
Operations Research Letters 34 (2006) 289–295

Operations
Research
Letters

www.elsevier.com/locate/orl

A polynomial case of the parsimony haplotyping problem

Giuseppe Lanciaa,∗, Romeo Rizzib

aDipartimento di Matematica e Informatica, Università di Udine, Via delle Scienze 206, 33100 Udine, Italy
bDipartimento di Informatica e Telecomunicazioni, Università di Trento, Italy

Received 3 February 2005; accepted 7 May 2005
Available online 27 June 2005

Abstract

The parsimony haplotyping problem was shown to be NP-hard when each genotype had k�3 ambiguous positions, while
the case for k�2 was open. In this paper, we show that the case for k�2 is polynomial, and we give approximation and
FPT algorithms for the general case of k�0 ambiguous positions.
© 2005 Elsevier B.V. All rights reserved.

Keywords: Totally unimodular matrices; Approximation algorithms; Fixed parameter tractability; Parsimony haplotyping; Computational
biology

1. Introduction

In this paper we focus on a combinatorial prob-
lem defined on ternary vectors and derived from a
molecular genetics procedure known as haplotyping.
We will briefly describe the biological motivations be-
hind the problem definition in Section 1.1. The starting
point of the investigations reported here is to settle the
complexity for a special class of instances which had
resisted prior complexity classification, but whose rel-
evance to real-life applications appears minor. How-
ever, the deeper mathematical insight gained into these
borderline instances will allow us to derive simple and
practical combinatorial approximation algorithms for

∗ Corresponding author.
E-mail address: lancia@dimi.uniud.it (G. Lancia).

0167-6377/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.orl.2005.05.007

a wider and more significant class of instances. More-
over, FPT algorithms for this more relevant class of
instances will also follow as a byproduct of our core
structural results. Therefore, we prefer to focus on the
mathematical aspects of the result more than on the
implications that our algorithm can have for the prac-
tical solution of the biology problem.

The problem data consist in a set G of n genotypes
g1, . . . , gn, corresponding to n individuals in a pop-
ulation. Each genotype g is a vector with entries in
{0, 1, 2}. Each position where a 2 appears is called
an ambiguous position. For each genotype g we must
determine a pair of haplotypes hP and hM (hP stands
for the paternal haplotype and hM stands for the ma-
ternal haplotype), which are binary vectors such that
g = hP ⊕ hM (where the definition of the ⊕ operation
will be given later). A set H of haplotypes is said to

http://www.elsevier.com/locate/orl
mailto:lancia@dimi.uniud.it

290 G. Lancia, R. Rizzi / Operations Research Letters 34 (2006) 289–295

Fig. 1. The haplotypes of 3 individuals, with 4 SNPs.

explain G if for each g ∈ G there is at least one pair
of haplotypes h′, h′′ ∈ H such that g = h′ ⊕ h′′.

Given a setG of genotypes, the haplotyping problem
consists in finding a set H of haplotypes that explains
G. In this paper we will pursue the parsimony objective
function, i.e., we will be interested in finding a set H
of smallest possible cardinality.

1.1. Polymorphisms and biological motivations

A single nucleotide polymorphism (SNP) is a site
of the human genome (i.e., the position of a specific
nucleotide) showing a statistically significant variabil-
ity within a population. Besides very rare exceptions,
at each SNP site we observe only two (out of the pos-
sible four, i.e., A, T, C and G) nucleotides, called the
SNP alleles. The recent completion of the sequenc-
ing phase of the Human Genome Project [15,12] has
shown that the genome of any two individuals is the
same in about 99% of the positions, and that most
polymorphisms (i.e., differences at genomic level) are
in fact SNPs [3].

Humans are diploid organisms, i.e., their DNA is
organized in pairs of chromosomes. For each pair of
chromosomes, one chromosome copy is inherited from
the father and the other copy is inherited from the
mother. For a given SNP, an individual can be either
homozygous (i.e., possess the same allele on both chro-
mosomes) or heterozygous (i.e., possess two different
alleles). The values of a set of SNPs on a particular
chromosome copy define a haplotype.

In Fig. 1, we illustrate a simplistic example of three
individuals and four SNPs. The alleles for SNP 1,
in this example, are C and G. Individual 1, in this
example, is heterozygous for SNPs 1, 2 and 3, and
homozygous for SNP 4. His haplotypes are CCCT and
GAGT.

Haplotyping an individual consists of determining
his two haplotypes, for a given chromosome. With the
larger availability in SNP genomic data, recent years
have witnessed the emergence of a set of new compu-
tational problems related to haplotyping. These prob-
lems are motivated by the fact that it is economically
infeasible to determine the haplotypes experimentally.
On the other hand, there is a reasonable experiment
which can determine the (less informative and of-
ten ambiguous) genotypes, from which the haplotypes
must then be retrieved computationally.

A genotype provides, for an individual, information
about the multiplicity of each SNP allele, i.e., for each
SNP site, the genotype specifies whether the individual
is heterozygous or homozygous (in the latter case, it
also specifies the allele).

The ambiguity comes from heterozygous sites,
since, to retrieve the haplotypes, one has to decide
how to distribute the two allele values on the two
chromosome copies. Resolving (or explaining) a
genotype g requires determining two haplotypes such
that, if they are assumed to be the two chromosome
copies, then, computing the multiplicity of each SNP
allele, we obtain exactly the genotype g. Given a set
G of genotypes, the population haplotyping problem
requires to determine a set H of haplotypes such that
each genotype g ∈ G is explained by two haplotypes
h′, h′′ ∈ H. For its importance (as we said, haplotyp-
ing from genotype data is nowadays the only viable
way) the population haplotyping problem has been
and is being extensively studied, under many objec-
tive functions, among which are: Perfect phylogeny
[1,5], Clark’s rule [6,7] and Parsimony [8,13,2].

Each model and objective function has specific bi-
ological motivations, which are discussed in the cited
references. In this paper, we focus on the parsimony
haplotyping problem. Under the parsimony objective,
it is required that H has the minimum possible car-
dinality. The objective is based on the principle that,
under many explanations of an observed phenomenon,
one should choose the one that requires the fewest
assumptions. This problem has been introduced by
Gusfield [8], who adopted an integer-programming
formulation for its practical solution. The problem is
NP-hard, as first shown by Hubbel [11].

Among the several objective functions for haplotyp-
ing, pure parsimony is the most recent model, whose
importance is now being recognized as crucial in the

G. Lancia, R. Rizzi / Operations Research Letters 34 (2006) 289–295 291

solution of more complex haplotyping problems. In
fact, when observed at the largest possible scale (e.g.,
considering several thousands SNPs at once), haplo-
types are not inherited as units, but there is a certain
level of recombination (i.e., new haplotypes are cre-
ated by merging pieces of other haplotypes). A block
is a region where no recombination has occurred in
any of the haplotypes. Biological reasons suggest that
the number of different haplotypes observed within a
block should be minimum [8].

1.2. Notation and results

Given a set of n SNPs, fix arbitrarily a binary en-
coding of the two alleles for each SNP (i.e., call one
of the two alleles ‘0’ and the other ‘1’). Once the en-
coding has been fixed, each haplotype corresponds to
(with a slight abuse of terminology, hereafter, we will
say that each haplotype is) a binary vector of length n.

For a haplotype h, we denote by h[i] the value of its
ith component, with i=1, . . . , n. Given two haplotypes
h′ and h′′, their sum is defined as a vector g := h′⊕h′′.
The vector g has length n, and its components can take
only values in {0, 1, 2}, according to the following
rule:

• if h′[i] = h′′[i] = 0 then g[i] = 0;
• if h′[i] = h′′[i] = 1 then g[i] = 1;
• if h′[i] �= h′′[i] then g[i] = 2.

We will call a vector g with entries in {0, 1, 2} a
genotype. Each position i such that g[i]=2 is called an
ambiguous position (or ambiguous site). A resolution
of a genotype g is given by a pair of haplotypes h′ and
h′′ such that g = h′ ⊕ h′′. Such haplotypes are said to
resolve g, and are called g-mates. A haplotype h is said
to be compatible with a genotype g if h admits a g-
mate. A genotype is ambiguous if it has more than one
possible resolution, i.e., if it has at least two ambiguous
positions. Biologically, genotype entries of value 0 or
1 correspond to homozygous SNP sites, while entries
of value 2 correspond to heterozygous sites. In Fig. 2
we illustrate a case of three individuals, showing their
haplotypes and genotypes.

The parsimony haplotyping problem (PHP) we con-
sider is the following: find a set H of haplotypes
of smallest cardinality that explains a given set G of
genotypes.

Fig. 2. Haplotypes and corresponding genotypes.

It had been previously shown that the above prob-
lem is NP-hard [11] and, in fact, APX-hard, even when
each input genotype is restricted to possess at most
three ambiguous sites [13]. The complexity of the
case for two ambiguous sites, however, was unknown.
In Section 2, we prove that the problem when each
genotype has at most two ambiguous sites is in fact
polynomial, by using an argument from Linear Pro-
gramming. In Section 3, we give an alternative, com-
binatorial proof by means of a reduction to a classical
combinatorial problem which also leads to a practical
and effective algorithm to solve this polynomial spe-
cial case of PHP. In Section 3.2, we discover that this
new combinatorial approach scales up well to yield
2k−1-approximation algorithms for the version of the
problem in which there are at most k ambiguous sites.
We finally point out that, as a consequence of our re-
sults, we are able to conclude that this version of the
problem is in FPT for any fixed k.

2. A linear program naturally integer

In this section, we give a first proof that PHP can be
solved in polynomial time when each genotype has at
most two ambiguous positions. The proof consists in
showing the total unimodularity of the matrix involved
in a known integer linear programming formulation
for the problem. In the next section, we will give an
alternative, combinatorial proof, leading to an effective
combinatorial algorithm.

We start by recalling an integer-programming for-
mulation of PHP [8,13]. This formulation has an ex-
ponential number of variables and constraints in the

292 G. Lancia, R. Rizzi / Operations Research Letters 34 (2006) 289–295

general case but has a polynomial size when there
are at most two ambiguous sites per genotype (note
that polynomial-size formulations for the general case
are also possible; see, e.g., [13,2]). Denote by ĤG

the set of haplotypes that are compatible with some
genotype in G. Let GN be the set of non-ambiguous
genotypes (i.e., those with at most one ambiguous po-

sition) and let Ĥ
N
G ⊆ ĤG be the set of haplotypes

compatible with genotypes in GN. Clearly, Ĥ
N
G must

be contained in every feasible solution of the problem.
Associate a binary variable xh with every h ∈ ĤG

(where xh = 1 means that h is taken in the solution,
whereas xh = 0 means that h is not taken). After fix-
ing a total ordering on ĤG, denote by P the set of
those pairs (h1, h2) with h1, h2 ∈ ĤG, h1 < h2. For
every g ∈ G, let Pg := {(h1, h2) ∈ P|h1 ⊕ h2 = g}.
Note that Pg ∩ Pg′ = ∅ whenever g �= g′. For every
g ∈ G\GN, introduce a binary variable yh1,h2 for ev-
ery (h1, h2) ∈ Pg . The meaning of yh1,h2 is to select
a pair (h1, h2) used to resolve some ambiguous geno-
type. The following is a valid ILP formulation of the
PHP problem [8,13]:

min
∑

h∈ĤG

xh (1)

s. t.
∑

(h1,h2)∈Pg

yh1,h2 �1 ∀g ∈ G\GN, (2)

yh1,h2 �xh1 ∀(h1, h2) ∈
⋃

g∈G\GN

Pg , (3)

yh1,h2 �xh2 ∀(h1, h2) ∈
⋃

g∈G\GN

Pg , (4)

xh = 1 ∀h ∈ Ĥ
N
G, (5)

x ∈ {0, 1}ĤG , y ∈ {0, 1}P. (6)

Constraints (2) impose that each ambiguous geno-
type is resolved by at least one pair of haplotypes. Non-
ambiguous genotypes are resolved by forced haplo-
types, which are all included in the solution because of
(5). Constraints (3) and (4) ensure that a pair (h1, h2)

can be used to resolve a genotype only if both h1 and
h2 are included in the solution.

We now show that the constraint matrix of the model
is totally unimodular when each genotype has at most

two ambiguous sites. This implies that any basic opti-
mal solution to the linear programming relaxation of
(1)–(6) is in fact an optimal integer solution. Further-
more, the LP relaxation can be solved in polynomial
time.

A classical result on totally unimodular matrices is
the following sufficient condition [9]:

Theorem 1. A {0, 1, −1}-matrix is totally unimodular
if both the following conditions hold:

• Each row has at most two nonzero entries.
• The set of columns can be partitioned into two sub-

sets C1 and C2 such that

1. if a row contains two nonzero entries with the
same sign, then one of these entries belongs to
a column in C1, while the other belongs to a
column in C2; and

2. if a row contains two nonzero entries of opposite
sign, then the two columns containing these two
elements are in the same subset.

Using Theorem 1, we can now prove the following
result:

Theorem 2. The constraint matrix of (2)–(5) is totally
unimodular when each genotype has at most two am-
biguous sites.

Proof. Call a haplotype h even if
∑n

i=1h[i] is even,
and odd otherwise. Call a variable xh even if h is
even and odd otherwise. The key observation is that,
for every g ∈ G\GN, and every pair (h1, h2) ∈ Pg ,
h1 and h2 are either both odd or both even. This
is because every ambiguous genotype has precisely
two ambiguous sites. Call a variable yh1,h2 even if
h1 and h2 are both even and odd otherwise. Note
furthermore that when g ∈ G\GN, then |Pg| = 2,
and of the two resolutions that g admits, one is the
sum of two odd haplotypes, and the other is the sum
of two even haplotypes. Hence, constraints (2) in-
volve an odd and an even variable, while constraints
(3) and (4) involve variables which are both odd or
both even. With C1 the set of odd variables and C2
the set of even variables, the conditions of Theorem
1 are satisfied, and the constraint matrix is totally
unimodular.

G. Lancia, R. Rizzi / Operations Research Letters 34 (2006) 289–295 293

Corollary 3. When each genotype has at most two
ambiguous positions, the PHP problem can be solved
in polynomial time.

This is because any basic optimal solution of the
Linear Programming relaxation of (1)–(6), which can
be obtained in polynomial time, is in fact an optimal
solution of PHP.

3. Combinatorial algorithms

As in the previous section, let G be a set of input
genotypes G, and denote by ĤG the set of haplotypes
which are compatible with some genotype in G.

Clearly, when H is a minimal set of haplotypes
which explains G, then H ⊆ ĤG. Hence, our goal is
to find a minimum subset of ĤG which explains G.
When each genotype in G has at most k ambiguous
positions, then the size of ĤG is at most 2k|G|. Given
a genotype g with t ambiguous positions (t �g), and
a {0, 1} vector s of length precisely t, we denote by
g(s) the haplotype obtained from g by substituting,
for every i ∈ {1, . . . , t}, the ith “2” symbol in g with
the ith component of s.

3.1. At most two ambiguous positions: an exact
algorithm

Assume, to begin with, that every genotype in G
has precisely two ambiguous positions. We show how
to reduce the problem of finding a minimum size
subset of ĤG which explains G to the problem of
finding a minimum node cover in a bipartite graph
(for which effective algorithms are known; see, e.g.,
[10]). For every genotype g ∈ G, we consider a graph
Gg = (Vg, Eg) on 4 nodes and 4 edges (a square),
whose nodes are Vg = {g(00), g(01), g(11), g(10)}
and whose edges are

Eg = {g(00)g(01), g(01)g(11), g(11)g(10),

g(10)g(00)}. (7)

Each node of the square Gg in Fig. 3 is a haplotype.
Note that every node cover of Gg contains at least
two opposite nodes of the square, whence a pair of
g-mates (i.e., a pair of haplotypes whose sum yields
g). Consider now the graph G = (V , E) with node set
V = ⋃

g∈GVg = ĤG and edge set E = ⋃
g∈GEg .

Fig. 3. The square Gg .

Lemma 4. Let H be any subset of ĤG. Then H
explains G if and only if H is a node cover of G.

Proof. Assume that H is a node cover of G. Then, for
any genotype g, H is a node cover for the square Gg .
This implies that H explains each genotype g ∈ G.

For the converse, assume that H explains g.
This means that either g(0 0), g(1 1) ∈ H or
g(1 0), g(0 1) ∈ H holds; hence, H covers Eg . Since
H explains each genotype g ∈ G, it follows that H
covers E = ⋃

g∈GEg . �

We have shown that, when each genotype has pre-
cisely two ambiguous sites, then our problem amounts
to finding a minimum node cover in the graph G. The
following observation closes the issue about the com-
plexity of PHP in this special case.

Observation 5. The graph G is bipartite.

Proof. The graph G is actually a subgraph of the hy-
percube since two haplotypes are adjacent only if at
Hamming distance 1. �

Since the minimum node cover problem is polyno-
mial for bipartite graphs, we obtain that the special
case of PHP in which each genotype has two ambigu-
ous positions is polynomial as well.

It is now easy to also accommodate genotypes con-
taining at most one ambiguous position (i.e., the non-
ambiguous genotypes). If g has no ambiguous posi-
tion, then h = g must be taken in each solution. This
corresponds to searching for a node cover X in G\g
and then returning X ∪ {h}. If g contains precisely
one ambiguous position, then h0 =g(0) and h1 =g(1)

294 G. Lancia, R. Rizzi / Operations Research Letters 34 (2006) 289–295

must both be taken. This corresponds to searching
for a node cover X in G\{h0, h1} and then returning
X ∪{h0, h1}. More generally, the following algorithm
solves our problem.

1. Input G;
2. Let GN be the set of non-ambiguous genotypes in

G;

3. Let Ĥ
N
G be the set of haplotypes compatible with

genotypes in GN;
4. Find a minimum node cover X in the bipartite graph

G[ĤG\ĤN
G]; and

5. Return X ∪ Ĥ
N
G.

Remark 6. Note that |V (G)|= O(|G|) and |E(G)|=
O(|G|). Where n is the number of SNPs (i.e., the geno-
type length), then the graph G can be built in O(n|G|)
time. A minimum node cover of G is computed in
O(

√|V (G)||E(G)|) time by the algorithm in [10].
The total running time of our algorithm is therefore
O(n|G| + |G|3/2).

3.2. At most k ambiguous sites: an approximation
algorithm

Consider an ambiguous genotype g and let Ĥ{g}
be the set of haplotypes which are compatible with
g. Since any haplotype can have at most one g-mate,
the haplotypes in Ĥ{g} are paired up by the “being g-
mate” relation. We denote by P(g) the family of those
subsets of Ĥ{g} which take precisely one haplotype
from each pair of g-mates. Hence, when g contains k
ambiguous sites, then |Ĥ{g}| = 2k and P(g) contains

22k−1
sets of size 2k−1. As a special case, when g has

no ambiguous site, we assume that P(g) = {{g}}. A
transversal, or hitting set, of P(g) is a minimal set of
haplotypes that intersects all elements of P(g).

Observation 7. Let g be an ambiguous genotype.
Then the transversals of P(g) are precisely the pairs
of g-mates.

Proof. Clearly, all pairs of g-mates are transversals of
P(g). Conversely, let X be any transversal of P(g). We
will show that X contains a pair of g-mates. Indeed, if
on the contrary X misses at least one haplotype from
each pair of g-mates, then the set of missed haplotypes

contains a member of P(g), contradicting the fact that
X is a transversal of P(g).

With some background in transversal theory, we
could have come to the same conclusion by duality
after considering that the sets in P(g) are the transver-
sals of the clutter made by all pairs of g-mates. �

We consider the hypergraph G = (V , E) with node
set V = ĤG and edge set E = ⋃

g∈GP(g). We then
have the following lemma.

Lemma 8. Let H be any subset of ĤG. Then H
explains G if and only if H is a node cover of G.

Proof. Assume that H is a node cover of G. Consider
any genotype g in G. We will show that H explains
g. Indeed, since H covers every hyperedge in P(g),
then H must contain a pair of g-mates, or g itself in
case g is not ambiguous.

For the converse, assume that H explains g. If g is
not ambiguous, then H contains g and hence covers
P(g) = {g}. Otherwise, if g is ambiguous, then H
contains a pair of g-mates and hence covers P(g).
Since H explains each genotype g ∈ G, it follows
that H covers E = ⋃

g∈GP(g). �

Note that, when each g ∈ G has at most k ambigu-
ous positions, then every edge in G has size at most
2k−1. It is well known [14] that for such instances
of node cover on hypergraphs there exist extremely
simple and effective combinatorial primal-dual 2k−1-
approximation algorithms. These algorithms take
linear time in the size of the input hypergraph, i.e.,
in the sum of the cardinalities of the hyperedges.
Our hypergraph has |ĤG|�2k|G| nodes and at most∑

g∈G|P(g)|�22k−1 |G| hyperedges. Each hyperedge

has at most 2k−1 nodes. We can hence produce a
2k−1-approximate solution in 22k−1+k−1O(|G|) time
and space. It is also well known [4] that a whole class
of FPT algorithms exists to solve the node cover prob-
lem to optimality on hypergraphs with hyperedges
of bounded size. While these FPT algorithms do not
appear to provide a viable approach in this setting
due to the doubly exponential dependence on k that
ultimately results in their running times, still these re-
marks show that the problem is in FPT whenever the
number of ambiguous sites is bounded by a constant

G. Lancia, R. Rizzi / Operations Research Letters 34 (2006) 289–295 295

and may suggest a possible means of dealing with the
problem in practice.

References

[1] V. Bafna, D. Gusfield, G. Lancia, S. Yooseph, Haplotyping
as perfect phylogeny: a direct approach, J. Comput. Biol. 10
(3–4) (2003) 323–340.

[2] D.G. Brown, J.M. Harrower, A new integer programming
formulation for the pure parsimony problem in haplotype
analysis, in: Proceedings of Annual Workshop on Algorithms
in Bioinformatics (WABI), Lecture Notes in Computer
Science, Springer, 2004.

[3] A. Chakravarti, It’s raining SNP, hallelujah?, Nat. Genet. 19
(1998) 216–217.

[4] R.G. Downey, M.R. Fellows, Parameterized Complexity,
Monographs in Computer Science, Springer, New York, 1999.

[5] E. Eskin, E. Halperin, R. Karp, Efficient reconstruction of
haplotype structure via perfect phylogeny, J. Bioinformatics
Comput. Biol. 1 (1) (2003) 1–20.

[6] D. Gusfield, A practical algorithm for optimal inference of
haplotypes from diploid populations, in: R. Altman, T.L.
Bailey, P. Bourne, M. Gribskov, T. Lengauer, I.N. Shindyalov,
L.F. Ten Eyck, H. Weissig (Eds.), Proceedings of the Annual
International Conference on Intelligent Systems for Molecular
Biology (ISMB), AAAI Press, Menlo Park, CA, 2000, pp.
183–189.

[7] D. Gusfield, Inference of haplotypes from samples of diploid
populations: complexity and algorithms, J. Comput. Biol. 8
(3) (2001) 305–324.

[8] D. Gusfield, Haplotype inference by pure parsimony, in:
Proceedings of the Annual Symposium on Combinatorial
Pattern Matching (CPM), Lecture Notes in Computer Science,
vol. 2676, Springer, Berlin, 2003, pp. 144–155.

[9] I. Heller, C.B. Tompkins, An extension of a theorem of
Dantzig’s, in: H.W. Kuhn, A.W. Tucker (Eds.), Linear
Inequalities and Related Systems, Princeton University Press,
1956, pp. 246–254.

[10] J.E. Hopcroft, R.M. Karp, An n5/2 algorithm for maximum
matchings in bipartite graphs, SIAM J. Comput. 2 (1973)
225–231.

[11] E. Hubbel, Unpublished manuscript, 2002.
[12] International Human Genome Sequencing Consortium, Initial

sequencing and analysis of the human genome, Nature 409
(2001) 860–921.

[13] G. Lancia, C. Pinotti, R. Rizzi, Haplotyping populations
by pure parsimony: complexity, exact and approximation
algorithms, INFORMS J. Comput. 16 (4) (2004) 17–29.

[14] V. Vazirani, Approximation Algorithms, Springer, Berlin,
2001.

[15] J.C. Venter, et al., The sequence of the human genome,
Science 291 (2001) 1304–1351.

	A polynomial case of the parsimony haplotyping problem
	Introduction
	Polymorphisms and biological motivations
	Notation and results

	A linear program naturally integer
	Combinatorial algorithms
	At most two ambiguous positions: an exact algorithm
	At most =k ambiguous sites: an approximation algorithm

	References

