
A Unified Integer Programming Model for
Genome Rearrangement Problems

Giuseppe Lancia, Franca Rinaldi, and Paolo Serafini

Dipartimento di Matematica e Informatica.
University of Udine,

Via delle Scienze 206, (33100) Udine, Italy.

Abstract. We describe an integer programming (IP) model that can
be applied to the solution of all genome-rearrangement problems in the
literature. No direct IP model for such problems had ever been proposed
prior to this work. Our model employs an exponential number of vari-
ables, but it can be solved by column generation techniques. I.e., we start
with a small number of variables and we show how the correct missing
variables can be added to the model in polynomial time.

Keywords: Genome rearrangements; Evolutionary distance; Sorting by
reversals; Sorting by transpositions; Pancake flipping problem

1 Introduction

With the large amount of genomic data available today it is now possible to
try and compare the genomes of different species, in order to find their dif-
ferences and similarities. The model of sequence alignment is inappropriate for
genome comparisons, where differences should be measured not in terms of in-
sertions/deletions or mutations of single nucleotides, but rather of macroscopic
events, affecting long genomic regions at once, that have happened in the course
of evolution. These events occur mainly in the production of sperm and egg cells
(but also for environmental reasons), and have the effect of rearranging the ge-
netic material of parents in their offspring. When such mutations are not lethal,
after a few generations they can become stable in a population and give rise to
the birth of new species.

Among the main evolutionary events known, some affect a single chromosome
(e.g., inversions, and transpositions), while others exchange genomic regions from
different chromosomes (e.g., translocations). In this paper we will focus on the
former type of evolutionary events. When an inversion or a transposition occurs,
the fragment is detached from its original position and then it is reinserted, on
the same chromosome. In an inversion, it is reinserted at the same place, but
with opposite orientation than it originally had. In a transposition, similarly
to a cut-and-paste operation in text editing, the fragment is pasted into a new
position. Moreover, the fragment can preserve its original orientation, or it can
be reversed (in which case we talk of an inverted transposition).

2 G. Lancia, F. Rinaldi and P. Serafini

Since evolutionary events affect long DNA regions (several thousand bases),
the basic unit for comparison is not the nucleotide, but rather the gene. In
fact, the computational study of rearrangement problems started after it was
observed that many species share the same genes (i.e., the genes have identical,
or nearly identical, DNA sequences), however differently arranged. For exam-
ple, most genes of the mitochondrial genome of Brassica oleracea (cabbage) are
identical in Brassica campestris (turnip), but appear in a completely different
order. Much of the pioneering work in genome rearrangement problems is due
to Sankoff and his colleagues [22].

Under the assumption that for any two species s and s′ there is a closest
common ancestror c in the “tree of life”, there exists a set of evolutionary events
that, if applied to s, can turn s back into c and then into s′. That is, there
exists a path of evolutionary events turning s into s′. The length of this path is
correlated to the so-called evolutionary distance between s and s′. The general
genome comparison problem can then be stated as follows:

Given two genomes (i.e., two sets of common genes differently ordered),
find which sequence of evolutionary events where applied by Nature to
the first genome to turn it into the second.

A general and widely accepted parsimony principle states that the solution
sought is the one requiring the minimum possible number of events (a weighted
model, based on the probability of each event, would be more appropriate, but
these probabilities are very hard to determine). In the past years people have
concentrated on evolution by means of some specific type of event alone, and
have shown that these special cases can already be very hard to solve [2, 3, 9,
11, 18]. Only in a very few cases models with more than one event have been
considered [1, 20].

The ILP approach. When faced with difficult (i.e., NP-hard) problems, the most
successful approach in combinatorial optimization is perhaps the use of Integer
Linear Programming (ILP) [21]. In the ILP approach, a problem is modeled
by defining a set of integer variables and a set of linear constraints that these
variables must satisfy in order to represent a feasible solution. The optimal
solution is found by minimizing a linear function over all feasible solutions. The
solution of an ILP model can be carried on by resorting to a standard package,
such as the state-of-the-art program CPLEX. The package solves the ILP via a
branch-and-bound procedure employing mathematical programming ideas.

Since the solution algorithm is already taken care of, the main difficulty
in the ILP approach is the design of the model, i.e., the definition of proper
variables, constraints and objective function. Genome rearrangement problems
have thus far defied the attempts of using ILP models for their solutions, since
no direct ILP models seemed possible. In this paper we describe a very general
new ILP model which can be used for all genome rearrangement problems in the
literature.

IP models for genome rearrangement problems 3

2 Sorting Permutations

Two genomes are compared by looking at their common genes. After numbering
each of n common genes with a unique label in [n] := {1, . . . , n} each genome is
a permutation of the elements of [n]. Let π = (π1, . . . , πn) and τ = (τ1, . . . , τn)
be two genomes. The generic genome rearrangement problem requires to find a
shortest sequence of operators that applied to the starting permutation π yields
τ as the final permutation. By possibly relabeling the genes, we can always
assume that τ = ι = (1, 2, . . . , n), the identity permutation. Hence, the problem
becomes sorting π by means of the allowed operators.

Each operator represents an evolutionary event that might happen to π so
as to change the order of its genes. The most prominent such events are

1. Reversal. A fragment of the permutation is flipped over so that its content
appears reversed. For instance, a reversal between positions 3 and 6 applied
to

(2, 7, 4, 1, 5, 6 , 3)

yields
(2, 7, 6, 5, 1, 4, 3)

An interesting special case are prefix reversals, in which one of the pivoting
points is always position 1, and therefore a prefix of the permutation is
flipped over. For instance, a prefix reversal until position 4 applied to

(2, 7, 4, 1 , 5, 6, 3)

yields
(1, 4, 7, 2, 5, 6, 3)

2. Transposition. A fragment of the permutation is cut from its original po-
sition and pasted into a new position. The operator is specified by 3 indexes
i, j, k where i and j specify the starting and ending position of the fragment,
and k specifies the position where the fragment will be put (i.e. the fragment
will end at position k after its placement). For instance a transposition with
i = 2, j = 3 and k = 6 applied to

(2, 7, 4 , 1, 6, 5,↑ 3)

yields
(2, 1, 6, 5, 7, 4, 3)

3. Inverted transposition. A fragment of the permutation is cut from its
original position and pasted into a new position, but with the order of its
elements flipped over. Of course this operator can be mimicked by a reversal
followed by a transposition (or by a transposition followed by a reversal), but
here we consider this as a single move and not two moves. Again, the operator
is specified by 3 indexes i, j, k where i and j specify the stating and ending
position of the fragment, and k specifies the position where the fragment

4 G. Lancia, F. Rinaldi and P. Serafini

will be put (i.e. the fragment will end at position k after its placement). For
instance an inverted transposition with i = 2, j = 3 and k = 6 applied to

(2, 7, 4 , 1, 6, 5,↑ 3)

yields

(2, 1, 6, 5, 4, 7, 3)

To each of these operators there corresponds a particular sorting problem.
Therefore we have (i) Sorting by Reversals (SBR); (ii) Sorting by Prefix Re-
versals (also knonw as the Pancake Flipping Problem, SBPR); (iii) Sorting by
Transpositions (SBT); (iv) Sorting by Inverted Transpositions (SBIT).

Permutation sorting problems are all very challenging and their complexity
has for a long time remained open. As for the solving algorithms, there are not
may excact approaches for these problems in the literature. In particular, there
are not many ILP approaches, since the problems did not appear to have simple,
“natural”’ ILP formulations.

Historically, the study of permutation sorting problems started with the pan-
cake flipping problem (SBRP), a few years before the age of bioinformatics. This
problem has later gained quite some popularity due to the fact that Bill Gates,
the founder of Microsoft, co-authored the first paper on its study [15]. The
complexity of SBPR has remained open for over 30 years and recently the prob-
lem was shown to be NP-hard [6]. Papadimitriou and Gates have proved that
the diameter of the pancake flipping graph (i.e., the maximum prefix-reversal
distance between two permutations) is ≤ 5

3n. This bound has remain unbeated
until recently, and we now know that it is ≤ 18

11n [12]. There is no published algo-
rithm for exact solution of SBPR, an no ILP formulation of the problem. There
is an approximation algorithm achieving an approximation factor of 2 [14].

The other permutations sorting problems have started being investigated in
the early nineties for their potential use in computing evolutionary distances.
A particular interest was put in sorting by reversals. The problem of SBR was
shown to be NP-hard by Caprara [8]. The first approximation algorithm for SBR
achieves a factor 3

2 [13], later improved to 1.375 [5]. Integer Linear Programming
has been successfully applied to SBR [10, 11], but in an ”indirect” way. Namely,
the approach exploits an auxiliary maximum cycle-decomposition problem on
a bicolored special graph (the breaklpoint graph [2]). In this modeling, neither
the permutation nor the sorting reversals of the solution are directly seen as
variables and/or costraints of the model. Simply, ILP is used for the breakpoint
graph problem which yields a tight bound to SBR. The latter is not modeld as
an ILP, but solved in a branch-and-bound fashion, while employing the cycle-
decomposition bound.

For SBPR and SBT (let alont SBIT) there are not even exact algorithms in
the literature. There are approximation algorithms for SBT[3] and SBIT[17, 16].
Only recently SBT has been proven NP-hard [7], closing a longstanding open
question.

IP models for genome rearrangement problems 5

Results. In this paper we describe an ILP model for genome rearrangement
problems. Our ILP is very general and possesses some nice features, such as (i)
it yields (for the first time) a model for rearranging under two or more operators
(such as prefix reversals and transpositions, or reversals and transpositions, etc.;
(ii) it can be used to model each type of rearrangement separately; (iii) we
can easily incorporate limitations on some operators (e.g., we may allow only
reversals of regions of some bounded length, or transpositions which cannot move
a fragment too far away from its original position); (iv) we can easily incorporate
different costs for the various operators.

3 The Basic Model

Assume we have fixed the type of operator (or operators) of the particular sort-
ing problem. Let L be an upper bound to the number of operators to sort π
(obtained, e.g., by running a heuristic). We will considered a layered graph G
with L layers. In particular, there will by L layers of edges (numbered 1, . . . , L),
and L+ 1 levels of nodes (numbered 1, . . . , L+ 1). Each level of nodes consists
of n nodes, which represent the current permutation. The nodes of level k are
meant to represent the permutation after k − 1 solution steps. Between each
pair of consecutive levels there are n2 arcs (i.e., the two levels form a complete
bipartite graph). These arcs are meant to show “where each element goes” (i.e.,
an arc from node i of level k to node j of level k+1 means that the k-th operator
has moved an element from i-th position to j-th position).

The nodes of the first level are labeled by the starting permutation π, while
the nodes of level L+ 1 are labeled by the sorted permutation. Given a solution,
if we apply it to π and follow how elements are moved around by the sequence
of operators, we will see that, for each i = 1, . . . , n, the element in position i
in π must eventually end in position πi in the sorted permutation. Hence, the
solution individues n node-disjoint directed paths in the layered graph, one for
each node i of level 1, ending in nodes πi on level L + 1. In Figure 1 we show
an example of SBPR, with L = 5, and a solution corresponding to the prefix
reversals (< 2 >,< 5 >,< 3 >,< 4 >), where by < i > we mean “reverse the
first i elements”. In bold we can see the path followed by the element labeled 3
in its movements toward its final position.

The model we propose has variables associated to paths in G (it is therefore
an exponential model, but we will show how column-generation can be carried
out in polynomial time).

Let P(i) be the set of paths in the layered graph which start at node i of
level 1, and end at node πi of level L+ 1. Note that there are potentially nL−1

such paths. From each node, exactly one path must leave, which can be enforced
by constraints ∑

P∈P(i)

xP = 1 ∀i = 1, . . . , n (1)

6 G. Lancia, F. Rinaldi and P. Serafini

5 1 3 4 6 2

2 1 4 3 5

Fig. 1. Solving an instance of SBPR

Furthermore, in going from one level k to the next, the paths should only be
allowed along a particular subset of arcs, i.e., the arcs corresponding to the k-th
operator used.

Let us consider the complete bipartite graph [n] × [n], representing all the
arcs from a level to the next. Each operator can be seen as a subset of these
arcs, in particular, as a special perfect matching. To maintain the generality
of the approach, we will just say that the sorting problem is defined by a set
of perfect matchings O in [n] × [n]. Each matching represents a legal opera-
tion that can be applied to the current permutation. We will assume that the
identity matching µ0 = {(1, 1), (2, 2), . . . , (n, n)} always belongs to O, so that
O = {µ0, µ1, . . . , µN}. The identity permutation specifies a special operation ap-
plied to π, i.e., the no-operation. It represents a null-event that should be used to
fill the ”extra” moves that the layered graph can fit with respect to the optimal
solution (e.g., if L = 10 but the optimal solution uses only 7 moves, then there
will be 3 no-operations in the solution using 10 moves).

We now introduce binary variables zkµ, for k = 1, . . . , L and µ ∈ O, with the
meaning: “in going from level k to level k + 1 of G, the subset of arcs that can
be used by the paths is µ”. Otherwise stated, “the k-th move of the solution is
the operator (corresponding to) µ”.

Since at each level we must use an operator (possibly, the null-operator), we
have constraints ∑

µ∈O
zkµ = 1 ∀k = 1, . . . , L (2)

We can see the setting of zkµ to 1 as the activation of a particular set of arcs at
level k. Then, we have constraints stating that the paths can only use activated
arcs, i.e.,

IP models for genome rearrangement problems 7

n∑
i=1

∑
P∈P(i) | e∈P

xP ≤
∑

µ∈O | (u,v)∈µ

zkµ ∀e = (uk, vk+1) ∈ E (3)

where E is the edge set of all arcs in the layered graph, and the generic arc
e ∈ E connects node uk (with u ∈ [n]) of level k to node vk+1 (with v ∈ [n]) of
level k + 1.

Notice that the r.h.s. involves a number O(|O|) of variables. As we will soon
see, |O| is polynomial for the specific sorting problems of interest in genomics,
namely, |O| = O(n) for SBPR, |O| = O(n2) for SBR, |O| = O(n3) for SBT and
SBIT.

As for the objective function, the parsimony model calls for minimizing the
number of non-null operators used, i.e.

min

L∑
k=1

∑
µ∈O−µ0

zkµ (4)

Furthermore, we can add constraints in order to avoid different but equivalent
solutions, that place the null operators at various levels of the layered graphs.
In particular, we can enforce a “canonical” form of the solution in which all the
true operators are at the beginning and then followed by the null operators. We
obtain this via the constraint

zkµ0
≤ zk+1

µ0
∀k = 1, . . . , L− 1 (5)

The general IP model. Putting all together, we have the following ILP model
for the ”Sorting by X” problem, where X is a particular type of operator/s. Let
O be the set of all legal moves under the operator/s X:

min

L∑
k=1

∑
µ∈O−µ0

zkµ (6)

subject to ∑
µ∈O

zkµ = 1 ∀k = 1, . . . , L (7)

∑
P∈P(i)

xP = 1 ∀i = 1, . . . , n (8)

n∑
i=1

∑
P∈P(i) | e∈P

xP ≤
∑

µ∈O | (u,v)∈µ

zkµ ∀e = (uk, vk+1) ∈ E (9)

zkµ0
≤ zk+1

µ0
∀k = 1, . . . , L− 1 (10)

zkµ ∈ {0, 1}, xP ≥ 0 ∀k = 1, . . . , L, ∀µ ∈ O, ∀P ∈ ∪iP(i) (11)

Notice that only z variables need to be integer, since it can be shown that
when the z are integer the x will be as well.

8 G. Lancia, F. Rinaldi and P. Serafini

3.1 Solving the Pricing Problem

The above model has an exponential number of path variables. However, its
Linear Programming (LP) relaxation can still be solved in polynomial time pro-
vided we can show how to solve the pricing problem for the path variables. The
resulting approach is called column generation [4]. The idea is to start with only
a subset S of the x variables. Then, given an optimal solution to the current
LP(S), we see if there is any missing x variable that could be profitably added
to S (or, as usually said in the O.R. community, that could be priced-in).

Let γ1, . . . , γn be the dual variables associated to constraints (8) and let λe,
for e ∈ E, be the dual variables associated to constraints (9). To each primal
variable yP corresponds an inequality in the dual LP. The variable should be
priced-in if and only if the corresponding dual constraints is violated by the cur-
rent optimal dual solution. Assume P is a path in P(i). Then, the corresponding
dual inequality for P is

γi −
∑
e∈P

λe ≤ 0 (12)

If we consider λe as edge lengths, and define λ(P) :=
∑
e∈P λe, we have that

the dual inequalities, for all P ∈ P(i), are of type

λ(P) ≥ γi (13)

A path violates the dual inequality if λ(P) < γi. Notice that if the shortest
path in P(i) has length ≥ γi, then no path in P(i) can violate inequality (13).
Hence, to find a path which violates (13), it is enough to solve n shortest-path
problems, one for each i ∈ [n]. Being the graph layered, each shortest path can
be found in time O(m), where m is the actual number of arcs in the graph.

By the above discussion, we have in fact proved the following theorem:

Theorem 1. The LP relaxation of (6)-(11) can be solved in polynomial time.

4 A Compact Model

Alternatively to the exponential-size model with path variables, we describe a
compact reformulation (see [19] for a review about compact optimization) based
on a multi-commodity flow (MCF) model. The two models are equivalent, i.e.,
from a feasible solution of either one of the two we can obtain a feasible solution
to the other which has the same objective-function value.

The compact model employs variables xkiab for each level k = 1, . . . , L, each
“source” i ∈ [n] (representing a node of level 1), and each pair a, b ∈ [n] repre-
senting an arc of layer k (i.e., a is a level-k node and b is a level-(k + 1) node).
The variable represent the amount of flow started from node i, traveling on the
arc (a, b) and going to node πi on level L+ 1.

IP models for genome rearrangement problems 9

We have flow outgoing constraints:

n∑
j=1

x1iij = 1 ∀i = 1, . . . , n (14)

flow ingoing constraints

n∑
j=1

xLij,πi
= 1 ∀i = 1, . . . , n (15)

flow-conservation constraints:

n∑
j=1

xkiaj −
n∑
j=1

xk−1,ija = 0 ∀a = 1, . . . , n, ∀k = 2, . . . , L (16)

capacity constraints (i.e., arc activation):

n∑
i=1

xkiab ≤
∑

µ∈O | (a,b)∈µ

zkµ ∀a, b ∈ [n], k = 1, . . . , L (17)

The final MCF model is obtained from the path model by replacing con-
straints (8) and (9) with (14), (15), (16) and (17).

5 The Operators

Let us now describe the sets of perfect matchings corresponding to operators of
interst for genomic rearrangement problems. We also add the prefix reversal op-
erator, which, although not intersting in genomics, has received a lot of attention
in the literature as the famous Pancake Flipping problem.

Reversals and Prefix Reversals. There are
(
n
2

)
reversals, one for each choice of

indexes 1 ≤ i < j ≤ n. The generic reversal between positions i and j is identified
(see Fig. 2(a)) by the perfect matching

µ(i, j) := {(1, 1), . . . , (i−1, i−1), (i, j), (i+1, j−1), . . . , (j, i), (j+1, j+1), . . . , (n, n)}

Let us call R the set of all reversals.

When in a reversal µ(i, j) it is i = 1, we talk of prefix reversal. The generic
prefix reversal up to position j is identified (see Fig. 2(b)) by the perfect matching

µ(j) := {(1, j), (2, j − 1), . . . , (j, 1), (j + 1, j + 1), . . . , (n, n)}

Let us call R̃ the set of all prefix reversals.

10 G. Lancia, F. Rinaldi and P. Serafini

i j

j

i k j

i k j

(a)

(b) (d)

(c)

Fig. 2. (a) A reversal; (b) A prefix reversal; (c) A transposition; (d) An inverted trans-
position.

Transpositions and Inverted Transpositions. Each transposition can be seen as
the exchange of two consecutive blocks, where one of the two (but not both) can
also have length 1. Let i be the position of the starting of the first block and k
the position where the second block ends. Let j denote the position where the
first block ends (inclusive). The transposition is identified by the triple

1 ≤ i ≤ j < k ≤ n

Therefore, there are
(
n
3

)
+
(
n
2

)
transpositions. The generic transposition is iden-

tified (see Fig. 2(c)) by the perfect matching

µ(i, j, k) := {(1, 1), . . . , (i− 1, i− 1)}∪
{(i, i+ k − j), (i+ 1, i+ k − j + 1), . . . , (j, k)}∪
{(j + 1, i), (j + 2, i+ 1), . . . , (k, i+ k − j − 1)}∪
{(k + 1, k + 1), . . . , (n, n)}

Let us call T the set of all transpositions. Similarly, an inverted transposition
in which the block from i to j is reversed and exchanged with the block from
j + 1 to k corresponds (see Fig.2(d)) to the perfect matching

µ′(i, j, k) := {(1, 1), . . . , (i− 1, i− 1)}∪
{(i, k), (i+ 1, k − 1), . . . , (j, i+ k − j)}∪
{(j + 1, i), (j + 2, i+ 1), . . . , (k, i+ k − j − 1)}∪
{(k + 1, k + 1), . . . , (n, n)}

Let us call I the set of all inverted transpositions.

IP models for genome rearrangement problems 11

The problems that we can model. Given the above definitions, there are many
”sorting by X” problems that can be solved by our generic ILP model. The
optimization of some of these problems has already been studied in the literature,
while for some others (i.e., those considering more than one type of operator)
optimization approaches have never been designed due to the problems hardness.
In order to model a particular problem, all we need to do is specify which is
the allowed set O of moves from one level to the next. Therefore, here are the
problems that we can solve:

– Sorting by Prefix Reversals (a.k.a. Pancake Flipping):O := {µ0}∪R̃.
– Sorting by Reversals: O := {µ0} ∪ R.
– Sorting by Transpositions: O := {µ0} ∪ T .
– Sorting by Inverted Transpositions: O := {µ0} ∪ I.
– Sorting by Reversals and Transpositions: O := {µ0} ∪ R ∪ T .
– Sorting by Reversals and General Transpositions:. O := {µ0} ∪ R ∪
T ∪ I.

Furthermore, we can easily model situations in which some moves are forbid-
den, e.g., depending on the length of the fragment involved. For instance, if only
fragments up to a maximum length of l can be reversed/transposed, (which is
reasonable and has been studied in some computational biology papers) this can
be easily modeled by redefing the above sets so as to contain only the allowed
matchings.

References

1. Bader, M., Ohlebusch, E.: Sorting by weighted reversals, transpositions, and in-
verted transpositions, J. Comput. Biol. 14, 615-636 (2007)

2. Bafna, V., Pevzner, P.: Genome rearrangements and sorting by reversals, SIAM J.
Comp. 25, 272-289 (1996)

3. Bafna, V., Pevzner, P.: Sorting by transpositions. SIAM J. Discr. Math. 11, 224–240
(1998)

4. Barnhart, C., Johnson, E. L., Nemhauser, G. L., Savelsbergh, M. W., Vance, P. H.:
Branch-and-Price: Column Generation for Solving Huge Integer Programs. Op. Res.
46, 316–329 (1998)

5. Berman, P., Hannenhalli, S., Karpinski, M.: 1.375-Approximation algorithm for sort-
ing by reversals. European Symposium on Algorithms 2002. LNCS, vol. 2461, pp.
200–210, Springer, Heidelberg (2002)

6. Bulteau, L., Fertin, G., Rusu, I.: Pancake Flipping is Hard. In: Rovan, B., Sassone,
V., Widmayer, P. (Eds.), International Symposium on Mathematical Foundations of
Computer Science 2012. LNCS, vol. 7464, pp. 247–258. Springer, Heidelberg (2012)

7. Bulteau, L., Fertin, G., Rusu, I.: Sorting by Transpositions Is Difficult. SIAM J.
Discr. Math. 26, 1148–

8. Caprara, A.: Sorting by reversals is difficult. In: 1st ACM/IEEE International Con-
ference on Computational Molecular Biology, pp. 75–83, ACM Press (1997)

9. Caprara, A.: Sorting Permutations by Reversals and Eulerian Cycle Decompositions.
SIAM J. on Disc. Math. 12, 91–110 (1999)

12 G. Lancia, F. Rinaldi and P. Serafini

10. Caprara, A., Lancia, G., Ng, S-K.: A Column-Generation Based Branch-and-Bound
Algorithm for Sorting By Reversals. In: Mathematical Support For Molecular Bi-
ology, DIMACS Series in Discrete Mathematics and Theoretical Computer Science
47, 213-226 (1999)

11. Caprara, Lancia, G., Ng, S.K.: Sorting Permutations by Reversals through Branch
and Price, INFORMS J. on Comp. 13, 224-244 (2001)

12. Chitturi, B., Fahle, W., Meng, Z., Morales, L., Shields, C.O., Sudborough, I. H.,
Voit, W.: An 18/11n upper bound for sorting by prefix reversals. Theor. Comp. Sc.
410, 3372–3390 (2009)

13. Christie, A.: A 3/2-approximation algorithm for sorting by reversals. In: 9th ACM-
SIAM Symposium on Discrete Algorithms, pp. 244–252, ACM press (1998)

14. Fischer, J., Ginzinger, S.: A 2-Approximation Algorithm for Sorting by Prefix
Reversals, European Symposium on Algorithms 2005. LNCS, vol. 3669, pp. 415–
425, Springer, Heidelberg (2005)

15. Gates, W., Papadimitriou, C.: Bounds for sorting by prefix reversal. Discr. Math.
27, 47–57 (1979)

16. Gu, Q.P., Peng, S., Sudborough, H.: A 2-approximation algorithm for genome
rearrangements by reversals and transpositions. Theoret. Comput. Sci. 210, 327–
339 (1999)

17. Hartman, T., Sharan, R.: A 1.5-approximation algorithm for sorting by transposi-
tions and transreversals. J. Comput. Syst. Sci. 70, 300-320 (2005)

18. Kececioglu, J., Sankoff, D.: Exact and approximation algorithms for sorting by re-
versals, with application to genome rearrangement. Algorithmica 13, 180–210 (1995)

19. Lancia, G., Serafini, P.: Deriving compact extended formulations via LP-based
separation techniques. 4OR 12, 201–234 (2014)

20. Meidanis, J., Maria M. T. Walter, and Zanoni Dias, A Lower Bound on the Reversal
and Transposition Diameter, J. Comput. Biol. 9, 743-745 (2002)

21. Nemhauser, G. L., Wolsey, L. A.: Integer and Combinatorial Optimization. Wiley,
784 pages (1999)

22. Sankoff, D., Cedergren, R., Abel, Y.: Genomic divergence through gene rearrange-
ment. In: Molecular Evolution: Computer Analysis of Protein and Nucleic Acid
Sequences, pp. 428–438, Academic Press, New York (1990)

