
Università degli Studi di Udine

Dipartimento di Matematica e Informatica

Dottorato di Ricerca in Informatica

Ph.D. Thesis

Reasoning about names
in Higher-Order Abstract Syntax

Candidate: Supervisor:

Ivan Scagnetto Furio Honsell

October 31, 2001

Abstract

The continuously growing application of computer science to a wide range of human activ-
ities yields several issues. Besides sociological, philosophical or other more or less arbitrary
speculations, there is the pragmatic need of controlling the activity and predicting the be-
haviour of complex systems devoted to critical tasks or, more simply, to the accomplishment
of online financial transactions. Most of the time, programmers convince themselves that
their code meets the original specifications by informal arguments or by testing the software
over some sample of input data. However, even at the dawn of the computer era, this ap-
proach has been considered unsatisfactory since it cannot ensure the absence of errors under
all circumstances.

On the other hand the formal methods of mathematics provide a rigorous way for reason-
ing and understanding the behaviour of programs, languages, and complex systems. Many
logics and calculi have arisen in order to deal with a plethora of problems and properties.
However, their application to real cases is often cumbersome and error prone due to the
overwhelming complexity and the subtleties involved.

The field of Computer Aided Formal Reasoning (CAFR) is a research branch whose aim
is to study and implement tools allowing one to develop formal proofs in a computer-assisted
way. So doing, nothing can be “swept under the rug” (as it often happens with proofs carried
out with “pencil and paper”) and, once the proof is finished, its correctness is ensured, i.e.,
certified by the system.

Recently Logical Frameworks (LFs) based on constructive type theory have emerged as
general metalanguages for encoding and formally reasoning about formal systems by means
of the propositions-as-types, proofs-as-terms paradigm. The latter allows one to reduce
the problem of proof checking to that of type checking opening the way to a mechanized
implementation of LFs.

The contribution of this thesis is the proposal of an axiomatic theory which, in con-
junction with the Higher-Order Abstract Syntax (HOAS) encoding approach, allows one to
adequately encode and reason over a large class of formal systems. We hope that this work
will help in the understanding and application of LFs.

Keywords: Formal Methods, Computer Aided Formal Reasoning; Logical Frameworks,
Type Theory, Coq, Higher-Order Abstract Syntax; Functor Categories.

iv

Contents

1 Introduction 1

2 Type Theory-based Logical Frameworks 7
2.1 Pure Type Systems . 8
2.2 The Calculus of (Co)Inductive Constructions (CC(Co)Ind) 12

2.2.1 CC(Co)Ind as a PTS . 12
2.2.2 (Co)Inductive definitions . 12

2.3 The proof assistant Coq . 15
2.3.1 Terms, types and sorts . 16
2.3.2 The Gallina specification language 16

3 Encoding methodology 23
3.1 Representing expressions . 23

3.1.1 Higher-Order Abstract Syntax (HOAS) 24
3.1.2 HOAS and Inductive Definitions . 25
3.1.3 Alternatives to HOAS . 27

3.2 Representing proofs . 28
3.3 Pragmatic remarks . 31

4 A Theory of Contexts 35
4.1 The axioms . 35
4.2 Nominal calculi . 37
4.3 The system Υ . 39

4.3.1 Syntax . 40
4.3.2 Judgments . 41
4.3.3 HOAS-Encodings and Adequacy . 41
4.3.4 Logic . 46
4.3.5 Induction in Υ . 48
4.3.6 Functions in Υ . 49

4.4 The Axiom of Unique Choice . 52
4.5 Investigating the Theory of Contexts . 54

4.5.1 Independence . 54
4.5.2 Expressiveness . 57

4.6 Related work . 61

5 A functorial model for the Theory of Contexts 63
5.1 Introduction . 63
5.2 The object language . 64

vi CONTENTS

5.3 Encoding the π-calculus fragment in Υ . 66
5.4 The construction of model U . 66

5.4.1 The ambient categories V̌ and Ǐ . 68
5.4.2 Interpreting types . 69
5.4.3 Interpreting environments . 71
5.4.4 Interpreting the typing judgment of terms 71
5.4.5 Interpreting logical judgments . 74

5.5 U is a model of Υ . 75
5.5.1 Forcing . 75
5.5.2 Characterisation of Leibniz equality 76
5.5.3 U models logical axioms and rules . 78
5.5.4 U models the Theory of Contexts . 78

5.6 Recursion . 80
5.6.1 First-order recursion . 80
5.6.2 Higher-order recursion . 82

5.7 Induction . 84
5.7.1 First-order induction . 84
5.7.2 Higher-order induction . 87

5.8 Connections with tripos theory . 89
5.9 Related work . 91

6 Case studies 95
6.1 α-equivalence for the untyped λ-calculus . 95

6.1.1 Encoding the untyped λ-calculus . 96
6.1.2 The Theory of Contexts for the untyped λ-calculus 97
6.1.3 Encoding the α-equivalence relation (I) 100
6.1.4 Encoding of α-equivalence (II) . 102
6.1.5 Formal metatheory of α-equivalence 103
6.1.6 Formal equivalence of alphaBar and alphaMKP 108
6.1.7 Encoding the α-equivalence relation (III) 109
6.1.8 Formal equivalence of alphaMKP and alphaGP 110

6.2 Ambients . 111
6.2.1 Syntax . 111
6.2.2 Structural Congruence . 112
6.2.3 Reduction System . 112
6.2.4 The Logic . 113
6.2.5 Encoding of Syntax . 114
6.2.6 Encoding of Structural Congruence . 119
6.2.7 Encoding of the Reduction System . 121
6.2.8 Encoding of formulæ . 124
6.2.9 Encoding of Satisfaction . 126
6.2.10 The Theory of Contexts for the Ambient Calculus 129
6.2.11 Formal metatheory . 133

6.3 Pragmatic remarks . 137
6.3.1 Lifting structural information . 138
6.3.2 Inversion issues . 138
6.3.3 Statistics . 139

CONTENTS vii

7 Conclusions 141

A Deriving Higher-Order Induction Principles 143

B Category-theoretical notions 151

C Longer proofs 155
C.0.4 Proof of Proposition 5.2 . 155
C.0.5 Proof of Proposition 5.3 . 156
C.0.6 Proof of Proposition 5.4 . 158
C.0.7 Proof of Theorem 5.1 . 159
C.0.8 Proof of Corollary 5.1 . 160
C.0.9 Proof of Theorem 5.4 . 161
C.0.10 Proof of Theorem 5.5 . 164
C.0.11 Proof of Theorem 5.9 . 167
C.0.12 Proof of Proposition 5.8 . 169
C.0.13 Proof of Proposition 5.9 . 170
C.0.14 Proof of Theorem 5.12 . 171

Bibliography 177

viii CONTENTS

1
Introduction

The increasing complexity of modern software and hardware systems generates the non trivial
problem of the certification of their behaviour; indeed formally ensuring that a given system
is doing exactly what it is designed for imposes an overwhelming burden of details making
it likely that errors will arise. A large number of states, for example, often implies that
checking even a simple transition may be not only error prone, but far beyond the human
skills.

So there is the need for automated tools helping people to carry out the difficult task
of formally reasoning about computerized systems. The aim of Computer Aided Formal
Reasoning (CAFR) research is exactly the study and implementation of such tools. In
computer science there are many logics which are useful for reasoning about software and
hardware systems (e.g. propositional, first-order, higher-order, modal, temporal and linear
logics, set-theory, etc.). In general there are two main possible approaches when facing
the problem of implementing an automated tool for one of those formal systems. The first
consists of building it from scratch, but this immediately appears to be a daunting task
since there are many mechanisms to be implemented and, when a different formal system is
considered, all the work must be repeated. Just to give an idea of the difficulties imposed by
this strategy, it is sufficient to consider the syntax level, where support must be provided for
representing terms, formulæ, derivation rules, binding operators, and substitution. Moreover,
at the level of formal proofs there are more complicated techniques that must be implemented
such as proof construction and proof checking tools, instantiation of rule schemes and all the
machinery checking the applicability of rules provided with context-sensitive side conditions.
Obviously the result will be perfectly tailored for the special case (more efficient, more
reminiscent of the original syntax of the implemented system etc.), but even a minor change
or extension of the original system can lead to the problem of redoing the whole effort from
start, i.e., the approach lacks flexibility. An alternative way is the development of a general
framework capturing the main common features of a large class of logics in such a way that
a great amount of work is done once and for all.

In particular a class of Logical Frameworks based on the notion known as Curry-Howard
isomorphism1 [dB70, How80] has revealed itself to be a suitable basis for the synthesis of
interactive environments where logic-independent reasoning is possible: without entering into
the details, these frameworks are built upon the idea that types can be interpreted not only

1Also known as propositions-as-types principle.

2 CHAPTER 1. INTRODUCTION

as a specification of partial correctness properties about a program, but also as propositions.
Following this intuition then it seems natural to interpret terms as proofs of the proposition
associated with their type. Proceeding further, we have that a proposition is true if the
corresponding type is inhabited2; thus proof checking reduces to type checking3 and if the
latter is decidable (this is true in all the Logical Frameworks based on Type Theory) the
whole process can be mechanized and implemented on a machine. Moreover, since the rules
of the type systems of the underlying λ-calculi are usually given in Natural Deduction style, it
follows that the implemented system gives rise to a Natural Deduction Proof System helping
the user in the task of finding the proof term by means of a top-down process4. The latter
begins with the main goal (i.e. the proposition to be proved) and proceeds by transforming it
into (simpler) subgoals through the use of tactics, i.e., functional programs and ending when
all the current subgoals are instances of axioms. Often tactics are completely automated and
require no interaction with the user, in other cases the latter needs to give some “hints” to
the machine in order to solve the goal. However, in practice this is better than carrying out
the proof by hand on the paper; the user has to pay attention only when encoding a formal
system into the framework5; all the subsequent work is then guaranteed to be error free.

It follows from this rough introduction that Type Theory based Logical Frameworks can
be thought of as general purpose programming languages allowing the synthesis of proof as-
sistants from a signature (provided by the user) containing the encoding of a formal system.
Many useful mechanisms are automatically made available by the underlying metalanguage6

of the Logical Framework: unification, pattern matching, recursive functions definition, nat-
ural deduction style reasoning etc. The philosophy which inspired the Edinburgh Logical
Framework [HHP93] goes a little further; in fact the encoding methodology suggested to the
user allows one to delegate to the metalanguage also the common notions of α-conversion and
capture-avoiding substitution. To illustrate this point, let us consider the case of encoding
the syntax of untyped λ-calculus:

M ::= x | M1M2 | λx.M,

where x ∈ V (V is an infinite set of variables). In general, to encode a logical system in
a Type Theory based logical framework, the user must assign types to a set of constants
representing the syntax constructors and the judgments with their derivation rules. In the
abovementioned case (untyped λ-calculus) a näıve encoding would take an inductive set (like
N) as the set representing variables and map the binding operator λ to a term constructor
lam of type var → tm → tm (if tm is the type chosen to represent λ-calculus terms and var
the type representing variables). This is intuitive since the term lam-constructor takes as
arguments one variable (x) and one term (m) in which the variable x will be bound exactly
as the original λ-operator does. However, there are several drawbacks; indeed so doing one
must then provide an additional encoding of the notions of free and bound variable and of
the mechanisms of α-conversion and capture-avoiding substitution.

2The absurdity then corresponds to the empty type, i.e., the type with no inhabitants.
3Formally, a logical framework is a system allowing the derivation of judgments of the form Γ `Σ t : T ,

where Γ ≡ x1 : T1, . . . , xn : Tn is an assignment of types to free variables and Σ, the signature, is a set of
typed constants.

4The Natural Deduction style was originally conceived by Gentzen [Gen69] and, according to its inventor,
it “reflects as accurately as possible the actual logical reasoning involved in mathematical proofs”.

5This “attention” amounts to the proof of an adequacy theorem stating that the encoding function es-
tablishes a bijective correspondence between the objects of the formal system and the so called “canonical”
terms of the framework.

6Usually a typed λ-calculus with dependent types, i.e., types depending on other types or terms (e.g. the
type of vectors of length n).

3

The described encoding approach, known as first-order, clearly complicates the task of
representing a formal system in Type Theory based Logical Frameworks. In fact with a
more complicated system, like a process algebra, carrying out formal proofs with a first-
order encoding requires an overwhelming preliminary effort to prove often trivial (but very
long) lemmata about basic syntactical properties (see e.g. [Hir97] where 600 out of 800
proved lemmata involve the handling of de Bruijn indexes).

In contrast the Higher Order Abstract Syntax (HOAS) [Chu40] encoding approach allows
one to completely delegate all the syntactical details to the metalanguage making the en-
coding elegant and clean. Indeed the main idea is to encode binding operators (like λ) with
constants whose domain is of functional type; so doing the variables of the object language
are identified with the metavariables of the logical framework. For example, in the case of
the untyped λ-calculus the signature encoding its syntax would be the following:

tm ::= app : tm → tm → tm
| lam : (tm → tm) → tm

Notice the type of the higher-order lam constructor taking a meta-level function as argument.
So the term lam([x : tm]x)7 encodes the λ-term λx.x and the notion of β-reduction can be
expressed in a very natural and elegant way saying that lam(f, t) reduces to f(t) without
the need to specify what are free and bound variables and capture-avoiding substitution.

To summarize, we can say that, in order to fruitfully represent the language of formal
systems in a form closely related to its intended semantics, it is useful to go beyond the
limits imposed by language descriptions in BNF-style. Indeed the latter approach is too
much “parsing oriented”: there is a great amount of information which is essentially useless
for language processing. First-order abstract syntax is one step towards a representation
of formal systems languages where the structure of a phrase reflects its semantic commit-
ments. However, this approach is not completely satisfactory since it cannot automatically
account for variable binding related mechanisms (e.g. notions of free and bound variables,
α-conversion, capture-avoiding substitution, schemes and their instantiation). Higher-order
abstract syntax encodings instead, allowing one to represent binding operators by means of
constructors of higher-order type, conveniently delegate such machinery to the underlying
metalanguage. Hence the object language can be encoded in an elegant way, being freed
from the many inessential side conditions necessary to avoid name clashes and other issues
involving binding structures.

However, it is well known that the advantages of the HOAS-encoding approach have
a price to pay for. The first drawback is that, being equated to metalanguage variables,
object level variables cannot be defined inductively without introducing exotic terms [DFH95,
Mic97].

A similar difficulty arises with contexts, which are rendered as functional terms. Reason-
ing by induction and definition by recursion on object level terms is therefore problematic.
Ironically, the last drawback is that one looses the possibility of reasoning about the prop-
erties which are delegated to the metalanguage, e.g., substitution and α-equivalence.

In the literature there are several approaches aiming at reconciling HOAS with these is-
sues; they are based on different techniques such as modal types, functor categories, permuta-
tion models of ZF, etc. [DPS96, FPT99, Hof99, GP99, Gab00, Pit01a, MM01]. The purpose
of this thesis is to investigate another approach in this direction, namely, the so-called Theory
of Contexts originally conceived in [HMS01b] for metareasoning about a HOAS-encoding of

7Square brackets are used to indicate λ-abstraction in the logical framework in order to distinguish it from
λ-abstraction in the untyped λ-calculus.

4 CHAPTER 1. INTRODUCTION

the π-calculus [MPW92]. Following [HMS01a], we will present the theory in broad generality
as a suitable framework for representing and reasoning about nominal calculi. The latter
are a class of formal systems based upon the central notion of name/variable and featuring
binding mechanisms on the latter, in order to simulate the creation and handling of protected
(private) resources or simply to represent placeholders for something that will eventually be
instantiated at a later time.

Our approach is axiomatic: we add on top of a pre-existing dependent typed λ-calculus a
set of natural properties allowing for a smooth treatment of syntactic contexts, giving access
to some of the mechanisms about the handling of names delegated to the metalevel.

Obviously, as for any axiomatic theory, one upmost concern is related to its consistency.
As pointed out by Hofmann [Hof99], in order to prove it we have to resort to a quite com-
plicated construction related to the categorical notion of tripos [HJP80, Pit81]. However, in
this thesis we prefer to carry out the construction at an elementary level, in order to give the
possibility of understanding it even to readers without a deep knowledge of category theory
and in particular to the users of logical frameworks.

As to the completeness of the Theory of Contexts, it is an open problem. So far, we
do not know exactly what is its expressive power. In order to grasp some hints, we have
developed several complex case studies which have revealed it to be very fruitful. Indeed, the
analysis of the proof techniques developed during the abovementioned experiences yielded a
first result towards a better comprehension of the expressiveness of the Theory of Contexts
(Chapter 4 § 4.5.2). More precisely, we derived higher-order induction principles from first-
order ones and the axioms of the Theory of Contexts.

Since the results presented in this thesis have been developed in collaboration with other
researchers, we will briefly recall our main original contributions:

1. the results about the independence and the expressiveness of the axioms of the Theory
of Contexts (see Section 4.5 and Appendix A);

2. all the results appearing in Chapter 5 whose proofs appear in Appendix C (except
Theorem 5.9); the proofs of the Theorems 5.2, 5.6, 5.7, 5.8 (i.e. the consistency of the
categorical model validating the Theory of Contexts) and of the results in Section 5.7.1
(validity of first-order induction);

3. the case studies appearing in Chapter 6.

Structure of the thesis. This thesis consists of seven chapters (including this intro-
duction) and three appendices. We start by reviewing some basic notions about type
theory based logical frameworks in Chapter 2. In particular we focus on CC(Co)Ind(an
extension of CC [CH88, Hue92, Hue94, Tay88] with primitive support for (co)inductive
types [CP90, PM93, Gim94, Wer94]) and its implementation Coq [TCDT01]. Subsequently,
in Chapter 3, we make a brief survey of the main encoding methodologies in general and of
HOAS-based approaches in particular. Moreover, we will highlight the fundamental issues
arising from the attempt of using HOAS-encodings in inductive settings.

In Chapter 4 we introduce a generalized form of the Theory of Contexts in Υ, a simple
type theory à la Church [Chu40], featuring (higher-order) induction/recursion principles.
The incompatibility of the Theory of Contexts with the Axiom of Unique Choice (AC!) is
discussed in in Section 4.4. In Section 4.5 we give the results obtained from our case studies
on the independence (Section 4.5.1) and expressiveness (Section 4.5.2) of the axioms of the
Theory of Contexts. Comparisons with the related work on the synthesis of frameworks and
tools for metareasoning about calculi with binders are carried out in Section 4.6.

5

Chapter 5 is devoted to the construction of the functorial model U for validating the
properties of the Theory of Contexts. In Section 5.9 we compare the idea of Hofmann [Hof99]
(which is the basis of our work for the construction of the model U) with [FPT99] and [GP99]
under a categorical viewpoint, trying to highlight the formal links between these papers. All
the material contained in this chapter is taken from [BHH+01].

Chapter 6 describes two complex case studies on the applicability of the Theory of
Contexts, carried out in Coq. The first is about the development of the metatheory of
α-equivalence for the untyped λ-calculus. In particular we formally prove that three alter-
native formulations of the notion of α-equivalence are indeed equivalent. The second case
study is a large work on the HOAS-encoding of the Ambient Calculus and of the satisfac-
tion relation of the related Modal Logic introduced in [CG01]. Once again, the Theory of
Contexts plays a fundamental rôle in deriving a set of fresh renaming properties lying at the
heart of the metatheory of the Ambient Calculus.

Final remarks and future work appear in Chapter 7.
Appendix A contains the full Coq code about the derivability of a higher-order induction

principle from usual first-order induction principles and the axioms of the Theory of Contexts
in the specific case of a HOAS-encoding of untyped λ-calculus.

Some basic definitions of category theory appear in Appendix B, while in Appendix C we
gathered longer (and tedious) proofs of some results used in the construction of the functorial
model in Chapter 5.

6 CHAPTER 1. INTRODUCTION

2
Type Theory-based Logical

Frameworks

In [Chu33] Church proposed a general theory of functions and logic as a foundation for
mathematics. Even if the whole system was proved to be inconsistent in [KR35], the func-
tional part, universally known under the name of λ-calculus, became the model of functional
computation [Chu41]. In the λ-calculus there are no types, i.e., every expression can be ap-
plied to every argument (even to itself); whence, it is sometimes called untyped λ-calculus.
Indeed, in [Cur34] and [Chu40] two typed versions of the λ-calculus are introduced. In the
former document terms are essentially those of untyped λ-calculus; then to every term it is
possible to associate a set of possible types (including the empty set), following predefined
rules of type assignment. Hence, systems following such a paradigm are also called systems
of type assignment or typed λ-calculi à la Curry. On the other hand, following the paradigm
proposed in [Chu40], we obtain the systems known as typed λ-calculi à la Church where
terms are annotated with their corresponding type, i.e., they carry type information with
them; moreover, every term has usually a unique type associated with it (while in systems
of type assignment a term determines a set of possible types).

Type theory-based logical frameworks arise from the Curry-Howard isomorphism1 (inde-
pendently introduced in [dB70] and [How80]) which allows one to think of types not only as
partial correctness specifications of programs (terms), but also as propositions. Whence, a
given term can be interpreted as a proof of the proposition associated with its type; it follows
that a proposition is true (i.e, there is a proof of it) if the corresponding type is inhabited.
Moreover, since logical systems can be viewed as calculi for building proofs of a given set of
basic judgments, for those type theories featuring dependent types, it is possible to use the
judgments-as-types principle [ML85, HHP93], which can be regarded as the metatheoretic
analogue of the Curry-Howard isomorphism, in order to fruitfully use type theories as general
logic programming languages, i.e., a logical framework (LF). This consists of representing ba-
sic judgments with suitable types of the LF; whence proofs are represented by terms whose
type represents in turn the judgment that they prove. Moreover, dependent types allow one
to uniformly extend basic judgment forms to two higher-order forms introduced by Martin-
Löf, namely, the hypothetical (representing consequence) and the schematic (representing

1Also known as propositions-as-types principle.

8 CHAPTER 2. TYPE THEORY-BASED LOGICAL FRAMEWORKS

generality). Hence, all the relevant parts of an inference system can be faithfully represented
in a logical framework: syntactic categories, terms, judgments, axiom and rule schemata etc.

In this chapter we will introduce the basic notions underlying type theory-based logical
frameworks in order to make easier the understanding of the material contained in the rest
of this document.

2.1 Pure Type Systems

Typed λ-calculi à la Church can be generally described as Pure Type Systems (PTSs). Such a
formalism emerged from the independent work of Berardi and Terlouw 2. The basic language
of a PTS is that of pseudo-terms:

Definition 2.1 (Pseudo-terms) Let V be an infinite set of variable symbols, ranged over
by x,y,z, and C an infinite set of constant symbols, ranged over by c. The set of pseudo-terms
T , ranged over by M , N , A, B, C, is specified by the following grammar:

T M ::= x | c | MN | λx:A.M | Πx:A.B,

where the variable x is bound in λx:A.M and Πx:A.B.

Given any pseudo-term M , its set of free variables (denoted by FV (M)) is defined as usual,
keeping in mind that the only binders are the abstraction operator (λ) and the dependent
type constructor (Π).

Definition 2.2 (Pseudo-environments) Let T be a set of pseudo-terms,

• a statement is of the form M : A (where M , A ∈ T); M is called the subject and A
the predicate of M : A;

• a declaration is of the form x:A (where x ∈ V and A ∈ T);

• a pseudo-environment3 Γ is a finite list of declarations where all the subjects are dis-
tinct; pseudo-environments and their domains (sets of subjects occurring in Γ) are
inductively defined by the following rules:

– the empty environment 〈〉 is a pseudo-environment (dom(〈〉) = ∅);
– if Γ is a pseudo-environment, x is a variable such that x 6∈ dom(Γ) and A is a

pseudo-term, then 〈Γ, x:A〉 is a pseudo-environment (dom(〈Γ, x:A〉) = dom(Γ) ∪
{x}).

In the following we will write “x1:A1, . . . , xn:An” instead of “〈. . . 〈〈〉, x1:A1〉, . . . , xn:An〉”.
Moreover, given two pseudo-environments Γ and ∆, we will denote by Γ ⊆ ∆ the fact that
each statement x:A of Γ is also a statement of ∆. Finally, Γ, ∆ stands for the pseudo-
environment obtained appending the list of statements of ∆ to that of Γ.

Definition 2.3 Let T be a set of pseudo-terms, the specification of a PTS is a triple
〈S,A,R〉, where:

2Both were approaching the problem of finding a method to generate all the systems of the λ-cube [Bar92].
3In this document we prefer to use the expression environment instead of the more traditional context in

order to avoid confusion, because the latter will be used in subsequent chapters to denote syntactic contexts,
i.e., terms with holes.

2.1. PURE TYPE SYSTEMS 9

1. General axioms and rules:

(Axiom) 〈〉 ` c:s (c : s) ∈ A

(Start rule)
Γ ` A : s

Γ, x:A ` x:A
x 6∈ Γ

(Weakening rule)
Γ ` M : A Γ ` B : s

Γ, x : B ` M : A
x 6∈ Γ

(Application rule)
Γ ` M : (Πx : A.B) Γ ` N : A

Γ ` MN : B[N/x]

(Abstraction rule)
Γ, x : A ` M : B Γ ` (Πx : A.B) : s

Γ ` (λx : A.M) : (Πx : A.B)

(Conversion rule)
Γ ` M : A Γ ` B′ : s B =β B′

Γ ` M : B′

2. Specific rules:

(s1, s2, s3) rule
Γ ` A : s1 Γ, x : A ` B : s2

Γ ` (Πx : A.B) : s3
where (s1, s2, s3) ∈ R

Figure 2.1: Typing axioms and rules.

1. S is a subset of C (elements of S are called sorts);

2. A is a set of axioms of the form c : s (where c ∈ C and s ∈ S);

3. R is a set of rules of the form (s1, s2, s3) (where s1, s2, s3 ∈ S); in the case that
s2 = s3 we simply write (s1, s2) instead of (s1, s2, s3).

As usual, in the following, we will denote by →β the relation of (one-step) β-reduction
and by =β the corresponding equivalence, also known as β-conversion.

The next step is to define the PTS (with β-conversion) determined by a specification
〈S,A,R〉:

Definition 2.4 A specification 〈S,A,R〉 determines a PTS (with β-conversion), denoted
by λS = λ(S, A,R). The latter is a typed λ-calculus à la Church whose typing judgment
is a triple 〈Γ,M, A〉, written Γ ` M : A, where Γ is a pseudo-environment and M , A are
pseudo-terms. If Γ ` M : A is derivable by means of the rules in Figure 2.1, Γ is said to be
a (legal) environment and M , A are (legal) terms.

A PTS is called singly sorted if:

1. (c:s1), (c:s2) ∈ A implies s1 = s2;

2. (s1, s2, s3), (s1, s2, s
′
3) ∈ R, implies s3 = s′3.

In the literature there are also Pure Type Systems with βη-conversion, where some care
has to be taken in defining the rules of the equality judgment, otherwise one looses the
Church-Rosser property (see [HHP93] for example):

10 CHAPTER 2. TYPE THEORY-BASED LOGICAL FRAMEWORKS

Theorem 2.1 (Church-Rosser property) If M →∗
β M ′4 and M →∗

β M ′′, then there
exists N such that M ′ →∗

β N and M ′′ →∗
β N .

Since their introduction, PTSs have been deeply investigated; for the sake of completeness
we recall here some of their main properties (the interested reader is referred to [Bar92,
Geu93]):

Free variable lemma. Let Γ ` M :A, then FV (M) ∪ FV (A) ⊆ dom(Γ).

Transitivity lemma. If Γ is a legal context such that Γ ` xi:Ai (1 ≤ i ≤ n), ∆ ,
x1:A1, . . . xn:An and ∆ ` A:B, then Γ ` A:B.

Substitution lemma. If Γ, x:A, ∆ ` B:C and Γ ` D:A, then Γ, ∆[D/x] ` B[C/x]:C[D/x].

Thinning lemma. Let Γ and ∆ be two legal environments such that Γ ⊆ ∆ and Γ ` A:B,
then ∆ ` A:B.

Generation lemma. 1. Γ ` c:C implies that there exists s ∈ S such that C =β s and
(c:s) ∈ A;

2. Γ ` x:C implies that there exist s ∈ S and B such that B =β C, Γ ` B:s and
(x:B) ∈ Γ;

3. Γ ` (Πx:A.B):C implies that there exists (s1, s2, s3) ∈ R such that Γ ` A:s1,
Γ, x:A ` B:s2 and C =β s3;

4. Γ ` (λx:A.M):C implies that there exist s ∈ S and B such that Γ ` (Πx:A.B):s,
Γ, x:A ` M :B and C =β (Πx:A.B);

5. Γ ` (MN):C implies that there exist A and B such that Γ ` M :(Πx:A.B),
Γ ` N :A and C =β B[N/x].

Subject Reduction theorem. If Γ ` M :A and M →∗
β N , then Γ ` N :A.

Condensing lemma. If Γ, x:A,∆ ` M :B and x 6∈ FV (∆)∪FV (M)∪FV (B), then Γ, ∆ `
M :B.

Uniqueness of type for singly sorted PTSs. If a PTS is singly sorted, Γ ` M :A and
Γ ` M :B, then A =β B.

We have seen that rules in a PTS specification have the form (s1, s2, s3); in the particular
case when S = {∗, ¤} (called respectively the sort of terms and the sort of types) and all
the rules in R have the form (s1, s2, s2) (whence, they can be simply written as (s1, s2)),
we obtain all the systems of the so-called λ-cube (see Figure 2.2) by choosing which among
all the possible rules are allowed for a particular system. Such combinations are listed in
Table 2.1.

As we can see all the systems have the basic rule (∗, ∗) which allows one to abstract
terms over terms. More sophisticated levels of abstraction can be reached by adding some of
the other rules, e.g., all the systems on the upper face of the λ-cube feature the rule (¤, ∗)
allowing one to derive impredicative types, like ΠA: ∗ .(A → A)5:

〈〉 ` ∗:¤

〈〉 ` ∗:¤
A:∗ ` A:∗

〈〉 ` ∗:¤
A:∗ ` A:∗

〈〉 ` ∗:¤
A:∗ ` A:∗

A:∗, x:A ` A:∗
A:∗ ` (A → A):∗

〈〉 ` (ΠA: ∗ .(A → A)):∗
4By →∗

β we denote the reflexive and transitive closure of →β .
5In general, A → B is an abbreviation for Πx : A.B when x does not occur in B.

2.1. PURE TYPE SYSTEMS 11

λω

yy
yy

yy
yy

yy
λC

wwwwwwwwww

λ2 λP2

λω

zz
zz

zz
zz

zz
λPω

xxxxxxxxxx

λ → λP

Figure 2.2: The λ-cube.

System Set of rules

λ → (∗, ∗)
λ2 (∗, ∗) (¤, ∗)
λP (∗, ∗) (∗,¤)
λP2 (∗, ∗) (¤, ∗) (∗,¤)
λω (∗, ∗) (¤, ¤)
λω (∗, ∗) (¤, ∗) (¤, ¤)
λPω (∗, ∗) (∗,¤) (¤, ¤)
λC (∗, ∗) (¤, ∗) (∗,¤) (¤, ¤)

Table 2.1: Rules for the systems of the λ-cube.

The expression impredicative type is justified in this case for the following reasons:

1. ΠA: ∗ .(A → A), being a cartesian product of types, is indeed a type ((ΠA: ∗ .(A →
A)) : ∗);

2. however, since the product is over all the possible types, it includes ΠA: ∗ .(A → A)
which is in the process of being defined, whence the impredicativity of the definition.

The structure of the λ-cube is very useful since it allows one to understand at a glance the
expressive power of each PTS labeling one of its vertices. For instance, the PTS λC at the
top right vertex is the only one featuring all the possible rules; hence it represents the most
general type theory. In the literature λC is also known as the Calculus of Constructions (CC)
(introduced by Coquand and Huet in [CH88]); other well-known systems related to those
of the λ-cube are the simply typed λ-calculus [Chu40] corresponding to λ →, the System
F introduced in [Gir72] and corresponding to λ2, and the Edinburgh Logical Framework
corresponding to λP [HHP93].

The most interesting property enjoyed by the systems of the λ-cube is the strong nor-
malization.

Definition 2.5 Let λS be a PTS, then λS is strongly normalizing (λS |= SN) if Γ ` M :A
implies that both M and A are strongly normalizing (SN(M) and SN(A)), i.e., there are
no infinite β-reductions starting from M , A.

12 CHAPTER 2. TYPE THEORY-BASED LOGICAL FRAMEWORKS

As anticipated, we have the following theorem:

Theorem 2.2 (Strong normalization for the λ-cube) For every system in the λ-cube,
the following hold:

1. if Γ ` M :A, then SN(M) and SN(A);

2. Γ ` M :A and Γ , x1:A1, . . . , xn:An imply SN(Ai) for 1 ≤ i ≤ n.

Strong normalization and the Church-Rosser property entail the decidability of type checking:
to test if U =β V , reduce both to their unique normal forms and check if they are identical
up to some renamings of the bound names (i.e., up to α-equivalence). This is the most
desirable property of a type theory-based logical framework since it allows one to implement
an automatized proof-checker. Indeed, by the Curry-Howard isomorphism, proof-checking
(that is, verifying that a given proof is indeed a proof of a given proposition) reduces to type
checking (that is, verifying that the term corresponding to the given proof inhabits the type
corresponding to the given proposition).

2.2 The Calculus of (Co)Inductive Constructions (CC(Co)Ind)

In this section we will take a closer look at a particular logical framework, namely, the
Calculus of (Co)Inductive Constructions (CC(Co)Ind), an impredicative intuitionistic type
theory which extends the original CC [CH88, Hue92, Hue94, Tay88] with primitive support
for (co)inductive types (see [CP90, PM93, Gim94, Wer94]).

2.2.1 CC(Co)Ind as a PTS

The specification of CC(Co)Ind as a PTS is actually more complicated w.r.t. the one of CC.
Indeed, CC(Co)Ind features two basic sorts, namely, Prop and Set; the former is intended
to be the type of logical propositions, predicates or judgments, while the latter is supposed
to be the type of datatypes (e.g., natural numbers, lists, trees etc.). Since also Prop and
Set can be manipulated as ordinary terms, they must have a type. However, in order to
avoid the well known Girard’s paradox, it is not possible to assume that these sorts are
inhabited by themselves; hence CC(Co)Ind provides an infinite hierarchy of universes denoted
by Type(i) for any natural i. The hierarchy is such that Prop:Type(0), Set:Type(0) and
Type(i) :Type(i + 1). Summarizing, we have the following PTS-specification for CC(Co)Ind:

• S , {Prop, Set} ∪ {Type(i) | i ∈ N}
• A , {Prop : Type(0), Set : Type(0)} ∪ {Type(i) : Type(i + 1) | i ∈ N}
• R , {Prop, Set}2 ∪ {(Type(i), Type(j), Type(k)) | i, j, k ∈ N, i, j ≤ k}

2.2.2 (Co)Inductive definitions

The most appealing feature of CC(Co)Ind is the possibility of defining types inductively; for
instance one can introduce a new inhabitant of Set by declaring that it is the least set closed
under the application of a given family of constructors. Since inductive definitions are pos-
sible in any extension of the (second order) PTS λ2 by means of higher-order impredicative
quantifications, one could conjecture that the abovementioned feature of CC(Co)Ind is indeed
superfluous. However, as remarked in [CP90], impredicative inductive types have two major
drawbacks:

2.2. THE CALCULUS OF (CO)INDUCTIVE CONSTRUCTIONS (CC(CO)IND) 13

1. the impossibility of proving the induction principle;

2. when recursive definitions are called for, the conversion rule for natural numbers yielded
by an impredicative definition is rec(x, f)(S(n)) = f(φ(n), rec(x, f)(n)) instead of the
expected rec(x, f)(S(n)) = f(n, rec(x, f)(n)) (where φ is a term such that φ(0) = 0
and φ(S(n)) = S(φ(n))). It follows that, since φ(n) and n are intensionally equal, but
not convertible, programs (terms) containing expressions like φk(n) are inefficient since
the reduction of φk(S(n)) to S(φk(n)) requires k steps.

Coquand and Paulin-Mohring introduced in [CP90, PM93] a solution of this problem by
extending the language of pseudo-terms of CC with special constants representing the defi-
nition, introduction and elimination of inductive types:

T M ::= . . . | Ind(x:A){A1| . . . |An} | Constr(i, A) | Elim(M, A){M1| . . . |Mn}
where i ranges over natural numbers. The informal meaning of the new pseudo-term con-
structors is the following:

• Ind(x:A){A1| . . . |An} represents an inductive type (denoted by x) of sort A whose
constructors are given by A1, . . . , An;

• if I , Ind(x:A){A1| . . . |An}, then Constr(i, I) has type Ai and represents the i-th
constructor of the latter;

• Elim(M,A){M1| . . . |Mn} is a term defined by induction/recursion over a term M be-
longing to an inductively defined type, where M1, . . . , Mn are the n branches corre-
sponding to the constructors of the latter.

Extending the language with new constructors requires to extend the typing system and the
rules stating the equivalence of terms as well. Moreover, a new term reduction rule, called
ι-reduction, is needed in order to represent the computational content of inductive types (i.e.,
a way for performing computations with recursively defined functions is needed).

The same approach has been adopted by Giménez in [Gim94] in order to provide a better
support for coinductive types6 w.r.t. the classical approach of representing them by means
of higher-order impredicative quantifications. Hence, the language of pseudo-terms has been
further extended with new constructors7:

• CoInd(x:A){A1| . . . |An} represents a coinductive type (denoted by x) of sort A whose
constructors are given by A1, . . . , An;

• if I , CoInd(x:A){A1| . . . |An}, then Constr(i, I) has type Ai and represents the i-th
constructor of the latter (this is not a new constructor, but simply an extension of
Constr to coinductive types);

• CoFix f :A := M where f may occur in M (under certain conditions briefly discussed
below) represents a way of defining a new coinductive object denoted by f through a
“circular” equation (in [Gim94] it is illustrated how to encode such equations by means
of more “conventional” corecursion rules). It is important to notice that the aim of the
constructor CoFix is to generate elements of a coinductive type (instead of eliminating
them).

6Coinductive types can be thought of as sets whose elements may be potentially infinite (circular) like,
e.g., streams (i.e., infinite sequences) of natural numbers.

7The notation used in [Gim94] is slightly different from that in [PM93]; here we prefer to unify them in
order to highlight the duality between inductive and coinductive types.

14 CHAPTER 2. TYPE THEORY-BASED LOGICAL FRAMEWORKS

Like in the case of inductive types, the new constructors require extensions to the typing
system and to the equivalence rules. Moreover, ι-reductions must be carefully extended to
take into account also a new form of redex involving coinductive objects defined by means of
the CoFix constructor. The logic underlying the systems of the λ-cube is constructive, while
infinite objects are non constructive, i.e., they cannot be represented effectively. However,
it is sometimes possible to represent the process generating infinite objects if such a process
is effective. This is the reason that allows us to say that coinductive types allow one to
represent potentially infinite objects: defining equations built with the CoFix constructor
can thus be viewed as generation rules of infinite terms. It follows that, in order to compute
with coinductive types, we must allow one to unfold8 such equations in order to yield some
information that can be subsequently used to, e.g., build a term. However, allowing the
unfolding of coinductive definitions without restrictions means loosing strong normalization
and, as a consequence, loosing the decidability of type checking. In order to avoid this,
Giménez in [Gim94] imposes that unfolding of coinductive definitions can happen only in a
lazy way, i.e., when they are the argument of a case analysis constructor9.

Since the CoFix constructor does not impose any constraint on M in CoFix f :A :=
M , it would be possible to introduce definitions like CoFix f :A := f which would yield
non-normalizing terms even if reductions of coinductive definitions are allowed only in case
analysis statements. In order to avoid this problem CoFix-definitions must satisfy a guarded-
by-constructors condition10 which is a syntactic criterion derived from the Guarded Induction
Principle (introduced in [Coq93]). Without entering into the details, the intuition behind
such a criterion is that a legal defining equation of a coinductive object must yield at every
reduction step some computational content. For instance, in the case of a CoFix equation
defining a stream of naturals, at every reduction step a new piece of the stream must be
generated, i.e., it must be possible to obtain an arbitrarily long (although finite) prefix of the
stream with a finite number of reductions. Thus definitions like CoFix f :A := f are rejected
by the system. This leads to the previously mentioned idea of representing the processes
generating infinite objects, provided they are effective.

The extended grammar defining the language of pseudo-terms allows for arbitrary dec-
larations of (co)inductive types. Some of them can easily lead to inconsistencies (i.e., to
inhabit the void type11 corresponding to the absurdity). To ensure the soundness of recur-
sive type declarations (both inductive and coinductive ones) the constructors must satisfy
some conditions, i.e., they must be forms of constructor w.r.t. the new defined type. Keep-
ing in mind that in CC(Co)Ind MN is written (M N) and Πx:M.N is written (x:M)N , these
conditions are formally expressed in the following way (where ~x: ~M is an abbreviated notation
for x1:M1, . . . , xn:Mn and | ~M | stands for the length of ~M):

Definition 2.6 The variable X occurs strictly positively in the term P if P ≡ (~x: ~M)(X ~N)
and X does not occur free in Mi ∀i ∈ | ~M |, nor in Nj ∀j ∈ | ~N |.

8By unfolding an equation of the form CoFix f :A := M , we mean the operation of substituting it for the
free occurrences of f in the body M (M [(CoFix f :A := M)/f]).

9Since this thesis does not aim to study coinductive types, we do not insist further on this topic and we
refer the interested reader to [Gim94, Gim96]

10Roughly, the guarded-by-constructors condition amounts to ensure that the occurrences of f in M must
be guarded (i.e., they must be preceded) by a constructor of the corresponding coinductive type.

11The void type is defined as ⊥ , Ind(x:Prop){}; the corresponding non-dependent elimination principle
is (P :Prop⊥ → P) saying that from ⊥ we can derive any proposition.

2.3. THE PROOF ASSISTANT COQ 15

Definition 2.7 Let X be a variable. The terms which are a form of constructor w.r.t. X
are generated by the syntax:

Co ::= (X ~N) | P → Co | (x:M)Co

with the following restrictions for X: it does not occur free in Ni ∀i ∈ | ~N |, it is strictly
positive in P , and it does not occur free in M .

2.3 The proof assistant Coq

The Coq system [TCDT01] is a proof assistant whose underlying metalanguage is CC(Co)Ind.
It is the result of over ten years of research at INRIA12.

In 1984, Coquand and Huet wrote the first implementation of the Calculus of Construc-
tions in CAML (a functional language belonging to the ML family and developed at INRIA).
The core of the system was a proof-checker, known as Constructive Engine, which allowed
the declaration of axioms and parameters, the definition of mathematical types and objects
and the explicit construction of proof-objects represented as λ-terms. Then, a section mech-
anism, called the Mathematical Vernacular, allowing one to develop mathematical theories
in a hierarchical way was added. At the same time an interactive theorem prover executing
tactics written in CAML was implemented; by means of this tool proofs could be built pro-
gressively in a top-down style, generating subgoals and backtracking when needed. Moreover,
the basic set of tactics could be extended by the user.

With the introduction of inductive types by Paulin-Mohring, a new set of tactics allowing
one to carry out proofs by induction was added. The implementation of a module for
compiling programs extracted from proofs in CAML is due to Werner. Starting from version
V5.10 the Coq system supports coinductive types as well, implementing a powerful tactic
Cofix which allows the user to interactively build proof involving coinductive predicates in
a natural way, without having to exhibit a priori a bisimulation like it is usually done with
“pencil and paper”.

The essential features of the system are:

1. a logic metalanguage allowing one to represent formal systems;

2. a powerful proof engine assisting the user in the task of formally reasoning about the
encoded systems;

3. a program extractor yielding functional programs from constructive proofs.

Since program extraction is not a topic of this thesis, we will only provide a brief introduction
to the first two features in order to make more readable the material contained in Chapter 6,
where we will illustrate two case studies developed in Coq(for a full and detailed introduction
to the system the reader is referred to [TCDT01]).

The proof engine allows one to interactively develop distinct partial proofs in parallel;
indeed, the structure of proof-trees is a combined representation of CC(Co)Ind trees and of
abstract syntax trees of tactic scripts, allowing one to explore proofs at various levels of
detail. Other interesting features are:

• the possibility of programming new tactics,
12Institut National de Recherche en Informatique et Automatique

16 CHAPTER 2. TYPE THEORY-BASED LOGICAL FRAMEWORKS

• a file system service allowing the separate compilation of modules yielding image files
that can be loaded quickly without being processed again by the system,

• pretty printing services,

• recursive and mutually recursive definitions,

• completely automatized inversion tactics for (co)inductive types,

• powerful tactics, e.g., Omega allows one to automatically solve formulæ of Presburger
arithmetic,

• native support for coinductive types and coinductive proofs.

2.3.1 Terms, types and sorts

In the previous sections we have seen that a fundamental features of type theories is that
they allow one to manipulate only two categories of objects: terms and types. The latter
specify the classes the former can belong to; every object must belong to a type. In CC(Co)Ind

(the underlying metalanguage of Coq) there are no syntactic distinctions between terms and
types since they can be defined in a mutual way and similar constructions can be applied to
both categories. Hence, also the types of Coq must have a type: this is the reason for the
introduction of sorts which are constants of the system. In Section 2.2.1 we introduced the
sorts of CC(Co)Ind which are infinitely many in order to avoid Girard’s paradox. However,
in Coq the user does not have to worry about the indexes i of Type(i), since the latter are
automatically handled by the system. Hence, from the user’s viewpoint we have Prop:Type,
Set:Type and Type:Type.

2.3.2 The Gallina specification language

In this section we will briefly recall the specification language of Coq, called Gallina, which
allows one to develop mathematical theories handling axioms, hypotheses, parameters, con-
stants definitions, functions, predicates and so on. The usual operations of typed λ-calculi
are rendered in Gallina as follows:

• λx : M.N is written [x:M]N,

• (MN) is written (M N) (the application is left associative),

• M → N is written M -> N,

• Πx:MN is written (x:M)N.

Declarations

The system waits for user’s commands by means of a prompt (Coq <); it is possible to
enrich the current environment through the commands Variable, Hypothesis, Axiom and
Parameter13 (the use of Axiom and Hypothesis is recommended for logical entities, while
in the remaining cases Variable and Parameter should be used). For instance, declaring
a variable ranging over natural numbers (a predefined type in Coq) can be done with the
following command:

13When a section is closed, the objects declared by means of the first two commands are automatically
discharged.

2.3. THE PROOF ASSISTANT COQ 17

Coq < Variable n:nat.

The system communicates that the operation has been carried out successfully by emitting
the following message:

n is assumed

The Check command allows one to control the type of a previously declared variable:

Check n.

and in the case of the previous declaration we obtain:

n:nat

Definitions

Definitions differ from declarations in the sense that the former associate a name to a term
correctly typable in the current environment, while the latter associate a type to a name. It
follows that the name of a defined object can be replaced at any time by the body of the
corresponding definition (this is commonly known as δ-reduction). The general form of a
definition is the following:

Definition ident := term.

The command Print applied to the name of a defined object yields the body of the definition
and its type.

Inductive types are introduced as follows:

Inductive ident : term := ident1 : term1 | . . . | identn : termn.

ident is the name of the new object, term is its type and the identifiers ident1, . . . , identn
(whose types are, respectively, term1, . . . , termn) represent its constructors. As we noticed
in Section 2.2.2, inductive definition must satisfy some syntactic conditions in order to avoid
inconsistencies (see Definition 2.7).

For instance the set of natural numbers can be introduced as follows:

Coq < Inductive nat : Set := O : nat | S : nat -> nat.
nat_ind is defined
nat_rec is defined
nat_rect is defined
nat is defined

The Coq system automatically generates eliminations principles for the new inductive type:
nat ind is associated to the sort Prop, nat rec to the sort Set and nat rect to the sort
Type. The first elimination scheme represents the well known Peano’s induction principle:

Coq < Check nat_ind.
nat_ind :

(P:nat->Prop)(P O)->((n:nat)(P n)->(P (S n)))->(n:nat)(P n)

On the other hand, nat rec encodes primitive recursion on natural numbers.
In an analogous way it is possible to define new coinductive types:

CoInductive ident : term := ident1 : term1 | . . . | identn : termn.

As for inductive definitions the constructors types must satisfy the constraints of Defini-
tion 2.7. Obviously, in this case no elimination schemes are yielded by the systems.

In both cases (inductive and coinductive) it is possible to introduce parametric and
mutual definitions. For further details the reader can refer to [TCDT01].

18 CHAPTER 2. TYPE THEORY-BASED LOGICAL FRAMEWORKS

Case expressions

A case expression is a destructive operation whose underlying idea is taking a term m
belonging to a recursive type I (inductive or coinductive) and building a term of type (P m)
(depending on m) by cases. The syntax is the following:

< term > Case term of term1 · · · termn︸ ︷︷ ︸
n expressions

end

The preceding term, in the case that m = (ci t1 · · · tp), reduces to (termi t1 · · · tp).

Fixpoint and CoFixpoint

Fixed point definitions on inductive objects can be introduced as follows:

Fixpoint ident[ident1 : term1] : term2 := term3.

The intuitive semantics of the previous definitions is that ident represents a recursive func-
tion with argument ident1 of type term1 (must be inductive) such that (ident ident1) is
equivalent to term3 of type term2. Hence, the type of ident is (ident1 : term1)term2. Ob-
viously, fixed point definitions must satisfy some syntactic constraints in order to ensure
that the defined function always terminates. More precisely, the constraints amount to the
structurally smaller calls principle, i.e, the recursive calls of the function must apply proper
subterms of the recursive argument. Moreover, in order to preserve strong normalization,
fixed point definitions can reduce only when the recursive argument is a term beginning with
a constructor. Fixed point definitions can also be parametric, mutually defined and defined
by pattern matching (for more details, the reader can refer to [TCDT01]).

The Gallina specification language also allows one to build infinite objects by means of
the CoFixpoint command, implementing the CoFix constructor of CC(Co)Ind introduced in
Section 2.2.2. The syntax is analogous to that of the Fixpoint command, while the associ-
ated reduction rule is lazily defined in order to preserve the strong normalization property
of the system as we briefly recalled in Section 2.2.2.

The proof editing mode

When Coq enters the so-called proof editing mode, the system prompt changes from Coq
< to ident <, where ident is the name of the theorem one wants to prove. Besides the
commands briefly recalled so far, other specific commands are available in proof editing
mode. At any instant the proof context is represented by a set of subgoals to prove (initially
this set contains only the theorem) and by a set of hypothesis (initially the list is empty).
Both sets are manipulated and modified through tactics; when the proof development is
completed (i.e., when the set of subgoals is empty), the system notifies the user with the
message Subtree proved! and the command Qed (or Save) is made available in order to
store the proof in the current environment for later use in subsequent theorems.

The commands starting the proof editing mode are the following:

• Goal term. In this case term and the associated name is Unnamed thm.

• Theorem ident : term. This command has the same effect of Goal, with the exception
of naming the current goal ident (other variants are Lemma, Remark and Fact).

2.3. THE PROOF ASSISTANT COQ 19

Predefined logic objects

As outlined before, terms having as sort Prop represent propositions, while predicates are
rendered by means of dependent types and, when applied to the right arguments, yield propo-
sitions. In Coq, like in traditional logics, both propositions and predicates can be combined
together in order build other propositions and predicates by means of logic connectives. The
most commonly used are rendered as follows in Coq:

• The true constant is denoted by True and it is inductively defined by the non-dependent
type which is always inhabited:

Coq < Inductive True : Prop := I : True.

• The false constant is denoted by False and is defined by the empty inductive type
(i.e., the type with no inhabitants):

Coq < Inductive False : Prop := .

• The negation of a proposition in intuitionistic logic is equivalent to say that we can
derive the absurdity from it:

Coq < Definition not := [A:Prop] A -> False.

• The logic conjunction is denoted by A /\ B and is defined by:

Coq < Inductive and [A,B:Prop] : Prop
Coq < := conj : A -> B -> A /\ B.

• The logic disjunction is denoted by A\/B and is defined by:

Coq < Inductive or [A,B:Prop] : Prop
Coq < := or_introl : A -> A \/ B
Coq < | or_intror : B -> A \/ B.

• The logic implication between proposition is rendered through the non dependent type
constructor ->.

• Universal quantification on a predicate P is rendered by means of dependent types. For
instance the formula ∀x ∈ A.P (x) is encoded by (x:A)P.

• Existential quantification is inductively defined as follows:

Coq < Inductive ex [A:Set;P:A->Prop] : Prop
Coq < := ex_intro : (x:A)(P x) -> (ex A P).

It is worth noticing that the definitions of implication and universal quantification are a
direct consequence of the Curry-Howard isomorphism.

Equality is also inductively defined:

Coq < Inductive eq [A:Set;x:A] : A->Prop
Coq < := refl_equal : (eq A x x).

Usually (eq ? x y) is written x=y in Coq. The abovementioned definition is due to Christine
Paulin-Mohring and amounts to the least reflexive relation14.

14It is formally provable that the given definition of equality coincides with Leibniz definition of equality,
stating that two object are equal if and only if they satisfy the same properties. Hence, the equality of Coq

is often referred to as Leibniz equivalence.

20 CHAPTER 2. TYPE THEORY-BASED LOGICAL FRAMEWORKS

Proof tactics

Generally, an inference rule represents a link between a conclusion and one or more premises:
this characterization allows one to read it in two different ways. The former amounts to
the classical forward reasoning and consists of assuming the premises in order to derive
the conclusion. The second interpretation is less immediate, but more useful in the field of
computer assisted proof development; indeed, the so-called backward reasoning proceeds from
the conclusion to the premises, starting from the idea that in order to prove the conclusion,
it is first necessary to derive the premises. Coq tactics work in this way, replacing the current
goal (the conclusion) with one or more subgoals (the premises). So doing, the proof tree is
progressively built starting from the root and the subgoals obtained by the application of a
given tactic represent the roots of the related subtrees. The proof of a subgoal happens by
means of axioms, hypothesis of the current proof environment or previously proved results.

The Coq system provides a great number of tactics which can be grouped as follows:

1. Exact tactics:

• Exact term: this tactic can be applied to any goal; if T is the current goal and p
is a term of type U, then Exact p succeeds if and only if T and U are convertible
types.

• Assumption: another tactic applicable to any goal: it automatically searches in
the current proof environment if there is a hypothesis whose type coincides with
the current goal.

2. Basic tactics:

• Intro: it can be applied to any goal having the form of a product; in the case
that the latter is a dependent type (x:T)U, the effect of the tactic is to add to the
current proof environment the hypothesis x:T or xn:T, with xn fresh in the case x
is already present. On the other hand if the goal is a non-dependent product T->U,
the tactic will introduce in the current proof environment a hypothesis of type T
(if a hypothesis name is not supplied by the user, it will be automatically chosen
by Coq). The variant Intros repeats the tactics Intro as much as possible.

• Apply term: when applied to any goal, this tactic tries to unify the current goal
with the conclusion of the type of term, where the latter is a term well formed
in the current environment. If the unification succeeds, then the tactic yields
as many subgoals as the instantiations of the premises of the type of term. An
extensively used variant is Apply term with term1 · · · termn, which allows one to
instantiate all the premises of the type of term which are not deducible from the
unification.

• Cut term: this tactic is very useful in the proof development; it can be applied to
any goal and allows one to prove the current goal T as a consequence of U; indeed
Cut U replaces T with two subgoals, namely, U->T and U.

3. Introduction tactics:

• Constructor i: if the head of the conclusion of the current goal is an inductive
constant I, it is possible to apply the tactic Constructor i (where i is a number
less or equal to the number of constructors of I) whose effect is the same of the
sequence Intros; Apply ci (where ci is the i-th constructor of I).

2.3. THE PROOF ASSISTANT COQ 21

4. Elimination tactics: these tactics are specialized for proofs by induction and case anal-
ysis.

• Elim term: this tactic can be applied to any goal under the condition that the
type of term is an inductive constant; then, depending on the type of the goal, it
applies the appropriate destructor. Like in the case of the Apply tactic, there is a
variant allowing the user to specify the values for the dependent premises of the
elimination scheme which cannot be deduced by the matching operation. (Elim
term with term1 · · · termn).

• Case term: the tactic can be applied in order to carry out a proof by case analysis;
hence, the type of term must be inductive or coinductive.

5. Inversion tactics: when the current proof involves (co)inductive predicates, it is very
common to fall into one of the following cases:

• in the proof environment there is an inconsistent instance of a (co)inductive pred-
icate; hence, the current goal can be proved by absurdity;

• in the proof environment there is an instance (I ~t) of a (co)inductive predicate I
and we want to derive, for each constructor ci of I, all the necessary conditions
that should hold for (I ~t) to be proved by ci.

Generally, given an instance (I t1 · · · tn) of a (co)inductive predicate, the derivation
of the necessary conditions such that (I t1 · · · tn) holds is called inversion. Inversion
tactics can be classified in three categories:

(a) tactics inverting an instance of a (co)inductive predicate without storing in the
current environment the inversion lemma: Inversion, Simple Inversion and
Inversion clear;

(b) tactics generating and storing in the current environment the inversion lemma
used to invert an instance of a (co)inductive predicate: Derive Inversion and
Derive Inversion clear;

(c) tactics inverting an instance of a (co)inductive predicate using an already defined
inversion lemma: Use Inversion.

6. Conversion tactics:

• Change term: it can be applied to any goal; Change U replaces the current goal
T with U if and only if U is legal and T and U are convertible.

• Simpl: if T is the current goal, this tactic first applies the βι-reductions, then
unfolds transparent constants15 and finally applies again βι-reductions until pos-
sible.

• Unfold ident: this tactic replaces all the occurrences of the transparent constant
ident with the body of the corresponding definition in the current goal (this
process is also called δ-reduction).

7. Automatic tactics:
15Constants become non-transparent by applying the Opaque command.

22 CHAPTER 2. TYPE THEORY-BASED LOGICAL FRAMEWORKS

• Auto: this tactic uses a Prolog-like resolution in the sense that it first tries the
tactic Assumption, then if the latter fails it applies the tactic Intro until the
current goal is an atomic one (adding the generated hypotheses as hints); then it
tries each of the tactics associated to the head symbol of the goal starting from
those with lower costs. The whole process is recursively applied to the generated
subgoals.

• Trivial: this is a variant of Auto which is not recursive and tries only hints
whose cost is zero (see below the Hint command).

Auto and Trivial use hints organized in several databases in order to automatically
solve the current goal. Each database maps head symbols o hints list (consisting in a
collection of tactics); each hint has a cost16 and a pattern and Auto use it if the con-
clusion of the current goal match its pattern. In the case that several distinct hints are
applicable at the same time, the ones with lower costs are tried first. Such a list can be
extended by the user using the command Hint name: database:=hint definition,
where hint definition can be any of the following:

• Resolve term: depending on whether the type of term is a product or not, the
tactic Apply term or Exact term is added to the hint list associated with the head
symbol of the type of term in the specified database.

• Immediate term: the tactic Apply term; Trivial is added to the hint list asso-
ciated with the head symbol of the type of term in the specified database.

• Constructors ident: if ident is an inductive type, then all its constructors are
added as hints of type Resolve.

• Unfold ident: the tactic Unfold ident is added to the hints list that will be used
only in the case that the head constant of the current goal is ident itself.

• Extern num pattern tactic: this command allows one to add an arbitrary tactic
to a hint list by specifying the cost (num), the pattern and the tactic to apply.

Obviously, we have not covered the whole set of tactics provided by Coq (e.g. we have
not mentioned coinductive tactics, since the case studies presented in Chapter 6 do not use
them), but we hope to have given an idea of how the proof development with this system
can be carried out. We conclude this section by recalling that tactics can be combined by
means of some operators:

• Do num tac repeats num times the tactic tac;

• tac1; tac2 applies the tactic tac2 to each of the subgoals generated by tac1 (we already
encountered this operator in the previous list);

• tac; [tac1| · · · |tacn] applies the tactic taci to the i-th subgoal generated by tac;

• Try tac allows one to apply the tactic tac without considering the eventual failure of
the latter.

16Given by the number of subgoals generated by the corresponding tactic.

3
Encoding methodology

Using a type theory based logical framework as a specification language for representing
formal systems requires, as a first step, to choose an encoding methodology. Indeed, object
languages typically consist of two components:

• the syntax, i.e., the syntactic categories like, e.g., names/variables, terms etc.

• the semantics which is formulated by a series of judgments over syntactic entities, e.g,
labeled transition systems for process algebras, the β-reduction of λ-calculus, satisfac-
tion and validity relations for the first-order logic etc.

In order to faithfully represent an object language, both components must be encoded. In
this chapter we will illustrate the possible approaches, focusing in particular on the Higher-
Order Abstract Syntax (HOAS) approach and the judgments-as-types principle. The notions
we are going to recall are applicable to any logical framework having at least the expressive
power of the Edinburgh LF [HHP93] (except of course when we speak of inductive definitions:
in this case the reference framework we consider is CC(Co)Ind).

3.1 Representing expressions

The general approach in representing the syntax of an object language is to introduce an
LF type for each syntactic category and to declare a constant for each expression-forming
construct of the object language. The collection of types and constants introduced in this
way is called the signature of the object language. This approach allows one to establish
a bijective correspondence between the syntactic entities of the object language and the so
called canonical forms of the corresponding type in the LF. Since the systems of the λ-cube
are strongly normalizing (see the previous chapter), they provide a notion of normal form
(i.e., a term that cannot be further reduced). Canonical forms, w.r.t. a typing environment
and a signature, are a stronger notion corresponding to long βη-normal forms, i.e., to normal
forms where each constant and variable occurrence is fully applied1 w.r.t. the given typing

1Without entering into the details of the formal definition [HHP93], an occurrence of a constant or variable
ξ is fully applied in a legal term M w.r.t. a typing environment Γ and a signature Σ if and only if it is of
the form ξM1 · · ·Mn, where n is the arity of ξ. The arity of a kind or type is the number of Π in the
prefix of its normal form; the arity of a constant occurrence in a signature is the arity of its type in that

24 CHAPTER 3. ENCODING METHODOLOGY

εΛX : ΛX −→ tmX

εΛX(x) , x

εΛX(MN) , (app εΛX(M) εΛX(N))
εΛX(λx.M) , (lam λx:tm.εΛX,x(M))

δΛ
X : tmX −→ ΛX

δΛ
X(x) , x

δΛ
X((app M N)) , δΛ

X(M)δΛ
X(N)

δΛ
X((lam M)) , λx.δΛ

X,x(Mx)

Figure 3.1: Encoding and decodings maps for untyped λ-calculus.

environment and signature. The abovementioned bijective correspondence is given in terms
on an encoding map ε and a decoding map δ and is usually required to be compositional
(i.e., it must commute with substitution).

3.1.1 Higher-Order Abstract Syntax (HOAS)

If the object language features binding operators, it is possible to represent them by means
of constants whose type is functional. Thus, binders are rendered by the binder of the
underlying metalanguage of the LF (i.e., the λ-abstraction operator). This approach allows
one to represent variables of the object language by metavariables of the LF of a suitable
type. Hence, the related machinery of α-conversion and capture-avoiding substitution are
shifted to the metalevel, freeing the user from an explicit implementation.

For instance, in the case of untyped λ-calculus, the syntax is defined by the following
grammar (there are two syntactic categories: variables V, ranged over by x, y, z, . . ., and
terms Λ):

Λ M,N ::= x | MN | λx.M

Since there is a binder in the object language (denoted by a bold λ to distinguish it from the
λ-operator of the logical framework), the corresponding HOAS-signature is the following:

ΣΛ , {tm:∗, app:tm → tm → tm, lam:(tm → tm) → tm}

Given X , {x1, . . . , xn} ⊂ V finite, we denote by ΛX the set {M ∈ Λ | fv(M) ⊆ X} (where
fv(M) denotes free variables of M , as usual) and by tmX the canonical forms of type tm
such that ΓX `ΣΛ

M :tm holds2 (where ΓX = x1:tm, . . . , xn:tm). As we can see from the
encoding and decoding maps in Figure 3.1 (it is assumed that in the clauses involving λ and
lam x is chosen to be fresh, i.e., x 6∈ X; moreover, X, x is a compact notation for X ∪ {x}),
the abstraction constructor of the object language is represented by the constant lam taking
functions from tm to tm as arguments. This allows one to represent variables of untyped λ-
calculus with metavariables of the LF of type tm. As anticipated, the HOAS-based approach
allows one to automatically delegate to the metalanguage the mechanisms of α-conversion
and capture-avoiding substitution. For instance, in the case of λ-calculus we have:

α-conversion : the terms (lam λx.M) and (lam λy.M{y/x}) (where y is a fresh variable)
are identified by the LF. Thus, in case of a name clash, like in (app (lam λx.M) x), the
metalanguage automatically renames the bound occurrences of x with a fresh variable
y, yielding the term (app (lam λy.M{y/x}) x). In the case of a “traditional” encoding

signature. Similarly, the arity of a variable occurrence in a typing environment is the arity of its type in
that environment, while the arity of a bound variable occurrence is the arity of the type label attached to its
binding occurrence.

2In the following Γ `ΣΛ M :tm stands for Γ, ΣΛ ` M :tm. It is usually preferred to keep the typing envi-
ronment distinct from the signature, since the latter contains constants, while the former contains variables.

3.1. REPRESENTING EXPRESSIONS 25

instead, keeping bound variables distinct from free ones is left to the user with all the
related mistakes commonly made with “pencil and paper”.

capture-avoiding substitution : this operation is also delegated to the metalanguage; in-
deed, we can render the β-reduction of (λx.M)N to M{N/x} by saying that (app (lam
M) N) reduces to MN , where X , fv(M) ∪ fv(N), (lam M) , εΛX(λx.M) and
N , εΛX(N) (since M has type tm → tm). Hence, capture-avoiding substitution is
modeled by functional application in the logical framework. Again, the user is freed
from an explicit encoding of this notion.

The adequacy of the encoding of the syntax of untyped λ-calculus is given by the following
proposition:

Proposition 3.1 (Adequacy of syntax) The encoding εΛX is a bijection between ΛX and
tmX . Moreover, the encoding is compositional in the sense that for M a λ-term with free
variables in X , {x1, . . . , xn} and N1, . . . , Nn λ-terms with free variables in Y the following
holds:

εΛY (M{N1/x1, . . . , Nn/xn}) = εΛX(M)
{
εΛY (N1)/x1, . . . , ε

Λ
Y (Nn)/xn

}

Proof. Clearly, εΛX is injective by definition. Surjectivity follows form the definition of δΛ
X

and an inspection of canonical forms ξM1 · · ·Mn of type tm. Indeed, the only choice for
ξ is given by app and lam; hence, the types of these constants allow one to conclude that
δΛ
X is total and well-defined. An easy induction on the structure of M allows to prove that

δΛ
X(εΛX(M)) = M . Compositionality is proved by means of another straightforward induction

on terms of the object language. ut

3.1.2 HOAS and Inductive Definitions

So far, there is no assumption about the type theory used to encode object languages (this is
reflected by the fact that we illustrated the example about the untyped λ-calculus with the
generic notation used in the previous chapter to describe the language of terms of PTSs).
However, even if one could rely on a logical framework as simple as the Edinburgh LF,
it is often useful for “real” and complex case studies to choose a LF with the capability
of automatically providing induction principles on sets and propositions. This feature is
particularly relevant in view of a formal development of the metatheory of the encoded
language, since many proofs with “pencil and paper” are carried out by means of structural
inductions on the syntax.

At a first sight, it seems that using a HOAS-based encoding approach in a LF featuring
inductive types is the best solution for carrying out formal developments with the mini-
mum effort, delegating as much as possible to the metalevel (α-conversion, capture-avoiding
substitution and the generation of suitable induction principles). Unfortunately, a “close
encounter” between HOAS and inductive definitions can yield several problems. If, for in-
stance, we choose the Coq system [TCDT01] as our logical framework, we cannot encode the
untyped λ-calculus as we did in the previous section taking advantage of inductive definitions.
Indeed, the encoding would be the following:

Inductive tm: Set:=
app: tm -> tm -> tm

| lam: (tm -> tm) -> tm

26 CHAPTER 3. ENCODING METHODOLOGY

However, as we recalled in the previous chapter (Section 2.2.2), the underlying metalanguage
of Coq (CC(Co)Ind) rejects the previous definition since there is a negative occurrence of tm
in the type of lam; thus the latter is not a form of constructor (see Definition 2.7). The
reason for prohibiting this kind of constructors is to avoid non-normalizing terms like the
following:

Definition F: tm -> tm :=
[x:tm]Case x of [t,t’:tm](app t t’) [f:tm->tm](f (lam f)) end

(F (lam F)) : tm→βδι (F (lam F)) : tm→βδι . . .

In this case, if one does not want to drop inductive definitions and resort to an axiomatic
encoding, the only feasible solution in Coq is to introduce a specific type var for the identifiers
(variables). So doing, it is possible to introduce the inductive type:

Inductive tm: Set:=
is_var : var -> tm

| app : tm -> tm -> tm
| lam : (var -> tm) -> tm

It is worth noticing that variables of the object language are now represented by Coq metavari-
ables of type var (instead of type tm). A first drawback of this solution is that only
α-equivalence can be delegated to the metalevel. Indeed, the lam constructor accepts as
arguments abstractions of type var -> tm (instead of tm -> tm). It follows that functional
application can model only substitution of variables for variables (instead of substitution of
compound terms for variables which needs to be implemented by the user). This encoding
approach is sometimes called half-HOAS, while the former (with lam : (tm → tm) → tm) is
called full-HOAS.

It is important to notice that if var is an inductive type, a serious problem arises. For
instance, if we take the built-in Coq type encoding natural numbers for representing variables
(hence, is var has type nat->tm), we can define the following terms:

Definition weird1: tm :=(lam [x:nat]Case x of
(* 0 *) (is_var O)
(* (S n) *) [n:var](is_var (S n))
end)

Definition weird2: tm :=(lam [x:nat]Case x of
(* 0 *) (is_var O)
(* (S n) *) [n:var](is_var n)
end)

Both weird1 and weird2 are in head normal form and are not the encoding of any term of
the untyped λ-calculus. However, the first is extensionally equivalent3 to the λ-term (lam

3Following [DFH95], extensional equivalence is defined as the following Coq predicate:

Inductive eq tm : tm − > tm − > Prop :=
eq tm var : (x : var)(eq tm (is var x) (is var x))
| eq tm app : (m1, m2, n1, n2 : tm)(eq tm m1 n1) − > (eq tm m2 n2) − >

(eq tm (app m1 m2) (app n1 n2))
| eq tm lam : (M, N : var− > tm)((x : var)(eq tm (M x) (N x))) − >

(eq tm (lam M) (lam N)).

3.1. REPRESENTING EXPRESSIONS 27

[x:nat](is var x)) (i.e., the encoding of λx.x) and could be acceptable. Instead, weird2
clearly does not correspond (even up to extensional equality) to any untyped λ-term4 Hence,
we have defined an exotic term, i.e., a canonical term not corresponding to any entity of the
object language; in other words we have lost the adequacy of the encoding.

There are two possible solutions to this problem; the former is to take var as an open
set:

Parameter var: Set.

In this way the case constructor cannot be applied to a variable of type var, automatically
ruling out exotic terms5. On the other hand, if we need to define var inductively, it is
necessary to rule out exotic terms “manually” by means of a “validity” judgment holding
only for Case-free terms [DFH95]. Then all the theorems developed in the framework must
be decorated with these validity judgments.

3.1.3 Alternatives to HOAS

In this section we will briefly illustrate some alternatives to the HOAS encoding approach.
Indeed, HOAS is well suited for representing formal systems with binders under the implicit
condition that binding operators of the object language behave similarly to the binder of
the metalanguage. If this is not the case one can try to enforce eventual context-dependent
conditions not expressible by means of the type system with some auxiliary judgments (this
notion is explained in Section 3.2). Another solution is to drop the HOAS approach in favor
of other encoding techniques.

In the latter case, a first possibility is to adopt a First-Order Abstract Syntax (FOAS)
solution, where the type of every constructor is “flat”, i.e., no functions can be taken as
arguments, only plain terms. In the case that the object language has no binders, this is
a satisfactory approach; for instance, the languages of natural numbers and (finite) lists of
natural numbers are given by the following grammars:

nat n ::= 0 | Sn
list l ::= 〈〉 | n.l

Their encodings are usually given as follows:

Inductive nat : Set :=
O : nat

| S : nat -> nat.

Inductive nat_list : Set :=
empty : nat_list

| cons : nat -> nat_list -> nat_list.

However, in presence of binders a FOAS approach is very unsatisfactory; for example a
first-order encoding of the untyped λ-calculus is the following:

4If there would be a term M corresponding to weird, then we would have (M i0) →β i0, while (M in+1) →β

in (where (in)n is an enumeration of variables such that the n-th identifier in is represented by the n-th natural
number), but this is absurd in the theory of the λ-calculus.

5Exotic terms arise in presence of a higher-order constructor (like lam) abstracting over an inductive type.
In this situation it is possible to apply the Case operator of the metalanguage over an abstract variable,
yielding a head normal form which does not correspond to the encoding of any entity of the object language.

28 CHAPTER 3. ENCODING METHODOLOGY

Inductive tm: Set :=
is_var : var -> tm

| app : tm -> tm -> tm
| lam : var -> tm -> tm.

As we anticipated above, types are “flattened” (i.e., no higher-order types are considered)
with the consequence that the resulting encoding is too fine-grained. Indeed, even if λx.x
is α-equivalent to λy.y, i.e, the terms can be identified, the respective encodings ((lam
x (is var x)) and (lam y (is var y))) are in general completely different. Thus, the
burden of encoding α-equivalence of terms and the relative metatheory is left to the user.
The first case study in Chapter 6 is a clear witness of the complexity of such a formal
development. Moreover, it is easy to imagine that in the case of a more complex language
(e.g., the Ambient Calculus) the formal encoding and development of the metatheory of
α-equivalence becomes a daunting task, even for the most patient being living on Earth.
Obviously, also capture-avoiding substitution must be implemented from scratch.

An alternative approach allowing to solve the abovementioned problem of α-conversion
is to adopt the so-called de Bruijn notation. Using de Bruijn indexes, variables simply
disappear and consequently there is no more α-conversion, since λ-terms become diadic trees
of natural numbers. The corresponding encoding in Coq is the following [Hue92, DH94]:

Inductive tm : Set :=
ref : nat -> tm

| app : tm -> tm -> tm
| lam : tm -> tm.

Terms of type tm are trees whose leaves are labeled by naturals and internal nodes are
labeled either by app or by lam. Hence, the behaviour of the binder of the object language is
rendered by manipulating natural numbers (indexes); hence, α-conversion is automatically
enforced by de Bruijn notation. However, substitution must be manually implemented and
also the handling of indexes is left to the user. To give an idea of the work that must
be accomplished in order to get things working, it is sufficient to cite [Hir97], where a
formalization of a fragment of the polyadic π-calculus is carried out by means of de Bruijn
indexes and 600 of 800 proved lemmata concern technical manipulations of such indexes.
However, the worst consequence of using de Bruijn notation is that the encoding and the
subsequent formal development of the metatheory are very hard to read and to translate
back to the original object language.

3.2 Representing proofs

So far, we discussed the representation of syntactic categories, but the final goal of encoding
an object language in a type theory based LF is to obtain a proof assistant helping the user
in formally proving properties about the encoded system. Hence, the treatment of rules
and proofs lies at the heart of a logical framework and, following [HHP93] the key notion
is that of judgment (or assertion) stressed by Martin-Löf [ML85]. Indeed, logical systems
can be viewed as calculi for building proofs of a collection of basic (or atomic) judgments6.
Following this idea, the principle known as judgments-as-types (which can be viewed as the

6For instance, in the untyped λ-calculus there is the judgment of β-reduction relating a term containing
some redexes with the corresponding reducts. Another example of an atomic judgment is the assertion that
a formula is true in first-order logic.

3.2. REPRESENTING PROOFS 29

metathoretic analogue of the propositions-as-types principle) represents basic judgments of
the object language with suitable types and their proofs as λ-terms whose type corresponds
to the judgment they prove.

The basic set of judgments can be extended to two higher-order forms introduced by
Martin-Löf: the former is the hypothetical judgment representing a form of consequence (if
J1 and J2 are judgments, then J1 ` J2 means that J2 is provable under the assumption of
J1), while the second is the schematic judgment representing generality (if C is a category
of the language and J(x) is a judgment involving a variable x ranging over elements of C,
then

∧
x∈C J(x) means that J(x) is provable uniformly in x). A LF providing dependent

types can easily render such higher-order forms as follows:

J1 ` J2 = J1 → J2

Thus the hypothetical judgment is rendered by means of the functional space constructor
(→); generality, on the other hand, is rendered by means of the dependent types constructor
(Π): ∧

x∈C

J(x) = Πx:C.J(x)

where C is the type representing the syntactic category C.
We said above that the hypothetical judgment expresses a form of consequence. In tradi-

tional logic, usually there is only one form of basic judgment and the notion of consequence
is intended between sets or multisets of basic judgments instances. Hypothetical judgments
instead are more general since they allow one to consider notions of consequence involving
different basic judgments. The classical example, taken from [HHP93], is to consider the
basic judgments of S4, namely, φ true and φ valid; then it is possible to consider the “hy-
brid” consequence notion φ valid ` φ true. Indeed, the latter is neither an instance of the
truth consequence relation (expressing consequence in each single world) nor of the validity
consequence relation (expressing consequence in all worlds).

Since derivations of basic judgments in the object language are carried out by means of
rule systems, the latter must also be represented in order to “mimick” proofs with “pencil
and paper”. This task is carried out by associating to each rule of the object language a
constant of higher type taking as arguments the values of the parameters and the proofs of
the premises. For instance β-reduction in one step (→β) is defined by means of the following
rules:

(λx.M)N →β M [N/x] (β − REDEX)
M →β N

ZM →β ZN
(β −APP1)

M →β N

MZ →β NZ
(β −APP2)

M →β N

λx.M →β λx.N
(β − LAM)

Assuming that the syntax has been encoded using a (full) HOAS-based approach (see Sec-
tion 3.1.1), we add to the signature the constant beta : tm → tm → ∗ and the following ones,
representing the previously introduced →β-rules:

beta REDEX : Πm:tm → tm.Πn:tm.(beta (app (lam m) n) (m n))

30 CHAPTER 3. ENCODING METHODOLOGY

beta APP1 : Πm:tm.Πn:tm.Πz:tm.(beta m n) → (beta (app z m) (app z n))
beta APP2 : Πm:tm.Πn:tm.Πz:tm.(beta m n) → (beta (app m z) (app n z))
beta LAM : Πm:tm → tm.Πn:tm → tm.

(Πz:tm.(beta (m z) (n z))) → (beta (lam m) (lam n))

It is worth noticing the rôle played by the schematic judgment Πz:tm.(beta (m z) (n z)) in
beta LAM : since the type of m is functional (tm → tm) it is required that m applied to a
generic term z of type tm β-reduces to n applied to the same z in order to conclude that
(lam m) β-reduces to (lam n) (in other words we need to “fill the hole” of m and n before
applying beta to them).

Obviously, in order to have a faithful encoding of untyped λ-calculus and one step β-
reduction, it is necessary to ensure a correspondence between proofs “on paper” and formal
proofs in the LF. There are two alternative possibilities, differing in the “strength” of the
abovementioned correspondence:

1. we may require that proofs of basic judgments of the object language are strictly
related to proofs in the LF, i.e, by canonical terms whose types correspond to those
of the encoded basic judgments. We will illustrate this notion of correspondence by
means of our running example of untyped λ-calculus and one step β-reduction. First
of all, we introduce a language of proof expressions as follows:

Π ::= β−REDEXx,M,N | β−APP1M,N,Z(Π) | β−APP2M,N,Z(Π) | β−LAMx,M,N (Π)

In the preceding grammar x is a binding occurrence: in β−REDEXx,M,N , occurrences
of x in M are bound, while in β − LAMx,M,N (Π) occurrences of x are bound in M , N
and Π (proof expressions differing only in their bound variables are identified). Since
not all proof expressions are valid, we introduce the rules depicted in Figure 3.2 in
order to infer judgments of the form X ` Π:M →β N which is to be read as “Π is
a valid proof of M →β N w.r.t. the proof environment X” (where X is a finite set
of variables such that fv(M) ∪ fv(N) ⊆ X)7. Finally, we define the encoding εΠX
map in Figure 3.3 (where (beta M N)X denotes the set of canonical terms t such that
ΓX `Σ t:(beta M N)) and we prove the following proposition:

Proposition 3.2 (Adequacy for proofs, I) For every X ⊂ V, and M, N ∈ ΛX , the
encoding εΠX,M,N is a bijection between valid proofs of M →β N and canonical terms
t of type beta(εΛX(M), εΛX(N)) such that ΓX `Σ t : beta(εΛX(M), εΛX(N)). Moreover,
εΠX,M,N is compositional in the sense that for Π a proof of M →β N with m,N ∈ ΛX ,
{x1, . . . , xn} and M1, . . . , Mn ∈ ΛY the following holds:

εΠY,M{M1/x1,...,Mn/xn},N{M1/x1,...,Mn/xn}(Π{M1/x1, . . . , Mn/xn})
= εΠX,M,N (Π)

{
εΛY (M1)/x1, . . . , ε

Λ
Y (Mn)/xn

}

Proof. A tedious, but straightforward induction on the structure of the valid proof
expression Π:M →β N allows to establish both that εΠX,M,N (Π) is a canonical form
of type beta(εΛX(M), εΠX(N)) and that εΠX,M,N is injective. Surjectivity is proved by

7In the following we will denote by ΠX,M,N the set of proof expressions such that X ` Π:M →β N .

3.3. PRAGMATIC REMARKS 31

defining a decoding map δΠ that is left inverse to εΠ:

δΠ
X,M,N : (beta M N)X −→ ΠX,δΛ

X(M),δΛ
X(N)

δΠ
X,M,N ((beta REDEX M N)) , β − REDEXx,δΛ

X,x(Mx),δΛ
X(N)

δΠ
X,(app Z M),(app Z N)((beta APP1 M N Z t)) ,

β −APP1δΛ
X(M),δΛ

X(N),δΛ
X(Z)(δ

Π
X,δΛ

X(M),δΛ
X(N)

(t))

δΠ
X,(app M Z),(app N Z)((beta APP2 M N Z t)) ,

β −APP2δΛ
X(M),δΛ

X(N),δΛ
X(Z)(δ

Π
X,δΛ

X(M),δΛ
X(N)

(t))

δΠ
X,(lam M),(lam N)((beta LAM M N t)) ,

β − LAMx,δΛ
X,x(Mx),δΛ

X,x(Nx)(δ
Π
〈X,x〉,δΛ

X,x(Mx),δΛ
X,x(Nx)

(tx))

By inspection on the possible canonical forms and the signature so far introduced and
by the definition of valid proof expressions, it follows that δΠ is defined and total. A
structural induction on Π allows to prove both δΠ

X,εΛX(M),εΛX(N)
(εΠX,M,N (Π)) = Π and the

compositionality property. ut
2. More often, the strict correspondence previously exemplified is not required. Indeed,

it may suffice to prove that for each proof of the object language there is a canonical
proof-term of the corresponding type and vice versa. This amounts to the approach
of proof irrelevance, i.e, we do not require to reflect faithfully each derivation of the
object language in the LF, but only the existence of a witness for each derivation. For
instance, in the case of untyped λ-calculus and one step β-reduction the adequacy is
stated by the following proposition:

Proposition 3.3 (Adequacy for proofs, II) Let X ⊂ V finite, M, N ∈ ΛX ,

(a) (Soundness) if there exists t canonical such that ΓX `Σ t:(beta M N), then we
have δΛ

X(M) →β δΛ
X(N).

(b) (Completeness) if M →β N , there is a canonical form t such that ΓX `Σ t :
(beta εΛX(M) εΛX(N)).

Proof. The argument is an induction on the structure of the canonical form t (Sound-
ness), and a structural induction on the derivation of M →β N (Completeness). ut
This approach is adopted in the case studies of Chapter 6 and in [HMS01b].

It is worth noticing that, even if the example proposed (encoding of one step β-reduction)
has been carried out in a minimal setting (without exploiting inductive definitions) following
the approach introduced in [HHP93], the same techniques can be adopted, e.g., for proving
the adequacy of a Coq encoding taking advantage of the (co)inductive features provided by
the system. For a more thorough discussion on the topics so far recalled in this chapter we
refer the reader to [AHMP92, HHP93, Mic97].

3.3 Pragmatic remarks

It should be clear from the arguments discussed in previous sections that representing a
formal system in a type theory based logical framework is not a trivial task and many issues

32 CHAPTER 3. ENCODING METHODOLOGY

fv(M) \ {x},∪fv(N) ⊆ X x 6∈ X

X ` β − REDEXx,M,N :(λx.M) → M [N/x]
(V-β-REDEX)

X ` Π:M → N fv(Z) ⊆ X

X ` β −APP1M,N,Z(Π):ZM → ZN
(V-β-APP1)

X ` Π:M → N fv(Z) ⊆ X

X ` β −APP2M,N,Z(Π):MZ → NZ
(V-β-APP2)

X,x ` Π:M → N x 6∈ X

X ` β − LAMx,M,N (Π):λx.M → λx.N
(V-β-LAM)

Figure 3.2: Valid proof expressions for one step β-reduction.

εΠX,M,N : ΠX,M,N −→ (beta εΛX(M) εΛX(N))X

εΠX,M,N (β − REDEXx,M,N) , (beta REDEX λx:tm.εΛX,x(Mx) εΛX(N))

εΠX,ZM,ZN (β −APP1M,N,Z(Π)) , (beta APP1 εΛX(M) εΛX(N) εΛX(Z) εΠX,M,N (Π))

εΠX,MZ,NZ(β −APP2M,N,Z(Π)) , (beta APP2 εΛX(M) εΛX(N) εΛX(Z) εΠX,M,N (Π))

εΠX,λx.M,λx.N (β − LAMx,M,N (Π)) , (beta LAM λx:tm.εΛX,x(M)

λx:tm.εΛX,x(N)εΠX,M,N (Π))

Figure 3.3: Encoding map for proofs of one step β-reduction.

can arise depending both on the object language and on the chosen encoding approach. We
have seen how HOAS allows to delegate the treatment of binders to the metalanguage of the
chosen framework, freeing the user from an explicit encoding of the relative machinery.

In general, the problem of exploiting as much as possible of the framework’s metalevel,
in order to avoid reinventing the wheel whenever a new object language has to be encoded,
is covered by several works in the literature. For instance, in [BGG+92] a new terminology is
introduced in order to classify encoding approaches. More precisely, the expression shallow
embedding is used to denote the use of the syntactic infrastructure of the metalanguage in
order to represent the semantics of the object language8, without explicitly encoding the
syntax (in other words, the object language is simply “translated” into appropriate deno-
tations of the logical framework). On the other hand, representing syntactic categories of
the object language as a defined type is called a deep embedding approach. The dichotomy
deep vs. shallow is recalled in [Mel95], where it is stated that shallow embeddings are “par-
ticularly well suited to reasoning about applications”, but cannot be fruitfully used to carry
out a formal development of metatheoretic properties of the object language. The reason is
that a direct translation of a formal system in terms of constructs of the metalanguage does
not allow one to reason or even make reference to the objects or properties which have been
delegated.

While a HOAS-based encoding approach is to be considered a deep embedding (in the
sense of [BGG+92]), there are some drawbacks that may induce one to classify it as a shal-
low embedding [RHB01]. Indeed, representing binders by means of functional constants and

8In the specific case of [BGG+92] the problem was to formalize hardware description languages in HOL
(Higher-Order Logic).

3.3. PRAGMATIC REMARKS 33

identifying object level identifiers (variables or names) with metavariables of the metalan-
guage, have the unpleasant effect of making the delegated machinery involving the treatment
of bound names unavailable during the proof development activity. Moreover, the lack of ad-
equate induction/recursion principle on higher-order types in most logical frameworks makes
practically impossible to formally derive all those properties of the object language which
are usually carried out by means of structural induction over contexts (represented by func-
tional terms in the logical framework). These are the main reasons inducing many users of
type theory-based logical frameworks to prefer first-order encodings or de Bruijn indexes for
metareasoning about encoded systems.

An attempt to overcome the abovementioned issues is proposed in [GM96], where two
layers are introduced. In the first layer a first-order implementation of the λ-calculus is
carried out together with a formalization of α-conversion and substitution. Hence, on top
of this layer, it is possible to use a HOAS-based encoding approach to represent any formal
system without worrying about exotic terms and negative occurrences. Moreover, using the
manual implementation of the λ-calculus as a metalanguage all the machinery delegated by a
HOAS encoding is still available to the user during the proof development activity. However,
it is clear that the implementation of the first layer is to be carried out by means of a
first-order embedding (or, even worse, by means of de Bruijn indexes) with all the related
difficulties and technicalities.

In [DPS96] an extension of the “traditional” metalanguage of type theory based logical
frameworks is proposed in order to allow primitive recursive functional types. More precisely,
since primitive recursion cannot be allowed on any term whose type is higher-order (otherwise
paradoxes can arise), the authors impose some constraints on functional types on which
primitive recursion can be safely defined. This is carried out by decomposing the primitive
recursive function space, denoted by A ⇒ B, into a modal type operator and a parametric
function space: A ⇒ B = (¤A) → B. This approach is inspired by linear logic where a
similar decomposition of the intuitionistic implication A ⊃ B is accomplished in terms of a
modal operator and a linear function space (!A) (B.

Another proposal for allowing the definition of recursive functions in presence of higher-
order encodings is introduced in [Sch01], where a new type system for the Edinburgh LF
(called T +

ω) is presented. The main idea is to “weaken” the closed world assumption9 which
is implied by the positivity condition builtin in all logical frameworks based on inductive defi-
nitions. Indeed, the closed world assumption does not allow one to “traverse” λ-abstractions
in recursive calls, while this is needed in presence of HOAS-encodings. Therefore, a new
property, called the regular world assumption, is introduced, allowing to recursively define
functions with open arguments depending on parameters. Essentially, the latter must con-
form to an a priori specified regular grammar, which rules out “dangerous” definitions and
makes the whole construction work. The novelty of the approach, w.r.t. [DPS96], is that it
supports dependent types and does not require to add new modalities to the metalanguage.

The goal of this thesis is to propose a “cheaper” (although effective) way to efficiently
metareason about formal systems using a HOAS approach. In particular, we will focus on
the formalization of nominal calculi, a class of object languages whose central notion is that
of name and name binding. In the next chapter we will introduce the so-called Theory of
Contexts, i.e., a set of axioms stating some fundamental properties of contexts over names
which can be easily embedded in any logical framework supporting the introduction of new
axioms. Using a half-HOAS encoding approach, those axioms allow one to handle contexts

9This property amounts to require that arguments to functions must be closed, i.e., functions cannot be
defined on free parameters.

34 CHAPTER 3. ENCODING METHODOLOGY

like it is usually done in proofs with “pencil and paper”. For instance, we will see that
they allow one to derive a higher-order induction principle on functional terms over names
starting from the usual induction principle over plain terms automatically provided by Coq.
The efficacy of the Theory of Contexts has already been verified in [HMS01b], where the
metatheory of the π-calculus strong late bisimilarity has been formally proved in Coq. The
same framework has been used in [Mic01a] in order to formally develop the metatheory of
capture-avoiding substitution for a HOAS-based encoding of untyped λ-calculus. In Chap-
ter 6 we will provide two more complex case studies in order to illustrate its applicability
and flexibility.

4
A Theory of Contexts

In this chapter, following [HMS01a], we introduce an axiomatic Theory of Contexts with the
aim of providing the user with the capability of meta-reasoning over HOAS-based encodings
of nominal languages. The main advantage of an axiomatic approach is the possibility to
implement it in any type theory based logical framework supporting the introduction of new
axioms (e.g. the system Coq [TCDT01]), without having to modify the framework itself.

Obviously, an utmost concern about the Theory of Contexts (like for any axiomatic
theory) is its consistency. This problem will be solved in Chapter 5 with the construction of
a functorial model, following the lines of the seminal work by Hofmann [Hof99].

The chapter is structured as follows: we start with an informal introduction to the
properties of the Theory of Contexts (Section 4.1). Then, in Section 4.2 we introduce the class
of languages we focus on, namely, the so-called nominal calculi. In order to give a sufficient
degree of generality to our methodology of representing and reasoning about nominal calculi,
we do not stick to a particular logical framework like, e.g., CIC or HOL, but we introduce
the generic system Υ in Section 4.3. In the latter, we formalize the Theory of Contexts and
other useful recursion/induction principles. Some discussion on the caveats needed in order
to ensure the consistency of the Theory of Contexts is carried out in Section 4.4. Remarks
on the design choices for Υ, independence and expressiveness of the properties and principles
introduced are gathered in Section 4.5. Finally, some pointers to the related work appear in
Section 4.6.

4.1 The axioms

The Theory of Contexts we introduce focuses on structural properties of syntactic contexts
over a set of variables and/or names. Hence, informally speaking, the objects of our study
will be terms with “holes” which can be filled in by variables/names to become plain terms.
In order to obtain a non-trivial theory, we require that the set of variables is such that for
any term there always exists a fresh variable with respect to it1 (i.e. a variable not occurring
in the given term):

unsaturation: ∀M.∃x.x 6∈ fv(M).
1In the following we will denote by 6∈ the non occurrence predicate; more precisely x 6∈ M means that the

name/variable x does not occur free in the term M .

36 CHAPTER 4. A THEORY OF CONTEXTS

That is, we require that there is always a fresh name in any given syntactic context. The
intuition behind this axiom is that terms are finite objects; hence, a single term cannot
contain all the possible variables. Obviously, since we are interested in meta-reasoning over
nominal languages, we want the equality over names to be decidable. This property can be
stated formally as follows:

LEMvar: ∀x, y.x = y ∨ x 6= y,

In a classical context, LEMvar is obviously an instance of the law of excluded middle; hence,
it does not need to be explicitly stated. On the other hand, in an intuitionistic setting it
represents the minimum classical flavour needed in order to allow a meta-theoretic reasoning
about encodings of nominal languages.

Usually, the implementations of the most widely used Logical Frameworks do not provide
any support for metareasoning over contexts, that is there are neither induction nor recursion
principles over higher-order terms. Hence, it is practically impossible to carry out formal
proofs by reasoning over the structure of contexts. This is precisely the problem referred by
the axioms of β-expansion and extensionality of Leibniz’s equality:

β-expansion: ∀M, x.∃N [·].x 6∈ fv(N [·]) ∧M = N [x],

extensionality: ∀M [·], N [·], x.x 6∈ fv(M [·]) ∪ fv(N [·]) ⇒ M [x] = N [x] ⇒ M [·] = N [·].

Intuitively, the axiom of β-expansion provides the capability of freely generating a new
context N [·] starting from a plain term M and a name x, whereas the axiom of extensionality
allows to state the equality of two contexts when their applications to a fresh name are
equal. Thus, we have a rather simple machinery allowing us to introduce and to reason
about syntactical properties of contexts.

In order to give an intuitive idea of the expressive power of the Theory of Contexts, we
can consider the case of a typical property of nominal calculi, namely, the possibility of freely
replacing a name (variable) with a fresh one in a proof, still preserving the validity of the
latter. Hence, if we consider, for example, the case of π-calculus, for a given predicate R over
processes we may want to prove R(P [y]) knowing that R(P [x]) holds (where neither x nor y
occur free in the process contexts P [·] and Q[·]). Obviously, a proof of this kind heavily relies
upon syntactical arguments and is usually carried out by means of an induction on the depth
of inference of the judgment R(P [x]). Since the definitions of predicates on processes are
usually driven by their syntactic structure, this implies in turn that in a generic induction
step we will know something about the structure of P [x] and we must use this information in
order to derive something about the structure of P [y] and prove the current subgoal. Thus,
let us suppose we know that P [x] , xu.Q|x(v).R holds2 (where x 6= u and x 6= v); then
we can use the axiom of β-expansion in order to infer that there exist two contexts Q′[·]
and R′[·] such that x does not occur free in them and, moreover, Q = Q′[x] and R = R′[x].
It follows, by means of extensionality, that P [·] = [·]u.Q′[·]|[·](v).R′[·]. Whence, our initial
subgoal R(P [y]) can be rewritten as R(yu.Q′[y]|y(v).R′[y]). At this point, it will be clear
which rule of R is applicable in order to reduce the subgoal to a structurally smaller one
which can be solved by means of the inductive hypothesis.

2For the reader not familiar with the π-calculus, we recall that the expression xu.Q|x(v).R represents two
processes, namely xu.Q and x(v).R, running in parallel. More precisely, the first one is trying to send a name
u on channel x, while the second is waiting (on the same channel) for a name which will replace v in R.

4.2. NOMINAL CALCULI 37

It is worth noticing that the axioms of β-expansion and extensionality can be generalized
to yield schemata of axioms holding for contexts of an arbitrary arity (i.e. with more than one
“hole”3). This fact turns out to be rather useful in applications, as we will see in Chapter 6.

In the next sections we will give a rigorous treatment of the arguments informally intro-
duced so far together with the guidelines to implement a HOAS-based encoding of a nominal
calculus within the framework of the Theory of Contexts.

4.2 Nominal calculi

In the following we call nominal calculi those object logics which seize upon the notion of
name4. Typical examples are processes algebras (e.g. the π-calculus [MPW92], the Ambient-
calculus [CG98], the Spi-Calculus [AG99] etc.) because, as it is stated in [Mil93], the act of
naming implicitly implies a notion of concurrency i.e. the coexistence of the namer and the
named.

In this section we give a formal definition of the notion of nominal calculus, providing the
terminology and the tools needed in order to accommodate a general treatment of a rather
broad class of object languages.

The first kind of basic entities of a generic nominal calculus is represented by a set of
names. They are the most primitive objects since they have no structure; we assume that
they are infinitely many in order to be able to pick a new name whenever this is needed.
Moreover, we require that it is always possible to decide whether two names are equal or not.
Obviously, there can be many separate sets of names; more formally, we have the following
definition:

Definition 4.1 A names set υ is an infinite enumerable set of objects with a decidable
equality.

We will denote names sets with υ, possibly with indexes like in υi or primes like in υ′.
Elements of names sets are ranged over by n,m, . . . or x, y, z,

Definition 4.2 A names base is a finite set V = {υ1, . . . , υk} of names sets. A stage over
V = {υ1, . . . , υk} is a collection X = {X1, . . . , Xk} such that Xi ⊂ υi finite for i = 1, . . . , k.

Before introducing basic types, we need to define some constraints on the kind of con-
structors allowed for them: this is carried out by means of a notion of nominal arity.

Definition 4.3 Given a names base V , {υ1, . . . , υk} and a collection of type symbols T ,
{ι1, . . . , ιl}, each nominal arity α over V and T has the form τ1 × . . . × τn → ι, where
ι ∈ T , n ≥ 0 (if n = 0, then τ1 × . . . × τn → ι = ι) and, for 1 ≤ j ≤ n, either τj ∈ V
or τj = υj1 × . . . × υjnj

→ σj where υjh
∈ V (1 ≤ h ≤ nj), nj ≥ 0 (if nj = 0, then

υj1 × . . . × υjnj
→ σj = σj) and σj ∈ T . We call the symbol ι in α = τ1 × . . . × τn → ι the

ending type of the nominal arity α.
3The notion of arity of a context will be made clear shortly. So far, it is important to keep in mind that

[·]u.Q′[·]|[·](v).R′[·] is a context with four occurrences of one hole. When we speak of a context with “more
than one hole” we mean something like [·]u.Q′[·]|[•](v).R′[·], where the occurrences denoted by [·] are different
from the one denoted by [•]; hence, we have a context with two holes. Indeed, in order to instantiate such a
context it is necessary to supply two arguments: the former will fill the occurrences marked by [·], while the
latter will fill the one marked by [•].

4For the sake of simplicity, we will always refer to the notion of “name”, even if some object languages,
which can be classified as nominal calculi, employ the term “variable”. Indeed, it is clear that the different
terminology denotes the same notion.

38 CHAPTER 4. A THEORY OF CONTEXTS

x1 ∈ υ1, . . . , xn ∈ υn

〈x1, . . . , xn〉 ∈ υ1 × · · · × υn
(n-TUPLE)

〈x1, . . . , xn〉 ∈ υ1 × · · · × υn,M ∈ ι

(x1, . . . , xn).M ∈ υ1 × · · · × υn → ι
(n-CTXT)

M1 ∈ τ1, . . . , Mn ∈ τn

〈M1, . . . , Mn〉 ∈ τ1 × · · · × τn
(TUPLE)

−
cι ∈ ι

(CONST)

〈M1, . . . , Mn〉 ∈ τ1 × · · · × τn

cτ1×···×τn→ι(M1, . . . , Mn) ∈ ι
(APP)

Figure 4.1: Term forming rules

Definition 4.4 If a nominal arity α , τ1 × . . . × τn → ι is such that, for some j, τj =
υj1 × . . .× υjnj

→ σj and nj > 0, then α is said to be a binding arity.

Basic types (e.g. terms, processes etc.) are denoted by ι, possibly with indexes like in ιi
or primes like in ι′. Every basic type ι has some constructors associated with it specifying
how to build legal terms of type ι. These may take as arguments names, terms (belonging
to ι or to another basic type) and contexts (i.e. abstractions over names) as specified by the
following definition:

Definition 4.5 Given a names base V , {υ1, . . . , υk}, let I be the set of basic types
{ι1〈cαι1,1

ι1,1 , . . . , c
αι1,m1
ι1,m1 〉, . . . , ιl〈c

αιl,1

ιl,1
, . . . , c

αιl,ml
ιl,ml 〉} where each element5 consists of a type name

ιi and a list of constructors 〈cαιi,1

ιi,1
, . . . , c

αιi,mi
ιi,mi 〉 such that for every c

αιi,j

ιi,j
the corresponding

nominal arity αιi,j (over V and {ι1, . . . , ιl}) has ending type ιi.
We denote the set of constructors of a basic type ι ∈ I by Constr(ι) = {cα1

1 , . . . , cαm
m };

moreover, if α is a binding arity, then c is said to be a binding constructor or simply a
binder.

Intuitively, constructors allow one to build terms of a basic type from other terms as
specified by the corresponding nominal arity. More formally, given a names base V and a set
of basic types I, we have the term forming rules in Figure 4.1 (where υ1, . . . υn ∈ V , ι ∈ I,
τ and τ ′ are generic argument types as in the previous definitions and n ≥ 1).

Contexts with n holes (n-ary contexts) are denoted by (x1, . . . , xn).M and are derived
by means of Rule (n-CTXT) starting from plain terms and lists of names to abstract on.
Hence, if we consider the n-ary context (x1, . . . , xn).M , the occurrences of names x1, . . . xn

in M are bound. Moreover, if M is a n-ary context of the form (y1, . . . , yn).N , M [x1, . . . , xn]
denotes the substituted term N [x1/y1, . . . , xn/yn].

In nominal calculi names under the scope of a binder play a special rôle; indeed, they
can be considered as placeholders or markers. It follows that the actual name used for the
argument of a binder is not important as long it is different from all other names occurring
in the syntactical context. Hence, terms of basic types can be taken up to α-conversion, i.e.,
they can be considered syntactically equal if they differ only for bound names.

5We will often denote an element of I by its name, omitting the list of constructors.

4.3. THE SYSTEM Υ 39

Definition 4.6 A nominal calculus N is a triple 〈V, I, L〉 where V is a names base, I is a
set of basic types and L is the set of terms whose type belongs to I derivable by the rules in
Figure 4.1 up to α-equivalence. Given any ι ∈ I, we denote by Lι the subset of L of terms
of type ι. Moreover, if X is a stage over V , we denote by LX (respectively, Lι

X) the subset
of L (respectively, Lι

X) of terms with free names in X.

Examples. In order to make things clear, we give some examples of common object lan-
guages which can be seen as nominal calculi.

Untyped λ-calculus. Nλ , 〈{υ}, {Λ〈varυ→Λ, appΛ×Λ→Λ, lam(υ→Λ)→Λ〉}〉. The lam con-
structor is a binder.

π-calculus.

Nπ , 〈{η}, {P 〈0P , outη×η×P→P , inη×(η→P)×P→P , τP→P ,

ν(η→P)→P , !P→P , |P×P→P ,+P×P→P , =η×η×P→P

〉}
〉

In this case we have two binders, namely, the input prefix (in) and the restriction
operator (ν).

Ambient Calculus with Ambient Logic.

NAmb , 〈{η, υ}, {C〈nameη→C , inC→C , outC→C ,
openC→C , εC , pathC×C→C

〉,
P 〈ν(η→P)→P , 0P , |P×P→P , !P→P , ambC×P→P ,

capC×P→P , in
(η→P)→P
a , outC→P

a

〉,
F 〈TF ,¬F→F ,∨F×F→F ,0F , |F×F→F ,

BF×F→F , [·]η×F→F
η , @F×η→F

η , η×F→F
η ,

;F×η→F
η , [·]υ×F→F

υ , @F×υ→F
υ , υ×F→F

υ ,

;F×υ→F
υ , ♦F→F , ✧F→F , ∀(υ→F)→F

〉}
〉

This is an example of a nominal calculus where the names base consists of two distinct
names sets: names (η) and variables (υ). Then we have three basic types: capabilities
(C), processes (P) and formulæ (F). While there are no binders for the capabilities
type, processes have two binding constructors, i.e., input action (ina) and restriction
(ν). Formulæ have only one binder, namely, the universal quantification (∀) whose
arity is (υ → F) → F . Notice that, since in the Ambient Logic some constructors
(namely, [·], @, and ;) can take as arguments either a name or a variable, we are
forced to specify two distinct versions (denoted by the η, υ subscripts).

4.3 The system Υ

In order to give a general methodology for developing HOAS-based encodings of nominal
calculi, we do not stick on a particular logical framework like, e.g., CIC or HOL, but we

40 CHAPTER 4. A THEORY OF CONTEXTS

introduce the system Υ. The latter represents the minimum type theory-based logical frame-
work needed to encode and metareason about nominal calculi. Indeed, the underlying type
theory is not strictly intrinsic, whence the machinery we are going to describe can be easily
adapted to any sufficiently expressive logical framework. The advantage of keeping things
simple is that we will not be overwhelmed by features inessential to our purposes, while all
the focus will be on the basic mechanisms.

The system Υ is a theory of Simple Types/Higher Order Logic à la Church on a given
signature Σ.

4.3.1 Syntax

In this section we give the definition of the basic syntactical notions of Υ, i.e., signatures,
simple types, terms and (typing) environments.

Definition 4.7 A type signature Σt is a finite list of atomic type symbols σ1, . . . , σn.

Definition 4.8 Simple types over a type signature Σt are ranged over by σ, τ , possibly with
indexes or primes, and are defined by the following abstract syntax (where σ ∈ Σt and o is a
distinct atomic symbol for the type of propositions):

τ ::= o | σ | τ → τ

We assume that there is a distinct countably infinite set of variables for each simple type.

Definition 4.9 A constant signature Σc is a finite list of constant symbols with simple types
c:τ1, . . . , cm:τm

Definition 4.10 A signature consists of a pair Σ = 〈Σt, Σc〉, where Σt is a type signature
and Σc is a constant signature.

Definition 4.11 Terms over a signature Σ = 〈Σt, Σc〉 are ranged over by M , N , P , Q, R
and p, q, r in the case of propositions (possibly with indexes or primes); they are defined by
the following abstract syntax (where c:σ ∈ Σc):

M ::= x | MN | λx:τ.M | c | M ⇒ N | ∀τ .M.

We assume that there is an infinite set of variables ranged over by x, y, z, Terms are
taken up to α-equivalence, while capture-avoiding substitution of N for x in M is denoted by
M [N/x].

Notice that, for what concerns the logical connectives, we keep as primitive only impli-
cation and universal quantification; as usual in higher-order logic, the remaining ones can be
defined as abbreviations as depicted in Figure 4.2 (obviously, they make sense because we
are in a classical framework rather than in an intuitionistic one).

Definition 4.12 A (typing) environment Γ is a finite set of typing assertions over distinct
variables denoted by {x1:σ1, x2:σ2, . . . , xn:σn}, possibly without curly brackets. The domain
of an environment x1:σ1, . . . , xn:σn is the set of variables {x1, . . . , xn}.

4.3. THE SYSTEM Υ 41

∀x:σ.p , ∀σ(λx:σ.p)
p ∧ q , ¬(p ⇒ ¬q)
⊥ , ∀x:o.x

p ∨ q , ¬p ⇒ q

¬p , p ⇒ ⊥
p ⇔ q , (p ⇒ q) ∧ (q ⇒ p)
∃x:σ.p , ¬∀x:σ.¬p

M =σ N , ∀x:σ → o. xM ⇒ xN

Figure 4.2: Syntactic abbreviations.

−
Γ, x : σ `Σ x : σ

(VAR)

−
Γ `Σ c : σ

(c : σ) ∈ Σ (CONST)

Γ `Σ M : σ → o

Γ `Σ ∀σ.M : o
(∀)

Γ, x : σ′ `Σ M : σ

Γ `Σ λx:σ′.M : σ′ → σ
(ABS)

Γ `Σ M : σ′ → σ Γ `Σ N : σ′

Γ `Σ MN : σ
(APP)

Γ `Σ M : o Γ `Σ N : o

Γ `Σ M ⇒ N : o
(⇒)

Figure 4.3: Typing rules.

4.3.2 Judgments

In order to define the set of legal terms of Υ, we need a typing judgment of the form Γ `Σ M :τ
stating that we can derive the term M of type τ starting from the environment Γ and the
signature Σ using the rules in Figure 4.3.

Since Υ is a full blown higher-order logic, we need a specific truth judgment Γ `Σ p
in order to express the fact that a proposition p holds in the environment Γ and signature
Σ. The rules for deriving truth judgments are given in Hilbert-style and are depicted in
Figure 4.4.

4.3.3 HOAS-Encodings and Adequacy

In this section we will show how HOAS-based encodings of nominal calculi are rendered in
the system Υ. First of all we recall again the general guidelines of the higher-order abstract
syntax paradigm (see [HHP93]):

• a basic Υ-type is associated to each syntactic category;

• object level names are represented by metalanguages variables;

• a constant is declared for each expression-forming construct;

• contexts are represented by functions;

• name-binding operators are represented by constants of functional type (i.e. binders
take contexts as arguments);

• contexts instantiation and capture-avoiding substitution are rendered by meta-level
application of the underlying typed λ-calculus of the framework;

• as a consequence α-conversion is automatically granted by the metalanguage.

42 CHAPTER 4. A THEORY OF CONTEXTS

Γ `Σ p : o Γ `Σ q : o Γ `Σ r : o

Γ `Σ (p ⇒ q ⇒ r) ⇒ (p ⇒ q) ⇒ p ⇒ r
(S)

Γ `Σ p : o Γ `Σ q : o

Γ `Σ p ⇒ q ⇒ p
(K)

Γ `Σ P : σ → o Γ `Σ M : σ

Γ `Σ ∀σ(P) ⇒ PM
(∀-E)

Γ `Σ p : o

Γ `Σ ¬¬p ⇒ p
(DN)

Γ `Σ p ⇒ q Γ `Σ p

Γ `Σ q
(MP)

Γ, x : σ `Σ M : σ′ Γ `Σ N : σ

Γ `Σ (λx:σ.M)N =σ′ M [N/x]
(β)

Γ `Σ M : σ → σ′

Γ `Σ λx:σ.Mx =σ→σ′ M
x 6∈ FV (M) (η)

Γ, x : σ `Σ M : σ′ Γ, x : σ `Σ N : σ′

Γ `Σ(∀x:σ.M =σ′ N)
⇒ λx:σ.M =σ→σ′ λx:σ.N

(ξ)

Γ `Σ p : o Γ, x : σ `Σ p ⇒ q

Γ `Σ p ⇒ ∀x:σ.q
(Gen)

Figure 4.4: Logical axioms and rules.

As we noticed in the previous chapter, it is clear that the most pleasant feature of HOAS-
based encodings is that the user is freed from the daunting task of implementing by hand
the mechanisms of α-conversion and capture-avoiding substitution for each object logic.

Let N , 〈V, I, L〉 be a nominal calculus, then, to encode it in Υ, we must provide the
following items:

• one basic Υ-type for each element of the names base V , {υ1, . . . , υk}; for the sake of
simplicity we will denote by υi both the names set and the type representing it;

• one basic Υ-type for each element of I ,{ι1〈cαι1,1

ι1,1 , . . . , c
αι1,m1
ι1,m1 〉, . . . , ιl〈c

αιl,1

ιl,1
, . . . , c

αιl,ml
ιl,ml 〉};

for the sake of simplicity we will denote by ιi both the basic type name of the object
language and the basic Υ-type representing it;

• one typed constant c:Curry(α) for each constructor cα ∈ Constr(ι) (where ι ∈ I and
Curry(α) is the simple type of Υ obtained by currifying6 the arity α).

More precisely, we have the following definition:

Definition 4.13 Let N , 〈V, I, L〉 be a nominal calculus, we define the type signature Σt(N)
as the set of atomic type symbols {υ | υ ∈ V } ∪ {ι | ι ∈ I}. Then the constant signature
Σc(N) over N is defined as the set {c:Curry(α) | cα ∈ Constr(ι), ι ∈ I}.

Now, we are ready to introduce the encoding map ε which allows us to establish a
compositional bijective correspondence between syntactical entities of a nominal calculus N
and βη-normal forms of basic Υ-types in Σt(N). This is a fundamental point that every
encoding map must ensure in order to faithfully represent the chosen object language.

Definition 4.14 Given a nominal calculus N , 〈V, I, L〉 and a stage X , {X1, . . . , Xk}
over V , {υ1, . . . , υk}, for every υi ∈ V , let (nj)j be an enumeration of υi and (xj)j be an
enumeration of variables of type υi in Υ. Then, the function ευi

X , mapping names in Xi to
variables of type υi in Υ, is defined by ευi

X (nj) , xj for nj ∈ Xi
7.

6The function Curry is needed because the only constructor of the simple types of Υ is the arrow. Hence,
we must encode type pairs by currifying arities containing them. Indeed, since a nominal arity α has the
shape τ1 × · · · × τn → ι, we have Curry(α) = Curry(τ1) → · · · → Curry(τn) → ι, where each τi being equal
to υi1 × · · · × υimi → σi may need to be currified as well.

7For the sake of simplicity we will write ευ
X(x) , x, i.e., we will denote by the same symbol both the object

level name and the Υ-variable of type υ encoding it.

4.3. THE SYSTEM Υ 43

For every ι ∈ I, the definition of the encoding map ει
X (mapping elements of Lι

X to terms
in Υ of type ι) depends on the constructors of ι. In particular, for each cα ∈ Constr(ι), we
can distinguish the following cases according to the shape of α:

α = ι: ει
X(cι) , c,

α = τ1 × · · · × τn → ι (n ≥ 1): ει
X(cτ1×···×τn→ι(t1, . . . , tn)) , (c ετ1

X (t1) · · · ετn
X (tn)),

where ετi
X is defined as follows, according to the shape of τi:

τi = σi (σi ∈ V ∪ I): ετi
X(ti) , εσi

X (ti),

τi = υi1 × · · · × υimi → σi (mi ≥ 1):

ε
υi1×···×υimi

→σi

X ((xi1, . . . , ximi).ti) , λxi1 : υi1. . . . λximi : υimi .ε
σi

Y i(ti)

where Y i
l , Xl ∪ {xij | υij = υl, xij ∈ υl \Xl, j = 1, . . . , mi} and σi ∈ I.

As anticipated, we have the following result:

Theorem 4.1 Let N , 〈V, I, L〉 be a nominal calculus, let X be a stage over V , let Σ(N) ,
〈Σt, Σc〉 be the signature encoding N and let Γ(X) , {x : υi | x ∈ Xi, i = 1 . . . n}. For
each type ι ∈ I, the map ει

X is a compositional8 bijection between Lι
X and the set of terms

{M | M is in βη-normal form and Γ(X) `Σ(N) M : ι}.

Proof. (Sketch) By definition, ει
X is an injective function mapping every element of Lι

X to
a βη-normal form of type ι. In order to prove that ει

X is bijective, it remains to show its
surjectivity. This can be accomplished by defining an inverse map δι

X by recursion on the
structure of βη-normal forms of type ι:

δι
X(c) , cι if Γ(X) `Σ(N) c : ι

δι
X((c M1 · · · Mn)) , cτ1×···×τn→ι(δCurry(τ1)

X (M1), . . . , δ
Curry(τn)
X (Mn))

if n ≥ 1, Γ(X) `Σ(N) c : Curry(τ1 × · · · × τn → ι) and
Γ(X) `Σ(N) M1 : Curry(τ1), . . . ,Γ(X) `Σ(N) Mn : Curry(τn)

where δ
Curry(τi)
X is defined as follows, according to the shape of τi:

τi = σi (σi ∈ V ∪ I): δτi
X(Mi) , δσi

X (Mi) (in particular if σi = υi ∈ V , then Mi is a variable
x and δυi

X (x) , x),

τi = υi1 × · · · × υimi → σi (mi ≥ 1):

δ
υi1→···→υimi

→σi

X (λxi1 : υi1. . . . λximi : υimi .M) , (xi1, . . . , ximi).δ
σi

Y i(M)

where Y i
l , Xl ∪ {xij | υij = υl, xij ∈ υl \Xl, j = 1, . . . , mi} and σi ∈ I.

Clearly, a βη-normal form of type ι derivable from the context Γ(X) and the signature Σ(N)
must have the form (ξ M1 · · ·Mk), where ξ is a constant and k is its arity. Hence, it follows
that δι

X is total and well defined.
The fact that δι

X(ει
X(t)) holds can be proved by structural induction on t. The same

technique can also be used to show that ει
X is compositional. ut

8We recall that compositionality means that if t is a term with free names in X = {x1, . . . , xn}, then for
any other stage Y = {y1, . . . , yn} we have that ει

Y (t[y1/x1, . . . , yn/xn]) = ει
X(t)[y1/x1, . . . , yn/xn].

44 CHAPTER 4. A THEORY OF CONTEXTS

Examples. Some HOAS-based encodings in Υ of the nominal calculi used in the examples
of Section 4.2 are given here in order to make things clear:

Untyped λ-calculus. Σt(Nλ) , {var, term}, Σc(Nλ) , {is var : var → term, app :
term → term → term, lam : (var → term) → term}.

ευ
X(x) , x

εΛX(var(x)) , (is var ευ
X(x))

εΛX(app(M, N)) , (app εΛX(M) εΛX(N))
εΛX(lam((x).M)) , (lam λx:var.εΛX]{x}(M))

π-calculus. Σt(Nπ) , {name, proc},

Σc(Nπ) , { nil : proc,
out : name → name → proc → proc,
in : name → (name → proc) → proc,
tau : proc → proc,
nu : (name → proc) → proc,
bang : proc → proc,
par : proc → proc → proc,
sum : proc → proc → proc,
match : name → name → proc → proc

}

εη
X(n) , n

εP
X(0) , nil

εP
X(out(m,n, P)) , (out εη

X(m) εη
X(n) εP

X(P))
εP
X(in(m, (n).P)) , (in εη

X(m) λn:η.εP
X]{n}(P))

εP
X(τ(P)) , (tau εP

X(P))
εP
X(ν((n).P)) , (nu λn:η.εP

X]{n}(P))
εP
X(!(P)) , (bang εP

X(P))
εP
X(P |Q) , (par εP

X(P) εP
X(Q))

εP
X(P + Q) , (sum εP

X(P) εP
X(Q))

εP
X([m = n]P) , (match εη

X(m) εη
X(n) εP

X(P))

Ambient calculus with ambient logic. Σt(NAmb) , {name, var, cap, proc, form},

Σc(NAmb) , { is name : name → cap,
in : cap → cap,
out : cap → cap,
open : cap → cap,
epsilon : cap,
path : cap → cap → cap,
nu : (name → proc) → proc,
nil : proc,

4.3. THE SYSTEM Υ 45

par : proc → proc → proc,
bang : proc → proc,
amb : cap → proc → proc,
cap act : cap → proc → proc,
in act : (name → proc) → proc,
out act : cap → proc,
true : form,
not : form → form,
or : form → form → form,
zero : form,
comp : form → form → form,
comp adj : form → form → form,
locn : name → form → form,
loc adjn : form → name → form,
revn : name → form → form,
rev adjn : form → name → form,
locv : var → form → form,
loc adjv : form → var → form,
revv : var → form → form,
rev adjv : form → var → form,
sometime : form → form,
somewhere : form → form,
forall : (var → form) → form

}

εη
X(n) , n

ευ
X(x) , x

εC
X(name(n)) , (is name εη

X(n))
εC
X(in(M)) , (in εC

X(M))
εC
X(out(M)) , (out εC

X(M))
εC
X(open(M)) , (open εC

X(M))
εC
X(ε) , epsilon

εC
X(path(M,N)) , (path εC

X(M) εC
X(N))

εP
X(ν((n).P)) , (nu λn:η.εP

X]{n}(P))
εP
X(0) , nil

εP
X(P |Q) , (par εP

X(P) εP
X(Q))

εP
X(!(P)) , (bang εP

X(P))
εP
X(amb(M, P)) , (amb εC

X(M) εP
X(P))

εP
X(cap(M,P)) , (cap act εC

X(M) εP
X(P))

εP
X(ina((n).P)) , (in act λn:η.εP

X]{n}(P))
εP
X(outa(M,P)) , (out act εC

X(M) εP
X(P))

εF
X(T) , true

εF
X(¬(A)) , (not εF

X(A))
εF
X(A ∨B) , (or εF

X(A) εF
X(B))

εF
X(0) , zero

46 CHAPTER 4. A THEORY OF CONTEXTS

εF
X(A|B) , (comp εF

X(A) εF
X(B))

εF
X(A B B) , (comp adj εF

X(A) εF
X(B))

εF
X([n]ηA) , (locn εη

X(n) εF
X(A))

εF
X(A@ηn) , (loc adjn εF

X(A) εη
X(n))

εF
X(nηA) , (revn εη

X(n) εF
X(A))

εF
X(A;η n) , (rev adjn εF

X(A) εη
X(n))

εF
X([n]υA) , (locv ευ

X(n) εF
X(A))

εF
X(A@υn) , (loc adjv εF

X(A) ευ
X(n))

εF
X(nυA) , (revv ευ

X(n) εF
X(A))

εF
X(A;υ n) , (rev adjv εF

X(A) ευ
X(n))

εF
X(♦(A)) , (sometime εF

X(A))
εF
X(✧(A)) , (somewhere εF

X(A))
εF
X(∀((x).A)) , (forall λx:η.εF

X]{x}(A))

4.3.4 Logic

As we said in Section 4.3.2 the judgment Γ `Σ p express the fact that proposition p holds
in the environment Γ and signature Σ. Besides the logical axioms and rules depicted in
Figure 4.4, there are also the axioms of the Theory of Contexts which grant to the system Υ a
remarkable expressive power for meta-reasoning about properties of HOAS-based encodings.
However, before introducing those axioms, we need to define a non-occurrence predicate
6∈ι

υ. Intuitively, the latter allows to express the fact that a given name/variable does not
occur free in a given term; more precisely, x 6∈ι

υ M holds if and only if the name/variable of
type υ does not occur free in the term M of type ι. It is important to notice that we do not
attempt to give a logical characterisation of the notion of non-occurrence that is independent
of object-level syntax. Instead it should be clear that the formal definition of 6∈ι

υ depends
both on ι and υ, i.e., on a nominal calculus N which must be known before defining the
non-occurrence predicate. More precisely, the definition is syntax-driven in the sense that it
depends on the constructors of type ι. Indeed, it is a customary approach in higher-order
logic to define predicates by means of higher-order quantifications and monotone operators.

Definition 4.15 x 6∈ι
υ M , ∀R:υ → ι → o.(∀y:υ.∀N :ι.(T6∈ι

υ
R y N) ⇒ (R y N)) ⇒

(R x M), where T6∈ι
υ

is an operator defined as follows:

T6∈ι
υ

: (υ → ι → o) → (υ → ι → o) , λR:υ → ι → o.λx:υ.λM :ι.
∨|Constr(ι)|

i=1
Ci,

where each Ci (for i = 1, . . . , |Constr(ι)|) is a clause corresponding to a constructor ci :
Curry(αi) belonging to the type ι as follows:

α = ι: Ci , M =ι c;

α = τ1 × · · · × τk → ι: Ci , (∃N1:τ1.∃Nk:τk.M =ι (c N1 · · ·Nk) ∧
∧k

j=1 Hj), where each
Hj depends on the shape of τj:

τj = υ: Hj , ¬(x =υ Nj);

τj = υj1 × · · · × υjmj → σj: Hj , (∀y1:υj1. . . .∀ymj :υjmj .¬(x =υ yk1) ⇒ · · · ¬(x =υ

ykj) ⇒ (R x (Nj y1 · · · ymj))), where the indexes k1, . . . , kj are precisely those
belonging to the set {1, . . . , mj} such that υjkl

= υ for each l = 1, . . . , j.

4.3. THE SYSTEM Υ 47

Γ `Σ(N) M : ι

Γ `Σ(N) ∃x:υ.x 6∈ι
υ M

(Unsatυι)

Γ `Σ(N) M : υ → τ Γ `Σ(N) N : υ → τ Γ `Σ(N) x : υ

Γ `Σ(N) x6∈υ→τ
υ M ⇒ x6∈υ→τ

υ N ⇒ (M x) =τ (N x) ⇒ M =υ→τ N
(Extυτ)

Γ `Σ(N) M : τ Γ `Σ(N) x : υ

Γ `Σ(N) ∃N :υ → τ .x 6∈υ→τ
υ N ∧M =τ (N x)

(β expυ
τ)

where τ = υi1 → · · · → υik → ι and Σ(N) means that the axioms are parameterized by the
particular nominal calculus N being considered.

Figure 4.5: Axiom schemata for the Theory of Contexts.

Whence, we have the following definition:

6∈ι
υ, λx:υ.λM :ι.∀R:υ → ι → o.(∀y:υ.∀N :ι.(T6∈ι

υ
R y N) ⇒ (R y N)) ⇒ (R x M)

It is trivial to verify that T6∈ι
υ

is monotone (i.e. for all relations R : υ → ι → o, we have
T6∈ι

υ
(R) ⊆ R, where ⊆ can be defined as λR : υ → ι → o.λS : υ → ι → o.∀x : υ.∀M :

ι.(R x M) ⇒ (S x M)), whence 6∈ι
υ is the least relation R such that T 6∈ι

υ
(R) ⊆ R holds.

Example. In the case of the encoding of untyped λ-calculus proposed in Section 4.3.3, the
operator T6∈term

var
is defined as follows:

T6∈term
var

: (var → term → o) → (var → term → o)
,λR:var → term → o.λx:var.λt:term.

(∃y:var.t =term (is var y) ∧ ¬(x =var y))∨
(∃t1:term.∃t2:term.t = (app t1 t2) ∧ (R x t1) ∧ (R x t2))∨
(∃t′:var → term.t = (lam t′) ∧ (∀y:var.¬(x =υ y) ⇒ (R x (t′ y))))

Given Definition 4.15, it is possible to define the binary predicate ∈ι
υ
9 either as the

negation of 6∈ι
υ or by means of another syntax-driven monotone operator. For the sake of

simplicity, in the following we stick to the first choice (however, the two approaches are
provably equivalent in Υ, see Section 4.5 for the details):

∈ι
υ, λx:υ.λM :ι.¬(x 6∈ι

υ M)

It is possible to “lift” non-occurrence predicates to higher-order terms as follows:

6∈υ1→···υn→ι
υ , λx:υ.λM :υ1 → · · · υn → ι.(∀y1:υ1. . . .∀yn:υn.¬(x =υ yk1) ⇒

· · · ⇒ ¬(x =υ ykm) ⇒ x 6∈ι
υ (M y1 · · · yn)) (n ≥ 1),

where {k1, . . . , km} ⊆ {1, . . . , n} and υkl
= υ for 1 ≤ l ≤ m.

So far, we have defined all the machinery needed to formally introduce in the system Υ
the axioms of the Theory of Contexts: they are depicted in Figure 4.5 (in the following we will
sometimes use the word extensionality to denote Extυτ and β-expansion to denote β expυ

τ).
Obviously, they are schemata of axioms, being parameterized by the particular nominal
calculus being considered. This is due to the fact that the non-occurrence predicates used to
define them depend on object-level syntax as we remarked at the beginning of this section.
It is worth noticing that we do not need to explicitly assume the axioms LEMvar and LEM∈
presented in Section 4.1, since in Υ we have full classical logic.

9Intuitively, x ∈ι
υ M means that the name/variable x : υ occurs free in the term M : ι.

48 CHAPTER 4. A THEORY OF CONTEXTS

ι ∈ I

Γ `Σ(N) ∀P :ι → o.C1 ⇒ . . . ⇒ Cm ⇒ ∀x:ι.(P x)
(Indι)

where m = |Constr(ι)|, and for each 1 ≤ i ≤ m:

1. c
τi,1×...×τi,ni

→ι

i ∈ Constr(ι)

2. {j1, . . . , jki} , {j | 1 ≤ j ≤ ni and τi,j = υi,j,1 × · · · × υi,j,mi,j → ι}

3. Ci , (∀x1:τ ′i,1. · · · ∀xni :τ
′
i,ni

.Qi,j1 ⇒ · · · ⇒ Qi,jki
⇒ (P (ci x1 · · ·xni))), where

(a) τ ′i,j ,
{

υi,j,1 → · · · → υi,j,mi,j → ιi if τi,j = υi,j,1 × · · · × υi,j,mij
→ ιi

τi,j otherwise

(b) Qi,jl
, (∀y1:υi,jl,1. · · · ∀ymi,jl

:υi,jl,mi,jl
.(P (xi,jl

y1 · · · ymi,jl
))) (for 1 ≤ l ≤ ki)

Figure 4.6: First-order induction principle.

4.3.5 Induction in Υ

Since in nominal calculi many proofs are carried out by means of structural induction over
terms, Υ also provides such appropriate induction principles. In Figure 4.6 we introduce
the definition of an induction scheme for any nominal calculus10. Moreover, the latter can
be naturally extended to higher-order terms, i.e., contexts. For instance in Figure 4.7 we
give the induction scheme for simple contexts, i.e., terms of type υ → ι. In Chapter 5 we
will introduce (and justify) induction principles over contexts of type υn → ι for any n in
the case where the type ι represents processes of a π-calculus fragment. Since the terms tj
(1 ≤ j ≤ ni) are non deterministically defined, when τij coincides with υ both the “xj” and

“x“ cases apply. Hence, if c
τi,1×···×τi,ni

→ι

i is a constructor such that τi,j coincides k times
with υ, then the induction principle of ι has 2k premises related to that constructor.

Examples. In order to make clear how induction principles can be generated starting from
the abstract definitions in Figure 4.6 and Figure 4.7, we give here two examples illustrating
the first-order (Indterm) and higher-order (Indvar→term) induction principles for the encoding
of untyped λ-calculus presented in Section 4.3.3:

term ∈ I

Γ `Σ(Nλ) ∀P :term → o.
(∀v:var.(P (is var v))) ⇒
(∀t:term.∀t′:term.(P t) ⇒ (P t′) ⇒ (P (app t t′))) ⇒
(∀t:var → term.(∀v:var.(P (t v))) ⇒ (P (lam t))) ⇒
∀t:term.(P t)

(Indterm)

As we can see, there is one premise for each constructor belonging to type term in Indterm.
For what concerns the higher-order induction principle Indvar→term instead, notice that the

10In the case that some syntactic categories are mutually defined (e.g., trees and forests), we may want to
reason about several inductive properties mutually defined, one for each syntactic category. A generalization
of the induction scheme in Figure 4.6 to a mutual one is given in [HMS01a].

4.3. THE SYSTEM Υ 49

ι ∈ I

Γ `Σ(N) ∀P :(υ → ι) → o.C1 ⇒ . . . ⇒ Cm ⇒ ∀x:υ → ι.(P x)
(Indυ→ι)

where m =
∑|Constr(ι)|

i=1 2cv(ci), cv(ci) is the number of times that τi,j coincides with υ in
τi,1, . . . , τi,ni if τi,1 × · · · × τi,ni → ι is the arity of ci and for each 1 ≤ i ≤ m, Ci is a distinct
premise obtained from a constructor cτ1×···×τn→ι as follows:

1. {j1, . . . , jk} , {j | 1 ≤ j ≤ n and τj = υj,1 × · · · × υj,mj → ι}

2. Ci , (∀x1:τ ′1. · · · ∀xn:τ ′n.Qj1 ⇒ · · · ⇒ Qjk
⇒ (P λx:υ.(ci t1 · · · tn))), where

(a) τ ′j ,

υ → υj,1 → · · · → υj,mj → ι if τj = υj,1 × · · · × υj,mj → ι

υj,1 → · · · → υj,mj → ι′ if τj = υj,1 × · · · × υj,mj → ι′ and ι′ 6= ι

τj otherwise

(b) Qjl
, (∀y1:υjl,1. · · · ∀ymjl

:υjl,mjl
.(P λx:υ.(xjl

x y1 · · · ymjl
))) (1 ≤ l ≤ k)

(c) tj =

(xj x) if τj = υj,1 × · · · × υj,mj → ι

xj if τj = υj,1 × · · · × υj,mj → ι′ where ι′ 6= ι or τj ∈ V \ {υ}
xj or x if τj = υ

Figure 4.7: Higher-order induction principle for terms of type υ → ι.

is var constructor yields two premises in Indvar→term, since its type is var → term:

term ∈ I

Γ `Σ(Nλ) ∀P :(var → term) → o.
(∀x:var.(P λy:var.(is var x))) ⇒
(P is var) ⇒
(∀t:var → term.∀t′:var → term.(P t) ⇒ (P t′) ⇒

(Pλx:var.(app (t x) (t′ x)))) ⇒
(∀t:var → var → term.(∀y:var.(P λx:var.(t x y))) ⇒

(P λx:var.(lam (t x)))) ⇒
∀t:var → term.(P t)

(Indvar→term)

4.3.6 Functions in Υ

Despite the fact that the motivations which led to the formulation of the Theory of Contexts
did not take into account the problem of programming with datatypes including binding
structures, Υ also accommodates useful principles of (higher-order) recursion.

Indeed, given any basic type ι we can consistently extend the framework Υ with a set of
typing and equivalence rules defined according to the type of the constructors of ι.

Definition 4.16 Let N , 〈V, I, L〉 be a nominal calculus, J ⊆ I a subset of basic types, τ a
simple type over Σt(N) and Γ a typing environment, then a J-elimination scheme over τ (in
Γ) is a collection of terms F τ

J , {fc | cα ∈ Constr(ι), ι ∈ J} such that the following holds:

Γ ` fc : τ ′1 → · · · → τ ′n → τ for each ι ∈ J , cτ1×···×τn→ι ∈ Constr(ι)

50 CHAPTER 4. A THEORY OF CONTEXTS

F τ
J J-elimination scheme over τ in Γ, ι ∈ J

Γ `Σ(N) F̂ τ
ι : ι → τ

(F̂ τ
ι)

Γ `Σ(N) F̂ τ
ι : ι → τ

Γ `Σ(N) ∀t1:Curry(τ1). . . .∀tn:Curry(τn).(F̂ τ
ι (c t1 . . . tn)) =τ (fc M1 . . . Mn)

(F̂ τ
ι eqc)

where cτ1×···×τn→ι ∈ Constr(ι), fc ∈ F τ
J and for i = 1, . . . , n:

Mi ,

λxi1 :υi1 . . . λximi
:υimi

.(F̂ τ
ιi (ti xi1 . . . ximi

)) if τi = υi1 × · · · × υimi
→ ιi

and ιi ∈ J

ti otherwise

Figure 4.8: First-order recursion typing and equivalence rules.

where τ ′i ,

υi1 → · · · → υimi
→ τ if τi = υi1 × · · · × υimi

→ ιi and ιi ∈ J

υi1 → · · · → υimi
→ ιi if τi = υi1 × · · · × υimi

→ ιi and ιi 6∈ J

τi otherwise
Then, given a J-elimination scheme F τ

J over τ (in Γ), for each ι ∈ J , we introduce a
new symbol F̂ τ

ι denoting the F τ
J -defined recursive map over ι whose typing and equivalence

rules appear in Figure 4.8.

The previous definition generalizes the usual notion of recursion to the case of mutually
defined recursive maps and to terms possibly containing contexts, i.e., functional terms over
names.

In Υ, differently from most logical frameworks, it is also possible to accommodate re-
cursion principles for (higher-order) contexts. The following definitions allow one to define
recursive functions over n-ary contexts of type υn → ι where υ ∈ V , ι ∈ I and υn is a
shorthand for υ → · · · → υ︸ ︷︷ ︸

n times

.

Definition 4.17 Let N , 〈V, I, L〉 be a nominal calculus, α = τ1 × · · · × τn → ι a nominal
arity of a constructor belonging to a basic type in I, υ ∈ V and n ≥ 1. Then we have the
following conventions:

1. we denote by k the number of indexes 1 ≤ i1 ≤ · · · ≤ ik ≤ n (k ≥ 0) such that τij = υ;

2. let L(α) , {0, 1}k be the set of binary strings of length k, which we call the labels for
α (thus, |L(α)| = 2k); for j = 1 . . . k, the j-th component of a label l is denoted by lij ,
that is it has the same index of the occurrence of υ in τ1 × · · · × τn it refers to;

3. we denote by l • (τ ′1 → · · · → τ ′n → τ) the type obtained from τ ′1 → · · · → τ ′n → τ by
eliminating τ ′ij if lij = 0.

Definition 4.18 Let N , 〈V, I, L〉 be a nominal calculus, υ ∈ V , n ≥ 1, J ⊆ I a subset
of basic types, τ a simple type over Σt(N), and let Γ be a typing environment. Then, a
υnJ-elimination scheme over τ (in Γ) is a family of terms F τ

υn,J = {f l
c | cα ∈ Constr(ι), ι ∈

4.3. THE SYSTEM Υ 51

F τ
υn,J υnJ-elimination scheme over τ in Γ, ι ∈ J

Γ `Σ(N) F̂ τ
υn,ι : (υn → ι) → τ

(F̂ τ
υn,ι)

Γ `Σ(N) F̂ τ
υn,ι : (υn → ι) → τ

Γ `Σ(N) Q1.Q2.(F̂ τ
υn,ι λ~x:υ.(c N1 . . . Nn)) =τ (f l

c M1 . . .Mn)
(F̂ τ

υn,ι eql
c)

where cτ1×···×τn→ι ∈ Constr(ι), l ∈ L(τ1 × · · · × τn → ι), f l
c ∈ F τ

υn,J , Q1 is a sequence of
universal quantifications of the form ∀ti:υn → τ ′i for each i ∈ {i | 1 ≤ i ≤ n, τi 6∈ V } and Q2 is
a sequence of universal quantifications of the form ∀yi : τi for each i ∈ {i | 1 ≤ i ≤ n, τi ∈ V },
λ~x:υ is a shorthand for λx1:υ . . . λxn:υ and for i = 1, . . . , n:

τ ′i ,
{

υi1 → · · · → υimi
→ ιi if τi = υi1 × · · · × υimi

→ ιi

τi otherwise

Ni =

(ti ~x) if τi 6∈ V

yi if τi ∈ V and (τi 6= υ or li = 1)
x if τi = υ and li = 0

Mi =

λxi1 :υi1 . . . λximi
:υimi

.(F̂ τ
υn,ιi λ~x:υ(ti ~x xi1 . . . ximi

))
if τi = υi1 × · · · × υimi → ιi and ιi ∈ J

yi if τi ∈ V and (τi 6= υ or li = 1)
(nothing) if τi = υ and li = 0
(ti ~x) otherwise

where ~x (in applications) stands for x1 . . . xn.

Figure 4.9: Higher-order recursion typing and equivalence rules.

J, l ∈ L(α)} such that, for each ι ∈ J , cτ1×···×τn→ι ∈ Constr(ι) and l ∈ L(τ1 × · · · × τn → ι),
the following holds:

Γ ` f l
c : l • (τ ′1 → · · · → τ ′n → τ)

where τ ′i ,

υi1 → · · · → υimi
→ τ if τi = υi1 × · · · × υimi

→ ιi and ιi ∈ J

υi1 → · · · → υimi
→ ιi if τi = υi1 × · · · × υimi

→ ιi and ιi 6∈ J

τi otherwise

Hence, for each constructor cα, there are |L(α)| terms in F τ
υn,J .

Definition 4.19 Let N , 〈V, I, L〉 be a nominal calculus, υ ∈ V , n ≥ 1, J ⊆ I a subset of
basic types, τ a simple type over Σt(N), Γ a typing environment and F τ

υn,J a υnJ-elimination
scheme over τ (in Γ), then, for each ι ∈ J , we introduce a new symbol F̂ τ

υn,ι denoting the
F τ

υn,J -defined recursive map over ι whose typing and equivalence rules appear in Figure 4.9.

We end this section by giving an example of a function recursively definable in Υ.

52 CHAPTER 4. A THEORY OF CONTEXTS

Example. Let us consider again the encoding of untyped λ-calculus of Section 4.3.3 and let
us choose a typing environment Γ and a term N such that Γ `Σ(Nλ) N : term holds. In this
example we want to define in the signature Σ(Nλ), by higher-order recursion, the substitution
·[N/·]. The latter will be modeled by a function taking as argument a term of type var →
term, i.e., a term with a designated hole and yielding a term where N has been substituted
for the hole (see [Hof99]). Since we have three constructors belonging to the type term, the
corresponding three sets of labels are L(var → term) = {0, 1}, L(term → term → term) =
L((var → term) → term) = {〈〉}. Thus, let F term

var,{term} , {f0
is var, f

1
is var, fapp, flam} where

f0
is var , N , f1

is var , is var, fapp , app, flam , lam. Then, F term
var,{term} is a var{term}-

elimination scheme over term in Γ, such that Γ `Σ(Nλ) F̂ term
var,term : (var → term) → term

and the following are derivable:

Γ `Σ(Nλ) F̂ term
var,term : (var → term) → term

Γ `Σ(Nλ) F̂ term
var,term(is var) =term N

Γ `Σ(Nλ) F̂ term
var,term : (var → term) → term

Γ `Σ(Nλ) ∀y:var.F̂ term
var,term(λx:var.(is var y)) =term (is var y)

Γ `Σ(Nλ) F̂ term
var,term : (var → term) → term

Γ `Σ(Nλ) ∀M1:var → term.∀M2:var → term.

F̂ term
var,term(λx:var.(app (M1 x) (M2 x)) =term (app F̂ term

var,term(M1) F̂ term
var,term(M2))

Γ `Σ(Nλ) F̂ term
var,term : (var → term) → term

Γ `Σ(Nλ) ∀M :var → var → term.

F̂ term
var,term(λx:var.(lam (M x))) =term (lam λx:var.F̂ term

var,term(M x)

Hence, for any M term and x variable, F̂ term
var,term(λx:var.M) is equal to the term obtained

from M by replacing every free occurrence of x by N .

4.4 The Axiom of Unique Choice

As originally pointed out in [Hof99] for the case of λ-calculus, a rather surprising tradeoff of
our natural framework for treating contexts is the following:

Proposition 4.1 The Axiom of Unique Choice

Γ `Σ P : τ1 → τ2 → o

Γ `Σ (∀x:τ1.∃y:τ2.(P x y) ∧ ∀z:τ2.(P x z) ⇒ y =τ2 z) ⇒ ∃f :τ1 → τ2.∀x:τ1.(P x (f x))
(AC!)

is inconsistent with the Theory of Contexts.

Proof. Let us consider the case of the π-calculus encoding (see the examples in Section 4.3.3),
then, by Unsatname

proc , we can infer the existence of two fresh names u′, v′; hence, we can define
the term R , λu : name.λq : proc.λx : name.λp : proc.(x =name u ∧ p =proc 0) ∨ (¬x =name

u ∧ p =proc q). It is easy to show that, for all p′ : proc, (R u′ p′) : name → proc → o is a
functional binary relation. At this point we can prove, by means of Extname

proc and AC!, that
the proposition ∀p : proc.p =proc 0 holds; indeed, from AC! we can deduce the existence of a
function f : name → proc such that, for all x : name, ((R u′ p) x (f x)) holds. Hence, by
Extname

proc , we can prove that f =name→proc λx : name.p because for any fresh name w we have

4.4. THE AXIOM OF UNIQUE CHOICE 53

that (f w) =proc p. Then we have that, for all names y, (f y) =proc ((λx : name.p) y) =proc p
holds, whence we may conclude, since (f u′) =proc 0.

At this point the contradiction follows because, as a special case, we have that 0|0 =proc 0
while proc is an inductive type (the constructors are disjoint11). ut

Proposition 4.1 highlights a weak point of Υ w.r.t. the framework introduced by Gabbay
and Pitts [GP99, GP01, Gab00], that is, there are (recursive) functions which cannot be
defined as such in our system. The reason is that we model name-abstractions by means of
total functions of names (instead of partial functions only defined for sufficiently fresh names)
and this fact cannot coexists with the axioms of the Theory of Contexts without reducing
the set of definable functions. More precisely Υ does not allow one to define functions whose
definitions need freshly generated names, since there are no means for generating a “fresh
name” at the term level, while we can use Unsatυι for generating fresh names at the logical
level. Nevertheless, n-ary functions of this kind can be represented in Υ as (n + 1)-ary
relations, as in the next Example.

Example. Let us consider the encoding of untyped λ-calculus introduced in Section 4.3.3)
and the function count : term → nat which takes as argument a term M of type term and
returns the number12 of occurrences of free variables occurring in M . The corresponding
elimination scheme over nat should be fis var , λx : var.1, fapp , λn : nat.λn′ : nat.n + n′,
flam , λg : var → nat.(g z) ·−1, where ·−1 denotes the predecessor function over natural
numbers. However, the above definition cannot be expressed in Υ since the fresh variable z,
needed in the definition of flam, is not definable. We do not have a mechanism working at
the level of datatypes for generating fresh names on the spot, like Gabbay and Pitts’ fresh
operator [GP99]. It is straightforward that, in the presence of such a fresh operator, flam

can be defined as λg : var → nat.fresh z.(g z) ·−1. However, we can represent flam as a
binary relation Rlam : (var → nat) → nat → o defined as

Rlam(g, n) , ∃z : nat.z 6∈var→nat g ∧ (g z) ·−1 =nat n
the existence of the fresh variable z being granted by Unsatvar

nat. Hence, the fresh operator
can be mimicked at the logical level by our Unsatυι axiom scheme.

Luckily, CC(Co)Ind and its implementation Coq do not validate AC!. Hence, the The-
ory of Contexts can be consistently axiomatized into them. Interestingly, in the case that
Prop=Set, AC! is derivable in Coq as it is showed in the following short proof script:

Inductive myEx [A:Set; P:A->Set] : Set :=
myEx_intro : (x:A)(P x)->(myEx A P).

Inductive myAnd [A:Set; B:Set] : Set := myAnd_conj : A->B->(myAnd A B).

Inductive myEq [A:Set; x:A] : A->Set := myEq_refl_equal : (myEq A x x).

Definition witness := [A,B:Set][P:B->Set][p:(myEx B P)]

11The disjointness of constructors of an inductive type is derivable in Υ. Indeed, in the case at hand, for
example, in order to prove that | and 0 are disjoint, it suffices to define a function discr : proc → o such that
discr(P) = > (we have not defined the true connective, but this can be easily done in the usual way) if P is
of the form Q|R and discr(P) = ⊥ otherwise. Then, from 0|0 =proc 0, the definition of Leibniz equality (see
Figure 4.2) and the definition of discr, we can deduce that > ⇒ ⊥ holds. At this point ⊥ follows by modus
ponens (MP).

12Here, we assume the availability of the type of natural numbers. Although we have not defined them in
Υ, they can be easily added to the metalanguage.

54 CHAPTER 4. A THEORY OF CONTEXTS

Cases p of (myEx_intro x q) => x end.

Lemma AC_U: (A,B:Set)(R’:A->B->Set)
((a:A)(myEx B [b:B](myAnd (R’ a b)

((b’:B)(R’ a b’)-> (myEq B b b’)))))->
(myEx A->B [f:A->B](a:A)(R’ a (f a))).

Proof.
Intros; Split with
[a:A](witness A B [x:B](myAnd (R’ a x) (b’:B)(R’ a b’)->(myEq B x b’))

(H a)); Intro; Unfold witness; (Elim (H a); Intros);
(Elim p; Intros); Assumption.
Qed.

It is important to stress that names/variables cannot be represented by inductive types
(this is the reason for the distinction we made in Section 4.2 between names bases and
inductive types). Otherwise, it is easy to get an inconsistency by defining “exotic” functions
by case analysis. Indeed, the argument used in the proof of Proposition 4.1 ultimately relies
on the existence of a function able to distinguish between two names. Such a function can
be recovered as follows in, e.g., Coq (we are using the same signature of the π-calculus of
Section 4.3.3):

Definition name:=nat.
Definition x:= O.
Definition y:=(S O).
Definition p:=[z:name]nil.
Definition q:=[z:name]Case z of nil [y:name](par nil nil) end.

By the preceding definitions we have (p x)=(p y)=(q x)=nil, but (q y)=(par nil nil).
Then, applying Extυι we can easily prove nil=(par nil nil), whence the absurdity.

The abovementioned subtleties clearly represent the need for a model proving the con-
sistency of the Theory of Contexts. This will be the topic of the subsequent chapter, where
functor categories will be used to build such a model.

4.5 Investigating the Theory of Contexts

In this section we will illustrate the results so far obtained in the study of the expressiveness
and independence of the properties of the Theory of Contexts. Indeed, since its birth, there
have been some refinements; hence, we think that it will be useful to summarize the current
results, which are rather interesting.

4.5.1 Independence

In the original presentation of the Theory of Contexts [HMS01b], there was another rather
useful axiom stating the monotonicity13 of 6∈ι

υ. Moreover, the decidability of checking the
13The name of this property may suggest that there is an order being preserved. Indeed, (M y) is a plain

term of type ι while M is a unary context of type υ → ι. Hence, if we decide that terms of type ι are “smaller”
than terms of type υ → ι (which, in turn, are smaller than terms of type υ → υ → ι and so on), we have that
the axiom of monotonicity preserves such an order since the truth value of x 6∈ι

υ (M y) is smaller or equal to
that of x 6∈υ→ι

υ M . In fact, if x 6∈ι
υ (M y) is false, then x 6∈υ→ι

υ M may be true or false, while if x 6∈ι
υ (M y)

is true, then x 6∈υ→ι
υ M must also be true.

4.5. INVESTIGATING THE THEORY OF CONTEXTS 55

occurrence of a name in a term was assumed. These axioms can be rendered in Υ as follows:

−
Γ `Σ ∀M :υ → ι.∀x:υ.∀y:υ.x 6∈ι

υ (M y) ⇒ x 6∈υ→ι
υ M

(MON6∈ι
υ
)

−
Γ `Σ ∀x:υ.∀M :ι.x ∈ι

υ M ∨ x 6∈ι
υ M

(LEM6∈ι
υ
)

Indeed, the decidability of equality over names is derivable from LEM6∈ι
υ

(recall that the
underlying logic of Coq is intuitionistic; hence, classical axioms must be explicitly assumed).

As it is noticed in [HMS01a], we discovered that MON6∈ι
υ

is indeed derivable by means of
a structural induction over contexts (i.e., using Indυ→ι). Another possibility is to proceed
as follows: by a structural induction over terms (i.e., using Indι) it is possible to infer the
following result:

`Σ SEP :∀M :ι.∀x:υ.∀y:υ.(x ∈ι
υ M) ⇒ (y 6∈ι

υ M) ⇒ ¬x =υ y.

Then using LEM6∈ι
υ

and SEP , it is possible to deduce the following auxiliary lemmata:

`Σ A1 : ∀M :υ → ι.∀x:v.(x 6∈ι
υ (M x)) ⇒ (x 6∈υ→ι

υ M)
`Σ A2 : ∀M :υ → ι.∀x:υ.∀y:υ.¬x =υ y ⇒ (x 6∈ι

υ x(M y)) ⇒
∀z:υ.¬x =υ z ⇒ ¬y =υ z ⇒ (x 6∈ι

υ (M z))

At this point MON6∈ι
υ

easily follows from the decidability of equality over names and the
previous auxiliary lemmata.

We remark here that monotonicity of ∈ι
υ (defined as the negation of 6∈ι

υ), i.e.

∀M :υ → ι.∀x:υ.∀y:υ.¬x =υ y ⇒ x ∈ι
υ (M y) ⇒ x ∈υ→ι

υ M

is trivially derivable by exploiting the constructive definition of 6∈ι
υ. The choice of defining

∈ι
υ in terms of 6∈ι

υ rather than giving an independent constructive definition is motivated by
the fact that in nominal calculi a crucial rôle is played by freshness (i.e. non-occurrence) of
names within terms. However, it would be clearly possible to give a constructive definition of
such a predicate as follows14 (in the following for the sake of readability, we drop the indexes
ι and υ in ∈ι

υ):

∈c , λx:υ.λM :ι.∀R:υ → ι → o.(∀y:υ.∀N :ι.(T∈c(R) y N) ⇒ (R y N)) ⇒ (p x M)

where

T∈c : (υ → ι → o) → (υ → ι → o) , λR:υ → ι → o.λx:υ.λM :ι.
∨|Constr(ι)|

i=1
Ci,

where each Ci (for i = 1, . . . , |Constr(ι)|) is a clause corresponding to a constructor ci :
Curry(αi) belonging to the type ι as follows:

α = ι: Ci is empty (or alternatively >);

α = τ1 × · · · × τk → ι: Ci , ∃N1:τ1.∃Nk:τk.M =ι (c N1 · · ·Nk) ∧
∨k

j=1 Hj , where each
Hj depends on the shape of τj :

τj = υ: Hj , x =υ Nj ;
14This approach turns out to be more effective during the activity of proof development in frameworks with

advanced tactics supporting inductive types.

56 CHAPTER 4. A THEORY OF CONTEXTS

τj = υj1 × · · · × υjmj → σj: Hj , (∀y1:υj1. . . .∀ymj :υjmj .(R x (Nj y1 · · · ymj))).

The two definitions are provably equivalent. We have in fact the following:

`Σ ∀x:υ.∀M :ι.x ∈ M ⇔ x ∈c M

Without going into the details of the proof, we only notice that the left (⇐) implication
requires Unsatυι , while the right (⇒) direction is provable by means of Indι, decidability of
equality over names, Unsatυι and MON6∈.

A third possibility of deriving the monotonicity properties of both ∈ι
υ and 6∈ι

υ is the
following:

1. we define a relation l:ι → nat → o such that (l M n) holds if and only if M contains
n occurrences of constructors of ι (that is we define a measure of the complexity of
terms);

2. we show that l is preserved by renaming, i.e., (l (M x) n) implies (l (M y) n) for any
x, y.

3. we show that for every term M there is a natural n such that (l M n) holds (i.e., l is
total w.r.t. the first argument);

4. we carry out the proof of monotonicity by complete induction15 (also known as course
of values induction) on n, where n is the natural such that (l (My) n) holds (see the
properties MON6∈ι

υ
and MON∈ι

υ
).

The only other axioms of the Theory of Contexts needed in the previous proof are un-
saturation and the decidability of equality of names. In Section 6.2.10 of Chapter 6 the
abovementioned proof technique is explained in full detail for an encoding of the Ambient
Calculus.

As we anticipated in the introduction of the present chapter, according to our experience,
in order to reason about the metatheory of nominal calculi, full classical logic is not strictly
needed. Indeed, we could replace DN in Figure 4.4 with either an axiom stating the decid-
ability of Leibniz equality over names (LEM=υ) or, as we noticed above, an axiom stating
the decidability of occurrence predicates of names in terms (LEM6∈ι

υ
). We have already seen

how to render in our framework Υ, the axiom LEM6∈ι
υ
; LEM=υ instead is represented as

follows:

−
Γ `Σ ∀x:υ.∀y:υ.x =υ y ∨ x 6=υ y

(LEM=υ)

As we mentioned above LEM=υ derives directly from LEM6∈ι
υ
. For the converse, LEM6∈ι

υ
can

be derived by a structural induction on terms of type ι (i.e., applying Indι) using LEM=υ

and the monotonicity of 6∈ι
υ and ∈ι

υ in the cases involving binders.
Thus, the minimal classical flavour that Υ must have in order to allow metatheoretic

reasoning about the representation of nominal calculi amounts to decidability of equality of
names or to decidability of occurrence predicates of names in terms. However, in presenting
Υ for simplicity we preferred to stick to full classical logic.

In this chapter we have stated the axioms for first-order (Indι) and higher-order (Indυ→ι)
induction. However, it is possible to go further, introducing induction principles for contexts

15In the next section we will explain why there is the need of a complete induction instead of a “traditional”
one.

4.5. INVESTIGATING THE THEORY OF CONTEXTS 57

of arbitrary arity (Indυn→ι, where n > 1). However, since their formulation in full generality
is too complicated, the reader is referred to Figure 5.8 for an example regarding the encoding
of the fragment of π-calculus used in Chapter 5. Higher-order induction principles play a
fundamental rôle in the following result concerning the axioms schemata β expυ

υn→ι and
Extυυn+1→ι:

Proposition 4.2 For all n ∈ N: Indυn→ι allows to derive β expυ
υn→ι from β expυ

υn+1→ι and
(if n > 0) Extυυn→ι from Extυυn+1→ι.

Proof. By structural induction on contexts of type υn → ι, using Indυn→ι. Most cases are
trivial; in the case of the ν constructor, we apply the axioms β expυ

υn+1→ι and Extυυn+1→ι. ut
It should be noticed that the derivability of β expυ

υn→ι and Extυυn→ι by structural induction
(Indυn→ι) can be carried out only in Logical Frameworks featuring an extensional syntactical
equality (e.g. Isabelle/HOL). In Coq (whose syntactical equality is not extensional) instead,
the cases involving binders fail since they require β-expansion and extensionality for contexts
with higher arity (i.e., with “one additional hole”)16.

To sum up, the only properties of the original Theory of Contexts [HMS01b] that seem
to be orthogonal (not derivable from the remaining) are unsaturation, β-expansion and
extensionality. It follows that the cleanest refinement of the Theory of Contexts coincides
with the informal presentation made in the introduction of this chapter:

• decidability of equality of names (may be omitted if the framework is classical);

• unsaturation;

• β-expansion;

• extensionality.

We chose decidability of equality of names as a primitive axiom instead of decidability of
occur checking predicates because of its simplicity. Moreover, with the previous set of axioms
and Indι we can derive monotonicity of ∈ι

υ and 6∈ι
υ and LEM6∈ι

υ
.

4.5.2 Expressiveness

We already anticipated that the soundness of the Theory of Contexts will be proved in
Chapter 5. However, as far the completeness is concerned, we do not have yet a result
stating the expressive power of our axioms w.r.t. some known logic system.

However, in this section we prove an important result in this direction, namely, the deriv-
ability of the higher-order induction principle Indυ→ι by means of the complete induction
principle on natural numbers, Indι and the axioms of the Theory of Contexts.

In order to spell out all the details, we will consider the encoding of untyped λ-calculus
in Coq; hence, the following formal development will be expressed in the metalanguage of
Coq, namely, Gallina (see Section 2.3.2). The complete source code of the proof is gathered
in Appendix A.

16However, if the object language does not include any binders among its constructors, both β-expansion
and extensionality are derivable using Indυn→ι.

58 CHAPTER 4. A THEORY OF CONTEXTS

Encoding of syntax

Since we want to use both inductive definitions and HOAS, we represent variables of untyped
λ-calculus by means of Coq metavariables of type var, where the latter is the type defined
by the following declaration:

Parameter var: Set.

Untyped λ-terms are represented by means of the following inductive type (see Section 3.1.2):

Inductive tm : Set:=
is_var: var -> tm

| app: tm -> tm -> tm
| lam: (var -> tm) -> tm.

The freshness predicate is defined following the general pattern of Section 4.15:

Inductive notin [x:var]: tm -> Prop:=
notin_var: (y:var)~x=y -> (notin x (is_var y))

| notin_app: (M,N:tm)(notin x M) -> (notin x N) -> (notin x (app M N))
| notin_lam: (M:var->tm)((y:var)~x=y -> (notin x (M y))) ->

(notin x (lam M)).

At this point we are ready to introduce the “measure relation” l already mentioned in
the previous section (when we illustrated the third technique used to derive the monotonicity
of the freshness predicate):

Inductive l: tm -> nat -> Prop:=
l_var : (x:var)(l (is_var x) (S O))

| l_app : (M,N:tm)(n1,n2:nat)(l M n1) -> (l N n2) ->
(l (app M N) (S (plus n1 n2)))

| l_lam : (M:var->tm)(n:nat)((y:var)(l (M y) n)) -> (l (lam M) (S n)).

Intuitively (l M n) holds if and only if M contains exactly n occurrences of constructors
belonging to the type tm.

The Theory of Contexts for the untyped λ-calculus

During the proof development we used the following instantiations of the axiom schemata of
the Theory of Contexts:

Axiom dec_var: (x,y:var)x=y \/ ~x=y.

Axiom unsat: (M:tm)(Ex [x:var](notin x M)).

Axiom exp: (M:tm)(x:var)(Ex [N:var->tm](notin x (lam N)) /\ M=(N x)).

Axiom ho_exp: (M:var->tm)(x:var)
(Ex [N:var->var->tm](notin x (lam [_:var](lam (N _)))) /\ M=(N x)).

Axiom ext: (F,G:var->tm)(x:var)
(notin x (lam F)) -> (notin x (lam G)) ->
(F x)=(G x) -> F=G.

4.5. INVESTIGATING THE THEORY OF CONTEXTS 59

The formal development

The first results we need concern properties of the measure relation l; first of all, we show
that l is preserved by fresh renaming:

Lemma L_RW: (n:nat)(M:tm)(l M n) -> (x:var)(N:var->tm)(notin x (lam N)) ->
M=(N x) -> (y:var)(l (N y) n).

The proof technique used is a complete induction on n. We notice that complete induction
on natural numbers is trivially derivable from the induction principle nat ind automatically
provided by Coq on type nat (see Appendix A for the details and the proof script). The
reason for using such a principle is that it allows to apply the inductive hypothesis to any term
structurally smaller than that of the current hypothesis, not only to the immediate subterm
of the latter, which is instead the only possibility offered by the induction principle tm ind
provided by Coq. Hence, we can “mimick” a complete induction principle on the structure
of terms by means of a complete induction on the number of constructors’ occurrences of
terms. This is fundamental in proving renaming results like L RW since in the cases involving
binders, there is the need to apply the inductive hypothesis two times before concluding the
case. Indeed, the first application is carried out only to replace all the occurrences of the
generic variable introduced by the l lam rule. Indeed, being generic, such a variable is not
generally fresh and this fact is in conflict with the notin judgment present in the inductive
hypothesis. A glance at the relative Coq session will make the argument clear:

n : nat
n0 : nat
H : (m:nat)

(lt m n0)
->(M:tm)

(l M m)
->(x:var; N:(var->tm))

(notin x (lam N))->M=(N x)->(y:var)(l (N y) m)
M : tm
H0 : (l M n0)
x : var
N : var->tm
H1 : (notin x (lam N))
y : var
M0 : var->tm
n1 : nat
H5 : (S n1)=n0
H3 : (y:var)(l (M0 y) n1)
x0 : var->var->tm
H7 : (notin x (lam [_:var](lam (x0 _))))
H8 : M0=(x0 x)
H4 : (lam (x0 x))=M
H2 : (lam (x0 x))=(N x)
H6 : N=([_:var](lam (x0 _)))
============================
(l (lam (x0 y)) (S n1))

60 CHAPTER 4. A THEORY OF CONTEXTS

Here we are considering the case relative to the binder lam; hence, we must apply rule l lam
(Apply l lam; Intro.) getting the following proof environment:

n : nat
n0 : nat
H : (m:nat)

(lt m n0)
->(M:tm)

(l M m)
->(x:var; N:(var->tm))

(notin x (lam N))->M=(N x)->(y:var)(l (N y) m)
M : tm
H0 : (l M n0)
x : var
N : var->tm
H1 : (notin x (lam N))
y : var
M0 : var->tm
n1 : nat
H5 : (S n1)=n0
H3 : (y:var)(l (M0 y) n1)
x0 : var->var->tm
H7 : (notin x (lam [_:var](lam (x0 _))))
H8 : M0=(x0 x)
H4 : (lam (x0 x))=M
H2 : (lam (x0 x))=(N x)
H6 : N=([_:var](lam (x0 _)))
y0 : var
============================
(l (x0 y y0) n1)

Näıvely applying the inductive hypothesis H in order to replace y with x does not work since,
among the new subgoals, we have to prove (notin x (lam [:var](x0 y0))) and this
is not possible since y0, being generic, could be equal to x. The right approach consists of
replacing y0 with a new fresh variable (obtained by means of unsat) and then replacing y
with x. These operations amount to applying two times the inductive hypothesis.

Once L RW is derived, we can prove the totality of l w.r.t. the first argument by means
of a structural induction on it:

Lemma L_TOT: (M:tm)(Ex [n:nat](l M n)).

Now, we have all the results we need in order to derive the following lemma again by a
complete induction on n (notice the generic variable of the schematic judgment ((y:var)(P
[x:var](M x y)))):

Lemma PRE_HO_TM_IND: (P:(var->tm)->Prop)
((x:var)(P [_:var](is_var x))) ->
(P is_var) ->
((M,N:var->tm)(P M) -> (P N) ->
(P [x:var](app (M x) (N x)))

4.6. RELATED WORK 61

) ->
((M:var->var->tm)((y:var)(P [x:var](M x y))) ->
(P [x:var](lam (M x)))
) ->
(n:nat)(M:tm)(l M n) ->
(N:var->tm)(x:var)(notin x (lam N)) ->
(N x)=M -> (P N).

The main result, i.e., the higher-order induction principle for terms of type var->tm can be
obtained as a straightforward corollary of PRE HO TM IND:

Lemma HO_TM_IND: (P:(var->tm)->Prop)
((x:var)(P [_:var](is_var x))) ->
(P is_var) ->
((M,N:var->tm)(P M) -> (P N) ->
(P [x:var](app (M x) (N x)))

) ->
((M:var->var->tm)((y:var)(P [x:var](M x y))) ->
(P [x:var](lam (M x)))

) ->
(M:var->tm)(P M).

The axioms of β-expansion and extensionality played a fundamental rôle in proving lemmata
L RW and PRE HO TM IND by “transferring” structural information from terms of type tm to
contexts of type var->tm. This fact is explained in more detail in Section 6.3.1.

The whole approach can be adapted (changing the definition of the measure relation l)
for deriving higher-order induction principles for terms of type var -> var -> tm, var ->
var -> var -> tm and so on. For instance, the measure relation for unary contexts of type
var->tm is the following:

Inductive ho_l : (var->tm)->nat->Prop :=
ho_l_var1 : (ho_l [_:var](is_var _) (S O))

| ho_l_var2 : (x:var)(ho_l [_:var](is_var x) (S O))
| ho_l_app : (M,N:var->tm; n1,n2:nat)

(ho_l M n1)->(ho_l N n2) ->
(ho_l [_:var](app (M _) (N _)) (S (plus n1 n2)))

| ho_l_lam : (M:var->var->tm)(n:nat)
((y:var)(ho_l [_:var](M _ y) n)) ->
(ho_l [_:var](lam (M _)) (S n)).

4.6 Related work

Recently, there has been a growing interest in studying Higher-Order Abstract Syntax or
theories allowing a smooth treatment of names and binders. In this section we will briefly
describe some related work, referring the interested reader to the bibliography for further
details.

The Theory of Contexts and Isabelle/HOL. The Theory of Contexts can be used
in many different logical frameworks in order to reason about higher-order abstract syntax.

62 CHAPTER 4. A THEORY OF CONTEXTS

A HOAS-based encoding of the syntax of π-calculus processes in Isabelle/HOL is given
in [RHB01]. For types of the form υn → ι, inductively defined well-formedness predicates
delineate members that correspond to terms with free names in the object syntax. Relativised
versions of the axioms of the Theory of Contexts can then be proved by induction on the
definition of these well-formedness predicates.

In particular, this allows for the axioms to be proved within the theory, i.e., no non-
standard interpretation of the logic is required to establish soundness. On the other hand,
for each term in question one first has to assert well-formedness which in view of its defining
rules is rather cumbersome from the point of view of the burden imposed on the user. It
should be noticed that well-formedness predicates cannot be dropped, even if one may want
to simply declare the properties of the Theory of Contexts as axioms (not deriving them).
Indeed, Isabelle/HOL validates the Axiom of Unique Choice and, as a consequence, the class
of functional terms modeling syntactical contexts must be restricted.

The Nominal Logic. A metalanguage for reasoning about languages with binders, based
on the Frænkel-Mostowski permutation model of set theory, has been proposed in [GP99]
and later expanded with the name of Nominal Logic in [Pit01b]. This logic features a special
quantifier for expressing freshness of names. The intuitive meaning of y.p is “p holds for
y a fresh name”. resembles both ∀ and ∃, as it satisfies the rules:

Γ, y#~x ` p

Γ ` y.p

Γ ` y.p Γ, p, y#~x ` q

Γ ` q

where ~x is the “support” of p. In the Theory of Contexts, y.p and y#~x can be encoded as
follows:

y.p , ∀y:υ.y 6∈υ→o (λy:υ.p) ⇒ p y#~x , y 6∈o p

Rules, corresponding to the ones above, can then be easily derived using the Theory of
Contexts. Correspondingly, suitable adaptations of our Theory of Contexts are validated in
the FM.

The abstraction (x.a) and instantiation (a@x) operators are taken as primitives in FM.
The fresh operator, on the other hand, cannot be encoded at the level of terms.

The main difference with our approach is that in our formulation processes with free
names are modeled as functions υ → ι, whereas in [GP99] they are modeled as equivalence
classes of name-process pairs. In a nutshell one can say that our approach works in the
standard setting of higher-order logic and type theory, allowing one to take advantage of the
machinery of an existing framework like the Coq system, whereas a remarkable work had to
be done to embed FM-sets theory in Isabelle (see [Gab00]). On the other hand, FM has the
advantage that axioms about nominal calculi can be derived from more primitive concepts
so that it would more easily carry over to different settings.

Meta-metalogics. In the approaches we discussed so far, the logical level belongs to the
same metalanguage which is used for the representation of the syntax. A different perspective
is to add explicitly an extra logical level for reasoning over metalogics. One of these meta-
metalogic is FOλ∆N [MM01], a higher-order intuitionistic logic extended with definitions
and higher order quantification over simply typed λ-terms. Induction on types is recovered
from induction on natural numbers via appropriate notions of measure.

5
A functorial model for the Theory

of Contexts

5.1 Introduction

This chapter, whose material is taken from [BHH+01], is the heart of the present thesis since
in the following we will prove the consistency of the Theory of Contexts (Theorem 5.2). More
precisely, we give a model of the system Υ (a Classical Higher Order Logic, extended with
the axioms of the Theory of Contexts, over a simple theory of types à la Church [Chu40])
introduced in the previous chapter. As an example of encoding, we give the interpretation of
datatypes of processes and names of π-calculus. Moreover, we prove that suitable structural
induction and recursion principles over contexts are validated by this model.

In order to achieve these results, we have to resort to rather sophisticated mathematical
tools, such as a tripos over functor categories, like in [Hof99]. Datatypes are interpreted
as (covariant) presheaves over the category of variable substitutions, while predicates are
interpreted (as certain subpresheaves) in the category of presheaves over injective variable
substitutions. As we remarked in the previous chapter (Section 4.4), the Theory of Contexts
contradicts the Axiom of Unique Choice, thus making essential the use of triposes, as opposed
to plain topos logic (where AC! is always validated).

Despite its complexity, the material contained in this chapter should be accessible also
to non categorically minded people. Indeed, we tried to work out in full detail the novelty of
the approach introduced in [Hof99] for reasoning about systems in HOAS using presheaves
to model types, natural transformations to model terms, and a tripos for interpreting pred-
icates. One of the crucial tools that we introduce to this end is a notion of forcing which
allows us to streamline the computation of the truth value of a proposition. Our hope is that
this methodology should be useful also for reasoning about other models for HOAS based
on functor categories.

The idea of using functor categories for dealing with HOAS has been recently proposed
also by other authors [FPT99, FT01]. Another (apparently different) solution, based on the
Frænkel-Mostowski permutation model of set theory, has been presented in [GP99, GP01]; a
first-order axiomatization of this model, called Nominal Logic, has been presented in [Pit01b].
However, as the authors of that work point out, this model could be described in a topos-
theoretical setting; thus the underlying categorical structures of these approaches are strongly

64 CHAPTER 5. A FUNCTORIAL MODEL FOR THE THEORY OF CONTEXTS

related.
This chapter is organized as follows. In Section 5.2 we introduce the object language

we take as example, namely a small fragment of the π-calculus. In Section 5.3 we encode
our example language in the framework Υ introduced in the previous chapter, instantiating
the machinery of non-occurrence predicates and the axioms of the Theory of Contexts for
our π-calculus signature. In order to help the reader not familiar with category theory, in
Appendix B we give the minimum categorical definitions and notions needed in order to
understand the following material. The construction of the functorial model U is worked out
in Section 5.4 by introducing the ambient categories V̌ and Ǐ and giving the interpretation
of types, environments, typing judgments and logical judgments. The main result of the
present work is carried out in Section 5.5 by means of a suitable notion of forcing. In
Sections 5.6 and 5.7 we show how our model can also accommodate the useful notions of
(possibly higher-order) recursion and induction. The last sections are devoted to giving
some deep insights into the main categorical concepts used throughout the chapter. More
precisely, in Section 5.8 we illustrate the connections with tripos theory, which allow for a
more concise and elegant account of the results proved in the previous sections. A comparison
of our approach with similar works in the literature is given in Section 5.9. Longer proofs
are gathered in Appendix C.

5.2 The object language

The object language we focus on is a fragment of π-calculus, which is a process algebra
introduced in [MPW92]. The π-calculus is a good example of a nominal calculus since its
formalisation and fundamental design choices are strictly tied to the notion of name. Ac-
tually, the act of naming allows to naturally explain concurrency because it implies the
independence of the namer and the named as coexisting entities running in parallel. More-
over, the notion of communication is tightly coupled with the concept of name (or address,
port, channel etc.).

It is worthwhile noticing that, even if the fragment we have chosen lacks the compu-
tational expressiveness of the original system since it features neither synchronization nor
mobility of processes, it highlights the problematic issues of reasoning about names in higher-
order abstract syntax.

Syntax. There are two basic syntactical entities:

• Names: the set N is an infinite set of names, ranged over by x, y, . . . ;

• Processes: the set Proc, ranged over by P , Q, is defined by the following abstract
syntax, where the operators are listed in decreasing order of precedence:

P ::= 0 | τ.P | P1|P2 | [x 6= y]P | (νx)P

The restriction operator (νx) binds the occurrences of y in (νy)P . Thus, for each process
P we can define in the standard way the sets of its free names fn(P), bound names bn(P)
and names n(P) , fn(P) ∪ bn(P). Let X ⊂ N a finite set of names; ProcX denotes the
set {P ⊂ Proc | fn(P) ⊆ X}. Processes are taken up to α-equivalence. Capture-avoiding
substitution of a single name y in place of x in P is denoted by P [y/x]. A (process) context
is a process with a (possibly repeated) hole.

5.2. THE OBJECT LANGUAGE 65

−
τ.P −→ P

(TAU)

P −→ P ′

P |Q −→ P ′|Q (PAR1)

Q −→ Q′

P |Q −→ P |Q′ (PAR2)

P −→ P ′

(νy)P −→ (νy)P ′ (RES)

P −→ P ′

[x 6= y]P −→ P ′x 6= y (MISMATCH)

Figure 5.1: Operational semantics.

This fragment of π-calculus has been chosen by striving for simplicity in order to highlight
the problematic issues of reasoning about names in higher-order abstract syntax. Thus, labels
and communication primitives have been dropped, because their formalization would only
introduce many obscure technical details without any substantial change in the treatment
of names. On the other hand, the formalization of the mismatch operator comes “for free”
because it requires only some judgments, which are needed anyway, about the free (non-
)occurrence of names in processes. The τ prefix is needed in order to have a non-trivial
theory of strong bisimulation: without the τ , all processes would be strongly bisimilar to 0.
For a formalization of the full π-calculus, see [HMS01b].

Operational semantics. The operational semantics of π-calculus is the relation−→ which
is the smallest relation over processes satisfying the rules in Figure 5.1.

Bisimilarity. The notion of bisimilarity is a common tool introduced in process algebras
in order to define the notion of equivalence between processes. For our fragment of the
π-calculus this notion can be formulated as follows:

Definition 5.1 (Bisimilarity) A binary relation S on processes is a simulation iff, for all
P, Q processes, if P S Q and P −→ P ′ then for some Q′, Q −→ Q′ and P ′ S Q′. S is a
bisimulation if both S and S−1 are simulations.

The bisimilarity is the binary relation .∼ defined by

P
.∼ Q ⇐⇒ ∃S.S bisimulation and (P S Q) .

It is well-known that bisimilarity can be defined as the greatest fixed point of a suitable
monotonic operator over subsets of Proc × Proc (see [MPW92]).

The following lemmata (adapted from [MPW92] to the π-calculus fragment used in this
chapter) deal directly with the notions of name and substitution:

Lemma 3 If P −→ P ′, then for all y 6∈ fn(P): P [y/x] −→ P ′[y/x].

Lemma 6 If P
.∼ Q, then for all y 6∈ fn(P, Q): P [y/x] .∼ Q[y/x].

They can be regarded as instances of a more general property which, in a sense, states that
the choice of particular names is not important as long as we are able to distinguish among
them. This kind of property turns out to be fundamental in developing the metatheory of
any nominal calculus [MPW92]. In this chapter we will not deal with the metaproperties of
−→ and .∼; we refer the interested reader to [HMS01b].

66 CHAPTER 5. A FUNCTORIAL MODEL FOR THE THEORY OF CONTEXTS

0 : ι τ : ι → ι

| : ι → ι → ι [· 6= ·]· : υ → υ → ι → ι

ν : (υ → ι) → ι

Figure 5.2: The signature Σ.

5.3 Encoding the π-calculus fragment in Υ

In this section we briefly give the encoding of our example language in the system Υ. Hence,
we have to give the signature and instantiate the occurrence-checking predicates and the
axioms and rules of the Theory of Contexts for our particular case.

The signature Σ is given in Figure 5.2. The occurrence-checking predicates, the opera-
tional semantics and the bisimulation are defined impredicatively using higher-order quan-
tifications, as in Figure 5.3.

Finally, the instantiations of the axioms at the heart of the Theory of Context are given
in Figure 5.4.

The signature given so far allows for an adequate encoding of the object language in-
troduced in Section 5.2. The corresponding terms in long βη-normal form are defined as
follows, using infix notation:

x ::= x1 | . . . | xn P ::= 0 | τP | P |Q | [x1 6= x2]P | νλy:υ.P

We denote the set of such normal forms by ProcX . Let Σι be the subsignature of Σ consisting
only of the process constructors, i.e., 0, τ , |, [· 6= ·] and ν:

Proposition 5.1 There is a bijective correspondence between terms of the object language
with names in X = {x1, . . . , xn} and the normal forms of type ι in the signature Σι and in
the environment ΓX , {x1 : υ, . . . , xn : υ}.

We omit the proof which follows the standard argument by induction on the syntax of terms
and on the derivation of the typing judgment already depicted in Theorem 4.1.

5.4 The construction of model U
Following the idea of [Hof99], we will define the interpretation of types and environments
as set-valued functors from the category of finite sets of names and functions. The meaning
of a term depends on the set of names which can be associated to its free variables. The
functor interpreting a type, therefore, gives the set of possible values for every set of names,
while its action on a function between two sets of names corresponds to the capture-avoiding
substitution of names in terms. The meaning of a well-typed term is then the interpretation of
its typing judgment, which is a natural transformation from the meaning of the environment
to the meaning of the type. Naturality ensures that this interpretation is compatible with
all possible substitutions of names for interpreting free variables.

Given a set of names for interpreting free variables, the meaning of a formula is the
set of names substitutions under which it is verified. Intuitively, a valid proposition must
be satisfied under all injective substitutions, since these keep distinct the meaning given to

5.4. THE CONSTRUCTION OF MODEL U 67

T6∈ : (υ → ι → o) → (υ → ι → o)
,λR:υ → ι → o.λx:υ.λP :ι.P = 0∨

(∃Q:ι.P = τ.Q ∧ (R x Q))∨
(∃P1:ι.∃P2:ι.P = P1|P2 ∧ (R x P1) ∧ (R x P2))∨
(∃Q:ι.∃y:υ.∃z:υ.P = [y 6= z]Q ∧ ¬x =υ y ∧ ¬x =υ z ∧ (R x Q))∨
(∃Q:υ → ι.P = νQ ∧ (∀y:υ.¬x =υ y ⇒ (R x (Q y))))

6∈,λx:υ.λP :ι.∀p:υ → ι → o.(∀y:υ.∀Q:ι.(T6∈ p y Q) ⇒ (p y Q)) ⇒ (p x P)
∈,λx:υ.λP :ι.¬(x 6∈ P)
6∈n ,λx:υ.λP :υn → ι.x 6∈ (νλx1:υ. . . . νλxn−1:υ.ν(P x1 . . . xn−1)) (n ≥ 1)

T−→ : (ι → ι → o) → (ι → ι → o)
,λR:ι → ι → o.λP :ι.λQ:ι.P = τ.Q∨

(∃P1:ι.∃Q1:ι.∃S:ι.P = P1|S ∧Q = Q1|S ∧ (R P1 Q1))∨
(∃P2:ι.∃Q2:ι.∃S:ι.P = S|P2 ∧Q = S|Q2 ∧ (R P2 Q2))∨
(∃P ′:ι.∃x:υ.∃y:υ.P = [x 6= y]P ′ ∧ ¬x =υ y ∧ (R P ′ Q))∨
(∃P ′:υ → ι.∃Q′:υ → ι.P = νP ′ ∧Q = νQ′ ∧ (∀x:υ.x 6∈ P ′ ⇒ (R (P ′ x) (Q′ x))))

−→,λP :ι.λQ:ι.∀p:ι → ι → o.(∀P ′:ι.∀Q′:ι.(T−→ p P ′ Q′) ⇒ (p P ′ Q′)) ⇒ (p P Q)

T .∼ : (ι → ι → o) → (ι → ι → o)
,λS:ι → ι → o.λP :ι.λQ:ι.

(∀P ′:ι.(P −→ P ′) ⇒ ∃Q′:ι.(Q −→ Q′) ∧ (S P ′ Q′))∧
(∀Q′:ι.(Q −→ Q′) ⇒ ∃P ′:ι.(P −→ P ′) ∧ (S P ′ Q′))

.∼,λP :ι.λQ:ι.∃R:ι → ι → o.(∀P ′:ι.∀Q′:ι.(R P ′ Q′) ⇒ (T .∼ R P ′ Q′)) ∧ (R P Q)

Figure 5.3: Logical abbreviations.

Γ `Σ P : ι

Γ `Σ ∃x:υ.x 6∈ P
(Unsatυι)

Γ `Σ P : υn+1 → ι Γ `Σ Q : υn+1 → ι Γ `Σ x : υ

Γ `Σ x 6∈n+1P ⇒ x 6∈n+1Q ⇒ (P x) =υn→ι (Q x) ⇒ P =υn+1→ι Q
(Extυ

n+1→ι)

Γ `Σ P : υn → ι Γ `Σ x : υ

Γ `Σ ∃Q:υn+1 → ι.x 6∈n+1 Q ∧ P =υn→ι (Q x)
(β expυn→ι)

Figure 5.4: Axioms for the Theory of Contexts.

68 CHAPTER 5. A FUNCTORIAL MODEL FOR THE THEORY OF CONTEXTS

different variables. Therefore a proposition is valid if, for all sets of names, its interpretation
contains at least all injective substitutions.

We will proceed as follows: in Section 5.4.1 we introduce the base categories V̌ and Ǐ,
which will be used in Section 5.4.2 for interpreting the types of Υ. The interpretation of
environments and terms will be given in Sections 5.4.3 and 5.4.4, respectively. Finally in
Section 5.4.5 we will give the interpretation of the logical judgment.

5.4.1 The ambient categories V̌ and Ǐ
In this section we introduce the categories we will use to build the model and we state some
useful properties. We will mainly work in V̌ , SetV , where V is the category whose objects
are finite sets of variables, ranged over by X, Y, Z, . . ., and whose morphisms are functions
between them.

The intended meaning of morphisms is that of variable substitutions. We will use the
fact that V has coproducts, given by disjoint union, and also that, by Yoneda Lemma1, for
all F ∈ V̌, V̌(1, F) ∼= F∅.

Though the abovementioned category V̌ would suffice to interpret basic datatypes, in
order to obtain a consistent model for our extra logical axioms (Unsatυι , Extυ

n+1→ι and
β expυn→ι), we must interpret the type of propositions o in a non-standard way. Indeed,
using the plain topos logic of V̌ is not sufficient since it is well known that it validates the
Axiom of Unique Choice which is inconsistent w.r.t. the properties of the Theory of Contexts
(see Section 4.4). Hence, following [Hof99], we introduce the auxiliary notion of predicate
over a given type exploiting the subcategory of V whose objects are the same of V and
morphisms are injective functions. We will denote this category with I.

The following proposition is an instance of a general result on subcategories (see [Mac71],
§ 10.3). It will be fundamental in the construction of the model since it “builds a bridge”
between the two ambient categories we are considering, i.e., V̌ and Ǐ.

Proposition 5.2 There is an adjunction (()r, ()∗, φ) from V̌ to Ǐ with ()r the restriction
to Ǐ of functors in V̌ and the identity on morphisms2, ()∗ and φ defined as follows:

()∗: for G ∈ Ǐ, G∗ : V̌ −→ Set is the functor whose action is

G∗
X , Ǐ(V(X,)r, G), (G∗

f (t))Z(h) , tZ(h ◦ f),

and for s ∈ V̌(F, G), s∗ ∈ V̌(F ∗, G∗) is the natural transformation defined by

(s∗X(m))Y (f) , sY (mY (f)),

φ: for all F ∈ V̌, G ∈ Ǐ, φFG : V̌(F, G∗) ∼= Ǐ(F r, G) is defined by (φFG(α))X(x) ,
(αX(x))X(idX), for all α ∈ V̌(F, G∗), X ∈ V and x ∈ FX .

1The reader is referred to Theorem B.1 for the formal statement. In the following we will denote the
Yoneda functor by Y̌.

2More precisely, the restriction functor ()r : V̌ −→ Ǐ is defined on objects by:

F r
X , FX

F r
h , Fh : FX −→ FY (for h ∈ I(X, Y))

and on morphisms t : F −→ G by:

tr , t

5.4. THE CONSTRUCTION OF MODEL U 69

Proof. See Appendix C.0.4. ut
In the following it will be useful to have the explicit definition of the inverse ψ of φ: for

F ∈ V̌, G ∈ Ǐ, α ∈ Ǐ(F r, G), X,Y ∈ V, x ∈ FX and g ∈ V(X, Y):

((ψFG(α))X(x))Y (g) , αY (Fg(x)) .

5.4.2 Interpreting types

Variables

The interpretation of variables is the functor [[υ]] , Var : V −→ Set defined by VarX , X
and, for h ∈ V(X, Y), x ∈ X, Varh(x) , h(x). In other words, Var is simply the embedding
of V into Set. Note that it is isomorphic to the representable functor Y̌({?}).

Processes

The interpretation [[ι]] of processes is given by the functor Proc, which is defined by extending
the previous definition ProcX (denoting the set of processes with free names in X) with the
action on morphisms. Given h : X −→ Y , we define Proch , σ, where σ : ProcX −→ ProcY

is the substitution function which replaces every X-indeterminate x in t ∈ ProcX with h(x),
yielding a term of ProcY . For this reason, sometimes in the following we will denote Proch(t)
by t[h]. This notation can be extended to any type, i.e., for all A ∈ V̌, h ∈ V(X,Y), a ∈ AX :
a[h] , Ah(a).

Notice that Proc is not representable; indeed if this were the case, then there would be
a finite set of variables Z such that [[ι]] ∼= Y̌(Z) , V(Z,). From this we could infer that
[[ι]]X , ProcX

∼= Y̌(Z)X , V(Z, X), i.e., that the set of processes with free variables included
in X would be isomorphic to the set of finite substitutions with domain Z and codomain X.
This is clearly absurd since the cardinality of the latter set is finite and precisely |Z| · |X|,
while the cardinality of ProcX is infinite (since it is inhabited by the following succession of
processes: 0, 0|0, 0|0|0, . . .).

Propositions

As anticipated, we cannot interpret propositions in the standard way. Instead we will proceed
as follows:

1. a functor PredǏ : Ǐop −→ Set with suitable properties is introduced.

2. PredǏ is extended to a functor Pred : V̌op −→ Set by means of Proposition 5.2; the
adjunction ensures that the properties of PredǏ we are interested in are transferred
to Pred. In particular Pred is representable.

3. Prop : V −→ Set is defined as the functor representing Pred.

The whole construction is inspired by results related to the notion of tripos [Pit99].
Indeed, the properties of Pred we are interested in essentially amount to the conditions
ensuring that PredǏ is a tripos on Ǐ, so that we can interpret Higher Order Logic. However,
to keep the construction of the model as elementary as possible, in this section we will not
refer to tripos theory, but we will just introduce the notions needed to carry out a direct
verification that our construction indeed yields a model of Υ. In Section 5.8 we will briefly
discuss how our results can be set in the general setting of tripos theory.

70 CHAPTER 5. A FUNCTORIAL MODEL FOR THE THEORY OF CONTEXTS

First of all we introduce PredǏ , which assigns to every functor F ∈ Ǐ, a Boolean algebra
of predicates. For this purpose we recall the following definition:

Definition 5.2 Given a functor F : I −→ Set, a subfunctor of F is a I-indexed family of
sets {PX}X∈I such that

for X ∈ I : PX ⊆ FX (5.1)
for h ∈ I(X, Y), if f ∈ PX then Fh(f) ∈ PY . (5.2)

We will say that a subfunctor P is closed if it satisfies the following3:

for all X, Y ∈ I and f ∈ FX , if Fh(f) ∈ PY for some h ∈ I(X,Y), then f ∈ PX (5.3)

We will denote a subfunctor P of F by P ½ F . With the usual abuse of language, we
will identify subfunctors of F with the subobjects of F .

Now let PredǏ : Ǐop −→ Set be defined as follows:

• for F ∈ Ǐop, PredǏ(F) , {P ∈ Ǐ | P ½ F, P is closed};
• for α ∈ Ǐop(F, G) and P ∈ PredǏ(G), PredǏ(α)(P) is the subfunctor of F such that

(PredǏ(α)(P))X , α−1
X (PX), and (PredǏ(α)(P))f , Ff .

It is a standard result that the previous conditions indeed define a functor, and moreover
that the following holds:

Proposition 5.3 For all F ∈ Ǐ, PredǏ(F) is a boolean algebra w.r.t. the operations:

0X , ∅ (U ∨ V)X , UX ∪ VX

1X , FX (U ∧ V)X , UX ∩ VX (U)X , {f ∈ FX | f 6∈ UX}
and moreover for all α ∈ Ǐop(F, G), PredǏ(α) preserves all boolean operations.

Proof. See Appendix C.0.5. ut
In the following, we will denote by ≤ the order naturally arising from the operations of the
algebra.

Now let Ω ∈ Ǐ be the functor defined by ΩX , PredǏ(I(X,)) and Ωf , PredǏ(◦ f).
(The notation is reminiscent of the fact that this is the subobject classifier in the topos of
¬¬-sheaves over I.) Then:

Proposition 5.4 PredǏ and Ǐ(, Ω) are naturally isomorphic, so PredǏ is representable.

Proof. See Appendix C.0.6. ut
We recall here the definition of the isomorphism of the previous proposition, since it will be
useful in the rest of the chapter: χǏ : PredǏ −→ Ǐ(, Ω) and κǏ : Ǐ(, Ω) −→ PredǏ are
defined by:

(χǏF (U))X(t) , {{f ∈ I(X, Y) | Ff (t) ∈ UY }}Y ∈I

κǏF (m) ,
{{f ∈ FX | mX(f) = Y̌Ǐ(X)}}

X∈I .

Now let us proceed to define the functor Pred : V̌op −→ Set by setting Pred(F) ,
PredǏ(F

r) and Pred(α) , PredǏ(α
r). By Propositions 5.2 and 5.4 we have the following

natural isomorphisms:
3A we will see in Section 5.8, closed subfunctors of F are precisely the double negation closed predicates

in the topos logic of Ǐ.

5.4. THE CONSTRUCTION OF MODEL U 71

• for all f ∈ V̌, PredǏ(F
r) ∼

χǏFr

// Ǐ(F r, Ω) ∼
ψF,Ω

// V̌(F, Ω∗)

• for all X ∈ V, γX , κǏV(X,)r : (Ω∗)X = Ǐ(V(X,)r, Ω) −→ PredǏ(V(X,)r).

Let Prop be defined by

PropX , Pred(V(X,)) Propf , Pred(V(f,)) = f ◦ .

Then we obtain natural isomorphisms χ:Pred −→ V̌(,Prop) and κ:V̌(,Prop) −→ Pred
given by

(χF (U))X(t) , (γ ◦ ψF,Ω(χǏF r(U)))X(t) = {{g ∈ V(X, Y) | Fg(t) ∈ UY }}Y ∈V ,

κF (m) , κǏF r(φF,Ω(γ−1 ◦m)) = {{f ∈ FX | mX(f) ≥ I(X,)}}X∈V .

Now we can define the interpretation of the type of propositions as [[o]] , Prop, i.e. the
object representing Pred.

Simple Types

The interpretation of [[σ → σ′]] is given by the functor [[σ]] ⇒ [[σ′]] where ⇒ is the exponential
in V̌. For example the interpretation of ι schemata over υ, is given by the functor [[υ]] ⇒ [[ι]]
and hence since [[υ]] is representable, by Proposition B.2 we have ([[υ]] ⇒ [[ι]])X = ([[ι]]{x})X =
[[ι]]X]{x}.

5.4.3 Interpreting environments

The interpretation [[Γ]] of an environment Γ , {x1 : σ1, . . . , xn : σn} is given by the functor∏n
i=1[[σi]], so:

[[Γ]]X ,
n∏

i=1

[[σi]]X [[Γ]]f , [[σ1]]f × · · · × [[σn]]f .

5.4.4 Interpreting the typing judgment of terms

Typing judgments of the form Γ ` M : σ will be interpreted as suitable natural transfor-
mations with domain [[Γ]] and codomain [[σ]]. We shall give the interpretation of the typing
judgment by induction on the depth of the derivation of Γ ` M : σ. In general, this make
sense if there exists at most one derivation for each typing judgment (this fact can be easily
verified proceeding by induction on the depth of the derivation of the typing judgment itself).

Rule VAR: [[x1 : σ1, . . . , xi : σi, . . . , xn : σn `Σ xi : σi]] , πi :
n∏

j=1
[[σj]] −→ [[σi]]

Rule CONST: for interpreting the judgments involving constants in Σ we introduce the
following natural transformations (naturality is trivial to prove):

72 CHAPTER 5. A FUNCTORIAL MODEL FOR THE THEORY OF CONTEXTS

nil : 1 −→ Proc mismatch : Var ×Var × Proc −→ Proc
nilX : 1X −→ ProcX mismatchX : X ×X × ProcX −→ ProcX

∗ 7−→ 0 〈x, y, P 〉 7−→ [x 6= y]P

tau : Proc −→ Proc par : Proc × Proc −→ Proc
tauX : ProcX −→ ProcX parX : ProcX × ProcX −→ ProcX

P 7−→ τ.P 〈P, Q〉 7−→ P | Q

new : Var ⇒ Proc −→ Proc

newX : V̌(V ar × V(X,), P roc) −→ ProcX

α 7−→ (νx)(αX]{x}(〈x, inX〉))

where inX : X −→ X] {x} is the left injection.
Now, we can interpret judgments of kind Γ `Σ c : σ for c : σ ∈ Σ. Let ![[Γ]] be the unique

morphism from [[Γ]] to 1; then:

• [[Γ `Σ 0 : ι]] , nil◦![[Γ]], i.e., the constant natural transformation always picking the
term 0 ∈ ProcX for all X and η ∈ [[Γ]]X :

[[Γ `Σ 0 : ι]]X : [[Γ]]X −→ ProcX

η 7−→ 0

• [[Γ `Σ τ : ι → ι]] , γτ (tau)◦ ![[Γ]], where γτ : V̌(Proc,Proc) −→ V̌(1,Proc ⇒ Proc) is
the natural isomorphism given from cartesian closedness of V̌, hence:

([[Γ `Σ τ : ι → ι]]X(η))Y : ProcY × V(X, Y) −→ ProcY

〈P, f〉 7−→ tauY (P)

• [[Γ `Σ | : ι → ι → ι]] , γ|(par)◦ ![[Γ]], where γ| : V̌(Proc × Proc,Proc) −→ V̌(1,Proc ⇒
Proc ⇒ Proc) is the natural isomorphism given from cartesian closedness of V̌, hence:

([[Γ `Σ | : ι → ι → ι]]X(η))Y : ProcY × V(X, Y) −→ Proc × V(Y,)
〈P, f〉 7−→ mY (P),

where

(mY (P))Z : ProcZ × V(Y, Z) −→ ProcZ

〈Procg(P), Q〉 7−→ parZ(〈Procg(P), Q〉)

• [[Γ `Σ [· 6= ·]· : υ → υ → ι → ι]] , γ[·6=·]·(mismatch)◦ ![[Γ]], where γ[·6=·]· : V̌(Var ×Var ×
Proc,Proc) −→ V̌(1,Var ⇒ Var ⇒ Proc ⇒ Proc) is the natural isomorphism given
from cartesian closedness of V̌, hence:

(([[Γ `Σ [· 6= ·]· : υ → υ → ι → ι]]X(η))Y : ProcY × V(X, Y) −→ Var × V(Y,)
〈a, f〉 7−→ mY (a),

5.4. THE CONSTRUCTION OF MODEL U 73

where

(mY (a))Z : VarZ × V(Y, Z) −→ ProcZ × V(Z,)
〈b, g〉 7−→ nZ(〈g(a), b〉)

and

(nZ(〈g(a), b〉))U : ProcZ × V(Z, U) −→ ProcU

〈P, h〉 7−→ mismatchU (〈h(g(a)), h(b), P 〉)

• [[Γ `Σ ν : (υ → ι) → ι]] , γν(new)◦ ![[Γ]], where γν : V̌(Var ⇒ Proc,Proc) −→
V̌(1, (Var ⇒ Proc) ⇒ Proc) is the natural isomorphism given from cartesian closedness
of V̌, hence:

([[Γ `Σ ν:(υ → ι) → ι]]X(η))Y : (Var ⇒ Proc)Y × V(X,Y) −→ Var × V(Y,)
〈P, f〉 7−→ newY (P).

Rule APP: given t1 = [[Γ `Σ M : σ′ → σ]] : [[Γ]] −→ ([[σ′]] ⇒ [[σ]]) and t2 = [[Γ `Σ N : σ′]] :
[[Γ]] −→ [[σ′]], we define

[[Γ `Σ MN : σ]] , ev[[σ]],[[σ′]] ◦ 〈t1, t2〉 : [[Γ]] −→ [[σ]],

Rule ABS: given t = [[Γ, x : σ `Σ M : σ′]] : [[Γ]]× [[σ]] −→ [[σ′]], we define

[[Γ `Σ λx:σ.M : σ → σ′]] , ptq ,

where ptq : [[Γ]] −→ ([[σ]] ⇒ [[σ′]]) is the exponential transpose of t (Appendix B)

Rule ⇒: [[Γ `Σ p ⇒ q : o]] = imp ◦ 〈[[Γ `Σ p : o]], [[Γ `Σ q : o]]〉, where

impX : PropX × PropX −→ PropX

〈U, V 〉 7−→ U ∨ V.

Rule ∀: [[Γ `Σ ∀σp : o]] = forallσ ◦ [[Γ `Σ p : σ → o]], where

(forallσ)X : ([[σ]] ⇒ Prop)X −→ PropX

m 7−→ ∀π(κ[[σ]]×Y̌(X)(m))

and m is a natural transformation from [[σ]]×Y̌(X) to Prop (remember that ([[σ]] ⇒ Prop)X ,
V̌([[σ]]× Y̌(X), P rop)), π : [[σ]]× Y̌(X) −→ Y̌(X) is the projection and, for F ∈ Pred([[σ]]×
Y̌(X)),

∀π(F) , {{f ∈ V(X, Y) | ∀g ∈ I(Y, Z).π−1
Z (g ◦ f) ⊆ FZ}}Y ∈V .

More explicitly

(forallσ)X(m)=
{

u ∈ V(X, Y) |∀g ∈ I(Y,Z).∀t ∈ [[σ]]Z .〈t, g ◦ u〉 ∈ κ[[σ]]×Y̌(X)(m)Z

}
Y ∈V

Remark. Notice that, if [[Γ `Σ M : σ]] is defined and x 6∈ dom(Γ), then [[Γ, x:σ′ `Σ M : σ]]
is the following natural transformation:

([[Γ, x:σ′ `Σ M : σ]])X : [[Γ]]X × [[σ′]]X −→ [[σ]]X
〈η, ηx〉 7−→ [[Γ `Σ M : σ]]X(η)

74 CHAPTER 5. A FUNCTORIAL MODEL FOR THE THEORY OF CONTEXTS

This means that the model Υ admits the weakening rule (i.e., it is sound).

We end this section by making explicit the interpretations of processes which derive
immediately from these definitions [Pit00]. Let Γ be an environment, x, y be variables, and
P, Q be terms. Then:

• [[Γ `Σ 0 : ι]] = nil◦ ![[Γ]],

• [[Γ `Σ τP : ι]] = tau ◦ [[Γ `Σ P : ι]],

• [[Γ `Σ P |Q : ι]] = par ◦ 〈[[Γ `Σ P : ι]], [[Γ `Σ Q : ι]]〉,
• [[Γ `Σ [x 6= y]P : ι]] = mismatch ◦ 〈[[Γ `Σ x : υ]], [[Γ `Σ y : υ]], [[Γ `Σ P : ι]]〉,
• [[Γ `Σ νλx:υ.P : ι]] = new ◦ [[Γ `Σ λx:υ.P : υ → ι]].

5.4.5 Interpreting logical judgments

As we said before, intuitively a proposition is valid iff it is verified under all injective sub-
stitutions of names. In our model, this means that the interpretation of a valid proposition
contains all injective substitutions. More formally, let [[Γ `Σ p : o]]� and > be defined by

[[Γ `Σ p : o]]� : [[Γ]] −→ Prop
[[Γ `Σ p : o]]�X : [[Γ]]X −→ PropX

η 7−→ [[Γ `Σ p : o]]X(η) ∧ I(X,)

> : 1 −→ Prop
>X : 1X −→ PropX

∗ 7−→ I(X,)

Then we give the following definition:

Definition 5.3 (Validity) We say that Γ `Σ p holds in U if [[Γ `Σ p : o]]� is the constant
natural transformation

(TrueΓ)X : [[Γ]]X −→ PropX

η 7−→ I(X,)

This is equivalent to saying that [[Γ `Σ p : o]]� = >◦![[Γ]]:

κ[[Γ]]([[Γ `Σ p : o]])
!κ[[Γ]]([[Γ`Σp:o]])

//
²²

[[Γ`Σp:o]]�

²²

1

>

²²
[[Γ]]

[[Γ`Σp:o]]�
//

![[Γ]]sssssssss

99ssssssssss

Prop

where (κ[[Γ]]([[Γ `Σ p : o]]), [[Γ `Σ p : o]]�, !κ[[Γ]]([[Γ`Σp:o]])) is the pullback of (Prop, [[Γ `Σ p :
o]]�, ![[Γ]]). Notice that in this case we have κ[[Γ]]([[Γ `Σ p : o]]) = 1 ∈ Pred([[Γ]]). One should
also note that κ[[Γ]]([[Γ `Σ p : o]]) = κ[[Γ]]([[Γ `Σ p : o]]�); indeed we have the following:

κ[[Γ]]([[Γ `Σ p : o]]), {{f ∈ [[Γ]]X | I(X,) ≤ [[Γ `Σ p : o]]X(f)}}X∈V
= {{f ∈ [[Γ]]X | I(X,) ≤ [[Γ `Σ p : o]]X(f) ∧ I(X,)}}X∈V
,κ[[Γ]]([[Γ `Σ p : o]]�)

5.5. U IS A MODEL OF Υ 75

5.5 U is a model of Υ

In this section we verify that the model defined in Section 5.4 validates the axioms and rules
of the framework Υ. In order to be able to streamline the computation of the truth value
of a judgment Γ `Σ p in the model U , in Section 5.5.1 we introduce an appropriate notion
of forcing. By means of this useful tool, in Section 5.5.2 we will give a characterisation
of Leibniz equality; finally, in Sections 5.5.3 and 5.5.4 we will verify that U is a model of
Classical Higher-Order Logic and of the Theory of Contexts, respectively.

5.5.1 Forcing

Definition 5.4 Forcing judgments are statements of the shape

X °F,η U

for X ∈ V, F ∈ V̌, U ∈ Pred(F), and η ∈ FX . The intended meaning of X °F,η U is that
η ∈ UX .

When F = [[Γ]], U = κ[[Γ]]([[Γ `Σ p : o]]) and η ∈ [[Γ]]X , we will also write X °Γ,η p instead
of X °Γ,η κ[[Γ]]([[Γ `Σ p : o]]). We will write X ° p to denote “for any Γ such that Γ `Σ p : o,
for all η ∈ [[Γ]]X : X °Γ,η p”.

Hence we can rephrase the condition for a logical judgment to be valid in terms of the
forcing relation, namely

Proposition 5.5 The judgment Γ `Σ p holds in U iff for all X ∈ V and for all η ∈ [[Γ]]X
we have X °Γ,η p.

Lemma 5.1 Let P ∈ Pred(Y̌(X)) such that P 6≥ I(X,), then PY ∩ I(X, Y) = ∅ for all
Y ∈ V.

Proof. We proceed by an absurdity argument: let us suppose that P 6≥ I(X,) and there
exists Y ∈ V and f ∈ I(X,Y) such that f ∈ PY , we will show that, given any Z ∈ V and
g ∈ I(X, Z), g ∈ PZ .

Indeed, by condition 5.3 (satisfied by predicates), we have that idX ∈PX since Y̌(X)f (idX)
= f ◦ idX = f ∈ PY . Then, by condition 5.2 (satisfied by predicates), we have that, for all
g ∈ I(X, Z), g ∈ PZ since Y̌(X)g(idX) = g ◦ idX = g ∈ PZ . ut

A number of useful propositions can now be easily stated.

Theorem 5.1 For all X, Γ, η ∈ [[Γ]]X ,

1. X °Γ,η ∀x:σ.p if and only if for all Y , h ∈ I(X,Y), and for all a ∈ [[σ]]Y we have that
Y °(Γ,x:σ), 〈[[Γ]]h(η),a〉 p;

2. X °Γ,η p ⇒ q if and only if X °Γ,η p implies X °Γ,η q;

3. X °Γ,η PM iff 〈[[Γ `Σ M : σ]]X(η), idX〉 ∈ κ[[σ]]×Y̌(X)([[Γ `Σ P : σ → o]]X(η)),
iff ([[Γ `Σ P : σ → o]]X(η))X(〈[[Γ `Σ M : σ]]X(η), idX〉) ≥ I(X,).

Proof. See Appendix C.0.7. ut
The next theorem is the main achievement of this thesis, since it states the consistency

of our model:

76 CHAPTER 5. A FUNCTORIAL MODEL FOR THE THEORY OF CONTEXTS

Theorem 5.2 (Consistency) It is never the case that X °Γ,η ⊥.

Proof. By definition of ⊥ the statement we have to prove is equivalent to X °Γ,η ∀r:o.r.
It follows, by the first point of Theorem 5.1, that we have to show that there exist Y ,
h ∈ I(X, Y) and a ∈ PropY such that it is not the case that Y °(Γ,r:o),〈[[Γ]]h(η),a〉 r, i.e., that
[[Γ, r : o `Σ r : o]]Y (〈[[Γ]]h(η), a〉) = a 6≥ I(Y,). Hence, it is sufficient to take a = 0 (i.e., the
initial object of Ǐ) to conclude the proof. ut

Corollary 5.1 1. X °Γ,η ¬p if and only if it is not the case that X °Γ,η p;

2. X °Γ,η p ∧ q if and only if X °Γ,η p and X °Γ,η q;

3. X °Γ,η p ∨ q if and only if X °Γ,η p or X °Γ,η q;

4. X °Γ,η ∃x:σ.p if and only if there exist Y , h ∈ I(X, Y) and a ∈ [[σ]]Y such that
Y °(Γ,x:σ), 〈[[Γ]]h(η),a〉 p.

5. X °Γ,η ∀x1:σ1. . . . ∀xn:σn.p if and only if for all Y , f ∈ I(X,Y), η1 ∈ [[σ1]]Y , . . . ηn ∈
[[σn]]Y we have that Y °(Γ,x1:σ1,...,xn:σn),〈[[Γ]]f (η),η1,...,ηn〉 p.

Proof. See Appendix C.0.8. ut

5.5.2 Characterisation of Leibniz equality

Definition 5.5 (Separatedness) An object F ∈ V̌ is said to be separated if its diagonal
∆F ≤ F ×F , defined as (∆F)X , {〈a, a〉 | a ∈ FX} and (∆F)h , Fh×Fh , is a predicate of
F × F , i.e., ∆F ∈ Pred(F × F).

This definition is equivalent to those usually given about sheaves in textbooks, in the case
of sheaves for the ¬¬ topology; see e.g. [MM92], p.227 and Lemma V.3.3. As will be shown
below, for separated objects Leibniz equality coincides with true equality. We have the
following useful result:

Lemma 5.2 A is separated if and only if for each injective map i ∈ I(X,Y) the function
Ai : AX → AY is injective.

Proof. (⇒) By definition, if A is separated, then ∆A is a predicate of A × A. Hence, by
the closure condition 5.3, we have that for all X, Y ∈ I and f = 〈a, b〉 ∈ AX × AX , if
(A×A)h(f) ∈ (∆A)Y for some h ∈ I(X,Y), then f ∈ (∆)X . Observing that (A×A)h(f) =
〈Ah(a), Ah(b)〉, Ah(a) = Ah(b) (since (A×A)h(f) ∈ (∆A)Y) and a = b (since f ∈ (∆)X), we
have proved that Ah is injective for a generic h ∈ I(X, Y).

(⇐) It is trivial to verify that ∆A satisfies both condition 5.1 and condition 5.2. For
the closure condition, we observe that, for all X, Y ∈ I and f = 〈a, b〉 ∈ AX × AX , if
(A × A)h(f) ∈ (∆A)Y for some h ∈ I(X, Y), then we must have Ah(a) = Ah(b). At this
point, since we know that Ah is injective, we can deduce that a = b holds, whence f ∈ (∆A)X .

ut
Notice that, if i has a left inverse p, then it is obvious that Ai is injective since in this

case Ap is a left inverse to Ai by functoriality. So, to establish separatedness, it suffices to
check injectivity of A? where ? : ∅ → X is the empty function. For example, the presheaf A
given by A∅ = {0, 1} and AX = {0} otherwise fails to be separated since A? is not injective.

Lemma 5.3 The objects Var, Proc and Prop are separated. If G is separated, so is F ⇒ G.

5.5. U IS A MODEL OF Υ 77

Proof. If i ∈ I(X, Y) and x ∈ VarX = X then Var i(x) = i(x) which is clearly injective.
Similarly, if p ∈ ProcX then Proci(p) = p[i] which again is injective.

For Prop we appeal to the above analysis and merely check that Prop? is injective. Indeed,
Prop∅ contains exactly two elements corresponding to > and ⊥ which are never identified.

Finally, assume u, v ∈ (F ⇒ G)X = V̌(Y̌(X) × F,G), let i : X → Y be injective and
assume (F ⇒ G)i(u) = (F ⇒ G)i(v). To show u = v assume a—not necessarily injective—
map f : X → X ′ and a ∈ FX′ . We must show u(f, a) = v(f, a). Now, we can find an
injective map j : X ′ → Y ′ and arbitrary map g : Y → Y ′ such that g ◦ i = j ◦ f . Since G is
separated, it suffices to show Gj(u(f, a)) = Gj(v(f, a)). But, Gj(u(f, a)) = u(j ◦ f, Fj(a)) =
u(g ◦ i, Fj(a)) = (F⇒G)i(u)(g, Fj(a)) which yields the desired conclusion by assumption and
symmetry. ut
Corollary 5.2 For all types σ, [[σ]] is separated.

Theorem 5.3 For all σ, Γ, M, N , X and η ∈ [[Γ]]X :

X °Γ,η M =σ N ⇐⇒ [[Γ `Σ M : σ]]X(η) = [[Γ `Σ N : σ]]X(η)

Proof. Let us denote by T the interpretation [[σ]] and by Γ′ the environment Γ, P : σ → o,
for P a fresh variable. By definition of =σ and Theorem 5.1, X °Γ,η M =σ N holds iff

for all Y, h ∈ I(X,Y), p ∈ (T ⇒ Prop)Y :
if [[Γ′ `Σ PM : o]]Y (η[h], p) ≥ I(Y,), then [[Γ′ `Σ PN : o]]Y (η[h], p) ≥ I(Y,)

iff
for all Y, h ∈ I(X, Y), p : T × V(Y,) −→ Prop :
if ([[Γ′ `Σ P : σ→o]]Y (η[h], p))Y ([[Γ′ `Σ M : σ]]Y (η[h], p), idY) ≥ I(Y,),
then ([[Γ′ `Σ P : σ→o]]Y (η[h], p))Y ([[Γ′ `Σ N : σ]]Y (η[h], p), idY) ≥ I(Y,)

iff
for all Y, h ∈ I(X, Y), p : T × V(Y,) −→ Prop :
if pY (mY (η[h]), idY) ≥ I(Y,), then pY (nY (η[h]), idY) ≥ I(Y,).

(5.4)

where m,n : [[Γ]] −→ T denote the natural transformations [[Γ `Σ M : σ]] and [[Γ `Σ N : σ]],
respectively. We have to prove that this is equivalent to

mX(η) = nX(η). (5.5)

(5.4 ⇒ 5.5) By Corollary 5.3, ∆T is a predicate of T × T . Let δT : T × T −→ Prop be its
characteristic map, i.e. the Kronecker delta: for all X and s, t ∈ TX: (δT)X(s, t) ≥ I(X,)
iff s = t.

Let m̄ : V(X,) −→ T be the natural transformation m̄Z(h) , mZ(η[h]), and define
q , δT ◦ (idT × m̄) : T × V(X,) −→ Prop. Then, for all t ∈ TX:

qX(t, idX) ≥ I(X,) ⇐⇒ (δT)X(t,mX(η)) ≥ I(X,) ⇐⇒ t = mX(η)

Instantiating (5.4) for Y = X, h = idX and p = q, we have

if qX(mX(η), idX) ≥ I(X) then qX(nX(η), idX) ≥ I(X,)

which is equivalent to say that

if mX(η) = mX(η) then nX(η) = mX(η)

hence the thesis.
(5.5 ⇒ 5.4) By naturality, if mX(η) = nX(η) then for all Y and h ∈ I(X,Y), we have
mY (η[h]) = nY (η[h]), hence the thesis. ut

78 CHAPTER 5. A FUNCTORIAL MODEL FOR THE THEORY OF CONTEXTS

5.5.3 U models logical axioms and rules

Theorem 5.4 The model validates all logical axioms and rules; indeed if Γ `Σ p : o, Γ `Σ

q : o and Γ `Σ r : o, then the following holds:

1. Γ `Σ (p ⇒ q ⇒ r) ⇒ (p ⇒ q) ⇒ p ⇒ r.

2. Γ `Σ p ⇒ q ⇒ p.

3. If Γ `Σ P : σ → o and Γ `Σ M : σ, then we have Γ `Σ ∀σ(P) ⇒ PM .

4. If Γ, x : σ `Σ M : σ′ and Γ `Σ N : σ, then we have Γ `Σ (λx:σ.M)N =σ′ M [N/x].

5. If Γ, x : σ `Σ M : σ′, Γ, x : σ `Σ N : σ′, then we have Γ `Σ (∀x:σ.M =σ′ N) ⇒
λx:σ.M =σ→σ′ λx:σ.N .

6. If Γ `Σ M : σ → σ and x 6∈ FV (M), then we have Γ `Σ λx:σ′.Mx =σ′→σ M .

7. Γ `Σ ¬¬p ⇒ p.

8. If Γ `Σ p ⇒ q and Γ `Σ p, then we have Γ `Σ q.

9. If Γ, x : σ `Σ p ⇒ q, then we have Γ `Σ p ⇒ ∀x:σ.q.

Proof. See Appendix C.0.9. ut
We conclude this section with a result about the 6∈ predicate which will be useful in the

following proofs.

Theorem 5.5 For all Γ, y, M , X and η ∈ [[Γ]]X , such that Γ `Σ y : υ and Γ `Σ M : ι, we
have the following:

X °Γ,η y 6∈ M ⇐⇒ [[Γ `Σ y : υ]]X(η) 6∈ FV ([[Γ `Σ M : ι]]X(η))

Proof. See Appendix C.0.10. ut

5.5.4 U models the Theory of Contexts

Theorem 5.6 The model U validates Unsatυι : if Γ `Σ P : ι, then for all X, η ∈ [[Γ]]X , the
following holds: X °Γ,η ∃x:υ.x 6∈ P .

Proof. Applying Corollary 5.1, we deduce that X °Γ,η ∃x:υ.x 6∈ P holds if and only if there
exist Z, g ∈ I(X, Z), z ∈ [[υ]]Z , Z such that Z °(Γ,x:υ),〈[[Γ]]g(η),z〉 x 6∈ P . By Theorem 5.5,
this is equivalent to prove

z 6∈ FV ([[Γ, x:υ `Σ P :ι]]Z(〈[[Γ]]g(η), z〉)) = FV ([[Γ `Σ P :ι]]Z([[Γ]]g(η))).

Hence it is sufficient to take Z , X ∪ {n} where n 6∈ X (which surely exists since X is a
finite set, while we have at disposal an infinite set of names), z , n and g , idX . ut

Theorem 5.7 The model U validates Extυ→ι: if Γ `Σ P : υ → ι, Γ `Σ Q : υ → ι and
Γ `Σ x : υ, then for all X, η ∈ [[Γ]]X , the following holds:

X °Γ,η x 6∈1 P ⇒ x 6∈1 Q ⇒ (P x) =ι (Q x) ⇒ P = Q.

5.5. U IS A MODEL OF Υ 79

Proof. By Theorem 5.1, we have to prove X °Γ,η P =υ→ι Q, knowing that X °Γ,η x 6∈1 P ,
X °Γ,η x 6∈1 Q and X °Γ,η (P x) =ι (Q x) hold. The latter statement, by Theorem 5.3, is
equivalent to say that [[Γ `Σ (P x) : ι]]X(η) = [[Γ `Σ (Q x) : ι]]X(η), where [[Γ `Σ (P x) :
ι]]X(η) and [[Γ `Σ (Q x) : ι]]X(η) belong to ProcX ; hence, restricting both processes on
ηx , [[Γ `Σ x : υ]], we preserve the equality relation, i.e., the following holds:

(νηx)([[Γ `Σ (P x) : ι]]X(η)) = (νηx)([[Γ `Σ (Q x) : ι]]X(η)). (5.6)

Now we observe that

[[Γ `Σ (P x) : ι]]X(η) = (evProc,V ar)X(〈[[Γ `Σ P : υ → ι]]X(η), [[Γ `Σ x : υ]]X(η)〉)
= ([[Γ `Σ P : υ → ι]]X(η))X(〈ηx, idX〉).

By a similar argument we also have

[[Γ `Σ (Q x) : ι]]X(η) = ([[Γ `Σ Q : υ → ι]]X(η))X(〈ηx, idX〉).
Moreover, from equation 5.6 and the latter statements, the following holds:

(νηx)([[Γ `Σ P : υ → ι]]X(η))X(〈ηx, idX〉) = new([[Γ `Σ P : υ → ι]]X(η))
(νηx)([[Γ `Σ Q : υ → ι]]X(η))X(〈ηx, idX〉) = new([[∆ `Σ Q : υ → ι]]X(η)).

Hence, from the injectivity of new, we deduce the validity of

[[Γ `Σ P : υ → ι]]X(η) = [[Γ `Σ Q : υ → ι]]X(η),

which is equivalent to the thesis by Theorem 5.3. ut
Theorem 5.8 The model U validates β expι: if Γ `Σ P : ι and Γ `Σ x : υ, then for all X,
η ∈ [[Γ]]X , we have that X °Γ,η ∃Q:υ → ι.x 6∈1 Q ∧ P =ι (Q x) holds.

Proof. By Corollary 5.1, we just have to prove that there exist Z, g ∈ I(X,Z), ηQ ∈ (V ar ⇒
Proc)Z such that Z °∆,µ x 6∈1 Q and Z °∆,µ P =ι (Q x) hold (where ∆ , Γ, Q : υ → ι and
µ , 〈[[Γ]]g(η), ηQ〉). Hence we choose Z , X, g , idX and ηQ , [[Γ \ {x : υ} `Σ λx.P :
υ → ι]]X(η′) (where η′ , η�dom(Γ\{x:υ})). In order to prove the first forcing statement, we
observe that it is equivalent, by definition of 6∈1, to X °∆,µX

x 6∈ νQ (where µX , 〈η, ηQ〉).
By Theorem 5.5, this is equivalent to prove ηx 6∈ FV ([[∆ `Σ νQ : ι]]X(µX)). Hence we may
easily conclude since the following holds:

[[∆ `Σ νQ : ι]]X(µX) = newX([[∆ `Σ Q : υ → ι]]X(µX))
= (νηx)(([[∆ `Σ Q : υ → ι]]X(µX))X(〈ηx, idX〉))
= (νηx)([[Γ \ {x : υ} `Σ λx.P : υ → ι]]X(η′))X(〈ηx, idX〉))
= (νηx)([[Γ `Σ P : ι]]X(η)).

Referring to the proof of X °∆,µX
P =ι (Q x), we observe that this statement holds if

and only if [[∆ `Σ P : ι]]X(µX) = [[∆ `Σ (Q x) : ι]]X(µX) holds. Then we have that
[[∆ `Σ P : ι]]X(µX) = [[Γ `Σ P : ι]]X(η), hence we can conclude since the following holds:

[[∆ `Σ (Q x) : ι]]X(µX) = (evProc,V ar)X(〈[[∆ `Σ Q : υ → ι]]X(µX), [[∆ `Σ x : υ]]X(µX)〉)
= (evProc,V ar)X(〈[[Γ \ {x : υ} `Σ λx:υ.P : υ → ι]]X(η′), ηx〉)
= ([[Γ \ {x : υ} `Σ λx:υ.P : υ → ι]]Y (η′))X(〈ηx, idX〉)
= [[Γ `Σ P : ι]]X(η).ut

ut

80 CHAPTER 5. A FUNCTORIAL MODEL FOR THE THEORY OF CONTEXTS

Γ `Σ f1 : σ Γ `Σ f2 : σ → σ Γ `Σ f3 : σ → σ → σ
Γ `Σ f4 : υ → υ → σ → σ Γ `Σ f5 : (υ → σ) → σ

Γ `Σ (R 0) =σ f1
(Recι

σ red1)

Γ `Σ f1 : σ Γ `Σ f2 : σ → σ Γ `Σ f3 : σ → σ → σ
Γ `Σ f4 : υ → υ → σ → σ Γ `Σ f5 : (υ → σ) → σ

Γ `Σ ∀P :ι.(R τ.P) =σ (f2 (R P))
(Recι

σ red2)

Γ `Σ f1 : σ Γ `Σ f2 : σ → σ Γ `Σ f3 : σ → σ → σ
Γ `Σ f4 : υ → υ → σ → σ Γ `Σ f5 : (υ → σ) → σ

Γ `Σ ∀P :ι.∀Q:ι.(R P |Q) =σ (f3 (R P) (R Q))
(Recι

σ red3)

Γ `Σ f1 : σ Γ `Σ f2 : σ → σ Γ `Σ f3 : σ → σ → σ
Γ `Σ f4 : υ → υ → σ → σ Γ `Σ f5 : (υ → σ) → σ

Γ `Σ ∀x:υ.∀y:υ.∀P :ι.(R [x 6= y]P) =σ (f4 x y (R P))
(Recι

σ red4)

Γ `Σ f1 : σ Γ `Σ f2 : σ → σ Γ `Σ f3 : σ → σ → σ
Γ `Σ f4 : υ → υ → σ → σ Γ `Σ f5 : (υ → σ) → σ

Γ `Σ ∀P :υ → ι.(R νP) =σ (f5 λx:υ.(R (P x)))
(Recι

σ red5)

where R is a typographic shorthand for (Recι
σ f1 f2 f3 f4 f5);

Figure 5.5: Reduction rules for first-order recursion.

5.6 Recursion

The model U is expressive enough to justify also recursion and induction principles, even
higher-order ones.

5.6.1 First-order recursion

In order to be able to define recursive functions over ι, we extend the signature Σ with a
recursor operator Recι

σ for any type σ:

Recι
σ : σ → (σ → σ) → (σ → σ → σ) → (υ → υ → σ → σ) → ((υ → σ) → σ) → ι → σ

The intended reduction rules for recursors are given in Figure 5.5.
In order to interpret the constant Recι

σ we will show that (Proc, α) is an initial algebra
for the functor T : V̌ −→ V̌ defined on objects by

TF , 1 + F + (F × F) + (Var ×Var × F) + (Var ⇒ F),

on morphisms (at each stage X ∈ V) h : F −→ G by

(Th)X : (TF)X −→ (TG)X

in1(∗) 7−→ in1(∗)
in2(a) 7−→ in2(hX(a))

in3(〈a, b〉) 7−→ in3(〈hX(a), hX(b)〉)
in4(〈x, y, a〉) 7−→ in4(〈x, y, hX(a)〉)

in5(a) 7−→ in5(γG,X(hX]{x}(aX]{x}(〈x, inX〉))))

5.6. RECURSION 81

where γG,X : GX]{x} −→ (Var ⇒ G)X is the isomorphism given by Proposition B.2 and
α : TProc −→ Proc is the natural term forming operation at each stage X ∈ V:

αX(in1(∗)) , 0
αX(in2(P)) , τ.P

αX(in3(〈P1, P2〉)) , P1|P2

αX(in4(〈x, y, P 〉)) , [x 6= y]P
αX(in5(P)) , (νx)PX]{x}(〈x, inX〉)

Proposition 5.6 (Proc, α) is an initial T -algebra.

Proof. Let (B, β) be an arbitrary T -algebra; then there is a unique homomorphism f :
(Proc, α) −→ (B, β) of T -algebras such that f ◦ α = β ◦ Tf . Given f , in order to prove the
latter equality we must consider each component fX for X ∈ V. We define f by recursion
as follows:

fX(0) , βX(in1(∗))
fX(τ.P) , βX(in2(fX(P)))
fX(P1|P2) , βX(in3(〈fX(P1), fX(P2)〉))
fX([x 6= y]P) , βX(in4(〈x, y, fX(P)〉))
fX((νx)P)) , βX(in5(γB,X(fX]{x}(P)))) (P ∈ ProcX]{x})

where γB,X : BX]{x} −→ (Var ⇒ B)X is the isomorphism given by Proposition B.2. Then
we can easily check that, for each t ∈ (TProc)X , we have fX(αX(t)) = βX((Tf)X(t)):

fX(αX(in1(∗))) = fX(0) , βX(in1(∗)) = βX((Tf)X(in1(∗)))
fX(αX(in2(P))) = fX(τ.P) , βX(in2(fX(P))) = βX((Tf)X(in2(P)))

fX(αX(in3(〈P1, P2〉))) = fX(P1|P2) , βX(in3(〈fX(P1), fX(P2)〉))
= βX((Tf)X(in3(〈P1, P2〉)))

fX(αX(in4(〈x, y, P 〉))) = fX([x 6= y]P) , βX(in4(〈x, y, fX(P)〉))
= βX((Tf)X(in4(〈x, y, P 〉)))

fX(αX(in5(P))) = fX((νx)PX]{x}(x, inX))

, βX(in5(γB,X(fX]{x}(PX]{x}(x, inX)))))

= βX((Tf)X(in5(P)))

The uniqueness of f follows by its definition. Indeed, if there would be another homomor-
phism g : (Proc, α) −→ (B, β) such that g ◦α = β ◦ Tg, then rewriting the previous equality
and simplifying it according to the definition of α we would obtain exactly the definition of
f . ut
Using this result we can interpret the recursor Recσ

ι as follows. Let A , [[σ]], G , [[Γ]] and
Γ ` R : Proc → σ, where R , (Recσ

ι f1 f2 f3 f4 f5). Let gi be the meaning of fi, as follows:

g1 = [[Γ ` f1 : σ]] : G −→ A

g2 = [[Γ ` f2 : σ → σ]] : G −→ A⇒A

g3 = [[Γ ` f3 : σ → σ → σ]] : G −→ A⇒A⇒A

g4 = [[Γ ` f4 : υ → υ → σ → σ]] : G −→ Var⇒Var⇒A⇒A

g5 = [[Γ ` f5 : (υ → σ) → σ]] : G −→ (Var⇒A)⇒A

82 CHAPTER 5. A FUNCTORIAL MODEL FOR THE THEORY OF CONTEXTS

We define a natural transformation m : T (G⇒A) −→ G⇒A, that is, for X ∈ V,

mX : 1X +(G⇒A)X +(G⇒A)X × (G⇒A)X +VarX ×VarX × (G⇒A)X +(V ar⇒G⇒A)X

−→ (G⇒A)X

by cases as follows, bearing in mind that (G⇒A)X = V̌(G×V(X,), A): for Y stage, η ∈ GY

and h ∈ V(X, Y),

(mX(in1(∗)))Y (η, h) , g1Y (η)

(mX(in2(r)))Y (η, h) , (g2Y (η))Y (rY (η, h), idY)

(mX(in3(〈r1, r2〉)))Y (η, h) , ((g3Y (η))Y (r1Y (η, h), idY))Y (r2Y (η, h), idY)

(mX(in4(〈x, y, r〉))Y (η, h) , (((g4Y (η))Y (h(x), idY))Y (h(y), idY))Y (rY (η, h), idY))

(mX(in5(r))Y (η, h) , (g5Y (η))Y (r′, idY)
where r′ : Var × V(Y,) −→ A

r′Z : Z × V(Y, Z) −→ AZ

〈z, k〉 7−→ (rZ(z, k ◦ h))Z(η[h], idZ)

Thus, (G⇒A,m) is a T -algebra; therefore, there exists a unique natural transformation
m̄ : Proc −→ G⇒A such that m ◦ Tm̄ = m̄ ◦ α. By using a standard argument of cartesian
closed categories, m̄ can be converted into the morphism G −→ Proc⇒A we need. More
explicitly, we interpret Γ ` R : Proc → σ as follows:

[[Γ ` R : Proc → σ]] : G −→ Proc⇒A

[[Γ ` R : Proc → σ]]X : GX −→ (Proc⇒A)X

[[Γ ` R : Proc → σ]]X(η) : Proc × V(X,) −→ A

[[Γ ` R : Proc → σ]]X(η)Y : ProcY × V(X, Y) −→ AY

〈P, h〉 7−→ (m̄Y (P))Y (η[h], idY)

We can now prove the soundness of the recursion principles.

Theorem 5.9 The model U validates Recι
σ redi, for i = 1 . . . 5.

Proof. See Appendix C.0.11. ut

5.6.2 Higher-order recursion

First-order recursion rules can be generalized to higher-order processes, i.e. terms with
holes. Indeed, the initial algebra over Proc can be readily “lifted” to the types Var ⇒ Proc,
Var ⇒ Var ⇒ Proc, Let us consider the functor T ′ : V̌ −→ V̌ defined on objects by

T ′F , 1 + F + F × F + (Var ⇒ Var)× (Var ⇒ Var)× F + (Var ⇒ F),

and on morphisms in the obvious way. Then, the following holds:

Proposition 5.7 Var ⇒ Proc has an initial T ′-algebra structure, which is isomorphic to
Var ⇒ α.

5.6. RECURSION 83

Proof. Let G : V̌ −→ V̌ be the functor G(F) , Var ⇒ F . G has a right adjoint, namely the
functor R : V̌ −→ V̌ defined on objects by

R(F)X = V̌(Var ⇒ Y̌(X), F) R(F)h = ◦ (Var ⇒ Y̌(h)) (h ∈ V(X, Y))

and on natural transformations t ∈ V̌(F, F ′) by R(t) : Var ⇒ F −→ Var ⇒ F ′, R(t)X(f) =
t ◦ f for f ∈ V̌(Var ⇒ Y̌(X), F). Hence, by Theorem B.1, we need only to show that
T ′ ◦G ∼= G ◦ T . Given any functor F in V̌, we have that

(T ′ ◦G)(F) =T ′(Var ⇒ F) = 1 + Var ⇒ F + (Var ⇒ F)× (Var ⇒ F)+
+ (Var ⇒ Var)× (Var ⇒ Var)× (Var ⇒ F) + Var ⇒ (Var ⇒ F)

∼=Var ⇒ 1 + Var ⇒ F + Var ⇒ (F × F)+
+ Var ⇒ (Var ×Var × F) + (Var ⇒ (Var ⇒ F))

∼=Var ⇒ (1 + F + F × F + Var ×Var × F + Var ⇒ F)
=Var ⇒ TF = (G ◦ T)F

and similarly for the morphism part. ut
We can elaborate the functor T ′ a step further, by noticing that

Var ⇒ Var ∼= Var + 1.

Indeed, for all X, we have (Var ⇒ Var)X = VarX]{x} = X] {x} ∼= X + 1 = (Var + 1)X .
Thus we can rewrite T ′ as follows:

T ′F , 1 + F + F × F + Var ×Var × F + Var × F + Var × F + F︸ ︷︷ ︸
∼=(Var⇒Var)×(Var⇒Var)×F

+Var ⇒ F (5.7)

and Proposition 5.7 still holds, that is, Var ⇒ Proc is a T ′-algebra. The intuitive meaning
of the four cases arising from an abstraction λx.[y 6= z]P corresponds to the four situations
when none, one or both y, z are exactly x, and hence are bound by the abstraction.

This argument can be generalized to an arbitrary number of “holes”, so that all types
Varn ⇒ Proc have an initial algebra structure for a suitable functor. In fact, it is easy to
see that for all n:

Varn ⇒ Var ∼= Var + 1 + · · ·+ 1︸ ︷︷ ︸
n times

Hence we can generalize (5.7) at any number of holes, as follows:

T
(n)
F , 1 + F + F × F + Var ×Var × F+

+ Var × F + · · ·+ Var × F︸ ︷︷ ︸
2n times

+ F + · · ·+ F︸ ︷︷ ︸
n2 times

+Var ⇒ F (5.8)

Correspondingly, Proposition 5.7 can be generalized as follows:

Theorem 5.10 For all n, Varn ⇒ Proc has an initial T (n)-algebra structure.

From the definition of T (n) we can derive immediately that the recursor over higher-order
terms with n holes (i.e., contexts with n free variables) for type σ has the following type:

Recυn→ι
σ : σ → (σ → σ) → (σ → σ → σ) → (υ → υ → σ → σ) →

(υ → σ → σ) → · · · → (υ → σ → σ)︸ ︷︷ ︸
2n times

→ (σ → σ) → · · · → (σ → σ)︸ ︷︷ ︸
n2 times

→

((υ → σ) → σ) → (υn → ι) → σ

84 CHAPTER 5. A FUNCTORIAL MODEL FOR THE THEORY OF CONTEXTS

H

Γ `Σ (R λ~xυ.0) =σ f1
(Recυn→ι

σ red1)

H

Γ `Σ ∀P :υn → ι.(R λ~x:υ.τ.(P ~x)) =σ (f2 (R P))
(Recυn→ι

σ red2)

H

Γ `Σ ∀P :υn → ι.∀Q:υn → ι.(R λ~x:υ.(P ~x)|(Q ~x)) =σ (f3 (R P) (R Q))
(Recυn→ι

σ red3)

H

Γ `Σ ∀y:υ.∀z:υ.∀P :υn → ι.(R λ~x:υ.[y 6= z](P ~x)) =σ (f41 y z (R P))
(Recυn→ι

σ red41)

H

Γ `Σ ∀y:υ.∀P :υn → ι.(R λ~x:υ.[y 6= xj](P ~x)) =σ (f42j y (R P))
j = 1 . . . n

(Recυn→ι
σ red42j)

H

Γ `Σ ∀z:υ.∀P :υn → ι.(R λ~x:υ.[xi 6= z](P ~x)) =σ (f43i z (R P))
i = 1 . . . n

(Recυn→ι
σ red43i)

H

Γ `Σ ∀P :υn → ι.(R λ~x:υ.[xi 6= xj](P ~x)) =σ (f44ij (R P))
i, j = 1 . . . n (Recυn→ι

σ red44ij)

H

Γ `Σ ∀P :υn+1 → ι.(R λ~x:υ.(νλy:υ(P y ~x))) =σ (f5 λy:υ.(R (P y)))
(Recυn→ι

σ red5)

where H is a typographic shorthand for the following hypotheses

Γ ` f1 : σ Γ ` f2 : σ → σ Γ ` f3 : σ → σ → σ Γ ` f41 : υ → υ → σ → σ
Γ ` f42j : υ → σ → σ Γ ` f43i : υ → σ → σ Γ ` f44ij : σ → σ (i, j = 1 . . . n)

and R is a typographic shorthand for

(Recυn→ι
σ f1 f2 f3 f41 f421 . . . f42n f431 . . . f43n f4411 . . . f44nn f5)

Figure 5.6: Reduction rules for higher-order recursion.

The reduction rules for higher-order recursion are in Figure 5.6. Notice that when n = 0,
these rules degenerate in those for first-order terms (Figure 5.5).

Theorem 5.11 For all n, the model U validates all axioms in Figure 5.6.

Proof. A straightforward generalization of the proof of Theorem 5.9. ut

5.7 Induction

In order to allow for (structural) inductive arguments, we need to extend the theory intro-
duced so far with induction principles. In this section we consider induction principles both
over plain terms (i.e., of type ι) and over higher-order terms (i.e., of type υn → ι with n > 0).

5.7.1 First-order induction

The first-order induction principle we consider is presented in Figure 5.7.

5.7. INDUCTION 85

Γ `Σ R : ι → o

Γ `Σ (R 0) ⇒ (∀P :ι.(R P) ⇒ (R τ.P)) ⇒
(∀P :ι.(R P) ⇒ ∀Q:ι.(R Q) ⇒ (R P |Q)) ⇒
(∀y:υ.∀z:υ.∀P :ι.(R P) ⇒ (R [y 6= z]P)) ⇒
(∀P :υ → ι.(∀x:υ.(R (P x))) ⇒ (R νP)) ⇒
∀P :ι.(R P)

(Indι)

Figure 5.7: First-order induction principle.

Since the model U does not support the “proposition-as-types, proofs-as-λ-terms” inter-
pretation, induction principles do not derive automatically from the recursion principles in
Section 5.6. A problem we have to deal with, is the presence of parameters, represented
by the environment Γ. Actually, induction with parameters in V̌ can be recovered from the
initial algebra property in a simple slice category defined from V̌ (Definition B.4). In fact
the signature functor T in V̌ can be “transferred” in this category, so that it has an initial
algebra corresponding to the initial algebra in V̌ [Jac95].

For the sake of simplicity, and without loss of generality, in the following we consider
Γ = R : ι → o, where R is the predicate over terms in the induction principle.

We proceed as follows. We will work in the simple slice category V̌//G, where G ,
Proc ⇒ Prop; over this category we will consider the functor T//G where T : V̌ −→ V̌ is the
signature functor defined in Section 5.6. We will prove that (Proc, G∗(α)) is an initial T//G-
algebra. Then, the soundness of the induction principle will derive from a usual argument
in the category V̌//G.

In order to prove the main statement, we need the following two results:

Proposition 5.8 The functor T is strong.

Proof. We define the strength of T as follows:

(stA,B)X : AX × (TB)X −→ (TA×B)X

(stA,B)X(〈a, in1(∗)〉) , in1(∗)
(stA,B)X(〈a, in2(b)〉) , in2(〈a, b〉)

(stA,B)X(〈a, in3(〈b1, b2〉)〉) , in3(〈a, b1, a, b2〉)
(stA,B)X(〈a, in4(〈x, y, b〉)〉) , in4(〈x, y, a, b〉)

(stA,B)X(〈a, in5(b)〉) , in5(ba)

where ba ∈ V̌(Var × V(X,), A×B) is the natural transformation such that (ba)Y (〈y, g〉) ,
〈Ag(a), bY (〈y, g〉)〉).

The commutativity of the two diagrams of Definition B.5 is proved by cases over b (see
Appendix C.0.12). ut

Proposition 5.9 For every G ∈ V̌, (Proc, G∗(α)) is an initial T//G-algebra.

Proof. Since α ∈ V̌(TProc,Proc), G∗(α) ∈ V̌//G((T//G)Proc ,Proc), i.e., (Proc, G∗(α)) is a
T//G-algebra. It remains to show that, given any other T//G-algebra (B, β), there is a unique

86 CHAPTER 5. A FUNCTORIAL MODEL FOR THE THEORY OF CONTEXTS

morphism f from Proc to B such that the following diagram in V̌//G commutes:

(T//G)Proc
G∗(α) //

(T//G)f

²²

Proc

f

²²
(T//G)B

β
// B

Notice that the same diagram can be read in V̌ as follows:

G× TProc
idG×α //

〈π,Tf◦stG,Proc〉
²²

G× Proc

f

²²
G× TB

β
// B

We define f as follows:

fX(〈g, 0〉) , βX(〈g, in1(∗)〉)
fX(〈g, τ.P 〉) , βX(〈g, in2(fX(〈g, P 〉))〉)

fX(〈g, P1|P2〉) , βX(〈g, in3(〈fX(〈g, P1〉), fX(〈g, P2〉)〉)〉)
fX(〈g, [x 6= y]P 〉) , βX(〈g, in4(〈x, y, fX(〈g, P 〉)〉)〉)

fX(〈g, (νx)P 〉) , βX(〈g, in5(γB,X(fX]{x}(〈GinX (g), P 〉))〉)
Commutativity of the previous diagram is proved by cases on P (Appendix C.0.13).

The uniqueness of f follows by its definition. Given any other homomorphism g :
(Proc, G∗(α)) −→ (B, β) such that g •G∗(α) = β • (T//G)g, rewriting the previous equality
and simplifying it according to the definitions of G∗(α) and stG,Proc we obtain exactly the
definition by cases of f . ut
Now we have the necessary tools for proving our goal:

Theorem 5.12 The model U validates Indι, i.e., the following holds:

∅ `Σ ∀R:ι → o.((R 0) ⇒ (∀P :ι.(R P) ⇒ (R τ.P)) ⇒
(∀P :ι.(R P) ⇒ ∀Q:ι.(R Q) ⇒ (R P |Q)) ⇒
(∀y:υ.∀z:υ.∀P :ι.(R P) ⇒ (R [y 6= z]P)) ⇒
(∀P :υ → ι.(∀x:υ.(R (P x))) ⇒ (R νP)) ⇒
∀P :ι.(R P))

Proof. By Proposition 5.5, we have to prove that for all X ∈ V the following judgment holds:

X °∅,∗ ∀R:ι → o.((R 0) ⇒ (∀P :ι.(R P) ⇒ (R σ.P)) ⇒
(∀P :ι.(R P) ⇒ ∀Q:ι.(R Q) ⇒ (R P |Q)) ⇒
(∀y:υ.∀z:υ.∀P :ι.(R P) ⇒ (R [y 6= z]P)) ⇒
(∀P :υ → ι.(∀x:υ.(R (P x))) ⇒ (R νP)) ⇒
∀P :ι.(R P))

By Theorem 5.1, this is equivalent to prove that, under the following assumptions

Y °R:ι→o,ηR
(R 0),

Y °R:ι→o,ηR
(∀P :ι.(R P) ⇒ (R τ.P)),

Y °R:ι→o,ηR
(∀P :ι.(R P) ⇒ ∀Q:ι.(R Q) ⇒ (R P |Q)),

Y °R:ι→o,ηR
(∀y:υ.∀z:υ.∀P :ι.(R P) ⇒ (R [y 6= z]P)),

Y °R:ι→o,ηR
(∀P :υ → ι.(∀x:υ.(R (P x))) ⇒ (R νP)),

5.7. INDUCTION 87

we have that for all Z ∈ V, for all f ∈ I(Y, Z) and for all ηP ∈ ProcZ , the judgment
Z °(R:ι→o,P :ι),〈(Proc⇒Prop)f (ηR),ηP 〉 (R P) holds. This fact amounts to say that the following
equation must hold:

p , [[R : ι → o, P : ι `Σ (R P) : o]]� = >◦![[(R:ι→o,P :ι)]]. (5.9)

Consider the following pullback in V̌//G:

U

h
²²

G∗(!U) // 1

G∗(>)
²²

Proc p
// Prop

where G , [[R : ι → o]]. Then, from the assumptions above, we have that the following
diagram in V̌//G commutes (see Appendix C.0.14):

TU

T//G(h)

²²

G∗(!TU)

))
β

// U
G∗(!U)

//

h
²²

1

G∗(>)
²²

TProc
G∗(α)

// Proc p
// Prop

Let β : TU → U be the unique map defined by the universal property of the pullback.
Then, (U, β) is a T//G-algebra; therefore, by initiality of Proc (existential part) there is
a map h′ ∈ V̌//G(Proc, U). Moreover, again by initiality of Proc (unicity part) we have
h • h′ = G∗(idProc). Hence we have the following:

p = p •G∗(idProc) = p • h • h′ = G∗(>) •G∗(!U) • h′

Translating the equation in terms of the composition in the category V̌, we get

p = G∗(>) ◦ 〈π,G∗(!U) ◦ 〈π, h′〉〉 = >◦!U ◦ h′ = >◦!G×Proc

i.e., the thesis (5.9). ut

5.7.2 Higher-order induction

As in the case of recursion, also the induction principle can be generalized to higher-order
processes. The higher-order induction principle is given in Figure 5.8. Notice that in the
case of n = 0, this rule degenerates in that for first-order terms introduced above.

The proofs of the validity of higher-order induction principles follow the same pattern
of the first-order case, exploiting the initiality of the corresponding higher-order initial al-
gebra (see Section 5.6) and the following result which extends Lemma 7.8 of [Jac95] to the
exponentiation of functors in the category V̌:

Lemma 5.4 If T : V̌ −→ V̌ is strong, then the functor Var ⇒ T (whose action on objects
is A 7→ Var ⇒ TA) is strong as well.

88 CHAPTER 5. A FUNCTORIAL MODEL FOR THE THEORY OF CONTEXTS

Γ `Σ R : (υn → ι) → o

Γ `Σ (R λ~x:υ.0) ⇒ (∀P :υn → ι.(R P) ⇒ (R λ~x:υ.(τ.(P ~x)))) ⇒
(∀P :υn → ι.(R P) ⇒ ∀Q:υn → ι.(R Q) ⇒ (R λ~x:υ.(P ~x)|(Q ~x))) ⇒
(∀P :υn → ι.∀y:υ.∀z:υ.(R P) ⇒ (R λ~x:υ.[y 6= z](P ~x))) ⇒
(∀P :υn → ι.∀z:υ.(R P) ⇒ ∧n

i=1(R λ~x:υ.[xi 6= z](P ~x))) ⇒
(∀P :υn → ι.∀y:υ.(R P) ⇒ ∧n

j=1(R λ~x:υ.[y 6= xj](P ~x))) ⇒
(∀P :υn → ι.(R P) ⇒ ∧n

i,j=1(R λ~x:υ.[xi 6= xj](P ~x))) ⇒
(∀P :υn+1 → ι.(∀y:υ.(R λ~x:υ.(P ~x y))) ⇒ (R λ~x:υ.ν(P ~x))) ⇒
∀P :υn → ι.(R P)

(Indυn→ι)

Figure 5.8: Higher-order induction principle.

Proof. Let st be the strength of T ; we define (up-to suitable isomorphisms) the strength st′

for Var ⇒ T as (st′A,B)X , (stA,B)X]{x} ◦ (Ain× id), where X
� � in // X] {x} is the obvious

injection. More explicitly, for A,B ∈ V̌ and X ∈ Var :

(st′A,B)X : AX × (TB)X]{x} −→ (TA×B)X]{x}
〈a, b〉 7−→ (stA,B)X]{x}(Ain(a), b)

It is easy to check that st′ is a strength for the functor Var ⇒ T , that is, the following
diagrams commute:

AX × (TB)X]{x}
AinX×id //

π′
--ZZZ AX]{x} × (TB)X]{x}

(stA,B)X]{x}//

π′

**UUUUUUUUUUUUUUUU
(TA×B)X]{x}

(Tπ′)X]{x}
²²

(TB)X]{x}

AX×(BX×(TC)X]{x})
Ain×(Bin×id)//

∼

²²

AX]{x}×(B×(TC))X]{x}
id×stB,C//

∼

²²

AX]{x}×((TB×C)X]{x})

stA,B×C

²²
(TA×(B×C))X]{x}

∼
²²

(AX×BX)×(TC)X]{x}
(A×B)in×id// (A×B)X]{x}×(TC)X]{x}

stA×B,C // (T (A×B)×C)X]{x}

In the latter diagram, the left square is the naturality of the associativity isomorphism of
product, and the right part is the property of the strength st. ut

An alternative way of validating higher-order induction principles is to exploit the result
of Section 4.5.2. Indeed, since we already proved the validity of the axioms of the Theory
of Contexts and of the first-order induction principle, the validity of higher-order induction
principles is automatically4 granted since they can be derived using the proof technique
illustrated in Section 4.5.2.

4Obviously, we need to add the type of natural numbers and the related induction principle, but this can
be done in a straightforward way.

5.8. CONNECTIONS WITH TRIPOS THEORY 89

5.8 Connections with tripos theory

As anticipated, the constructions and the results carried out in this chapter can be reread
from the point of view of tripos theory. This can be useful in order to relate our work with
other recent research on the use of functor categories to model the notions of variable binding
and freshness. Moreover, it is very funny to see how a work, which required pages and pages
of complex handmade proofs, can be obtained in less than three pages by means of general,
although quite esoteric, properties.

In the following we suppose the reader is familiar with the notions of topos [Joh77, MM92,
Bel88], Lawvere-Tierney topology and sheaf (see, e.g., [Joh77, MM92]). More precisely, in
the following we will use the following results:

1. Given a topos E , there is a (contravariant) functor Sub : Eop −→ Set associating to
every X ∈ E the set of its subobjects, and to every arrow f ∈ E(X,Y) the function
Sub(f) : Sub(Y) −→ Sub(X) defined by Sub(f)([m]) = [f−1(m)] for any monic m with
codomain Y . Moreover, we have that the subobject classifier Ω of E is a representing
object for Sub, i.e., Sub ∼= E(, Ω). In general the partially ordered set Sub(X) is a
Heyting algebra and the function Sub(f) is a Heyting algebra morphism. A topos is
said Boolean if, for every X ∈ E , the Heyting algebra Sub(X) is a Boolean algebra (in
this case Sub(f) is a morphism of Boolean algebras).

2. Given a Lawvere-Tierney topology j on the topos E , the subobject classifier, denoted by
Ωj , in the topos of j-sheaves Shj E is the equalizer of idΩ and j. Actually, Ωj classifies
the j-closed monomorphisms, and the subsheaves of a sheaf are exactly its closed
subobjects ([MM92], §V.2 Theorem 2). Moreover the inclusion functor I : Shj E −→ E
has a left adjoint a : E −→ Shj E preserving finite limits5 ([MM92], §V.3 Theorem 1).
These two facts imply that there is an isomorphism between j-closed subobjects of X
and subsheaves of a(X).

3. If false is the characteristic map of the unique arrow 0 −→ 1 and ¬ is the characteristic
map of false, the morphism ¬ ◦ ¬ : Ω −→ Ω is a Lawvere-Tierney topology on E and
Sh¬¬ E is a Boolean topos ([MM92], §VI.1 Theorem 3).

4. Finally if E , SetC for some small category C, then the functor Ω defined by ΩX =
Sub(E(X,)) and Ωf (F) = Sub(E(X, f))(F) is the subobject classifier of E ; so the
subobject classifier Ω¬¬ in the topos of ¬¬-sheaves is given by Ω¬¬(X) = {F |
F is a subobject ¬¬-closed of E(X,)} on objects and the restriction of Ω on mor-
phisms.

Now, we show how these notions and results are related to the properties of PredǏ . First,
notice that the closure condition (5.3) in the definition of PredǏ is exactly the request that
a subfunctor is closed w.r.t. the ¬¬-topology. Indeed, following the proof of § VI.1 Lemma 4
in [MM92], the verification is straightforward: by using twice the following description of
¬U , for U ½ A mono in Ǐ:

(¬U)X = {a | a ∈ AX and, for all h : X −→ Y, Ah(a) 6∈ UY }
5The functor a is called the associated sheaf functor or the sheafification functor ; for any E ∈ E , a(E) is

called the sheaf associated to E or the sheafification of E.

90 CHAPTER 5. A FUNCTORIAL MODEL FOR THE THEORY OF CONTEXTS

one obtains

¬(¬U)X = {x | x ∈ FX and, for all f : X −→ Y, there exists Z ∈ Ǐ
and g ∈ Ǐ(Y,Z) such that Ag◦f (x) ∈ UZ}.

As a consequence, PredǏ is the functor Sub in the topos of ¬¬-sheaves of Ǐ. This immedi-
ately implies Proposition 5.3.

The previous remarks allow one to conclude that Ω ∈ Ǐ is precisely the subobject classifier
in the topos Sh¬¬(Ǐ). Whence, Proposition 5.4 follows by observing that Ω is a representing
object for Sub (see the first point at the beginning of this section). We remark that, actually,
ΩX is a two-element set.

In order to define Pred we must resort to tripos theory. In the literature there are several
slightly different definitions of tripos(see, e.g., [HJP80, Pit81, vO91, Jac99]); the following
one, is good for our purposes:

Definition 5.6 Let C be a category with finite products. A C-tripos is a functor P : Cop −→
Set such that

i) for each A ∈ C, P(A) is a Heyting algebra

ii) for each f ∈ C(A, B)

(a) P(f) is a homomorphism of Heyting algebras

(b) P(f) has left and right adjoints ∃f and ∀f which satisfy the Beck-Chevalley con-
dition: if

A
f //

g

²²

B

h
²²

C
k // D

is a pullback square then ∃f ◦ P(k) = P(g) ◦ ∃h (and hence also the dual condition
for ∀ holds)

iii) P, when regarded as a set-valued functor, is representable, i.e., there is an object Prop ∈
C such that for all A: P(A) ∼= C(A,Prop).

Since our final goal is to show that Pred is a tripos on V̌, we need the following results:

Proposition 5.10 ([Pit81], Example 1.3 (i)) If E is a topos, the functor Sub : Eop −→
Set carries the structure of a tripos.

Proposition 5.11 ([vO91], Prop. 1.4) If C,D are categories with finite products, F a G :
C −→ D, F preserves products and PredD is a tripos on D, then the functor Pred C defined
by

Pred C : Cop −→ Set

X 7−→ PredD(F (X))

(X
f // Y) 7−→ PredD(F (f))

is a tripos on C.

5.9. RELATED WORK 91

As anticipated, we can now prove the following:

Proposition 5.12 Pred is a tripos on V̌.

Proof. Consider the adjunctions a a I : Ǐ −→ Sh¬¬ Ǐ and ()r a ()∗ : V̌ −→ Ǐ,
where a and ()r preserve products. By Proposition 5.11 and the fact that ¬¬-Sub(F) ∼=
SubSh¬¬(Ǐ)(a(F)), the functor PredǏ is a tripos. Another application of Proposition 5.11
immediately shows that Pred is a tripos on V̌. ut

A fundamental property of triposes is that, if C models some metalanguage then a C-
tripos models intuitionistic higher order logic over that metalanguage. This means that there
is a type for propositions, term formers for implication and universal quantification. We can
therefore interpret the logical judgment Γ ` φ which intuitively states that the proposition φ,
involving variables from Γ, holds. A standard result states that intuitionistic logic is sound
w.r.t. this semantics [Pit81].

From the abovementioned results, it follows that all intuitionistic theorems hold in U
(remember that the interpretation of logical propositions has been defined in terms of Prop
which is the representing object of Pred). Moreover, since Pred(F) is a Boolean algebra,
the logic of Pred is the full higher-order classical logic. This is a consequence of the fact
that we consider only the ¬¬-subobjects. In other words, although we work in V̌, our logical
propositions ultimately live in Sh¬¬ Ǐ.

5.9 Related work

The application of functor categories in the semantics of programming languages goes back
to the early ’80s, when “variable” sets (i.e., objects of Č) were recognized as a useful tool to
model variability of memory allocation in Algol-like languages [Rey81, Ole85]. An important
step towards the generalization of this approach has been the monad for allocation over
the category Č [Mog89]. More recently, presheaf models have been extensively used for
interpreting concurrency and mobility [Sta96, FMS96, CSW97].

Recently, the use of functor categories as a semantics for HOAS has been advocated
in [FPT99, Hof99], the latter being the basis for the present work. At the same time, an
alternative approach based on Frænkel-Mostowski set theory has been presented in [GP99].
Here we briefly illustrate the connections between these models.

In [Hof99], functor categories are used for formally justifying several logical principles
which have been previously proposed for reasoning about HOAS. In particular, metalanguage
types are interpreted as suitable objects of SetCop

, where the index category C depends on
the nature of the metalanguage. A key feature of this approach (which we have exploited
in Proposition B.2) is that the interpretation of types which appear in negative position in
the types of syntactic constructors must be representable. This allows to apply the following
property:

for X ∈ C and F ∈ SetC
op

: (Y(X) ⇒ F)Y
∼= FX×Y .

For instance, in the case of untyped λ-calculus, whose syntax is defined by

Inductive tm : Set := isvar : var → tm | app : var × var → tm

| lam : (var → tm) → tm.

the higher-order type var → tm is interpreted as the functor Var ⇒ Tm. Since Var ∼=
Y({x}), we have that (Var ⇒ Tm)X

∼= TmX]{x}. In other words, functions over variables

92 CHAPTER 5. A FUNCTORIAL MODEL FOR THE THEORY OF CONTEXTS

correspond exactly to terms with an extra variable, which can be seen as the “hole” of a
particular context such that the act of filling it resembles a capture-avoiding substitution
rather than a, possibly capturing, textual one. Thus, the interpretation of tm is the initial
algebra of the functor T (A) = Var + A×A + Var ⇒ A.

In order to interpret predicates, on the other hand, one cannot use the plain topos SetCop
,

because induction principles over higher-order types contradict the Axiom of Unique Choice.
The solution originally conceived in [Hof99], and which has been fully developed in this work,
is to resort to some tripos over the category of types.

Covariant presheaves are instead adopted in [FPT99] where a general methodology is
developed in order to associate to every binding signature a category of models which gives
a notion of initial algebra semantics. The models are presheaves which are both algebras for
the signature functor and monoids with respect to the substitution. The choice of F (that is,
the skeleton of the category of finite sets and functions) as the index category is motivated
by the operations which are allowed on environments: names swapping, contraction and
weakening. Indeed, the closure by composition of these operations generates exactly all the
functions between finite cardinals. A key feature of the category SetF is that it has a type
constructor

δ : SetF → SetF (δA)X = AX+1 (δA)h = Ah+id1

which is used for interpreting higher-order types like var → tm of the previous example.
Thus, the interpretation of tm is the initial algebra of the functor T (A) = Var +A×A+ δA.
Clearly, δ corresponds to the functor Var ⇒ in Hofmann’s approach, via the isomorphism
previously described.

However, since F̌ alone is proposed as a framework for higher-order abstract syntax, this
work is fine for the purely algebraic aspect, i.e., terms and equations; as we have seen, in
order to reason about HOAS, F̌ alone is inadequate since for example equality of names
cannot be expressed. The value of [FPT99] is to have placed inductive types like Proc in V̌
in the context of universal algebra.

A different perspective is taken in [GP99], where a metalogic for specifying and reason-
ing about formal systems with name binders is introduced using as a semantic basis the
Frænkel-Mostowski permutation model of set theory with atoms. Terms over a signature
with binders are interpreted as an inductive element of the universe of FM-sets. In other
words, the quotient with respect to α-equivalence is applied only to the interpretation of
binding constructors, instead of being applied to the whole initial algebra (like in the case of
a pure first-order syntax approach). Processes with free names are modeled as equivalence
classes of name-process pairs, obtained by the atom abstraction operation: for each variable
x and FM-set A, there is a FM-set x.A, the atom abstraction of A over x, defined by

x.A , {(y, (y x) ·A) | y ∈ Var ∧ (y = x ∨ y#A)}

where (y x) · A is the variable transposition, and y#A is the apartness (which intuitively
means that y does not occur “free” in A). Then, the FM-set of abstractions over variables
of elements of A is defined by

[Var]A , {b | ∃x ∈ Var .∃a ∈ A.(b = x.a ∧ x#A)} .

Thus, if A is the interpretation of some syntactic class, [Var]A gives the interpretation of
contexts of type A. In our running example, the interpretation of tm is the FM-set defined
as the least fixed point of the (FM-set valued) function Fα(A) = Var + A × A + [Var]A.

5.9. RELATED WORK 93

As a result, the usual arguments about least fixed points allow for deriving induction and
recursion principles over the higher-order abstract syntax.

In order to highlight the close connection between this latter approach and the previous
ones, notice that the universe of sets used in [GP99] is the category of the perm(Var)-sets
with finite support and equivariant functions. This is very closely related to the so-called
Schanuel topos6, which is isomorphic to the category of sheaves over Iop for the ¬¬-topology
([MM92], § III.9). As we have noticed in Section 5.8, this category is exactly the topos
we have used in our model for the interpretation of logical judgments. Both Sh¬¬(Ǐ) and
the Schanuel topos embed in Ǐ, which is related to V̌ by the adjunction of Proposition 5.2.
The reason we could not use Sh¬¬(Ǐ) to interpret terms and functions and resorted to V̌
instead was precisely that otherwise processes would not be an inductive type with υ → ι
(as opposed to equivalence classes of pairs) among the argument types of the constructors.

A final remark is about the peculiar behaviour of the interpretation of abstraction and
instantiation in [GP99]. In our approach both can be rendered naturally using the features
of the metalanguage: the first as λ-abstraction, the latter as application. On the other hand,
notice that instantiation A@x in FM is only partially defined, i.e., when x is not in the
support of A, i.e., the free variables of A. Actually, the abstraction set of FM has a clear
correspondent in our categorical setting. Recall that in our model, the type constructor
“υ → ” is interpreted exactly as the exponentiation Var ⇒ : V̌ −→ V̌ (Section 5.4.2).
The corresponding operation in Ǐ via the adjunction (i.e., the restriction) is not the usual
exponentiation of Ǐ, but only a certain arrow Var (: Ǐ −→ Ǐ which is the right adjunct of
a suitable tensor product. This arrow corresponds exactly to the exponent in the Schanuel
topos, and ultimately it corresponds to [V ar] of FM. Using such a somewhat “linear”
exponentiation has the advantage that, like in any topos, the Axiom of Unique Choice holds
and thus it can be consistently assumed.

6Indeed, the Schanuel topos can be defined so that its objects are the elements with empty support of the
universe of FM-sets. In order to get at FM-sets with non-empty support within the Schanuel topos, one must
consider internal families of subobjects.

94 CHAPTER 5. A FUNCTORIAL MODEL FOR THE THEORY OF CONTEXTS

6
Case studies

This chapter is devoted to the presentation of two case studies on the applicability of the
Theory of Contexts to the formal development of the metatheory of nominal calculi. More
precisely, the former concerns the well-known untyped λ-calculus, while the second deals with
the Ambient Calculus and the related modal logic introduced in [CG00] and further extended
in [CG01]. Both case studies follow the research line started with the formal development
of the metatheory of the π-calculus in [HMS01b] and continued in [Mic01a] with the formal
development of the theory of capture-avoiding substitution for a HOAS-based encoding of
untyped λ-calculus. The main motivation in pursuing this investigation of the applicability
of the Theory of Contexts to “real” and complex case studies is the hope to get some hints on
the expressive power of its axioms. Indeed, despite the fact that we have proved in Chapter 5
their soundness, we have not yet a completeness result w.r.t. some known theory.

6.1 α-equivalence for the untyped λ-calculus

In this section we present a case study concerning the formalization of α-equivalence for the
untyped λ-calculus. Despite the fact that in every textbook or introductory course on λ-
calculus, the α-equivalence relation is presented as a trivial or natural notion (often without
an explicit axiomatization, but only a short definition in words followed by some examples1),
its formalization in a type theory-based logical framework reveals many subtleties. Actu-
ally, α-equivalence can be defined rigorously in more than one way; for instance, besides
the “conventional” one [Bar81], there is the variant used by McKinna-Pollack [MP99], and
Gabbay-Pitts’ alternative, based on the notion of variable transposition [GP99, GP01]. It is
therefore natural to show formally that these three definitions are really equivalent. More-
over, the development of the metatheory, namely the proofs of the reflexivity and transitivity
of α-equivalence, requires to show a non-trivial invariance property with respect to variable
renamings. It is interesting to notice that such a property plays the same rôle of similar re-
naming results needed in the formal development of the metatheory of well known nominal
calculi (namely, Lemma 6 of [MPW92] part II for the π-calculus and Lemma 2-3 of [CG01]
for the ambient calculus). In other words, it seems that nominal calculi enjoy a common

1Commonly, α-equivalence is presented as a convention allowing to identify λ-terms which differ only by
a change of bound variables with fresh ones.

96 CHAPTER 6. CASE STUDIES

property stating that we can freely replace a name/variable in a proof with a fresh one. This
corresponds to the notion of equivariance (see [Pit01b]).

6.1.1 Encoding the untyped λ-calculus

We recall that the syntax of untyped λ-calculus is defined by the following grammar:

Λ : M ::= x | MN | λx.M,

where x ∈ V (V is an infinite set of variables). Obviously, since we want to encode α-
equivalence of λ-terms and reason about its (meta)properties, we cannot use a HOAS-based
approach for representing the binder λ. Otherwise α-equivalence would be automatically
granted by the metalanguage and could not be accessed at the object level.

In the following we will denote by ΣΛ the signature of the present case study; starting
from an empty one, we will progressively add the needed constants. So, we proceed by
introducing the first constant, namely, a type var representing the set of variables:

Parameter var: Set.

More precisely, since the set var has no constructors, variables of the object language will be
represented by variables of Coq of type var. It is worth noticing that, even if we are going
to give a plain first-order encoding of λ-terms, we cannot take var as an inductive type if
we want to take advantage of the axioms of the Theory of Contexts. Indeed, as we notice
in Chapter 4 (Section 4.4), those axioms, namely, the extensionality law, would give rise to
inconsistencies in presence of an inductive encoding of the type of variables.

The set of λ-terms is represented by the following inductive type:

Inductive tm : Set :=
is_var : var -> tm | app : tm -> tm -> tm | lam : var -> tm -> tm.

In the following, for X , {x1, . . . , xn} ⊂ V finite, we will denote by ΛX the set {M | M ∈
Λ, v(M) ⊆ X}, where v(M) is the set of all the variables occurring (free, binding, or bound)
in M . Moreover, we will denote by ΓX the typing environment given by:

{x1 : var, . . . , xn : var} ∪ {dij :~(xi = xj) | 1 ≤ i < j ≤ n}

Finally tmX will represent the canonical forms M (i.e. βη-head normal forms) of type tm
such that ΓX `ΣΛ

M : tm. As we can see, there is a one-to-one correspondence between the
productions of the grammar defining the syntax of the object language and the constructors
of type tm. This fact is formalized by the encoding and decoding functions depicted in
Figure 6.1 and by the following adequacy result:

Proposition 6.1 For each X ⊂ V finite, εΛX is a compositional bijection between ΛX and
tmX .

Proof. Standard, using the definitions in Figure 6.1 and proceeding by induction on the
structure of λ-terms and of canonical forms of type tm. ut

6.1. α-EQUIVALENCE FOR THE UNTYPED λ-CALCULUS 97

εΛX : ΛX −→ tmX

εΛX(x) , (is var x)
εΛX(MN) , (app εΛX(M) εΛX(N))

εΛX(λx.M) , (lam x εΛX(M))

δΛ
X : tmX −→ ΛX

δΛ
X((is var x)) , x

δΛ
X((app M N)) , δΛ

X(M)δΛ
X(N)

δΛ
X((lam x M)) , λx.δΛ

X(M)

Figure 6.1: Encoding and decoding functions for the untyped λ-calculus.

x 6= y

x /∈Λ
V y

(NOTIN VAR)

x /∈Λ
V M, x /∈Λ

χ N

x /∈Λ
V MN

(NOTIN APP)

x /∈Λ
V M, x 6= y

x /∈Λ
V λy.M

(NOTIN LAM)

Figure 6.2: Non-occurrence predicate for the untyped λ-calculus.

6.1.2 The Theory of Contexts for the untyped λ-calculus

Before introducing the properties of the Theory of Contexts, we need to define an auxiliary
binary predicate in order to formalize the notion of non-occurrence (neither free nor bound)
of a variable in a λ-term. This notion of “freshness” is rendered by means of the following
inductive predicate:

Inductive notin [x:var]: tm -> Prop :=
notin_var: (y:var)~x=y -> (notin x (is_var y))

| notin_app: (M,N:tm)(notin x M) -> (notin x N) -> (notin x (app M N))
| notin_lam: (y:var)(M:tm)(notin x M) -> ~x=y -> (notin x (lam y M)).

As anticipated, the intuitive meaning of (notin x M) is that the variable x does not occur
(neither free nor bound) in the M. It is clear that the definition of the notin predicate is
directly driven by the inductive definition of type tm (one case for each constructor of tm).
The next adequacy result states that notin represents the predicate /∈Λ

V whose rules (as one
would write them “on paper”) are depicted in Figure 6.2.

Proposition 6.2 (Adequacy of notin) 1. (Soundness) Let X ⊂ V finite, x ∈ V, if t
is a canonical form such that ΓX∪{x} `ΣΛ

t : (notin x M), then we have x /∈Λ
V δΛ

X(M).

2. (Completeness) Let X ⊂ V finite, x ∈ V, M ∈ ΛX , then if x /∈Λ
V M there is a canonical

form t such that ΓX∪{x} `ΣΛ
t : (notin x εΛX(M)).

Proof. This result can be proved easily by means of Proposition 6.1 and the following
techniques:

1. (Soundness) induction on the structure of the normal forms t.

2. (Completeness) induction on the structure of the derivation of the non-occurrence
judgment. ut

98 CHAPTER 6. CASE STUDIES

The notin predicate will allow us, by means of the unsaturation axiom of the Theory of
Contexts, to always have at hand fresh variables whenever this is needed.

Even if there are no higher-order constructors in the definition of the type tm, all the
axioms of the Theory of Contexts turned out to be useful or even necessary in the formal
development illustrated in the next sections. As the type var is concerned we assume that
the equivalence between names is decidable:

Axiom dec: (x,y:var)x=y \/ ~x=y.

Obviously, in the case of a logical framework implementing classical logic this axiom is an
instantiation of the law of excluded middle and does not need to be explicitly assumed.

The second axiom about the type var is the unsaturation, but here we prefer to assume
a “general” form which is independent from the particular syntax of the object language.
Hence, we introduce a type encoding (finite) lists of variables:

Inductive var_list: Set :=
empty: var_list | cons : var -> var_list -> var_list.

The next step is to define a predicate notin list allowing to express the non occurrence of
a variable in a given list:

Inductive notin_list [x:var]: var_list -> Prop :=
notin_empty: (notin_list x empty)

| notin_cons : (y:var)(l:var_list)~x=y -> (notin_list x l) ->
(notin_list x (cons y l)).

At this point we can introduce the following general axiom of unsaturation:

Axiom unsat_list: (l:var_list)(Ex [x:var](notin_list x l)).

It simply states that, for every list of variables, we can always pick a new variable not
occurring in it. The usual unsaturation axiom of the Theory of Contexts can be derived
from unsat list by means of the following result:

Lemma TM_VAR_LIST: (M:tm)
(Ex [l:var_list](x:var)(notin_list x l) -> (notin x M)).

The previous lemma states that, for every term M, there is a list of variables such that if a
given variable does not occur in the list, then it cannot occur in M either. The proof is an
easy induction on the structure of M. As anticipated, we can now derive the unsaturation
property for terms of type tm:

Lemma UNSAT: (M:tm)(Ex [x:var](notin x M)).

The lack of higher-order constructors in tm allows us to derive the axiom of β-expansion
for plain terms by means of an easy structural induction on M:

Lemma EXP: (M:tm)(x:var)(Ex [N:var->tm](notin_context x N) /\ M=(N x)).

The decidability of occur checking is also derivable by means of an easy structural in-
duction over M:

Lemma NOTIN_DEC: (M:tm)(x:var)(notin x M) \/ (isin x M).

6.1. α-EQUIVALENCE FOR THE UNTYPED λ-CALCULUS 99

where (isin x M) holds if and only if the variable x occurs in M. For the sake of completeness,
we also give the inductive definition of the isin predicate:

Inductive isin [x:var]: tm -> Prop:=
isin_var: (isin x (is_var x))

| isin_app: (M,N:tm)(isin x M) \/ (isin x N) -> (isin x (app M N))
| isin_lam: (y:var)(M:tm)x=y \/ (isin x M) -> (isin x (lam y M)).

Like in the case of the dec axiom, in a classical logical framework this result could be obtained
as a special case of the law of excluded middle, provided that (isin x M) is equivalent to
(notin x M) (this is not difficult to prove).

On the other hand, the extensionality and monotonicity axioms still have to be postu-
lated:

Axiom ext: (F,G:var->tm)(x:var)(notin_context x F)->(notin_context x G)->
(F x)=(G x) -> F=G.

Axiom notin_mono: (M:var->tm)(x,y:var)(notin x (M y))->(notin_context x M).

where notin context is the following abbreviation:

Definition notin_context:=[x:var][F:var->tm]((y:var)~x=y->(notin x (F y))).

Interestingly, it is possible to derive the following result by structural induction on A (using
ext and EXP):

Lemma PRE_NOTIN_MONO: (A:tm)(M:var->tm)(z:var)(notin_context z M) -> A=(M z)
-> (x,y:var)(notin x (M y)) -> (notin_context x M).

However, the previous lemma is not sufficient in order to derive the monotonicity; indeed,
in order to achieve such a result, we should be able to provide a term A and a variable z
not occurring in the context M such that A=(M x), while our unsaturation result works only
for terms of type tm, not for functional terms of type var->tm. Ironically enough, the lack
of a higher order constructor of the type tm is the main reason for this failure. Actually, in
the case of a HOAS-based encoding the type of lam would be (var->tm)->tm and we could
prove the unsaturation result for contexts by eliminating UNSAT over the first order term
(lam M).

In order to give an idea of the expressive power of the Theory of Contexts, we mention
here that with the signature given so far, it is possible to derive a higher-order induction
principle. More precisely, we have the following result:

Lemma HO_TM_IND: (P:(var->tm)->Prop)
((x:var)(P [_:var](is_var x))) ->
(P is_var) ->
((M,N:var->tm)(P M)->(P N)->(P [x:var](app (M x) (N x))))->
((M:var->tm)(P M) -> (P [x:var](lam x (M x)))) ->
((y:var)(M:var->tm)(P M) -> (P [x:var](lam y (M x)))) ->
(M:var->tm)(P M).

The proof technique is the same used in the lemma PRE NOTIN MONO: we first prove a weaker
result, i.e.:

100 CHAPTER 6. CASE STUDIES

Lemma PRE_HO_TM_IND: (M:tm)(x:var)(N:var->tm)
(notin_context x N) -> M=(N x) ->
(P:(var->tm)->Prop)
((x:var)(P [_:var](is_var x))) -> (P is_var) ->
((p,q:var->tm)(P p) -> (P q) ->
(P [x:var](app (p x) (q x)))) ->
((p:var->tm)(P p) -> (P [x:var](lam x (p x)))) ->
((y:var)(p:var->tm)(P p) -> (P [x:var](lam y (p x))))->
(P N).

by structural induction on M. The β-expansion and extensionality axioms (resp. EXP and
ext) play a fundamental role in the proof; indeed, the structural induction on terms of type
tm automatically generated by the Coq proof assistant provides only information related to
the structure of M, but in order to conclude we must know the structure of the context N.
This important step is accomplished in the following way: since we know by hypothesis that
M=(N x), we can expand M into (M’ x), such that (notin context x M’) holds. It follows
that (N x)=(M’ x), whence, by means of extensionality, we obtain N=M’ which provides the
information about the structure of N we were looking for. A practical example will make
things more clear: let us suppose we are working on the case where M=(app A B). So, we
expand M w.r.t. the variable x, but this means expanding both A and B w.r.t. the variable
x obtaining two contexts A’ and B’ such that A=(A’ x), (notin context x A’), B=(B’ x)
and (notin context x B’). Hence, we obtain that M=(app (A’ x) (B’ x)) holds and con-
sequently (N x)=(app (A’ x) (B’ x)). It follows by extensionality that N=([:var](app
(A’) (B’))), whence we know that the context N is an application context.

Now, in order to obtain HO TM IND, we need to provide a term A and a variable z not
occurring in the context M such that A=(M x). This time we can do it because the higher-order
unsaturation can be derived from UNSAT and notin mono:

Lemma HO_UNSAT: (M:var->tm)(Ex [x:var](notin_context x M)).

Hence, in order to conclude, we can choose the variable, say z, provided by eliminating
HO UNSAT over M and the term (M z).

6.1.3 Encoding the α-equivalence relation (I)

We take as a starting point the following definition taken from [Bar81]:

Definition 6.1 (i) A change of bound variables in M is the replacement of a
part λx.N of M by λy.(N [x := y]) where y does not occur (at all) in N . (Because
y is fresh there is no danger in the substitution N [x := y]).

(ii) M is α-congruent with N , notation M ≡α N , if N results from M by a series
of changes of bound variables.

It is clear that a fresh renaming mechanism lies at the very heart of the notion of α-
equivalence. Hence, we must first approach the problem of representing the mechanism
of changing a bound variable with a fresh one in a λ-term. This task is accomplished by
introducing the following inductive predicate:

Inductive change_var [x,y:var]: tm -> tm -> Prop :=
change_var_var1: (change_var x y (is_var x) (is_var y))

| change_var_var2: (z:var)~x=z -> (change_var x y (is_var z) (is_var z))

6.1. α-EQUIVALENCE FOR THE UNTYPED λ-CALCULUS 101

−
x[x := y] = y

(CV VAR1)

x 6= z

z[x := y] = z
(CV VAR2)

M [x := y] = M ′ N [x := y] = N ′

(MN)[x := y] = M ′N ′ (CV APP)

M [x := y] = M ′

(λx.M)[x := y] = λy.M ′ (CV LAM1)

M [x := y] = M ′ x 6= z

(λz.M)[x := y] = λz.M ′ (CV LAM2)

Figure 6.3: Changing a variable in a λ-term.

| change_var_app: (R,S,R’,S’:tm)
(change_var x y R R’) -> (change_var x y S S’) ->
(change_var x y (app R S) (app R’ S’))

| change_var_lam1: (M,M’:tm)(change_var x y M M’) ->
(change_var x y (lam x M) (lam y M’))

| change_var_lam2: (M,M’:tm)(z:var)~x=z -> (change_var x y M M’) ->
(change_var x y (lam z M) (lam z M’)).

Intuitively, (change var x y M N) holds if and only if the term N is the result of replacing
each occurrence (free or bound) of x with y in M. Whence, if M , εΛX(M) and N , εΛX(N), then
(change var x y M N) represents the change of variable N = M [x := y]. More formally,
the following result states the adequacy of change var w.r.t. the predicate whose inference
rules are depicted in Figure 6.3.

Proposition 6.3 (Adequacy of change var) 1. (Soundness) Let X ⊂ V finite, x, y ∈
V, if t is a canonical form such that ΓX∪{x,y} `ΣΛ

t : (change var x y M N), then we
have δΛ

X(M)[x := y] = δΛ
X(N).

2. (Completeness) Let X ⊂ V finite, x, y ∈ V, M,N ∈ ΛX , then if M [x := y] = N there
is a canonical form t such that

ΓX∪{x,y} `ΣΛ
t : (change var x y εΛX(M) εΛX(N)).

Proof. Also this result can be proved trivially by the same technique specified in Proposi-
tion 6.2. ut

Obviously, changing a variable “blindly” (i.e., without checking if the new one is fresh)
by means of change var could yield a problem of capturing occurrences of variables which
were free before performing the replacement. An example will make things clear: consider
the term (lam x (app x y))= εΛ{x,y}(λx.xy), then we can derive (change var y x (lam
x (app x y)) (lam x (app x x))) which corresponds to the following equation “on the
paper”:

(λx.xy)[y := x] = λx.xx

102 CHAPTER 6. CASE STUDIES

It is clear that the free occurrence of y in λx.xy has been captured once replaced by x. As
a consequence the λ-terms λx.xy and λx.xx are not α-equivalent. Hence, in order to avoid
such a danger, we must be sure that, when we are going to replace a variable in a λ-term,
the new one is fresh. This is where our auxiliary predicate notin comes into play, i.e., we
are now ready to introduce the inductive predicate encoding the notion of α-equivalence:

Inductive alphaBar: tm -> tm -> Prop:=
alphaBar_var : (x:var)(alphaBar (is_var x) (is_var x))

| alphaBar_app : (M,M’,N,N’:tm)(alphaBar M M’) -> (alphaBar N N’) ->
(alphaBar (app M N) (app M’ N’))

| alphaBar_lam1 : (x:var)(M,N:tm)(alphaBar M N) ->
(alphaBar (lam x M) (lam x N))

| alphaBar_lam2 : (x,y:var)(M,N:tm)(notin y M) ->
(change_var x y M N) -> (alphaBar (lam x M) (lam y N))

| alphaBar_trans: (M,N,R:tm)
(alphaBar M R) -> (alphaBar R N) -> (alphaBar M N).

The first three constructors are congruence rules, the fourth one is the change of bound
variables rule, while the last one is transitivity (recall that two terms can differ by a series
of changes of bound variables).

Proposition 6.4 (Adequacy of alphaBar) 1. (Soundness) Let X ⊂ V finite, if t is a
canonical form such that ΓX `ΣΛ

t : (alphaBar M N), then we have δX(M) ≡α δX(N).

2. (Completeness) Let X ⊂ V finite, M,N ∈ ΛX , then if M ≡α N there is a canonical
form t such that ΓX `ΣΛ

t : (alphaBar εX(M) εX(N)).

Proof. Again, this result easily follows applying the same technique used in the previous
adequacy propositions. ut
Thanks to the previous adequacy theorem, alphaBar can be regarded as a specification
which the subsequent definitions we are going to investigate must fulfill in order to faithfully
represent the notion of α-equivalence.

6.1.4 Encoding of α-equivalence (II)

The presence of rule alphaBar trans in our first encoding of α-equivalence is rather prob-
lematic from the point of view of a computer assisted formal development. Indeed, if we
need to invert an hypothesis of type (alphaBar M N) during a proof in order to acquire some
information on the structure of the arguments M and N, among the other subgoals we obtain
a case where our initial hypothesis has been replaced by two new hypotheses (alphaBar M
R) and (alphaBar R N) for a generic R. Hence, no useful information is provided and we
are stuck, since inverting again would yield another subcase of this kind and so on. In order
to overcome this kind of difficulty, we need an alternative axiomatization of α-equivalence
where all the rules enjoy the subformula property. This is the approach taken in [MP99];
mutatis mutandis their alternative formulation gives rise to the following inductive predicate:

Inductive alphaMKP: tm -> tm -> Prop:=
alphaMKP_var: (x:var)(alphaMKP (is_var x) (is_var x))

| alphaMKP_app: (M,M’,N,N’:tm)(alphaMKP M M’) -> (alphaMKP N N’) ->
(alphaMKP (app M N) (app M’ N’))

6.1. α-EQUIVALENCE FOR THE UNTYPED λ-CALCULUS 103

| alphaMKP_lam: (x,y,z:var)(M,M’,N,N’:tm)
(notin z M) -> (notin z N) ->
(change_var x z M M’) -> (change_var y z N N’) ->
(alphaMKP M’ N’) -> (alphaMKP (lam x M) (lam y N)).

The first two constructors (alphaMKP var and alphaMKP app) do not deserve any comments
since they represent congruence rules, while the alphaMKP lam constructor is not completely
trivial. It states that, in order to conclude that the terms λx.M and λy.N are equivalent,
we must pick a fresh name z (not occurring at all in M and N) and prove that M [x := z] is
α-equivalent to N [y := z]. That is, two terms are α-equivalent if and only if they differ by
a series of changes of bound variables (see Definition 6.1).

Before formally proving the equivalence of alphaBAR and alphaMKP we need to show that
alphaMKP is preserved by the lam constructor and that it is transitive. Hence, we delay the
equivalence result to Section 6.1.6, when all the necessary lemmata will have been derived.

6.1.5 Formal metatheory of α-equivalence

For the reason illustrated in the previous section (impossibility of using inversion on hy-
potheses of type (alphaBar A B)), we stick to our second encoding in order to carry out
a formal development of the metatheory of α-equivalence. However, all the results can be
easily “ported” to the first encoding thanks to the equivalence result proved in Section 6.1.6.

Naturally, the first thing one would like to prove in Coq about an encoding of the α-
equivalence is that it is indeed an equivalence, i.e., a reflexive, symmetric and transitive
relation. However, the initial enthusiasm ends shortly at the first attempt to prove the
reflexivity property:

Lemma ALPHAMKP_REFL: (A:tm)(alphaMKP A A).

Indeed, the “natural” approach is to proceed by structural induction on A, but when we
must solve the last subgoal (related to the lam constructor), we have a non trivial problem
to deal with. More precisely, the proof context is the following:

A : tm
v : var
t : tm
H : (alphaMKP t t)
============================
(alphaMKP (lam v t) (lam v t))

Hence, in order to proceed, applying the appropriate introduction rule (alphaMKP lam), we
must supply a fresh name yielded by the unsaturation axiom. Thus, after some easy steps
we get the following:

A : tm
v : var
t : tm
H : (alphaMKP t t)
x : var
H2 : (notin x t)
H0 : ~x=v
x0 : tm

104 CHAPTER 6. CASE STUDIES

H1 : (change_var v x t x0)
============================
(alphaMKP (lam v t) (lam v t))

Now, we are ready to apply the rule alphaMKP lam with arguments x (the fresh name which
will replace v in t) and x0 (the result of replacing x for v in t). The result of this step is:

A : tm
v : var
t : tm
H : (alphaMKP t t)
x : var
H2 : (notin x t)
H0 : ~x=v
x0 : tm
H1 : (change_var v x t x0)
============================
(alphaMKP x0 x0)

At his point we are stuck because we know that (alphaMKP t t) holds but we have to
prove that (alphaMKP x0 x0) holds. Translating the problem in terms of informal proofs
with “pencil and paper”, this means that we must prove A[v := x] ≡α A[v := x] knowing
that A ≡α A, x 6= v and x /∈Λ

V A. Later on, proving the transitivity of alphaMKP and
the internal equivalence between alphaMKP and the second encoding alphaGP of the α-
equivalence relation, we will need a more general result stating that we can derive A[x :=
y] ≡α B[x := y] knowing that A ≡α B, x 6= y and y /∈Λ

V A,B. This is exactly the renaming
result mentioned in Section 6.1; once formulated in Coq, it appears as follows:

Lemma ALPHAMKP_RW: (A,B:tm)(alphaMKP A B) ->
(x,z:var)(notin z A) -> (notin z B) ->
(A’:tm)(change_var x z A A’) ->
(B’:tm)(change_var x z B B’) -> (alphaMKP A’ B’).

In order to prove ALPHAMKP RW, a näıve approach would be to use the induction principle
for the predicate alphaMKP, automatically generated by the Coq proof assistant. However,
this attempt fails when we face the case where the last rule used in the derivation of the
judgment (alphaMKP A B) is alphaMKP lam. Indeed, in order to prove this step, we need to
apply the inductive hypothesis to any proof smaller than the induction variable. In other
words, we need a complete induction principle; in order to derive it, we define the following
predicate:

Inductive l: tm -> nat -> Prop:=
l_var : (x:var)(l (is_var x) O)

| l_app : (M,N:tm)(n1,n2:nat)
(l M n1) -> (l N n2) -> (l (app M N) (S (plus n1 n2)))

| l_lam : (x:var)(M:tm)(n:nat)(l M n) -> (l (lam x M) (S n)).

Intuitively, (l M n) holds if and only if the term M of type tm contains n occurrences of the
app and lam constructors. It follows that l can be taken as a measure of a term of type tm;
moreover, if N is a proper subterm of M and (l N n1) and (l M n2) hold, we have that (lt

6.1. α-EQUIVALENCE FOR THE UNTYPED λ-CALCULUS 105

n1 n2) holds2. Hence, we can “mimick” a complete induction principle on the structure of
terms of type tm proceeding by complete induction on natural numbers. Again, the latter
principle is not automatically provided by Coq, but it can be easily derived:

Lemma NAT_IND: (P:nat->Prop)
(P O) -> ((n:nat)((m:nat)(lt m n) -> (P m)) -> (P n)) ->
(n:nat)(P n).

Now, we can prove the following result applying NAT IND:

Lemma PRE_ALPHAMKP_RW: (n:nat)(A:tm)(l A n) -> (B:tm)(alphaMKP A B) ->
(x,z:var)~(x=z) -> (notin z A) -> (notin z B) ->
(A’:tm)(change_var x z A A’) ->
(B’:tm)(change_var x z B B’) ->
(alphaMKP A’ B’).

During the proof development of the previous lemma there is a wide use of the fact that the
measure of a term of type tm is preserved by changing variables in it:

Lemma L_CHANGE_VAR: (A:tm)(n:nat)(l A n) ->
(x,y:var)(B:tm)(change_var x y A B) -> (l B n).

Hence, we can obtain ALPHAMKP RW from PRE ALPHAMKP RW and the following lemma, stating
that every term of type tm has a measure:

Lemma L_TOT: (A:tm)(Ex [n:nat](l A n)).

Continuing with our attempt to formalize the metatheory of the α-equivalence relation,
we have to prove that alphaMKP is a symmetric relation:

Lemma ALPHAMKP_SYM: (A,B:tm)(alphaMKP A B) -> (alphaMKP B A).

The proof is a straightforward structural induction on the judgment (alphaMKP A B), since
the introduction rules of alphaMKP are clearly symmetric.

As to the transitivity of alphaMKP, this represents another big challenge. Indeed, an
attempt to prove it by induction on the derivation of the judgment of type (alphaMKP A
B) using the principle provided by Coq fails when we must face the case relative to the rule
alphaMKP lam. The reason is that the induction hypothesis is too weak; actually, the proof
context is the following:

A : tm
B : tm
H : (alphaMKP A B)
x : var
y : var
z : var
M : tm
M’ : tm
N : tm
N’ : tm
2In Coq lt (standing for less than) is a binary predicate on natural numbers which holds if and only if the

first argument is strictly smaller than the second one.

106 CHAPTER 6. CASE STUDIES

H0 : (notin z M)
H1 : (notin z N)
H2 : (change_var x z M M’)
H3 : (change_var y z N N’)
H4 : (alphaMKP M’ N’)
H5 : (C:tm)(alphaMKP N’ C)->(alphaMKP M’ C)
C : tm
H6 : (alphaMKP (lam y N) C)
============================
(alphaMKP (lam x M) C)

Whence, inverting hypothesis H6, we obtain:

A : tm
B : tm
H : (alphaMKP A B)
x : var
y : var
z : var
M : tm
M’ : tm
N : tm
N’ : tm
H0 : (notin z M)
H1 : (notin z N)
H2 : (change_var x z M M’)
H3 : (change_var y z N N’)
H4 : (alphaMKP M’ N’)
H5 : (C:tm)(alphaMKP N’ C)->(alphaMKP M’ C)
C : tm
y0 : var
z0 : var
M’0 : tm
N0 : tm
N’0 : tm
H7 : (notin z0 N)
H8 : (notin z0 N0)
H9 : (change_var y z0 N M’0)
H10 : (change_var y0 z0 N0 N’0)
H11 : (alphaMKP M’0 N’0)
============================
(alphaMKP (lam x M) (lam y0 N0))

The next step would be to use the unsaturation axiom in order to obtain a name, say u,
fresh in M, N and N0 (since neither z nor z0 enjoys this property). Then, applying rule
alphaMKP lam we would have to prove that the term obtained changing the variable x with u
in M is α-equivalent to the term obtained changing the variable y0 with u in N0. However, the
only way available to accomplish this is using the induction hypothesis H5 which is clearly
too weak. Actually, it only holds for renamings of M and N where x and y are replaced
by z. In order to obtain the right induction hypothesis, we follow an approach pioneered

6.1. α-EQUIVALENCE FOR THE UNTYPED λ-CALCULUS 107

in [MP99], i.e., we define another equivalence relation alphaMKP’ with the appropriate rule
for the lam constructor. Then, we prove its transitivity and, finally, we show that it is
formally equivalent to alphaMKP. As anticipated, the definition of alphaMKP’ differs from
that of alphaMKP only for the rule of the lam constructor:

alphaMKP’_lam: (x,y:var)(M,N:tm)
((z:var)(M’,N’:tm)(notin z M) -> (notin z N) ->
(change_var x z M M’) -> (change_var y z N N’) ->
(alphaMKP’ M’ N’)

) -> (alphaMKP’ (lam x M) (lam y N)).

Obviously, the transitivity of alphaMKP’ requires a renaming result similar to ALPHAMKP RW
and it is proved with the same technique.

As a pragmatic remark, we notice that in the abovementioned proofs involving the pred-
icate l, in order to prove the subgoals of the form (lt n1 n2), we used the Coq library
Omega which completely automatizes such cases, freeing the user from proving tedious aux-
iliary lemmata3.

For the sake of completeness, we list here a set of properties about change var which
have been useful in proving both the abovementioned results and the rest of our formal
development.

• If B = A[x := y] and C = A[x := y], then B = C:

Lemma CHANGE_VAR_DET: (A,B:tm)(x,y:var)(change_var x y A B) ->
(C:tm)(change_var x y A C) -> B=C.

• For every A ∈ Λ, x, y ∈ V, there exists B such that B = A[x := y]:

Lemma CHANGE_VAR_TOT: (A:tm)(x,y:var)(Ex [B:tm](change_var x y A B)).

• If B = A[x := z], y 6= z and y /∈Λ
V A, then y /∈Λ

V B:

Lemma CHANGE_VAR_NOTIN: (x,z:var)(A,B:tm)(change_var x z A B) ->
(y:var)~(y=z) -> (notin y A) -> (notin y B).

• If B = A[x := y] and x 6= y, then x /∈Λ
V B:

Lemma CHANGE_VAR_NOTIN2: (x,y:var)(A,B:tm)
(change_var x y A B) -> ~x=y -> (notin x B).

• If B = A[x := y], y /∈Λ
V A, and C = B[y := z], then C = A[x := z]:

Lemma CHANGE_VAR_COMP: (x,y:var)(A,B:tm)
(change_var x y A B) -> (notin y A) ->
(z:var)(C:tm)(change_var y z B C) ->
(change_var x z A C).

3Someone could find that there are some eschatological insights into the computer assisted proof develop-
ment activity since, in order to formalize the metatheory of the α-equivalence, one resorts to use a library
named Ω.

108 CHAPTER 6. CASE STUDIES

• If B = A[x := z], z /∈Λ
V A, and C = A[x := y], then B = C[y := z]:

Lemma CHANGE_VAR_COMPINV: (x,z:var)(A,B:tm)
(change_var x z A B) -> (notin z A) ->
(y:var)(C:tm)(change_var x y A C) ->
(change_var z y B C).

• If y /∈Λ
V A and B = A[x := y], then B = A[y := x]:

Lemma CHANGE_VAR_INV: (x,y:var)(A,B:tm)(notin y A) ->
(change_var x y A B) -> (change_var y x B A).

• If B = A[x := y], x 6= z, y 6= z, x 6= v, C = B[z := v] and D = A[z := v], then
C = D[x := y]:

Lemma CHANGE_VAR_COMM: (x,y:var)(A,B:tm)(change_var x y A B) ->
(z,v:var)(C:tm)~(x=z) -> ~(y=z) -> ~(x=v) ->
(change_var z v B C) ->
(D:tm)(change_var z v A D) ->
(change_var x y D C).

• If N = M [x := x], then M = N :

Lemma CHANGE_VAR_ID: (M,N:tm)(x:var)(change_var x x M N) -> M=N.

• If x /∈Λ
V A and B := A[x := y], then A = B:

Lemma CHANGE_VAR_ID2: (x,y:var)(A,B:tm)(notin x A) ->
(change_var x y A B) -> A=B.

• If B = A[x := y], y /∈Λ
V A and y /∈Λ

V B, then A = B:

Lemma CHANGE_VAR_ID3: (A,B:tm)(x,y:var)(change_var x y A B) ->
(notin y A) -> (notin y B) -> A=B.

6.1.6 Formal equivalence of alphaBar and alphaMKP

As anticipated in Section 6.1.4, we formally proved in Coq the equivalence of alphaBar and
alphaMKP:

Lemma ALPHABAR_ALPHAMKP: (A,B:tm)(alphaBar A B) -> (alphaMKP A B).

Lemma ALPHAMKP_ALPHABAR: (A,B:tm)(alphaMKP A B) -> (alphaBar A B).

Both proofs proceed by structural induction on the derivation of the respective premises. In
the former case we needed the closure under the lam constructor of alphaMKP, its reflexivity
and transitivity. In the latter case instead, we used the reflexivity of alphaBar (which
is trivial to prove). For the sake of completeness we give here the Coq statements of the
abovementioned auxiliary lemma stating that alphaMKP is preserved by the lam constructor:

Lemma ALPHAMKP_LAM: (M,N:tm)(alphaMKP M N)->
(x:var)(alphaMKP (lam x M) (lam x N)).

6.1. α-EQUIVALENCE FOR THE UNTYPED λ-CALCULUS 109

x ∈ V
x ∼ x

(GP-α-VAR)

M1 ∼ M ′
1 M2 ∼ M ′

2

M1M2 ∼ M ′
1M

′
2

(GP-α-APP)

(z x) ·M ∼ (z y) ·M ′

λx.M ∼ λy.M ′ (z does not occur in M , M ′) (GP-α-LAM)

Figure 6.4: Gabbay-Pitts alternative definition of α-equivalence.

6.1.7 Encoding the α-equivalence relation (III)

In [GP99], an alternative formulation of the α-equivalence relation, relying on variable-
transpositions, has been proposed and proved to be equivalent to the “conventional” def-
inition on paper. In this section we will show how the HOAS-encoding approach can be
fruitfully exploited in order to encode the abovementioned alternative definition; moreover,
by means of the Theory of Contexts, we will formally prove the equivalence of this encoding
and the one illustrated in Section 6.1.4.

In the following we will use the notation introduced in [GP99] to denote the operation of
variable-transposition. Hence, (y x) ·M stands for the transposition of all the occurrences
(both free and bound) of x and y in the term M (in other words all the occurrences of x are
replaced by occurrences of y and vice versa).

As proved in [GP99], despite the fact that this operation is more basic than other more
common notions of renaming (namely, textual and capture-avoiding substitution), it can be
used to give an alternative definition of α-equivalence. Indeed, the latter coincides with the
binary relation ∼ inductively defined by the axioms and rules in Figure 6.4.

The operation of variable transposition can be expressed by means of HOAS in a very
natural way; indeed, if x and y are are two distinct variables occurring in the term M and
εΛX(M) = M, then we can derive4 that there is a context M’:var->var->tm such that x and
y do not occur in M’ and M=(M’ x y) holds. Then the operation (y x) ·M can be simply
denoted by (M’ y x). Moreover, if y does not occur in M , we have that M=(M’’ x) where
both x and y do not occur in M’’. Whence the operation (y x) ·M can be denoted by (M’’
y), without resorting to binary contexts.

Thus, the encoding of the Gabbay-Pitts formulation of α-equivalence is given by the
following inductive predicate:

Inductive alphaGP: tm -> tm -> Prop:=
alphaGP_var: (x:var)(alphaGP (is_var x) (is_var x))

| alphaGP_app: (M,M’,N,N’:tm)(alphaGP M M’) -> (alphaGP N N’) ->
(alphaGP (app M N) (app M’ N’))

| alphaGP_lam: (M,N:var->tm)(x,x’,y:var)
(notin_context x M) -> (notin_context x’ N) ->
(notin_context y M) -> (notin_context y N) ->
(alphaGP (M y) (N y)) ->
(alphaGP (lam x (M x)) (lam x’ (N x’))).

4The derivation makes use of lemma EXP (presented in Section 6.1.2) and of the axioms of β-expansion for
unary contexts and monotonicity.

110 CHAPTER 6. CASE STUDIES

As we can see, the only differences w.r.t. the definition of alphaMKP are obviously in the
rule involving the lam constructor.

6.1.8 Formal equivalence of alphaMKP and alphaGP

So far, if we exclude the derivation of the higher-order induction principle HO TM IND and
of the lemma PRE NOTIN MONO, among the axioms of the Theory of Contexts, only the un-
saturation property (unsat list) and the decidability of the equality between names (dec)
have been necessary during the proof development. This is not a surprising result since no
higher-order constructors are present in our signature. However, the situation dramatically
changes when we face the problem of formally proving the equivalence between alphaMKP
and alphaGP, since the latter features an introduction rule where variable-transposition is
modeled by means of functional application.

The equivalence is given by the following results:

Lemma ALPHAMKP_ALPHAGP: (A,B:tm)(alphaMKP A B) -> (alphaGP A B).

Lemma ALPHAGP_ALPHAMKP: (A,B:tm)(alphaGP A B) -> (alphaMKP A B).

Both proofs are carried out by induction on the derivation of the premise ((alphaMKP A B)
for the former and (alphaGP A B) for the latter). The only interesting cases are related to
the introduction rules for the lam constructor: in the proof of ALPHAMKP the key property
to prove in order to conclude is the following (an easy induction on M with the aid of the
expansion and extensionality axioms):

Lemma CHANGE_VAR_RW: (M,N:tm)(x,y:var)
(change_var x y M N) ->
(M’:var->tm)(notin_context x M’) ->
M=(M’ x)->N=(M’ y).

In the proof of ALPHAGP, also the renaming result ALPHAMKP RW is necessary since the judg-
ments (notin context y M) and (notin context y N) do not necessarily imply (notin y
(M x)) and (notin y (N x’)) (while the vice versa is true by the monotonicity axiom).
Hence, we cannot use the name y provided by the induction hypothesis, but we must pick a
completely fresh variable in order to conclude.

Lemma CHANGE VAR RW can be regarded as the formal link between first-order implemen-
tations of substitution (in this case a change of variables) and the higher-order paradigm
which delegates this fundamental mechanism to the underlying metalanguage.

From the main result of this section and the previously proved equivalence of alphaBar
and alphaMKP we can conclude that all the alternative formulations we investigated are
indeed formally equivalent. In our opinion, the moral of this case study is that an HOAS-
based approach towards substitution of variables for variables turns out to be useful even
when there are no binders in the object language (or for some reason they cannot be encoded
by means of the binder of the metalanguage). Indeed, alphaGP, as an inductive definition,
appears to be more clean and elegant than both alphaBar and alphaMKP; moreover, the
former does not depend on an auxiliary relation (alphaBar and alphaMKP, instead, depend
on change var).

We conclude this section noticing that in [GP01] (an extended and revised version
of [GP99]) the introduction rule of ∼ regarding the binder λ is enriched by a new side

6.2. AMBIENTS 111

condition, whence rule (GP-α-LAM) in Figure 6.4 should appear as follows:

(z x) ·M ∼ (z y) ·M ′

λx.M ∼ λy.M ′ (z does not occur in M ,M ′, z 6= x, y)

However, in our formal development we did not need to introduce such a new condition in
order to carry out the proofs. Indeed, if we assume that z does not occur in M ,M ′, then,
in the case that x (resp. y) occurs in M (resp. M ′), it is automatically verified that z is
distinct from x, y. Otherwise (i.e. if x, resp. y, does not occur in M , resp. M ′), the side
condition becomes superfluous.

6.2 Ambients

In this section we will focus on the encoding of the ambient calculus [CG98], a process algebra
extending the π-calculus with primitives well-suited for expressing and handling ambients,
i.e., bounded places where a computation can happen. Since ambients can be nested and
moved as a whole, they seem perfectly suited for representing administrative domains and
to model mobility. The access to a given ambient is controlled by its name, which can be
passed from agent to agent in order to provide access capabilities.

6.2.1 Syntax

The basic syntactic categories of the Ambient Calculus are names, capabilities and processes
(or agents): capabilities are defined by the following grammar:

M ::= Capabilities
n name
in M can enter into M
out M can exit out of M
open M can open M
ε null
M.M ′ path

Processes features two new constructors (w.r.t. the original π-calculus), namely, the ambient
operator (M [P]) and the capability action (M.P):

P, Q,R ::= Processes
(νn)P restriction
0 void
P |Q composition
!P replication
M [P] ambient
M.P capability action
(n).P input action
〈M〉 output action

There are no binders among the capability constructors, while processes provide the usual
binders, i.e., restriction and input action. Hence, the set of free names of a capability M
(fn(M)) and of a process P (fn(P)) are defined as usual (see Figure 6.5). In the following,
using the notation introduced in [CG01], we will denote by P{n ← M}, the capture avoiding

112 CHAPTER 6. CASE STUDIES

fn(n) , {n}
fn(in M) , fn(M)
fn(out M) , fn(M)
fn(open M) , fn(M)
fn(ε) , ∅
fn(M.M ′) , fn(M) ∪ fn(M ′)

fn((νn)P , fn(P) \ {n}
fn(0) , ∅
fn(P |Q) , fn(P) ∪ fn(Q)
fn(!P) , fn(P)
fn(M [P]) , fn(M) ∪ fn(P)
fn(M.P) , fn(M) ∪ fn(P)
fn((n).P) , fn(P) \ {n}
fn(〈M〉) , fn(M)

Figure 6.5: Free names.

substitution of the capability M for the free occurrences of n in P . It is assumed that
processes are identified up to α-conversion, that is, the identities (νn)P = (νm)P{n ← m}
and (n).P = (m).P{n ← m} hold (where m 6∈ fn(P) or m = n).

An ambient is denoted by n[P] (n is the name of the ambient) where P may contain other
ambients as well (i.e. ambients can be nested to form a hierarchical structure). Operations
changing such a structure are potentially dangerous (e.g. they can mean crossing a firewall,
entering into a restricted domain where sensitive data are stored); whence, they are regulated
by means of capabilities. For instance, the capability in n allows to enter into the ambient
named n, while out n allows to exit out of n and open n allows to open n. It should be noted
that, given n, possessing a capability on it does not allow one to retrieve the name n itself.

Following the notation adopted in [CG01] we will denote by Λ the sort of names, and by
Π the syntactic category of processes. Moreover, capabilities will be indicated by ζ.

6.2.2 Structural Congruence

The Ambient Calculus comes equipped with a relation of Structural Congruence (≡); the
latter makes the reduction system (see Section 6.2.3) simpler by identifying expressions
differing only by elementary (syntactic) rearrangements without any computational meaning.
The rules defining such a relation are listed in Figure 6.6. As noted in [Dal00], almost
all axioms and rules in Figure 6.6 have an equivalent among those defining the structural
congruence for the π-calculus. The most notable differences (if we obviously exclude the cases
involving the new constructors) are in two axioms involving replication, namely, (Struct Repl
Par) and (Struct Repl Repl).

6.2.3 Reduction System

The operational semantics of processes is given by means of a reduction system, an idea
going back to the Chemical Abstract Machine by Berry and Boudol [BB92] and adopted
later in several presentations of the π-calculus (e.g. [Mil93]) as an alternative to the labelled
transition system semantics.

While Structural Congruence can be seen as a relation describing the evolution of pro-
cesses in space, the Reduction System allows to represent the evolution in time, i.e, it allows
to formalize the dynamic behaviour of processes. The reduction rules for the Ambient Cal-
culus are depicted in Figure 6.7. The first three axioms in Figure 6.7 deal with the three
fundamental capabilities (in, out and open) allowing to express mobility of ambients, while
the fourth one represents local communication (that is the possibility of transmitting a ca-
pability to other agents). Among the structural rules, (Red Amb), establishing that any

6.2. AMBIENTS 113

−
P ≡ P

(Struct Refl)

P ≡ Q

Q ≡ P
(Struct Symm)

P ≡ Q, Q ≡ R

P ≡ R
(Struct Trans)

P ≡ Q

(νn)P ≡ (νn)Q
(Struct Res)

P ≡ Q

P |R ≡ Q|R (Struct Par)

P ≡ Q

!P ≡!Q
(Struct Repl)

P ≡ Q

n[P] ≡ n[Q]
(Struct Amb)

P ≡ Q

M.P ≡ M.Q
(Struct Action)

P ≡ Q

(n).P ≡ (n).Q
(Struct Input)

−
ε.P ≡ P

(Struct ε)

−
(M.M ′).P ≡ M.M ′.P

(Struct .)

−
(νn)(νm)P ≡ (νm)(νn)P

(Struct Res Res)

−
(νn)0 ≡ 0

(Struct Res Zero)

n 6∈ fn(P)
(νn)(P |Q) ≡ P |(νn)Q

(Struct Res Par)

n 6= m

(νn)(m[P]) ≡ m[(νn)P]
(Struct Res Amb)

−
P |0 ≡ P

(Struct Par Zero)

−
P |Q ≡ Q|P (Struct Par Comm)

−
(P |Q)|R ≡ P |(Q|R)

(Struct Par Assoc)

−
!0 ≡ 0

(Struct Repl Zero)

−
!(P |Q) ≡!P |!Q (Struct Repl Par)

−
!P ≡ P |!P (Struct Repl Copy)

−
!P ≡!!P

(Struct Repl Repl)

Figure 6.6: Structural Congruence.

reduction of P becomes a reduction of n[P], emphasizes the fact that P is running (active)
in the surrounding ambient even if the latter is moving. Finally, rule (Red ≡) allows to take
care of spatial rearrangements of processes during reductions.

6.2.4 The Logic

In [CG00], Cardelli and Gordon introduce a modal logic having the Ambient Calculus as
a model in order to naturally express and reason about properties of mobile computations.
The logic is then extended in [CG01] with new quantifiers and operators allowing to soundly
reason about properties involving restricted names (that is names bound by the ν operator).

Logical formulæ are defined by the following grammar (where η can be a name n or a
variable x):

A,B, C ::= T true η[A] location
¬A negation A@η location adjunct
A ∨ B disjunction ηA revelation
0 inaction A; η revelation adjunct
A|B composition ♦A sometime modality
A B B composition adjunct ✧A somewhere modality

∀x.A universal quantification

Keeping in mind that there are no name binders and only one variable binder (universal
quantification), the set of free names fn(A) and free variables fv(A) of a formula A are

114 CHAPTER 6. CASE STUDIES

−
n[in m.P |Q]|m[R] → m[n[P |Q]|R]

(Red In)

−
m[n[out m.P |Q]|R] → n[P |Q]|m[R]

(Red Out)

−
open n.P |n[Q] → P |Q (Red Open)

−
(n).P |〈M〉 → P{n ← M} (Red Comm)

P → Q

(νn)P → (νn)Q
(Red Res)

P → Q

P |R → Q|R (Red Par)

P → Q

n[P] → n[Q]
(Red Amb)

P ′ ≡ P, P → Q, Q ≡ Q′

P ′ → Q′ (Red ≡)

Figure 6.7: Reduction System.

defined by the clauses in Figure 6.8. A formula A is closed if fv(A) = ∅, while A{η ← µ}
denotes the substitution of a name or variable µ for another name or variable η (variables
can range only over names). As in the case of processes, formulæ are identified up to α-
conversion, that is the identity ∀x.A = ∀y.A{x ← y} is assumed (where y 6∈ fv(A) or y = x).
Following the notation adopted in [CG01], we will denote by ϑ the sort of variables and by
Φ the syntactic category of formulæ.

Intuitively, the constructors T, ¬ and ∨ provide propositional logic (negation is classical),
universal quantification gives predicate logic, while the remaining ones are related to the
process constructors.

More formally, the relation between processes and formulæ is established by the satis-
faction relation (|=): P |= A means that the process P satisfies the closed formula A as
specified by the rules in Figure 6.9. In particular, the satisfaction for the temporal modality
is defined by means of the reduction relation (→∗ is the reflexive and transitive closure of
→). As to the spatial modality instead, its satisfaction is given by means of the relation
↓. Intuitively, P ↓ P ′ means that P contains P ′ within exactly one level of nesting: more
formally we have P ↓ P ′ if and only if there exists a name n and a process P ′′ such that
P ≡ n[P ′]|P ′′. The relation ↓∗ is then defined as the reflexive and transitive closure of ↓.

6.2.5 Encoding of Syntax

In the following we will denote by ΣA the signature of our encoding of the Ambient Calculus.
The first constant we introduce in ΣA is the one encoding the type of names:

Parameter name: Set.

Hence, names of the Ambient Calculus will be represented by variables of Coq of type name.
Next, we encode the syntactic category of capabilities by means of the following inductive

6.2. AMBIENTS 115

fn(T) , ∅
fn(¬A) , fn(A)
fn(A ∨ B) , fn(A) ∪ fn(B)
fn(0) , ∅
fn(A|B) , fn(A) ∪ fn(B)
fn(A B B) , fn(A) ∪ fn(B)

fn(η[A]) ,
{
{n} ∪ fn(A) if η = n

fn(A) if η = x

fn(A@η) ,
{

fn(A) ∪ {n} if η = n

fn(A) if η = x

fn(ηA) ,
{
{n} ∪ fn(A) if η = n

fn(A) if η = x

fn(A; η) ,
{

fn(A) ∪ {n} if η = n

fn(A) if η = x

fn(♦A) , fn(A)
fn(✧A) , fn(A)
fn(∀x.A) , fn(A)

fv(T) , ∅
fv(¬A) , fv(A)
fv(A ∨ B) , fv(A) ∪ fv(B)
fv(0) , ∅
fv(A|B) , fv(A) ∪ fv(B)
fv(A B B) , fv(A) ∪ fv(B)

fv(η[A]) ,
{

fv(A) if η = n

{x} ∪ fv(A) if η = x

fv(A@η) ,
{

fv(A) if η = n

fv(A) ∪ {x} if η = x

fv(ηA) ,
{

fv(A) if η = n

{x} ∪ fv(A) if η = x

fv(A; η) ,
{

fv(A) if η = n

fv(A) ∪ {x} if η = x

fv(♦A) , fv(A)
fv(✧A) , fv(A)
fv(∀x.A) , fv(A) \ {x}

Figure 6.8: Free names and free variables of formulæ.

definition:

Inductive cap: Set :=
name2cap : name -> cap

| in_cap : cap -> cap
| out_cap : cap -> cap
| open : cap -> cap
| eps : cap
| path : cap -> cap -> cap.

In the following, for N , {n1, . . . , nk} ⊂ Λ finite, we will denote by ζX the set {M | M ∈
ζ, fn(M) ⊆ N}. Moreover, we will denote by ΓN the typing environment given by:

ΓN , {n1 : name, . . . , nk : name} ∪ {dij :~(ni = nj) | 1 ≤ i < j ≤ k}
Finally capN will represent the canonical forms M (i.e. βη-head normal forms) of type cap
such that ΓN `ΣA

M : cap. As we can see, there is a one-to-one correspondence between the
productions of the grammar defining the syntax of the object language and the constructors
of type cap. This fact is formalized by the encoding and decoding functions depicted in
Figure 6.10 and by the following adequacy result:

Proposition 6.5 For each N ⊂ Λ finite, εζ
N is a compositional bijection between ζN and

capN .

Proof. Standard, using the definitions in Figure 6.10 and proceeding by induction on the
structure of capabilities and of canonical forms of type cap. ut

So far, there are no binders; hence, the encoding of capabilities is a plain first order
one. However, the syntactic category of processes features two binders, namely, restriction

116 CHAPTER 6. CASE STUDIES

for all P ∈ Π, P |= T
for all P ∈ Π,A ∈ Φ P |= ¬A , P 6|= A
for all P ∈ Π,A,B ∈ Φ P |= A ∨ B , P |= A or P |= B
for all P ∈ Π P |= 0 , P ≡ 0
for all P ∈ Π,A,B ∈ Φ P |= A|B , there exist P ′, P ′′ ∈ Π such that

P ≡ P ′|P ′′,
P ′ |= A and P ′′ |= B

for all P ∈ Π,A,B ∈ Φ P |= A B B , for all P ′ ∈ Π, P ′ |= A implies P |P ′ |= B
for all P ∈ Π, n ∈ Λ,A ∈ Φ P |= n[A] , there exists P ′ ∈ Π such that P ≡ n[P ′]

and P ′ |= A
for all P ∈ Π,A ∈ Φ, n ∈ Λ P |= A@n , n[P] |= A
for all P ∈ Π, n ∈ Λ,A ∈ Φ P |= nA , there exists P ′ ∈ Π such that

P ≡ (νn)P ′ and P ′ |= A
for all P ∈ Π,A ∈ Φ, n ∈ Λ P |= A; n , (νn)P |= A
for all P ∈ Π,A ∈ Φ P |= ♦A , there exists P ′ ∈ Π such that P →∗ P ′

and P ′ |= A
for all P ∈ Π,A ∈ Φ P |= ✧A , there exists P ′ ∈ Π such that P ↓∗ P ′

and P ′ |= A
for all P ∈ Π, x ∈ ϑ,A ∈ Φ P |= ∀x.A , for all m ∈ Λ, P |= A{x ← m}

Figure 6.9: Satisfaction.

and input action: in this case we want to take full advantage by adopting a HOAS-based
encoding approach:

Inductive proc: Set :=
nu : (name -> proc) -> proc

| nil : proc
| par : proc -> proc -> proc
| bang : proc -> proc
| ambient : cap -> proc -> proc
| cap_act : cap -> proc -> proc
| in_act : (name -> proc) -> proc
| out_act : cap -> proc.

Since nu and in act take as arguments functions of type name->proc, α-conversion and
capture-avoiding substitution of names for names are automatically delegated to the meta-
language, freeing the user from thinking about renaming of bound variables and name clashes
in general. As in the case of the capabilities encoding, for N ⊂ Λ finite, we will denote by
ΠN the set {P | P ∈ Π, fn(P) ⊆ N}. Moreover, procN will represent the canonical forms
P (i.e. βη-head normal forms) of type proc such that ΓN `ΣA

P : proc. Since the encoding
follows the HOAS principles, in order to define the decoding function δΠ

N (see Figure 6.11),
we need a map fresh : P<ω(Λ) −→ Λ. The latter can be viewed as a “fresh name selection”
function, i.e., for every N ⊂ Λ finite (N ∈ P<ω(Λ)), fresh(N) 6∈ N . If Λ is enumerable, a
possible definition for fresh is fresh(N) = nmax{i|ni∈N}+1, where (ni)i is a given enumeration
of Λ. The following result establishes the adequacy of our encoding:

6.2. AMBIENTS 117

εζ
N : ζN −→ capN

εζ
N (n) , (name2cap n)

εζ
N (in M) , (in cap εζ

N (M))
εζ
N (out M) , (out cap εζ

N (M))
εζ
N (open M) , (open εζ

N (M))
εζ
N (ε) , eps

εζ
N (M.M ′) , (path εζ

N (M) εζ
N (M ′))

δζ
N : capN −→ ζN

δζ
N ((name2cap n)) , n

δζ
N ((in cap M)) , in δζ

N (M)
δζ
N ((out cap M)) , out δζ

N (M)
δζ
N ((open M)) , open δζ

N (M)
δζ
N (eps) , ε

δζ
N ((path M M′)) , δζ

N (M).δζ
N (M′)

Figure 6.10: Encoding and decoding functions for the syntactic category of capabilities.

εΠN : ΠN −→ procN

εΠN ((νn)P) , (nu [n : name] εΠN,n(P))
εΠN (0) , nil

εΠN (P |Q) , (par εΠN (P) εΠN (Q))
εΠN (!P) , (bang εΠN (P))

εΠN (M [P]) , (ambient εζ
N (M) εΠN (P))

εΠN (M.P) , (cap act εζ
N (M) εΠN (P))

εΠN ((n).P) , (in act [n : name] εΠN,n(P))
εΠN (〈M〉) , (out act εζ

N (M))

δΠ
N : procN −→ ΠN

δΠ
N ((nu P)) , (νm)δΠ

N∪{z}((P m)),
m = fresh(N)

δΠ
N (nil) , 0

δΠ
N ((par P Q)) , δΠ

N (P)|δΠ
N (Q)

δΠ
N ((bang P)) , !δΠ

N (P)
δΠ
N ((ambient M P)) , [δζ

N (M)]δΠ
N (P)

δΠ
N ((cap act M P)) , δζ

N (M).δΠ
N (P)

δΠ
N ((in act P)) , (m).δΠ

N∪{z}((P m)),
m = fresh(N)

δΠ
N ((out act M)) , 〈δζ

N (M)〉
Figure 6.11: Encoding and decoding functions for the syntactic category of processes.

Proposition 6.6 For each N ⊂ Λ finite, εΠN is a compositional bijection between ΠN and
procN .

Proof. Standard, using the definitions in Figure 6.11 and proceeding by induction on the
structure of processes and of canonical forms of type proc. ut

The notion of “freshness” is enforced within the encoding by non-occurrence predicates
which follow the general pattern described in Definition 4.15. We prefer to introduce im-
mediately those for capabilities and processes, since we will need them to encode Structural
Congruence and the Reduction System in the next Sections.

• Non-occurrence predicate for capabilities:

Inductive notin_cap [m:name]: cap -> Prop :=
notin_cap_name : (n:name)~m=n -> (notin_cap m (name2cap n))

| notin_cap_in : (M:cap)(notin_cap m M) -> (notin_cap m (in_cap M))
| notin_cap_out : (M:cap)(notin_cap m M) -> (notin_cap m (out_cap M))
| notin_cap_open : (M:cap)(notin_cap m M) -> (notin_cap m (open M))
| notin_cap_eps : (notin_cap m eps)
| notin_cap_path : (M,N:cap)(notin_cap m M) -> (notin_cap m N) ->

(notin_cap m (path M N)).

• Non-occurrence predicate for processes:

118 CHAPTER 6. CASE STUDIES

Inductive notin_proc [m:name]: proc -> Prop :=
notin_proc_nu : (P:name->proc)

((n:name)~m=n -> (notin_proc m (P n))) ->
(notin_proc m (nu P))

| notin_proc_nil : (notin_proc m nil)
| notin_proc_par : (P,Q:proc)

(notin_proc m P) -> (notin_proc m Q) ->
(notin_proc m (par P Q))

| notin_proc_bang : (P:proc)(notin_proc m P)->(notin_proc m (bang P))
| notin_proc_amb : (M:cap)(P:proc)

(notin_cap m M) -> (notin_proc m P) ->
(notin_proc m (ambient M P))

| notin_proc_act : (M:cap)(P:proc)
(notin_cap m M) -> (notin_proc m P) ->
(notin_proc m (cap_act M P))

| notin_proc_in : (P:name->proc)
((n:name)~m=n -> (notin_proc m (P n))) ->
(notin_proc m (in_act P))

| notin_proc_out : (M:cap)(notin_cap m M)->(notin_proc m (out_act M)).

As usual, (notin cap n M) intuitively means that the name n does not occur in M.
Analogously, (notin proc n P) holds if and only if the name n does not occur in P. Since,
we adopted a HOAS-based encoding, bound names are automatically kept different from
free ones by the metalanguage α-conversion mechanism. Hence, we can say that notin proc
allows to capture either non-occurrence or non fresh occurrence judgments.

Beside freshness predicates it is sometimes useful to speak about names freely occurring
in a capability or a process. Hence, we introduce the following inductive definitions which
will be used in Section 6.2.10 and in the formal development illustrated in Section 6.2.11:

• Free occurrence predicate for capabilities:

Inductive isin_cap [m:name]: cap -> Prop :=
isin_cap_name : (isin_cap m (name2cap m))

| isin_cap_in : (M:cap)(isin_cap m M) -> (isin_cap m (in_cap M))
| isin_cap_out : (M:cap)(isin_cap m M) -> (isin_cap m (out_cap M))
| isin_cap_open : (M:cap)(isin_cap m M) -> (isin_cap m (open M))
| isin_cap_path : (M,N:cap)(isin_cap m M) \/ (isin_cap m N) ->

(isin_cap m (path M N)).

• Free occurrence predicate for processes:

Inductive isin_proc [m:name]: proc -> Prop :=
isin_proc_nu : (P:name->proc)((n:name)(isin_proc m (P n))) ->

(isin_proc m (nu P))
| isin_proc_par : (P,Q:proc)(isin_proc m P) \/ (isin_proc m Q) ->

(isin_proc m (par P Q))
| isin_proc_bang : (P:proc)(isin_proc m P) -> (isin_proc m (bang P))
| isin_proc_amb : (M:cap)(P:proc)

(isin_cap m M) \/ (isin_proc m P) ->
(isin_proc m (ambient M P))

6.2. AMBIENTS 119

| isin_proc_act : (M:cap)(P:proc)
(isin_cap m M) \/ (isin_proc m P) ->
(isin_proc m (cap_act M P))

| isin_proc_in : (P:name->proc)((n:name)(isin_proc m (P n))) ->
(isin_proc m (in_act P))

| isin_proc_out : (M:cap)(isin_cap m M) -> (isin_proc m (out_act M)).

Intuitively, (isin cap x M) (resp. (isin proc x P)) holds if and only if the name x occurs
free in M (resp. P).

Since every process P “lives” in an environment together with other processes, bound
names in P must be different not only from the remaining names of P , but also from all
the other names occurring in the remaining processes of the environment. It follows that in
schematic judgments, where a functional term (representing the scope of a binder) is applied
to a generic name, the latter must be assumed “conveniently” fresh. For instance, if we are
proving some property involving a process (nu P) and we need to “tear off” the nu binder in
order to analyze the body P, we can apply P to a generic name n and consider the resulting
plain term (P n) provided that n does not occur free in (nu P). Moreover, if the property
we are proving involves some other names not occurring in (nu P), we must ensure that n
is fresh w.r.t. them too. In order to keep trace of this kind of names and ensure freshness
we use an inductive type representing (finite) lists of names:

Inductive Nlist : Set :=
empty : Nlist

| cons : name -> Nlist -> Nlist.

Non occurrence of a given name in an element of type Nlist is trivially rendered by means
of the following predicate:

Inductive Nlist_notin [x:name] : Nlist -> Prop :=
Nlist_notin_empty : (Nlist_notin x empty)

| Nlist_notin_cons : (y:name)(l:Nlist)~x=y -> (Nlist_notin x l) ->
(Nlist_notin x (cons y l)).

6.2.6 Encoding of Structural Congruence

The Structural Congruence relation is represented by the following inductive predicate:

Inductive struct_eq: proc -> proc -> Prop :=
struct_refl : (P:proc)(struct_eq P P)

| struct_symm : (P,Q:proc)(struct_eq P Q) -> (struct_eq Q P)
| struct_trans : (P,Q,R:proc)(struct_eq P Q) -> (struct_eq Q R) ->

(struct_eq P R)
| struct_res : (P,Q:name->proc)(l:Nlist)

((n:name)(Nlist_notin n l) ->
(notin_proc n (nu P)) ->
(notin_proc n (nu Q)) ->
(struct_eq (P n) (Q n))

) -> (struct_eq (nu P) (nu Q))
| struct_par : (P,Q:proc)(struct_eq P Q) ->

(R:proc)(struct_eq (par P R) (par Q R))

120 CHAPTER 6. CASE STUDIES

| struct_repl : (P,Q:proc)(struct_eq P Q) ->
(struct_eq (bang P) (bang Q))

| struct_amb : (P,Q:proc)(struct_eq P Q) ->
(n:name)(struct_eq (ambient (name2cap n) P)

(ambient (name2cap n) Q)
)

| struct_action : (P,Q:proc)(struct_eq P Q) ->
(M:cap)(struct_eq (cap_act M P) (cap_act M Q))

| struct_input : (P,Q:name->proc)(l:Nlist)
((n:name)(Nlist_notin n l) ->

(notin_proc n (nu P)) ->
(notin_proc n (nu Q)) ->
(struct_eq (P n) (Q n))

) -> (struct_eq (in_act P) (in_act Q))
| struct_epsilon : (P:proc)(struct_eq (cap_act eps P) P)
| struct_path : (M,M’:cap)(P:proc)

(struct_eq (cap_act (path M M’) P)
(cap_act M (cap_act M’ P))

)
| struct_res_res : (P:name->name->proc)

(struct_eq (nu [n:name](nu [m:name](P n m)))
(nu [n:name](nu [m:name](P m n)))

)
| struct_res_zero : (struct_eq (nu [n:name]nil) nil)
| struct_res_par : (P:proc)(Q:name->proc)

(struct_eq (nu [n:name](par P (Q n))) (par P (nu Q)))
| struct_res_amb : (m:name)(P:name->proc)

(struct_eq (nu [n:name](ambient (name2cap m) (P n)))
(ambient (name2cap m) (nu P)))

| struct_par_zero : (P:proc)(struct_eq (par P nil) P)
| struct_par_comm : (P,Q:proc)(struct_eq (par P Q) (par Q P))
| struct_par_assoc : (P,Q,R:proc)

(struct_eq (par (par P Q) R) (par P (par Q R)))
| struct_repl_zero : (struct_eq (bang nil) nil)
| struct_repl_par : (P,Q:proc)

(struct_eq (bang (par P Q)) (par (bang P) (bang Q)))
| struct_repl_copy : (P:proc)(struct_eq (bang P) (par P (bang P)))
| struct_repl_repl : (P:proc)(struct_eq (bang P) (bang (bang P))).

Every constructor corresponds to a rule in Figure 6.6; as far as (Struct Res) and (Struct In-
put) are concerned, the premises are encoded by means of a schematic judgment where the
local name n is assumed fresh w.r.t. both (nu P) and (nu Q) and to a list of names l which
allows to avoid name clashes with external names (as outlined at the end of the previous
section).

Proposition 6.7 (Adequacy of struct eq) Let N ⊂ Λ finite, P, Q ∈ ΠN ,

1. (Soundness) if there exists t canonical such that ΓN `ΣA
t : (struct eq P Q), then we

have δΠ
N (P) ≡ δΠ

N (Q).

6.2. AMBIENTS 121

2. (Completeness) if P ≡ Q holds, then there is a canonical form t such that ΓN `ΣA

t : (struct eq εΠN (P) εΠN (Q)).

Proof. Easily proved by induction on the structure of the normal forms (Soundness), and
induction on the structure of the derivation of the Structural Congruence judgment (Com-
pleteness). ut

6.2.7 Encoding of the Reduction System

Before introducing the encoding of the reduction system whose rules are depicted in Fig-
ure 6.7, we need to represent substitution of capabilities for names since in the axiom
(Red Comm) (n).P |〈M〉 reduces to P{n ← M}. Since a capability is in general a compound
term and not simply a name, we cannot delegate the substitution to the metalanguage if we
want to be able to use the axioms of the Theory of Contexts. Indeed, in order to delegate
the substitution to the metalanguage, we would need to represent P{n ← M} with (P’
M) where P’:cap->proc, P , εΠX(P) and P=(P’ (name2cap n)). Hence, during the proof
development we could not apply β-expansion and extensionality in order to elaborate on the
structure of P’.

Since processes are also built on top of capabilities, we need to represent the substitution
of capabilities for names both in capabilities and in processes. However, since the type name
is not inductive, we cannot define in Coq the abovementioned substitution as a recursive
function as proposed in [Hof99] for the untyped λ-calculus, but only as a functional relation.
Hence, we introduce the following inductive predicates:

Inductive subst_cap [M:cap]: (name->cap) -> cap -> Prop :=
subst_cap_name : (subst_cap M name2cap M)

| subst_cap_void : (n:name)(subst_cap M [_:name](name2cap n) (name2cap n))
| subst_cap_in : (N:name->cap)(N’:cap)(subst_cap M N N’) ->

(subst_cap M [n:name](in_cap (N n)) (in_cap N’))
| subst_cap_out : (N:name->cap)(N’:cap)(subst_cap M N N’) ->

(subst_cap M [n:name](out_cap (N n)) (out_cap N’))
| subst_cap_open : (N:name->cap)(N’:cap)(subst_cap M N N’) ->

(subst_cap M [x:name](open (N x)) (open N’))
| subst_cap_eps : (subst_cap M [_:name]eps eps)
| subst_cap_path : (N,O:name->cap)(N’,O’:cap)(subst_cap M N N’) ->

(subst_cap M O O’) ->
(subst_cap M [x:name](path (N x) (O x)) (path N’ O’)).

Inductive subst_proc [M:cap]: (name->proc) -> proc -> Prop :=
subst_proc_nu : (P:name->name->proc)(P’:name->proc)

((y:name)(subst_proc M [x:name](P x y) (P’ y))) ->
(subst_proc M [x:name](nu (P x)) (nu P’))

| subst_proc_nil : (subst_proc M [_:name]nil nil)
| subst_proc_par : (P,Q:name->proc)(P’,Q’:proc)(subst_proc M P P’) ->

(subst_proc M Q Q’) ->
(subst_proc M [x:name](par (P x) (Q x)) (par P’ Q’))

| subst_proc_bang : (P:name->proc)(P’:proc)(subst_proc M P P’) ->
(subst_proc M [x:name](bang (P x)) (bang P’))

| subst_proc_amb : (N:name->cap)(P:name->proc)(N’:cap)(P’:proc)

122 CHAPTER 6. CASE STUDIES

(subst_cap M N N’) -> (subst_proc M P P’) ->
(subst_proc M [x:name](ambient (N x) (P x))

(ambient N’ P’))
| subst_proc_cap : (N:name->cap)(P:name->proc)(N’:cap)(P’:proc)

(subst_cap M N N’) -> (subst_proc M P P’) ->
(subst_proc M [x:name](cap_act (N x) (P x))

(cap_act N’ P’))
| subst_proc_in : (P:name->name->proc)(P’:name->proc)

((y:name)(subst_proc M [x:name](P x y) (P’ y))) ->
(subst_proc M [x:name](in_act (P x)) (in_act P’))

| subst_proc_out : (N:name->cap)(N’:cap)(subst_cap M N N’) ->
(subst_proc M [x:name](out_act (N x)) (out_act N’)).

Intuitively, (subst cap M N N’) (resp. subst proc M P P’) holds if and only if the capa-
bility N’ (resp. process P’) is the result of “filling the hole” of the context N (resp. P) with
M. The adequacy of subst cap and subst proc w.r.t. the capture-avoiding substitutions
defined in Figure 6.12 is guaranteed by the following result:

Proposition 6.8 (Adequacy of substitution) Let L ⊂ Λ finite, M, N ′ ∈ ζL, N ∈ζL]{n},
P ′ ∈ ΠL, P ∈ ΠL]{n}, then:

• N{n ← M} = N ′ iff ΓL `ΣA
t : (subst cap εζ

L(M) [n : name]εζ
L,n(N) εζ

L(N ′)),

• P{n ← M} = P ′ iff ΓL `ΣA
t : (subst proc εζ

L(M) [n : name]εΠL,n(P) εΠL(P ′)).

Proof. The completeness (⇒) is obtained by structural induction on the derivation of N{n ←
M} = N ′ (P{n ← M} = P ′), while the soundness (⇐) follows by means of structural
induction on the canonical form t. ut

The reduction system is then encoded by means of the following inductive predicate:

Inductive red: proc -> proc -> Prop :=
red_in : (m,n:name)(P,Q,R:proc)
(red (par (ambient (name2cap n) (par (cap_act (in_cap (name2cap m)) P) Q))

(ambient (name2cap m) R))
(ambient (name2cap m) (par (ambient (name2cap n) (par P Q)) R))

)
| red_out : (m,n:name)(P,Q,R:proc)
(red (ambient (name2cap m)

(par (ambient (name2cap n)
(par (cap_act (out_cap (name2cap m)) P) Q)) R))

(par (ambient (name2cap n) (par P Q)) (ambient (name2cap m) R))
)

| red_open : (n:name)(P,Q:proc)
(red (par (cap_act (open (name2cap n)) P) (ambient (name2cap n) Q))

(par P Q))
| red_comm : (P:name->proc)(M:cap)(P’:proc)

(subst_proc M P P’) -> (red (par (in_act P) (out_act M)) P’)
| red_res : (P,Q:name->proc)(l:Nlist)

((n:name)(Nlist_notin n l) -> (notin_proc n (nu P)) ->
(notin_proc n (nu Q)) -> (red (P n) (Q n))

) -> (red (nu P) (nu Q))

6.2. AMBIENTS 123

n{n ← M} = M

m{n ← M} = m (m 6= n)
(in N){n ← M} = in N{n ← M}
(out N){n ← M} = out N{n ← M}
(open N){n ← M} = open N{n ← M}
ε{n ← M} = ε

N.N ′{n ← M} = N{n ← M}.N ′{n ← M}

((νm)P){n ← M} =

{
(νm)P{n ← M} if m 6= n and (m 6∈ fn(M) or n 6∈ fn(P))
(νz)P{m ← z}{n ← M} where z fresh, otherwise

0{n ← M} = 0

(P |Q){n ← M} = P{n ← M}|Q{n ← M}
(N [P]){n ← M} = N{n ← M}[P{n ← M}]
(N.P){n ← M} = N{n ← M}.P{n ← M}

((m).P){n ← M} =

{
(m).P{n ← M} if m 6= n and (m 6∈ fn(M) or n 6∈ fn(P))
(z).P{m ← z}{n ← M} where z fresh, otherwise

〈N〉{n ← M} = 〈N{n ← M}〉

Figure 6.12: Capture-avoiding Substitution of capabilities for names.

| red_par : (P,Q:proc)(red P Q) -> (R:proc)(red (par P R) (par Q R))
| red_amb : (P,Q:proc)(red P Q) -> (n:name)

(red (ambient (name2cap n) P) (ambient (name2cap n) Q))
| red_struct_eq : (P,Q:proc)(red P Q) -> (P’:proc)(struct_eq P P’) ->

(Q’:proc)(struct_eq Q Q’) -> (red P’ Q’).

As in the case of the encoding of rules (Struct Res) and (Struct Input) in the previous
section, the rule (Red Res) is represented by encoding its premise by means of a schematic
judgment where the local name n is assumed fresh w.r.t. both (nu P) and (nu Q) and to a
list of names l which allows to avoid name clashes with external names. It should be noticed
that, having implemented the substitution of capabilities for names by means of subst proc
which takes a higher-order term as the second argument, allows us to avoid the use of a
schematic judgment in the rule red comm. Indeed, if cap->proc->proc would be the type
of subst proc, red comm would necessarily have the following shape:

(P:name->proc)(M:cap)(P’:proc)
((n:name)(subst_proc M (P n) P’)) -> (red (par (in_act P) (out_act M)) P’)

Proposition 6.9 (Adequacy of red) Let N ⊂ Λ finite, P,Q ∈ ΠN ,

1. (Soundness) if there exists t canonical such that ΓN `ΣA
t : (red P Q), then we have

δΠ
N (P) → δΠ

N (Q).

2. (Completeness) if P → Q holds, there is a canonical form t such that we can derive
ΓN `ΣA

t : (red εΠN (P) εΠN (Q)).

124 CHAPTER 6. CASE STUDIES

Proof. Easily proved by induction on the structure of the normal forms (Soundness), and
induction on the structure of the derivation of the reduction judgment (Completeness). ut

6.2.8 Encoding of formulæ

In Section 6.2.4 we recalled the syntax of formulæ which required an additional sort of
variables in order to have a universal quantifier and reasoning about open formulæ(that is
formulæwith free variables). However, näıvely introducing an explicit type var for repre-
senting variables would yield several problems. First of all, one would need to duplicate the
constructors [·], @, and ; since they can take as one of their arguments either a name or
a variable (see the second example of Section 4.2). Moreover, the universal quantifier would
be encoded by means of a constructor of type (var->form)->form; this fact would prevents
us from taking advantage of the possibility of encoding substitution of names for variables
by means of the functional application of the metalanguage. Indeed, it would be impossible
to apply a term of type var->form to a term of type name. Hence, despite an HOAS-based
encoding approach, we could delegate to the metalanguage only α-conversion of formulæ.

The solution we propose instead will encode variables of the object language by means
of Coq variables of type name; however, the latter, differently from those encoding names,
will not be assumed to be distinct. Indeed, a variable is only a placeholder waiting to be
replaced by a name, whence we cannot make a priori any assumptions on the nature of the
name that will eventually replace it. This approach is not peculiar to HOAS-encodings;
indeed, if we think of the first-order logic encoding given in [HHP93], we see that the same
pattern is followed in representing variables of the object language. Actually, the latter are
not represented through a separate type, but as variables of the metalanguage whose type
is the one encoding individuals (i.e. the elements they stand for). In our case there will
be no risk of confusing variables representing names with variables representing variables of
the object language. Indeed, only the former come equipped with inequality judgments that
allow one to think of them as constants, rather than variables5.

The inductive type encoding the syntactic category of formulæ is the following:

Inductive form: Set :=
T : form

| neg : form -> form
| Or : form -> form -> form
| zero : form
| comp : form -> form -> form
| comp_adj : form -> form -> form
| loc : name -> form -> form
| loc_adj : form -> name -> form
| rev : name -> form -> form
| rev_adj : form -> name -> form
| sometime : form -> form
| somewhere : form -> form
| forall : (name -> form) -> form.

Given a finite set of variables X , {x1, . . . , xn} ⊂ ϑ, in the rest of this chapter we will denote
by ΓX the typing environment {x1 : name, . . . , xn : name}. Encoding and decoding functions

5In Coq a set of names n1, . . . , nk could be introduced by the statement Parameter n1,...,nk:name

together with the statements Axiom dij:~(ni=nj) for 1 ≤ i < j ≤ k, i 6= j.

6.2. AMBIENTS 125

εΦN,X : ΦN,X −→ formN,X

εΦN,X(T) , T

εΦN,X(¬A) , (neg εΦN,X(A))
εΦN,X(A ∨ B) , (Or εΦN,X(A) εΦN,X(B))

εΦN,X(A|B) , (comp εΦN,X(A) εΦN,X(B))
εΦN,X(A B B) , (comp adj εΦN,X(A) εΦN,X(B))

εΦN,X(η[A]) ,
{

(loc n εΦN,X(A)) if η = n ∈ N

(loc x εΦN,X(A)) if η = x ∈ X

εΦN,X(A@η) ,
{

(loc adj εΦN,X(A) n) if η = n ∈ N

(loc adj εΦN,X(A) x) if η = x ∈ X

εΦN,X(ηA) ,
{

(rev n εΦN,X(A)) if η = n ∈ N

(rev x εΦN,X(A)) if η = x ∈ X

εΦN,X(A; η) ,
{

(rev adj εΦN,X(A) n) if η = n ∈ N

(rev adj εΦN,X(A) x) if η = x ∈ X

εΦN,X(♦A) , (sometime εΦN,X(A))
εΦN,X(✧A) , (somewhere εΦN,X(A))

εΦN,X(∀x.A) , (forall [x : name] εΦN,X,x(A))

Figure 6.13: Encoding map of formulæ.

between formulæ with free names in N (ΦN,X) and free variables in X and canonical forms
t of type form such that ΓN , ΓX `ΣA

t : form (formN,X) are illustrated in Figures 6.13
and 6.14.

Similarly to the fresh function we used in defining the decoding map δΠ
N in Section 6.2.5,

freshΦ : P<ω(Λ ∪ ϑ) −→ Λ ∪ ϑ such that for every A ⊂ Λ ∪ ϑ finite, freshΦ(A) 6∈ A. Again,
if Λ ∪ ϑ is enumerable, a possible definition for freshΦ is freshΦ(A) = nmax{i|ni∈A}+1, where
(ni)i is a given enumeration of Λ ∪ ϑ.

The adequacy of the encoding is given by the following result:

Proposition 6.10 For each N ⊂ Λ finite, X ⊂ ϑ, εΦN,X is a compositional bijection between
ΦN,X and formN,X .

Proof. Standard, using the definitions in Figures 6.13 and 6.14 and proceeding by induction
on the structure of formulæ and of canonical forms of type form. ut
The freshness predicate for terms of type form is inductively defined as follows:

Inductive notin_form [m:name] : form->Prop :=
notin_T : (notin_form m T)

| notin_neg : (F:form)(notin_form m F) -> (notin_form m (neg F))
| notin_Or : (F,G:form)(notin_form m F) -> (notin_form m G) ->

(notin_form m (Or F G))
| notin_zero : (notin_form m zero)
| notin_comp : (F,G:form)(notin_form m F) -> (notin_form m G) ->

(notin_form m (comp F G))
| notin_comp_adj : (F,G:form)(notin_form m F) -> (notin_form m G) ->

(notin_form m (comp_adj F G))

126 CHAPTER 6. CASE STUDIES

δΦ
N,X : formN,X −→ ΦN,X

δΦ
N,X(T) , T

δΦ
N,X((neg A)) , ¬δΦ

N,X(A)
δΦ
N,X((Or A B)) , δΦ

N,X(A) ∨ δΦ
N,X(B)

δΦ
N,X(zero) , 0

δΦ
N,X((comp A B)) , δΦ

N,X(A)|δΦ
N,X(B)

δΦ
N,X((comp adj A B)) , δΦ

N,X(A) B δΦ
N,X(B)

δΦ
N,X((loc n A)) , n[δΦ

N,X(A)] if n : name ∈ ΓN

δΦ
N,X((loc x A)) , x[δΦ

N,X(A)] if x : name ∈ ΓX

δΦ
N,X((loc adj A n)) , δΦ

N,X(A)@n if n : name ∈ ΓN

δΦ
N,X((loc adj A x)) , δΦ

N,X(A)@x if x : name ∈ ΓX

δΦ
N,X((rev n A)) , nδΦ

N,X(A) if n : name ∈ ΓN

δΦ
N,X((rev x A)) , xδΦ

N,X(A) if x : name ∈ ΓX

δΦ
N,X((rev adj A n)) , δΦ

N,X(A); n if n : name ∈ ΓN

δΦ
N,X((rev adj A x)) , δΦ

N,X(A); x if x : name ∈ ΓX

δΦ
N,X((forall A)) , ∀z.δΦ

N,X,z((A z)) where z = freshΦ(N ∪X)

Figure 6.14: Decoding map of formulæ.

| notin_loc : (F:form)(n:name)~m=n -> (notin_form m F) ->
(notin_form m (loc n F))

| notin_loc_adj : (F:form)(n:name)~m=n -> (notin_form m F) ->
(notin_form m (loc_adj F n))

| notin_rev : (F:form)(n:name)~m=n -> (notin_form m F) ->
(notin_form m (rev n F))

| notin_rev_adj : (F:form)(n:name)~m=n -> (notin_form m F) ->
(notin_form m (rev_adj F n))

| notin_sometime : (F:form)(notin_form m F) ->
(notin_form m (sometime F))

| notin_somewhere : (F:form)(notin_form m F) ->
(notin_form m (somewhere F))

| notin_forall : (F:name->form)
((n:name)~m=n -> (notin_form m (F n))) ->
(notin_form m (forall F)).

6.2.9 Encoding of Satisfaction

Before introducing the encoding of the satisfaction relation, we need to represent the relations
↓ and ↓∗ (see Section 6.2.4) and →∗ (see Section 6.2.7). The nesting relation is represented
by the following definition:

Definition nest:= [P:proc][P’:proc]
(Ex [n:name]

(Ex [P’’:proc](struct_eq P (par (ambient (name2cap n) P’) P’’)))).

Being defined in terms of struct eq, its adequacy is a direct consequence of Propositions 6.5,
6.6 and 6.7. Reflexive and transitive closures of → and ↓ are encoded by the following
inductive predicates:

6.2. AMBIENTS 127

Inductive red_star: proc -> proc -> Prop :=
base_red : (P,Q:proc)(red P Q) -> (red_star P Q)

| red_refl : (P:proc)(red_star P P)
| red_trans : (P,Q,R:proc)

(red_star P Q) -> (red_star Q R) -> (red_star P R).

Inductive nest_star: proc -> proc -> Prop :=
base_nest : (P,Q:proc)(nest P Q) -> (nest_star P Q)

| nest_refl : (P:proc)(nest_star P P)
| nest_trans : (P,Q,R:proc)

(nest_star P Q) -> (nest_star Q R) -> (nest_star P R).

The adequacy of red star follows from Propositions 6.6 and 6.9 while the adequacy of
nest star is a consequence of Proposition 6.6 and the adequacy of nest.

Coming to the representation of the satisfaction relation, we cannot use an inductive
definition since the introduction rule for ¬ and B do not satisfy the positivity constraints
imposed by the Coq type system on inductive constructors. Indeed, the inductive predicate
encoding satisfaction would look like the following:

Inductive sat: proc -> form -> Prop :=
...
| sat_neg : (P:proc)(A:form)~(sat P A) -> (sat P (neg A))
...
| sat_comp_adj : (P:proc)(A,B:form)

((P’:proc)(sat P’ A) -> (sat (par P P’) B))
-> (sat P (comp_adj A B))

...

It is clear that the occurrence (sat P’ A) in sat comp adj is negative. There is also a
negative occurrence of sat in sat neg since ~(sat P A) is an abbreviation for (sat P A)
-> False. Hence, Coq complains about the previous inductive definition rejecting it.

Hence, the encoding approach we adopt is to axiomatize explicitly the satisfaction rules by
means of Axiom statements like one would do in the Edinburgh Logical Framework [HHP93,
AHMP92]:

Parameter sat : proc -> form -> Prop.

Axiom sat_T: (P:proc)(sat P T).

Axiom sat_neg: (P:proc)(A:form)~(sat P A) <-> (sat P (neg A)).

Axiom sat_Or: (P:proc)(A,B:form)((sat P A) \/ (sat P B)) <-> (sat P
(Or A B)).

Axiom sat_zero: (P:proc)(struct_eq P nil) <-> (sat P zero).

Axiom sat_comp: (P:proc)(A,B:form)
(Ex [P’:proc](Ex [P’’:proc](struct_eq P (par P’ P’’))

/\ (sat P’ A) /\ (sat P’’ B)))
<-> (sat P (comp A B)).

128 CHAPTER 6. CASE STUDIES

Axiom sat_comp_adj: (P:proc)(A,B:form)
((P’:proc)(sat P’ A) -> (sat (par P P’) B))
<-> (sat P (comp_adj A B)).

Axiom sat_loc: (P:proc)(n:name)(A:form)
(Ex [P’:proc](struct_eq P (ambient (name2cap n) P’)) /\

(sat P’ A))
<-> (sat P (loc n A)).

Axiom sat_loc_adj: (P:proc)(A:form)(n:name)
(sat (ambient (name2cap n) P) A) <-> (sat P (loc_adj A n)).

Axiom sat_rev: (P:proc)(n:name)(A:form)
((notin_proc n P) /\ (Ex [P’:name->proc](struct_eq P (nu P’))

/\ (sat (P’ n) A)))
<-> (sat P (rev n A)).

Axiom sat_rev_adj: (P:proc)(n:name)(A:form)
(Ex [P’:name->proc]P=(P’ n)

/\ (notin_proc n (nu P’)) /\ (sat (nu P’) A))
<-> (sat P (rev_adj A n)).

Axiom sat_sometime: (P:proc)(A:form)
(Ex [P’:proc](red_star P P’) /\ (sat P’ A))
<-> (sat P (sometime A)).

Axiom sat_somewhere: (P:proc)(A:form)
(Ex [P’:proc](nest_star P P’) /\ (sat P’ A))
<-> (sat P (somewhere A)).

Axiom sat_forall: (P:proc)(A:name->form)
((m:name)(sat P (A m))) <-> (sat P (forall A)).

Notice that the symbol <-> in the previous axioms represents , in Figure 6.9. The adequacy
of sat is given by the following proposition:

Proposition 6.11 (Adequacy of sat) Let N ⊂ Λ finite, P ∈ ΠN , A ∈ ΦN,∅,

1. (Soundness) if there exists t canonical such that ΓN `ΣA
t : (sat P A), then we have

δΠ
N (P) |= δΦ

N,∅(A).

2. (Completeness) if P |= A holds, there is a canonical form t such that we can derive
ΓN `ΣA

t : (sat εΠN (P) εΦN,∅(A)).

Proof. The argument is an induction on the structure of the normal form A (Soundness),
and a structural induction on the formula A (Completeness). ut
Notice that A in the previous proposition ranges only over ΦN,∅ (closed formulæ) because
in [CG01] the satisfaction relation is defined only on formulæ with no free variables.

We conclude this section by remarking that a non-inductive definition of a relation can
be adequate in the activity of computer assisted proof development as long as we do not

6.2. AMBIENTS 129

need to prove properties by structural induction on derivations. Luckily, this is the case
for the properties of the satisfaction relation we proved so far. However, in order to have
a better interaction with type theory based proof assistants like Coq, it would be useful to
formulate a natural deduction style system for the satisfaction relation. Among the benefits
of this solution, it is worth mentioning that we could use the automatic inversion tactics
on instances of sat judgments instead of manually pruning inconsistent cases or manually
deriving the syntactic constraints on the arguments involved.

6.2.10 The Theory of Contexts for the Ambient Calculus

In this section we will introduce the Theory of Contexts adapted to the encoding of the
Ambient Calculus. As usual, nominal calculi require to be able to decide whether two names
are equal or not6; whence we assume that Leibniz equality over names is decidable:

Axiom dec_name: (x,y:name)x=y \/ ~x=y.

Since we have several distinct syntactic categories (names, capabilities, processes and for-
mulæ), the shape of the unsaturation axiom involves all of them:

Axiom unsat: (l:Nlist)(M:cap)(P:proc)(F:form)
(Ex [n:name](Nlist_notin n l) /\

(notin_cap n M) /\
(notin_proc n P) /\
(notin_form n F)

).

When needed, one can then deduce from unsat more specialized and weaker forms, e.g.,
unsaturation for processes, formulæ, capabilities and processes etc. Here we list the particular
unsaturation properties we used in the formal development described in Section 6.2.11:

Lemma UNSAT_PROC_NLIST: (P:proc)(l:Nlist)
(Ex [n:name](notin_proc n P) /\ (Nlist_notin n l)).

Lemma UNSAT_FORM: (F:form)(Ex [x:name](notin_form x F)).

Lemma UNSAT_CAP_PROC_NLIST: (M:cap)(P:proc)(l:Nlist)
(Ex [n:name](notin_cap n M) /\

(notin_proc n P) /\
(Nlist_notin n l)

).

Lemma UNSAT_NLIST_PROC_FORM: (l:Nlist)(P:proc)(F:form)
(Ex [n:name](Nlist_notin n l) /\

(notin_proc n P) /\
(notin_form n F)

).

6Despite the fact that it is often implicitly assumed in the presentations of nominal calculi, the decidability
of the equality over names is heavily used in the development of many fundamental metatheorical results (see,
e.g., the proof of Lemma 6 in [MPW89] or the proof of Lemma 4-6 in [CG00]).

130 CHAPTER 6. CASE STUDIES

As far as the extensionality and the β-expansion properties are concerned, we need several
instances (for plain terms, unary and binary contexts) for capabilities, processes and formulæ:
Capabilities. Extensionality:

Axiom cap_ext: (M,N:name->cap)(n:name)
(notin_ho_cap n M) -> (notin_ho_cap n N) ->
(M n)=(N n) -> M=N.

Axiom ho_cap_ext: (M,N:name->name->cap)(n:name)
(notin_ho2_cap n M) -> (notin_ho2_cap n N) ->
(M n)=(N n) -> M=N.

β-expansion:

Axiom cap_exp: (M:cap)(n:name)
(Ex [M’:name->cap](notin_ho_cap n M’) /\ M=(M’ n)).

Axiom ho_cap_exp: (M:name->cap)(n:name)
(Ex [M’:name->name->cap](notin_ho2_cap n M’) /\ M=(M’ n)).

Processes. Extensionality:

Axiom proc_ext: (P,Q:name->proc)(x:name)
(notin_proc x (nu P)) -> (notin_proc x (nu Q)) ->
(P x)=(Q x) -> P=Q.

Axiom ho_proc_ext: (P,Q:name->name->proc)(x:name)
(notin_proc x (nu [_:name](nu (P _)))) ->
(notin_proc x (nu [_:name](nu (Q _)))) ->
(P x)=(Q x) -> P=Q.

β-expansion:

Axiom proc_exp: (P:proc)(n:name)
(Ex [P’:name->proc](notin_proc n (nu P’)) /\ P=(P’ n)).

Axiom ho_proc_exp: (P:name->proc)(n:name)
(Ex [P’:name->name->proc]

(notin_proc n (nu [_:name](nu (P’ _))))
/\ P=(P’ n)).

Axiom ho2_proc_exp: (P:name->name->proc)(n:name)
(Ex [P’:name->name->name->proc]

(notin_proc n (nu [u:name](nu [v:name](nu (P’ u v)))))
/\ P=(P’ n)).

Formulæ. Extensionality:

Axiom form_ext: (F,G:name->form)(x:name)
(notin_form x (forall F)) -> (notin_form x (forall G)) ->
(F x)=(G x)->F=G.

6.2. AMBIENTS 131

β-expansion:

Axiom form_exp: (F:form)(n:name)
(Ex [G:name->form](notin_form n (forall G)) /\ F=(G n)).

Axiom ho_form_exp: (F:name->form)(n:name)
(Ex [G:name->name->form]

(notin_form n (forall ([_:name](forall (G _)))))
/\ F=(G n)).

Axiom ho2_form_exp: (F:name->name->form)(n:name)
(Ex [G:name->name->name->form]

(notin_form n (forall ([u:name](forall [v:name](forall (G u v))))))
/\ F=(G n)).

A very useful property, used a lot in the formal development described in [HMS01b] and
derivable from the Theory of Contexts, is the monotonicity of freshness predicates:

Lemma NOTIN_CAP_MONO : (M:name->cap)(x,y:name)(notin_cap x (M y)) ->
(notin_ho_cap x M).

Lemma NOTIN_PROC_MONO : (P:name->proc)(x,y:name)(notin_proc x (P y)) ->
(notin_proc x (nu P)).

Informally, the previous lemmata state that, in order to conclude that a name x does not
occur free in a capability context M (resp. a process context P), it is sufficient to prove that
x does not occur free in (M y) (resp. (P y)) for a generic name y. The proof technique used
to derive the first result is the same illustrated in Section 6.1.2 to prove HO TM IND, i.e., we
first prove the following lemma which then implies (by means of the unsaturation property7)
NOTIN CAP MONO:

Lemma PRE_NOTIN_CAP_MONO: (A:cap)(M:name->cap)
(z:name)(notin_ho_cap z M) ->
A=(M z) -> (x,y:name)(notin_cap x (M y)) ->
(notin_ho_cap x M).

As far as the proof of the second monotonicity result is concerned, we need a more so-
phisticated approach. Indeed, the presence of higher-order constructors requires a stronger
induction hypotheses in order to apply it several times to terms which are not proper sub-
terms of those involved in the current case, but that may differ by some renamings. Hence,
we must define a suitable measure on processes and proceed by induction on it. The following
inductive definition formalizes such a notion:

Inductive lnp: proc -> nat -> Prop:=
lnp_nu : (P:name->proc)(n:nat)((x:name)(lnp (P x) n)) ->

(lnp (nu P) (S n))

7Notice that in this case we can obtain a fresh name not occurring in a capability context even if this
syntactic category does not feature a higher-order constructor. Indeed, capabilities are used to build processes
which have two higher-order constructors (namely, restriction and input action); hence, to yield a name not
occurring in M:name->cap we can eliminate the unsaturation property over, e.g., (nu [:name](out act (M

))).

132 CHAPTER 6. CASE STUDIES

| lnp_nil : (lnp nil (S O))
| lnp_par : (P,Q:proc)(n1,n2:nat)(lnp P n1) -> (lnp Q n2) ->

(lnp (par P Q) (S (plus n1 n2)))
| lnp_bang : (P:proc)(n:nat)(lnp P n) -> (lnp (bang P) (S n))
| lnp_amb : (P:proc)(n:nat)(lnp P n) -> (M:cap)(lnp (ambient M P) (S n))
| lnp_cap : (P:proc)(n:nat)(lnp P n) -> (M:cap)(lnp (cap_act M P) (S n))
| lnp_in : (P:name->proc)(n:nat)((x:name)(lnp (P x) n)) ->

(lnp (in_act P) (S n))
| lnp_out : (M:cap)(lnp (out_act M) (S O)).

Intuitively, (lnp P n) holds if and only if the term P contains exactly n occurrences of
constructors of type proc. The following results state that lnp is preserved by arbitrary
renamings and that it is possible to associate a measure to every term of type proc:

Lemma LNP_RW: (n:nat)(P:proc)(lnp P n) ->
(x:name)(Q:name->proc)(notin_proc x (nu Q)) ->
P=(Q x) -> (y:name)(lnp (Q y) n).

Lemma LNP_TOT: (P:proc)(Ex [n:nat](lnp P n)).

The first lemma requires a complete induction on n (complete induction on natural numbers
is easily derivable in Coq8), while the second is proved by structural induction on A (LNP RW
is needed in the cases related to restriction and input action). At this point the following
result can be derived by means of a complete induction on n and LNP RW:

Lemma PRE_NOTIN_PROC_MONO: (n:nat)(A:proc)(lnp A n) ->
(P:name->proc)(z:name)(notin_proc z (nu P)) ->
A=(P z) -> (x,y:name)(notin_proc x (P y)) ->
(notin_proc x (nu P)).

Then NOTIN PROC MONO easily follows by means of the unsaturation property and LNP TOT.
It is important to stress that the axioms of β-expansion and extensionality over capabilities
and processes (at various levels) are essential in order to “lift” the structural information
available about plain terms to the level of functional terms (i.e. contexts) in the same way
described in Section 6.1.2.

The same proof techniques described above can be successfully applied in order to de-
rive the following monotonicity results about the free occurrence predicates isin cap and
isin proc:

Lemma ISIN_CAP_MONO : (M:name->cap)(x,y:name)~x=y ->
(isin_cap x (M y)) -> (isin_ho_cap x M).

Lemma ISIN_PROC_MONO : (P:name->proc)(x,y:name)~x=y ->
(isin_proc x (P y)) -> (isin_proc x (nu P)).

Then we can derive another useful property whose explicit axiomatization is needed when
we do not work in a classical setting, namely, the decidability of occur checking:

Lemma NOTIN_CAP_DEC : (M:cap)(x:name)(isin_cap x M) \/ (notin_cap x M).

Lemma NOTIN_PROC_DEC : (P:proc)(n:name)(isin_proc n P) \/ (notin_proc n P).
8See Section 6.1.5 for the definition in Coq of the complete induction principle on natural numbers.

6.2. AMBIENTS 133

It follows that the only classical flavour we need is the decidability of the equality over names
(dec name).

6.2.11 Formal metatheory

In this section we will describe the formal development so far accomplished about the Am-
bient Calculus and the related modal logic previously recalled (Sections 6.2.1 to 6.2.4). This
is a work in progress (and still far from being finished); however, we already proved a set of
interesting properties about fresh renamings which are at the heart of the metatheory of the
Ambient Calculus and Ambient Logic.

Structural Congruence is preserved by Fresh Renaming

The first properties we prove are related to the Structural Congruence: the main result is
that the latter is preserved by fresh renaming:

Lemma 6.1 For all processes P , Q if P ≡ Q holds, then for all names n, m (where m 6∈
fn(P) ∪ fn(Q)) we have that P{n ← m} ≡ Q{n ← m} also holds. ut
The formalization in Coq of the previous property is as follows:

Lemma STRUCT_RW: (P,Q:name->proc)(x:name)
(notin_proc x (nu P)) -> (notin_proc x (nu Q)) ->
(struct_eq (P x) (Q x)) ->
(y:name)(notin_proc y (nu P)) -> (notin_proc y (nu Q)) ->
(struct_eq (P y) (Q y)).

That is, we model substitution of names for names by means of functional application.
Indeed, by means of proc exp a term R of type proc can always be equated to (P x) for
a given x not occurring in (nu P). Whence, if R , εΠX(P), the result of the substitution
P{n ← m} formally corresponds to (P y).

A preliminary result necessary in order to prove Lemma 6.1 is the following:

Lemma 6.2 For all processes P , Q, if P ≡ Q then fn(P) = fn(Q). ut
We proved this fact by the following two lemmata in Coq:

Lemma STRUCT_NOTIN : (A,B:proc)(struct_eq A B) ->
(x:name)((notin_proc x A) -> (notin_proc x B)) /\

((notin_proc x B) -> (notin_proc x A)).

Lemma STRUCT_ISIN : (A,B:proc)(struct_eq A B) ->
(x:name)((isin_proc x A) -> (isin_proc x B)) /\

((isin_proc x B) -> (isin_proc x A)).

The first lemma is a straightforward structural induction on the derivation of the premise,
while the second follows from the former by applying NOTIN PROC DEC.

The abovementioned results correspond to Lemma 4-3 of [CG00] (extended with the cases
involving the restriction operator):

Consider any process P and names m, m′, with m′ 6∈ fn(P). For all P ′, if
P ≡ P ′ then m′ 6∈ fn(P ′) and P{m ← m′} ≡ P ′{m ← m′}. Moreover, for
all Q, if P{m ← m′} ≡ Q then there is a P ′ with P ≡ P ′, m′ 6∈ fn(P ′) and
Q = P ′{m ← m′}. ut

134 CHAPTER 6. CASE STUDIES

Representing P with (P m) and P ′ with (Q m) allows us to formalize both directions of
the quoted lemma by means of RED RW. Indeed, m and m’ can be swapped without altering
the meaning of the lemma, allowing to deduce (struct eq (P m) (Q m)) from (struct eq
(P m’) (Q m’)), i.e., P ≡ P ′ from P{m ← m′} ≡ Q where Q = P ′{m ← m′}. This
is similar to the formalization of the π-calculus metatheory carried out in [HMS01b] where
Lemma 3’ and Lemma 4 yield the same formalization. It is interesting to notice how naturally
and cleanly HOAS allows one to express this kind of property about fresh renamings. The
latter play a fundamental rôle in the metatheory of nominal calculi and their importance is
confirmed by the criterion introduced in [Pit01b] in order to establish which properties are
worthwhile. Such a criterion amounts to the notion of equivariance property (also known as
the “fundamental assumption of Nominal Logic”), i.e., the invariance of the validity under
swapping names.

Lemma STRUCT RW allows to derive the following result which is often useful during the
formal development:

Lemma STRUCT_RES: (P,Q:name->proc)(x:name)
(notin_proc x (nu P)) -> (notin_proc x (nu Q)) ->
(struct_eq (P x) (Q x)) -> (struct_eq (nu P) (nu Q)).

This essentially amounts to a simpler introduction rule (w.r.t. the constructor struct res)
for establishing the structural congruence of two restricted processes.

Satisfaction is up to Structural Congruence

A crucial metatheoretical result involving the satisfaction relation is Lemma 2-1 of [CG01]:

(P |= A ∧ P ≡ P ′) ⇒ P ′ |= A ut

The corresponding formalization in Coq is the following:

Lemma SAT_UPTO_STRUCT_EQ: (A:form)(P:proc)(sat P A) ->
(P’:proc)(struct_eq P P’) -> (sat P’ A).

The proof technique is a structural induction on A; lemmata STRUCT NOTIN and STRUCT RES
are needed in the cases involving revelation () and revelation adjunct (;), respectively.

Reductions are preserved by Fresh Renaming

In this section we will show a similar result to that previously proved about Structural
Congruence; more precisely we are going to formalize Lemma 4-4 of [CG00] extended with
the case involving the restriction operator:

Consider any process P and names m, m′, with m′ 6∈ fn(P). For all P ′, if
P → P ′ then m′ 6∈ fn(P ′) and P{m ← m′} → P ′{m ← m′}. Moreover, for
all Q, if P{m ← m′} → Q then there is a P ′ with P → P ′, m′ 6∈ fn(P ′) and
Q = P ′{m ← m′}. ut

However, before proceeding to the main statement, we need to prove that substitution is also
preserved by fresh renamings, since rule (Red Comm) involves substitution of capabilities
for names. Indeed, we prove a stronger result, namely, substitution of capabilities for names
is preserved by renamings (not necessarily fresh):

6.2. AMBIENTS 135

Lemma 6.3 For all capabilities M , N , R, processes P , Q and names m, n, n′ (where
m 6= n, n′),

• if R = N{m ← M}, then R{n ← n′} = N{n ← n′}{m ← M{n ← n′}};

• if Q = P{m ← M}, then Q{n ← n′} = P{n ← n′}{m ← M{n ← n′}}. ut

The corresponding statements in Coq are the following:

Lemma SUBST_CAP_RW : (M,R:name->cap)(N:name->name->cap)
(x:name)(notin_ho_cap x M) -> (notin_ho_cap x R) ->
(notin_ho2_cap x N) ->
(subst_cap (M x) (N x) (R x)) ->
(y:name)(subst_cap (M y) (N y) (R y)).

Lemma SUBST_PROC_RW : (M:name->cap)(P:name->name->proc)(Q:name->proc)
(x:name)(notin_ho_cap x M) ->
(notin_proc x (nu [_:name](nu (P _)))) ->
(notin_proc x (nu Q)) ->
(subst_proc (M x) (P x) (Q x)) ->
(y:name)(subst_proc (M y) (P y) (Q y)).

Similarly to the case of Structural Congruence, we formalize Lemma 4-4 in two steps: first
of all we prove that if P → Q and n 6∈ fn(P) then n 6∈ fn(Q):

Lemma RED_NOTIN: (A,B:proc)(red A B) ->
(x:name)(notin_proc x A)->(notin_proc x B).

Then, we prove the main statement of this section:

Lemma RED_RW: (P,Q:name->proc)(x:name)
(notin_proc x (nu P)) -> (notin_proc x (nu Q)) ->
(red (P x) (Q x)) ->
(y:name)(notin_proc y (nu P)) -> (notin_proc y (nu Q)) ->
(red (P y) (Q y)).

The properties proved for red (namely RED NOTIN and RED RW) are easily extended to its
reflexive and transitive closure red star:

Lemma RED_STAR_NOTIN : (A,B:proc)(red_star A B) ->
(x:name)(notin_proc x A) -> (notin_proc x B).

Lemma RED_STAR_RW : (P,Q:name->proc)(x:name)
(notin_proc x (nu P)) -> (notin_proc x (nu Q)) ->
(red_star (P x) (Q x)) ->
(y:name)
(notin_proc y (nu P)) -> (notin_proc y (nu Q)) ->
(red_star (P y) (Q y)).

136 CHAPTER 6. CASE STUDIES

Nesting is preserved by Fresh Renaming

Continuing with our formalization, we will show that nesting (↓) is preserved by fresh re-
naming in the sense of Lemma 4-5 of [CG00]:

Consider any process P and names m, m′, with m′ 6∈ fn(P). For all P ′, if
P ↓ P ′ then m′ 6∈ fn(P ′) and P{m ← m′} ↓ P ′{m ← m′}. Moreover, for
all Q, if P{m ← m′} ↓ Q then there is a P ′ with P ↓ P ′, m′ 6∈ fn(P ′) and
Q = P ′{m ← m′}. ut

Like in the case of the previously proved results about Structural Congruence and the Re-
duction System, we first show that if P ↓ Q and n 6∈ fn(P) then n 6∈ fn(Q):

Lemma NEST_NOTIN: (A,B:proc)(nest A B) ->
(x:name)(notin_proc x A)->(notin_proc x B).

The main statement easily follows from STRUCT RW since nesting is defined in terms of Struc-
tural Congruence:

Lemma NEST_RW: (P,Q:name->proc)(x:name)
(notin_proc x (nu P)) -> (notin_proc x (nu Q)) ->
(nest (P x) (Q x)) ->
(y:name)(notin_proc y (nu P)) -> (notin_proc y (nu Q)) ->
(nest (P y) (Q y)).

Like in the case of red, the previous two lemmata about nest are easily extendible to its
reflexive and transitive closure nest star:

Lemma NEST_STAR_NOTIN : (A,B:proc)(nest_star A B) ->
(x:name)(notin_proc x A) -> (notin_proc x B).

Lemma NEST_STAR_RW : (P,Q:name->proc)(x:name)
(notin_proc x (nu P)) -> (notin_proc x (nu Q)) ->
(nest_star (P x) (Q x)) ->
(y:name)
(notin_proc y (nu P)) -> (notin_proc y (nu Q)) ->
(nest_star (P y) (Q y)).

Satisfaction is preserved by Fresh Renaming

Almost all of the previous lemmata about fresh renamings are to be considered as preliminary
results in order to prove a fundamental property of the Ambient Logic stating that fresh
renaming preserves the satisfaction relation |= (Lemma 2-3 of [CG01]):

For all closed formulas A, processes P , and names m, m′, if m′ 6∈ fn(P)∪ fn(A)
then P |= A ⇔ P{m ← m′} |= A{m ← m′}. ut

The corresponding statement in Coq is the following:

Lemma SAT_RW: (P:name->proc)(F:name->form)(x:name)
(notin_proc x (nu P)) -> (notin_form x (forall F)) ->
(sat (P x) (F x)) ->
(y:name)(notin_proc y (nu P)) -> (notin_form y (forall F)) ->
(sat (P y) (F y)).

6.3. PRAGMATIC REMARKS 137

Since the satisfaction relation is not representable by an inductive predicate (as we remarked
in Section 6.2.9), we do not have a structural induction principle on sat. Hence, we mimick
the proof “on paper” (which is carried out by induction on the number of symbols in the
closed formula A) proceeding by complete induction on the number of constructors occurring
in a formula. More precisely, we start by introducing the following inductive relation:

Inductive ln: form -> nat -> Prop:=
ln_T : (ln T (S O))

| ln_neg : (F:form)(n:nat)(ln F n) -> (ln (neg F) (S n))
| ln_Or : (F,G:form)(n1,n2:nat)(ln F n1) -> (ln G n2) ->

(ln (Or F G) (S (plus n1 n2)))
| ln_zero : (ln zero (S O))
| ln_comp : (F,G:form)(n1,n2:nat)(ln F n1) -> (ln G n2) ->

(ln (comp F G) (S (plus n1 n2)))
| ln_comp_adj : (F,G:form)(n1,n2:nat)(ln F n1) -> (ln G n2) ->

(ln (comp_adj F G) (S (plus n1 n2)))
| ln_loc : (F:form)(x:name)(n:nat)(ln F n) -> (ln (loc x F) (S n))
| ln_loc_adj : (F:form)(x:name)(n:nat)(ln F n) ->

(ln (loc_adj F x) (S n))
| ln_rev : (F:form)(x:name)(n:nat)(ln F n) -> (ln (rev x F) (S n))
| ln_rev_adj : (F:form)(x:name)(n:nat)(ln F n) ->

(ln (rev_adj F x) (S n))
| ln_sometime : (F:form)(n:nat)(ln F n) -> (ln (sometime F) (S n))
| ln_somewhere : (F:form)(n:nat)(ln F n) -> (ln (somewhere F) (S n))
| ln_forall : (F:name->form)(n:nat)

((x:name)(ln (F x) n)) -> (ln (forall F) (S n)).

Intuitively, (ln A n) holds if and only if A contains n occurrences of form-constructors.
Like lnp (the measure on processes we introduced in Section 6.2.10), ln is preserved by

renaming (not necessarily fresh):

Lemma LNP_RW: (n:nat)(P:proc)(lnp P n) ->
(x:name)(Q:name->proc)(notin_proc x (nu Q)) ->
P=(Q x) -> (y:name)(lnp (Q y) n).

As for LNP RW (see Section 6.2.10), the proof requires a complete induction on n. Then, we
prove that for every term of type form there exists a natural number n such that (ln A n):

Lemma LN_TOT: (A:form)(Ex [n:nat](ln A n)).

The proof is an easy structural induction on A (LN RW is needed in the case related to the
universal quantification).

Finally, we can carry out the proof of SAT RW by means of a complete induction on the
measure of (F x), using when needed all the previously proved renaming lemmata about
Structural Congruence, reductions, nesting etc.

6.3 Pragmatic remarks

We conclude this chapter by highlighting some pragmatic issues we found particularly inter-
esting or problematic in dealing with metatheoretical proof developments about HOAS-based
encodings.

138 CHAPTER 6. CASE STUDIES

6.3.1 Lifting structural information

All the renaming lemmata illustrated in the previous sections have very similar statements
(the only differences are in the particular relation which we want to be preserved by renaming
and eventually in the syntactic categories involved) and are formally proved in Coq by means
of the same proof technique. Indeed, they are all subsumed by the following pattern:

x 6∈ fn(C1[·]) ∪ . . . ∪ fn(Cn[·]) and P(C1[x], . . . , Cn[x])
∀y 6∈ fn(C1[·]) ∪ . . . ∪ fn(Cn[·]).P(C1[y], . . . , Cn[y])

(6.1)

where P is a given n-ary relation (e.g., α-equivalence, Structural Congruence, capture-
avoiding substitution, reduction relation etc.) and C1[·] . . . , Cn[·] are variables represent-
ing contexts over a given syntactic category. Usually, this kind of properties are proved
“with pencil and paper” by carrying out a structural induction either on the derivation of
the premise P(C1[x], . . . , Cn[x]) or on one of the arguments Ci[x] (1 ≤ i ≤ n) or a “mea-
sure” of an argument (e.g., the number of symbols it contains). However, Coq tactics (in
particular those handling induction principles) do not deal adequately with higher-order uni-
fication; hence, we are forced to prove a preliminary version of the renaming lemma where
we introduce by hand the necessary unifications in order to recover sufficient information on
the structure of the contexts Ci[·] from their instantiations Ci[x] (throughout this chapter
we have reported several examples, e.g., lemmata PRE HO TM IND and PRE ALPHA RW in Sec-
tions 6.1.2 and 6.1.5 and lemma PRE NOTIN PROC MONO in Section 6.2.10). In other words,
we “lift” structural information to the level of functional terms; in order to achieve this goal,
the axioms of β-expansion and extensionality turn out to be indispensable (indeed, this is
the original motivation of their introduction in [HMS01b]). Hence, our original goal becomes
the following:

x 6∈ fn(C1[·]) ∪ . . . ∪ fn(Cn[·]) and T1 = C1[x], . . . , Tn = Cn[x] and P(T1, . . . , Tn)
∀y 6∈ fn(C1[·]) ∪ . . . ∪ fn(Cn[·]).P(C1[y], . . . , Cn[y])

(6.2)

where T1, . . . , Tn are plain terms and T1 = C1[x], . . . , Tn = Cn[x] are the necessary unifica-
tions. Clearly we can infer 6.1 from 6.2 by taking Ti = Ci[x].

During the proof, the inductive hypothesis gives us some structural information on
T1, . . . , Tn. Then we can expand the latter into a context applied to x yielding the equations
T1 = T ′1[x], . . . , Tn = T ′n[x] where x 6∈ fn(T ′1[·]) ∪ . . . ∪ fn(T ′n[·]). Differently from Ci[·], T ′i [·]
is not a variable, but a concrete context. Hence, by transitivity of equality we obtain the
equations Ci[x] = T ′i [x]; whence, by means of extensionality, we get Ci[·] = T ′i [·], i.e., the
structural information we needed on the variable Ci[·]. Such an information can then be
transferred to the instantiations over y in the current goal in order to apply the suitable
constructor of P and solve the subsequent subgoal by means of the inductive hypothesis.

6.3.2 Inversion issues

We have seen in Section 6.2.2 that the Structural Congruence relation identifies processes up
to some (spatial) rearrangements, allowing to formalize a simpler reduction system. However,
there is a price to pay for this simplification; indeed, the inversion tactic of Coq becomes
practically useless when applied to a hypothesis of type (struct eq P Q). The reason is
that struct eq features two rules which do not enjoy the subformula property and are
always applicable, namely, struct symm and struct trans. Hence, inverting a hypothesis
of type (struct eq P Q), yields (among the other subgoals) a context where the original
hypothesis has been replaced by (struct eq Q P). Thus, the complexity of the goal has not

6.3. PRAGMATIC REMARKS 139

been reduced and inverting the new hypothesis arises the same problem leading us to switch
ad infinitum back and forth between (struct eq P Q) and (struct eq Q P). Luckily, so
far we did not need to use inversion tactics on hypotheses about structural congruences of
processes (only induction was in need).

6.3.3 Statistics

Differently from proofs with “pencil and paper”, the activity of semiautomated proof de-
velopment does not allow one to sweep anything under the rug. Thus, it is not possible to
conclude a proof saying, e.g., “the remaining cases are proved by a similar argument” nor
we can take for granted even elementary properties. This fact has the pleasant consequence
of yielding proofs which are indeed sound and exhaustive, but on the other hand charges the
user with a consistent burden. Obviously, the latter progressively increases with the com-
plexity of the object language, since having more constructors means more cases to carry
out in proofs by structural induction and/or inversion.

In order to give an idea of the increase of complexity when passing from the untyped
λ-calculus to the Ambient Calculus, we end by giving in Table 6.1 some empirical data
obtained from the two case studies illustrated in this chapter. All data refer to the following
environment: Sun UltraSPARC IIe (64 bit) 440 MHz, 768 MB RAM (100 MHz), Coq V7.1
in native mode. As the number of proofs is concerned, we also included minor auxiliary
lemmata which were necessary in order to prove the main results illustrated throughout the
chapter.

untyped λ-calculus Ambients

Number of proofs 64 56
Size of source code 70 KB 172 KB
Broadest proof tree 5 main subgoals 22 main subgoals

Times of compilation ∼ 1 min 13 sec ∼ 7 min 24 sec
Maximum memory consumption ∼ 38 MB ∼ 188 MB

Size of .vo 1075 KB 6271 KB

Table 6.1: Some statistics on the formal development so far accomplished.

140 CHAPTER 6. CASE STUDIES

7
Conclusions

The results contained in this thesis are part of the achievements of an ongoing research
program at the Computer Science Department of the University of Udine (started in 1992)
on proof editors based on HOAS-encodings in dependent typed λ-calculi for formally rea-
soning about properties of program logics. So far, many case studies have been carried out:
Structured and Natural Operational Semantics, Modal Logics, Dynamic Logics [Mic97], µ-
calculus [Mic97, Mic01b]. These experiences have yielded a deep knowledge on the subtleties
and issues involved in the complex task of representing and reasoning about formal systems
in type theory based logical frameworks.

One important achievement of the research carried out so far by our group is the so-called
Theory of Contexts, which was originally conceived in [HMS01b] for metareasoning about
a HOAS-encoding of the π-calculus. Its consistency, following an original idea of Hofmann,
has been proved in Chapter 5 by means of a functorial model based on covariant presheaves.
This rather complicated construction has been carried out in full detail, instead of resorting
to “esoteric” categorical notions, in order to make it readable to readers unaware of the
complicated notions of tripos theory. Indeed, we think that the technical machinery we have
presented should be applicable also for reasoning about models with a similar structure.
Hence, a reader wanting to carry out a similar construction will grasp more hints from a de-
tailed construction than from an abstract, although interesting, discussion on the properties
enjoyed by tripos structures.

The consistency of the Theory of Contexts yields an important consequence, i.e., it can
be safely embedded in existing logical frameworks (as far as their logics do not entail the
Axiom of Unique Choice) in order to provide a suitable environment for formally reason-
ing about HOAS-encodings of nominal calculi. For instance, this theory has been used
fruitfully for developing the (meta)theory of several object languages in the proof assistant
Coq [TCDT01]; see [HMS01b, Mic01a] for the case of π-calculus and λ-calculus, respec-
tively. Moreover, in this thesis we presented two other complex case studies. The first one
concerned the development of the metatheory of α-equivalence for the untyped λ-calculus.
Moreover, we provided the formal proof of the equivalence of three alternative formulations
of α-equivalence. Finally a HOAS-encoding of the Ambient Calculus and of the satisfaction
relation of the related Modal Logic introduced in [CG01] has been presented. In the latter
case a formal development of a set of fresh renaming properties lying at the heart of the
metatheory of the Ambient Calculus has been formally proved.

142 CHAPTER 7. CONCLUSIONS

We feel that one of the main advantages of our axiomatic approach, compared to other
semantical solutions in the literature [FPT99, GP99], is that it requires a very low mathe-
matical and logical overhead. We do not need to introduce a new abstraction and concretion
operators as in [GP99], but we can continue to model abstraction with λ-abstraction and
instantiation with functional application. Therefore our approach can be easily utilized in
existing interactive proof assistants, e.g., Coq, without needing a redesign of the system.

As far as the problem of formally reasoning about nominal logics is concerned, we think
that our approach is still more fruitful since the user is not forced to choose a specific
framework, loosing a considerable amount of time in learning a new tool. Indeed, it can
continue to use its preferred LF simply adding our axioms to its signatures. Indeed, the
simplicity of our axiomatic approach comes from the very low mathematical and logical
overhead required, since the existing machinery of the framework is exploited. However,
as we pointed out in Section 4.4, we have a poor functional theory. Hence, if functional
programming is the primary need, other frameworks (e.g., [Pit01a]) are to be considered.

Future work. At least three possible developments are stemming from this work.

1. A still open question is about the completeness of the Theory of Contexts. It is not
clear which class of properties can be derived from our axioms; a suitable character-
ization is needed. The development of complex case studies may be of some help.
In particular we plan to complete the formalization of the properties of the Ambient
Logic introduced in [CG01] and further investigated in [CC01]. We are expecting some
interesting insights from this work since Cardelli and Gordon explicitly use the Gabbay-
Pitts’ fresh-name quantifier () in order to talk about restricted names in a process. It
would be interesting to see if the properties involving can be derived using the Theory
of Contexts. Our confidence is motivated by the fact that our encoding methodology
and axioms allow one to formulate and prove equivariant properties [Pit01b] in a very
natural way, as it is witnessed by the formal development described in Section 6.2.11.

2. Another direction is to extend the model in order to handle more expressive met-
alanguages. For instance, one could take into account a theory of dependent and
impredicative types. The expressive power of such a metalanguage would allow the rep-
resentation and the manipulation of proof objects, via the usual “propositions-as-types”
paradigm. An example of object theories which could be dealt with in this case are
Natural Deduction-style proof systems; then, the well-known Inversion Lemma could
be proved by induction over proof objects, using (a suitable extension of) the Theory
of Contexts.

3. According to our experience, the activity of computer-assisted proof development is still
at the beginning in the sense that the limits of current implementations are rather frus-
trating for the final user. For instance, in Coq there is no primitive support for HOAS-
encodings and higher-order unifications produce some weird behaviours of many useful
tactics, forcing the user to manually add the necessary equalities in the statements
to prove (see e.g. all the PRE lemmata of Chapter 6). Since HOAS and higher-order
induction/recursion principles have been proved to be sound in many works, it is time
to provide a better support for HOAS-encodings, e.g., automatic generation of higher-
order induction/recursion principles for types of the form υ → ι, where ι is inductively
defined and υ is an open set (i.e., not inductive).

A
Deriving Higher-Order Induction

Principles

This appendix contains the full Coq code formalizing the derivation of the higher-order
induction principle for contexts of type var->tm by means of the complete induction principle
on natural numbers, Indι and the axioms of the Theory of Contexts.

(* We use the Coq library Omega to automatize the verification *)
(* of inequalitites on natural numbers. *)
Require Omega.

(* Encoding of syntax: variables and terms *)

Parameter var: Set.

Inductive tm : Set:=
is_var: var -> tm

| app: tm -> tm -> tm
| lam: (var -> tm) -> tm.

(* Freshness predicate *)

Inductive notin [x:var]: tm -> Prop:=
notin_var: (y:var)~x=y -> (notin x (is_var y))

| notin_app: (M,N:tm)(notin x M) -> (notin x N) -> (notin x (app M N))
| notin_lam: (M:var->tm)((y:var)~x=y -> (notin x (M y))) ->

(notin x (lam M)).

In the following Section we derive the course of values induction principles on natural
numbers (NAT IND):

Section nat_ind_complete.

Lemma NAT_COMPLETE: (P:nat->Prop)

144 APPENDIX A. DERIVING HIGHER-ORDER INDUCTION PRINCIPLES

((n:nat)((m:nat)(lt m n) -> (P m))->(P n)) ->
(a,b:nat)(lt b a) -> (P b).

Proof.
Do 2 Intro; Induction a; Intros;
[Inversion_clear H0
| Inversion_clear H1;
[Apply H; Intros; Apply H0; Auto | Apply H0; Unfold lt; Assumption]].

Qed.

Lemma NAT_IND: (P:nat->Prop)
(P O)->
((n:nat)((m:nat)(lt m n) -> (P m))->(P n))->
(n:nat)(P n).

Proof.
Do 3 Intro; Induction n; Intros;
[Assumption
| Apply H0; Intros; Inversion H2;
[Assumption | Apply NAT_COMPLETE with (S n0); Assumption]].

Qed.

End nat_ind_complete.

In the next Section we instantiate the Theory of Contexts for the encoding of untyped
λ-calculus.

Section ToC.

(* Axiom stating the decidability of Leibniz’s equality over names. *)

Axiom dec_var: (x,y:var)x=y \/ ~x=y.

(* Unsaturation *)

Axiom unsat: (M:tm)(Ex [x:var](notin x M)).

(* Expansion for plain terms and unary contexts *)

Axiom exp: (M:tm)(x:var)(Ex [N:var->tm](notin x (lam N)) /\ M=(N x)).

Axiom ho_exp: (M:var->tm)(x:var)
(Ex [N:var->var->tm](notin x (lam [_:var](lam (N _)))) /\ M=(N x)).

(* Extensionality *)

Axiom ext: (F,G:var->tm)(x:var)
(notin x (lam F)) -> (notin x (lam G)) ->
(F x)=(G x) -> F=G.

End ToC.

145

Next we define the relation l counting the number of constructors in terms of type tm:

Inductive l: tm -> nat -> Prop:=
l_var : (x:var)(l (is_var x) (S O))

| l_app : (M,N:tm)(n1,n2:nat)(l M n1) -> (l N n2) ->
(l (app M N) (S (plus n1 n2)))

| l_lam : (M:var->tm)(n:nat)((y:var)(l (M y) n)) -> (l (lam M) (S n)).

The next auxiliary lemma allows to prune inconsistent cases during the proof development:
it states that for every term M of type tm if (l M n) holds, then n must be greater than O:

Lemma L_S: (M:tm)(n:nat)(l M n)->(lt O n).
Proof.
Induction M; Intros;
[Inversion_clear H; Unfold lt; Apply le_n
| Inversion_clear H1; Cut (lt O n1); [Intro | Apply H; Assumption];
Cut (lt O n2); [Intro | Apply H0; Assumption]; Omega

| Inversion_clear H0; Elim (unsat (lam is_var)); Intros; Cut (lt O n0);
[Intro | Apply H with x; Auto]; Unfold lt; Apply le_S; Assumption].

Qed.

The net lemma plays a fundamental rôle in the rest of the development: it states that l is
a relation invariant w.r.t. renamings:

Lemma L_RW: (n:nat)(M:tm)(l M n) ->
(x:var)(N:var->tm)(notin x (lam N)) -> M=(N x) ->
(y:var)(l (N y) n).

Proof.
Intro; Pattern n; Apply NAT_IND; Intros.
Cut (lt O (0)); [Intro | Apply L_S with M; Assumption].
Inversion_clear H2.

Inversion H0.
Elim (dec_var x x0); Intros.
Rewrite <- H5 in H3; Rewrite <- H3 in H2; Cut N=([_:var](is_var _));
[Intro
| Apply ext with x; Try (Apply notin_lam; Intros; Apply notin_var);
Auto].

Rewrite H6; Apply l_var.

Rewrite <- H3 in H2; Cut N=([_:var](is_var x0));
[Intro
| Apply ext with x; Try (Apply notin_lam; Intros; Apply notin_var);
Auto].

Rewrite H6; Apply l_var.

Elim (exp M0 x); Elim (exp N0 x); Intros.
Inversion_clear H7; Inversion_clear H8.
Rewrite H10 in H5; Rewrite H11 in H5; Rewrite <- H5 in H2.
Cut N=([_:var](app (x1 _) (x0 _)));

146 APPENDIX A. DERIVING HIGHER-ORDER INDUCTION PRINCIPLES

[Intro
| Apply ext with x; Try (Apply notin_lam; Intros; Inversion_clear H7;
Inversion_clear H9; Apply notin_app); Auto].

Rewrite H8; Apply l_app;
[Apply H with (x1 x) x;
[Rewrite <- H6; Omega
| Rewrite <- H11; Assumption
| Assumption
| Trivial]

| Apply H with (x0 x) x;
[Rewrite <- H6; Omega
| Rewrite <- H10; Assumption
| Assumption
| Trivial]].

Elim (ho_exp M0 x); Intros.
Inversion_clear H6.
Rewrite H8 in H4; Rewrite <- H4 in H2.
Cut N=([_:var](lam (x0 _))); [Intro | Apply ext with x; Auto].
Rewrite H6; Apply l_lam; Intro.
Elim (unsat

(app (lam [_:var](lam (x0 _)))
(app (is_var x) (app (is_var y) (is_var y0))))); Intros.

Inversion_clear H9; Inversion_clear H11; Inversion_clear H9;
Inversion_clear H12; Inversion_clear H9; Inversion_clear H13.
Apply H with (x0 y x1) x1;
[Rewrite <- H5; Unfold lt; Apply le_n
| Idtac
| Inversion_clear H10; Apply notin_lam; Intros;
Cut (notin x1 (lam (x0 y))); [Intro | Auto]; Inversion_clear H14;
Auto

| Trivial].
Change (l ([_:var](x0 _ x1) y) n1) ; Apply H with (x0 x x1) x;
[Rewrite <- H5; Unfold lt; Apply le_n
| Rewrite <- H8; Auto
| Inversion_clear H7; Apply notin_lam; Intros;
Cut (notin x (lam (x0 y1))); [Intro | Auto]; Inversion_clear H14;
Auto

| Trivial].
Qed.

The relation l is also total in the sense that for every term M of type tm there exists a natural
number n such that (l M n) holds:

Lemma L_TOT: (M:tm)(Ex [n:nat](l M n)).
Proof.
Induction M; Intros;
[Split with (S O); Apply l_var
| Inversion_clear H; Inversion_clear H0; Split with (S (plus x x0));

147

Apply l_app; Assumption
| Elim (unsat (lam t)); Intros; Elim (H x); Intros; Split with
(S x0); Apply l_lam; Intro; Apply L_RW with (t x) x; Auto].

Qed.

Finally, we are ready to prove the main result, i.e., the higher order induction principle over
terms of functional type var->tm. This will be carried out in two steps: first we prove a
preliminary lemma PRE HO TM IND with all the necessary unifications added as premises in
order to overcome the issues due to the inadequate treatment of higher-order unification in
Coq. Then, lemma HO TM IND is proved as an immediate corollary of PRE HO TM IND.

Lemma PRE_HO_TM_IND: (P:(var->tm)->Prop)
((x:var)(P [_:var](is_var x))) ->
(P is_var) ->
((M,N:var->tm)(P M) -> (P N) ->
(P [x:var](app (M x) (N x)))
) ->
((M:var->var->tm)((y:var)(P [x:var](M x y))) ->
(P [x:var](lam (M x)))
) ->
(n:nat)(M:tm)(l M n) ->
(N:var->tm)(x:var)(notin x (lam N)) ->
(N x)=M -> (P N).

Proof.
Do 6 Intro; Pattern n; Apply NAT_IND; Intros.
Cut (lt O (0)); [Intro | Apply L_S with M; Assumption].
Inversion_clear H6.

Inversion H4.
Elim (dec_var x x0); Intros.
Rewrite <- H9 in H7; Rewrite <- H7 in H6; Cut N=is_var;
[Intro
| Apply ext with x; Try (Apply notin_lam; Intros; Apply notin_var);
Auto].

Rewrite H10; Assumption.

Rewrite <- H7 in H6; Cut N=([_:var](is_var x0));
[Intro
| Apply ext with x; Try (Apply notin_lam; Intros; Apply notin_var);
Auto].

Rewrite H10; Auto.

Elim (exp M0 x); Intros; Elim (exp N0 x); Intros.
Inversion_clear H11; Inversion_clear H12.
Rewrite H14 in H9; Rewrite H15 in H9; Rewrite <- H9 in H6.
Cut N=([x:var](app (x0 x) (x1 x)));
[Intro
| Apply ext with x; Try (Apply notin_lam; Intros; Inversion_clear H11;
Inversion_clear H13; Apply notin_app); Auto].

148 APPENDIX A. DERIVING HIGHER-ORDER INDUCTION PRINCIPLES

Rewrite H12; Apply H1;
[Apply H3 with n1 (x0 x) x;
[Rewrite <- H10; Omega
| Rewrite <- H14; Assumption
| Assumption
| Trivial]

| Apply H3 with n2 (x1 x) x;
[Rewrite <- H10; Omega
| Rewrite <- H15; Assumption
| Assumption
| Trivial]].

Elim (ho_exp M0 x); Intros.
Inversion_clear H10.
Rewrite H12 in H8; Rewrite <- H8 in H6.
Cut N=([_:var](lam (x0 _))); [Intro | Apply ext with x; Auto].
Rewrite H10; Apply H2; Intro.
Elim (unsat (app (lam [_:var](lam (x0 _))) (app (is_var x) (is_var y))));
Intros.
Inversion_clear H13; Inversion_clear H15; Inversion_clear H13;
Inversion_clear H16.
Apply H3 with n1 (x0 x1 y) x1;
[Rewrite <- H9; Unfold lt; Apply le_n
| Idtac
| Inversion_clear H14; Apply notin_lam; Intros;
Cut (notin x1 (lam (x0 y0))); [Intro | Auto]; Inversion_clear H17;
Auto

| Trivial].
Elim (unsat

(app (lam [_:var](lam (x0 _)))
(app (is_var x) (app (is_var x1) (is_var y))))); Intros.

Inversion_clear H16; Inversion_clear H18; Inversion_clear H16;
Inversion_clear H19; Inversion_clear H16; Inversion_clear H20.
Apply L_RW with (x0 x1 x2) x2;
[Idtac
| Inversion_clear H17; Apply notin_lam; Intros;
Cut (notin x2 (lam (x0 x1))); [Intro | Auto]; Inversion_clear H21;
Auto

| Trivial].
Change (l ([_:var](x0 _ x2) x1) n1) ; Apply L_RW with (x0 x x2) x;
[Rewrite <- H12; Auto
| Inversion_clear H11; Apply notin_lam; Intros;
Cut (notin x (lam (x0 y0))); [Intro | Auto]; Inversion_clear H21;
Auto

| Trivial].
Qed.

Lemma HO_TM_IND: (P:(var->tm)->Prop)
((x:var)(P [_:var](is_var x))) ->

149

(P is_var) ->
((M,N:var->tm)(P M) -> (P N) ->
(P [x:var](app (M x) (N x)))

) ->
((M:var->var->tm)((y:var)(P [x:var](M x y))) ->
(P [x:var](lam (M x)))

) ->
(M:var->tm)(P M).

Proof.
Intros; Elim (unsat (lam M)); Intros; Elim (L_TOT (M x)); Intros;
Apply PRE_HO_TM_IND with x0 (M x) x; Auto.
Qed.

150 APPENDIX A. DERIVING HIGHER-ORDER INDUCTION PRINCIPLES

B
Category-theoretical notions

In this section we recall some notions and results from category theory needed in order to
understand the material in Chapter 5. Obviously, this is not intended to be a replacement for
a good text on the subject (e.g. [Mac71, BW90] or, for the impatient reader, the first chapter
of [Bel88]), but only a quick reference for non-categorically minded readers. Moreover, this
section has the aim of fixing notation and giving more complete references to the involved
topics.

Let us start with some basic notation: in the following we will write X ∈ C to mean that
X is an object of the category C and we will denote by C(X, Y) the family of arrows in C
from X to Y .

We will assume fixed a universe of sets, whose elements are called small sets. A category
C is said locally small if for all X, Y ∈ C, the family C(X, Y) is a small set, and small if,
moreover, also the class of objects is a small set. In the following, we will refer to small sets
simply as sets.

The following is a standard notion:

Definition B.1 A category C with terminal object and binary products is cartesian closed
if for every B, C ∈ C there is an object B ⇒ C and a morphism evC,B : (B ⇒ C)×B −→ C
such that for each morphism f : A×B −→ C there is a unique morphism pfq : A −→ B ⇒ C,
the exponential transpose of f , such that the following diagram commutes:

A×B

pfq×idB

²²

f

%%KKKKKKKKKKKKK

(B ⇒ C)×B evC,B

// C

Next, we will present some basic results about functor categories, so it is useful a quick
review on some standard notions.

A functor F : C → D is said to be faithful if, for all A,B ∈ C, F is injective on C(A, B), it
is said to be full if for each A, B ∈ C, F carries C(A,B) onto D(F (A), F (B)). Finally it is an
embedding if it is injective on objects and faithful; moreover, F preserves limits if it carries
limit cones into limit cones. In this case, it will in particular preserve cartesian products.

152 APPENDIX B. CATEGORY-THEORETICAL NOTIONS

In order to improve the readability of formulas and diagrams, we may denote the appli-
cation of functors in three different ways: for instance, for F : C −→ D and A object of C,
the notations “FA”, “F (A)” and “FA” are equivalent.

Let Set be the category whose objects are sets and whose morphisms are functions
between sets. Given a locally small category C, we will denote by Č the category SetC whose
objects are the functors from C to Set and whose morphisms are natural transformations
between them. More precisely:

• an object A of Č consists of a family of sets {AX}X∈C , together with a family of
functions {Af}f∈C(X,Y), X,Y ∈C such that Af : AX −→ AY , AidX

= idAX
and Af◦g =

Af ◦Ag;

• a morphism m ∈ Č(A,B) is a family of functions {mX}X∈C , such that mX : AX −→ BX

and for each f : X −→ Y , mY ◦Af = Bf ◦mX .

If C is small, it is known that the category Č is cartesian closed with finite products given
by

1X , {?} and 1f , id{?} (empty product)

(A×B)X , AX ×BX and (A×B)f , Af ×Bf ,

moreover (A ⇒ B) is given by

(A ⇒ B)X , Č(A× C(X,), B)

(A ⇒ B)f (m) , m ◦ (idA × (◦ f)), for f : Y −→ Z and m ∈ Č(A× C(Y,), B)

and finally evC,B and ptq : A → B ⇒ C are given by

(evC,B)X(〈m, b〉) , mX(〈b, idX〉), for all X ∈ C, b ∈ BX , and m ∈ (B ⇒ C)X

(ptqX(a))Y : BY × V(X, Y) −→ CY

(ptqX(a))Y (b, h) , tY (〈Ah(a), b〉)

Let us consider the functor Y̌ : Cop −→ Č, defined as follows:

• for X ∈ C, Y̌(X) : C → Set is the Homset functor C(X,), i.e.: Y̌(X)Z , C(X, Z) and,
given f : Y −→ Z, for all g ∈ C(X, Y), Y̌(X)f (g) , f ◦ g;

• for f : X → Y , Y̌(f) : Y̌(X) → Y̌(Y) is the natural transformation such that, for all
Z ∈ C and g ∈ C(Y, Z), (Y̌(f))X(g) , g ◦ f .

Then, the following fundamental lemma holds:

Proposition B.1 (Yoneda Lemma) For each A ∈ Č and X ∈ C there is a bijective cor-
respondence between Č(Y̌(X), A) and AX , moreover the correspondence is natural in A and
X.

We give the definition of this bijective correspondence between Č(Y̌(X), A) and AX : ΦX,A(m)
= mX(idX), for m ∈ Č(Y̌(X), A); the inverse is the natural transformation defined on a ∈ AX

by (Φ−1
X,A(a))Z(f) , Af (a), for f ∈ Y̌(X)Z .

An immediate and important consequence of previous result is that the category Cop fully
embeds in Č by means of Y̌, which is called, therefore, Yoneda embedding.

153

When an object in Č is isomorphic to an object in the image of Y̌ it is said to be
representable. Notice, for example, that, if C has an initial object 0, then the terminal object
1 is representable since 1 ∼= Y̌(0).

Another useful notion to recall is the concept of adjunction; for our purposes the following
definition suffices.

Definition B.2 Given categories C and D, an adjunction from C to D is a triple (F,G, φ),
where F, G are functors, F : C −→ D, G : D −→ C and φ is a function which maps every
A ∈ C and B ∈ D to a bijection φA,B : C(A,GB) ∼= D(FA, B), natural in A and B, i.e., the
following hold:

• φAB(h ◦ f) = φA′B(h) ◦ F (f) for every A′ ∈ C, f : A −→ A′ and h : A′ −→ G(B);

• φAB(G(g) ◦ h) = g ◦ φAB′(h) for every B′ ∈ D, g : B′ −→ B and h : A −→ G(B′).

F and G are respectively called the left and the right adjoint of the adjunction and this is
denoted by F a G or G ` F .

We will use the known property that a functor F : C −→ D with a right (left) adjoint
preserves colimits (limits). For the proof see, e.g., [Mac71].

Now we introduce some notions and a result about algebras of functors.

Definition B.3 Given a functor T : C −→ C, a T -algebra is a pair 〈A,α〉, with A ∈ C and
φ : TA −→ A morphism of C. A T -algebra morphism from 〈A,α〉 to 〈B, β〉 is an arrow
f ∈ C(A,B) such that the following diagram commutes:

TA
Tf //

α

²²

TB

β
²²

A
f // B

T -algebras and T -algebra morphisms form a category, whose initial object, if it exists, is
said an initial T -algebra.

Theorem B.1 ([Hof99]) Let C,D be two categories and F : C −→ D be a functor with a
right adjoint F ∗. Let T : C −→ C and T ′ : D −→ D be two functors such that T ′ ◦F ∼= F ◦ T
for some natural isomorphism φ : T ′◦F −→ F ◦T . If (A, a : TA → A) is an initial T -algebra
in C, then (FA, Fa ◦ φA : T ′(FA) → FA) is an initial T ′-algebra in D.

Proof. The adjoint pair F a F ∗ can be lifted to a pair of adjoint functors between the
categories of T - and T ′- algebras. Since any functor with a right adjoint preserve colimits
and the initial object is a colimit, then the initial object of the former category is preserved
in the latter. ut

Another useful technique for building initial algebras is based on the notions of simple
slice category and strong functor. We recall here the basic definitions and related properties
from [Jac95].

Definition B.4 Given a category C with binary products and G ∈ C, the simple slice cate-
gory C//G is defined as follows:

1. Obj(C//G) , Obj(C),
2. C//G(A,B) , C(G×A,B),

154 APPENDIX B. CATEGORY-THEORETICAL NOTIONS

3. the identity map on A in C//G is the second projection π′ : G×A −→ A in C,
4. the composition of f : A −→ B and g : B −→ C is defined as follows:

g • f , g ◦ 〈π, f〉 : G×A −→ G×B −→ C,

where • denotes the composition in C//G and ◦ the composition in C.

Given G ∈ C, there is a functor G∗ : C −→ C//G defined as follows:

1. G∗(A) , A for every A ∈ C,
2. G∗(f) , f ◦ π′ for every f ∈ C(A,B).

Definition B.5 An endofunctor T : C −→ C on a category C with finite products is called
strong if it comes equipped with a natural transformation, called strength, with components
stA,B : A× TB −→ TA×B making the following two diagrams commute:

A× TB
st //

π′ &&MMMMMMMMMMM TA×B

Tπ′
²²

TB

A× (C × TB) id×st //

β
²²

A× TC ×B
st // TA× (C ×B)

Tβ
²²

(A× C)× TB
st // T (A× C)×B

where β is the obvious isomorphism 〈〈π, π ◦ π′〉, π′ ◦ π′〉.

As proved in [Jac95], if T is a strong functor, we can define, for every A ∈ C, a functor
T//A : C//A −→ C//A as follows:

• (T//A)B , TB,

• (T//A)f , Tf ◦ stA,B (for every f ∈ C//A(B, C)).

It turns out that also this new functor is strong.
Finally we give a result proved in [Hof99], fundamental to the construction of the model

carried out in Chapter 5. Let C have finite coproducts and let] be a choice for them; for
all A ∈ Č, X ∈ C, let AX denote the functor defined by AX

Y , AX]Y and AX
f , A〈idX ,f〉 (it

is easy to verify that this indeed defines a functor). Then one has

Proposition B.2 Y̌(X) ⇒ A ∼= AX .

Proof. (Y̌(X) ⇒ A)Y = Č(Y̌(X)× Y̌(Y), A) by definition of ⇒
∼= Č(Y̌(X] Y), A) since Y̌ preserves products
∼= AX]Y by Yoneda Lemma
∼= AX

Y by definition of AX . ut

C
Longer proofs

C.0.4 Proof of Proposition 5.2

First of all, we prove that for all F ∈ V̌, G ∈ Ǐ, φFG is a bijection. We introduce the inverse
ψFG of φFG as the function such that for F ∈ V̌, G ∈ Ǐ, β ∈ Ǐ(F r, G), X, Y ∈ V, x ∈ FX

and g ∈ V(X, Y)) is defined by:

((ψFG(β))X(x))Y (g) , βY (Fg(x)) .

Now, we will prove that (ψFG ◦ φFG)(α) = α for every α : F −→ G∗:

(ψFG ◦ φFG)(α) = ψFG(φFG(α))
= ψFG({(φFG(α))X : x 7→ (αX(x))X(idX)}X∈V)

At this point we can verify that the natural transformation we have obtained is equal to α;
indeed, for every X, Y ∈ X , x ∈ FX , and g ∈ V(X, Y) we have:

(αX(x))Y (g) = ((ψFG({(φFG(α))X : x 7→ (αX(x))X(idX)}X∈V))X(x))Y (g)
= ({(φFG(α))X : x 7→ (αX(x))X(idX)}X∈V)Y (Fg(x))
= (αY (Fg(x)))Y (idY)
= (αX(x))Y (g) (by naturality of α)

Similarly, we can prove that (φFG ◦ ψFG)(β) = β for every β : F r −→ G:

(φFG ◦ ψFG)(β) = φFG(ψFG(β))
= φFG({(ψFG(β))X : x 7→ γ}X∈V)

where γ = {((ψFG(β))X(x))Y : g 7→ βY (Fg(x))}Y ∈V . At this point we can verify that the
natural transformation we have obtained is equal to β; indeed, for every X ∈ X , x ∈ FX we
have:

βX(x) = (φFG({(ψFG(β))X : x 7→ γ}X∈V))X(x)
= (γ)X(idX)
= βX(FidX

(x))
= βX(idFX

(x))
= βX(x)

Looking at Definition B.2, it remains to prove that for all F ∈ V̌, G ∈ Ǐ, φFG the
following hold:

156 APPENDIX C. LONGER PROOFS

1. φFG(h ◦ f) = φF ′G(h) ◦ f r for every F ′ ∈ V̌, f : F −→ F ′ and h : F ′ −→ B∗;

2. φFG(g∗ ◦ h) = g ◦ φFG′(h) for every G′ ∈ Ǐ, g : G′ −→ G and h : F −→ G′∗.

So, let F ′ ∈ V̌, f : F −→ F ′ and h : F ′ −→ G∗, then we have (by definition of φFG) that,
for all X ∈ V and x ∈ FX , (φFG(h ◦ f))X(x) = ((h ◦ f)X(x))X(idX) = (hX(fX(x)))X(idX).
On the other hand, (φF ′G(h) ◦ f r)X(x) = (φF ′G(h))X(fX(x)), but the last member of the
equation is equal to (hX(fX(x)))X(idX) by definition of φF ′G. Hence, we proved the first
point, i.e., the commutativity of the following diagram:

V̌(F ′, G∗)
φF ′G //

V̌(f,G∗)
²²

Ǐ(F ′r, G)

Ǐ(fr,G)
²²

V̌(F, G∗)
φFG // Ǐ(F r, G)

Now, let G′ ∈ Ǐ, g : G′ −→ G and h : F −→ G′∗, then we have (by definition of φFG) that,
for all X ∈ V and x ∈ FX , (φFG(g∗ ◦h))X(x) = ((g∗ ◦h)X(x))X(idX) = (g∗X(hX(x)))X(idX).
By the definition of the action of ()∗ on morphisms, we have that the last member of
the equation is equal to gX((hX(x))X(idX)). On the other hand, (g ◦ φFG′(h))X(x) =
gX((φFG′(h))X(x)) = gX((hX(x))X(idX)) (the last equation is obtained by definition of
φFG′). Hence, also the second point is proved; this amounts to the commutativity of the
following diagram:

V̌(F, G′∗)
φFG′ //

V̌(F,g)
²²

Ǐ(F r, G′)

Ǐ(F r,g)
²²

V̌(F, G∗)
φFG // Ǐ(F r, G)

C.0.5 Proof of Proposition 5.3

For U, V ∈ PredǏ(F), we put

(U ∨ V)X , UX ∪ VX

(U ∧ V)X , UX ∩ VX

(U)X , {f ∈ FX | f 6∈ UX}
0X , ∅
1X , FX .

Now we prove that the objects defined above are indeed predicates:

(U ∨ V) ∈ Pred(F):

1. since, by hypothesis, U, V ∈ Pred(F), it follows that UX ⊆ FX and VX ⊆ FX for X ∈ I;
then (U ∨ V)X , UX ∪ VX ⊆ FX ;

2. given h ∈ I(X,Y) and f ∈ (U ∨ V)X , we can infer that either f ∈ UX or f ∈ VX (since
(U ∨ V)X , UX ∪ VX); in the former case we have that Fh(f) ∈ UY by hypothesis, hence
Fh(f) ∈ UY ∪ VY , (U ∨ V)Y (in the latter case we can conclude by a similar argument);

157

3. given f ∈ FX and Fh(f) ∈ (U ∨ V)Y for some h ∈ I(X, Y), we can infer that either
Fh(f) ∈ UY or Fh(f) ∈ VY (since (U ∨ V)Y , UY ∪ VY); in the former case we can
conclude that f ∈ UX , hence f ∈ UX ∪VX , (U ∨V)X (in the latter case we can conclude
by a similar argument).

(U ∧ V) ∈ Pred(F):

1. since, by hypothesis, U, V ∈ Pred(F), it follows that UX ⊆ FX and VX ⊆ FX for X ∈ I;
then (U ∧ V)X , UX ∩ VX ⊆ FX ;

2. given h ∈ I(X,Y) and f ∈ (U ∧ V)X , we can infer that f ∈ UX and f ∈ VX (since
(U ∧ V)X , UX ∩ VX); then, by hypothesis, Fh(f) ∈ UY and Fh(f) ∈ VY , hence we can
conclude that Fh(f) ∈ (UY ∩ VY) , (U ∧ V)Y ;

3. given f ∈ FX and Fh(f) ∈ (U ∧V)Y for some h ∈ I(X,Y), we can infer that Fh(f) ∈ UY

and Fh(f) ∈ VY (since (U ∧ V)Y , UY ∩ VY); then, by hypothesis, we have that f ∈ UX

and f ∈ VX , hence we can conclude f ∈ UX ∩ VX , (U ∧ V)X .

U ∈ Pred(F):

1. the first condition trivially holds by definition of (U)X ;

2. given h ∈ I(X, Y) and f ∈ (U)X , by definition of U we have that f ∈ FX and f 6∈ UX ;
then, exploiting the fact that U ∈ Pred(F) (precisely we use condition 5.3), we can
conclude that Fh(f) 6∈ UY , hence Fh(f) ∈ (U)Y ;

3. given f ∈ FX and Fh(f) ∈ (U)Y for some h ∈ I(X, Y), we can infer that Fh(f) ∈ FY and
Fh(f) 6∈ UY (by definition of U); then, exploiting the fact that U ∈ Pred(F) (precisely
we use condition 5.2), we can conclude that f 6∈ UX , hence f ∈ (U)X .

0 ∈ Pred(F):

1. we trivially have 0X , ∅ ⊆ FX for X ∈ I;

2. this condition trivially holds since the premise f ∈ 0X , ∅ is false;

3. similarly to the previous case this condition is also trivially verified, since the premise
Fh(f) ∈ 0Y , ∅ cannot be fulfilled.

1 ∈ Pred(F):

1. we trivially have 1X , FX ⊆ FX for X ∈ I;

2. given h ∈ I(X,Y) and f ∈ 1X , FX , we trivially have Fh(f) ∈ FY by functoriality of F ,
hence we can immediately conclude since 1Y , FY ;

3. given f ∈ FX and Fh(f) ∈ 1Y , FY for some h ∈ I(X,Y), we have by hypothesis that
f ∈ FX , hence we can immediately conclude since 1X , FX .

One can easily check that Pred(F) endowed with these operations can indeed be turned
into a complemented distributive lattice.

158 APPENDIX C. LONGER PROOFS

C.0.6 Proof of Proposition 5.4

Indeed, given η:F −→ G and U ∈ PredǏ(G) and X ∈ I , we have that (PredǏ(η)(U))X,
η−1

X (UX), hence

χǏF (PredǏ(η)(U))X , λt ∈ FX .{f : X −→ B | Ff (t) ∈ (PredǏ(η)(U))B}B∈I .

On the other hand, we have (χǏG(U))X , λt ∈ GX .{f : X −→ B | Gf (t) ∈ UB}B∈I , hence

(Ǐ(η, Ω)(χǏG(U)))X = (χǏG(U) ◦ η)X

= (χǏG(U))X ◦ ηX

, λt ∈ FX .{f : X −→ B | Gf (ηX(t)) ∈ UB}B∈I ,

but, by naturality of η, we have that Gf (ηX(t)) = ηB(Ff (t)), hence Gf (ηX(t)) ∈ UB if and
only if Ff (t) ∈ η−1

B (UB) , (PredǏ(η)(U))B, i.e.,

χǏF (PredǏ(η)(U))X = (Ǐ(η, Ω)(χǏG(U)))X .

Thus, naturality of χǏ is proved. Now, it remains to show that χǏ is a natural isomor-
phism, i.e., that χǏF has an inverse for each F ∈ V̌. We will prove that this inverse indeed is
κǏF .

First let us verify that κǏF (χǏF (V)) = V for V ∈ PredǏ(F) (i.e. κǏF ◦ χǏF = idPredǏ(F)):

κǏF (χǏF (V)) , {{f ∈ FX | (χǏF (V))X(f) = Y̌Ǐ(X)}}X∈I
, {{f ∈ FX | {g : X −→ B | Fg(f) ∈ VB}B∈I = I(X,)}}X∈I
= {VX}X∈I (because of property 5.2 of predicates)
, V

Now we have to prove that χǏF (κǏF (m)) = m (i.e. χǏF ◦ κǏF = idV̌(F,Ω)):

χǏF (κǏF (m)) , {λt ∈ FX .{f : X −→ B | Ff (t) ∈ (κǏF (m))B}B∈I}X∈I

but, by definition of (κǏF (m))B, we have that Ff (t) ∈ (κǏF (m))B if and only if Ff (t) ∈ FB and
mB(Ff (t)) = I(B,), but, by naturality of m, it follows that mB(Ff (t)) = Ωf (mX(t)) ,
PredǏ(Y̌Ǐ(f))(mX(t)). Then

(PredǏ(Y̌Ǐ(f))(mX(t)))B , (Y̌Ǐ(f))−1
B ((mX(t))B) = I(B, B),

i.e., for all g ∈ I(B, B), (Y̌Ǐ(f))B(g) ∈ (mX(t))B holds. Since (Y̌Ǐ(f))B(g) = g ◦ f ,
I(X, g)(f), we have, by properties 5.2 and 5.3 of predicates (remember that mX(t) ∈
PredǏ(I(X,))), that mB(Ff (t)) = I(B,) if and only if f ∈ (mX(t))B holds. Hence,
we may conclude that χǏF (κǏF (m)) = {λt ∈ FX .{f : X −→ B | f ∈ (mX(t))B}B∈I}X∈I , i.e.,
χǏF (κǏF (m)) = m.

159

C.0.7 Proof of Theorem 5.1

1. We have the following:

[[Γ `Σ ∀x:σ.p : o]]X(η) = (forallσ)X([[Γ `Σ λx:σ.p : σ → o]]X(η))
= {u : X −→ Y | ∀g ∈ I(Y, Z).∀t ∈ [[σ]]Z .

〈g ◦ u, t〉 ∈ κ[[Γ]]([[Γ `Σ λx:σ.p : σ → o]]X(η))Z}Y ∈I
= {u : X −→ Y | ∀g ∈ I(Y, Z).∀t ∈ [[σ]]Z .

([[Γ `Σ λx:σ.p : σ → o]]X(η))Z(〈g ◦ u, t〉) ≥
≥ I(Z,)}Y ∈I

= {u : X −→ Y | ∀g ∈ I(Y, Z).∀t ∈ [[σ]]Z .
(λ〈f, b〉 ∈ I(X,Z)× [[σ]]Z .
[[Γ, x : σ `Σ p : o]]Z(〈[[Γ]]f (η), b〉))(〈g ◦ u, t〉)
≥ I(Z,)}Y ∈I

= {u : X −→ Y | ∀g ∈ I(Y, Z).∀t ∈ [[σ]]Z .
[[Γ, x : σ `Σ p : o]]Z(〈[[Γ]](g◦u)(η), t〉)
≥ I(Z,)}Y ∈I

(⇒) By hypothesis we have that X °Γ,η ∀x:σ.p, i.e., η ∈ κ[[Γ]]([[Γ `Σ ∀x:σ.p : o]])X which,
in turn, is equivalent to say that [[Γ `Σ ∀x:σ.p : o]]X(η) ≥ I(X,) holds. In particular
we have that h : I(X, Y) belongs to ([[Γ `Σ ∀x:σ.p : o]]X(η))Y . Then, taking g = idY

and t = a, we have that [[Γ, x : σ `Σ p : o]]Y (〈[[Γ]](idY ◦h)(η), a〉) = [[Γ, x : σ `Σ p :
o]]Y (〈[[Γ]]h(η), a〉) ≥ I(Y,), i.e., Y °(Γ,x:σ), 〈[[Γ]]h(η),a〉 p.

(⇐) By hypothesis for all Y and h ∈ I(X,Y), and for all a ∈ [[σ]]Y we have that
Y °(Γ,x:σ), 〈[[Γ]]h(η),a〉 p, i.e., [[Γ, x : σ `Σ p : o]]Y (〈[[Γ]]h(η), a〉) ≥ I(Y,). Then,
take any u ∈ I(X,Y), g ∈ I(Y,Z) and t ∈ [[σ]]Z ; it follows that there exists
h = g ◦ u ∈ I(X, Z). Hence, we can apply the hypothesis and conclude that
[[Γ, x : σ `Σ p : o]]Z(〈[[Γ]](g◦u)(η), t〉) ≥ I(Z,) holds. Since the latter holds for
every Y and u ∈ I(X, Y), we have that [[Γ `Σ ∀x:σ.p : o]]X(η) ≥ I(X,), i.e,
X °Γ,η ∀x:σ.p.

2. First we note that X °Γ,η p ⇒ q if and only if η ∈ κ[[Γ]]([[Γ `Σ p ⇒ q : o]])X , but
this is equivalent to say that [[Γ `Σ p ⇒ q : o]]X(η) ≥ I(X,). Then, since we have
that [[Γ `Σ p ⇒ q : o]] = imp ◦ 〈[[Γ `Σ p : o]], [[Γ `Σ q : o]]〉, the latter condition is
equivalent to say that [[Γ `Σ p : o]]X(η) ∨ [[Γ `Σ q : o]]X(η) ≥ I(X,), i.e., for all Y
([[Γ `Σ p : o]]X(η))Y ∪ ([[Γ `Σ q : o]]X(η))Y ⊇ I(X,Y).

(⇒) By hypothesis we have that X °Γ,η p ⇒ q and X °Γ,η p hold and the latter is
equivalent to say that [[Γ `Σ p : o]]X(η) ≥ I(X,), i.e., for all Y ([[Γ `Σ p :
o]]X(η))Y ⊇ I(X, Y). It follows that ([[Γ `Σ p : o]]X(η))Y = V(X,Y)\I(X, Y), hence,
by the preliminary observation, ([[Γ `Σ q : o]]X(η))Y ⊇ I(X, Y). So we proved that
[[Γ `Σ q : o]]X(η) ≥ I(X,), i.e., that X °Γ,η q.

(⇐) By hypothesis we have that either X °Γ,η p does not hold or X °Γ,η q holds. In the
former case for all Y ([[Γ `Σ p : o]]X(η))Y 6⊇ I(X,Y), hence ([[Γ `Σ p : o]]X(η))Y ⊇
I(X,Y). So, by the preliminary observation, we also have that for all Y ([[Γ `Σ p ⇒
q : o]]X(η))Y ⊇ I(X,Y), hence X °Γ,η p ⇒ q. The other case is even easier, since
we have that for all Y ([[Γ `Σ q : o]]X(η))Y ⊇ I(X,Y) and we can conclude again by
the preliminary observation.

160 APPENDIX C. LONGER PROOFS

3. By definition, X °Γ,η PM if and only if η ∈ κ[[Γ]]([[Γ `Σ PM : o]])X , i.e., if and only
if [[Γ `Σ PM : o]]X(η) ≥ I(X,). Then the thesis directly follows from the following
argument:

[[Γ `Σ PM : o]]X(η)
= (evProp,[[σ]] ◦ 〈[[Γ `Σ P : σ → o]], [[Γ `Σ M : σ]]〉)X(η)
= (evProp,[[σ]])X(〈[[Γ `Σ P : σ → o]]X(η), [[Γ `Σ M : σ]]X(η)〉)
= ([[Γ `Σ P : σ → o]]X(η))X(〈[[Γ `Σ M : σ]]X(η), idX〉)

C.0.8 Proof of Corollary 5.1

1. First of all we have that X °Γ,η ¬p stands for X °Γ,η p ⇒ ⊥, which is equivalent to say
(by Theorem 5.1) that X °Γ,η p implies X °Γ,η ⊥. Obviously, this is true if and only if
X °Γ,η ⊥ or it is not the case that X °Γ,η p.

(⇒) Since by Proposition 5.2 it is not the case that X °Γ,η ⊥, it must be not the case
that X °Γ,η p (by the preliminary observation), i.e., the thesis.

(⇐) Since, by hypothesis, it is not the case that X °Γ,η p, we automatically have (by
the preliminary observation) that X °Γ,η ¬p.

2. By definition of ∧, the previous point and Theorem 5.1, we have:

X °Γ,η p ∧ q iff X °Γ,η ¬(p ⇒ ¬q)
iff it is not the case that X °Γ,η p ⇒ ¬q
iff X °Γ,η p and it is not the case that X °Γ,η ¬q
iff X °Γ,η p and X °Γ,η q

3. By definition of ∨, point 1 and Theorem 5.1, we have:

X °Γ,η p ∨ q iff X °Γ,η ¬p ⇒ q
iff X °Γ,η ¬p implies X °Γ,η q
iff it is not the case that X °Γ,η ¬p or X °Γ,η q
iff X °Γ,η p or X °Γ,η q

4. By definition of ∃, point 1 and Theorem 5.1, we have:

X °Γ,η ∃x:σ.p iff X °Γ,η ¬∀x:σ.¬p
iff it is not the case that X °Γ,η ∀x:σ.¬p
iff there are Y , h ∈ I(X, Y) and a ∈ [[σ]]Y such that

it is not the case that Y °(Γ,x:σ),〈[[Γ]]h(η),a〉 ¬p

iff there are Y , h ∈ I(X, Y) and a ∈ [[σ]]Y such that
Y °(Γ,x:σ),〈[[Γ]]h(η),a〉 p

5. The proof will proceed by induction on n:

(Base case) n = 1: we have to prove that X °Γ,η ∀x1:σ1.p if and only if for all Y ,
f ∈ I(X, Y) and η1 ∈ [[σ1]]Y , we have that Y °(Γ,x1:σ1),〈[[Γ]]f (η),η1〉 p holds. This is
straightforward by point 1 of Theorem 5.1.

161

(Inductive case) let us suppose that the hypothesis holds for n; we will prove that it
also holds for n + 1. First of all we apply the point 1 of Theorem 5.1 to obtain the
following: X °Γ,η ∀x1:σ1.∀x2:σ2. . . . ∀xn+1:σn+1p if and only if for all Y , f ∈ I(X,Y),
η1 ∈ [[σ1]]Y Y °(Γ,x1:σ1),〈[[Γ]]f (η),η1〉 ∀x2:σ2. . . .∀xn+1:σn+1p holds. Then we may apply
the inductive hypothesis to deduce that the previous forcing statement holds if and
only if for all Z, g ∈ I(Y, Z), η2 ∈ [[σ2]]Z , . . . , ηn+1 ∈ [[σn+1]]Z we have that the
following holds:

Z °(Γ,x1:σ1,x2:σ2,...,xn+1:σn+1),〈[[Γ,x1:σ1]]g(〈[[Γ]]f (η),η1〉),η2,...,ηn+1〉 p.

Then we observe that

[[Γ, x1 : σ1]]g(〈[[Γ]]f (η), η1〉) = 〈[[Γ]]g◦f (η), [[x1 : σ1]]g(η1)〉).
Hence we can easily conclude by taking Z = Y and g = idY :

Y °(Γ,x1:σ1,...,xn+1:σn+1),〈[[Γ]]f (η),η1,η2,...,ηn+1〉 p.

C.0.9 Proof of Theorem 5.4

1. In this case we have to prove that Γ `Σ (p ⇒ q ⇒ r) ⇒ (p ⇒ q) ⇒ p ⇒ r holds, i.e., that
for all X, η ∈ [[Γ]]X we have

X °Γ,η (p ⇒ q ⇒ r) ⇒ (p ⇒ q) ⇒ p ⇒ r.

By Theorem 5.1, this is equivalent to prove that X °Γ,η (p ⇒ q ⇒ r), X °Γ,η (p ⇒ q)
and X °Γ,η p imply X °Γ,η r. Hence, applying repeatedly Theorem 5.1, we can easily
deduce that X °Γ,η q holds from X °Γ,η (p ⇒ q), since we know that X °Γ,η p holds.
At this point we can easily conclude, applying again Theorem 5.1, since X °Γ,η r derives
from X °Γ,η (p ⇒ q ⇒ r), X °Γ,η p and X °Γ,η q.

2. By definition we have to prove that for all X, η ∈ [[Γ]]X we have X °Γ,η p ⇒ q ⇒ p. By
Theorem 5.1, this is equivalent to prove that X °Γ,η p and X °Γ,η q imply X °Γ,η q.
Hence the conclusion is trivial.

3. By definition we have to prove that for all X, η ∈ [[Γ]]X we have X °Γ,η ∀σ(P) ⇒ PM .
By Theorem 5.1, this is equivalent to prove that X °Γ,η ∀σ(P) implies X °Γ,η PM .
But X °Γ,η ∀σ(P) is equivalent to say that, for all Y , f ∈ I(X,Y) and a ∈ [[σ]]Y ,
Y °(Γ,x:σ),〈[[Γ]]f (η),a〉 Px holds. Hence, taking Y , X, f , idX and a , [[Γ `Σ M :
σ]]X(η), we have that X °(Γ,x:σ),〈η,[[Γ`ΣM :σ]]X(η)〉 Px holds. By Theorem 5.1, this is
equivalent to say that ([[Γ, x : σ `Σ P : σ → o]]X(〈η, [[Γ `Σ M : σ]]X(η)〉))X(〈[[Γ, x :
σ `Σ x : σ]]X(〈η, [[Γ `Σ M : σ]]X(η)〉), idX〉) ≥ I(X,). Now we observe that ([[Γ, x :
σ `Σ P : σ → o]]X(〈η, [[Γ `Σ M : σ]]X(η)〉))X(〈[[Γ, x : σ `Σ x : σ]]X(〈η, [[Γ `Σ M :
σ]]X(η)〉), idX〉) ≥ I(X,) = ([[Γ, x : σ `Σ P : σ → o]]X(〈η, [[Γ `Σ M : σ]]X(η)〉))X(〈[[Γ
`Σ M : σ]]X(η), idX〉) = ([[Γ `Σ P : σ → o]]X(η))X(〈[[Γ `Σ M : σ]]X(η), idX〉) Hence,
applying again Theorem 5.1, we have proved that X °Γ,η PM holds.

4. By definition we have to prove that for all X, η ∈ [[Γ]]X we have X °Γ,η (λx:σ.M)N =σ′

M [N/x]. First of all we notice that the following holds:

[[Γ `Σ (λx:σ.M)N]]X(η) =
(ev[[σ′]],[[σ]])X(〈[[Γ `Σ λx:σ.M : σ → σ′]]X(η), [[Γ `Σ N : σ]]X(η)〉) =

([[Γ `Σ λx:σ.M : σ → σ′]]X(η))X(〈[[Γ `Σ N : σ]]X(η), idX〉) =
[[Γ, x : σ `Σ M : σ′]]X(〈η, [[Γ `Σ N : σ]]X(η)〉)

162 APPENDIX C. LONGER PROOFS

Now, we can proceed by structural induction on M :

(M ≡ y 6= x) Trivial.

(M ≡ x) Trivial.

(M ≡ PQ) The following holds:

[[Γ `Σ (PQ)[N/x] : σ′]]X(η) =
[[Γ `Σ P [N/x]Q[N/x] : σ′]]X(η) =

(ev[[σ′]],[[γ]])X(〈[[Γ `Σ P [N/x] : γ → σ′]]X(η), [[Γ `Σ Q[N/x] : γ]]X(η)〉) =

([[Γ `Σ P [N/x] : γ → σ′]]X(η))X(〈[[Γ `Σ Q[N/x] : γ]]X(η), idX〉) (I.H.)
=

([[Γ,`Σ (λx:σ.P)N : γ → σ′]]X(η))X(〈[[Γ `Σ (λx:σ.Q)N : γ]]X(η), idX〉)

Moreover, we have the following:

[[Γ, x : σ `Σ M : σ′]]X(〈η, [[Γ `Σ N : σ]]X(η)〉) =
[[Γ, x : σ `Σ PQ : σ′]]X(〈η, [[Γ `Σ N : σ]]X(η)〉) =

(ev[[σ′]],[[γ]])X(〈A,B〉) =
(A)X(〈B, idX〉)

where A , [[Γ, x : σ `Σ P : γ → σ′]]X(〈η, [[Γ `Σ N : σ]]X(η)〉) and B , [[Γ, x : σ `Σ Q :
γ]]X(〈η, [[Γ `Σ N : σ]]X(η)〉). Hence we may conclude since we have

[[Γ,`Σ (λx:σ.P)N : γ → σ′]]X(η) =
[[Γ, x : σ `Σ P : γ → σ′]]X(〈η, [[Γ `Σ N : σ]]X(η)〉) =

A

and

[[Γ `Σ (λx:σ.Q)N : γ]]X(η)〉) =
[[Γ, x : σ `Σ Q : γ]]X(〈η, [[Γ `Σ N : σ]]X(η)〉) =

B

(M ≡ λz:γ.P with x 6= z) In this case σ′ ≡ γ → δ; hence the following holds:

[[Γ `Σ (λz:γ.P)[N/x] : σ′]]X(η) =
[[Γ `Σ (λz:γ.P [N/x]) : σ′]]X(η) =

{λ〈b, f〉 ∈ [[γ]]Y × V(X, Y).[[Γ, z : γ `Σ P [N/x] : δ]]Y (µ)}Y ∈V
(I.H.)
=

{λ〈b, f〉 ∈ [[γ]]Y × V(X, Y).[[Γ, z : γ `Σ (λx:σ.P)N : δ]]Y (µ)}Y ∈V

where µ , 〈[[Γ]]f (η), b〉. Moreover, we have

[[Γ, z : γ `Σ (λx:σ.P)N : δ]]Y (µ) =
(ev[[δ]],[[σ]])Y (〈[[Γ, z : γ `Σ λx:σ.P : σ → δ]]Y (µ), [[Γ, z : γ `Σ N : σ]]Y (µ)〉) =

([[Γ, z : γ `Σ λx:σ.P : σ → δ]]Y (µ))Y (〈[[Γ, z : γ `Σ N : σ]]Y (µ), idY 〉) =
[[Γ, z : γ, x : σ `Σ P : δ]]Y (〈[[Γ]]f (η), b, [[Γ, z : γ `Σ N : σ]]Y (µ)〉) =
[[Γ, x : σ, z : γ `Σ P : δ]]Y (〈[[Γ]]f (η), [[Γ, z : γ `Σ N : σ]]Y (µ), b〉)

163

For what concerns [[Γ, x : σ `Σ M : σ′]]X(〈η, [[Γ `Σ N : σ]]X(η)〉), we have the following:

[[Γ, x : σ `Σ M : σ′]]X(〈η, [[Γ `Σ N : σ]]X(η)〉) =
[[Γ, x : σ `Σ λz:γ.P : σ′]]X(〈η, [[Γ `Σ N : σ]]X(η)〉) =

{λ〈b, f〉 ∈ [[γ]]Y × V(X, Y).mY (〈[[Γ, x : σ]]f (〈η, [[Γ `Σ N : σ]]X(η)〉), b〉)}Y ∈V =
{λ〈b, f〉 ∈ [[γ]]Y × V(X, Y).mY (〈[[Γ]]f (η), [[Γ `Σ N : σ]]Y ([[Γ]]f (η)), b〉)}Y ∈V =

{λ〈b, f〉[[γ]]Y× ∈ V(X, Y)× .mY (〈[[Γ]]f (η), β, b〉)}Y ∈V

where m , [[Γ, x : σ, z : γ `Σ P : δ]] and β , [[Γ, z : γ `Σ N : σ]]Y ([[Γ]]f (η), b); in the
fourth step we exploited the naturality of [[Γ `Σ N : σ]] since [[x : σ]]f ([[Γ `Σ N : σ]]X(η)) =
[[Γ `Σ N : σ]]Y ([[Γ]]f (η)) and the weakening rule. Hence we have the thesis.

5. In this case we have to prove that for all X, η ∈ [[Γ]]X we have

X °Γ,η (∀x:σ.M =σ′ N) ⇒ λx:σ.M = λx:σ′.N,

i.e., by Corollary 5.1, that X °Γ,η (∀x:σ.M =σ′ N) implies

X °Γ,η λx:σ.M =σ→σ′ λx:σ.N.

First, we observe the following:

[[Γ `Σ λx:σ.M]]X(η) = {λ〈b, f〉 ∈ [[σ]]Y × V(X, Y).mY (〈[[Γ]]f (η), b〉)}Y ∈V ,

where m , [[Γ, x : σ `Σ M : σ′]]. Similarly, we have:

[[Γ `Σ λx:σ.N]]X(η) = {λ〈b, f〉 ∈ [[σ]]Y × V(X, Y).nY (〈[[Γ]]f (η), b〉)}Y ∈V ,

where n , [[Γ, x : σ `Σ N : σ′]]. Hence, in order to conclude, it is sufficient to show
that m = n, i.e., that, for every Y ∈ V, f ∈ V(X, Y) and b ∈ [[σ]]Y , [[Γ, x : σ `Σ M :
σ′]](〈[[Γ]]f (η), b〉) = [[Γ, x : σ `Σ N : σ′]]Y (〈[[Γ]]f (η), b〉). Then, we observe that our hypoth-
esis is equivalent (by Theorem 5.1) to say that for all Y ∈ V, h ∈ I(X, Y), ηx ∈ [[σ]]Y ,
Y °(Γ,x:σ),〈[[Γ]]h(η),ηx〉 M =σ′ N holds. We observe that we can write f = p ◦ e where
p : Z −→ Y is surjective and e : X −→ Z is injective1. Since every surjective map has
a right inverse, we have that [[σ]]p is surjective too; hence, there exists b′ ∈ [[σ]]Z such
that [[σ]]p(b′) = b. By naturality of [[Γ, x : σ `Σ M : σ′]], we have [[Γ, x : σ `Σ M :
σ′]]Y (〈[[Γ]]f (η), b〉) = [[σ′]]p([[Γ, x : σ `Σ M : σ′]]Z(〈[[Γ]]e(η), b′〉)). By hypothesis (e is injec-
tive), we have [[Γ, x : σ `Σ M : σ′]]Z(〈[[Γ]]e(η), b′〉) = [[Γ, x : σ `Σ N : σ′]]Z(〈[[Γ]]e(η), b′〉),
whence the thesis.

6. By Theorem 5.3 we have to show that for all X, η ∈ [[Γ]]X the following holds:

[[Γ `Σ λx:σ.Mx : σ → σ′]]X(η) = [[Γ `Σ M : σ → σ′]]X(η).

Since the members of the latter equation are natural transformations between the functors
[[σ]]×V(X,) and [[σ′]], the thesis is equivalent to prove that the following holds for every
Y , f ∈ V(X, Y) and b ∈ [[σ]]Y :

([[Γ `Σ λx:σ.Mx : σ → σ′]]X(η))Y (〈b, f〉) = ([[Γ `Σ M : σ → σ′]]X(η))Y (〈b, f〉).
1This can be done for every f ∈ V(X, Y) by putting Z , X] (Y \ Im(f)).

164 APPENDIX C. LONGER PROOFS

Indeed, we have:

([[Γ `Σ λx:σ.Mx : σ → σ′]]X(η))Y (〈b, f〉) =
[[Γ, x : σ `Σ Mx : σ′]]Y (〈[[Γ]]f (η), b〉) =

(ev[[σ′]],[[σ]])Y (〈[[Γ, x : σ `Σ M : σ → σ′]]Y (〈[[Γ]]f (η), b〉), b〉) =
([[Γ, x : σ `Σ M : σ → σ′]]Y (〈[[Γ]]f (η), b〉))Y (〈b, idY 〉) =

([[Γ `Σ M : σ → σ′]]Y ([[Γ]]f (η)))Y (〈b, idY 〉) =
(([[σ]] ⇒ [[σ′]])f ([[Γ `Σ M : σ → σ′]]X(η)))Y (〈b, idY 〉) =

([[Γ `Σ M : σ → σ′]]X(η))Y (〈b, f〉).
7. We have to show that for all X, η ∈ [[Γ]]X X °Γ,η ¬¬p ⇒ p holds. By Theorem 5.1, this

is equivalent to prove that X °Γ,η ¬¬p implies X °Γ,η p. By Corollary 5.1, the premise
means that it is not the case that X °Γ,η ¬p holds. Applying again the same corollary,
we have that it is not the case that X °Γ,η p does not hold, i.e., the thesis.

8. In this case the thesis follows directly from Theorem 5.1.

9. By Theorem 5.1, the premise is equivalent to say that for all X and η ∈ [[Γ, x : σ]]X
X °(Γ,x:σ),η p implies X °(Γ,x:σ),η q. To prove that the thesis holds it suffices to show, by
Theorem 5.1, that for all Y and µ ∈ [[Γ]]Y Y °Γ,µ p implies Y °Γ,µ ∀x:σ.q. The latter,
again by Theorem 5.1, is equivalent to show that for all Z, f ∈ I(Y,Z) and a ∈ [[σ]]Z
Z °(Γ,x:σ),〈[[Γ]]f (µ),a〉 q holds. From the validity of Y °Γ,µ p, by the monotonicity of forcing,
we can deduce that, for all Z and f ∈ I(Y, Z), Z °Γ,[[Γ]]f (µ) p holds. By the weakening
rule, we also have that, for all a ∈ [[σ]]Z , Z °(Γ,x:σ),〈[[Γ]]f (µ),a〉 p holds. Hence we can apply
the premise to conclude that Z °(Γ,x:σ),〈[[Γ]]f (µ),a〉 q holds.

C.0.10 Proof of Theorem 5.5

(⇒) By structural induction on the derivation of Γ `Σ M : ι:

(Γ `Σ 0 : ι) Since we have [[Γ `Σ 0 : ι]]X(η) = 0, we can easily conclude observing that
FV (0) = ∅.

(Γ `Σ τ.P : ι) Hence the previous derivation step yields Γ `Σ P : ι. By inductive
hypothesis we have that [[Γ `Σ y : υ]]X(η) 6∈ FV ([[Γ `Σ P : ι]]X(η)). Hence we can
deduce that [[Γ `Σ y : υ]]X(η) 6∈ FV (τ.[[Γ `Σ P : ι]]X(η)). The thesis is an easy
consequence observing the following:

τ.[[Γ `Σ P : ι]]X(η) = tau([[Γ `Σ P : ι]]X(η))
= (tau ◦ [[Γ `Σ P : ι]])X(η)
, [[Γ `Σ τ.P : ι]]X(η).

(Γ `Σ P | Q : ι) Hence the previous derivation step yields Γ `Σ P1 : ι and Γ `Σ P2 : ι.
By inductive hypothesis we have [[Γ `Σ y : υ]]X(η) 6∈ FV ([[Γ `Σ P : ι]]X(η))
and [[Γ `Σ y : υ]]X(η) 6∈ FV ([[Γ `Σ Q : ι]]X(η)). Hence we can deduce that
[[Γ `Σ y : υ]]X(η) 6∈ FV ([[Γ `Σ P : ι]]X(η) | [[Γ `Σ Q : ι]]X(η)). The thesis is an
easy consequence observing the following:

[[Γ `Σ P : ι]]X(η) | [[Γ `Σ Q : ι]]X(η) =
par(〈[[Γ `Σ P : ι]]X(η), [[Γ `Σ Q : ι]]X(η)〉) =

(par ◦ 〈[[Γ `Σ P : ι]], [[Γ `Σ Q : ι]]〉)X(η) ,
[[Γ `Σ P | Q : ι]]X(η).

165

(Γ `Σ [u 6= v]P : ι) Hence the previous derivation step yields Γ `Σ P : ι. By inductive
hypothesis [[Γ `Σ y : υ]]X(η) 6∈ FV ([[Γ `Σ P : ι]]X(η)); moreover, [[Γ `Σ y :
υ]]X(η) 6= [[Γ `Σ u : υ]]X(η) and [[Γ `Σ y : υ]]X(η) 6= [[Γ `Σ v : υ]]X(η). Hence
we can deduce that [[Γ `Σ y : υ]]X(η) 6∈ FV ([[Γ `Σ P : ι]]X(η)) ∪ {[[Γ `Σ u :
υ]]X(η), [[Γ `Σ v : υ]]X(η)}. The thesis is an easy consequence observing the
following:

[[[Γ `Σ u : υ]]X(η) 6= [[Γ `Σ v : υ]]X(η)][[Γ `Σ P : ι]]X(η) =
mismatch(〈[[Γ `Σ u : υ]]X(η), [[Γ `Σ v : υ]]X(η), [[Γ `Σ P : ι]]X(η)〉) =

(mismatch ◦ 〈[[Γ `Σ u : υ]], [[Γ `Σ v : υ]], [[Γ `Σ P : ι]]〉)X(η) ,
[[Γ `Σ [u 6= v]P : ι]]X(η).

(Γ `Σ νλx:υ.P : ι) Hence a preceding derivation step yields Γ, x : υ `Σ P : ι. By
inductive hypothesis [[Γ `Σ y : υ]]X(η) 6∈ FV ([[Γ, x : υ `Σ P : ι]]X(〈η, ηx〉)) for
all ηx 6= [[Γ `Σ y : υ]]X(η). Hence we can deduce that [[Γ `Σ y : υ]]X(η) 6∈
FV ((νηx)([[Γ, x : υ `Σ P : ι]]X(〈η, ηx〉))), where ηx ∈ [[x : υ]]X . Again, the thesis
is a direct consequence of the following:

(νηx)([[Γ, x : υ `Σ P : ι]]X(〈η, ηx〉)) =
(νηx)([[Γ `Σ λx:υ.P : υ → ι]]X(η))X]{x}(〈ηx, idX〉)) =

new([[Γ `Σ λx:υ.P : υ → ι]]X(η)) =
(new ◦ [[Γ `Σ λx:υ.P : υ → ι]])X(η) ,

[[Γ `Σ νλx:υ.P : ι]]X(η)

(⇐) Preliminary observation: first of all we recall that y 6∈ M is an abbreviation for

∀p:υ → ι → o.(∀z:υ.∀Q:ι.(T6∈ p z Q) ⇒ (p z Q)) ⇒ (p y M).

Hence, by point 1 of Theorem 5.1, in order to prove that X °Γ,η y 6∈ M , we must show
that for all Y , f ∈ I(X, Y) and ηp ∈ [[υ → ι → o]]Y = (V ar ⇒ Proc ⇒ Prop)Y ,

Y °(Γ,p:υ→ι→o),〈[[Γ]]f (η),ηp〉 (∀z:υ.∀Q:ι.(T6∈ p z Q) ⇒ (p z Q)) ⇒ (p y M)

holds, i.e., by point 2 of Theorem 5.1, if and only if

Y °(Γ,p:υ→ι→o),〈[[Γ]]f (η),ηp〉 ∀z:υ. ∀Q:ι.(T 6∈ p z Q) ⇒ (p z Q)

implies
Y °(Γ,p:υ→ι→o),〈[[Γ]]f (η),ηp〉 (p y M).

So, we suppose that the premise is true and we show that the consequence also holds;
by point 5 of Corollary 5.1, we can deduce that the premise is true if and only if for
all Z, g ∈ I(Y, Z), ηz ∈ V arZ , Z and ηQ ∈ ProcZ , Z °∆,µ (T6∈ p z Q) ⇒ (p z Q)
holds, where ∆ , (Γ, p : υ → ι → o, z : υ,Q : ι) and µ , 〈[[Γ]]g◦f (η), [[p : υ → ι →
o]]g(ηp), ηz, ηQ〉. In particular, taking Z , Y , g , idY , ηz , [[Γ, p : υ → ι → o `Σ y :
υ]]Y (〈[[Γ]]f (η), ηp〉) and ηQ , [[Γ, p : υ → ι → o `Σ M : ι]]Y (〈[[Γ]]f (η), ηp〉), we have that
the following holds:

Y °(Γ,p:υ→ι→o,z:υ,Q:ι),〈[[Γ]]f (η),ηp,ηz ,ηQ〉 (T6∈ p z Q) ⇒ (p z Q)

This is equivalent, by Theorem 5.1, to say that

Y °(Γ,p:υ→ι→o,z:υ,Q:ι),〈[[Γ]]f (η),ηp,ηz ,ηQ〉 (T6∈ p z Q)

166 APPENDIX C. LONGER PROOFS

implies
Y °(Γ,p:υ→ι→o,z:υ,Q:ι),〈[[Γ]]f (η),ηp,ηz ,ηQ〉 (p z Q).

Since [[Γ, p : υ → ι → o, z : υ, Q : ι `Σ (p z Q)]]Y (〈[[Γ]]f (η), ηp, ηz, ηQ〉) = [[Γ, p :
υ → ι → o `Σ (p y M)]]Y (〈[[Γ]]f (η), ηp〉), to conclude, it suffices to prove that
Y °(Γ,p:υ→ι→o,z:υ,Q:ι),〈[[Γ]]f (η),ηp,ηz ,ηQ〉 (T6∈ p z Q) holds.

By definition of T 6∈, (T 6∈ p z Q) is the following λ-term:

Q = 0 ∨
(∃P :ι.Q = σ.P ∧ (p z P)) ∨
(∃P1:ι.∃P2:ι.Q = P1 | P2 ∧ (p z P1) ∧ (p z P2)) ∨
(∃P :ι.∃y:υ.∃u:υ.Q = [y 6= u]P ∧ ¬z =υ y ∧ ¬z =υ u ∧ (p z P)) ∨
(∃P :υ → ι.Q = νP ∧ (∀y:υ.¬z =υ y ⇒ (p z (P y))))

Hence (by Corollary 5.1), to prove the premise, it suffices to show that one of the dis-
junctions holds. At this point we can proceed by structural induction on the derivation
of Γ `Σ M : ι:

(Γ `Σ 0 : ι) Since M ≡ 0, we can immediately conclude by the preliminary observation,
since ηQ was chosen as [[Γ, p : υ → ι → o `Σ M : ι]]Y (〈[[Γ]]f (η), ηp〉), whence

Y °(Γ,p:υ→ι→o,z:υ,Q:ι),〈[[Γ]]f (η),ηp,ηz ,ηQ〉 Q = 0.

(Γ `Σ τ.P : ι) By inductive hypothesis, we know that X °Γ,η y 6∈ P holds. Hence, by
an argument similar to that used in the preliminary observation, we have that

Y °(Γ,p:υ→ι→o),〈[[Γ]]f (η),ηp〉 ∀z:υ. ∀Q:ι.(T6∈ p z Q) ⇒ (p z Q)

implies
Y °(Γ,p:υ→ι→o),〈[[Γ]]f (η),ηp〉 (p y P).

But, since the premise is true (by the preliminary observation), we have that
Y °(Γ,p:υ→ι→o),〈[[Γ]]f (η),ηp〉 (p y P) holds. At this point we may easily conclude
observing that the second disjunction holds (remember that ηz , [[Γ, p : υ → ι →
o `Σ y : υ]]Y (〈[[Γ]]f (η), ηp〉) and ηQ , [[Γ, p : υ → ι → o `Σ M : ι]]Y (〈[[Γ]]f (η), ηp〉),
where M ≡ σ.P).

(Γ `Σ P1 | P2 : ι) X °Γ,η y 6∈ P1 and X °Γ,η y 6∈ P2 hold by inductive hypothesis.
Hence, like in the previous case, we can deduce that

Y °(Γ,p:υ→ι→o),〈[[Γ]]f (η),ηp〉 (p y P1)

and
Y °(Γ,p:υ→ι→o),〈[[Γ]]f (η),ηp〉 (p y P2)

hold. At this point we may easily conclude observing that the third disjunction
holds (remember that ηz , [[Γ, p : υ → ι → o `Σ y : υ]]Y (〈[[Γ]]f (η), ηp〉) and
ηQ , [[Γ, p : υ → ι → o `Σ M : ι]]Y (〈[[Γ]]f (η), ηp〉), where M ≡ P1 | P2).

(Γ `Σ [u 6= v]P : ι) By inductive hypothesis we know that X °Γ,η y 6∈ P . Hence, as in
the previous cases, we can deduce that

Y °(Γ,p:υ→ι→o),〈[[Γ]]f (η),ηp〉 (p y P)

167

holds. Moreover from the hypothesis that [[Γ `Σ y : υ]]X(η) 6∈ FV ([[Γ `Σ M :
ι]]X(η)) we have that [[Γ `Σ y : υ]]X(η) 6= [[Γ `Σ u : υ]]X(η) and [[Γ `Σ y :
υ]]X(η) 6= [[Γ `Σ v : υ]]X(η) and consequently that the statements X °Γ,η y =υ u
and X °Γ,η y =υ v do not hold. By Corollary 5.1 this is equivalent to say that
X °Γ,η ¬y =υ u and X °Γ,η ¬y =υ v hold. Whence, by the weakening rule and
the monotonicity of forcing, we have that

Y °(Γ,p:υ→ι→o),〈[[Γ]]f (η),ηp〉 ¬y =υ u

and
Y °(Γ,p:υ→ι→o),〈[[Γ]]f (η),ηp〉 ¬y =υ v

hold. Again, we may easily conclude by the preliminary observation since the
fourth disjunction holds (remember that ηz , [[Γ, p : υ → ι → o `Σ y :
υ]]Y (〈[[Γ]]f (η), ηp〉) and ηQ , [[Γ, p : υ → ι → o `Σ M : ι]]Y (〈[[Γ]]f (η), ηp〉), where
M ≡ [u 6= v]P).

(Γ `Σ νλx:υ.P) Since we know that [[Γ `Σ y : υ]]X(η) 6∈ FV ([[Γ `Σ νλx:υ.P]]X(η))
and [[Γ `Σ νλx:υ.P]]X(η) , (νηx)([[Γ, x : υ `Σ P : ι]]X(〈η, ηx〉)), by inductive
hypothesis we deduce that X °(Γ,x:υ),〈η,ηx〉 y 6∈ P holds for all ηx 6= [[Γ `Σ y :
υ]]X(η); hence, proceeding as in the previous cases and applying the weakening
rule, we have that

Y °(Γ,x:υ,p:υ→ι→o),〈[[Γ]]f (η),f(ηx),ηp〉 (p y P)

holds. Moreover we have that Y °(Γ,x:υ,p:υ→ι→o),〈[[Γ]]f (η),f(ηx),ηp〉 ¬y =υ x. At
this point we may easily conclude by the preliminary observation since the fifth
disjunction holds.

C.0.11 Proof of Theorem 5.9

We will see only the base case (rule Recι
σ red1) and the case of higher-order constructor (rule

Recι
σ red5), the others being similar.
Let G , [[Γ]], A , [[σ]], and

g1 = [[Γ ` f1 : σ]] : G −→ A

g2 = [[Γ ` f2 : σ → σ]] : G −→ A⇒A

g3 = [[Γ ` f3 : σ → σ → σ]] : G −→ A⇒A⇒A

g4 = [[Γ ` f4 : υ → υ → σ → σ]] : G −→ Var⇒Var⇒A⇒A

g5 = [[Γ ` f5 : (υ → σ) → σ]] : G −→ (Var⇒A)⇒A

For proving the soundness of Recι
σ red1 and Recι

σ red5, we have to prove that for all X and
η ∈ [[Γ]]X the following properties hold:

X °Γ,η (R 0) =σ f1 (C.1)
X °Γ,η ∀P :υ → ι.(R νP) =σ (f5 λx:υ.(R (P x))) (C.2)

where R is a syntactic shorthand for (Recι
σ f1 f2 f3 f4 f5).

We prove equivalence (C.1). By Theorem 5.3, this is equivalent to prove that

[[Γ `Σ (R 0) : σ]]X(η) = [[Γ `Σ f1 : σ]]X(η)

168 APPENDIX C. LONGER PROOFS

In fact, the following equalities hold, where [[R]] is a syntactic shorthand for the interpretation
of R, and m : T (G ⇒ A) −→ G ⇒ A, m̄ : Proc −→ G ⇒ A are the natural transformations
used in the interpretation of R above:

[[Γ `Σ (R 0) : σ]]X(η) = evX(〈[[[[R]]X(η), Γ `Σ 0 : ι]]X(η)〉)
= ([[R]]X(η))X(〈[[Γ `Σ 0 : ι]]X(η), idX〉)
= (m̄X(0))X(η, idX) by definition of [[R]] and since

[[Γ `Σ 0 : ι]]X(η) = 0
= ((m̄ ◦ α)X(in1(∗)))X(η, idX) since αX(in1(∗)) = 0
= ((m ◦ Tm̄)X(in1(∗)))X(η, idX) by the initial algebra property
= (mX(in1(∗)))X(η, idX) since (Tm̄)X(in1(∗)) = in1(∗)
= g1X(η) by definition of m
= [[Γ `Σ f1 : σ]]X(η)

We prove equivalence (C.2). By Theorem 5.3, this is equivalent to prove that for all Y
stage, h ∈ I(X, Y), p ∈ (Var ⇒ Proc)Y :

[[Γ, P : υ → ι `Σ (R νP) : σ]]Y (η[h], p) = [[Γ, P : ι `Σ (f5 λx.(R (P x))) : σ]]Y (η[h], p)

In fact, the following equalities hold:

[[Γ, P : υ → ι `Σ (R νP) : σ]]Y (η[h], p) =
= evY (〈[[R]]Y (η[h], p), [[Γ, P : υ → ι `Σ νP : ι]]Y (η[h], p)〉)
= ([[R]]Y (η[h], p))Y (〈[[Γ, P : υ → ι `Σ νP : ι]]Y (η[h], p), idY 〉)
= (m̄Y (νλx.p)Y (η, idY) by definition of [[R]] and since

[[Γ, P :υ→ι `Σ νP : ι]]Y (η[h], p) = νλx.p
= ((m̄ ◦ α)Y (in5(p)))Y (η[h], idY) since αY (in5(p)) = νλx.p
= ((m ◦ Tm̄)Y (in5(p)))Y (η[h], idY) by the initial algebra property
= . . .

Now, it is not hard to see that (Tm̄)Y (in5(p)) = in5(m̄ ◦ p), where m̄ ◦ p : Var ×V(Y,) −→
G ⇒ A; thus, let r′ ∈ (Var ⇒ A)Y be the natural transformation defined as

r′ : Var × V(Y,) −→ A

r′Z : Z × V(Y,Z) −→ AZ

〈z, k〉 7−→ ((m̄ ◦ p)Z(z, k))Z(η[k ◦ h], idZ)

We have then

. . .= (mY (in5(m̄ ◦ p))Y (η[h], idY)
= (g5Y (η[h]))Y (〈r′, idY 〉) by definition of m
= evY (〈[[Γ `Σ f5 : (υ → σ) → σ]]Y (η[h], p), r′〉)
= evY (〈[[Γ `Σ f5 : (υ → σ) → σ]]Y (η[h], p), (∗)

[[Γ, P : υ → ι `Σ λx:υ.(R (P x)) : υ → σ]]Y (η[h], p)〉)
= [[Γ `Σ (f5 λx:υ.(R (P x)) : σ]]Y (η[h], p)

The equality (∗) holds because

[[Γ, P : υ → ι `Σ λx:υ.(R (P x)) : υ → σ]]Y (η[h], p) = r′.

169

Indeed, for all stage Z, z ∈ Z, k ∈ V(Y,Z), and let η′ , 〈η[k ◦ h], p[k], z〉:

([[Γ, P : υ → ι `Σ λx:υ.(R (P x)) : υ → σ]]Y (η[h], p))Z (z, k) =
= [[Γ, P : υ → ι, x : υ `Σ (R (P x)) : σ]]Z(η′)
= ([[R]]Z(η′))Z(〈[[Γ, P : υ → ι, x : υ `Σ (P x) : ι]]Z(η′), idZ〉)
= (m̄Z([[Γ, P : υ → ι, x : υ `Σ (P x) : ι]]Z(η′)))Z(η′, idZ)
= (m̄Z(p[k]Z(z, idZ)))Z(η′, idZ)
= ((m̄ ◦ p[k])Z(z, idZ))Z(η′, idZ)
= ((m̄ ◦ p)Z(z, k))Z(η′, idZ) = r′Z(z, k)

C.0.12 Proof of Proposition 5.8

Let us check that the first diagram of Definition B.5 commutes, i.e., that for every A,B ∈ V̌,
X ∈ V, a ∈ AX and b ∈ (TB)X we have

(Tπ′)X((stA,B)X(〈a, b〉)) = π′X(〈a, b〉) = b

This is proved by cases over b:

(b = in1(∗)) (Tπ′)X((stA,B)X(〈a, in1(∗)〉)) = (Tπ′)X(in1(∗)) , in1(∗).
(b = in2(b′))

(Tπ′)X((stA,B)X(〈a, in2(b′)〉))
= (Tπ′)X(in2(a, b′))
, in2(π′(〈a, b′〉)) = in2(b′)

(b = in3(〈b′, b′′〉))
(Tπ′)X((stA,B)X(〈a, in3(〈b′, b′′〉)〉))

= (Tπ′)X(in3(〈a, b′, a, b′′〉))
, in3(〈π′(〈a, b′〉), π′(〈a, b′′〉)〉)
= in3(〈b′, b′′〉)

(b = in4(〈x, y, b′〉))
(Tπ′)X((stA,B)X(〈a, in4(〈x, y, b′〉)〉))

= (Tπ′)X(in4(〈x, y, a, b′〉))
, in4(〈x, y, π′(〈a, b′〉)〉)
= in3(〈x, y, b′〉)

(b = in5(b′))
(Tπ′)X((stA,B)X(〈a, in5(b′)〉))

= (Tπ′)X(in5(ba))
, in5(γB,X(π′(〈GinX (g), bX]{x}(x, inX)〉)))
= in5(γB,X(bX]{x}(x, inX))) = in5(b)

For what concerns the commutativity of the second diagram of Definition B.5, we have
to show that for every A,B,C ∈ V̌, X ∈ V, a ∈ AX , b ∈ (TB)X and c ∈ CX we have

(Tβ)X((stA,C×B)X((idA × stC,B)X(〈a, 〈c, b〉〉))) = (stA×C,B)X(βX(〈a, 〈c, b〉〉))

where β , 〈〈π, π ◦ π′〉, π′ ◦ π′〉; it follows that the second member can be simplified to
(stA×C,B)X(〈〈a, c〉, b〉). In order to prove the thesis, we proceed again by cases on b:

170 APPENDIX C. LONGER PROOFS

(b = in1(∗))
(Tβ)X((stA,C×B)X((idA × stC,B)X(〈a, 〈c, in1(∗)〉〉)))

= (Tβ)X((stA,C×B)X(〈a, in1(∗)〉))
= (Tβ)X(in1(∗))
= in1(∗)
= (stA×C,B)X(〈〈a, c〉, in1(∗)〉)

(b = in2(b′))
(Tβ)X((stA,C×B)X((idA × stC,B)X(〈a, 〈c, in2(b′)〉〉)))

= (Tβ)X((stA,C×B)X(〈a, in2(〈c, b′〉)〉))
= (Tβ)X(in2(〈a, 〈c, b′〉〉))
= in2(βX(〈a, 〈c, b′〉〉))
= in2(〈〈a, c〉, b′〉)
= (stA×C,B)X(〈〈a, c〉, in2(b′)〉)

(b = in3(〈b′, b′′〉))

(Tβ)X((stA,C×B)X((idA × stC,B)X(〈a, 〈c, in3(〈b′, b′′〉)〉〉)))
= (Tβ)X((stA,C×B)X(〈a, in3(〈c, b′, c, b′′〉)〉))
= (Tβ)X(in3(〈a, 〈c, b′, c, b′′〉〉))
= in3(βX(〈a, 〈c, b′〉, a, 〈c, b′′〉〉))
= in3(〈〈a, c〉, b′, 〈a, c〉, b′′〉)
= (stA×C,B)X(〈〈a, c〉, in3(〈b′, b′′〉)〉)

(b = in4(〈x, y, b′〉))

(Tβ)X((stA,C×B)X((idA × stC,B)X(〈a, 〈c, in4(〈x, y, b′〉)〉〉)))
= (Tβ)X((stA,C×B)X(〈a, in4(〈x, y, c, b′〉)〉))
= (Tβ)X(in4(〈x, y, a, 〈c, b′〉〉))
= in4(〈x, y, βX(〈a, 〈c, b′〉〉))
= in4(〈x, y, 〈a, c〉, b′〉)
= (stA×C,B)X(〈〈a, c〉, in4(〈x, y, b′〉)〉)

(b = in5(b′))

(Tβ)X((stA,C×B)X((idA × stC,B)X(〈a, 〈c, in5(b′)〉〉)))
= (Tβ)X((stA,C×B)X(〈a, in5(b′c)〉))
= (Tβ)X(in5((b′c)a))
= in5(γ(A×C)×B,X(βX]{x}(〈AinX (a), 〈CinX (c), b′X]{x}(〈x, inX〉)〉〉)))
= in5(γ(A×C)×B,X(〈AinX (a), CinX (c)〉, b′X]{x}(〈x, inX〉)〉))
= in5(b′〈a,c〉)
= (stA×C,B)X(〈〈a, c〉, in5(b′)〉)

C.0.13 Proof of Proposition 5.9

In order to prove the commutativity of the diagram we must show that, for every X ∈ V,
g ∈ GX and P ∈ (TProc)X , we have fX((idG × α)X(〈g, P 〉)) = βX((〈π, Tf ◦ stG,Proc〉)X(〈g,
P 〉)). First of all we notice that the second member of the previous equation can be simplified
to βX(〈g, (Tf)X((stG,Proc)X(〈g, P 〉))〉), then we proceed by cases on P :

171

(P = in1(∗)) we have fX((idG × α)X(〈g, in1(∗)〉)) = fX(〈g, 0〉) , βX(〈g, in1(∗)〉), whence
the thesis since

βX(〈g, (Tf)X((stG,Proc)X(〈g, in1(∗)〉))〉)
= βX(〈g, (Tf)X(in1(∗))〉)
= βX(〈g, in1(∗)〉)

(P = in2(P ′)) we have fX((idG × α)X(〈g, in2(P ′)〉)) = fX(〈g, τ.P ′〉) , βX(〈g, in2(fX(〈g,
P ′〉))〉), whence the thesis since

βX(〈g, (Tf)X((stG,Proc)X(〈g, in2(P ′)〉))〉)
= βX(〈g, (Tf)X(in2(〈g, P ′〉))〉)
= βX(〈g, in2(fX(〈g, P ′〉))〉)

(P = in3(〈P ′, P ′′〉)) we have

fX((idG × α)X(〈g, in3(〈P ′, P ′′〉)〉))
= fX(〈g, P ′|P ′′〉)
, βX(〈g, in3(〈fX(〈g, P ′〉), fX(〈g, P ′′〉)〉)〉),

whence the thesis since

βX(〈g, (Tf)X((stG,Proc)X(〈g, in3(〈P ′, P ′′〉)〉))〉)
= βX(〈g, (Tf)X(in3(〈g, P ′, g, P ′′〉))〉)
= βX(〈g, in3(〈fX(〈g, P ′〉), fX(〈g, P ′′〉)〉)〉)

(P = in4(〈x, y, P ′〉)) we have fX((idG × α)X(〈g, in4(〈x, y, P ′〉)〉)) = fX(〈g, [x 6= y]P ′〉) ,
βX(〈g, in4(〈x, y, fX(〈g, P ′〉)〉)〉), whence the thesis since

βX(〈g, (Tf)X((stG,Proc)X(〈g, in4(〈x, y, P ′〉)〉))〉)
= βX(〈g, (Tf)X(in4(〈x, y, g, P ′〉))〉)
= βX(〈g, in4(〈x, y, fX(〈g, P ′〉)〉)〉)

(P = in5(P ′)) we have fX((idG×α)X(〈g, in5(P ′)〉))= fX(〈g, (νx)P ′
X]{x}(x, inX)〉), βX(〈g,

in5(γB,X(fX]{x}(〈GinX (g), P ′〉)〉)〉), whence the thesis since

βX(〈g, (Tf)X((stG,Proc)X(〈g, in5(P ′)〉))〉)
= βX(〈g, (Tf)X(in5(P ′

g))〉)
= βX(〈g, in5(γB,X(fX]{x}(P ′

X]{x}(〈x, inX〉))))〉)

C.0.14 Proof of Theorem 5.12

Suppose that

Y °R:ι→o,ηR
(R 0), (C.3)

Y °R:ι→o,ηR
(∀P :ι.(R P) ⇒ (R τ.P)), (C.4)

Y °R:ι→o,ηR
(∀P :ι.(R P) ⇒ ∀Q:ι.(R Q) ⇒ (R P |Q)), (C.5)

Y °R:ι→o,ηR
(∀y:υ.∀z:υ.∀P :ι.(R P) ⇒ (R [y 6= z]P)), (C.6)

Y °R:ι→o,ηR
(∀P :υ → ι.(∀x:υ.(R (P x))) ⇒ (R νP)), (C.7)

172 APPENDIX C. LONGER PROOFS

We prove that G∗(>) •G∗(!TU) = p •G∗(α) •T//G(h). We first translate the latter equation
in terms of composition in the category V̌ and we obtain the following:

G∗(>) ◦ 〈π, G∗(!TU)〉 = p ◦ 〈π,G∗(α)〉 ◦ 〈π, (T//G)h〉.

Then, unfolding the definitions of G∗ and T//G, we get:

> ◦ π′ ◦ 〈π, !TU ◦ π′〉 = p ◦ 〈π, α ◦ π′〉 ◦ 〈π, Th ◦ stG,U 〉,

i.e., we have to prove that >◦!TU ◦ π′ = p ◦ 〈π, α ◦ Th ◦ stG,U 〉. So, taken any Z ∈ V, g ∈ GZ

and u ∈ (TU)Z , we have that >Z((!TU)Z(π′Z(〈g, u〉))) = >Z((!TU)Z(u)) = >Z(∗) = I(Z,),
while for the second member of the equation we have the following:

(u = in1(∗))

pZ(〈πZ(〈g, in1(∗)〉), αZ((Th)Z((stG,U)Z(〈g, in1(∗)〉)))〉) =
=pZ(〈g, αZ((Th)Z(in1(∗)))〉) = pZ(〈g, αZ(in1(∗))〉) = pZ(〈g, 0〉)

Hence, pZ(〈g, 0〉) = (evProp,Proc)Z(〈g, 0〉) ∧ I(Z,) = gZ(〈0, idZ〉) ∧ I(Z,). Since we
know that for all Y ∈ V, and ηR ∈ (Proc ⇒ Prop)Y , Y °R:ι→o,ηR

(R 0) holds, we can
deduce, by point 3 of Theorem 5.1, that [[R : ι → o, P : ι `Σ (R P) : o]]Z(〈g, 0〉) =
([[R : ι → o, P : ι `Σ R : ι → o]]Z(〈g, 0〉))Z(〈[[R : ι → o, P : ι `Σ 0 : ι]]Z(〈g, 0〉), idZ〉) =
gZ(〈0, idZ〉) ≥ I(Z,), whence the thesis.

(u = in2(q))

pZ(〈πZ(〈g, in2(q)〉), αZ((Th)Z((stG,U)Z(〈g, in2(q)〉)))〉) =
=pZ(〈g, αZ((Th)Z(in2(〈g, q〉)))〉) = pZ(〈g, αZ(in2(hZ(〈g, q〉)))〉) =
=pZ(〈g, τ.hZ(〈g, q〉)〉)

At this point we know, by equation C.4, that for all Y ∈ V, and ηR ∈ (Proc ⇒ Prop)Y ,
Y °R:ι→o,ηR

∀P :ι.(R P) ⇒ (R τP) holds. By points 1 and 2 of Theorem 5.1, this
amounts to say that, for all V ∈ V, l ∈ I(Y, V) and ηP ∈ ProcV ,

V °(R:ι→o,P :ι),〈(Proc⇒Prop)l(ηR),ηP 〉 (R P)

implies
V °(R:ι→o,P :ι),〈(Proc⇒Prop)l(ηR),ηP 〉 (R τP).

Then we notice the following facts:

1. pZ(〈g, hZ(〈g, q〉)〉) = I(Z,);

2. pZ(〈g, hZ(〈g, q〉)〉)= (evProp,Proc)Z(〈g, hZ(〈g, q〉)〉)∧I(Z,)= gZ(〈hZ(〈g, q〉), idZ〉)
∧I(Z,);

3. [[R : ι → o, P : ι `Σ (R P) : o]]Z(〈g, hZ(〈g, q〉)〉) = ([[R : ι → o, P : ι `Σ R :
ι → o]]Z(〈g, hZ(〈g, q〉)〉))Z(〈[[R : ι → o, P : ι `Σ P : ι]]Z(〈g, hZ(〈g, q〉)〉), idZ〉) =
gZ(〈hZ(〈g, q〉), idZ〉) (by point 3 of Theorem 5.1); it follows from the previous two
facts that gZ(〈hZ(〈g, q〉), idZ〉) ≥ I(Z,); hence Z °(R:ι→o,P :ι),〈g,hZ(〈g,q〉)〉)〉 (R P)
holds;

173

4. from the previous fact and the inductive hypothesis we can deduce that

Z °(R:ι→o,P :ι),〈g,hZ(〈g,q〉)〉 (R τP)

holds, i.e.,

[[R : ι → o, P : ι `Σ (R τP) : o]]Z(〈g, hZ(〈g, q〉)〉) ≥ I(Z,);

5. by point 3 of Theorem 5.1, we have [[R : ι → o, P : ι `Σ (R τP) : o]]Z(〈g, hZ(〈g,
q〉)〉) = ([[R : ι → o, P : ι `Σ R : ι → o]]Z(〈g, hZ(〈g, q〉)〉))Z(〈[[R : ι →
o, P : ι `Σ τP : ι]]Z(〈g, hZ(〈g, q〉)〉), idZ〉) = gZ(〈tau([[R : ι → o, P : ι `Σ P :
ι]]Z(〈g, hZ(〈g, q〉)), idZ〉) = gZ(〈tau(hZ(〈g, q〉)), idZ〉) = gZ(τ.hZ(〈g, q〉), idZ) =
pZ(〈g, τ.hZ(〈g, q〉)〉) ∧ I(Z,), whence the thesis.

(u = in3(q, r))

pZ(〈πZ(〈g, in3(q, r)〉), αZ((Th)Z((stG,U)Z(〈g, in3(q, r)〉)))〉) =
=pZ(〈g, αZ((Th)Z(in3(〈g, q, g, r〉)))〉) =
=pZ(〈g, αZ(in3(hZ(〈g, q〉), in3(hZ(〈g, r〉))))〉) =
=pZ(〈g, hZ(〈g, q〉)|hZ(〈g, r〉)〉)

Equation C.5, states that for all Y ∈ V, and ηR ∈ (Proc ⇒ Prop)Y , Y °R:ι→o,ηR

∀P :ι.(R P) ⇒ ∀Q:ι.(R Q) ⇒ (R P |Q) holds. By points 1 and 2 of Theorem 5.1, this
amounts to say that, for all V ∈ V, l ∈ I(Y, V) and ηP ∈ ProcV ,

V °(R:ι→o,P :ι),〈(Proc⇒Prop)l(ηR),ηP 〉 (R P)

implies
V °(R:ι→o,P :ι),〈(Proc⇒Prop)l(ηR),ηP 〉 ∀Q:ι.(R Q) ⇒ (R P |Q).

Applying again the same theorem, the latter judgment is in turn equivalent to say that,
for all W ∈ V, m ∈ I(V, W) and ηQ ∈ ProcW ,

W °(R:ι→o,P :ι,Q:ι),〈(Proc⇒Prop)m◦l(ηR),Procm(ηP),ηQ〉 (R Q)

implies
W °(R:ι→o,P :ι,Q:ι),〈(Proc⇒Prop)m◦l(ηR),Procm(ηP),ηQ〉 (R P |Q).

Then we notice the following facts:

1. pZ(〈g, hZ(〈g, q〉)〉) = I(Z,) and pZ(〈g, hZ(〈g, r〉)〉) = I(Z,);

2. pZ(〈g, hZ(〈g, q〉)〉)= (evProp,Proc)Z(〈g, hZ(〈g, q〉)〉)∧I(Z,)= gZ(〈hZ(〈g, q〉), idZ〉)
∧I(Z,) and analogously pZ(〈g, hZ(〈g, r〉)〉) = gZ(〈hZ(〈g, r〉), idZ〉) ∧ I(Z,);

3. [[R : ι → o, P : ι `Σ (R P) : o]]Z(〈g, hZ(〈g, q〉)〉) = ([[R : ι → o, P : ι `Σ R :
ι → o]]Z(〈g, hZ(〈g, q〉)〉))Z(〈[[R : ι → o, P : ι `Σ P : ι]]Z(〈g, hZ(〈g, q〉)〉), idZ〉) =
gZ(〈hZ(〈g, q〉), idZ〉) (by point 3 of Theorem 5.1); it follows from the previous two
facts that gZ(〈hZ(〈g, q〉), idZ〉) ≥ I(Z,); hence Z °(R:ι→o,P :ι),〈g,hZ(〈g,q〉)〉)〉 (R P)
holds;

4. similarly we have that [[R : ι → o, P : ι, Q : ι `Σ (R Q) : o]]Z(〈g, hZ(〈g, q〉),
hZ(〈g, r〉)〉) = gZ(〈hZ(〈g, r〉), idZ〉) ≥ I(Z,); hence Z °(R:ι→o,P :ι),〈g,hZ(〈g,r〉)〉)〉
(R Q) holds;

174 APPENDIX C. LONGER PROOFS

5. from the previous facts and the inductive hypothesis we can deduce that

Z °(R:ι→o,P :ι,Q:ι),〈g,hZ(〈g,q〉),hZ(〈g,r〉)〉 (R P |Q)

holds, i.e.,

[[R : ι → o, P : ι, Q : ι `Σ (R P |Q) : o]]Z(〈g, hZ(〈g, q〉), hZ(〈g, r〉)〉) ≥ I(Z,);

6. by point 3 of Theorem 5.1, we have [[R : ι → o, P : ι, Q : ι `Σ (R P |Q) : o]]Z(〈g,
hZ(〈g, q〉), hZ(〈g, r〉)〉) = ([[R : ι → o, P : ι, Q : ι `Σ R : ι → o]]Z(〈g, hZ(〈g, q〉),
hZ(〈g, r〉)〉))Z(〈[[R : ι → o, P : ι, Q : ι `Σ P |Q : ι]]Z(〈g, hZ(〈g, q〉), hZ(〈g, r〉)〉),
idZ〉) = gZ(〈par(〈[[R : ι → o, P : ι, Q : ι `Σ P : ι]]Z(〈g, hZ(〈g, q〉), hZ(〈g, r〉)〉), [[R :
ι → o, P : ι, Q : ι `Σ Q : ι]]Z(〈g, hZ(〈g, q〉), hZ(〈g, r〉)〉)〉), idZ〉) = gZ(〈par(〈hZ(〈g,
q〉), hZ(〈g, r〉)〉), idZ〉) = gZ(hZ(〈g, q〉)|hZ(〈g, r〉), idZ) = pZ(〈g, hZ(〈g, q〉)|hZ(〈g,
r〉)〉) ∧ I(Z,), whence the thesis.

(u = in4(v, w, q))

pZ(〈πZ(〈g, in4(v, w, q)〉), αZ((Th)Z((stG,U)Z(〈g, in4(v, w, q)〉)))〉) =
=pZ(〈g, αZ((Th)Z(in4(〈v, w, g, q〉)))〉) =
=pZ(〈g, αZ(in4(〈v, w, hZ(〈g, q〉)〉))〉) =
=pZ(〈g, [v 6= w]hZ(〈g, q〉)〉)

At this point we know, by equation C.6, that for all Y ∈ V, and ηR ∈ (Proc ⇒ Prop)Y ,
Y °R:ι→o,ηR

∀x:υ.∀y:υ.∀P :ι.(R P) ⇒ (R [x 6= y]P) holds. By point 2 of Theorem 5.1
and point 5 of Corollary 5.1, this amounts to say that, for all V ∈ V, l ∈ I(Y, V)
ηx, ηy ∈ V and ηP ∈ ProcV ,

V °(R:ι→o,x:υ,y:υ,P :ι),〈(Proc⇒Prop)l(ηR),ηx,ηy ,ηP 〉 (R P)

implies
V °(R:ι→o,x:υ,y:υ,P :ι),〈(Proc⇒Prop)l(ηR),ηx,ηy ,ηP 〉 (R [x 6= y]P).

Then we notice the following facts:

1. pZ(〈g, hZ(〈g, q〉)〉) = I(Z,);

2. pZ(〈g, hZ(〈g, q〉)〉)=(evProp,Proc)Z(〈g, hZ(〈g, q〉)〉)∧I(Z,) = gZ(〈 hZ(〈g, q〉), idZ〉)
∧I(Z,);

3. [[R : ι → o, P : ι `Σ (R P) : o]]Z(〈g, hZ(〈g, q〉)〉) = ([[R : ι → o, P : ι `Σ R :
ι → o]]Z(〈g, hZ(〈g, q〉)〉))Z(〈[[R : ι → o, P : ι `Σ P : ι]]Z(〈g, hZ(〈g, q〉)〉), idZ〉) =
gZ(〈hZ(〈g, q〉), idZ〉) (by point 3 of Theorem 5.1); it follows from the previous two
facts that gZ(〈hZ(〈g, q〉), idZ〉) ≥ I(Z,); hence Z °(R:ι→o,P :ι),〈g,hZ(〈g,q〉)〉)〉 (R P)
holds;

4. from the previous fact and the inductive hypothesis we can deduce that

Z °(R:ι→o,x:υ,y:υ,P :ι),〈g,v,w,hZ(〈g,q〉)〉 (R [x 6= y]P)

holds, i.e.,

[[R : ι → o, x : υ, y : υ, P : ι `Σ (R [x 6= y]P) : o]]Z(〈g, v, w, hZ(〈g, q〉)〉) ≥ I(Z,);

175

5. by point 3 of Theorem 5.1, we have [[R:ι → o, x:υ, y:υ, P :ι `Σ (R [x 6= y]P):o]]Z
(〈g, v, w, hZ(〈g, q〉)〉) = ([[R:ι → o, x:υ, y:υ, P :ι `Σ R:ι → o]]Z(〈g, v, w, hZ(〈g,
q〉)〉))Z(〈[[R : ι → o, x : υ, y : υ, P : ι `Σ [x 6= y]P : ι]]Z(〈g, v, w, hZ(〈g, q〉)〉),
idZ〉) = gZ(〈mismatch(〈[[R:ι → o, x:υ, y:υ, P :ι `Σ x:υ]]Z(〈g, v, w, hZ(〈g, q〉)), [[R :
ι → o, x:υ, y:υ, P :ι `Σ y:υ]]Z(〈g, v, w, hZ(〈g, q〉)), [[R:ι → o, x:υ, y:υ, P :ι `Σ P :ι]]Z
(〈g, v, w, hZ(〈g, q〉))〉), idZ〉) = gZ(〈mismatch(〈v, w, hZ(〈g, q〉)〉), idZ〉) = gZ([v 6=
w]hZ (〈g, q〉), idZ) = pZ(〈g, [v 6= w]hZ(〈g, q〉)〉) ∧ I(Z,), whence the thesis.

(u = in5(q))

pZ(〈πZ(〈g, in5(q)〉), αZ((Th)Z((stG,U)Z(〈g, in5(q)〉)))〉) =
=pZ(〈g, αZ((Th)Z(in5(qg)))〉) =

=pZ(〈g, αZ(in5(hZ]z((qg)Z]z(z, inZ)))〉) =

=pZ(〈g, (νz)hZ]z((qg)Z]z(z, inZ))〉),
where qg : Var × V(Z,) −→ G × U is the natural transformation such that, for all
Y ∈ V, y ∈ Y and f ∈ V(Z, Y), (qg)Y (y, f) = 〈Gf (g), qY (〈y, f〉)〉.
At this point we know, by equation C.7, that for all Y ∈ V, and ηR ∈ (Proc ⇒
Prop)Y , Y °R:ι→o,ηR

∀P :υ → ι.(∀x:υ.(R (P x))) ⇒ (R νP) holds. By points 1 and 2
of Theorem 5.1, this amounts to say that, for all V ∈ V, l ∈ I(Y, V) and ηP ∈ (Var ⇒
Proc)V ,

V °(R:ι→o,P :υ→ι),〈(Proc⇒Prop)l(ηR),ηP 〉 ∀x:υ.(R (P x))

implies
V °(R:ι→o,P :υ→ι),〈(Proc⇒Prop)l(ηR),ηP 〉 (R νP).

Then we notice the following facts:

1. V °(R:ι→o,P :υ→ι),〈(Proc⇒Prop)l(ηR),ηP 〉 ∀x:υ.(R (P x)) iff, for all W ∈ V, m ∈
I(V, W) and ηx ∈ W , the following holds:

W °(R:ι→o,P :υ→ι,x:υ),〈(Proc⇒Prop)m◦l(ηR),ηP ,ηx〉 (R (P x)),

i.e., iff

[[∆ `Σ (R (P x)) : o]]W (η) ≥ I(W,),

where ∆ , R : ι → o, P : υ → ι, x : υ and η , 〈(Proc ⇒ Prop)m◦l(ηR), (Var ⇒
Proc)m(ηP), ηx〉. The first member of the preceding inequality can be simplified
as follows according to Theorem 5.1:

[[∆ `Σ (R (P x)) : o]]W (η) ≥ I(W,)
=([[∆ `Σ R : ι → o]]W (η))W (〈[[∆ `Σ (P x) : ι]]W (η), idW 〉)
=((Proc ⇒ Prop)m◦l(ηR))W (〈([[∆ `Σ P : υ → ι]]W (η))W

(〈[[∆ `Σ x : υ]]W (η), idW 〉), idW 〉)
=((Proc ⇒ Prop)m◦l(ηR))W (〈((Var ⇒ Proc)m(ηP))W (〈ηx, idW 〉), idW 〉)

2. in particular, when V , Z, l , idZ , ηR , g and ηP , h ◦ qg, we have that the
following holds:

((Proc ⇒ Prop)m(g))W (〈((Var ⇒ Proc)m(h ◦ qg))W (〈ηx, idW 〉), idW 〉)
=((Proc ⇒ Prop)m(g))W (〈(h ◦ qg)W (〈ηx, m〉), idW 〉)
=((Proc ⇒ Prop)m(g))W (〈hW (〈(Proc ⇒ Prop)m(g), qW (〈ηX ,m〉)〉), idW 〉)

176 APPENDIX C. LONGER PROOFS

3. pW (〈(Proc ⇒ Prop)m(g), hW (〈(Proc ⇒ Prop)m(g), qW (〈ηX ,m〉)〉), idW 〉)〉) =
I(W,);

4. pW (〈(Proc ⇒ Prop)m(g), hW (〈(Proc ⇒ Prop)m(g), qW (〈ηX ,m〉)〉), idW 〉)〉) =
((Proc ⇒ Prop)m(g))W (〈hW (〈(Proc ⇒ Prop)m(g), qW (〈 ηX ,m〉)〉), idW 〉) ∧ I(W,
); hence, for all W , m ∈ I(Z,W) and ηx ∈ W we have

W °(R:ι→o,P :υ→ι,x:υ),〈(Proc⇒Prop)m(g),h◦qg ,ηx〉 (R (P x));

5. it follows that Z °(R:ι→o,P :υ→ι),〈g,h◦qg〉 (R νP) holds by the previous point and the
inductive hypothesis, i.e, [[R:ι → o, P :υ → ι `Σ (R νP) : ι]]Z(〈g, h◦qg〉) = ([[R:ι →
o, P :υ → ι `Σ R:ι → o]]Z(〈g, h ◦ qg〉))Z(〈[[R:ι → o, P :υ → ι `Σ νP : ι]]Z(〈g, h ◦
qg〉), idZ〉) = gZ(〈newZ(〈h ◦ qg〉), idZ〉) = gZ(〈(νz)((h ◦ qg)Z]z(〈z, inZ〉)), idZ〉) =
gZ(〈(νz)(hZ]z((qg)Z]z(〈z, inZ〉))), idZ〉) ≥ I(Z,) holds. The thesis follows since

pZ(〈g, (νz)hZ]z((qg)Z]z(z, inZ))〉)
= gZ(〈(νz)(hZ]z((qg)Z]z(〈z, inZ〉))), idZ〉) ∧ I(Z,).

Bibliography

[AG99] Mart́ın Abadi and Andrew D. Gordon. A Calculus for Cryptographic Protocols:
the Spi Calculus. Information and Computation, 148:1–70, 1999.

[AHMP92] A. Avron, F. Honsell, I. A. Mason, and R. Pollack. Using Typed Lambda Calcu-
lus to implement Formal Systems on a machine. Journal of Automated Reasoning,
9:309–354, 1992.

[Bar81] Henk P. Barendregt. The Lambda Calculus: its Syntax and Semantics. North
Holland, 1981.

[Bar92] Henk P. Barendregt. Lambda Calculi with Types. In Samson Abramsky, Dov
Gabbay, and T. Maibaum, editors, Handbook of Logic in Computer Science,
pages 117–309. Oxford University Press, 1992.

[BB92] G. Berry and G. Boudol. The chemical abstract machine. Theoretical Computer
Science, 96(1):217–248, 1992.

[Bel88] J. L. Bell. Toposes and Local Set Theories. An Introduction. Clarendon Press,
Oxford, 1988.

[BGG+92] R. Boulton, A. Gordon, M. Gordon, J. Harrison, J. Herbert, and J. Van Tassel.
Experience with embedding hardware description languages in HOL. In Proceed-
ings of the IFIP TC10/WG 10.2 international conference on theorem provers in
circuit design: Theory, practice and experience, volume A-10 of IFIP Transac-
tions, pages 129–156. Elsevier, 1992.

[BHH+01] Anna Bucalo, Martin Hofmann, Furio Honsell, Marino Miculan, and Ivan
Scagnetto. Consistency of the Theory of Contexts. Submitted, 2001.

[BW90] Michael Barr and Charles F. Wells. Category theory for computing science.
Prentice-Hall, 1990.

[CC01] L. Caires and L. Cardelli. A Spatial Logic for Concurrency (Part I). In
N. Kobayashi and B. C. Pierce, editors, Theoretical Aspects of Computer Soft-
ware, 4th International Symposium, TACS 2001, Sendai, Japan, October 29-31,
2001, Proceedings, volume 2215 of Lecture Notes in Computer Science, pages
1–38. Springer-Verlag, Berlin, 2001.

[CG98] Luca Cardelli and Andrew D. Gordon. Mobile Ambients. In Foundations of
Software Science and Computational Structures, volume 1378, pages 140–155.
Springer, 1998.

178 BIBLIOGRAPHY

[CG00] Luca Cardelli and Andrew D. Gordon. Anytime, Anywhere. Modal Logics for
Mobile Ambients. In Proceedings of the 27th ACM Symposium on Principles of
Programming Languages, pages 365–377, 2000.

[CG01] Luca Cardelli and Andrew D. Gordon. Logical Properties of Name Restriction.
In S. Abramsky, editor, Typed Lambda Calculi and Applications, volume 2044 of
Lecture Notes in Computer Science, page 46. Springer, May 2001.

[CH88] Thierry Coquand and Gérard Huet. The calculus of constructions. Information
and Control, 76:95–120, 1988.

[Chu40] Alonzo Church. A formulation of the simple theory of types. Journal of Symbolic
Logic, 5:56–68, 1940.

[Chu41] Alonzo Church. The Calculi of Lambda Conversion. Princeton University Press,
1941.

[Chu33] Alonzo Church. A set of postulates for the foundation of logic. Annals of Math-
ematics, 2(33-34):346–366 and 839–864, 1932/33.

[Coq93] Thierry Coquand. Infinite Objects in Type Theory. In Proceedings of TYPES’93,
pages 62–78, 1993.

[CP90] Thierry Coquand and Christine Paulin. Inductively defined types. In Per Martin-
Löf and G. Mints, editors, Proceedings of COLOG 88, volume 417 of LNCS, pages
50–66. Springer-Verlag, 1990.

[CSW97] Gian Luca Cattani, Ian Stark, and Glynn Winskel. Presheaf models for the
π-calculus. In Proceedings of CTCS, 1997.

[Cur34] H. B. Curry. Functionality in combinatory logic. In Proceedings of National
Academy of Sciences, volume 20, pages 584–590, USA, 1934.

[Dal00] Silvano Dal Zilio. Spatial congruence for Ambients is Decidable. Technical Report
MSR-TR-2000-41, Microsoft Research, May 2000.

[dB70] N. G. de Bruijn. The mathematical language AUTOMATH, its usage and some
of its extensions. In Symposium on automatic demonstration, volume 125 of
Lecture Notes in Mathematics, pages 29–61, Versailles 1968, 1970. Springer.

[DFH95] Joëlle Despeyroux, Amy Felty, and André Hirschowitz. Higher-order syntax in
Coq. In Proceedings of TLCA’95, volume Lecture Notes in Computer Science,
vol. 905, Edinburgh, 1995. Springer-Verlag. Also appears as INRIA research
report RR-2556, April 1995.

[DH94] Joëlle Despeyroux and André Hirschowitz. Higher-order syntax and induction
in Coq. In Proceedings of LPAR’94, Kiev, Ukraine, July 1994. Also appears as
INRIA research report RR-2292, June 1994.

[DPS96] Joëlle Despeyroux, Frank Pfenning, and Carsten Schürmann. Primitive Re-
cursion for Higher-Order Abstract Syntax. Technical Report CMU-CS-96-172,
Carnegie Mellon University, 1996.

BIBLIOGRAPHY 179

[FMS96] Marcelo Fiore, Eugenio Moggi, and Davide Sangiorgi. A fully-abstract model for
the π-calculus. In Proceedings of 11th LICS. IEEE, 1996.

[FPT99] Marcelo P. Fiore, Gordon D. Plotkin, and Daniele Turi. Abstract syntax and
variable binding. In Proceedings of LICS99, 1999.

[FT01] Marcelo Fiore and Daniele Turi. Semantics of name and value passing. In Harry
Mairson, editor, Proceedings of 16th LICS, pages 93–104, Boston, USA, 2001.
IEEE Computer Society Press, for The Institute of Electrical and Electronics
Engineers, Inc.

[Gab00] Murdoch J. Gabbay. A Theory of Inductive Definitions With α-equivalence. PhD
thesis, Trinity College, Cambridge University, 2000.

[Gen69] G. Gentzen. Investigations into logical deduction. In M. Szabo, editor, The
collected papers of Gerhard Gentzen, pages 68–131. North Holland, 1969.

[Geu93] Jan Herman Geuvers. Logics and Type Systems. PhD thesis, Katholieke Univer-
siteit, Nijmegen, the Netherlands, 1993.

[Gim94] Eduardo Giménez. Codifying guarded recursion definitions with recursive
schemes. In Proceedings of TYPES’94, 1994.

[Gim96] Eduardo Giménez. Un Calcul de Constructions Infinies et son Application à la
Vérification de Systèmes Communicants. PhD thesis, École Normale Supérieure
de Lyon, December 1996.

[Gir72] J.-Y. Girard. Interprétation fonctionnelle et élimination des coupures dans
l’arithmétique d’ordre supérieur. PhD thesis, Université Paris VII, 1972.

[GM96] A. Gordon and T. Melham. Five axioms of α-conversion. In Proceedings of
TPHOL’96, volume 1125 of Lecture Notes in Computer Science, pages 173–190.
Springer Verlag, 1996.

[GP99] M. J. Gabbay and A. M. Pitts. A New Approach to Abstract Syntax Involving
Binders. In 14th Annual Symposium on Logic in Computer Science, pages 214–
224. IEEE Computer Society Press, Washington, 1999.

[GP01] M. J. Gabbay and A. M. Pitts. A New Approach to Abstract Syntax with
Variable Binding. Formal Aspects of Computing, ?:?–?, 2001. Special issue in
honour of Rod Burstall. To appear.

[HHP93] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining
logics. J. ACM, 40(1):143–184, January 1993.

[Hir97] D. Hirschkoff. Bisimulation proofs for the π-calculus in the Calculus of Construc-
tions. In Proc. TPHOL’97, number 1275 in Lecture Notes in Computer Science.
Springer-Verlag, 1997.

[HJP80] J. M. E. Hyland, P. T. Johnstone, and Andrew M. Pitts. Tripos theory. In
Mathematical Proceedings of the Cambridge Philosophical society, volume 88,
pages 205–232, 1980.

180 BIBLIOGRAPHY

[HMS01a] Furio Honsell, Marino Miculan, and Ivan Scagnetto. An axiomatic approach to
metareasoning on systems in higher-order abstract syntax. In LNCS, Proceedings
of ICALP’01, volume 2076, pages 963–978. Springer-Verlag, 2001. Also available
at http://www.dimi.uniud.it/~miculan/Papers/.

[HMS01b] Furio Honsell, Marino Miculan, and Ivan Scagnetto. π-calculus in (co)inductive
type theory. Theoretical computer science, 239-285(2):239–285, 2001. First ap-
peared as a talk at TYPES’98 annual workshop.

[Hof99] Martin Hofmann. Semantical analysis of higher-order abstract syntax. In
Giuseppe Longo, editor, Proceedings of fourteenth annual ieee symposium on
logic in computer science, Trento, Italy, 1999. IEEE Computer Society Press, for
The Institute of Electrical and Electronics Engineers, Inc.

[How80] W. A. Howard. The formulæ-as-types notion of construction. In J. R. Hindley
and J. P. Seldin, editors, To H.B. Curry: Essays on Combinatory Logic. Lambda
Calculus and Formalism. Academic Press, 1980.

[Hue92] Gérard Huet. Constructive computation theory - part I. Lecture notes, October
1992.

[Hue94] Gérard Huet. Residual theory in λ-calculus: a formal development. Journal of
Functional Programming, 4(3):371–394, 1994.

[Jac95] Bart Jacobs. Parameters and parametrization in specification using distributive
categories. Fundamenta informaticae, 24(3), 1995.

[Jac99] Bart Jacobs. Categorical logic and type theory, volume 14 of Studies in Logic and
the Foundations of Mathematics. Elsevier, 1999.

[Joh77] Peter Johnstone. Topos theory. In London Mathematical Society Monographs,
volume 10. Academic Press, London, 1977.

[KR35] S. C. Kleene and J. B. Rosser. The inconsistency of certain formal logics. Annals
of Mathematics, 2(36):630–636, 1935.

[Mac71] Saunders MacLane. Categories for the working mathematician. Springer-Verlag,
Berlin, 1971.

[Mel95] T. Melham. A mechanized theory of the π-calculus in HOL. Nordic journal of
computing, 1(1):50–76, 1995.

[Mic97] Marino Miculan. Encoding logical theories of programs. PhD thesis, Dipartimento
di Informatica, Università di Pisa, Pisa, Italy, March 1997.

[Mic01a] Marino Miculan. Developing (meta)theory of λ-calculus in the theory of contexts.
Technical Report 2001/26, Department of Mathematics and Computer Science,
University of Leicester, Siena, 2001.

[Mic01b] Marino Miculan. On the formalization of the modal µ-calculus in the calculus of
inductive constructions. Information and Computation, 164(1):199–231, January
2001.

BIBLIOGRAPHY 181

[Mil93] Robin Milner. The polyadic π-Calculus: a Tutorial. In Logic and Algebra of
Specification, volume 94 of NATO ASI Series F. Springer, Berlin, 1993.

[ML85] Per Martin-Löf. On the meaning of the logical constants and the justifications of
the logic laws. Technical Report 2, Scuola di Specializzazione in Logica Matem-
atica, Dipartimento di Matematica, Università di Siena, 1985.

[MM92] Saunders MacLane and Ieke Moerdijk. Sheaves in geometry and logic: a first
introduction to topos theory. Universitext. Springer-Verlag, 1992.

[MM01] Raymond McDowell and Dale Miller. Reasoning with higher-order abstract syn-
tax in a logical framework. Acm transactions on computational logic, 2001. To
appear.

[Mog89] Eugenio Moggi. An abstract view of programming languages. Technical Report
ECS-LFCS-90-113, LFCS, University of Edinburgh, 1989.

[MP99] James McKinna and Robert Pollack. Some Lambda Calculus and Type Theory
Formalized. Journal of Automated Reasoning, 23(3-4), November 1999. Special
Issue on Formal Proof edited by Frank Pfenning.

[MPW89] Robin Milner, Joachim Parrow, and David Walker. A Calculus of Mobile Pro-
cesses. Technical Report ECS-LFCS-89-85, Dept. of Computer Science, Univer-
sity of Edinburgh, June 1989.

[MPW92] Robin Milner, Joachim Parrow, and David Walker. A Calculus of Mobile Pro-
cesses. Information and Computation, 100(1):1–77, 1992.

[Ole85] Frank J. Oles. Type categories, functor categories and block structure. In
M. Nivat and J. C. Reynolds, editors, Algebraic semantics. Cambridge University
Press, 1985.

[Pit81] Andrew M. Pitts. The theory of triposes. PhD thesis, Cambridge University,
1981.

[Pit99] Andrew M. Pitts. Tripos theory in retrospect. In L. Birkedal and G. Rosolini,
editors, Tutorial workshop on realizability semantics, FLoC’99, volume 23 of
Electronic Notes in Theoretical Computer Science, Trento, Italy, 1999. Elsevier.

[Pit00] Andrew M. Pitts. Categorical logic. In S Abramsky, D. M. Gabbay, and T. S. E.
Maibaum, editors, Handbook of logic in computer science, volume 5. Oxford
University Press, 2000.

[Pit01a] A. M. Pitts. Nominal logic: A first order theory of names and binding. In
N. Kobayashi and B. C. Pierce, editors, Theoretical Aspects of Computer Soft-
ware, 4th International Symposium, TACS 2001, Sendai, Japan, October 29-31,
2001, Proceedings, volume 2215 of Lecture Notes in Computer Science, pages
219–242. Springer-Verlag, Berlin, 2001.

[Pit01b] Andrew M. Pitts. A First Order Theory of Names and Binding. Invited talk at
IJCAR 2001 Workshop on Mechanized Reasoning about Languages with variable
binding (MERLIN 2001), Siena, June 2001.

182 BIBLIOGRAPHY

[PM93] Christine Paulin-Mohring. Inductive definitions in the system Coq; rules and
properties. In Mark Bezem and Jan Friso Groote, editors, Proceedings of In-
ternational Conference on Typed Lambda Calculi and Applications, volume 664
of LNCS, pages 328–345. Springer-Verlag, 1993. Also appears as LIP research
report 92-49.

[Rey81] John C. Reynolds. The essence of Algol. In Algorithmic languages. Proceedings
of ACM Annual Conference, pages 345–372. North-Holland, 1981.

[RHB01] Christine Röckl, Daniel Hirschkoff, and Stefan Berghofer. Higher-order abstract
syntax with induction in Isabelle/HOL: Formalising the π-calculus and mech-
anizing the theory of contexts. In Furio Honsell and Marino Miculan, editors,
Proceedings of FoSSaCS 2001, volume 2030 of Lecture Notes in Computer Sci-
ence, pages 359–373, Genova, 2001. Springer-Verlag.

[Sch01] Carsten Schürmann. Recursion for Higher-Order Encodings. In Proceedings of
Computer Science Logic (CSL 2001), volume 2142 of Lecture Notes In Computer
Science, pages 585–599, Paris, France, 2001.

[Sta96] Ian Stark. A fully abstract domain model for the π-calculus. In Proceedings of
LICS’96, pages 36–42. IEEE, 1996.

[Tay88] Paul Taylor. Using Constructions as a metalanguage. Technical Report ECS-
LFCS-88-70, Department of Computer Science, University of Edinburgh, Decem-
ber 1988.

[TCDT01] The Coq Development Team. The Coq Proof Assistant Reference Manual
- Version 7.1. INRIA, Rocquencourt, France, October 2001. Available at
ftp://ftp.inria.fr/INRIA/coq/V7.1/doc.

[vO91] Jaap van Oosten. Exercises in realizability. PhD thesis, Department of Mathe-
matics and Computer Science, University of Amsterdam, 1991.

[Wer94] Benjamin Werner. Une théorie des constructions inductives. PhD thesis, Uni-
versité Paris 7, 1994.

