfK<ω

Reference:
Orna Lichtenstein, Amir Pnueli, and Lenore Zuck (1985). “The glory of the past”.
In: Workshop on Logic of Programs. Springer, pp. 196–218. DOI:
10.1007/3-540-15648-8_16

Reference:
Lenore Zuck (1986). “Past temporal logic”. In: Weizmann Institute of Science 67

Pure-past LTL
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Theorem (Kamp’s Theorem over ω-words)

• For each LTL+P formula ϕ, there exists an S1S[FO] formula ψ such that
L(ϕ) = L(ψ).
• For each S1S[FO] formula ψ, there exists an LTL+P formula ϕ such that
L(ψ) = L(ϕ).

Theorem (Kamp’s Theorem over finite words)

• For each LTL+P formula ϕ, there exists an S1S[FO] formula ψ such that
L<ω(ϕ) = L<ω(ψ).
• For each S1S[FO] formula ψ(x), there exists an LTL+P formula ϕ such that
L<ω(ψ) = L<ω(ϕ).

Linear Temporal Logic with Past
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Reference:
Johan Anthony Wilem Kamp (1968). “Tense logic and the theory of linear order”.
In

Reference:
Dov M. Gabbay et al. (1980). “On the Temporal Analysis of Fairness”. In:
Conference Record of the Seventh Annual ACM Symposium on Principles of
Programming Languages, Las Vegas, Nevada, USA, January 1980. Ed. by
Paul W. Abrahams, Richard J. Lipton, and Stephen R. Bourne. ACM Press,
pp. 163–173. URL: https://doi.org/10.1145/567446.567462

Linear Temporal Logic with Past
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Characterizations of Star-free Languages
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We have seen that LTL+P captures star-free ω-regular languages.
In order to capture all ω-regular languages, one can consider Extended Linear
Temporal Logic (ETL, for short).

ETL = LTL + operators corresponding to right-linear grammars

Reference:
Pierre Wolper (1983). “Temporal logic can be more expressive”. In: Information and
control 56.1-2, pp. 72–99. DOI: 10.1016/S0019-9958(83)80051-5

Extended Linear Temporal Logic with Past
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ω-Words

ω-RE

S1S

NBAETL

finite
monoids

Characterizations of ω-Regular Languages
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Finite
Words

RE

S1Sf

NFAETLf

finite
monoids

Characterizations of Regular Languages
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ω-REG
S1S
NBA
ETL

ω-SF
S1S[FO]

cf-DRA
LTL

Set-theoretic view of ω-regular and star-free languages
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THE SAFETY FRAGMENT
OF ω-REGULAR LANGUAGES



In this part, we will mainly deal with language of infinite words and with logics
interpreted over infinite words.

The Safety Fragment
of ω-regular languages
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Informal definitions:

Safety properties express the fact that ”something bad never happens”.

E.g.: a deadlock or a simultaneous access to a critical section.

Any violation of a safety property is irremediable.

E.g.: once a deadlock occured, we don’t have any hope to do better.

Any violation of a safety property has a finite witness.

The Safety Fragment
of ω-regular languages

64/203 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences



Notation:
• For any i ∈ N, σ[0,i] is the prefix of σ

up to position i.
• for any σ ∈ Σ∗ and for any σ ∈ Σω,
σ · σ′ is the concatenation of σ′ to the
end of σ.

Definition (Safety Property)

L ⊆ Σω is a safety property iff, for all
σ ̸∈ L, there exists an position i ∈ N such
that σ[0,i] · σ′ ̸∈ L, for all σ′ ∈ Σω.

σ[0,i] is called the bad prefix of σ.

Σω

L

deadlock

The Safety Fragment
of ω-regular languages
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Examples

• b · (a)ω is a safety language.
• “The set of infinite words in which each

‘a’ is followed by some ‘b’ ” is not a
safety language.

• We denote with bad(L) the set of
bad prefixes of L.
• For any safety language L, it holds

that:
L = bad(L) · Σω

Σω

L

deadlock

The coSafety Fragment
of ω-regular languages
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Definition (Cosafety Property)

L ⊆ Σω is a cosafety property iff for all
σ ∈ L, there exists an position i ∈ N such
that σ[0,i] · σ′ ∈ L, for all σ′ ∈ Σω.

σ[0,i] is called the good prefix of σ.

Notation: for any L ⊆ Σω, we denote
with L the complement of L.

Property:

L is a cosafety property iff L is a safety
property.

Σω

L

termination

The Safety Fragment
of ω-regular languages
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Examples

• “The set of infinite words in which there
is an ‘a’ that is followed by some ‘b’ ” is
a cosafety language.
• “The set of infinite words in which each

‘a’ is followed by some ‘b’ ” is not a
cosafety language.

• We denote with good(L) the set of
good prefixes of L.
• For any cosafety language L, it

holds that:
L = good(L) · Σω

Σω

L

termination

The Safety Fragment
of ω-regular languages
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We denote with coSAFETY the set of all
cosafety ω-regular languages.

Σω

L

termination

We denote with SAFETY the set of all
safety ω-regular languages.

Σω

L

deadlock

The Safety Fragment
of ω-regular languages
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We denote with coSAFETY the set of all
cosafety ω-regular languages.

ω-Regular Expressions

coSAFETY is characterized by the
following type of ω-regular expressions:

K · Σω

where K ∈ REG.

We denote with SAFETY the set of all
safety ω-regular languages.

ω-Regular Expressions

SAFETY is characterized by the
following type of ω-regular expressions:

K · Σω

where K ∈ REG.

The Safety Fragment
of ω-regular languages
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We denote with coSAFETY the set of all
cosafety ω-regular languages.

Automata

coSAFETY is characterized by the
following type of automata: terminal
deterministic Büchi automata (tDBA, for
short), that is DBAs in which each final
state has self-loop labeled with each
letter in Σ.

q0

q1

q2

a

b

∗

∗

L = {a, b} · Σω

We denote with SAFETY the set of all
safety ω-regular languages.

Automata

SAFETY is characterized by the
following type of automata: deterministic
safety automata (DSA, for short).
Accepting condition: visit only final
states.

q0 q1 q2

a

b

c

∗

L = (ab)ω

The Safety Fragment
of ω-regular languages
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We denote with coSAFETY the set of all
cosafety ω-regular languages.

Automata

coSAFETY is characterized by the
following type of automata: terminal
deterministic Büchi automata (tDBA, for
short), that is DBAs in which each final
state has self-loop labeled with each
letter in Σ.

q0

q1

q2

a

b

∗

∗

L = {a, b} · Σω

We denote with SAFETY the set of all
safety ω-regular languages.

Automata

SAFETY is characterized by the
following type of automata: deterministic
safety automata (DSA, for short).
Accepting condition: visit only final
states.

A DSA is a DRA
A = ⟨Q,Σ, q0, δ, ⟨(A1,B1), . . . , (An,Bn)⟩⟩
such that Bi = Q \ Ai, for each i ∈ [1,n].

The Safety Fragment
of ω-regular languages
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We denote with coSAFETY the set of all
cosafety ω-regular languages.

S1S

To the best of our knowledge, no
characterizations of coSAFETY in terms
of S1S have been studied.

We denote with SAFETY the set of all
safety ω-regular languages.

S1S

To the best of our knowledge, no
characterizations of SAFETY in terms of
S1S have been studied.

The Safety Fragment
of ω-regular languages
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We denote with coSAFETY the set of all
cosafety ω-regular languages.

Temporal Logics

To the best of our knowledge, no
characterizations of coSAFETY in terms
of temporal logics have been studied.

We denote with SAFETY the set of all
safety ω-regular languages.

Temporal Logics

To the best of our knowledge, no
characterizations of SAFETY in terms of
temporal logics have been studied.

The Safety Fragment
of ω-regular languages
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ω-REG
S1S
NBA
ETL

ω-SF
S1S[FO]

cf-DRA
LTL

Set-theoretic view of (co)safety ω-languages
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ω-REG
S1S
NBA
ETL

ω-SF
S1S[FO]

cf-DRA
LTL

coSAFETY (K · Σω)
???

tDBA
???

Set-theoretic view of (co)safety ω-languages
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ω-REG
S1S
NBA
ETL

ω-SF
S1S[FO]

cf-DRA
LTL

coSAFETY (K · Σω)
???

tDBA
???

SAFETY (K · Σω)
???

DSA
???

Set-theoretic view of (co)safety ω-languages
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Informal definitions:

In a liveness property, no partial execution is irremediable.

E.g.: “each request is eventually follows by a grant” is a liveness property.

Definition (Liveness Property)

L ⊆ Σω is a liveness property iff, for all σ ∈ Σ∗, there exists a σ′ ∈ Σω such that
σ · σ′ ∈ L.

Examples:

• “The set of infinite words in which each ‘a’ is followed by some ‘b’ ” is a liveness
language.
• b · (a)ω is not a liveness language.

The Liveness Fragment
of ω-regular languages

68/203 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences



Theorem (Alpern & Schneider (1987))

Each ω-regular property is the intersection of a safety property and a liveness property.

Reference:
Bowen Alpern and Fred B. Schneider (1987). “Recognizing Safety and Liveness”.
In: Distributed Comput. 2.3, pp. 117–126. DOI: 10.1007/BF01782772. URL:
https://doi.org/10.1007/BF01782772

The Liveness Fragment
of ω-regular languages
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Theorem (Alpern & Schneider (1987))

Each ω-regular property is the intersection of a safety property and a liveness property.

This decomposition can be performed effectively:

Given a NBA A, there is an algorithm to build two NBA As and Al such that:
• L(As) is safety;
• L(Al) is liveness;
• L(A) = L(As) ∩ L(Al).

The Liveness Fragment
of ω-regular languages
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ω-REG
S1S
NBA
ETL

ω-SF
S1S[FO]

cf-DRA
LTL

coSAFETY (K · Σω)
???

tDBA
???

SAFETY (K · Σω)
???

DSA
???

Set-theoretic view of (co)safety ω-languages
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ω-REG
S1S
NBA
ETL

ω-SF
S1S[FO]

cf-DRA
LTL

coSAFETY (K · Σω)
???

tDBA
???

SAFETY (K · Σω)
???

DSA
???

Set-theoretic view of (co)safety ω-languages
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ω-REG
S1S
NBA
ETL

ω-SF
S1S[FO]

cf-DRA
LTL

coSAFETY (K · Σω)
???

tDBA
???

SAFETY (K · Σω)
???

DSA
???

Set-theoretic view of (co)safety ω-languages
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THE SAFETY FRAGMENT OF
LTL

AND ITS THEORETICAL FEATURES



Definition
The cosafety fragment of LTL is the set of languages in this set:

JLTLK ∩ coSAFETY

We will see four characterizations in terms of:

• regular expressions
• first-order logic

• automata
• temporal logic

The cosafety fragment of LTL
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Definition
The cosafety fragment of LTL is the set of languages in this set:

JLTLK ∩ coSAFETY

ω-regular expressions

SF · Σω = {K · Σω | K ∈ SF}
• the "SF " part corresponds to LTL
• the "·Σω" part corresponds to being a cosafety fragment

Ina Schiering and Wolfgang Thomas (1996). “Counter-free automata, first-order logic, and star-free expressions
extended by prefix oracles”. In: Developments in Language Theory, II (Magdeburg, 1995), Worl Sci. Publishing, River
Edge, NJ, pp. 166–175

The cosafety fragment of LTL
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Definition
The cosafety fragment of LTL is the set of languages in this set:

JLTLK ∩ coSAFETY

First-order logic

We define coSafety-FO as the fragment of S1S[FO] in which quantifiers are
bounded as follows:
• ∃y . (x < y ∧ . . . )
• ∀y . (x < y < z→ . . . )

Alessandro Cimatti et al. (2022). “A first-order logic characterisation of safety and co-safety languages”. In: Foundations of Software Science and
Computation Structures - 25th International Conference, FOSSACS 2022, Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceedings. Ed. by Patricia Bouyer and Lutz Schröder. Vol. 13242. Lecture Notes in Computer Science.
Springer, pp. 244–263. DOI: 10.1007/978-3-030-99253-8\_13. URL: https://doi.org/10.1007/978-3-030-99253-8%5C_13

The cosafety fragment of LTL
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Definition
The cosafety fragment of LTL is the set of languages in this set:

JLTLK ∩ coSAFETY

First-order logic

Example

ϕ(x) := ∃y . (x < y ∧ P(y) ∧ ∀z . (x < z < y→ Q(z)))

The cosafety fragment of LTL
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Definition
The cosafety fragment of LTL is the set of languages in this set:

JLTLK ∩ coSAFETY

First-order logic

• the "first-order" part corresponds to LTL
• the "bounded quantifiers" part corresponds to being a cosafety fragment

The cosafety fragment of LTL
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Definition
The cosafety fragment of LTL is the set of languages in this set:

JLTLK ∩ coSAFETY

Automata

cf-tDBA = counter-free terminal DBA
• the "counter-free" part corresponds to LTL
• the "terminal" part corresponds to being a cosafety fragment

Ina Schiering and Wolfgang Thomas (1996). “Counter-free automata, first-order logic, and star-free expressions
extended by prefix oracles”. In: Developments in Language Theory, II (Magdeburg, 1995), Worl Sci. Publishing, River
Edge, NJ, pp. 166–175

The cosafety fragment of LTL
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ω-REG
S1S
NBA
ETL

ω-SF
S1S[FO]

cf-DRA
LTL

coSAFETY (K · Σω)
???

tDBA
???

SAFETY (K · Σω)
???

DSA
???

SF · Σω

coSafety-FO

cf-tDBA
coSafetyLTL, F(pLTL)

Set-theoretic view of the (co)safety fragment of LTL
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Temporal Logics

We say that a temporal logic L is cosafety iff, for any ϕ ∈ L, L(ϕ) is cosafety.

coSafetyLTL

Definition
ϕ := p | ¬p | ϕ ∨ ϕ | ϕ ∧ ϕ | Xϕ | Fϕ | ϕ U ϕ

Example:

p U q

F(pLTL)

Definition
ϕ := F(α), where α ∈ pLTL, that is α is a
pure-past LTL formula.

Example:

F(q ∧ ỸHp)

F(pLTL) is the canonical form of
coSafetyLTL.

The cosafety fragment of LTL
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Theorem

• coSafetyLTL and F(pLTL) are expressively equivalent.
• coSafetyLTL and F(pLTL) are expressively complete w.r.t. JLTLK ∩ coSAFETY.

Reference:
Edward Y. Chang, Zohar Manna, and Amir Pnueli (1992). “Characterization of
Temporal Property Classes”. In: Proceedings of the 19th International Colloquium on
Automata, Languages and Programming. Ed. by Werner Kuich. Vol. 623. Lecture
Notes in Computer Science. Springer, pp. 474–486. DOI:
10.1007/3-540-55719-9\_97

The cosafety fragment of LTL

74/203 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences

https://doi.org/10.1007/3-540-55719-9\_97


ω-REG
S1S
NBA
ETL

ω-SF
S1S[FO]

cf-DRA
LTL

coSAFETY (K · Σω)
???

tDBA
???

SAFETY (K · Σω)
???

DSA
???

SF · Σω

coSafety-FO

cf-tDBA
coSafetyLTL, F(pLTL)

Set-theoretic view of (co)safety ω-languages
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Proposition

JcoSafetyLTLK<ω ⊊ JLTLK<ω

Proof.

• It is simple to prove that, for all ϕ ∈ coSafetyLTL, L<ω(ϕ) = L<ω(ϕ) · Σ∗. In
particular, | L<ω(ϕ)| = ω for all ϕ ∈ coSafetyLTL.
• In LTLf we can use the weak tomorrow operator to hook the last position of a

finite word.

ψ := p ∧ X̃⊥

The formula ψ is such that | L<ω(ψ)| = 1. Therefore, it can’t be expressed in
coSafetyLTL over finite words.

The cosafety fragment of LTL
Link with LTLf
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Proposition

JcoSafetyLTLK<ω ⊊ JLTLK<ω

Proposition

JcoSafetyLTLK<ω · (2Σ)ω = JLTLK<ω · (2Σ)ω

The cosafety fragment of LTL
Link with LTLf
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Reference:
Alessandro Cimatti et al. (2022). “A first-order logic characterisation of safety and
co-safety languages”. In: Foundations of Software Science and Computation Structures
- 25th International Conference, FOSSACS 2022, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2022, Munich, Germany, April
2-7, 2022, Proceedings. Ed. by Patricia Bouyer and Lutz Schröder. Vol. 13242.
Lecture Notes in Computer Science. Springer, pp. 244–263. DOI:
10.1007/978-3-030-99253-8\_13. URL:
https://doi.org/10.1007/978-3-030-99253-8%5C_13

The cosafety fragment of LTL
Link with LTLf
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JLTLK ∩ coSAFETY
=

JcoSafetyLTLK
=

JF(pLTL)K
=

JcoSafetyLTLK<ω · (2Σ)ω

=

JLTLK<ω · (2Σ)ω

The cosafety fragment of LTL
Link with LTLf
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Definition
The safety fragment of LTL is the set of languages in this set:

JLTLK ∩ SAFETY

We will see four characterizations in terms of:

• regular expressions
• first-order logic

• automata
• temporal logic

The safety fragment of LTL
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Definition
The safety fragment of LTL is the set of languages in this set:

JLTLK ∩ SAFETY

ω-regular expressions

SF · Σω = {K · Σω | K ∈ SF}
• the "SF " part corresponds to LTL
• the "·Σω" part corresponds to being a safety fragment

Ina Schiering and Wolfgang Thomas (1996). “Counter-free automata, first-order logic, and star-free expressions
extended by prefix oracles”. In: Developments in Language Theory, II (Magdeburg, 1995), Worl Sci. Publishing, River
Edge, NJ, pp. 166–175

The safety fragment of LTL
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Definition
The safety fragment of LTL is the set of languages in this set:

JLTLK ∩ SAFETY

First-order logic

We define Safety-FO as the fragment of S1S[FO] in which quantifiers are bounded
as follows:
• ∃y . (x < y < z ∧ . . . )
• ∀y . (x < y→ . . . )

Alessandro Cimatti et al. (2022). “A first-order logic characterisation of safety and co-safety languages”. In: Foundations of Software Science and
Computation Structures - 25th International Conference, FOSSACS 2022, Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceedings. Ed. by Patricia Bouyer and Lutz Schröder. Vol. 13242. Lecture Notes in Computer Science.
Springer, pp. 244–263. DOI: 10.1007/978-3-030-99253-8\_13. URL: https://doi.org/10.1007/978-3-030-99253-8%5C_13

The safety fragment of LTL
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Definition
The safety fragment of LTL is the set of languages in this set:

JLTLK ∩ SAFETY

First-order logic

Example

ϕ(x) := ∀y . ((x < y ∧ G(y))→ ∃z . (x < z < y ∧ R(z)))

The safety fragment of LTL
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Definition
The safety fragment of LTL is the set of languages in this set:

JLTLK ∩ SAFETY

First-order logic

• the "first-order" part corresponds to LTL
• the "bounded quantifiers" part corresponds to being a safety fragment

The safety fragment of LTL

79/203 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences



Definition
The safety fragment of LTL is the set of languages in this set:

JLTLK ∩ SAFETY

Automata

cf-DSA = counter-free DSA
• the "counter-free" part corresponds to LTL
• the "DSA " part corresponds to being a safety fragment

Ina Schiering and Wolfgang Thomas (1996). “Counter-free automata, first-order logic, and star-free expressions
extended by prefix oracles”. In: Developments in Language Theory, II (Magdeburg, 1995), Worl Sci. Publishing, River
Edge, NJ, pp. 166–175

The safety fragment of LTL
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ω-REG
S1S
NBA
ETL

ω-SF
S1S[FO]

cf-DRA
LTL

coSAFETY (K · Σω)
???

tDBA
???

SAFETY (K · Σω)
???

DSA
???

SF · Σω

coSafety-FO

cf-tDBA
coSafetyLTL, F(pLTL)

SF · Σω

Safety-FO

cf-DSA
SafetyLTL, G(pLTL)

Set-theoretic view of the (co)safety fragment of LTL

80/203 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences



Temporal Logics

We say that a temporal logic L is safety iff, for any ϕ ∈ L, L(ϕ) is safety.

SafetyLTL

Definition
ϕ := p | ¬p | ϕ ∨ ϕ | ϕ ∧ ϕ | Xϕ | Gϕ | ϕ R ϕ

Example:

G(r→ XXg)

G(pLTL)

Definition
ϕ := G(α), where α ∈ pLTL, that is α is a
pure-past LTL formula.

Example:

G(ỸỸr→ g)

G(pLTL) is the canonical form of
SafetyLTL.

The safety fragment of LTL
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Proposition

• ϕ ∈ SafetyLTL iff nnf(¬ϕ) ∈ coSafetyLTL
• ϕ ∈ G(pLTL) iff nnf(¬ϕ) ∈ F(pLTL)

The cosafety fragment of LTL
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Theorem

• SafetyLTL and G(pLTL) are expressively equivalent.
• SafetyLTL and G(pLTL) are expressively complete w.r.t. JLTLK ∩ SAFETY.

Reference:
Edward Y. Chang, Zohar Manna, and Amir Pnueli (1992). “Characterization of
Temporal Property Classes”. In: Proceedings of the 19th International Colloquium on
Automata, Languages and Programming. Ed. by Werner Kuich. Vol. 623. Lecture
Notes in Computer Science. Springer, pp. 474–486. DOI:
10.1007/3-540-55719-9\_97

The cosafety fragment of LTL
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Set-theoretic view of (co)safety ω-languages
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Set-theoretic view of (co)safety ω-languages
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• We denote with B the set of Boolean formulas.
• We denote with LTL[X] the set of LTL formulas in which the only temporal

operator that is used is the tomorrow (X).

Proposition

• B ⊆ LTL ∩ coSAFETY ∩ SAFETY
• LTL[X] ⊆ LTL ∩ coSAFETY ∩ SAFETY

LTL ∩ coSAFETY ∩ SAFETY
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Cosafety

• We denote with LTL[X,F] the set of
coSafetyLTL formulas in which the
only temporal operators that are
used are the tomorrow (X) and the
eventually (F).
• Clearly, LTL[X,F] is a cosafety logic,

but it is strictly less expressive than
coSafetyLTL.

Proposition

JLTL[X,F]K ⊊ JcoSafetyLTLK

E.g. p U q is not definable in LTL[X,F].

Safety

• We denote with LTL[X,G] the set of
SafetyLTL formulas in which the
only temporal operators that are
used are the tomorrow (X) and the
globally (G).
• Clearly, LTL[X,G] is a safety logic,

but it is strictly less expressive than
SafetyLTL.

Proposition

JLTL[X,G]K ⊊ JSafetyLTLK

E.g. p R q is not definable in LTL[X,G].

Other safety and cosafety fragments
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Reactivity⋃∞
n=1(

∧n
i=1(GFαi ∨ FGβi) )

Liveness
GFα

Persistence
FGα

Obligation⋃∞
n=1(

∧n
i=1(Gαi ∨ Fβi) )

Cosafety
Fα

Safety
Gα

Legend:
• α, αi, β, βi are

pure-past LTL
formulas (pLTL)

• → denotes set
inclusion

Theorem
Reactivity = JLTLK

Zohar Manna and Amir Pnueli (1990). “A hierarchy of temporal properties (invited paper, 1989)”. In: Proceedings
of the 9th annual ACM symposium on Principles of distributed computing, pp. 377–410. DOI: 10.1145/93385.93442

The Temporal Hierarchy
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Kupferman and Vardi’s
Classification of the safety

properties of LTL



Consider the formula G(p). The
following trace is a bad prefix:

{p} {p} {p} {p} ∅

Recall that σ ∈ Σ∗ is a bad prefix for a
language L iff σ · σ′ ̸∈ L, for all σ′ ∈ Σω.

Classification of Safety Properties
by Kupferman and Vardi
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Consider the formula G(p). The
following trace is a bad prefix:

{p} {p} {p} {p} ∅

Recall that σ ∈ Σ∗ is a bad prefix for a
language L iff σ · σ′ ̸∈ L, for all σ′ ∈ Σω.
Consider now the formula
G(p ∨ (Xq ∧ X¬q)).
• it is equivalent to G(p)
• therefore, it is a safety formula
• its set of bad prefixes is the same as

the one of G(p)

Classification of Safety Properties
by Kupferman and Vardi
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Consider the formula G(p). The
following trace is a bad prefix:

{p} {p} {p} {p} ∅

Recall that σ ∈ Σ∗ is a bad prefix for a
language L iff σ · σ′ ̸∈ L, for all σ′ ∈ Σω.
Consider now the formula
G(p ∨ (Xq ∧ X¬q)).
• it is equivalent to G(p)
• therefore, it is a safety formula
• its set of bad prefixes is the same as

the one of G(p)

Nevertheless, the previous prefix does
not tell the whole story about the
violation of G(p ∨ (Xq ∧ X¬q)). In fact:
• Negation of the above formula:

F(¬p ∧ (X¬q ∨ Xq))
• Any violation depends on the fact

that at certain point:
• p is false and
• in the next state q or ¬q holds. (this

is always true)
• In the previous prefix, the point in

which ¬p holds does not have a
successor:
• the prefix is not informative

Classification of Safety Properties
by Kupferman and Vardi

89/203 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences



Consider the formula G(p). The
following trace is a bad prefix:

{p} {p} {p} {p} ∅

Recall that σ ∈ Σ∗ is a bad prefix for a
language L iff σ · σ′ ̸∈ L, for all σ′ ∈ Σω.
Consider now the formula
G(p ∨ (Xq ∧ X¬q)).
• it is equivalent to G(p)
• therefore, it is a safety formula
• its set of bad prefixes is the same as

the one of G(p)

Nevertheless, the previous prefix does
not tell the whole story about the
violation of G(p ∨ (Xq ∧ X¬q)). In fact:
• Negation of the above formula:

F(¬p ∧ (X¬q ∨ Xq))

• This prefix is informative for the
formula:

{p} {p} {p} {p} ∅ ∅

Classification of Safety Properties
by Kupferman and Vardi
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• Consider the specification:

G(p ∨ (Xq ∧ ϕ ∧ X¬q))

where ϕ is a very complex Boolean
formula.
• If the user is given the prefix

{p} {p} {p} {p} ∅

then it is very hard for him/her to
notice that the specification contains
a reduntant part (Xq ∧ X¬q).

• If instead the user is given this prefix

{p} {p} {p} {p} ∅ ∅

then he/she
• notice that the state in which ¬p

holds has a successor
• inspect the parts of the

specification that talk about the
successor state (Xq ∧ X¬q)

• notice that they are redundant
• and finally remove them.

Classification of Safety Properties
by Kupferman and Vardi
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• This intuition of a prefix that ”tells the whole story” is the base for a
classification of safety properties in three distinct safety levels.
• This intuition is formalized by defining the notion of informative prefix

• it is based on the semantics of LTL over finite traces

Reference:
Orna Kupferman and Moshe Y Vardi (2001). “Model checking of safety
properties”. In: Formal Methods in System Design 19.3, pp. 291–314. DOI:
10.1023/A:1011254632723

Classification of Safety Properties
by Kupferman and Vardi
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Usage:
• Detect the cause of unconsistent specifications:

• e.g.: in formulas like G(p ∨ (Xq ∧ ϕ ∧ X¬q)), the cause of unconsistency may not
be easy to notice by the user, especially in more complicated examples

• Efficient automata construction
• The automaton that recognizes all and only the informative prefixes of a

formula is exponentially smaller than the automaton recognizing all and only the
bad prefixes.

• ⇒ Efficient algorithms for model checking

Reference:
Orna Kupferman and Moshe Y Vardi (2001). “Model checking of safety
properties”. In: Formal Methods in System Design 19.3, pp. 291–314. DOI:
10.1023/A:1011254632723

Classification of Safety Properties
by Kupferman and Vardi
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Recall that nnf(ψ) is the negation normal form of ψ, that is, a formula equivalent to
ψ but with negations only applied to atomic propositions.

We define a new semantics for LTL interpreted over finite traces, that we denote
with |=KV.
• σ, i |=KV p iff p ∈ σi

• σ, i |=KV ϕ1 ∨ ϕ2 iff σ, i |=KV ϕ1 or σ, i |=KV ϕ2

• σ, i |=KV ϕ1 ∧ ϕ2 iff σ, i |=KV ϕ1 and σ, i |=KV ϕ2

• σ, i |=KV Xϕ iff i + 1 < |σ| and σ, i + 1 |=KV ϕ

Classification of Safety Properties
by Kupferman and Vardi

92/203 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences



Recall that nnf(ψ) is the negation normal form of ψ, that is, a formula equivalent to
ψ but with negations only applied to atomic propositions.

We define a new semantics for LTL interpreted over finite traces, that we denote
with |=KV.
• σ, i |=KV p iff p ∈ σi

• σ, i |=KV ϕ1 ∨ ϕ2 iff σ, i |=KV ϕ1 or σ, i |=KV ϕ2

• σ, i |=KV ϕ1 ∧ ϕ2 iff σ, i |=KV ϕ1 and σ, i |=KV ϕ2

• σ, i |=KV Xϕ iff i + 1 < |σ| and σ, i + 1 |=KV ϕ

• σ, i |=KV Fϕ iff ∃i ≤ j < |σ| and σ, j |=KV ϕ

• σ, i |=KV Gϕ is always false

Classification of Safety Properties
by Kupferman and Vardi
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Recall that nnf(ψ) is the negation normal form of ψ, that is, a formula equivalent to
ψ but with negations only applied to atomic propositions.

We define a new semantics for LTL interpreted over finite traces, that we denote
with |=KV.
• σ, i |=KV p iff p ∈ σi

• σ, i |=KV ϕ1 ∨ ϕ2 iff σ, i |=KV ϕ1 or σ, i |=KV ϕ2

• σ, i |=KV ϕ1 ∧ ϕ2 iff σ, i |=KV ϕ1 and σ, i |=KV ϕ2

• σ, i |=KV Xϕ iff i + 1 < |σ| and σ, i + 1 |=KV ϕ

• σ, i |=KV ϕ1 U ϕ2 iff ∃i ≤ j < |σ| . σ, j |=KV ϕ2 and ∀i ≤ k < j . σ, k |=KV ϕ1

• σ, i |=KV ϕ1 R ϕ2 iff ∃i ≤ j ≤ |σ| . σ, j |=KV ϕ1 and ∀i ≤ k < j . σ, k |=KV ϕ2

Classification of Safety Properties
by Kupferman and Vardi
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Intuition:
If σ |=KV nnf(¬ϕ), then σ carries all the information to violate ϕ over infinite traces.

Remark
The definition of |=KV is exactly the one used in Bounded Model Checking for
defining the truth of an LTL formula over a finite trace.

Reference:
Armin Biere et al. (2003). “Bounded model checking”. In: Adv. Comput. 58,
pp. 117–148. DOI: 10.1016/S0065-2458(03)58003-2. URL:
https://doi.org/10.1016/S0065-2458(03)58003-2

Classification of Safety Properties
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Definition (Informative Prefix)

Let ϕ be an LTL formula over AP and let σ ∈ (2AP)+ be a finite trace over 2AP .

σ is an informative prefix for ϕ
iff

σ |=KV nnf(¬ϕ)

Note: in the original paper by Kupferman and Vardi, informative prefixes are
defined using a mapping L. This is equivalent to our definition.

Classification of Safety Properties
by Kupferman and Vardi
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Definition (Informative Prefix)

Let ϕ be an LTL formula over AP and let σ ∈ (2AP)+ be a finite trace over 2AP .

σ is an informative prefix for ϕ
iff

σ |=KV nnf(¬ϕ)

Example:

This prefix is informative for G(p).

{p} {p} {p} {p} ∅

nnf(¬G(p)) := F(¬p)

Classification of Safety Properties
by Kupferman and Vardi
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Definition (Informative Prefix)

Let ϕ be an LTL formula over AP and let σ ∈ (2AP)+ be a finite trace over 2AP .

σ is an informative prefix for ϕ
iff

σ |=KV nnf(¬ϕ)

Example:

This prefix is not informative for ϕ := G(p ∨ (Xq ∧ X¬q)).

{p} {p} {p} {p} ∅

nnf(¬ϕ) := F(¬p ∧ (X¬q ∨ Xq))

Classification of Safety Properties
by Kupferman and Vardi
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Definition (Informative Prefix)

Let ϕ be an LTL formula over AP and let σ ∈ (2AP)+ be a finite trace over 2AP .

σ is an informative prefix for ϕ
iff

σ |=KV nnf(¬ϕ)

Example:

This prefix is informative for ϕ := G(p ∨ (Xq ∧ X¬q)).

{p} {p} {p} {p} ∅ ∅

nnf(¬ϕ) := F(¬p ∧ (X¬q ∨ Xq))

Classification of Safety Properties
by Kupferman and Vardi
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Definition (Informative Prefix)

Let ϕ be an LTL formula over AP and let σ ∈ (2AP)+ be a finite trace over 2AP .

σ is an informative prefix for ϕ
iff

σ |=KV nnf(¬ϕ)

Example:

This prefix is not informative for ϕ :=
(
G(q ∨ FGp) ∧ G(r ∨ FG¬p)

)
∨ Gq ∨ Gr.

{p} {p} {p} {p} ∅ ∅

nnf(¬ϕ) :=
(
F(¬q ∧ GF¬p) ∨ F(¬r ∧ GFp)

)
∧ F¬q ∧ F¬r

Classification of Safety Properties
by Kupferman and Vardi
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Definition (Informative Prefix)

Let ϕ be an LTL formula over AP and let σ ∈ (2AP)+ be a finite trace over 2AP .

σ is an informative prefix for ϕ
iff

σ |=KV nnf(¬ϕ)

Example:

This prefix is not informative for ϕ :=
(
G(q ∨ FGp) ∧ G(r ∨ FG¬p)

)
∨ Gq ∨ Gr.

G(. . . ) is always false under |=KV: no prefix is informative for ϕ

nnf(¬ϕ) :=
(
F(¬q ∧ GF¬p) ∨ F(¬r ∧ GFp)

)
∧ F¬q ∧ F¬r

Classification of Safety Properties
by Kupferman and Vardi
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Definition (Informative Prefix)

Let ϕ be an LTL formula over AP and let σ ∈ (2AP)+ be a finite trace over 2AP .

σ is an informative prefix for ϕ
iff

σ |=KV nnf(¬ϕ)

Remark:
Given σ and ϕ, checking whether σ |=KV ϕ can be done in time O(|σ| · |ϕ|).

Classification of Safety Properties
by Kupferman and Vardi
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Let ϕ be any LTL formula such that L(ϕ) is a safety language. The definition of
informative prefix is used to classify such formulas ϕ into three types:

1 intentionally safe
2 accidentally safe
3 pathologically safe

Classification of Safety Properties
by Kupferman and Vardi
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Let ϕ be any LTL formula such that L(ϕ) is a safety language. The definition of
informative prefix is used to classify such formulas ϕ into three types:

1 intentionally safe

ϕ is intentionally safe iff all bad prefixes are informative.

For example:
• the formula G(p) is intentionally safe.
• the formula G(p ∨ (Xq ∧ X¬q)) is not intentionally safe, because
⟨{p}, {p}, {p}, {p},∅⟩ is a bad prefix but it is not informative.

2 accidentally safe
3 pathologically safe

Classification of Safety Properties
by Kupferman and Vardi
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Let ϕ be any LTL formula such that L(ϕ) is a safety language. The definition of
informative prefix is used to classify such formulas ϕ into three types:

1 intentionally safe
2 accidentally safe

ϕ is accidentally safe iff (i) not all the bad prefixes of ψ are informative, but (ii)
every σ ∈ (2AP)ω that violates ϕ has an informative bad prefix.

For example:
• G(p ∨ (Xq ∧ X¬q)) is accidentally safe: ⟨{p}, {p}, {p}, {p},∅⟩ is a bad prefix but it

is not informative. However, every infinite trace violating the formula has an
informative prefix of type {p}∗ ·∅ ·∅.

3 pathologically safe

Classification of Safety Properties
by Kupferman and Vardi
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Let ϕ be any LTL formula such that L(ϕ) is a safety language. The definition of
informative prefix is used to classify such formulas ϕ into three types:

1 intentionally safe
2 accidentally safe
3 pathologically safe

ϕ is pathologically safe iff there is a σ ∈ (2AP)ω that violates ϕ and has no
informative bad prefixes.

For example:
• (

G(q ∨ FGp) ∧ G(r ∨ FG¬p)
)
∨ Gq ∨ Gr

• the computation ∅ω violates the formula

∅ω |=
(
F(¬q ∧ GF¬p) ∨ F(¬r ∧ GFp)

)
∧ F(¬q) ∧ F(¬r)

• but each of its prefixes σ is not informative because
σ ̸|=KV

(
F(¬q ∧ GF¬p) ∨ F(¬r ∧ GFp)

)
∧ F(¬q) ∧ F(¬r), but no finite prefix is such.

Classification of Safety Properties
by Kupferman and Vardi
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Let ϕ be any LTL formula such that L(ϕ) is a safety language. The definition of
informative prefix is used to classify such formulas ϕ into three types:

1 intentionally safe
2 accidentally safe
3 pathologically safe

Formulas that are accidentally safe or pathologically safe are needlessly complicated:
• They contain a redundancy that can be eliminated.
• If a user wrote a pathologically safe formula, then probably he/she didn’t

mean to write a safety formula.
• This classification helps in detecting unconsistent or redundant specifications.

Classification of Safety Properties
by Kupferman and Vardi
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Theorem
For any formula ϕ of SafetyLTL, it holds that ϕ is either intentionally or accidentally safe.

Proof.

• By the duality between SafetyLTL and coSafetyLTL, we have that nnf(¬ϕ) is a
formula of coSafetyLTL and is equivalent to ϕ. Let ψ := nnf(¬ϕ).
• Let σ = ⟨σ0, σ1, . . .⟩ be an infinite trace that satisfies ψ, that is σ |= ψ.
• Since, by definition of coSafetyLTL, ψ contains only X and U as temporal

operators, there exists a furthermost time point i such that σ[0,i] |= ψ (under
finite traces semantics).

Classification of Safety Properties
by Kupferman and Vardi
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Theorem
For any formula ϕ of SafetyLTL, it holds that ϕ is either intentionally or accidentally safe.

Proof.

• Since on the operators X and U the definitions of |= and |=KV coincide, we
have also that σ[0,i] |=KV ψ. Therefore, by definition, σ[0,i] is an informative
prefix.
• It follows that every infinite trace that violates ϕ has an informative prefix,

thus ϕ is either intentionally or accidentally safe. □

Classification of Safety Properties
by Kupferman and Vardi
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As we will see, this classification is exploited for having efficient verification
algorithms.
• An automaton that recognizes only the bad prefixes that are informative can be

built exponentially more efficiently than the automaton for all the bad
prefixes.
• Moreover, in practice, almost all the benefits that one can obtain from an

automaton for the bad prefixes can also be obtained from an automaton for
the informative bad prefixes.
• for example, we can perform model checking algorithms considering only the

informative bad prefixes
• since there may be bad prefixes that are not informative but may become

informative if extended, minimality of counterexamples is the only thing that is
sacrified when dealing with informative bad prefixes.

Classification of Safety Properties
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RECOGNIZING SAFETY
Algorithms & Complexity



In this part, we will answer to these questions:
• Can we effectively determine whether a NBA recognizes a safety property? If

so, with which complexity?
• Can we effectively determine whether a LTL formula recognizes a safety

property? If so, with which complexity?
• How complex is building the automaton for the set of bad prefixes of a safety
ω-regular language?

Outline
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Theorem (Alpern & Schneider (1987), Sistla (1994))

Given a NBA A, checking whether L(A) is safety is can be performed effectively.

References:

• Bowen Alpern and Fred B. Schneider (1987). “Recognizing Safety and
Liveness”. In: Distributed Comput. 2.3, pp. 117–126. DOI:
10.1007/BF01782772. URL: https://doi.org/10.1007/BF01782772
• A Prasad Sistla (1994). “Safety, liveness and fairness in temporal logic”. In:

Formal Aspects of Computing 6.5, pp. 495–511. DOI: 10.1007/BF01211865
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Theorem (Alpern & Schneider (1987), Sistla (1994))

Given a NBA A, checking whether L(A) is safety is can be performed effectively.

We prove this theorem.

Recognizing Safety
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Definition (Reduced NBA)

A NBA A = ⟨Q,Σ, I,∆,F⟩ is reduced (rNBA, for short) iff from every state in Q there
exists a path (of length at least 1) reaching a final state in F.

• Every NBA A can be turned into rNBA A′ such that L(A) = L(A′), by
removing the states (and its incoming transitions) from which no final state is
reachable.
• Important: this can add undefined transitions

• This can be done in time linear in |Q| and in space nondeterministic
logarithmic in |Q| (Savitch’s Theorem).

Recognizing Safety
Reduced automata
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Definition (Closure of a rNBA)

Given a rNBA A = ⟨Q,Σ, I,∆,F⟩, we define the closure of A, denoted with cl(A), as
the automaton cl(A) = ⟨Q,Σ, I,∆,Q⟩.

• We will use the automaton cl(A) to determine whether L(A) is a safety
property.
• Important: the automaton cl(A) rejects a word in Σω only by attempting an

undefined transition.

Recognizing Safety
Closure of a rNBA
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Theorem
For any rNBA A, it holds that L(A) is a safety property iff L(A) = L(cl(A)).

Proof.
(⇒)

• Suppose that L(A) is a safety property. We show that L(A) = L(cl(A)).
• L(A) ⊆ L(cl(A)): trivial, because cl(A) is obtained from A by making all

states as accepting.

Recognizing Safety
Alpern & Schneider’s Theorem
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Theorem
For any rNBA A, it holds that L(A) is a safety property iff L(A) = L(cl(A)).

Proof.
(⇒)

• We show that L(cl(A)) ⊆ L(A). We first show that, for any σ ∈ L(cl(A)), it
holds that:

∀i ≥ 0 . ∃σ′ ∈ Σω . σ[0,i] · σ′ ∈ L(A)

Recognizing Safety
Alpern & Schneider’s Theorem
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Theorem
For any rNBA A, it holds that L(A) is a safety property iff L(A) = L(cl(A)).

Proof.
(⇒)

• Let σ ∈ L(cl(A)). Choose any prefix σ[0,i] and let qi be any of the states reached
by A after reading σ[0,i].
• Since A is reduced, there exists a final state qf1 reachable from qi when A reads

some β0∈ Σ∗.
• Similarly, since A is reduced, there exists a final state qf2 reachable from qf1

when A reads some β1∈ Σ∗.
• . . . and so on and so forth . . .

Recognizing Safety
Alpern & Schneider’s Theorem
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Theorem
For any rNBA A, it holds that L(A) is a safety property iff L(A) = L(cl(A)).

Proof.
(⇒)

• Let β = β0 · β1 · . . . . Since, by construction, σ[0,i] · β induces A to visit final
state infinitely often, the word σ[0,i] · β belongs to L(A).
• We have proved that, for any σ ∈ L(cl(A)), it holds that:

∀i ≥ 0 . ∃σ′ ∈ Σω . σ[0,i] · σ′ ∈ L(A)

Recognizing Safety
Alpern & Schneider’s Theorem
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Theorem
For any rNBA A, it holds that L(A) is a safety property iff L(A) = L(cl(A)).

Proof.
(⇒)

• Since by hypothesis L(A) is a safety property, for all σ ∈ Σω, we have that,

σ ̸∈ L(A)↔ ∃i ≥ 0 . ∀σ′ ∈ Σω . σ[0,i] · σ′ ̸∈ L(A)

• Since before we proved that the rightmost part of the above equation is false
for any σ ∈ L(cl(A)), we have that σ ∈ L(A).

Recognizing Safety
Alpern & Schneider’s Theorem
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Theorem
For any rNBA A, it holds that L(A) is a safety property iff L(A) = L(cl(A)).

Proof.
(⇐)

• Suppose that L(A) = L(cl(A)).
• We prove that, for all σ ∈ Σω, it holds:

σ ̸∈ L(A)↔ ∃i ≥ 0 . ∀σ′ ∈ Σω . σ[0,i] · σ′ ̸∈ L(A)

Recognizing Safety
Alpern & Schneider’s Theorem
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Theorem
For any rNBA A, it holds that L(A) is a safety property iff L(A) = L(cl(A)).

Proof.
(⇐)

• The right-to-left direction

∀σ ∈ Σω .
(
σ ̸∈ L(A)← ∃i ≥ 0 . ∀σ′ ∈ Σω . σ[0,i] · σ′ ̸∈ L(A)

)
holds for every language: it suffices to take σ′ := σ[i+1,∞).

Recognizing Safety
Alpern & Schneider’s Theorem
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Theorem
For any rNBA A, it holds that L(A) is a safety property iff L(A) = L(cl(A)).

Proof.
(⇐)

• We prove the left-to-right direction:

∀σ ∈ Σω .
(
σ ̸∈ L(A)→ ∃i ≥ 0 . ∀σ′ ∈ Σω . σ[0,i] · σ′ ̸∈ L(A)

)
• Since by hypothesis L(A) = L(cl(A)), it is equivalent to prove:

∀σ ∈ Σω .
(
σ ̸∈ L(cl(A))→ ∃i ≥ 0 . ∀σ′ ∈ Σω . σ[0,i] · σ′ ̸∈ L(cl(A))

)

Recognizing Safety
Alpern & Schneider’s Theorem
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Theorem
For any rNBA A, it holds that L(A) is a safety property iff L(A) = L(cl(A)).

Proof.
(⇐)

• ∀σ ∈ Σω .
(
σ ̸∈ L(cl(A))→ ∃i ≥ 0 . ∀σ′ ∈ Σω . σ[0,i] · σ′ ̸∈ L(cl(A))

)
• Suppose σ ̸∈ L(cl(A)). Thus the automaton cl(A) rejects σ.
• Since by hypothesis cl(A) is a reduced Büchi automatom, cl(A) can reject σ

only by attempting an undefined transition.

Recognizing Safety
Alpern & Schneider’s Theorem
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Theorem
For any rNBA A, it holds that L(A) is a safety property iff L(A) = L(cl(A)).

Proof.
(⇐)

• ∀σ ∈ Σω .
(
σ ̸∈ L(cl(A))→ ∃i ≥ 0 . ∀σ′ ∈ Σω . σ[0,i] · σ′ ̸∈ L(cl(A))

)
• Let i be the position of σ after which cl(A) takes the undefined transition.
• Clearly, it holds that:

∀σ′ ∈ Σω . σ[0,i] · σ′ ̸∈ L(cl(A))

• Thus cl(A) (and A as well) specify a safety property. □

Recognizing Safety
Alpern & Schneider’s Theorem
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Σ = {a, b}, L = (a · b · a)ω ∪ (a · b · a)∗ · bω

q0 q1 q2

q3

a b

ab

b
A

q0 q1 q2

q3

a b

ab

b

cl(A)

The language L is safety because L(A) = L(cl(A)).

Recognizing Safety
Alpern & Schneider’s Theorem - Example
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Σ = {a, b}, L = {σ ∈ Σω | each ‘a’ is eventually followed by ‘b’}

q0 q1

a

b

b aA

q0 q1

a

b

b acl(A)

The language L is not safety because L(A) ̸= L(cl(A)).
• aω ∈ L(cl(A)) but aω ̸∈ L(A)

Recognizing Safety
Alpern & Schneider’s Theorem - Example
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Complexity of the procedure

Checking whether L(cl(A)) = L(A) is done by checking whether:

L(cl(A)) ⊆ L(A) ∧ L(A) ⊆ L(cl(A))

which in turn is equivalent to check whether:

L(cl(A)) ∩ L(A) = ∅ ∧ L(A) ∩ L(cl(A)) = ∅

• Complementation of NBA is needed.
• Complexity of Büchi complementation (n = number of states):

• upper bound: O(0.96n)n

• lower bound: Ω(0.76n)n

• Sven Schewe (2009). “Büchi Complementation Made Tight”. In: 26th International Symposium on Theoretical Aspects of Computer Science, STACS
2009, February 26-28, 2009, Freiburg, Germany, Proceedings. Ed. by Susanne Albers and Jean-Yves Marion. Vol. 3. LIPIcs. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, Germany, pp. 661–672. DOI: 10.4230/LIPIcs.STACS.2009.1854. URL:
https://doi.org/10.4230/LIPIcs.STACS.2009.1854

Recognizing Safety
Alpern & Schneider’s Theorem
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Complexity of the procedure

Checking whether L(cl(A)) = L(A) is done by checking whether:

L(cl(A)) ⊆ L(A) ∧ L(A) ⊆ L(cl(A))

which in turn is equivalent to check whether:

L(cl(A)) ∩ L(A) = ∅ ∧ L(A) ∩ L(cl(A)) = ∅

• The emptiness check can be performed on-the-fly during the construction of
the automata.
• Total Complexity: polynomial space (PSPACE)

Recognizing Safety
Alpern & Schneider’s Theorem
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Complexity of the problem

Theorem
The set of NBA recognizing safety properties is PSPACE.

Open Question:

Is PSPACE-complete?

Recognizing Safety
Alpern & Schneider’s Theorem
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Complexity for the deterministic case

Theorem
Given a DBA A with n states, checking whether L(A) is safety can be done in time
polynomial in n.

Proof.
L(cl(A)) = L(A) iff L(cl(A)) ∩ L(A) = ∅ ∧ L(A) ∩ L(cl(A)) = ∅.
• Complementation of DBA is straightforward: swap final states with nonfinal

states.
• Intersection can be done in polynomial time in n.
• Emptiness can be checked in (nondeterministic) logarithmic space in n:

Savitch’s Theorem.

Recognizing Safety
Alpern & Schneider’s Theorem
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Theorem (Sistla (1994))

The set of LTL formulas ϕ such that L(ϕ) is safety is PSPACE-complete.

Or equivalently: Given a LTL formula ϕ, the problem of establishing whether L(ϕ)
is safety is PSPACE-complete.

Recognizing Safety
for LTL formulas

109/203 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences



Theorem
For any LTL formula ϕ (with n = |ϕ|) over the set of atomic propositions AP there exists a
NBA Aϕ over the alphabet 2AP such that:
• L(ϕ) = L(Aϕ) • |Aϕ | ∈ 2O(n)

Reference
Moshe Y Vardi and Pierre Wolper (1986). “An automata-theoretic approach to
automatic program verification”. In: Proceedings of the First Symposium on Logic in
Computer Science. IEEE Computer Society, pp. 322–331

Reference
Moshe Y Vardi (1996). “An automata-theoretic approach to linear temporal logic”.
In: Logics for concurrency. Springer, pp. 238–266

Recognizing Safety
for LTL formulas
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Theorem
For any LTL formula ϕ (with n = |ϕ|) over the set of atomic propositions AP there exists a
NBA Aϕ over the alphabet 2AP such that:
• L(ϕ) = L(Aϕ) • |Aϕ | ∈ 2O(n)

Picture taken from
Zohar Manna and Amir Pnueli (1995).
Temporal verification of reactive systems -
safety. Springer. ISBN: 978-0-387-94459-3

Recognizing Safety
for LTL formulas
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Theorem (Sistla (1994))

The set of LTL formulas ϕ such that L(ϕ) is safety is PSPACE-complete.

Or equivalently: Given a LTL formula ϕ, the problem of establishing whether L(ϕ)
is safety is PSPACE-complete.

Recognizing Safety
for LTL formulas
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Theorem (Sistla (1994))

The set of LTL formulas ϕ such that L(ϕ) is safety is PSPACE-complete.

Proof.

• Let ϕ ∈ LTL.
• We can effectively build a NBA Aϕ such that L(Aϕ) = L(ϕ) and | Aϕ | = 2O(n).
• In space polynomial in n, we can turn Aϕ into an equivalent rNBA A′

ϕ.
• Let cl(A′

ϕ) be its closure.
• L(ϕ) is safety iff:

• L(A′
ϕ) ⊆ L(cl(A′

ϕ)) and • L(cl(A′
ϕ)) ⊆ L(A

′
ϕ)

Since the 1st point is always true, it suffices to prove the second.

Recognizing Safety
for LTL formulas
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Theorem (Sistla (1994))

The set of LTL formulas ϕ such that L(ϕ) is safety is PSPACE-complete.

Proof.

• L(cl(A′
ϕ)) ⊆ L(A′

ϕ) is equivalent to L(cl(A′
ϕ)) ∩ L(A′

ϕ)

• ... but instead of complementing A′
ϕ (which is difficult) we complement the

formula ϕ (which has a trivial, constant complexity)
• We can effectively build a NBA A¬ϕ such that L(A¬ϕ) = L(¬ϕ) and
| A¬ϕ | = 2O(n).

• We have that L(A¬ϕ) = L(A′
ϕ).

Recognizing Safety
for LTL formulas
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Theorem (Sistla (1994))

The set of LTL formulas ϕ such that L(ϕ) is safety is PSPACE-complete.

Proof.

• L(ϕ) is safety iff L(cl(A′
ϕ)) ∩ L(A¬ϕ) = ∅.

• Check emptiness of cl(A′
ϕ)×A¬ϕ:

• cl(A′
ϕ)×A¬ϕ is of size 2O(n)

• Emptiness: nondeterministic logarithmic space in the number of states of the
automaton.

• It can be performed on-the-fly during the construction of cl(A′
ϕ)×A¬ϕ.

• Total Complexity: Polynomial Space (PSPACE)

Recognizing Safety
for LTL formulas
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Theorem (Sistla (1994))

The set of LTL formulas ϕ such that L(ϕ) is safety is PSPACE-complete.

Proof.

• We prove that the problem is PSPACE-hard.
• Reduction from the LTL validity problem, which is PSPACE-complete.
• Let ϕ ∈ LTL over the atomic propositions AP and let p ̸∈ AP a fresh

proposition.
• It holds that: ϕ is valid iff L(ϕ ∨ Fp) is safety.

Recognizing Safety
for LTL formulas
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Theorem (Sistla (1994))

The set of LTL formulas ϕ such that L(ϕ) is safety is PSPACE-complete.

Proof.

• We prove: if ϕ is valid then L(ϕ ∨ Fp) is safety.
• Suppose that ϕ is valid.
• Then ϕ ∨ Fp is equivalent to ⊤, that is L(ϕ ∨ Fp) = (2AP)ω.
• Clearly, (2AP)ω is a safety language, because every violation (there are none) is

irremediable.

Recognizing Safety
for LTL formulas
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Theorem (Sistla (1994))

The set of LTL formulas ϕ such that L(ϕ) is safety is PSPACE-complete.

Proof.

• We prove: if L(ϕ ∨ Fp) is safety then ϕ is valid.
• Suppose there exists a violation of L(ϕ ∨ Fp), that is a trace σ ∈ (2AP∪{p})ω

such that σ |= ¬ϕ ∧ G¬p.
• Since by hypothesis L(ϕ ∨ Fp) is safety, this violation must be irremediable, that

is ∃i ≥ 0 . ∀σ′ . σ[0,i] · σ′ |= ¬ϕ ∧ G¬p.
• Because σ[0,i] · σ′ has also to satisfy G¬p, there exists no such i.
• This means that there are no violations of ϕ ∨ Fp (this formula is valid).
• Since p doesn’t occur in ϕ, this means that ϕ is valid.

Recognizing Safety
for LTL formulas
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DETECTING BAD PREFIXES
Algorithms & Complexity



For problems like model checking and reactive synthesis, given a safety property:
• one doesn’t want to build a NBA
• but rather to reason on finite words and to build a DFA.

In particular, we consider the automaton over finite words for the set of bad
prefixes.

Reasoning over finite words is simpler than reasoning over infinite words.

Task:
Given a NBA A, to give an algorithm for building the automaton recognizing
exactly the set of bad prefixes of L(A) and to analyze its complexity.

Detecting Bad Prefixes
Algorithms and Complexity
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For problems like model checking and reactive synthesis, given a safety property:
• one doesn’t want to build a NBA
• but rather to reason on finite words and to build a DFA.

In particular, we consider the automaton over finite words for the set of bad
prefixes.

Reasoning over finite words is simpler than reasoning over infinite words.

Reference:
Orna Kupferman and Moshe Y Vardi (2001). “Model checking of safety
properties”. In: Formal Methods in System Design 19.3, pp. 291–314. DOI:
10.1023/A:1011254632723

Detecting Bad Prefixes
Algorithms and Complexity
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Definition (Safety Property)

L ⊆ Σω is a safety property iff, for all σ ̸∈ L, there exists an position i ∈ N such that
σ[0,i] · σ′ ̸∈ L, for all σ′ ∈ Σω.

• σ[0,i] is called the bad prefix of σ.
• We denote with bad(L) the set of bad prefixes of L.
• bad(L) is a language of finite words, that is bad(L) ⊆ Σ∗.

Detecting Bad Prefixes
Algorithms and Complexity
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The Deterministic Case

If A is a DBA (Deterministic Büchi
Automaton), then building the
automaton for bad(L(A)) is
straightforward
• nondeterministic polynomial space

and linear time.

q0 q1

a

b

a, b

A

q0 q1

a

b

a, b

Abad

Detecting Bad Prefixes
Algorithms and Complexity
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The Deterministic Case

If A is a DBA (Deterministic Büchi
Automaton), then building the
automaton for bad(L(A)) is
straightforward
• Given a set of states S of A, we

denote with AS the automaton
obtained from A by defining the set
of initial states to be S.
• Let Abad be the DFA obtained from A

by defining a state q to be final iff
A{q} recognizes the empty set.
• It holds that L(Abad) = bad(L(A)).

q0 q1

a

b

a, b

A

q0 q1

a

b

a, b

Abad

Detecting Bad Prefixes
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The Deterministic Case

• L(A) = aω

• bad(L(A)) = a∗ · b · Σ∗

q0 q1

a

b

a, b

A

q0 q1

a

b

a, b

Abad

Detecting Bad Prefixes
Algorithms and Complexity
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• The nondeterministic case is more
involved.
• The previous algorithm for the

deterministic case does not work in
the nondeterministic case.
• Counterexample:

• L(A) =
b · aω ∪ (b · a · a∗)ω ∪ (b · a · a∗)∗ · aω

• The automaton Abad recognizes
also the word “bab” which is not a
bad prefix.

• We need another way to build Abad.

q0 q1

q2

a

b

a
a

b

a, b

A

q0 q1

q2

a

b

a
a

b

a, b

Abad

Detecting Bad Prefixes
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• Let A = ⟨Q,Σ, I,∆,F⟩ be NBA.
• We define Abad as the DFA
⟨2Q,Σ, q′0, δ

′,F′⟩ such that:
• q′0 := I
• for every S ∈ 2Q and every σ ∈ Σ,
δ(S, σ) :=

⋃
q∈S δ(q, σ).

• F := {S ∈ 2Q | L(AS) = ∅}.
• Complexity: | Abad | ∈ 2O(n) where

n = |Q|.
The detection of bad prefixes with a
nondeterministic Büchi automaton
has the flavor of determinization.

q0 q1

b

a

a

A

{q0} ∅

{q1} {q0, q1}

a

b

a, b

b
a

b
a

Abad
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• Let A = ⟨Q,Σ, I,∆,F⟩ be NBA.
• We define Abad as the DFA
⟨2Q,Σ, q′0, δ

′,F′⟩ such that:
• q′0 := I
• for every S ∈ 2Q and every σ ∈ Σ,
δ(S, σ) :=

⋃
q∈S δ(q, σ).

• F := {S ∈ 2Q | L(AS) = ∅}.
• Complexity: | Abad | ∈ 2O(n) where

n = |Q|.
The detection of bad prefixes with a
nondeterministic Büchi automaton
has the flavor of determinization.

This is a lowerbound.
• There exists an NFA Awith n states

such that
• all states are accepting
• its complement A has 2Θ(n) states.

• Let A′ be the NBA obtained by
consideringA as a Büchi automaton.
• Since both A and A′ can reject a

word only by attempting an
undefined transition, it holds that
bad(A′) = A.
• It follows that the automaton for

bad(A) has 2Θ(n) states.

Detecting Bad Prefixes
Algorithms and Complexity
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An analogous result holds for the cosafety case.

Theorem
Given a NBA A with n states such that L(A) is cosafety, the size of an automaton for
good(A) is 2Θ(n).

Detecting bad prefixing of an LTL formula recognizing a safety language is doubly
exponential.

Theorem
Given an LTL formula ϕ such that L(ϕ) is safety and |ϕ| = n, the size of an automaton for
bad(L(ϕ)) is 22O(n) and 22Ω(

√
n) .

Detecting Bad Prefixes
Algorithms and Complexity
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An analogous result holds for the cosafety case.

Theorem
Given a NBA A with n states such that L(A) is cosafety, the size of an automaton for
good(A) is 2Θ(n).

Reference:
Orna Kupferman and Moshe Y Vardi (2001). “Model checking of safety
properties”. In: Formal Methods in System Design 19.3, pp. 291–314. DOI:
10.1023/A:1011254632723

Detecting Bad Prefixes
Algorithms and Complexity
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ALGORITHMS & COMPLEXITY
for the safety fragment of LTL



• Efficient algorithms and theoretical complexity for the problems of:
• satisfiability
• model checking

• symbolic algorithms
• exploiting the Kupferman & Vardi’s classification (informative prefixes)

• reactive synthesis

Outline
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LOG
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LOG
Space

PTIME NPTIM
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NPC

co
-N

PTIM
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PSPACE

EXPTIME

EXPSPACE
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ELEMENTARY
...

2EXPTIME

R
TikZ code by Sebastian
Sardiña, based on the
book “Computational
Complexity” by C. H.
Papadimitriou

Recap of complexity classes
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SATISFIABILITY
of (co)safety fragments of LTL



Let L be a temporal logic over infinite sequences.

Definition
Given a formula ϕ of L, we say that ϕ is satisfiable iff L(ϕ) ̸= ∅.

The satisfiability problem of L is the problem of checking whether a given input
formula ϕ is satisfiable.

The satisfiability problem
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The satisfiability problem of LTL
(LTL-SAT) is PSPACE-complete.
• same for LTL+P

Reference:
A Prasad Sistla and Edmund M Clarke
(1985). “The complexity of propositional
linear temporal logics”. In: Journal of the
ACM (JACM) 32.3, pp. 733–749. DOI:
10.1145/3828.3837

Classic Algorithm

Given ϕ ∈ LTL+P of size n,
• build an NBA A such that:

• L(A) = L(ϕ)
• |A | ∈ 2O(n)

• check the (non)emptiness of A, i.e.,
the existence of a state q such that:
• q0 ⇝ q
• q⇝ q

LTL-SAT
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The satisfiability problem of LTL
(LTL-SAT) is PSPACE-complete.
• same for LTL+P

Reference:
A Prasad Sistla and Edmund M Clarke
(1985). “The complexity of propositional
linear temporal logics”. In: Journal of the
ACM (JACM) 32.3, pp. 733–749. DOI:
10.1145/3828.3837

Classic Algorithm

Complexity:
• nonemptiness = reachability, thus

nondeterministic logarithmic space
• can be done on-the-fly while

building the NBA
• Total: nondeterministic polynomial

space (PSPACE)

LTL-SAT
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The satisfiability problem of LTLf
(LTLf-SAT) is PSPACE-complete.

Reference:
Giuseppe De Giacomo and
Moshe Y. Vardi (2013). “Linear Temporal
Logic and Linear Dynamic Logic on
Finite Traces”. In: Proceedings of the 23rd
International Joint Conference on Artificial
Intelligence. Ed. by Francesca Rossi.
IJCAI/AAAI, pp. 854–860

Classic Algorithm

Complexity:
• nonemptiness = reachability, thus

nondeterministic logarithmic space
• can be done on-the-fly while

building the NBA
• Total: nondeterministic polynomial

space (PSPACE)

LTL-SAT
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Theorem
The satisfiability problem for the logics SafetyLTL, G(pLTL), coSafetyLTL, F(pLTL), and
LTL[X,G] is PSPACE-complete.

Reference:
Alessandro Artale, Luca Geatti, et al. (2023b). “Complexity of Safety and coSafety
Fragments of Linear Temporal Logic”. In: Proc. of the 36th AAAI Conf. on Artificial
Intelligence. AAAI Press

Satisfiability of (co)safety fragments of LTL
Complexity
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Theorem
The satisfiability problem for the logics SafetyLTL, G(pLTL), coSafetyLTL, F(pLTL), and
LTL[X,G] is PSPACE-complete.

Proof.

• membership: from LTL-SAT
• hardness: reduction from LTLf-SAT

Satisfiability of (co)safety fragments of LTL
Complexity
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Theorem
The satisfiability problem for the logics SafetyLTL, G(pLTL), coSafetyLTL, F(pLTL), and
LTL[X,G] is PSPACE-complete.

The restriction to (co)safety fragments, i.e., the restriction on reasoning over finite
traces, does not change the worst-case complexity of the satisfiability problem.

Satisfiability of (co)safety fragments of LTL
Complexity
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Theorem
The satisfiability problem for LTL[X,F] is NP-complete.

Lemma (Small model property)

For any ϕ ∈ LTL[X,F], it holds that ϕ is satisfiable iff there exists a trace σ such that:
• σ |= ϕ

• |σ| ≤ |ϕ|

Satisfiability of (co)safety fragments of LTL
Complexity
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Theorem
The satisfiability problem for LTL[X,F] is NP-complete.

Proof.
• membership: nondeterministic algorithm

• guess an n ≤ |ϕ| and the assignments for the first n states of a candidate trace σ
• check whether σ · (2AP)ω |= ϕ
• if at least one candidate model is indeed a correct model, terminate with SAT;

otherwise terminate with UNSAT.

• hardness: from Boolean satisfiability

Satisfiability of (co)safety fragments of LTL
Complexity
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Theorem
The satisfiability problem for LTL[X,F] is NP-complete.

Reference:
A Prasad Sistla and Edmund M Clarke (1985). “The complexity of propositional
linear temporal logics”. In: Journal of the ACM (JACM) 32.3, pp. 733–749. DOI:
10.1145/3828.3837
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Logics Problems

satisfiability model checking realizability

coSafetyLTL PSPACE-c ??? 2EXPTIME-c

F(pLTL) PSPACE-c ??? EXPTIME-c

LTL[X,F] NP-c ??? EXPTIME-c

Logics Problems

satisfiability model checking realizability

SafetyLTL PSPACE-c ??? 2EXPTIME-c

G(pLTL) PSPACE-c ??? EXPTIME-c

LTL[X̃,G] PSPACE-c ??? EXPTIME-c

Complexity of (co)safety fragments of LTL
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MODEL CHECKING
for safety fragments of LTL



• Automatic formal verification techniques: great progress in the last decades.
• Big chip or software companies have integrated them in their development or

quality assurance process.
• Intel: FDIV bug, error in the floating point division instruction on some

Intel®Pentium® processors.
• it costed ≈ US $475 million;
• big investment in formal verification.

Model Checking
Definition and standard algorithms
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The most used formal verification technique is Model Checking (MC, for short).
• the system to verify is modeled as a finite-state machine (i.e., Kripke structure)

and the specification is expressed by means of a temporal logic formula;
• distinctive features:

• fully automatic;
• exhaustive;
• it generates a counterexample trace if the specification does not hold.

Model Checking
Definition and standard algorithms
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Definition (Kripke structure)

A Kripke structure is a tuple
M = ⟨AP,Q, I,T,L⟩where:
• AP is a finite alphabet,
• Q is the finite set of states,
• I ⊆ Q is the set of initial states,
• T ⊆ Q×Q is a complete transition

relation, and
• L : Q→ 2AP is the labeling function

that assigns to each state the set of
atoms in AP that are true in that
state.

p0 p1

p2 p3

LTL Model Checking
Definition and standard algorithms

131/203 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences



Definition (Model Checking of LTL)

Given:
• a Kripke structure

M = ⟨AP,Q, I,T,L⟩
• an initial state s ∈ I of M
• an LTL formula ϕ over the set of

atomic propositions AP
we write M, s |= Aϕ iff all paths of M
starting from s are models of ϕ.

A is the “for all paths” operator of CTL.

p0 p1

p2 p3

LTL Model Checking
Definition and standard algorithms

131/203 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences



Definition (Model Checking of LTL)

The model checking problem of LTL
(LTL-MC) is the problem of establishing
whether M, s |= Aϕ.

Example:

• M, s |= GF(p0)

• M, s ̸|= FG(p0)

p0 p1

p2 p3

LTL Model Checking
Definition and standard algorithms
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Theorem
The LTL-MC is PSPACE-complete.

Reference:
A Prasad Sistla and Edmund M Clarke
(1985). “The complexity of propositional
linear temporal logics”. In: Journal of the
ACM (JACM) 32.3, pp. 733–749. DOI:
10.1145/3828.3837

p0 p1

p2 p3

LTL Model Checking
Definition and standard algorithms
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Classical approach

In order to decide if M, s |= ϕ:
1 Build the Büchi automaton AM that accepts all and only the words

corresponding to computations of M;
2 Build the Büchi automaton A¬ϕ that accepts all and only the words

corresponding to models of ¬ϕ;
3 Check the (non)emptiness of the product automaton AM ×A¬ϕ.

• L(AM ×A¬ϕ) ̸= ∅ ⇔ M, s ̸|= ϕ
• MC=universal problem
• EMPTINESS= existential problem

LTL Model Checking
Definition and standard algorithms
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Classical approach

• Emptiness of AM ×A¬ϕ:
• ∃q . q0 ⇝ q ∧ q⇝ q

• Checking the existence of a fair cycle in M
• IMPORTANT: in practice, this is much more difficult than simply the

reachability of a state q.

LTL Model Checking
Definition and standard algorithms
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• Invariance checking: it is defined as LTL model checking of a formula of the
form G(ϕ) where ϕ is a Boolean formula.

Does ϕ hold in (at least) every reachable state of M?
• Given M = ⟨AP,Q, I,T,L⟩ and a Boolean formula ϕ over the variables AP

find a state in which ¬ϕ holds or establish its nonexistence.
• it is a reachability problem
• if ϕ holds in every reachable state of M, then ϕ is invariant in M
• otherwise, there is a finite trace as counterexample:

⟨s0, s1, . . . , sn⟩

such that si |= ϕ for any i < n and sn ̸|= ϕ.

Invariance checking
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Standard Algorithm for Invariance Checking

I

Fixed Point F:
if F ∩ I: error trace
otherwise: the property is true in M

Invariance checking
Backward
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I
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Standard Algorithm for Invariance Checking

I

Invariance checking
Forward
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• The previous algorithms belongs to the class of explicit-state model checking
algorithms:
• the Kripke Structure M is represented as a set of memory locations, pointers

ecc...

• MC suffers from the state-space explosion problem: the number of states of

M = M1 ×M2 × · · · ×Mn

is exponential in n;
• the size of system that could be verified by explicit model checkers was

restricted to ≈ 106 states.
• Solution: Symbolic Model Checking

Symbolic Model Checking
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Consider a (explicit) Kripke structureM = (S, I,T,L).
• Symbolic Finite-state transition systemM = (i, x, I,T)

• i is a set of input variables;
• x is a set of state variables;
• I(x) is the formula for initial states;
• T(x, i, x′) is the formula for the transition relation;

Symbolic Transition Systems
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Three main techniques have been proposed:
• BDD-based symbolic model checking

• kind of compressed truth tables
• partial order reduction
• SAT-based symbolic model checking, aka Bounded Model Checking.

They allowed for the verification of systems with > 10120 states.
• substantially larger than the number of atoms in the observable universe

(around 1080)

Symbolic Transition Systems
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The problem of invariance checking is thoroughly studied in symbolic model
checking.
• IC3 is arguably the state-of-the-art algorithm for symbolic invariance checking
• outstanding performance

Reference:
Aaron R Bradley (2011). “SAT-based model checking without unrolling”. In:
International Workshop on Verification, Model Checking, and Abstract Interpretation.
Springer, pp. 70–87

Symbolic Invariance Checking
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Classical Approach

Let M be Kripke structure, s an initial state of M, and ϕ be an LTL formula such
that L(ϕ) is safety.
• Objective: efficient algorithms for model checking of safety properties

(M, s |= Aϕ)
• exploiting the reduction from infinite to finite trace
• exploiting efficient backends for symbolic invariance checking

Model Checking of Safety Properties
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Classical Approach

Let M be Kripke structure, s an initial state of M, and ϕ be an LTL formula such
that L(ϕ) is safety.

1 Build the automaton over finite words (DFA) Abad for the bad prefixes of L(ϕ).
2 Build the product AM×Abad.
3 Check the reachability of a final state in AM×Abad

• or equivalently that the property “the current state is not final” is invariant

G(¬final)

4 Output:
• if found: there is a counterexample to ϕ
• otherwise: ϕ holds in M

Model Checking of Safety Properties
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• Kripke Structure M:

m0 m1

m2 m3

p0

p1

p2

p3

AM:

• Automaton for the bad prefixes of
G(p0 ∨ p1 ∨ p2):

q0 q1

∗ \ ⟨p3⟩

⟨p3⟩

∗

Abad:

We denote with ⟨p3⟩ all the subsets of {p0, p1, p2, p3} that contain
the proposition p3 .

m0

q0

m1

q0

m2

q0

m3

q0

m0

q1

m1

q1

m2

q1

m3

q1

p0

p1

p2

p0

p1

p2

p3

p3AM×Abad:

• We reduced the problem
M, s |= A G(p0 ∨ p1 ∨ p2) to checking
whether: (reachability)

AM×Abad |= G(¬q0)

Model Checking of Safety Properties
Example
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• Kripke Structure M:

m0 m1

m2 m3

p0

p1

p2

p3

AM:

• Automaton for the bad prefixes of
G(p0 ∨ p1 ∨ p2):

q0 q1

∗ \ ⟨p3⟩

⟨p3⟩

∗

Abad:

We denote with ⟨p3⟩ all the subsets of {p0, p1, p2, p3} that contain
the proposition p3 .

m0

q0

m1

q0

m2

q0

m3

q0

m0

q1

m1

q1

m2

q1

m3

q1

p0

p1

p2

p0

p1

p2

p3

p3AM×Abad:

• We reduced the problem
M, s |= A G(p0 ∨ p1 ∨ p2) to checking
whether: (reachability)

AM×Abad |= G(¬q0)

• The property does not hold:
counterexample trace

Model Checking of Safety Properties
Example
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• Problem: the automaton for the bad prefixes is doubly exponential in the size of
the formula, in the worst case:

|ϕ| = n → |Abad | ∈ 22O(n)

This can become easily impractical.
• Solution: we relax the fact that the automaton has to recognize all bad prefixes.

Definition (Fine Automata)

Given a safety language L, a DFA A is fine for L iff it accepts at least one bad prefix
for each violation of L, i.e.: ∀σ ̸∈ L . ∃i ≥ 0 . σ[0,i] ∈ L(A).

Model Checking of Safety Properties
Exploiting the KV’s classification
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Theorem
For every LTL formula ϕ such that L(ϕ) is safety, there exists a NFA A that is fine for
L(ϕ) and | A | ∈ 2O(n)

Reference:
Orna Kupferman and Moshe Y Vardi (2001). “Model checking of safety
properties”. In: Formal Methods in System Design 19.3, pp. 291–314. DOI:
10.1023/A:1011254632723

Model Checking of Safety Properties
Exploiting the KV’s classification
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Theorem
For every LTL formula ϕ such that L(ϕ) is safety, there exists a NFA A that is fine for
L(ϕ) and | A | ∈ 2O(n)

Pros:
• it is exponentially smaller than Abad

• it is built using alternating automata
Cons:
• we sacrify minimality

• this may be good for model
checking

• less good for monitoring

• it is nondeterministic (differently
from Abad):
• ok for model checking
• not ok for reactive synthesis

Model Checking of Safety Properties
Exploiting the KV’s classification
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• (Symbolic) Invariance Checking: very efficient algorithms
• Some algorithms for LTL model checking leverage this efficiency:

• LTL-MC⇝ invariance checking

• K-Liveness

Reference:
Koen Claessen and Niklas Sörensson (2012). “A liveness checking algorithm that
counts”. In: 2012 Formal Methods in Computer-Aided Design (FMCAD). IEEE,
pp. 52–59

Model Checking of Safety Properties
K-Liveness

144/203 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences



Objectives:
1 Solve LTL-MC

M, s |= Aϕ

where ϕ is an LTL formula.
2 Reduction to a sequence of

invariance checking problems.
Solution:
• To count and bound the number of

times the product automaton
AM×A¬ϕ visits a final state of A¬ϕ.

Model Checking of Safety Properties
K-Liveness
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Objectives:
1 Solve LTL-MC

M, s |= Aϕ

where ϕ is an LTL formula.
2 Reduction to a sequence of

invariance checking problems.
Solution:
• To count and bound the number of

times the product automaton
AM×A¬ϕ visits a final state of A¬ϕ.

Main idea:
• Let A¬ϕ be a NBA for ¬ϕ.
• M, s |= Aϕ iff the language of
AM×A¬ϕ is empty
• . . . iff each computation of AM×A¬ϕ

visits a final state of A¬ϕ a finite
number of times

This number is clearly bounded above by
the number of states of AM×A¬ϕ, i.e.,
|M| · | A¬ϕ |.

Model Checking of Safety Properties
K-Liveness
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• K-Liveness proceeds incrementally,
checking whether AM×A¬ϕ visits a
final state K times for K = 1, 2, 3, . . .
• Methodology: use a counter

• K-counter AK = automaton that
stays in its state qf iff the
computation has visited less than K
times a final state of A¬ϕ

• Each subproblem is of the form:

AM×A¬ϕ×AK, s |= A G(qf )

It is an invariance checking problem.

Main idea:
• Let A¬ϕ be a NBA for ¬ϕ.
• M, s |= Aϕ iff the language of
AM×A¬ϕ is empty
• . . . iff each computation of AM×A¬ϕ

visits a final state of A¬ϕ a finite
number of times

This number is clearly bounded above by
the number of states of AM×A¬ϕ, i.e.,
|M| · | A¬ϕ |.

Model Checking of Safety Properties
K-Liveness
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• K-Liveness proceeds incrementally,
checking whether AM×A¬ϕ visits a
final state K times for K = 1, 2, 3, . . .
• Methodology: use a counter

• K-counter AK = automaton that
stays in its state qf iff the
computation has visited less than K
times a final state of A¬ϕ

• Each subproblem is of the form:

AM×A¬ϕ×AK, s |= A G(qf )

It is an invariance checking problem.

Termination:
• if M, s |= Aϕ, there exists a K for

which AM×A¬ϕ visits final states at
most K times.
• if M, s ̸|= Aϕ, the algorithms

increments K until the upper bound:
it then stops.

Implementation:
• K-Liveness is implemented in the

nuXmv model checker.
Roberto Cavada et al. (2014). “The nuXmv symbolic model checker”. In:
International Conference on Computer Aided Verification (CAV). Springer,
pp. 334–342. DOI: 10.1007/s10009-006-0001-2

Model Checking of Safety Properties
K-Liveness
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Logics Problems

satisfiability model checking realizability

coSafetyLTL PSPACE-c ??? 2EXPTIME-c

F(pLTL) PSPACE-c ??? EXPTIME-c

LTL[X,F] NP-c ??? EXPTIME-c

Logics Problems

satisfiability model checking realizability

SafetyLTL PSPACE-c ??? 2EXPTIME-c

G(pLTL) PSPACE-c ??? EXPTIME-c

LTL[X̃,G] PSPACE-c ??? EXPTIME-c

Complexity of (co)safety fragments of LTL
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REACTIVE SYNTHESIS
from safety fragments of LTL



Environment

Controller

|= ϕ∀U ∃C

1 What are realizability and
reactive synthesis?
• model-based design: all the

effort on the quality of the
specification

• culmination of declarative
programming

2 Complexity:
• for S1S: non-elementary
• for LTL: 2EXPTIME-complete.

Reactive Synthesis
Definition and Classic Approach
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Definition (Strategy)

Let Σ = C ∪ U be an alphabet partitioned
into the set of controllable variables C
and the set of uncontrollable ones U ,
such that C ∩ U = ∅. A strategy for
Controller is a function

g : (2U )+ → 2C

that, given the sequence U = ⟨U0, . . . ,Un⟩
of choices made by Environment so far,
determines the current choices Cn = g(U)
of Controller.

Definition (Realizability and
Synthesis)

Let ϕ be a temporal formula over the
alphabet Σ = C ∪ U . We say that ϕ is
realizable if and only if

· ∃g : (2U )+ → 2C

· ∀ω-sequence U = ⟨U0,U1, . . .⟩ ∈ (2U )ω

· ⟨U0 ∪ g(⟨U0⟩),U1 ∪ g(⟨U0,U1⟩), . . .⟩ |= ϕ

In this case, g is called winning strategy. If
ϕ is realizable, the synthesis problem is
the problem of computing such a
strategy g.

Reactive Synthesis
Definition and Classic Approach
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Definition (Finitely representable
strategies)

Let g : (2U )+ → 2C be a strategy. We say
that g is finitely representable iff there
exists a Mealy machine Mg “equivalent”
to g.

Proposition (Small model property of
LTL)

Let ϕ be an LTL formula and n = |ϕ|. If ϕ is
realizable, then there exists a finitely
representable winning strategy g such that
its corresponding Mealy machine has at most
22c·n states, for some constant c.

Reference:
Amir Pnueli and Roni Rosner (1989). “On the Synthesis of a Reactive Module”. In:
Proceedings of POPL’89. ACM Press, pp. 179–190. DOI: 10.1145/75277.75293

Reactive Synthesis
Definition and Classic Approach
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• Realizability is modeled as a two-players game over an arena/automaton Aϕ

built from ϕ:
• Controller player: his objective is to enforce the satisfaction of the specification,

no matter the choices of the other player (winning strategy)
• Environment player: his objective is to enforce the violation of the specification,

no matter the choices of the other player

• Environment player moves first.
• The game is played on deterministic automata obtained from the initial

specification.
• there are simple algorithms for synthesis over deterministic arenas

⇒ backward fixpoint computations

• LTL formula ϕ⇝ DRA Aϕ

Reactive Synthesis
Definition and Classic Approach
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We consider first the case of finite words.

Standard Approach:

LTLf ϕ

NFA Aϕ

DFA A′ϕ

· determinization

reachability game

• The DFA A′
ϕ is equivalent to ϕ:

L(A′
ϕ) = L(ϕ)

• Controller can force to the game to
reach a final state of A′

ϕ iff there is a
winning strategy for the formula ϕ:
• playing over the DFA A′

ϕ is
equivalent to solve the reactive
synthesis problem for ϕ.

Reactive Synthesis
Definition and Classic Approach
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Definition (Strong Predecessor)

Let A = ⟨Q, 2U ∪ 2C , q0, δ,F⟩ be a DFA and
let S ⊆ Q. We define the strong
precedessors of S as follows:

pre(S) := {s ∈ Q |∀u ∈ 2U . ∃c ∈ 2C .

s u,c−→ s′, for some s′ ∈ S}

pre(S) is the set of states of A from which
Controller can force the game into a state
of S in one step.

• The winning region is the set of states
from which Controller can force the
game to reach a final state.
• ⇒ reachability games

• Computation of the winning region
(greatest fixed point):
• W0 := F
• Wi+1 := Wi ∪ pre(Wi)

• We stop when Wi = Wi+1 (fixed
point).
• Controller wins iff q0 ∈Wi. The

initial specification is realizable.
• Otherwise, Environment has a

strategy for violating the
specification.

Reachability Games
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s1 s3

s2 s4

{u}, {c,u}

∅, {c}

∅, {c}, {u}, {c,u}

∅,
{c} {u}, {c,u}

{u}

∅, {c}, {c,u}

• DFA for the formula F(u→ XXc),
with u ∈ U and c ∈ C.

Reachability Games
Backward fixpoint algorithm for DFA
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s1 s3
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∅, {c}, {u}, {c,u}

∅,
{c} {u}, {c,u}

{u}

∅, {c}, {c,u}

• DFA for the formula F(u→ XXc),
with u ∈ U and c ∈ C.
• W0 := {s2}

Reachability Games
Backward fixpoint algorithm for DFA
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s1 s3

s2 s4
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∅, {c}

∅, {c}, {u}, {c,u}

∅,
{c} {u}, {c,u}

{u}

∅, {c}, {c,u}

• DFA for the formula F(u→ XXc),
with u ∈ U and c ∈ C.
• W0 := {s2}
• W1 := {s2, s4}

Reachability Games
Backward fixpoint algorithm for DFA
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s1 s3

s2 s4

{u}, {c,u}

∅, {c}

∅, {c}, {u}, {c,u}

∅,
{c} {u}, {c,u}

{u}

∅, {c}, {c,u}

• DFA for the formula F(u→ XXc),
with u ∈ U and c ∈ C.
• W0 := {s2}
• W1 := {s2, s4}
• W2 := {s2, s4, s3}

Reachability Games
Backward fixpoint algorithm for DFA
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s1 s3

s2 s4

{u}, {c,u}

∅, {c}

∅, {c}, {u}, {c,u}

∅,
{c} {u}, {c,u}

{u}

∅, {c}, {c,u}

• DFA for the formula F(u→ XXc),
with u ∈ U and c ∈ C.
• W0 := {s2}
• W1 := {s2, s4}
• W2 := {s2, s4, s3}
• W3 := {s2, s4, s3, s1}

Reachability Games
Backward fixpoint algorithm for DFA
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s1 s3

s2 s4

{u}, {c,u}

∅, {c}

∅, {c}, {u}, {c,u}

∅,
{c} {u}, {c,u}

{u}

∅, {c}, {c,u}

• DFA for the formula F(u→ XXc),
with u ∈ U and c ∈ C.
• W0 := {s2}
• W1 := {s2, s4}
• W2 := {s2, s4, s3}
• W3 := {s2, s4, s3, s1}
• W3 ∩ I ̸= ∅⇒ the formula is

realizable.

Reachability Games
Backward fixpoint algorithm for DFA
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The case of Infinite Words

Standard approach:

LTL ϕ

NBA A(ϕ)

DRA A(ϕ)
· determinization

game solver

The case for infinite words (like in the
case for LTL) is much more difficult.
Two reasons:
• Büchi games
• NBA cannot be determinized

easily. Indeed, Safra’s
construction is:
• very complicated
• difficult to implement
• not amenable to optimizations

Reactive Synthesis
Definition and Classic Approach
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The case of Infinite Words

Standard approach:

LTL ϕ

NBA A(ϕ)

DRA A(ϕ)
· determinization

game solver

Research mainly focused on two
lines

1 finding good algorithms for the
average case
• Safraless approaches

• Bounded synthesis

2 restricting the expressiveness of
the specification language
• GR(1)
• SafetyLTL

Reactive Synthesis
Definition and Classic Approach
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SafetyLTL ϕ

DFA Abad

· bad prefixes

reachability game

Game:
• Now, Controller moves first
• Goal of Controller: always avoid final states

of Abad.
• Goal of Environment: reach a final state of
Abad.

Reactive Synthesis of Safety Properties
SafetyLTL
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SafetyLTL ϕ

DFA Abad

· bad prefixes

reachability game

Pros:
• infinite words⇝ finite word
• Safra’s algorithm is avoided.
• We use standard subset construction for
Abad:
• easily implementable
• easily optimizable

Cons:
• the size of Abad is 22Θ(n)

.
• this is prohibitive when ϕ is large.

Reactive Synthesis of Safety Properties
SafetyLTL
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SafetyLTL ϕ

DFA Abad

· bad prefixes

reachability game

Tool: SSyft

Reference:
Shufang Zhu et al. (2017). “A Symbolic
Approach to Safety LTL Synthesis”. In:
Proceedings of the 13th International Haifa
Verification Conference. Ed. by Ofer Strichman and
Rachel Tzoref-Brill. Vol. 10629. Lecture Notes in
Computer Science. Springer, pp. 147–162. DOI:
10.1007/978-3-319-70389-3\_10

Link: https://github.com/Shufang-Zhu/Syft-safety

Reactive Synthesis of Safety Properties
SafetyLTL
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SafetyLTL ϕ

DFA Abad

· bad prefixes

reachability game

Tool: SSyft
1 Let ϕ be a SafetyLTL formula.
2 Translate ¬ϕ into an equivalent formula ψ of

S1S[FO] interpreted over finite words.
• the models of ψ are exactly the bad prefixes

of ϕ

3 Call the tool MONA for building the
equivalent and minimal DFA.

4 Solve a reachability game.

Reactive Synthesis of Safety Properties
SafetyLTL
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SafetyLTL ϕ

DFA Abad

· bad prefixes

reachability game

• MONA is a very efficient tool for the
construction of automata starting from
formulas.
• MONA implements decision procedures for

the Weak Second-order Theory of One or
Two successors.
• Link : https://www.brics.dk/mona/

Reactive Synthesis of Safety Properties
SafetyLTL
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SafetyLTL ϕ

DFA Abad

· bad prefixes

reachability game

Theorem
SafetyLTL realizability is 2EXPTIME-complete.

Reference:
Alessandro Artale, Luca Geatti, et al. (2023b).
“Complexity of Safety and coSafety Fragments of
Linear Temporal Logic”. In: Proc. of the 36th
AAAI Conf. on Artificial Intelligence. AAAI Press

Reactive Synthesis of Safety Properties
SafetyLTL

156/203 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences



Logics Problems

satisfiability model checking realizability

coSafetyLTL PSPACE-c ??? 2EXPTIME-c

F(pLTL) PSPACE-c ??? EXPTIME-c

LTL[X,F] NP-c ??? EXPTIME-c

Logics Problems

satisfiability model checking realizability

SafetyLTL PSPACE-c ??? 2EXPTIME-c

G(pLTL) PSPACE-c ??? EXPTIME-c

LTL[X̃,G] PSPACE-c ??? EXPTIME-c

Complexity of (co)safety fragments of LTL
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satisfiability model checking realizability

coSafetyLTL PSPACE-c ??? 2EXPTIME-c
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satisfiability model checking realizability

SafetyLTL PSPACE-c ??? 2EXPTIME-c
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G(pLTL) ϕ

DFA A

· deterministic automaton
· of singly exponential size

safety game

Algorithm:
1 Let G(α) be a formula of G(pLTL).

Theorem
ϕ is realizable (with Environment moving first) iff ¬ϕ
is unrealizable (with Controller moving first).

G(α) is realizable iff F(¬α) is unrealizable
(with Controller moving first).

Reactive Synthesis of Safety Properties
G(pLTL)
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G(pLTL) ϕ

DFA A

· deterministic automaton
· of singly exponential size

safety game

Algorithm:
1 Let G(α) be a formula of G(pLTL).

G(α) is realizable iff F(¬α) is unrealizable
2 Build the DFA A¬α for ¬α

• this can be done in 2O(n)

• we will see later its construction
3 Solve a reachability game on A¬α:

• if Controller (that moves first) wins:
• F(¬α) is realizable
• G(α) is unrealizable

• if Environment wins:
• F(¬α) is unrealizable
• G(α) is realizable

Reactive Synthesis of Safety Properties
G(pLTL)
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G(pLTL) ϕ

DFA A

· deterministic automaton
· of singly exponential size

safety game

• Advantages:
• The size of | A | is 2O(n):

• singly exponential
• one exponential smaller than the set of bad

prefixes of a SafetyLTL formula.
• The translation from pLTL into DFA can be

done in a purely symbolic fashion

Reference:
Alessandro Cimatti et al. (2021). “Extended
bounded response LTL: a new safety fragment
for efficient reactive synthesis”. In: Formal
Methods in System Design, 1–49 (published online
on November 18, 2021, doi:
10.1007/s10703-021-00383–3)

Reactive Synthesis of Safety Properties
G(pLTL)
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Theorem
For any formula ϕ of pLTL with n = |ϕ|, there exists a DFA A such that L(A) = L(ϕ)
and | A | ∈ 2O(n).

Reference:
Giuseppe De Giacomo et al. (2021). “Pure-past linear temporal and dynamic logic
on finite traces”. In: Proceedings of the Twenty-Ninth International Conference on
International Joint Conferences on Artificial Intelligence, pp. 4959–4965

From pLTL to DFA
of singly exponential size
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Theorem
For any formula ϕ of pLTL with n = |ϕ|, there exists a DFA A such that L(A) = L(ϕ)
and | A | ∈ 2O(n).

Intuition:
Since past already happened, there is no need for nondeterminism.

There is this useful asymmetry:

• The automaton reads from left to right;
• The pure past formula predicates from right to left.

From pLTL to DFA
of singly exponential size
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Theorem
For any formula ϕ of pLTL with n = |ϕ|, there exists a DFA A such that L(A) = L(ϕ)
and | A | ∈ 2O(n).

De Giacomo et al. prove the result passing from alternating automata.

Theorem
For any alternating finite automaton A, there exists a DFA for its reverse language of size
singly exponential in | A |.

Reference:
Ashok K. Chandra, Dexter Kozen, and Larry J. Stockmeyer (1981). “Alternation”.
In: J. ACM 28.1, pp. 114–133. DOI: 10.1145/322234.322243. URL:
https://doi.org/10.1145/322234.322243

From pLTL to DFA
of singly exponential size
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Theorem
For any formula ϕ of pLTL with n = |ϕ|, there exists a DFA A such that L(A) = L(ϕ)
and | A | ∈ 2O(n).

Here we give a direct construction.

From pLTL to DFA
of singly exponential size
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Definition (Closure of pLTL formulas)

The closure of a pLTL formula ϕ over the atomic propositions AP , denoted as C(ϕ),
is the smallest set of formulas satisfying the following properties:
• Yϕ ∈ C(ϕ)
• ϕ ∈ C(ϕ), and, for each subformula ϕ′ of ϕ, ϕ′ ∈ C(ϕ)
• for each p ∈ AP , p ∈ C(ϕ) if and only if ¬p ∈ C(ϕ)
• if ϕ1 S ϕ2 ∈ C(ϕ), then Y(ϕ1 S ϕ2) ∈ C(ϕ)

• if Oϕ1 ∈ C(ϕ), then Y(Oϕ1) ∈ C(ϕ)
• if ϕ1 T ϕ2 ∈ C(ϕ), then Ỹ(ϕ1 T ϕ2) ∈ C(ϕ)

• if Hϕ1 ∈ C(ϕ), then Ỹ(Hϕ1) ∈ C(ϕ)

• We denote by CY(ϕ) the set of formulas of type Yϕ1 in C(ϕ).
• We denote by CỸ(ϕ) the set of formulas of type Ỹϕ1 in C(ϕ).

From pLTL to DFA
of singly exponential size
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Definition (Stepped Normal Form)

Let ϕ be a pLTL formula over the atomic propositions AP . Its stepped normal form,
denoted by snf(ϕ), is defined as follows:

snf(ℓ) = ℓ where ℓ ∈ {p,¬p}, for p ∈ AP

snf(⊗ϕ1) = ⊗ϕ1 where ⊗ ∈ {Y, Ỹ}
snf(ϕ1 ⊗ ϕ2) = snf(ϕ1)⊗ snf(ϕ2) where ⊗ ∈ {∧,∨}
snf(ϕ1 S ϕ2) = snf(ϕ2) ∨ (snf(ϕ1) ∧ Y(ϕ1 S ϕ2))

snf(ϕ1 T ϕ2) = snf(ϕ2) ∧ (snf(ϕ1) ∨ Ỹ(ϕ1 T ϕ2))

Example: snf(Oq) = q ∨ YOq.

From pLTL to DFA
of singly exponential size
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Given a set S ⊆ CY(ϕ) ∪ CỸ(ϕ) and a σ ∈ 2AP , we write S, σ |= ϕ iff ϕ is true when:

• S is used for interpreting the subformulas of type Yα and Ỹα
• σ is used for interpreting proposition letters in AP

Example:
• S = {YOq}
• σ = ∅
• S, σ |= q ∨ YOq

From pLTL to DFA
of singly exponential size
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Given ϕ ∈ LTL we define the DFA
Aϕ = ⟨Q,Σ, q0, δ,F⟩ as follows:

Example: ϕ := p ∧ YOq

∅ {Yϕ}

{YOq} {Yϕ,YOq}

∅, {p}

{q}, {p, q}

∅, {q}

{p}, {p, q} {p}, {p, q}

∅, {q}

∅, {p}

{q}
, {p
, q
}

From pLTL to DFA
of singly exponential size
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Given ϕ ∈ LTL we define the DFA
Aϕ = ⟨Q,Σ, q0, δ,F⟩ as follows:
• Q = 2CY(ϕ)∪CỸ(ϕ)

• Q = {∅, {Yϕ}, {YOq}, {Yϕ,YOq}}

Example: ϕ := p ∧ YOq

∅ {Yϕ}

{YOq} {Yϕ,YOq}

∅, {p}

{q}, {p, q}

∅, {q}

{p}, {p, q} {p}, {p, q}

∅, {q}

∅, {p}

{q}
, {p
, q
}

From pLTL to DFA
of singly exponential size
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Given ϕ ∈ LTL we define the DFA
Aϕ = ⟨Q,Σ, q0, δ,F⟩ as follows:
• Q = 2CY(ϕ)∪CỸ(ϕ)

• Q = {∅, {Yϕ}, {YOq}, {Yϕ,YOq}}
• Σ = 2AP

• Σ = {∅, {p}, {q}, {p, q}}

Example: ϕ := p ∧ YOq

∅ {Yϕ}

{YOq} {Yϕ,YOq}

∅, {p}

{q}, {p, q}

∅, {q}

{p}, {p, q} {p}, {p, q}

∅, {q}

∅, {p}

{q}
, {p
, q
}
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of singly exponential size
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Given ϕ ∈ LTL we define the DFA
Aϕ = ⟨Q,Σ, q0, δ,F⟩ as follows:
• Q = 2CY(ϕ)∪CỸ(ϕ)

• Q = {∅, {Yϕ}, {YOq}, {Yϕ,YOq}}
• Σ = 2AP

• Σ = {∅, {p}, {q}, {p, q}}
• q0 = CỸ(ϕ)

• q0 = ∅

Example: ϕ := p ∧ YOq

∅ {Yϕ}

{YOq} {Yϕ,YOq}

∅, {p}

{q}, {p, q}

∅, {q}

{p}, {p, q} {p}, {p, q}

∅, {q}

∅, {p}

{q}
, {p
, q
}
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Given ϕ ∈ LTL we define the DFA
Aϕ = ⟨Q,Σ, q0, δ,F⟩ as follows:
• Q = 2CY(ϕ)∪CỸ(ϕ)

• Q = {∅, {Yϕ}, {YOq}, {Yϕ,YOq}}
• Σ = 2AP

• Σ = {∅, {p}, {q}, {p, q}}
• q0 = CỸ(ϕ)

• q0 = ∅
• δ(q, σ) = {Yψ, Ỹψ ∈ CY(ϕ) ∪ CỸ(ϕ) |

q, σ |= snf(ψ)}
• see figure

Example: ϕ := p ∧ YOq

∅ {Yϕ}

{YOq} {Yϕ,YOq}

∅, {p}

{q}, {p, q}

∅, {q}

{p}, {p, q} {p}, {p, q}

∅, {q}
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{q}
, {p
, q
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Given ϕ ∈ LTL we define the DFA
Aϕ = ⟨Q,Σ, q0, δ,F⟩ as follows:
• Q = 2CY(ϕ)∪CỸ(ϕ)

• Q = {∅, {Yϕ}, {YOq}, {Yϕ,YOq}}
• Σ = 2AP

• Σ = {∅, {p}, {q}, {p, q}}
• q0 = CỸ(ϕ)

• q0 = ∅
• δ(q, σ) = {Yψ, Ỹψ ∈ CY(ϕ) ∪ CỸ(ϕ) |

q, σ |= snf(ψ)}
• see figure

• F = {S ⊆ CY(ϕ) ∪ CỸ(ϕ) | Yϕ ∈ S}
• F = {{Yϕ}, {Yϕ,YOq}}

Example: ϕ := p ∧ YOq

∅ {Yϕ}

{YOq} {Yϕ,YOq}

∅, {p}

{q}, {p, q}

∅, {q}

{p}, {p, q} {p}, {p, q}

∅, {q}

∅, {p}

{q}
, {p
, q
}

From pLTL to DFA
of singly exponential size
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Theorem
G(pLTL) realizability is EXPTIME-complete.

Theorem
F(pLTL) realizability is EXPTIME-complete.

Reference:
Alessandro Artale, Luca Geatti, et al. (2023b). “Complexity of Safety and coSafety
Fragments of Linear Temporal Logic”. In: Proc. of the 36th AAAI Conf. on Artificial
Intelligence. AAAI Press

From pLTL to DFA
of singly exponential size
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Logics Problems

satisfiability model checking realizability

coSafetyLTL PSPACE-c ??? 2EXPTIME-c

F(pLTL) PSPACE-c ??? EXPTIME-c

LTL[X,F] NP-c ??? EXPTIME-c

Logics Problems

satisfiability model checking realizability

SafetyLTL PSPACE-c ??? 2EXPTIME-c

G(pLTL) PSPACE-c ??? EXPTIME-c

LTL[X̃,G] PSPACE-c ??? EXPTIME-c

Complexity of (co)safety fragments of LTL
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Theorem
G(pLTL) realizability is EXPTIME-complete.

• Pure past LTL plays a crucial role for safety fragments
• SafetyLTL realizability is 2EXPTIME-complete
• . . . but G(pLTL) and SafetyLTL are expressively equivalent

From pLTL to DFA
of singly exponential size
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Theorem
G(pLTL) realizability is EXPTIME-complete.

• Pure past LTL plays a crucial role for safety fragments
• SafetyLTL realizability is 2EXPTIME-complete
• . . . but G(pLTL) and SafetyLTL are expressively equivalent

Two questions:
1 Succinctness

Can SafetyLTL be exponentially more succinct than G(pLTL)?

2 Pastification algorithms
Can a logic be efficiently translated into a pure-past one, by preserving equiva-

lence?

From pLTL to DFA
of singly exponential size
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SUCCINCTNESS AND
PASTIFICATION

Known results and open questions



Informal definition.

Given two linear-time temporal logics L and L′, we say that L can be exponen-
tially more succinct than L′ iff there exists a property such that

• it can be succinctly expressed in L,
• but all formulas of L′ for it are at least exponentially larger.

Succinctness
Definition
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Formal definition.

Definition
Given two linear-time temporal logics L and L′, we say that L can be exponentially
more succinct than L′ over infinite trace (resp., over finite traces) iff there exists an
alphabet Σ and a family of languages {Ln}n>0 ⊆ (2Σ)ω (resp., {Ln}n>0 ⊆ (2Σ)∗)
such that, for any n > 0,
• there exists a formula ϕ ∈ L over Σ such that its language over infinite traces

(resp., over finite traces) is Ln and |ϕ| ∈ O(n), and
• for all formulas ϕ′ ∈ L′ over Σ, if the language of ϕ′ over infinite traces (resp.,

finite traces) is Ln, then |ϕ′| ∈ 2Ω(n).

Succinctness
Definition
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Succinctness is important for various reasons.

In particular,

1 it helps choosing the right formalism when solving problems like reactive
synthesis, model checking, and so on;

2 it is an important theoretical tool, that connects the study of computational
complexity to that of expressive power.

Succinctness

167/203 L. Geatti, A. Montanari The Safety Fragment of Temporal Logics on Infinite Sequences



A well-known result about LTL+P and LTL.

Theorem
LTL+P can be exponentially more succinct than LTL.

Reference:
Nicolas Markey (2003). “Temporal logic with past is exponentially more succinct”.
In: Bull. EATCS 79, pp. 122–128

Succinctness
The case of LTL+P and LTL
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Theorem
F(pLTL) can be exponentially more succinct than coSafetyLTL.

It follows from the result by Markey.

Here we give a simplified version.

Succinctness of (co)safety fragments of LTL
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Proof.
Steps (proof by contradiction):

1 For all n > 0, find a language An such that L(ϕn) = An and |ϕn| ∈ O(n), for
some ϕn ∈ F(pLTL).

2 Suppose by contradiction that, for all n > 0, there exists a formula ϕ′n of
coSafetyLTL such that L(ϕ′n) = L(ϕn) and |ϕ′n| is polynomial in n.

3 Use ϕ′n to build a formula ψn of LTL+P such that |ψn| is polynomial in n. Let
Bn = L(ψn).

4 Prove that all NBA for Bn are of size 22Ω(n)
.

5 Exploit the fact that there exists a singly exponential translation from LTL+P
to equivalent NBA to prove that:
• all LTL+P formulas of Bn are of size 2Ω(n).

6 Conclude that all formulas of coSafetyLTL that express An are of size 2Ω(n).

Succinctness of (co)safety fragments of LTL
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1 For all n > 0, find a language An such that L(ϕn) = An and |ϕn| ∈ O(n), for
some ϕn ∈ F(pLTL).

Let Σ = {p0, p1, . . . , pn}.

An := {σ ∈ (2Σ)+ | ∃k > 0 . (
n∧

i=0

(pi ∈ σk ↔ pi ∈ σ0))}

σ0
· · ·

σk
· · ·

σ|σ|−1

p0
¬p1

p2

p0
¬p1

p2

Succinctness of (co)safety fragments of LTL
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1 For all n > 0, find a language An such that L(ϕn) = An and |ϕn| ∈ O(n), for
some ϕn ∈ F(pLTL).

Let Σ = {p0, p1, . . . , pn}.

An := {σ ∈ (2Σ)+ | ∃k > 0 . (
n∧

i=0

(pi ∈ σk ↔ pi ∈ σ0))}

Lemma
For any n > 0, there exists a formula
ϕ ∈ F(pLTL) such that L(ϕ) = An and
|ϕ| ∈ O(n).

Proof.

F
( n∧

i=0

(pi ↔ YO(Ỹ⊥ ∧ pi))
)

Succinctness of (co)safety fragments of LTL
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2 Suppose by contradiction that, for all n > 0, there exists a formula ϕ′n of
coSafetyLTL such that L(ϕ′n) = L(ϕn) and |ϕ′n| is polynomial in n.

3 Use ϕ′n to build a formula ψn of LTL+P such that |ψn| is polynomial in n. Let
Bn = L(ψn).

• ψn := F(ϕ′n)
• Bn := {σ ∈ (2Σ)+ | ∃h ≥ 0 . ∃k > h . (

∧n
i=0(pi ∈ σk ↔ pi ∈ σh))}

σ0
· · ·

σh
· · ·

σk
· · ·

σ|σ|−1

p0
¬p1

p2

p0
¬p1

p2

Succinctness of (co)safety fragments of LTL
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2 Suppose by contradiction that, for all n > 0, there exists a formula ϕ′n of
coSafetyLTL such that L(ϕ′n) = L(ϕn) and |ϕ′n| is polynomial in n.

3 Use ϕ′n to build a formula ψn of LTL+P such that |ψn| is polynomial in n. Let
Bn = L(ψn).

Lemma
If there exists a formula of coSafetyLTL for An of size less than exponential in n, then there
exists a formula of LTL+P for Bn of size less than exponential in n.

Succinctness of (co)safety fragments of LTL
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4 Prove that all NBA for Bn are of size 22Ω(n)
.

Lemma
For any n > 0 and any NBA A over the alphabet 2Σ, if L(A) = Bn then | A | ∈ 22Ω(n) .

Reference:
Kousha Etessami, Moshe Y. Vardi, and Thomas Wilke (2002). “First-Order Logic
with Two Variables and Unary Temporal Logic”. In: Inf. Comput. 179.2,
pp. 279–295. DOI: 10.1006/inco.2001.2953. URL:
https://doi.org/10.1006/inco.2001.2953

Succinctness of (co)safety fragments of LTL
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4 Exploit the fact that there exists a singly exponential translation from LTL+P
to equivalent NBA to prove that:
• all LTL+P formulas of Bn are of size 2Ω(n).

Proposition

For any LTL formula ϕ, with |ϕ| = n, over the set of atomic propositions AP , there exists
an NBA Aϕ over the alphabet 2AP such that:
• L(ϕ) = L(Aϕ) • |Aϕ | ∈ 2O(n)

Lemma
For any formula ϕ ∈ LTL+P, if L(ϕ) = Bn, then |ϕ| ∈ 2Ω(n).

Succinctness of (co)safety fragments of LTL
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4 Conclude that all formulas of coSafetyLTL that express An are of size 2Ω(n).

Theorem
For any n > 0 and any formula ϕ ∈ coSafetyLTL, if L(ϕ) = An, then |ϕ| ∈ 2Ω(n).

Corollary

F(pLTL) can be exponentially more succinct than coSafetyLTL.

Succinctness of (co)safety fragments of LTL
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By a simple duality argument:

Corollary

G(pLTL) can be exponentially more succinct than SafetyLTL.

All these results have been collected in:

Reference:
Alessandro Artale, Luca Geatti, et al. (2023c). “LTL over finite words can be
exponentially more succinct than pure-past LTL, and vice versa”. In: Proceedings of
the 30th International Symposium on Temporal Representation and Reasoning, TIME
2023, September 25-26, 2023, NCSR Demokritos, Athens, Greece. Ed. by
Florian Bruse Alexander Artikis and Luke Hunsberger. LIPIcs. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik

Succinctness of (co)safety fragments of LTL
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Open problem:

Can coSafetyLTL be exponentially more succinct than F(pLTL)?

Conjecture:

coSafetyLTL can be n! more succinct than F(pLTL).

Succinctness of (co)safety fragments of LTL
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Conjecture:

coSafetyLTL can be n! more succinct than F(pLTL).

• Cn := {σ ∈ (2Σ)ω | ∃k ≥ 0 .
∧n

i=1(∃h > k . (qi ∈ σh ∧ ∀k ≤ l < h . pi ∈ σl))}
• F(

∧n
i=1 pi U qi)

σ0
· · ·

σk
· · ·

σh2

· · ·
σh0

· · ·
σh1

· · ·
σ|σ|−1

p1
p0
p2 q2 q0 q1

p2

p0

p1

• In F(pLTL), one needs to specify all permutations of the set {q1, . . . , qn}.

Succinctness of (co)safety fragments of LTL
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Recall that JLTLK ∩ SAFETY = JLTLK<ω · (2Σ)ω

Consider now LTLf , that is, JLTLK<ω. The following incomparability result holds.

Theorem

• LTLf can be exponentially more succinct than pLTL.
• pLTL can be exponentially more succinct than LTLf .

Reference:
Alessandro Artale, Luca Geatti, et al. (2023c). “LTL over finite words can be exponentially more
succinct than pure-past LTL, and vice versa”. In: Proceedings of the 30th International Symposium on
Temporal Representation and Reasoning, TIME 2023, September 25-26, 2023, NCSR Demokritos, Athens,
Greece. Ed. by Florian Bruse Alexander Artikis and Luke Hunsberger. LIPIcs. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik

Succinctness
Incomparability
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• Let us consider again the case of coSafetyLTL and F(pLTL).
• Succinctness properties can be considered as lower bounds for the

transformation of coSafetyLTL into F(pLTL).
• The transformation of a pure future fragment into a pure past one is called

PASTIFICATION
• Originally introduced in the context of synthesis of timed temporal logics:

Reference:
Oded Maler, Dejan Nickovic, and Amir Pnueli (2007). “On synthesizing
controllers from bounded-response properties”. In: Proceedings of the International
Conference on Computer Aided Verification. Springer, pp. 95–107. DOI:
10.1023/A:1008734703554

• We now look at some pastification algorithms (upper bounds)

Succinctness and Pastification
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Let us briefly consider pastification algorithms for the following fragments:

• LTL[X]
• polynomial-size pastification

• LTL[X,F]
• exponential-size pastification

• coSafetyLTL
• triply exponential-size pastification

• LTLf
• triply exponential-size pastification

Pastification Algorithms
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• Let ϕ ∈ LTL[X].
• There exists a time point d ∈ N, that is, the temporal depth of ϕ, such that the

subsequent states cannot be constrained by ϕ.
• temporal depth of ϕ = maximum number of nested X operators

• Thus, we can write a formula (the pastification of ϕ) that uses only past
operators and is equivalent to ϕ when interpreted at d.
• Example: ϕ := r→ XXXg

r→ XXXg YYYr→ g

0 1 2 3
temporal

depth

It holds that: r→ XXXg ≡ F(at3 ∧ (YYYr→ g)).
• where at3 := ỸỸỸ⊥ ∧ YY⊤.

Transforming LTL[X] into F(pLTL)
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Theorem
There is a polynomial-size pastification of LTL[X] into F(pLTL).

Reference:
Oded Maler, Dejan Nickovic, and Amir Pnueli (2007). “On synthesizing
controllers from bounded-response properties”. In: Proceedings of the International
Conference on Computer Aided Verification. Springer, pp. 95–107. DOI:
10.1023/A:1008734703554

Transforming LTL[X] into F(pLTL)
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Theorem
There is a 1 exponential-size pastification of LTL[X,F] into F(pLTL).

• Data structure: dependency trees
• Candidate lower bound: F(

∧n
i=1(pi ∨ Fqi))

Reference:
Alessandro Artale, Luca Geatti, et al. (2023a). “A Singly Exponential
Transformation of LTL[X,F] into Pure Past LTL”. In: Proceedings of the 20th
International Conference on Principles of Knowledge Representation and Reasoning, KR
2023, Rhodes, Greece. September 2-8, 2023

Transforming LTL[X, F] into F(pLTL)
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Theorem
There is a 3 exponential-size pastification of coSafetyLTL into F(pLTL).

Let ϕ be a coSafetyLTL formula.
1 Build the DFA A′

ϕ for the set of good prefixes of ϕ:
• doubly exponential blow-up

2 Use the Krohn-Rhodes Primary Decomposition Theorem to build a cascade
product equivalent to A′

ϕ.
• exponential blow-up

3 Translate the cascade product into a formula ψ of pLTL. Return F(ψ).
• linear

Total: triply exponential pastification algorithm.

Transforming coSafetyLTL into F(pLTL)
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Theorem
There is a 3 exponential-size pastification of coSafetyLTL into F(pLTL).

Reference:
Oded Maler and Amir Pnueli (1990). “Tight bounds on the complexity of cascaded
decomposition of automata”. In: Proceedings of the 31st Annual Symposium on
Foundations of Computer Science. IEEE, pp. 672–682

There are two missing exponentials between the best-known upper and lower
bounds:
• best known upper bound: triply exponential
• best known lower bound: singly exponential

Transforming coSafetyLTL into F(pLTL)
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As for LTLf , the best known algorithm is the same as the one for coSafetyLTL.

Let ϕ be a LTLf formula.
1 Build a NFA Aϕ for ϕ.

• exponential blow-up
2 Determinize Aϕ into a DFA A′

ϕ.
• exponential blow-up

3 Use the Krohn-Rhodes Primary Decomposition Theorem to build a cascade
product equivalent to A′

ϕ.
• exponential blow-up

4 Translate the cascade product into pLTL.
• linear

Total: triply exponential pastification algorithm.

Transforming LTLf into pLTL
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Upper bound Lower bound
LTL[X] linear linear

LTL[X,F] 1-exp ?
coSafetyLTL 3-exp ?

LTLf 3-exp 1-exp

A polynomial-size pastification algorithm is a very uncommon feature for a logic.

Pastification Algorithms
A recap of upper and lower bounds
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CONCLUSIONS



• Characterizations of safety and
cosafety fragments of LTL:
• reduction from infinite to finite

words reasoning
• Role of past temporal operators in

the definition of canonical forms
• Kupferman & Vardi’s classification

of safety properties:
• intentionally, accidentally, and

pathologically safe.
• Algorithms to recognize safety

automata and LTL safety formulas
• Algorithms to build the set of bad

prefixes
• doubly exponential DFA

• Algorithms for
• satisfiability checking
• model checking

• the worst-case complexity does
not change

• efficient algorithms in practice
• reactive synthesis

• avoid Safra’s determinization
• by using past operators, the

worst-case complexity can be
decreased by one exponential

• Succinctness issues
• G(pLTL) can be exponentially

more succinct than SafetyLTL

• Pastification algorithms

Conclusions: results
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• Some interesting open problems:

• Worst-case complexity of safety model checking

• Succinctness lower bounds
• LTL[X,F]
• coSafetyLTL

• Efficient pastification algorithms

Conclusions: open problems
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