
INFORMS Journal on Computing
Vol. 16, No. 4, Fall 2004, pp. 348–359
issn 0899-1499 �eissn 1526-5528 �04 �1604 �0348

informs ®

doi 10.1287/ijoc.1040.0085
©2004 INFORMS

Haplotyping Populations by Pure Parsimony:
Complexity of Exact and Approximation Algorithms

Giuseppe Lancia
Dipartimento di Matematica e Informatica, Università di Udine, Via delle Scienze 206, 33100 Udine, Italy,

lancia@dimi.uniud.it

Maria Cristina Pinotti
Dipartimento di Matematica e Informatica, Università di Perugia, Via Vanvitelli 1, 06123 Perugia, Italy, pinotti@unipg.it

Romeo Rizzi
Dipartimento di Informatica e Telecomunicazioni, Università di Trento, Via Sommarive 14, 38050 Povo (TN), Italy,

romeo@science.unitn.it

In this paper we address the pure parsimony haplotyping problem: Find a minimum number of haplotypes thatexplains a given set of genotypes. We prove that the problem is APX-hard and present a 2k−1-approximation
algorithm for the case in which each genotype has at most k ambiguous positions. We further give a new
integer-programming formulation that has (for the first time) a polynomial number variables and constraints.
Finally, we give approximation algorithms, not based on linear programming, whose running times are almost
linear in the input size.

Key words : pure parsimony haplotyping; SNPs; deterministic rounding; node cover; compact integer program
History : Accepted by Harvey J. Greenberg, Guest Editor; received August 2003; revised October 2003,
February 2004; accepted March 2004.

1. Introduction
A single nucleotide polymorphism (SNP) is a site of
the human genome (i.e., the position of a specific
nucleotide) whose content shows a statistically sig-
nificant variability within a population. A position is
considered a SNP if for the minority of the population
(as long as it consists of at least 5% of the popula-
tion) a certain nucleotide is observed (called the least
frequent allele) while for the rest of the population
a different nucleotide is observed (the most frequent
allele).
The recent completion of the sequencing phase

of the Human Genome Project (Venter et al. 2001,
International Human Genome Sequencing Consor-
tium 2001) has shown that the genomes of two dif-
ferent individuals are identical in about 99% of the
positions, and that most polymorphisms (i.e., differ-
ences at genomic level) are in fact SNPs, occurring, on
average, every thousand bases (Chakravarti 1998).
Because SNPs are the predominant form of human

variation, their importance can hardly be overesti-
mated, and they are widely used in therapeutic,
diagnostic, and forensic applications. There is a large
amount of research going on in determining SNP sites
in humans as well as other species, with a SNP con-
sortium founded with the aim of designing a detailed
SNP map for the human genome (Marshall 1999,
Helmuth 2001).

Humans are diploid organisms, i.e., their DNA is
organized in pairs of chromosomes. For each pair
of chromosomes, one chromosome copy is inherited
from the father and the other copy is inherited from
the mother. For a given SNP, an individual can be
either homozygous (i.e., possess the same allele on both
chromosomes) or heterozygous (i.e., possess two differ-
ent alleles). The values of a set of SNPs on a partic-
ular chromosome copy define a haplotype. Haplotyping
an individual consists of determining a pair of haplo-
types, one for each copy of a given chromosome. The
pair provides full information of the SNP fingerprint
for that individual at the specific chromosome.
With the larger availability in SNP genomic data,

recent years have seen the birth of a set of new
combinatorial and optimization problems related
to SNPs. In particular, because it is impractical to
perform the complete sequencing of an individual’s
genome as a routine experiment, most combinatorial
problems are related to haplotyping individuals with-
out sequencing their genomes (however, even in the
case of a fully sequenced genome, unavoidable errors
in the data lead to the definition of mathematical hap-
lotyping problems such as the single individual haplo-
typing problem (Lancia et al. 2001, Lippert et al. 2002,
Rizzi et al. 2002, Li et al. 2003)).
The cheapest way to haplotype a population (i.e.,

a set of individuals), is first to obtain ambiguous

348



Lancia, Pinotti, and Rizzi: Haplotyping Populations by Pure Parsimony
INFORMS Journal on Computing 16(4), pp. 348–359, © 2004 INFORMS 349

genotype data, and then retrieve the haplotypes com-
putationally. Genotype data provide, for each individ-
ual, information about the multiplicity of each SNP
allele; i.e., for each SNP site and each individual of
a population, it is known if the individual is homo-
or heterozygous. The ambiguity comes from heterozy-
gous sites, because, to retrieve the haplotypes, one has
to decide how to distribute the two allele values on
the two chromosome copies. Resolving (or explaining)
a genotype g requires determining two haplotypes
such that, if they are assumed to be the two chro-
mosome copies, then, computing the multiplicity of
each SNP allele, we obtain exactly the genotype g.
The population haplotyping problem is, given a set � of
genotypes, determine a set � of haplotypes such that
each genotype g ∈ � is explained by two haplotypes
h′�h′′ ∈ � . For its importance (as we said, haplotyp-
ing from genotype data is nowadays the only viable
way) the population haplotyping problem has been
and is being extensively studied, under many objec-
tive functions, among which:
• Perfect phylogeny: Under this model, the solution

(i.e., the set � of haplotypes computed from the input
genotype data) must fit a perfect phylogeny. That is,
there must exist a tree in which (i) the set of leaves
are the haplotypes; (ii) each SNP labels an edge; and
(iii) the partition of � induced by the removal of an
edge labeled by a SNP s is such that haplotypes in the
same subset of the partition have the same allele value
at s. The perfect phylogeny haplotyping problem was
shown to be polynomial (Bafna et al. 2003, Eskin et al.
2003).
• Clark’s rule: In this version of the problem, the

solution � is required to be obtained via successive
applications of a rule known as Clark’s rule. Biologist
A. Clark (1990) suggested a greedy rule to resolve
genotypes. This rule starts from a minimal “bootstrap”
set of haplotypes and uses them to explain as many
genotypes as possible, while greedily introducing new
haplotypes when needed. Gusfield studied the prob-
lem of how to apply Clark’s rule in an optimal way,
showing this problem to be APX-hard and suggest-
ing an integer-programming formulation for its solu-
tion (Gusfield 2000, 2001).
• Pure parsimony: Under this model, it is required

that � has the minimum possible cardinality. The
objective is based on the principle that, under many
explanations of an observed phenomenon, one should
choose the one that requires the fewest assumptions.
Here, one is trying to determine what is the mini-
mum number of different elements (haplotypes) that,
combined in pairs during time, have given rise to a
set of observed diversities (genotypes). This problem
has been studied by Gusfield (2003), who adopted
an integer-programming formulation for its practical
solution. The problem is NP-hard, as first shown by
Hubbel (2002).

Each model and objective function has specific bio-
logical motivations, which are discussed in the cited
references. In this paper, we focus on the pure par-
simony haplotyping problem. Haplotyping by pure
parsimony is the most recent model, whose impor-
tance is now being recognized as crucial in the solu-
tion of more complex haplotyping problems. In fact,
when observed at the largest possible scale (e.g., con-
sidering several thousand SNPs at once) haplotypes
are not inherited as units, but there is a certain level
of recombination (i.e., new haplotypes are created
by merging pieces of other haplotypes). A block is a
region where no recombination has occurred in any
of the haplotypes. Biological reasons suggest that the
number of different haplotypes observed within a
block should be minimum (Gusfield 2003).

1.1. Our Results and Paper Organization
The problem we study is the following: Find a set
� of haplotypes of smallest cardinality that explains
a given set � of m genotypes. The binary nature
of SNPs leads to a nice combinatorial problem. As
described below, this problem is defined over a matrix
with entries in �0�1�2�.
We first address the complexity of the problem, and

prove that the problem is not only NP-hard, but in
fact is APX-hard. That is, there is a constant 	> 1 such
that the existence of a 	-approximation algorithm for
the problem would imply P = NP. Our reduction is
from the NODE-COVER problem and is described
in §3.
Because of its complexity, any exact algorithm for

the problem must resort to some sort of enumeration.
In §4 we describe two integer linear-programming
(ILP) formulations of the problem. The first formula-
tion, described in §4.1., has an exponential number of
variables and constraints, and was used in Gusfield
(2003) to obtain a practical solution for problem
instances of moderate (but still important for real-life
applications) size. Later in the paper we use this for-
mulation to obtain an approximation algorithm based
on linear programming. The second ILP formulation,
described in §4.2., is the first formulation for this
problem with a polynomial number of variables and
constraints.
In the third part of the paper, we address the issue

of approximation algorithms for this problem. After
showing that it is easy to obtain a

√
m-approximation,

we obtain better approximation algorithms whose
ratio depends on the maximum number, k, of hetero-
zygous sites of any input genotype. In particular,
by using the ILP formulation of §4.1., we describe
in §5 a 2k−1-approximation algorithm based on deter-
ministic rounding of an optimal linear-programming
solution.
By using a different approach we are able to obtain

a similar result. The approach, based on random



Lancia, Pinotti, and Rizzi: Haplotyping Populations by Pure Parsimony
350 INFORMS Journal on Computing 16(4), pp. 348–359, © 2004 INFORMS

sampling, does not require the use of an LP solver.
In §6.2. we describe a (Monte Carlo) randomized
polynomial algorithm, that almost surely (i.e., with
probability at least �m− 1�/m) returns a feasible solu-
tion �feas with ��feas� ≤ 2k+1	logm
�1+�lnm��OPT. The
running time of the algorithm is bounded by a poly-
nomial in the size of the input instance. More pre-
cisely, where m= ��� and n is the number of SNPs,
then the algorithm runs in O�m log3m�n + logm��
time. Hence, this Monte Carlo approach is extremely
effective in that it leads to a simple-to-implement
almost-linear-time algorithm. Despite its simplicity,
the theoretical analysis and motivation of the algo-
rithm is involved. To introduce and motivate our
Monte Carlo algorithm better, we first design a sim-
ilar randomized (Las Vegas) algorithm, described in
§6.1., that assumes the ability to know the OPT value
and constructs a feasible solution �feas with ��feas� ≤
2k+1	logm
�1+�lnm��OPT. The running time of the
algorithm is a random variable with expected value
bounded by a polynomial in the size of the input
instance.

2. Preliminaries: SNPs, Haplotypes,
and Genotypes

A single nucleotide polymorphism, or SNP, is a posi-
tion in the genome at which some of us have one base
while the others have a different base. The two base
values are called alleles. Due to the binary nature of
SNPs, we encode for each SNP the two alleles with
the bits 0 and 1. Diploid genomes (such as the human
genome) are organized into pairs of chromosomes
(a paternal and a maternal copy) that have nearly
identical content and carry (paternal and maternal)
copies of the same genes. For each SNP, an individ-
ual is homozygous if the SNP has the same allele
on both chromosome copies, and otherwise the indi-
vidual is heterozygous. The values of a set of SNPs
on a particular chromosome copy define a haplo-
type. In Figure 1 we give a simplistic example of a
chromosome with three SNP sites. The individual is
heterozygous at SNPs 1 and 3, and homozygous at
SNP 2. The haplotypes are CCA and GCT. Under an
encoding of the alleles, these two haplotypes could be
represented as the binary vectors �0�1�0� and �1�1�1�.
In this encoding, a “0” at SNP 1 stands for C and a
“1” stands for G.

Chrom. c, paternal: ataggtccCtatttccaggcgcCgtatacttcgacgggActata
Chrom. c, maternal: ataggtccGtatttccaggcgcCgtatacttcgacgggTctata

Haplotype 1 → C C A
Haplotype 2 → G C T

Figure 1 A Chromosome and the Two Haplotypes

Haplotype data are particularly sought after in the
study of complex diseases (those affected by more
than a single gene) since they can give complete infor-
mation about the set of gene alleles that are inher-
ited. However, polymorphism screens are conducted
on large populations where it is not feasible to exam-
ine the two copies of each chromosome separately,
and genotype data rather than haplotype data are
usually obtained. A genotype describes the multiplic-
ity of each SNP allele for the chromosome of interest.
At each SNP, three possibilities arise: Either one is
homozygous for the allele 0, or homozygous for the
allele 1, or heterozygous. A genotype can then be rep-
resented with a vector with entries in �0�1�2�, where
each position with a 0 or 1 corresponds to a homozy-
gous site for the allele 0 or 1, respectively, and each
position with a 2 (called an ambiguous position) corre-
sponds to a heterozygous site. A haplotype is a vector
with entries in �0�1� (i.e., a binary vector). In what fol-
lows, n denotes the length of a genotype and a hap-
lotype vector.

2.1. Problem Definition
For any vector v, we denote by v�i� the ith component
of v.
When h1 and h2 are haplotypes, their sum g =

h1⊕h2 is a genotype and is defined as follows:

g�i�=


h1�i� if h1�i�= h2�i�

2 otherwise
�for i= 1� � � � �n��

We say that a genotype g is resolved (or explained)
by a pair of haplotypes �h� q� if g = h ⊕ q. A hap-
lotype h is called compatible with a genotype g if h
agrees with g at all nonambiguous positions.
The problem input is a population, i.e., a family

� = �g1� � � � � gm� of m genotypes, on n SNPs. The
input is viewed as an m × n matrix M with entries
in �0�1�2�. Each row of M is a genotype of �. This
interpretation of the input is useful in formalizing the
integer-programming model of the problem described
in §4.1.
We say that a set � of haplotypes explains � if for

every g ∈� there exist h1�h2 ∈� such that g = h1⊕h2.
The output of the problem consists of a set � of
haplotypes that explains �. The output is seen as a
2m × n binary matrix, in which each row is a hap-
lotype and there is a one-to-one correspondence of
rows of M and pairs of rows of M ′ (i.e., each row g
of M is “expanded” into two rows g′, g′′ of M ′ such
that g′ ⊕ g′′ = g. Note that if g is nonambiguous,
the two rows g′ and g′′ are identical. See Figure 2).
The objective function requires the number of distinct
rows of M ′, or equivalently the cardinality of � , to be
minimum.



Lancia, Pinotti, and Rizzi: Haplotyping Populations by Pure Parsimony
INFORMS Journal on Computing 16(4), pp. 348–359, © 2004 INFORMS 351

G = {(0221), (0011), (2102), (2220)}

M =




0 2 2 1
0 0 1 1
2 1 0 2
2 2 2 0




1
2
3
4

M ′ =




0 1 0 1
0 0 1 1
0 0 1 1
0 0 1 1
0 1 0 1
1 1 0 0
1 1 0 0
0 0 1 0




1′

1′′

2′

2′′

3′

3′′

4′

4′′

H = {(0101), (0011), (1100), (0010)}
Figure 2 Input (� and M) and Output (M ′ and � ) for PPH Problem

Problem 1 (Pure Parsimony Haplotyping (PPH)).
Given a family � of genotypes, find a minimum-
cardinality family � that explains �.
In the following, let OPT denote the minimum size

of an � that resolves �.
Fact 2 (First upper bound. OPT ≤ 2m). Given any

input family �, there always exists an � that
explains � with �� � ≤ 2���.
Proof. For a genotype g ∈ �, let h1 be the haplo-

type that is 0 whenever g is 0 and 1 in all other posi-
tions. Let h0 be the haplotype that is 1 whenever g
is 1 and 0 in all other positions. Then g = h0⊕h1. �

A family � ′ is said to be a minimal family that
explains � if � ′ explains � and there exists no � ′′ ⊂� ′

that explains �. We now show the simple result
that a greedy algorithm for this problem computes a
minimal (not necessarily minimum) solution. In fact,
a greedy algorithm is a

√
m-approximation algorithm.

Fact 3 (First lower bound. OPT>
√
2m). Assume that

� explains � and ��� ≥ 2. Then �� �>√
2m.

Proof. We show that m≤ ��� ���� � − 1��/2. Indeed,
if � explains �, then to every g in � we can asso-
ciate a different (unordered) pair of haplotypes in � .
Hence, ��� ≤ (�� �

2

)= ��� ���� � − 1��/2. �

From any algorithm that computes a feasible solu-
tion it is possible to remove elements from the
solution until a minimal solution is found. Any
such technique guarantees a

√
m-approximation. For

instance, the proof of Fact 2 suggests an algorithm:

Corollary 4. Combining the proofs of Fact 2 and
Fact 3 we get a greedy

√
m-approximation algorithm.

Although it is easy to achieve a
√
m-approximation,

it is difficult to obtain a �-approximation for a con-
stant �. In fact, in the following section, we show
that this task is impossible when � is close to 1.
We show that the PPH problem is APX-hard, and so
there is a constant value �̄ below which it is impos-
sible to approximate the problem in polytime, unless
P =NP (Ausiello et al. 1999). Determining the value

�̄ (or just a constant-approximation algorithm for
PPH), is an interesting open problem. In this paper,
we describe constant-approximation algorithms, but
under the assumption that the number of occurrences
of “2” in each genotype is bounded by a constant.

3. Complexity of the Problem
In this section we prove that the PPH problem is APX-
hard. In particular, our proof shows that the problem
is APX-hard even if each genotype has at most three
ambiguous positions.
The reduction is from NODE-COVER, where we

are given as input an undirected graph G = �V �E�
and we are asked to find a node cover X ⊆ V of
smallest possible cardinality. NODE-COVER is known
to be APX-hard (Alimonti and Kann 1997, Berman
and Karpinski 1998, Papadimitriou and Yannakakis
1991), even when the input instances are restricted
to be graphs of degree at most three. Our argu-
ments involve a classical theorem on node covers by
Nemhauser and Trotter (1975).

3.1. NODE-COVER: The Theorem of Nemhauser
and Trotter

Let G = �V �E� be an undirected simple graph on n̂
nodes and �m edges. A node cover is a vertex-set X ⊆ V
such that every edge in E has at least one endpoint
in X. Denote by �G the minimum size of a node cover
in G.
As usual, if S ⊂ V , then E�S� �= �uv ∈ E � u�v ∈ S�

denotes the set of edges with both endpoints in S,
and G�S� denotes the subgraph of G induced by S, i.e.,
G�S� = �S�E�S��. Moreover, when X is a node cover
of G, then we say that X covers G. Below is a classical
theorem on node covers which, although described in
similar forms by several authors (see, e.g., Bar-Yehuda
and Even 1985 or Chen et al. 2001), is mainly due to
the original work by Nemhauser and Trotter (1975):

Theorem 5 (Nemhauser and Trotter 1975). Given
a graph G = �V �E�, introduce a new node v′ for every
node v ∈ V . Let V ′ = �v′ � v ∈ V � and F = �uv′ � uv ∈ E�.
Consider the bipartite graph H = �V �V ′" F � on 2�V � nodes
and 2�E� edges. Let X be a minimum-cardinality node cover
of H . Let Y = �v � v ∈X and v′ ∈X� and Z = �v � v ∈X
or v′ ∈X�. Then the following properties hold:
(i) if a set D⊆Z covers G�Z� then D∪Y covers G;
(ii) there exists a minimum cover of G that contains Y ;
(iii) �G�Z� ≥ �Z�/2.
Define NC2 as the NODE-COVER problem re-

stricted to graphs on which the optimal solution has
size at least n̂/2.
From Theorem 5, the following lemma holds.

Lemma 6. The problem NC2 is APX-hard.



Lancia, Pinotti, and Rizzi: Haplotyping Populations by Pure Parsimony
352 INFORMS Journal on Computing 16(4), pp. 348–359, © 2004 INFORMS

Proof. We reduce the APX-hard problem NODE-
COVER to NC2. Given an instance G = �V �E� of
NODE-COVER, the following polynomial algorithm
(Procedure 1) defines an instance G′ = �V ′�E ′� of NC2
and a set Q ⊆ V such that if X is a minimum node
cover of G′, then X∪Q is a minimum node cover of G:

Procedure 1 NC2reduction�G�
0. G′ ←G, i.e., �V ′�E ′�← �V �E�;
1. Q←�;
2. while (true)
3. compute from G′ the bipartite graph H

and sets Y and Z;
4. if (Y �= �)
5. G′ ← �V ′ −Y �E ′�V ′ −Y ��; Q←Q∪Y ;
6. else if (Z �= V ′)
7. G′ ← �Z�E ′�Z��;
8. else
9. return G′ and Q;
10. endif;
11. endwhile.

The loop 2–11 is executed at most �V � times, and,
because a minimum-cardinality node cover on a
bipartite graph can be found in polynomial time,
Step 3 is polynomial, so that the overall algorithm is
polynomial. Step 5 is justified by property (ii) in The-
orem 5. Similarly, in Step 7 we have that Y is empty,
and Z ⊂ V ′, so that we can apply property (i) of The-
orem 5. When we reach Step 9, Y =� and Z = V ′ so
that property (iii) of Theorem 5 holds, and we can exit
the loop.
For an example of how Procedure 1 works, con-

sider the graph G depicted in Figure 3. Start with
X = �v′

2�v2�v
′
3�v

′
4� so that Y = �v2� and Z = �v3�v4�.

This makes Q = �v2� and changes G so that v2 is
removed (and the only edge remaining is v3v4).
In the next iteration, let X = �v3�v4�, so that Y =�
and Z= �v3�v4�. Then Q remains unchanged, and G
reduces to the vertices v3 and v4, with the single
edge v3v4. This graph is of class NC2 and is returned
in the next iteration.
As for the approximability of NC2, assume that

there exists an algorithm with performance guaran-
tee 	 for NC2. Then, from an approximate solution K
for G′ such that �K� ≤ 	�G′ we have that �K ∪Q� ≤
	�G′ + �Q� ≤ 	��G′ + �Q�� = 	�G. Hence, because
NODE-COVER cannot be approximated arbitrarily
close to 1 in polynomial time, neither can NC2, or we
have a contradiction. Therefore, NC2 is APX-hard. �

v1

2

3 4

v

vv

5v

Figure 3 A Graph G

3.2. The APX-Hardness Proof for PPH
We now proceed to prove that PPH is APX-hard by
reducing the problem NC2 to PPH. Given a graph
G = �V �E� that is an instance of NC2, we construct
a matrix M with �m + n̂ rows (genotypes) and n̂+ 1
columns, where n̂ = �V � and �m = �E�. We denote
by �M the set of rows (genotypes) of M . The rows are
indexed by the elements in V ∪E and the columns are
indexed by the elements in V ∪ �s�, where s � V is a
special symbol. The entries of M are defined by the
following equations.

M�u�u�= 0 for every u ∈ V

M�u�v�= 1 for every u�v ∈ V with u �= v

M�u� s�= 0 for every u ∈ V

M�e�v�= 2 for every v ∈ V and e incident with v

M�e�v�= 1 for every v ∈ V and
e ∈ E not incident at v

M�e� s�= 2 for every e ∈ E�

Lemma 7. Let X be a node cover of G. Then there exists
an �X explaining �M with ��X � = n̂+ �X�.

Proof. For every v ∈ V , denote by hv the haplotype
that is 1 everywhere except at SNP v, where hv�v�= 0.
Let X be a node cover of G. Consider the family �X

that contains as haplotypes the n̂ rows of M indexed
by elements in V and all the �X� haplotypes of the
form hv, v ∈X. Note that �X explains �M . �

Lemma 8. Let � be a minimum haplotype family ex-
plaining �M such that the number of 0s in haplotypes in
� is as small as possible. Then G admits a node cover X�

with �X� � = �� � − n̂.

Proof. For every v ∈ V , denote by hv the haplo-
type that is 1 everywhere except in column v, where
hv�v� = 0. Let � be an optimal haplotype family
explaining �M . Then � contains as haplotypes all the
n̂ rows of M indexed by elements in V because these
genotypes are homozygous in each position. At this
point, we observe that any row ofM is either indexed
by V (and hence is already explained) or by E (and
hence is explained by introducing a single haplotype
of the form hv, where v ∈ E). Therefore, the lemma
follows once we have proved the following claim.
Claim. Let h be a haplotype in � that is compatible

with more than one row of M indexed by E. Then h
is of the form hv for some v ∈ V .
Proof. Clearly, h contains at most three 0s, or h

would not be compatible with any row ofM . Actually,
h contains at most two 0s, because otherwise h would
be compatible with at most one row of M indexed
by E (we assume that G is simple). The same argu-
ment shows that if h has precisely two 0s, then one 0



Lancia, Pinotti, and Rizzi: Haplotyping Populations by Pure Parsimony
INFORMS Journal on Computing 16(4), pp. 348–359, © 2004 INFORMS 353

is in the column indexed by s and that the other 0 is
in the column indexed by node v. But then all rows
of M indexed by E and compatible with h would
correspond to edges incident at v and would hence
all be explained by hv plus the genotypes indexed
by V , which are in � . Hence, �\�h� ∪ �hv� would
also explain �M and would contradict the minimality
assumptions for � .
Assume h has no component set to 0, that is, h= 1.

Note however that haplotype 1 would only combine
with haplotypes h′ that have precisely three 0s, two of
which correspond to the endnodes of some edge eh′
in E. Moreover, as mentioned above, h′ could not
explain any genotype other than the one indexed by e.
We can then remove h from � if we also replace each
such h′ in � with a haplotype hv, with v being an
endpoint of eh′ . This contradicts the optimality of � .
Finally, assume that h has precisely one component

set to 0. But then this component is not s, because oth-
erwise this haplotype would combine only with hap-
lotypes h′ that have precisely two 0s corresponding to
the endnodes of some edge eh′ in E. Moreover h′ could
not explain any genotype other than the one indexed
by e. We can then remove h from � by replacing each
such h′ in � with a haplotype hv, with v being an end-
point of eh′ . This contradicts the optimality of � . �

We complete the proof that PPH is APX-hard
by showing that from an approximation algorithm
with arbitrarily good performance guarantee for PPH
follows an approximation algorithm with arbitrar-
ily good performance guarantee for NC2, a contra-
diction.

Lemma 9. Assume we have a �1 + )�-approximation
algorithm for PPH that holds on the restricted instances
involved in the reduction proposed above. Then one can
develop a �1+ 3)�-approximation algorithm for NC2.

Proof. Assuming the minimum-cardinality node
cover has size Opt, then there exists an �opt explain-
ing M with ��opt� = n̂+Opt. By running the �1+ )�-
approximation algorithm for PPH we are guaranteed
to find a solution � ′ with �� ′� ≤ �n̂+Opt��1+)�. From
this � ′ we have shown how one can find (in polyno-
mial time) a node cover X of G of size at most

�X� ≤ �n̂+Opt��1+ )�− n̂

= )n̂+Opt+ )Opt

≤ 2)Opt+Opt+ )Opt

= �1+ 3)�Opt�

where the third inequality follows from the fact that
n̂/2≤Opt. �

4. Integer Linear-Programming
Formulations

In this section, we describe two ILP formulations for
the problem PPH. These formulations are used to
derive exact algorithms, by means of some popular
ILP solvers, such as CPLEX. The first formulation has
an exponential number of variables and constraints,
and is also described in Gusfield (2003), where it was
shown that it can be used for practical instances. We
review this formulation in §4.1. and we use it in §5 to
obtain an approximation algorithm for PPH.
The second formulation is described in §4.2. and is

the first model with a polynomial number of variables
and constraints.

4.1. An Exponential-Size ILP Formulation
Denote by ��� the set of haplotypes that are com-
patible with some genotype in �. We associate a
0–1 variable xh to every h ∈ ���. The intended mean-
ing of xh = 1 is that h is in the solution, whereas
xh = 0 means h is not in the solution. Fix any total
order on ��� and denote by � the set of those pairs
�h1�h2� with h1�h2 ∈ ���, h1 <h2. Introduce a 0–1 vari-
able yh1�h2

for every �h1�h2� ∈�. Moreover, for every
g ∈�, let �g �= ��h1�h2� ∈� � h1⊕h2 = g�.
The following is a valid ILP formulation of the

PPH problem:

OPT=min ∑
h∈ ���

xh (1)

subject to ∑
�h1�h2�∈�g

yh1�h2
≥ 1 ∀g ∈� (2)

yh1�h2
≤ xh1

∀�h1�h2� ∈� (3)

yh1�h2
≤ xh2

∀�h1�h2� ∈� (4)

x ∈ �0�1� ��� y ∈ �0�1�� � (5)

Because of constraints (2), each genotype is ex-
plained by at least one pair of haplotypes. Constraints
(3) and (4) insure that �h1�h2� are allowed to explain g
only if h1 and h2 are included in the solution.

4.2. A Polynomial-Size ILP Formulation
As mentioned in §2.1, the input of the problem is
an m × n matrix M , with entries in �0�1�2�, while
the output is a 2m × n binary matrix M ′ with a
minimum number of distinct rows. For each row g
of M (genotype) denote by g′ and g′′ the two rows
of M ′ (haplotypes) derived from the expansion of g
(and hence such that g = g′ ⊕ g′′). The order of the
rows of M and M ′ induces a total ordering of the
input genotypes and output haplotypes, which we
will denote by < in the following formulation.



Lancia, Pinotti, and Rizzi: Haplotyping Populations by Pure Parsimony
354 INFORMS Journal on Computing 16(4), pp. 348–359, © 2004 INFORMS

We now describe an ILP formulation of PPH whose
main decision variables correspond to each ambigu-
ous position i of each genotype g. The setting of such
variables identifies the values to give to g′�i� and g′′�i�
(one of them must be 0, and the other one must be 1).
Let �� = �g′ � g ∈ �� ∪ �g′′ � g ∈ �� be the set of rows
of M ′. Furthermore, for each ambiguous g ∈ � we
define amb�g� = amb�g′� = amb�g′′� �= �i � g�i� = 2�,
the set of ambiguous positions of g. For each ambigu-
ous g ∈ � and position i ∈ amb�g� we define two
0–1 variables, xi

g′�xi
g′′ .

The problem asks us to set xi
g′ to either 0 or 1, and

xi
g′′ to 1− xi

g′ , i.e., there are constraints

xi
g′ + xi

g′′ = 1 ∀g ∈G� i ∈ amb�g�� (6)

Now we need variables and constraints to count
the distinct rows in M ′. For simplicity, we first
describe the model with more variables than is really
needed.
Let � ′ be the set of pairs �a� b� such that a� b ∈ ��

and a < b. For each pair �a� b� ∈� ′ and each position i,
we introduce a 0–1 variable

yi
ab =

{
1 if a�i�= b�i�

0 otherwise.

Furthermore, for each �a� b� ∈ � ′, we introduce a
0–1 variable

yab =
{
1 if rows a and b are identical
0 otherwise.

Finally, for each row r ∈ ��, we introduce a
0–1 variable

zr =
{
1 if there is no row r ′ > r identical to r in M ′

0 otherwise.

The objective function is then

min
∑
r∈ ��

zr � (7)

To describe the constraints, we first need a general
result, concerning the product of two 0–1 variables.
Given two binary variables u and v, we denote by
P�u�v� a binary variable such that P�u�v�= uv. This
relation between P�u�v�, u, and v, can be obtained by
forcing the following set of linear constraints, that we
call C�u�v�:

�C�u�v��� P�u�v�≤ u" P�u�v�≤ v"

P�u�v�≥ u+ v− 1� (8)

We have the following constraints for yi
ab:

yi
ab = 1 ∀�a� b� ∈� ′� i ∈ �1� � � � �n� � i

� �amb�a�∪ amb�b��∧ a�i�= b�i� (9)

yi
ab = 0 ∀�a� b� ∈� ′� i ∈ �1� � � � �n� � i

� �amb�a�∪ amb�b��∧ a�i� �= b�i� (10)

yi
ab = a�i�xi

b + �1− a�i���1− xi
b�

∀�a� b� ∈� ′� i ∈ amb�b�� i � amb�a� (11)

yi
ab = b�i�xi

a + �1− b�i���1− xi
a�

∀�a� b� ∈� ′� i ∈ amb�a�� i � amb�b� (12)

yi
ab = 2P�xi

a� x
i
b�− xi

a − xi
b + 1

∀�a� b� ∈� ′� i ∈ amb�a�∪ amb�b�� (13)

These constraints are explained as follows. When i
is not an ambiguous position for either a or b, yi

ab is
a constant, as shown in constraints (9) and (10).
If i is ambiguous for only one of a and b, then,
assuming a�i� is ambiguous, we have that yi

ab must
be 1 if xi

a = b�i� and 0 otherwise. This is forced by
constraints (11) and (12). Finally, if i is ambiguous
for both a and b then yi

ab must be 1 if xi
a = xi

b

and 0 otherwise. This is forced by constraints (13),
together with the constraints C�xi

a� x
i
b� needed to

impose P�xi
a� x

i
b�= xi

ax
i
b.

To complete the model, we need a set of constraints
that ensure the intended meaning of yab and zr .
These are:

yab ≤ yi
ab ∀�a� b� ∈� ′� i= �1� � � � �n� (14)

yab ≥
n∑

i=1
yi
ab − �n− 1� ∀�a� b� ∈� ′ (15)

zr ≥ 1−
∑

l>r� l∈ �G
yrl ∀r ∈ �G� (16)

Because of constraints (14), if a and b disagree
in any position, then they cannot be identical rows
of M ′. If, however, they are identical in all n posi-
tions, then they are identical rows, and this is forced
by constraints (15). Finally, if yrl = 0 for all l > r it
means that row l > r has no identical row following
it in M ′, and hence zr must be 1. Note that we do not
need to bound zr from above because of the objective
function.
In conclusion, the model for PPH is

min
∑
r∈ ��

zr

subject to (6), (9)–(16) and to

C�xi
a� x

i
b� ∀a� b ∈ �G� i ∈ amb�a�∪ amb�b� (17)



Lancia, Pinotti, and Rizzi: Haplotyping Populations by Pure Parsimony
INFORMS Journal on Computing 16(4), pp. 348–359, © 2004 INFORMS 355

with variables

xi
a� y

j

ab� yab� za ∈ �0�1�

∀�a� b� ∈� ′� i ∈ amb�a�� j ∈ �1� � � � �n�� (18)

It is easy to see that there is a polynomial number
of variables. In particular, there are O�mn� vari-
ables xi

a and P�xi
a� x

i
b�, O�m2n� variables yi

ab, O�m2�
variables yab, and O�m� variables za. As for the con-
straints, there are O�mn� constraints (6) and (17),
O�m2n� constraints (9)–(14), O�m2� constraints (15),
and O�m� constraints (16).
Overall, the model has O�m2n� variables and

O�m2n� constraints. It is easy to reduce the num-
ber of both, by just observing that the decision vari-
ables are needed only for compatible haplotypes and
ambiguous positions (otherwise, the variable can be
replaced by a constant). In particular, let K be the
total number of ambiguous positions in the input.
Furthermore, let � be the set of pairs of compati-
ble haplotypes in M ′ (a pair �a� b� is in � if a and b
agree in all nonambiguous positions, and if they are
not both the expansion rows of the same, ambigu-
ous, genotype g). Pairs in � represent rows of M ′

that are possibly identical in the solution. Then, we
only need to define variables yab and yi

ab for �a� b� ∈
� and i that is an ambiguous position for a or b.
Note that in M ′ there are overall O�K� ambiguous
positions. We obtain O�Km� variables of type yi

ab (for
each ambiguous position r�j� of M ′, there are at most
O�m� rows compatible with r), O����� variables of
type yab, and O�K� variables of type xi

a. Simple com-
putations show that we obtain a model with a total of
O�Km� variables and constraints. Note that on aver-
age, R is smaller than m2 and K is a fraction of mn
(at most 1/2). K depends on the allele frequencies. For
instance, if at a given SNP one allele has probability
3/4 and the other 1/4, a fraction of 6/16 individuals
are heterozygous at that SNP on average.

5. An LP-Rounding
2k−1-Approximation Algorithm

In this section we derive an approximation algo-
rithm for PPH based on the ILP formulation described
in §4.1.
Assume that every genotype g ∈� contains at most

k symbols of “2.” Then the number of variables and
inequalities in the ILP (1)–(5) is polynomial in the size
of the input instance and we can solve the LP relax-
ation to optimality in polynomial time. Let zLP be the
optimal value of the LP relaxation, and �x∗�y∗� be
an optimal LP solution. Perform the following two
actions, in their sequential order, on the solution
�x∗�y∗�:
1. Scale the value of every variable by a factor

of 2k−1;

2. If the value of a variable is at least 1, then round
it to 1; otherwise, set the value of that variable to 0.
Let �x̄� ȳ� denote the integer solution obtained by

the above rounding procedure. We now argue that
�x̄� ȳ� is a feasible solution for PPH. In fact, because
for any genotype g it is ��g� ≤ 2k−1, then for at least
one pair �h1�h2� ∈�g we have that y∗

�h1�h2�
≥ 1/2k−1.

Therefore, ȳ�h1�h2�
= 1 for at least one pair �h1�h2� ∈�g .

Furthermore, whenever ȳ�h1�h2�
= 1, from con-

straints (3)–(4) it follows that x∗
h1
≥ 2k−1 and x∗

h2
≥ 2k−1.

Then, x̄∗
h1
= 1 and x̄∗

h2
= 1, so that constraints (3)–(4) are

satisfied by �x̄� ȳ�.
Because for each h it is x̄h ≤ 2k−1x∗

h, the value of
the objective function increases by at most a factor
of 2k−1. As a result of this deterministic rounding algo-
rithm, we obtain a feasible solution of value at most
2k−1zLP ≤ 2k−1OPT, i.e., a 2k−1-approximation.

6. A Randomized Approximation
Algorithm

In this section we propose a randomized approxima-
tion algorithm for PPH, under the assumption that
each genotype has at most k ambiguous sites. The
algorithm has a slightly worse approximation ratio
than the one based on linear programming described
in §5. On the other hand, there are reasons to prefer
approach of this section in some cases. In particu-
lar, the approach described here is simple to imple-
ment and, most of all, it does not require a third-party
linear-programming solver.
We employ the mathematical symbol log for base 2

logarithms and reserve the mathematical symbol ln
for logarithms on the natural base e. Recall that OPT
denotes the optimal solution value, m= ���, and n is
the number of SNPs. Let k be the maximum number
of “2” characters in any g ∈�. The main result of this
section is the following.

Theorem 10 (Monte Carlo). There is a randomized
algorithm that returns almost positively (i.e., with proba-
bility at least �m− 1�/m) a feasible solution �feas with

��feas� ≤ 2k+1	logm
�1+�lnm��OPT�
The running time of the algorithm is bounded by a poly-
nomial in the size of the input instance. More precisely,
Algorithm 4 runs in O�m log3m�n+ logm�� time. (Hence
it is an almost-linear-time algorithm.)

Informally, the proof of Theorem 10 is based on
the following idea: If the solution has “low” cardi-
nality, i.e., if OPT is “small” compared to m, then
most genotypes in � are explained by haplotypes
that are used to explain other genotypes in �. Then,
by randomly picking a suitable number of genotypes
from � and computing all haplotypes compatible



Lancia, Pinotti, and Rizzi: Haplotyping Populations by Pure Parsimony
356 INFORMS Journal on Computing 16(4), pp. 348–359, © 2004 INFORMS

with them, we have a good chance of obtaining hap-
lotypes that explain “many” of the genotypes in �.
We then remove these genotypes from �. The idea is
developed and explained in detail in §6.1., but there
is a subtle obstacle that seems to prevent us from
putting this simple idea into action: The suitable num-
ber of genotypes selected at random is a function
of m, which we know, and also of OPT, which we do
not know! To overcome this difficulty, we first obtain
a weaker result in which we assume the existence of
an oracle function, oracleOPT. The oracle, given a
genotype family �, returns the value of OPT for �,
denoted by OPT���. So, in order to prove Theorem 10,
the following partial result is first derived in §6.1.

Theorem 11 (Las Vegas with Oracle). Assume
oracleOPT��� is an oracle that, given an instance �
of PPH, returns the value OPT=OPT��� specifying the
minimum number of haplotypes needed to explain �. Then,
there is a randomized algorithm that returns a feasible solu-
tion �feas with ��feas� ≤ 2k+1	logm
�1+ �lnm��OPT. The
running time of the algorithm is a concentrated random
variable with expected value bounded by a polynomial in
the size of the input instance.

Because the average number of genotypes that
are compatible with the same haplotype depends on
both m and OPT, in the proof of Theorem 11, it is
assumed that the value OPT is known. To obtain a
true approximation algorithm, we must remove the
dependence of the result from the knowledge of the
actual value of OPT. How this is done is explained
in §6.2., where the Monte Carlo algorithm of Theo-
rem 10 is introduced and analyzed.

6.1. The Las Vegas Algorithm with Oracle
We now proceed to prove Theorem 11. Consider the
following recursive algorithm (Algorithm 2).

Algorithm 2 Haplotype���
1. if �=�, return �;
2. OPT← oracleOPT���;
3. repeat
4. Temp←�;
5. for 2�1+�lnm��OPT times do
6. choose uniformly at random a g ∈�;
7. create, and put in Temp, all haplotypes

compatible with g;
8. endfor;
9. until Temp explains at least 1/2 of the

genotypes in �;
10. �′ ← �g ∈� � g is not explained by Temp�;
11. return Temp∪Haplotype��′�.

In the following lemma we settle the correctness
and approximation-guarantee issues.

Lemma 12. When Algorithm 2 terminates, then it
returns a haplotype family �feas that explains �. Moreover,
��feas� ≤ 2k+1	logm
�1+�lnm��OPT.

Proof. By induction on m = ���. If m = 0, then
Haplotype��� halts at Step 1 and returns an optimal
solution of size 0, which provides the base for the
induction. For the inductive step, assume that m> 0
and that the claim in the lemma holds for m′ <m. The
claim also assumes that Haplotype��� halts, which
for m> 0, necessarily occurs at Step 11. Hence, ��′� ≤
1/2��� < ��� by the test at Step 9. Therefore, we can
assume by induction that Haplotype��′� returns a set
of haplotypes that explains �′. Because Temp explains
all genotypes in �\�′, then Haplotype��� returns
a haplotype family that explains all genotypes in �.
This happens at Step 11, where Temp∪Haplotype��′�
is returned. To prove the approximation guarantee,
we have to bound the size of Temp∪Haplotype��′�.
By induction, the size of Haplotype��′� is bounded
by 2k+1	log 	m/2

�1 + �lnm��OPT, because ��′� ≤
�1/2���� = m/2 and any haplotype family that
explains � also explains its subset �′. To bound the
size of Temp, remember that each genotype g in � has
at most k ambiguous sites, hence there are at most 2k

haplotypes compatible with g. Because Temp is each
time reset to an empty set at Step 4, and iterations 5–8
choose at most 2�1+ �lnm��OPT different genotypes
from �, the number of haplotypes in Temp never
exceeds 2k2�1 + �lnm��OPT = 2k+1�1 + �lnm��OPT.
Therefore,

��feas� = �Temp∪Haplotype��′��
≤ �Temp� + �Haplotype��′��
≤ 2k+1�1+�lnm��OPT+ 2k+1

⌊
log

⌊m

2

⌋⌋
· �1+�lnm��OPT

≤ 2k+1
⌊
1+ log

⌊m

2

⌋⌋
�1+�lnm��OPT

= 2k+1	logm
�1+�lnm��OPT� �

We are now left with the analysis of the running
time. This takes the remainder of this section and
motivates the design of the Monte Carlo algorithm
introduced in §6.2.
Denote by �opt an optimal solution to the haplo-

typing problem, i.e., OPT = ��opt�. Denote by ��� the
set of those haplotypes that are compatible with some
genotype in �. Clearly, �opt ⊆ ���.
To understand the following analysis better, it is

useful to think of a graph on node set ��� and having
an edge h1h2 labeled with g ∈� whenever g = h1⊕h2.
(This graph is simple and a set of edges labeled with
a same genotype forms a matching.) Denote by d�h�
the number of genotypes in � compatible with h ∈ ���.
We define a haplotype in �opt to be good when the
fraction of genotypes in � is compatible with h is at
least m/�2OPT�.



Lancia, Pinotti, and Rizzi: Haplotyping Populations by Pure Parsimony
INFORMS Journal on Computing 16(4), pp. 348–359, © 2004 INFORMS 357

Definition 13. A haplotype h in �opt is good when
d�h�≥m/�2OPT� and bad otherwise.
A first motivation to the above definition comes

from the following lemma.

Lemma 14. Let �good
opt be the set of good haplotypes in

�opt. Then at least half of the genotypes in � are explained
by �

good
opt .

Proof. All the genotypes in � are explained by
�opt. Hence, the genotypes in � that are not explained
by �

good
opt are at most

∑
h∈�opt\�goodopt

d�h�.
Because d�h� <m/�2OPT� holds for every bad hap-

lotype h, the genotypes in � that are not explained by
�
good
opt are at most

∑
h∈�opt\�goodopt

d�h� <
∑

h∈�opt\�goodopt

m

2OPT

= ∣∣�opt\�good
opt

∣∣ m

2OPT
<OPT

m

2OPT
= m

2
= ���
2

� �

For a second motivation, consider the following
observation.
Observation 15. When h is good, the fraction of

genotypes in � that are compatible with h is at least
1/�2OPT�.
Proof. The fraction of those genotypes in � that

are compatible with h is

d�h�

��� ≥ m/�2OPT�
m

= 1
2OPT

� �

As a consequence, when we choose a random g ∈ �
in Step 6, the probability that any fixed, good haplo-
type h is put in Temp at Step 7 is at least 1/�2OPT�.
Because within loop 5–8 this experiment is repeated
2�1+�lnm��OPT times, we expect that all good hap-
lotypes end up in Temp within a full execution of
loop 5–8. This is more formally stated in the following
lemma.

Lemma 16. Each time we reach Step 9 we have

P
[
�
good
opt ⊆ Temp

]≥ �e− 2�/e�
Proof. Let h be a good haplotype. We first show

that when we get to the test in Step 9, after running
the 2�1+�lnm��OPT iterations of loop 5–8, it is P�h�
Temp� ≤ 1/�em�. From this it easily follows that the
probability of any good haplotype in �opt not being
in Temp is at most 2/e.
Because h is good, and the random choices are

independent,

P�h� Temp� ≤
2�1+�lnm��OPT∏

i=1

(
1− 1

2OPT

)

=
(
1− 1

2OPT

)2�1+�lnm��OPT

=
[(
1− 1

2OPT

)2OPT]1+�lnm�

≤
(
1
e

)1+�lnm�
≤ 1

em
�

To bound the probability that any good haplotype
does not make it into Temp, we employ the simple
fact that the probability of a union of events is at most
the sum of the probabilities of the events themselves,
no matter what the dependencies are. Hence,

P
[∃h ∈�

good
opt \Temp

] ≤ ∑
h∈�goodopt

P�h� Temp�

≤ ∑
h∈�goodopt

1
em

=
∣∣�good
opt

∣∣
em

≤ ��opt�
em

= opt
em

≤ 2
e
� �

The last inequality in the above chain is due to Fact 2.

Corollary 17. Each time we get to the test at Step 9,
the probability of passing the test and exiting is at least
�e− 2�/e.
Proof. By Lemma 16, each time the test at Step 9

is faced we have P��
good
opt ⊆ Temp� ≥ �e − 2�/e. By

Lemma 14, this means that the probability that the
test is positive is at least �e− 2�/e. �

From Corollary 17 it easily follows that the running
time of Algorithm 2 is a concentrated random variable
with expected value bounded by a polynomial in the
size of the input instance. We omit the formal proof
because these arguments do not affect the design and
analysis of the Monte Carlo algorithm, which is most
relevant in this section.

6.2. The Monte Carlo Algorithm
The main idea behind the Monte Carlo algorithm is to
perform a binary search on OPT at each recursion of
Algorithm 2. To do so, we introduce a procedure that
tests a candidate value for OPT. We call this proce-
dure TryOPTvalue. Procedure TryOPTvalue receives
as input a genotype family �, a hypothesis value OPT′

for OPT, and a parameter numAttempts. If procedure
TryOPTvalue succeeds in finding a haplotype family
that explains at least half of � under the hypothesis
value OPT′ within at most numAttempts attempts,
then the procedure returns this haplotype family. Oth-
erwise the procedure returns a NO answer.

Procedure 3 TryOPTvalue (��OPT′, numAttempts)
1. for t �= 1 to numAttempts do
2. Temp←�;
3. for 2�1+�lnm��OPT′ times do
4. choose uniformly at random a g ∈�;



Lancia, Pinotti, and Rizzi: Haplotyping Populations by Pure Parsimony
358 INFORMS Journal on Computing 16(4), pp. 348–359, © 2004 INFORMS

5. create, and put into Temp, all haplotypes
compatible with g;

6. endfor;
7. if Temp explains at least 1/2 of the

genotypes in � then
8. return Temp;
9. endfor;
10. return NO;

With respect to the above procedure, we prove the
following lemma.

Lemma 18. Let � be any genotype family and OPT′

be any integer with OPT′ ≥OPT���. Then the probability
that TryOPTvalue ���OPT′� e lnm� will return a NO
answer is at most 1/m2.

Proof. From Corollary 17, each time the test at
Step 7 is faced, the probability of success is at least
�e − 2�/e. Therefore, the probability that TryOPT-
value ���OPT′� e lnm� will return a NO answer is
bounded by

(
1− 2

e

)e lnm

=
(
1− 2

e

)�e/2�2 lnm

≤
(
1
e

)2 lnm
= 1

m2
� �

Remark 19. Let m = ��� and n be the number of
SNPs. Assume OPT′ ≤ 2m. Then running TryOPT-
value ���OPT′�T � takes O�Tm logm�n+ logm�� time.
Proof. The T factor is due to the number of iter-

ations of loop 1–9 and the m logm factor is due to
the number of iterations of loop 3–6. We assume
that randomly choosing an object among m takes
O�logm� time. Producing all haplotypes that are com-
patible with a given genotype g requires O�2kn� =
O�n� time. �

In the following, we denote by Double��� a pro-
cedure that, given as input a genotype family �,
returns a haplotype family �feas that explains � with
��feas� ≤ 2���. (The existence of such a procedure is
guaranteed by Fact 2.) We are now ready to propose
an efficient Monte Carlo algorithm.

Algorithm 4 MCHaplo���
1. if �=� then return �;
2. OPT1←

√
m; OPT2← 2m; �temp←Double���;

3. while OPT2 >OPT1+ 1 do
4. OPT′ ← 	�OPT1+OPT2�/2
;
5. Temp← TryOPTvalue ���OPT′� e lnm�;
6. if Temp is a NO answer then OPT1←OPT′;
7. else set OPT2←OPT′ and �temp ← Temp;
8. endwhile;
9. �′ ← �g ∈� � g is not explained by �temp�;
10. return �temp ∪MCHaplo��′�.

Remark 20. Algorithm 4 is an almost-linear-time
algorithm. More precisely, Algorithm 4 runs in
O�m log3m�n+ logm�� time.

Proof. By Remark 19, the time required for the first
recursion is O�m log3m�n+ logm�� because TryOPT-
value ���OPT′� e lnm� is called O�logm� times. This
dominates the time for the whole execution because
m halves at each recursion. �

The next lemma closes our analysis of Algorithm 4.

Lemma 21. Let � be a genotype family. Then the haplo-
type family returned by MCHaplo��� explains �. More-
over, the probability that the size of the haplotype family
MCHaplo��� exceeds 2k+1	logm
�1+�lnm��OPT is at
most 1/m.

Proof. It is clear that MCHaplo��� explains �.
Moreover, we know that �MCHaplo���� ≤ 2k+1 ·
	logm
�1+ �lnm��OPT holds if the execution of the
algorithm never observes the following situation:

There has been some call TryOPTvalue ��∗�OPT′,
e lnm∗� with m∗ = ��∗� and OPT′ ≥ OPT��∗� that
returned a NO answer.

Note that, during the execution of MCHaplo���,
the total number of calls to Procedure TryOPTvalue
is at most logm. Moreover, by Lemma 18, for all
those calls in which OPT′ ≥OPT��∗�, the probability
of obtaining a NO answer is at most 1/m2. Therefore,

P��MCHaplo����> 2k+1	logm
�1+�lnm��OPT�
≤ logm 1

m2
≤ 1

m
� �

7. Conclusions
In this paper we studied the pure parsimony hap-
lotyping problem, with investigations into (i) com-
plexity, (ii) exact algorithms, and (iii) approximation
algorithms. There are directions for future research
with respect to all these aspects.
(i) We have shown that the problem is APX-hard

when each genotype has at most three ambiguous
sites. What about the case of genotypes with at most
two ambiguous sites? Is the problem then polynomi-
ally solvable?
(ii) The exact approach based on ILP has its limita-

tions, mainly due to the high number of variables and
constraints (also in the case of the polynomial-sized
formulation), which makes it of little use for instances
with a large number of ambiguous sites. It is possi-
ble that a combinatorial branch-and-bound algorithm
may be preferable over ILP approaches for this prob-
lem. This issue deserves further investigation.
(iii) We developed approximation algorithms for

the case of a bounded number, k, of ambiguous sites.
Our approximation ratios depend exponentially on k.
Is it possible to achieve ratios that depend polyno-
mially on k? Also, can we remove at least part of
the 22	logm
�1 + �lnm�� overhead of the random-
ized algorithm with respect to the approximation



Lancia, Pinotti, and Rizzi: Haplotyping Populations by Pure Parsimony
INFORMS Journal on Computing 16(4), pp. 348–359, © 2004 INFORMS 359

algorithm based on linear programming? Finally, the
most interesting question about approximation algo-
rithms is: Can we design a constant �-approximation
algorithm for the PPH problem?

Acknowledgments
The authors thank the referees for a careful reading of
this paper and many helpful suggestions. Giuseppe Lancia
thanks the Department of Computer Science, University of
Trento, for their hospitality during the period when most of
this work was completed, and the Mathematical Biosciences
Institute of Columbus, Ohio, for their hospitality during the
period when this work was revised.

References
Alimonti, P., V. Kann. 2000. Hardness of approximating problems

on cubic graphs. Theroet. Comput. Sci. 237 123–134.
Ausiello, G., P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-

Spaccamela, M. Protasi. 1999. Complexity and Approximation.
Combinatorial Optimization Problems and Their Approximability
Properties. Springer, Berlin, Germany.

Bafna, V., D. Gusfield, G. Lancia, S. Yooseph. 2003. Haplotyping
as perfect phylogeny: A direct approach. J. Comput. Biol. 10
323–340.

Bar-Yehuda, R., S. Even. 1985. A local-ratio theorem for approxi-
mating the weighted vertex cover problem. Ann. Discrete Math.
25 27–46.

Berman, P., M. Karpinski. 1998. On some tighter inapproxima-
bility results. Technical report ECCC No. 29, Department of
Computer Science, University of Trier, Trier, Germany.

Chakravarti, A. 1998. It’s raining SNP, hallelujah? Nature Genetics
19 216–217.

Chen, J., I. A. Kanj, W. Jia. 2001. Vertex cover: Further observations
and further improvements. J. Algorithms 41 280–301.

Clark, A. 1990. Inference of haplotypes from PCR-amplified sam-
ples of diploid populations. Molecular Biol. Evolution 7 111–122.

Eskin, E., E. Halperin, R. Karp. 2003. Efficient reconstruction of hap-
lotype structure via perfect phylogeny. J. Bioinformatics Comput.
Biol. 1 1–20.

Gusfield, D. 2000. A practical algorithm for optimal inference of
haplotypes from diploid populations. Annual Internat. Conf.
Intelligent Systems Molecular Biol. AAAI Press, Menlo Park, CA,
183–189.

Gusfield, D. 2001. Inference of haplotypes from samples of diploid
populations: Complexity and algorithms. J. Comput. Biol. 8
305–324.

Gusfield, D. 2003. Haplotype inference by pure parsimony. Annual
Sympos. Combin. Pattern Matching. Springer Lecture Notes in
Computer Science, No. 2676. Springer-Verlag, Berlin, Germany,
144–155.

Helmuth, L. 2001. Genome research: Map of the human genome 3.0.
Science 293 583–585.

Hubbel, E. 2002. Personal communication.
International Human Genome Sequencing Consortium. 2001. Initial

sequencing and analysis of the human genome. Nature 409
860–921.

Lancia, G., V. Bafna, S. Istrail, R. Lippert, R. Schwartz. 2001. SNPs
problems, complexity and algorithms. Annual Eur. Sympos.
Algorithms. Springer Lecture Notes in Computer Science, No. 2161.
Springer-Verlag, Berlin, Germany, 182–193.

Li, L., J. H. Kim, M. Waterman. 2003. Haplotype reconstruction
from SNP alignment. ACM Annual Internat. Conf. Comput.
Molecular Biol. ACM Press, New York, 207–216.

Lippert, R., R. Schwartz, G. Lancia, S. Istrail. 2002. Algorithmic
strategies for the SNPs haplotype assembly problem. Briefings
Bioinformatics 3 23–31.

Marshall, E. 1999. Drug firms to create public database of genetic
mutations. Sci. Magazine 284 406–407.

Nemhauser, G. L., L. E. Trotter. 1975. Vertex packings: Structural
properties and algorithms. Math. Programming 8 232–248.

Papadimitriou, C. H., M. Yannakakis. 1991. Optimization, approx-
imation, and complexity classes. J. Comput. System Sci. 43
425–440.

Rizzi, R., V. Bafna, S. Istrail, G. Lancia. 2002. Practical algorithms
and fixed-parameter tractability for the single individual SNP
haplotyping problem. Annual Workshop on Algorithms in Bioin-
formatics. Springer Lecture Notes in Computer Science, No. 2452.
Springer-Verlag, Berlin, Germany, 29–43.

Venter, J. C., et al. 2001. The sequence of the human genome. Science
291 1304–1351.


