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Abstract

A dynamical network is comprised of a finite number of subsystems, each having
its own dynamics, which interact according to a given interconnection topology.
Dynamical networks are a powerful modelling tool to represent a large number
of systems in different contexts, ranging from natural to man-made systems, and
have a peculiar feature: the global behaviour is the outcome of an ensemble of
local interactions. Hence, dynamical networks can be analysed so as to understand
how local events can lead to global consequences and can be controlled by acting
locally so as to achieve the desired global behaviour. The analysis and the control of
dynamical networks are structural when they are grounded on the topology of the
interconnection graph, along with qualitative, parameter-free specifications.

Structural analysis aims at assessing properties for a whole family of systems
having the same structure and is particularly suited for natural systems, which
can exhibit an extraordinary robustness in spite of large uncertainties and intrinsic
variability. In this thesis, results and procedures are presented to structurally assess
relevant properties, such as stability, boundedness and the sign of steady-state
input-output influences, for a wide class of systems whose Jacobian admits the
so-called BDC-decomposition, which embodies the sum of the effects of single local
interactions. A structural classification is also proposed, to discriminate between
systems that can possibly or exclusively admit instability related to oscillations or to
multistationarity, for systems with a sign-definite Jacobian and for systems composed
of the interconnection of stable monotone subsystems; a graph-based classification is
given and applied to examples of artificial biomolecular networks.

In a dynamical network described by a graph, subsystems are associated with
nodes and interactions with arcs. When the interactions are not given, they can be
decided by a control system. In particular, network-decentralised control aims at
governing the global behaviour of a dynamical network through controllers that are
associated with the arcs of the interconnection graph, hence act locally and have
access to local information only. Despite the restricted information constraint, a
large class of systems can be always stabilised resorting to a network-decentralised
controller. Both linear systems composed of independent subsystems, connected
by the control action, and nonlinear compartmental systems are considered; the
robustness and optimality properties of the devised network-decentralised control are
investigated and several application examples are proposed, spanning from traffic
control and data transmission to synchronisation and vehicle platooning. Network-
decentralised estimation is also considered, for systems composed of identical agents;
a robustness result is provided, exploiting the smallest eigenvalue of the generalised
Laplacian matrix associated with the interaction graph.



i Abstract

Structural analysis and network-decentralised control synthesis are presented in
this work as complementary facets of the same approach, which can streamline each
other. Structural analysis can help explain the robustness of natural systems, so
that the clever resources of nature can be mimicked to improve the control strategies
designed for man-made systems; at the same time, local interactions can be engineered
in biomolecular systems, as is done for artificial systems, to obtain the desired global
behaviour. This virtuous circle will hopefully result in innovative approaches for
biotechnologies and large-scale network engineering, aimed at improving the quality
of our daily life.



Sommario

Una rete dinamica e composta da un insieme finito di sottosistemi, ciascuno con la
propria dinamica, che interagiscono secondo una precisa topologia di interconnessioni.
Le reti dinamiche consentono di rappresentare efficacemente un gran numero di sistemi
nei contesti piu svariati, che includono sia i sistemi naturali sia quelli ingegneristici,
e hanno una caratteristica distintiva: il comportamento globale e il risultato di un
insieme di interazioni locali. Percio, le reti dinamiche possono essere analizzate
al fine di comprendere come eventi locali possano portare a conseguenze globali e
possono essere controllate per mezzo di azioni locali, per ottenere il comportamento
globale desiderato. L’analisi e il controllo di reti dinamiche si possono dire strutturali
quando si basano esclusivamente sulla topologia del grafo delle interconnessioni e su
informazioni qualitative, che prescindono dai parametri.

L’analisi strutturale si propone di determinare proprieta che valgono per un’intera
famiglia di sistemi aventi la stessa struttura ed e particolarmente utile nel caso di
sistemi naturali, che spesso manifestano una straordinaria robustezza nonostante la
presenza di grandi incertezze e di un’intrinseca variabilita nei parametri. In questa
tesi, si presentano risultati e procedure che consentono di valutare da un punto di
vista strutturale proprieta di interesse, quali la stabilita, la limitatezza e il segno
dell’influenza ingresso-uscita a regime, per una vasta classe di sistemi la cui matrice
Jacobiana ammette la cosiddetta decomposizione BDC', che esprime la somma de-
gli effetti dovuti a singole interazioni locali. Si propone inoltre una classificazione
strutturale che consente di distinguere tra sistemi che possono ammettere o che
ammettono esclusivamente instabilita legata a fenomeni oscillatori o a multistaziona-
rieta, per sistemi con una matrice Jacobiana a segno definito e per sistemi formati
dall’interconnessione di sottosistemi monotoni stabili; una classificazione basata su
grafi € proposta e applicata a esempi di reti biomolecolari artificiali.

In una rete dinamica descritta da un grafo, i sottosistemi sono associati ai nodi e
le interazioni agli archi. Quando le interazioni non sono date, esse possono essere
decise da un sistema di controllo. In particolare, il controllo decentralizzato nel
senso delle reti mira a governare il comportamento globale di una rete dinamica per
mezzo di controllori che sono associati agli archi del grafo di interconnessione, dunque
agiscono localmente e hanno a disposizione soltanto informazioni locali. Nonostante
il vincolo dovuto alla limitata informazione disponibile, una vasta classe di sistemi
puo essere sempre stabilizzata ricorrendo a un controllore decentralizzato nel senso
delle reti. Si considerano sia sistemi lineari costituiti da sottosistemi indipendenti,
connessi dall’azione di controllo, sia sistemi compartimentali nonlineari; si studiano
le proprieta di robustezza e di ottimalita del controllo proposto, che ¢ decentralizzato
nel senso delle reti, e si propongono molteplici esempi di applicazione, che spaziano



da controllo del traffico e trasmissione di dati fino a sincronizzazione e controllo di
colonne di veicoli. Si considera inoltre una procedura di stima decentralizzata nel
senso delle reti, per sistemi formati da agenti identici; si fornisce un risultato di
robustezza, che si avvale del minimo autovalore della matrice Laplaciana generalizzata
associata al grafo di interazione.

L’analisi strutturale e la sintesi di controllori decentralizzati nel senso delle reti
sono presentate in questa tesi come aspetti complementari dello stesso approccio, che
possono aiutarsi I'un I'altro. L’analisi strutturale puo aiutare a spiegare la robustezza
dei sistemi naturali, di modo che le efficienti strategie della natura possano essere
imitate per migliorare gli algoritmi di controllo progettati per i sistemi costruiti
dall’'uomo; allo stesso tempo, le interazioni locali nei sistemi biomolecolari possono
essere ingegnerizzate, come accade nel caso dei sistemi artificiali, per ottenere il
comportamento globale desiderato. Questo circolo virtuoso consentira auspicabil-
mente approcci innovativi per le biotecnologie e per 'organizzazione di reti di grandi
dimensioni, al fine di migliorare la qualita della nostra vita quotidiana.
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Introduction

A large number of systems, in the most different contexts, can be modelled as
dynamical networks: in fact, phenomena related both to the evolution of quantities
over time (dynamics) and to interconnections among several units (networks) are
ubiquitous in natural systems, as well as in complex artificial systems.

A dynamical network can be regarded as the interplay of a finite number of
subsystems, each having its own dynamics, interconnected by suitable interactions,
which enforce a relationship between the dynamics of the individual subsystems.
The behaviour of the overall system, then, depends on the internal dynamics of
the individual subsystems and on the topology of the interconnection network.
Interestingly, the interactions are local (since each of them is related to a single
interconnection link in the network topology), but their impact results in global
consequences, affecting the behaviour of the overall system. This motivates us

e on the one hand, to study the mechanisms that produce the global system
behaviour based on the ensemble of local interactions, keeping in mind that
local events have a global outcome (analysis);

e on the other hand, to devise control strategies that obtain the desired global be-
haviour by deciding the local interactions based on local information, according
to the motto: think globally, act locally (control).

In particular, both analysis and control can rely on the peculiar structure of
the system under consideration, defined in terms of the graph representing the
interconnection topology.

The goal of structural analysis for dynamical networks is to assess behaviours and
phenomena based on the system structure only (essentially, on the graph topology,
along with qualitative information about the subsystem dynamics and about the
interaction functions). Hence, parameter-free criteria can be devised to check if a
whole family of systems, all having the same structure, enjoys a relevant property.

This is especially important when dealing with natural systems, which are plagued
by huge uncertainties and whose parameters are highly dependent on environmental
and working conditions: by means of a structural investigation, it may be possible
to explain how they can perform their specific, proper tasks in completely different
conditions, thus revealing the structural source of the extraordinary robustness of
nature and of living organisms.
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The goal of network-decentralised control synthesis, instead, is to control or
coordinate the behaviour of a large number of subsystems resorting to local controllers,
which decide their strategy based on local information only. This means that each
control agent, associated with a link of the network, decides local interactions based
on information about the subsystems associated with the nodes connected by that
specific link. Under proper structural assumptions, it is always possible to govern
the overall behaviour of the system, achieving stability, by simply controlling local
interactions, based on the knowledge of local dynamics only.

This is particularly relevant for complex systems, composed of several geographi-
cally sparse units, when it is impossible to build a centralised and omniscient controller
that governs the system, due to hard constraints on the information available in each
portion of the network.

The aim of this thesis is to propose a unified view of the analysis and the control of
dynamical networks, carried out from a structural standpoint. It is worth underlining
that (structural) analysis and control synthesis, albeit requiring in general different
tools and approaches, are far from being disjoint. In fact, analysis is well suited
for natural systems, while control of course refers to man-made systems; and a
virtuous circle can be built since the analysis of natural systems can help engineers
learn from nature and control man-made systems resorting to a biologically-inspired
control design, while local interactions in natural systems (once their spontaneous
functioning has been deeply understood) can be engineered with the same systematic,
bottom-up approach that is used for building complex artificial systems (this is the
goal of synthetic biology).

Thesis Overview and Contribution

The thesis presents a unified study of the structural analysis and control of dynamical
networks[l] and is articulated in three main parts.

Structural Properties, Dynamical Networks,
Fundamental Concepts and Results

Part [I| deals with the common background and the fundamental concepts that will
be recurrent throughout the thesis. First of all, structural properties are defined
in Chapter [2| as properties enjoyed by all of the systems belonging to a family,
specified without numerical bounds. Therefore, a structural property can be assessed
according to parameter-free criteria, exclusively based on qualitative information

IMost of the results have been previously published in peer-reviewed conference or journal
papers, or are currently under review or in preparation. The corresponding publications are always
referenced; for the sake of completeness, almost all of the proofs (which can be found in the articles)
have been either reported or sketched in the thesis as well.



about the considered family of systems. Possible qualitative information that can
be available about functions (hence, about systems) are provided and discussed.
Moreover, fundamental properties that are usually worth assessing are listed and
described in detail, and their significance is motivated by examples. The concept of
dynamical network is further investigated in Chapter [3| where the relationship with
compartmental systems is examined (actually, dynamical networks can be regarded
as a generalisation of compartmental systems). The structure of a dynamical network
is formally associated with its graph representation and with the corresponding
incidence matrix. Then, both structural analysis and control synthesis for the
particular case of dynamical networks are presented, explaining how a structural
approach can exploit the peculiarities of these systems. Fundamental concepts from
several mathematical theories and essential results are reported in Chapter [ Some
basic concepts of graph theory (fundamental for defining and handling structures of
dynamical networks) are summarised. The theory of chemical reaction networks is
presented [HJI72, [Fei72, Hor73al [Hor73bl [FH74|, along with fundamental established
results such as the zero-deficiency theorem [Fei87], and the limits of mass action
kinetics (representing the rate of a reaction depending on the concentration of the
reactants) are discussed, proposing a generalised approach where reaction rates are
generic functions of the concentrations of the involved species [BF11b]. As a key
point on which the forthcoming investigation is based, a special structure named the
BDC-decomposition is presented [BEGI12, [BG14l, (GCEB15]; such a decomposition
exploits the fact that, for any system whose Jacobian matrix is the positive linear
combination of rank-one matrices, this Jacobian can be written as the product of
three matrices, one depending on a vector of positive parameters, the other two
expressing the Jacobian structure. A useful integral formula [Kha(2] is exploited to
show that the BDC-decomposition is indeed a global property, and not only a local
property. It is important to stress that the BDC-decomposition actually decomposes
the system Jacobian (hence, the overall set of linearised interactions occurring in the
system) into the sum of several basic local interactions that, summed up, result in the
global dynamic effect. It can thus be seen as a picture of the “local interactions, global
behaviour” effect that has been previously mentioned. It turns out that, for systems
admitting a BDC-decomposition, some important quantities associated with the
Jacobian matrix, for instance the determinant and the coefficients of the characteristic
polynomial, are multi-affine functions of the positive parameters. Consequently, a
vertex result is presented that exploits multi-affinity for testing the structural sign of
a function in a hypercube in the parameter space [BFG12, BG14, [GCFBI5]. Multi-
affinity also allows to invoke the fundamental mapping theorem [Bar94] and the zero
exclusion theorem, to obtain a sufficient condition for robust stability. Some hints
about fundamental concepts of the topological degree theory and its applications to
the equilibria and the stability of dynamical systems [OC95| [Hof90] are also briefly
reported; a more thorough overview of the theory is in Appendix [D]

The core contribution of the thesis is in Parts [[T| and [[TI} which deal respectively
with structural analysis and control synthesis for dynamical networks.
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Structural Analysis of Dynamical Networks

Part [, devoted to structural analysis, has a special focus on (bio)chemical and
biological systems, although the proposed results are applicable for a much wider class
of systems, not necessarily describing the dynamics and the interconnections that
rule the behaviour of living organisms, biomolecules and chemical species. However,
for these systems, whose features are investigated more in depth in Chapter [f the
need of a structural analysis is particularly felt, due to their inherent robustness in
spite of severe uncertainties. A survey of the most investigated properties in the
literature is proposed in Chapter [5| and some results are proposed for the structural
detection of fundamental properties [BFGI2|, such as the capacity of exhibiting
oscillations or perfect adaptation, simply exploiting multi-affinity (in fact, it can be
shown that systems belonging to a wide class of biochemical and biological systems
always admit a BD(C-decomposition, and the proposed criteria are valid for any
system admitting this decomposition); criteria to structurally assess stability and to
rule out oscillatory instability are also discussed.

Chapter [0] structurally investigates stability and boundedness of biochemical
systems, with generic monotonic reaction rates (not necessarily of the mass action
form), by absorbing the non-linear system in a linear differential inclusion and looking
for a polyhedral Lyapunov function, which can be found by a recursive procedure
based on an associated discrete-difference inclusion [BG14]. Stability properties can
be studied by decomposing the chemical reaction network into elementary reactions
(local interactions) and propagating each of them independently to assess the stability
properties of the global system. The results actually apply in general to any system
admitting a BDC-decomposition. A discrete-event interpretation of the numerical
procedure is proposed. Moreover, the results obtained by analysing the system in
concentration coordinates are compared to those obtained by analysing the system in
reaction coordinates [BG15a]. It is also shown that, for a set of fundamental motifs,
structural stability cannot be assessed by means of quadratic Lyapunov functions,
while it can be proved based on polyhedral Lyapunov functions [BG15b]. An example
illustrates the fact that, in some cases, resorting to smooth structural Lyapunov
functions is impossible: to prove structural stability, the only possibility is employing
polyhedral Lyapunov functions. A catalogue of several nontrivial networks, whose
stability and boundedness have been tested by means of the proposed procedure, is
reported in Appendix [A] while some details on the code implementing the procedure,
which is available online, are in Appendix

The steady-state behaviour of a class of biological systems is investigated in
Chapter [7| (and, again, the results can be immediately extended to consider generic
systems admitting a BDC-decomposition). |[GCFBI5] The system exhibits a struc-
tural steady-state input-output influence if the variation of the steady-state output
value, upon a perturbation due to a constant input, always has the same sign as
the input, or the opposite sign, or is zero, independent of the parameter values;
otherwise, the influence is indeterminate. When a persistent additive input is applied



to a single state variable and a single state variable is taken as the system output,
the results for all the possible input-output pair combinations can be visualised in
the structural influence matrix, whose entries express the sign of the steady-state
influence on each variable of an external persistent input applied to each variable.
Exploiting multi-affinity, structural influences can be assessed based on a simple
vertex algorithm; as an alternative, a tree-like recursive algorithm is proposed for
systems whose Jacobian entries are independent. Appendix presents and briefly
discusses the code implementing the vertex procedure, which is available online.

Finally, Chapter |8 proposes a structural classification of biochemical systems
(which can be easily applied to any system with a sign-definite Jacobian), based
on their capacity of possibly/exclusively exhibiting transitions to instability of the
oscillatory type (related to a pair of complex eigenvalues crossing the imaginary axis)
or of the real type (related to a real eigenvalue crossing the imaginary axis at the
origin and associated with multistationarity). [BEGI14] The classification is extended
to the case of systems that can be seen as the interconnection of unconditionally
stable monotone subsystems [BFG15b]; this more general result can be applied to
analyse (and to streamline the robust design and synthesis of) several synthetic
biochemical networks [KWWO06, KWT11, BCEFG14, [CGK™16].

Network-Decentralised Control of Dynamical Networks

In Part [ITT} the focus is on the control of dynamical networks. In particular, in
Chapter [9] network-decentralised state-feedback strategies are proposed to stabilise
linear systems composed of several dynamically decoupled subsystems (which are
then interconnected by the control action). The rule of the game, for network-
decentralised control, is that control agents, each associated with a link of a given
interconnection topology, can decide their strategy based on the sole knowledge of
the state variables associated with the subsystems they connect. These restricted
information constraints result in a block-structured feedback matrix, where structural
zero-blocks enforce the lack of information available to the controllers; such a feedback
matrix turns out to have the same block structure as the transpose of the overall input
matrix of the system. When the subsystems do not share unstable eigenvalues (a
generically satisfied property), any stabilisable system can be stabilised by means of
a network-decentralised controller. Furthermore, for identical subsystems where each
input affects a pair of subsystems, with input sub-matrices that differ for the sign only
(which is typically the case for flow networks), network-decentralised stabilisability is
shown to be equivalent to the presence of a connection with the external environment
(namely, of an agent affecting a single subsystem). [BFG13|, [ BEG15a]

Chapter [L0]analyses the case of nonlinear systems with a compartmental structure,
where two types of flows connecting pairs of compartments are possibly present,
depending either on the difference of the state of the two compartments, or on
the state of the starting compartment only. The saturated network-decentralised
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strategy proposed in [BBGP13] is tailored and adapted to this case. Necessary and
sufficient structural conditions for stabilisability are proposed and the robustness and
asymptotic optimality properties of the devised network-decentralised control are
discussed: the control is intrinsically robust since it does not require the knowledge
of the involved functions (apart from qualitative monotonicity assumptions), it is
still effective in the case of switching topologies and it can face a time-varying and
unknown exogenous demand; optimality is ensured in terms of the minimal Euclidean
norm of the asymptotic controlled flow. An alternative network-decentralised control
is proposed to guarantee the satisfaction of positivity constraints during the whole
system evolution. [BFGT16] Finally, the possibility of equipping the control arcs
with integrators is explored, in order to ensure, along with decentralised asymptotic
optimality, exact convergence to the desired set-point.

Several applications of the network-decentralised control approach are proposed
in Chapter ranging from traffic control problems (where at each node the
traffic splits in several queues, each having a different destination, and a robust
and asymptotically optimal network-decentralised control can be found that is
independent of the traffic splitting rates and just needs information about the
cumulative buffer content) [BGM14] and data transmission systems [BEGT16] to
a network-decentralised channel sharing communication protocol [BCGM16], from
clock synchronisation to the control of vehicle platoons.

Chapter|12|considers the dual framework of network-decentralised control: network-
decentralised estimation. A local estimation problem is formulated: each node of
the network is seen as an agent striving to reconstruct its own state having exclu-
sively information exchanges with the neighbouring agents. Conditions for network-
decentralised detectability are provided. Moreover, the choice of the observer gain
and the proposed observer are robustified to tackle the case of unknown and switching
topologies, exploiting a result on the smallest eigenvalue of the generalised Laplacian
matrix and on the corresponding worst case (the smallest generalised Laplacian
eigenvalue of all the connected graphs with a given number of nodes). [GBFT15]

1.1 Notation and Acronyms

It will be impossible to keep the notation completely coherent through all of the
chapters. However, some notations will be recurrent throughout the thesis. Typically,
Greek letters (a, f3, 7, ...) will denote scalars, Roman letters (a, b, ¢, ...) vectors,
capital Roman letters (A, B, C, ...) matrices, calligraphic letters (A, B, C, ...)
sets. Moreover, the following notation will be used.

e N is the set of natural numbers, including 0; Z is the set of integer numbers; R
is the set of real numbers, while R, is the set of non-negative real numbers;

e given a matrix M, M " is its transpose, ker(M) is its kernel (null space, set of
vectors x such that Mz = 0), while its left kernel (or left null space) is the set
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of vectors = such that " M = 0 (hence, it corresponds to ker(M ")), span(M)
is its column space;

given a square matrix A, tr(A) is its trace (sum of diagonal elements), det(A)
is its determinant, o(A) is its spectrum (set of the eigenvalues); an eigenvalue
is called stable if its real part is strictly negative, unstable otherwiseﬂ;

e, denotes a vector of the standard basis in R" (a vector whose hth component
is 1, while the others are 0);

1,, denotes the vector of ones having dimension n (sometimes the dimension is
not explicitly stated, but it is clear from the context);

given a function ¥ : R™ — R, its unit ball is the set

N = {z: [W(2)] < 1}
given a smooth function ¥ : R" — R, its gradient V¥(z) is the column vector

L LPRSL I I
0x1 " ' Oxsy T Oxy, ’

V¥(z) =

a locally Lipschitz function ¥ : R" — R is positive definite if ¥(0) = 0 and
U(z) > 0 for all x # 0, positive semidefinite if the strict inequality is replaced
by a weak inequality; the function ¥(x) is negative (semi)definite if —W(zx) is
positive (semi)definite;

if A and B are matrices (or vectors) of the same dimension m x n, then A > B,
A < B, A> B, A< B have to be intended componentwise (4;; > B
A;jj < Bij, Aijj > Byj, Ajj < Bjj forall 1 <i<mand 1 < j <n);

in the space of symmetric matrices, Q < P, Q < P, @ = P, QQ = P denote
that P — () is positive definite, positive semidefinite, negative definite, negative
semidefinite (namely, the function 2" (P — Q)x is positive definite, positive
semidefinite, negative definite, negative semidefinite);

|||, with integer 1 < p < oo, denotes the vector p-norm:

R

for finite p and

|0 = max fa]:

e if P > 0 is a symmetric (square) matrix, then ||z||p = VT Px;

e given any vector norm | - ||, the corresponding induced matrix norm is
. Ax
) = sup 121,
20 [|2]

2 A more detailed overview concerning stability of equilibria and related results, including criteria
based on eigenvalues, is reported in Appendix g
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e for x € R", the sign and saturation vector functions sign(x) and sat(x) (for
given bounds z; < z; < ) are defined componentwise, respectively, as

if z; >0
[sign(z)]; =<9 0 if z;,=0
-1 if x;,<0
and
zf if x> af
[sat(z)]; = ¢ x; if x; <@ <af
x; if oz <a;

The following acronyms are also recurrent throughout the thesis.

DNA: DeoxyriboNucleic Acid

LMI: Linear Matrix Inequality

LTI: Linear Time Invariant

MAK: Mass Action Kinetics

ODE: Ordinary Differential Equation

OTT: Oscillatory Transition to Instability

RNA: RiboNucleic Acid
RTI: Real Transition to Instability
TI: Transition to Instability
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Structural: More Than Robust

A property can be said structural for a class of systems (specified by given features
that constitute its structure) when it is enjoyed by all of the systems in the class.

The structure of a system captures its inherent nature, its essence; hence, a
structural property has a necessary connection to the essence of the system under
investigation and holds for all of the systems characterised by the same structure
(i.e., for all of the systems belonging to the class specified by that structure). Then
how is a structure determined, i.e., how is the class of systems specified? This is an
important point, especially because the term structural is often confused with robust,
and used to express the same concept, while a crucial distinction should be made.

Usually, the concept of robustness refers to a class of systems expressing the
possible deviations of a system from a given “nominal condition”; such deviations
may be due to modelling uncertainties or to perturbations, and are assumed to be
bounded. Consider, for instance, a parameterised family of systems: if any system of
the family exhibits a certain property, for any choice of the parameter values within
given bounds, then the property is robust; conversely, if any system of the family
exhibits the property regardless of the chosen parameter values (without numerical
bounds), then the property is structural.

It is therefore apparent that the concept of structural property (which is the key
theme of the present chapter) is much more general and much more demanding. It is
general, since it can refer not only to a family of parametric realisations, but also to
a family of functional realisations (where the functions are simply required to satisfy
some qualitative properties, such as, e.g., monotonicity), or to any family of systems
having a common structure that may be expressed, for instance, by the topology
of an associated graph (as will be seen in Chapter . It is demanding, since the
satisfaction of a structural property is a strong requirement, difficult to prove.

However, once a property has been proved to be structural for a given class of
systems (structural analysis), or once a controller for a class of systems has been
built satisfying special constraints based on the corresponding structure (network-
decentralised control synthesis), the benefits are considerable. Engineers have been
striving for decades to build robust systems, which work even under conditions that
vary with respect to the nominal one, while natural systems often preserve some
fundamental properties in the most diverse environmental conditions, practically
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independent of parameter values: they are “more than robust”. To mathematically
explain their extraordinary robustness, a structural analysis is needed. Also, in
the case of artificial systems, a control strategy often needs to be decided with
limited information about the system and its parameters. When the aim is to design
a controller that is able to accomplish the desired task with topology-dependent
limitations, a network-decentralised approach to synthesis is beneficial.

Adopting a structural viewpoint is as powerful as challenging, and in this thesis
the challenge is accepted, focusing in particular on dynamical networks.

2.1 Structural Properties

A property is structural if it is satisfied by all the systems of a family specified
by a structure without numerical bounds. The following definition [BE11b, BE14]
underlines the fundamental difference with respect to the less demanding concept of
robust property.

Definition 2.1. Given a family F of systems and a (relevant) property P, P is a
robust property with respect to F if any system f € F has the property P. P is a
structural property if, moreover, the family F is specified without numerical bounds.

Example 2.1. Given the property of Hurwitz stability (a matriz is Hurwitz stable if
all of its eigenvalues have negative real part), consider the matrices

—a b —a —b
M1—|: c —d:| and M2—|: c _d:|,

where a, b, ¢ and d are positive coefficients. If 0 < b,c <1 and 2 < a,d < 3, matriz
M; is robustly Hurwitz stable. Conversely, matriz My s structurally Hurwitz stable
(for any choice of positive values a, b, ¢, d).

Example 2.2. In the case of a nonlinear parameterised family, such as
(t) = f(z(t),p), z(t)eR", x(0)=z9€R", >0,

where f(-,-) is a fized function and p = [py ...px] is a vector of (constant or time-
varying) positive parameters, a property is structural if it holds for any choice of p.
Yet, a family is not necessarily defined by resorting to parameters. For instance, the
family of systems

(t) = f(x(t)), =z(t)eR", z(0)=zy€R", t>0,

can be considered, where f(-) belongs to a family F; of functions satisfying certain
assumptions. Then, a property is structural if it holds for any f(-) € Fy.

A given system structure can be specified into a dynamic realisation by choosing
specific functions, along with specific parameter values.
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2.2 Qualitative Information about Functions

A system structure may be specified by providing qualitative information about the
functions involved. Some examples of qualitative specifications for scalar functions
(f : R = R) are the following. [BF11b]

e Smoothness: f(-) is continuous, or continuously differentiable, or of class C*

in general.

Positive constant: f(-) =k > 0.

Bounded: |f(-)| < M for a certain constant M > 0.

Positive bounded: 0 < f(-) < M for a certain constant M > 0.

Linearity: f(-) is linear.

Strict monotonicity: f(-) is strictly increasing, or strictly decreasing.

Monotonicity: f(-) is non-decreasing, or non-increasing.

Unbounded monotonicity: f(-) is (strictly) monotonic and asymptotically

unbounded.

e Bounded monotonicity: f(-) is (strictly) monotonic and asymptotically
constant.

e Exact nullity in an open interval: f(-) is exactly null below or above a
given threshold.

e Sigmoid: f(-) = s(-) is sigmoidal, see the cases with n > 2 in Fig. (a);
s(0) = §'(0) = 0, it is non-decreasing and asymptotically constant (0 < s(oc0) <
o0), with a single inflection point (its first derivative has a unique maximum
point, §'(z) < §'(z) for some 0 < T < 0).

e Complementary sigmoid: f(-) = ¢(-) is complementary sigmoidal, see the
cases with n > 2 in Fig. (b); c(x) = s(o00) — s(x), where s(+) is sigmoidal
(hence ¢(+) is non-increasing, 0 < ¢(0) < oo, ¢/(0) =0, ¢(c0) = 0 and it has a
single inflection point).

e Cropped sigmoid: f(-) is a cropped sigmoid, or a cropped complementary
sigmoid (examples are shown in Fig. [2.2)).

e Shifted sigmoid: f(-) is a shifted (cropped) sigmoid or a shifted (cropped)
complementary sigmoid (this is obtained by adding a constant to a sigmoidal,
or complementary sigmoidal, function).

For more general functions (f : R" — R™), the above properties can be assumed
to hold for single components and with respect to specific arguments. For instance,
given the system & = Sf(z) + Rg(x), denoting by f;(-) and g;(-) the components of
the vector functions f(-) and g(+), respectively, in the (scalar) differential equation

m

T; = Z [sijfj(xl, ce X)) F Tijgj(xla s Ta)]

j=1

with s;;,7;; > 0, the scalar function f;(-) is assumed to be decreasing in z; and
increasing in the other variables, while g;(-) is sigmoidal in all of its arguments.
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Figure 2.1: Example of function s(z) = 225, with o = 4 and 8 = 3, and of function c(z) = 57+,
with v = a8 = 12 and § = 8 = 3, for different values of n; note that s(x) + c¢(z) = s(o00) = ¢(0) = .
For n > 2, s(z) is a sigmoidal function, while ¢(x) is a complementary sigmoidal function.
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Figure 2.2: Example of a cropped sigmoidal function (left) and of a cropped complementary
sigmoidal function (right).

2.3 Properties of Interest

The goal of a structural analysis is to assess the structural properties of a dynamic
system. It is often interesting to determine if the system is structurally

e bounded (i.e., the system solution x(t) = ¢(t, 2(0)) is bounded for any initial
condition z(0) in the assigned domain);

e sign-definite (i.e., its Jacobian matrix has sign-definite entries);

e (mono)stable (i.e., the system admits a unique stable equilibrium, see Fig. [2.3]
left);

e bistable (i.e., the system admits three equilibria, of which two are stable and
one is unstable, see Fig. , right), or multistable in general;

e oscillatory (i.e., the system state or output variables exhibit sustained oscilla-
tions, see Fig. ;

e monotone (i.e., the evolution operator preserves a given order in the state
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space, see Fig. ;

e positive (i.e., the positive orthant is invariant for positive inputs);

e adaptive (i.e., the system initially reacts to an external stimulus, but, after a
transient, the original pre-stimulus condition is restored, see Fig. ;

e persistent (i.e., after having received an input and changed its state and output
accordingly, the system remains in the new condition also after the stimulus
has been suppressed, see Fig. ;

e spiking (i.e., a stimulus produces a strong reaction followed, after some time,
by a relaxation, see Fig. [2.§]);

e resilient (or robust, i.e., the system can face damages and work properly even
under failure of some components, by self-recovering or by successfully adapting
to the change in conditions, see Fig. [2.9).

It may also be interesting to determine if the system can structurally exhibit bifurca-
tions (often associated with oscillations or with multistability). Some of the listed
properties will be examined more in depth in the following.

8
25 7
6
2
5
~
< 15 SN 4
1 3
2
0.5
1
0 0¢
0 0.5 1 1.5 2 25 3 0 2 4 6 8
X X

Figure 2.3: A monostable system (left) and a bistable system (right): phase-space portrait. Green
dots denote stable equilibria, red circles unstable equilibria; blue curves are trajectories of the
system.

t () = f(a(t), ult)) t
U |y(t) = g(z(t) Yy

Figure 2.4: An oscillating system.
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}520 *1

Figure 2.5: Monotone system trajectories: & > &y implies that x(¢,&1) > x(t,&2) for all ¢ > 0.

t i(t) = f(2(t),u(t)) t
U |y(t) = g(z(t)) Yy

Figure 2.6: An adaptive system.

t &(t) = f(x(t), u(t)) t
U |y(t) = gz(1) Yy

Figure 2.7: A persistent system.

f &(t) = f(x(t), u(t)) t
U |y(t) = gz(1) Yy

Figure 2.8: A spiking system.

2.3.1 Boundedness

The trajectories are typically bounded in systems where the variables cannot diverge
due to physical /natural constraints (e.g., the solutions of biochemical systems are
globally bounded due to mass conservation constraints and degradation reactions).
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Figure 2.9: A resilient system (contrasted to a non-resilient system, dotted line).

Example 2.3. A class of systems for which boundedness is assured is
j=1

where o;; > 0 and each g;;(x) is a globally bounded function (for instance, a sigmoidal
function, either cropped or not). The system has globally bounded solutions, regardless
of both the exact expression of the functions g;;(x) and the value of the positive
coefficients «;.

2.3.2 Sign-Definiteness

Given a generic nonlinear system & = f(x), where z € R” and f : R" — R", the

system Jacobian matrix J, [J];; = gf_, may be sign-definite. This means that its
J

entries (which are functions of the parameters) cannot assume both positive and
negative values.

This is an interesting structural property: independent of the chosen functions
and parameters, the Jacobian exhibits a given sign pattern. This may happen, for
instance, when the functions describing the dynamics of a system are monotonic and
appear suitably in the system equations.

Remark 2.1. A given Jacobian sign pattern may be the structure that identifies a
family of systems (cf. Chapter @)

Surprisingly, most natural systems have a sign-definite structure.

Example 2.4. Activation/inhibition loops in biochemical systems. [Sonij]
In (bio)chemical systems, most of the interactions are either negative (inhibitory)
or positive (activating): activation and inhibition, being opposite phenomena, lead
to opposite signs in the partial derivatives composing the system Jacobian matriz.
Activation and inhibition feedback loops are common structures in large biochemical
networks: the simplest examples, involving just two interacting species, are shown in

Fig.[2.10.
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585 @

Figure 2.10: Activation/inhibition feedback loops: (a) activation-inhibition, (b) mutual inhibition,
(c) mutual activation. Pointed arrowheads indicate activation, hammer arrowheads indicate
inhibition.

Given two interacting chemical species A and B, suppose that the rate of change of
A s affected by the concentration of B, and vice versa. The corresponding dynamical
system, modelling the time evolution of the concentrations a(t) of A and b(t) of B,
i the presence of a constant mass addition of both, is

a:a0+f<a7b)
b =bo+ g(a,b).

Then

e cither B is an activator of A (for instance, an enzyme that helps catalyse the
production of A, or a protein whose presence enhances the expression of the
gene that produces A) and then the partial derivative W 15 always positive,
or at least non-negative;

e or B is an inhibitor of A (for instance, an enzyme that helps degrade A, or
a protein that represses the gene that produces A), and then % 15 always

negative, or at least non-positive.

Similarly, A is either an activator of B, hence % > 0(>0), or an inhibitor of
B, hence % <0(<0). Also phenomena of auto-activation and auto-inhibition
(positive or negative auto-requlation) may occur. However, auto-inhibition (or auto-
degradation) is the most common, hence diagonal entries are typically negative.
The Jacobian matriz of the system is therefore always (structurally) sign-definite.
Assuming that A is an activator, B is an inhibitor and both species are auto-degrading,

the resulting Jacobian sign pattern is

wir-sn((§ 4)-[; ]

This is an example of activation-inhibition loop, as in Fig. (a). As usual in the
field of control theory, this minimal negative feedback structure guarantees set-point
requlation (or homeostasis, as a biologist would call it).
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In the case of mutual inhibition, each species inhibits the other, as in Fig.
(b) and the resulting sign pattern of the Jacobian is

sign(J) = [: :] .

Such a system can memorise which of the two species was last activated externally,
hence enabling “biological memory”. In fact, if an external input signal transiently
increases the concentration of A over that of B, then A will repress B (which, being
at a lower concentration, will not be able to repress A); assuming that A can maintain
its high level due to the influence of external variables, the situation will persist until
some other external factor allows B to increase over A.

In the case of mutual activation, each species activates the other, as in Fig.
(c¢) and the resulting sign pattern of the Jacobian is

sign(.J) = {; j .

If now some external input signal transiently increases the concentration of A over
that of B, then B will be activated by A and will, in turn, enhance A even more.
Therefore, a sufficiently large external signal applied to either A or B results in a
large increase in both species. This minimal positive feedback structure is fundamental
in biomolecular systems that amplify signals.

2.3.3 Stability

The stability property is the most studied by control engineers, who are often seeking
stabilising controllers for potentially unstable plants. On the contrary, natural
systems are often stable. For example, in biochemical systems, species concentrations
tend to spontaneously reach a stable steady-state value. Even though biochemical
systems are usually stable by their nature, their stability analysis is of interest,
especially when it is carried out with a structural approach: in fact, it is important
to mathematically prove the property of the model corresponding to the considered
system (to check if the model is viable) and to structurally guarantee stability of
highly uncertain models for any choice of the functions (provided they satisfy some
qualitative requirements) along with their parameters.

—a b
=24
with a, b, ¢, d > 0, is structurally Hurwitz stable, since tr(M) = —(a +d) <0 and

det(M) = ad + bc > 0. Therefore, its eigenvalues have negative real part regardless
of the chosen parameter values.

Example 2.5. Matrix
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Example 2.6. Matriz
a b
=)
with a, b, ¢, d > 0, is structurally unstable, since tr(M) =a+d > 0 and det(M) =

ad + bc > 0: hence, regardless of the chosen parameter values, its eigenvalues have
positive real part.

A brief survey of definitions and results on stability is provided in Appendix [C]

2.3.4 Bifurcations

Dynamic phenomena may cause the appearance of sudden discontinuities: a small,
smooth change in the value of a parameter may result in a sudden change in the
system evolution and in a completely different steady-state behaviour. When chaotic
dynamics are present, the dependence on initial conditions is so sensitive that small
differences in initial states lead to trajectories that are abruptly diverging, even
on finite time intervals. Varying a parameter may change not only the stability
properties of a given equilibrium, but also the number of equilibria: when one of
these situations occur, the system is said to undergo a bifurcation. Bifurcation theory,
or bifurcation analysis, allows to study the changes in the qualitative behaviour of
the solutions of a family of differential equations describing a dynamical system, due
to parameter variations. [Str94, [AP95] [Kuz98, BV13]
Given the continuous-time dynamical system

where = € R" is the system state and the function f is smooth in z and p (a real
parameter), an equilibrium point or fized point of the system is a constant steady-state
solution (a vector z such that f(z,p) = 0); a periodic solution of the system is a
trajectory x(t) such that z(t + T') = x(t) for a minimum 7" > 0 and V¢; an invariant
set is a set such that any trajectory starting from an initial condition within the
set remains in the set V¢; an isolated invariant set is a bounded invariant set a
neighbourhood of which contains no other invariant set. Both equilibrium points
and periodic orbits (associated with periodic solutions) are invariant sets. A periodic
orbit is called a limit cycle if it is isolated. The positive limit set of a system is the set
of points to which trajectories converge as t — oo, while the negative limit set is the
set of points to which trajectories converge as t — —oo: their union constitutes the
limit set of the system. An attractor is a bounded invariant set to which trajectories
starting from all sufficiently nearby initial conditions converge as t — co. A candidate
operating condition of a system can be defined as any possible steady-state solution of
the system, regardless of its stability properties: an equilibrium point, periodic orbit
or any other invariant subset of the limit set. [Lev10] A stable candidate operating
condition is an actual operating condition for the system.
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Thus, a bifurcation is a change in the number or in the stability properties of
candidate operating conditions of a nonlinear system, which occurs when a parameter
is varied; the bifurcation is said to occur at the critical value (bifurcation point,
or bifurcation value) of the bifurcation parameter. Bifurcations from a nominal
operating condition can only occur at parameter values for which the condition either
loses stability or ceases to exist.

Local bifurcations occur in the proximity of an equilibrium point (a small-
amplitude limit cycle or a pair of equilibrium points, for instance, can bifurcate
from a nominal equilibrium point as the parameter is varied) and are revealed by
changes in the local stability properties of equilibria as parameters pass through
critical thresholds. A parameter change may cause the stability properties of an
equilibrium to change (in continuous-time dynamical systems, this means that the
real part of an eigenvalue corresponding to a certain equilibrium point is crossing
zero), or may cause the appearance or disappearance of equilibrium points.

If the nominal operating condition of a system is not stable beyond the critical
parameter value at which a bifurcation occurs, and a new candidate operating
condition emerges from the nominal one at the critical parameter value, then: if the
new operating condition is stable and occurs beyond the critical parameter value,
the bifurcation is supercritical (there is an alternative operating condition near the
nominal one), while if the new operating condition is unstable and occurs prior to
the critical parameter value, the bifurcation is subcritical (the system must leave the
vicinity of the nominal operating condition for parameter values beyond the critical
one).

Some examples of bifurcations occurring due to a real eigenvalue transitioning
through 0 are reported next.

Example 2.7. A saddle-node bifurcation occurs when two equilibria (typically
one stable, node, and the other unstable, saddle) exist before the bifurcation point,
collapse into a single equilibrium at the bifurcation point and disappear afterwards
(or the other way round, of course). For instance, as visualised in Fig. for the
scalar differential equation

() = p—x(t)?,

with x(t), pp € R: if > 0, there are two equilibria, one stable (T, = \/jt) and the
other unstable (T = —\/1i), being the Jacobian given by the scalar —2%; if p = 0,
the two equilibria collide into the only equilibrium Ty = 0 (non-hyperbolic); if u < 0
there are no equilibria and all the orbits tend to —oo.

Example 2.8. A transcritical bifurcation occurs when an equilibrium ezists
independently of the value of the parameter, another equilibrium exists and collides
with the previous one at the bifurcation point. After the collision, they exchange
their stability type. For instance, as visualised in Fig. for the scalar differential
equation

#(t) = par(t) + (),
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Figure 2.11: The saddle-node bifurcation in Example visualisation (left) and corresponding
bifurcation diagram (right; stable equilibria are in green, unstable equilibria in red).

with x(t), p € R, the origin is always an equilibrium T (always existing independently
of i), another equilibrium T, = —pu always exists and collides with o for u = 0. For
>0, Tg is unstable and Ty is stable, while it is the opposite for u < 0 (since the
Jacobian is 2T + ).
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_08,
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Figure 2.12: The transcritical bifurcation in Example visualisation (left) and corresponding
bifurcation diagram (right; stable equilibria are in green, unstable equilibria in red).

Example 2.9. A pitchfork bifurcation occurs when an equilibrium exists inde-
pendently of the value of the parameter, while two other equilibria exist on one side
of the bifurcation point, both collide with the previous one at the bifurcation point and
disappear afterwards. In the process, an exchange of stability type occurs. Systems
whose right-hand side is an odd function typically undergo pitchfork bifurcations. For
instance, for the scalar differential equation

w(t) = pa(t) — x(t)%,
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Figure 2.13: The pitchfork bifurcation in Example visualisation (left) and corresponding
bifurcation diagram (right; stable equilibria are in green, unstable equilibria in red).

with x(t), p € R, Tg = 0 is an equilibrium point ¥ p. A bifurcation from the origin
occurs at p = 0, since Ty is the only (stable) equilibrium point for p < 0, but as
p >0 To loses stability (because the Jacobian is p — 3%?) and two additional (stable)
equilibria appear, at T2 = £\/i, which bifurcate from the origin at the critical
parameter value p. = 0. This is visualised in Fig. [2.13.

A Hopf bifurcation occurs instead if, as a consequence of parameter variations,
the equilibrium point of a dynamical system loses stability due to a pair of complex
conjugate eigenvalues of the Jacobian matrix crossing the imaginary axis, while
all of the other eigenvalues remain stable (they have a negative real part for all
parameter values). A periodic solution locally appears from the equilibrium as the
parameter crosses the critical value. In the neighbourhood of a Hopf bifurcation,
under generic assumptions, the equilibrium point can generate a small-amplitude
limit cycle. A system with a stable limit cycle can exhibit self-sustained oscillations,
since trajectories for different initial states converge to the limit cycle and any small
perturbation from the closed trajectory causes the system to return to the limit cycle.
Hence, a Hopf bifurcation generates a periodic solution because, when the real parts
of the eigenvalues are negative, the fixed point is a stable focus; as soon as they cross
zero and become positive, the fixed point becomes an unstable focus, with orbits
spiraling out. Since this change of stability is local, sufficiently far from the fixed
point the phase portrait will be qualitatively unaffected: a periodic orbit will appear
where the near and far trajectory flows find a balance. [vdHO04]

Here the 2D version of the Hopf bifurcation theorem is reported, which was
already known to Andronov around 1930 [AVKG66] and suggested by Poincaré [Poi92];
in 1942 Hopf proved the result for arbitrary finite dimensions [Hop42].
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Theorem 2.1. In the two-dimensional case, consider the system

{a’: = filz,y)

v = gi(z,y)

where k is a parameter. Let (zo,vo) be a fixed point of the system, possibly depending
on k; the eigenvalues of the linearised system at the fized point are given by \(k) =
a(k) £ jB(k). Suppose that for a certain value of k, k = kg, the following statements
hold

e a(ky) =0, B(ky) = w # 0 (conjugate pair of purely imaginary eigenvalues),
with sgn(w) = sgn (%)k:ko (o, Y0),

o (dfl—f))k:% =d # 0 (the eigenvalues cross the imaginary axis with nonzero

speed),

* = %(fmm + fayy + Goay + Gyyy) + ﬁ(fwy(fm + fuy) = Gay(Gea + Gyy) — fraGea +
. 52
fyygyy) 7é 0, with fa:y = <g$£’;>k:ko (.730,?;0) etc.

Then a unique curve of periodic solutions bifurcates from the origin into the region
k> kyif yd <0 ork <kyifyd>0. The origin is a stable fized point for k > ky
(respectively k < ko) and an unstable fixed point for k < ko (respectively k > kg) if
d < 0 (respectively d > 0); the periodic solutions are stable (respectively unstable) if
the origin is unstable (respectively stable) on the side of k = ko where the periodic
solutions exist. The amplitude of the periodic orbits grows like \/|k — ko|, while their
period tends to 2w/ |w| as k tends to ko. The bifurcation is called supercritical if the
bifurcating periodic solutions are stable, subcritical if they are unstable.

Example 2.10. Consider the equation @ — (k — 2?)z +x = 0, which, ifu =z, v =z,
can be written as the first-order ODE system

U=
v =—u+(k—u?)v

The origin is a fixed point ¥k, with eigenvalues A\(k) = %@_ Therefore, the
system has a Hopf bifurcation for k =0: w=—1,d = %, v = 1—16(0—1—0 —240) = —%;
the bifurcation is supercritical and there is a stable limit cycle (isolated periodic orbit)
if k > 0 for each sufficiently small k.

Example 2.11. Hopf bifurcations can arise in biological systems: for instance,
[WH95, [WH96] are about the smallest chemical reaction system with Hopf bifurcation,
which has been considered in [KTS08] as well. Hopf bifurcations also occur in the
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system called the Brusselatorﬂ modelling an autocatalytic chemical reaction, in which
a chemical species acts to increase the rate of its own producing reaction. The
differential equations are

{i =1—(b+ 1)z + az?y,

U = bx — ax?y,

where a and b are constant parameters, real and positive. The only equilibrium of the
system is (1, g), the system Jacobian evaluated at the equilibrium is

b—1 a
o= 0.

The characteristic polynomial is s*> + (1 +a — b)s + a; because of Descartes’ rule of
signs, since a > 0, if b < a+ 1 the equilibrium is stable (two eigenvalues with negative
real part), while if b > a + 1 it is unstable (two eigenvalues with positive real part).

For a fixed value of a, as b varies, the equilibrium point undergoes a change in
stability. To prove that a Hopf bifurcation is occurring at b = a + 1, it suffices to
show that

e the Jacobian eigenvalues are purely imaginary and nonzero when b =a + 1: in
fact, the solutions of s> +a =0 are s = £j+/a

e the rate of change of the eigenvalues real part is nonzero when b = a + 1:

_ Ob—a-1 _ 1
d_ab 2 _2#0

o= (a+1i£)a+2) 7& 0

Since w = —\/a, then v < 0 and the bifurcation is supercritical: a stable limit cycle
exists, with approzimate period 2m/ |w| = 27 /\/a.

2.3.5 Monostability and Bistability

Many simple systems have a unique steady state that is globally asymptotically
stable (monostability), but systems with multiple attractors can arise (for instance,
from complex interaction between processes that would be globally stable if isolated).

Bistability is a widespread phenomenon in nature, which explains a large number
of phenomena, e.g., in cellular functioning (decision-making processes in cell cycle
progression, cellular differentiation, apoptosis) and can be generated by a positive
feedback loop (as in the mutual activation case in Example , where A activates B
and B activates A) with a very sensitive regulatory step. The principle of bistability
underlies as well the operation of several man-made systems, such as mechanical

!The model was proposed by Ilya Romanovich Prigogine at the Free University of Brussels,
hence the model name.
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toggle-switches, flip-flops and memories in digital electronics (bistability is suitable
for storing binary data: one stable state can represent a 0 bit and the other a 1 bit).
Consider the system

where x € Ry, k> 0 and g(x) = ;f:n is a hyperbolic function if n = 1, a sigmoidal
function if n > 1.

5 5

4 4

3 3

2 2

1t ] 1t ]

® g(x) ® g(x)
‘ ‘ ‘ o kx ‘ ‘ ‘ e kx
o0 2 4 6 8 10 00 2 4 6 8 10
X X

Figure 2.14: Monostability vs. bistability: (a) hyperbolic function (n = 1), leading to a single
stable equilibrium; (b) sigmoidal function (n = 8), generating bistability.

Fig. shows the plots of both the terms ¢g(z) and kx, with the choice o = 4,
f =1and k =1/2, when (a) n = 1, and (b) n = 8. In the case n = 1, the two
curves have an intersection at the origin and another with abscissa x = 7. For = < Z,
g(x) > kx (hence & > 0); for x > &, kx > g(x) (hence & < 0). Therefore, z(t)
converges to z, which is the unique stable steady state (Zo = 0 is unstable). When
n > 1, instead, the curves have three intersections, having abscissae z; = 0 and, in
the case n = 8, o = 0.75 and 3 = 8. For « < Zq, kz > g(x), hence z(t) converges
to zero. For Ty < o < T3, g(x) > kx and, for x > Z3, kx > g(x); hence, in both cases
x(t) converges to 3. Therefore, when g(z) is sigmoidal, two stable steady states are
created, one low and one high, along with an intermediate, unstable state.
Remark 2.2. Functions of the form BOE%L:’” along with their complementary functions
H#, appear frequently in biochemistry. In the hyperbolic form, n = 1, they are
called Michaelis-Menten functions (used to model enzyme kinetics, as well as binding
of transcriptional activators and repressors); in the sigmoidal form, n > 1, they
are called Hill functions (where the so-called Hill coefficient n expresses the level of
cooperativeness of the ligand binding). [Alo006] It is clear, then, that in biochemical
systems a higher cooperativeness level can induce a bistable behaviour.

The monostable or bistable behaviour depends on the qualitative shape of the
curves, determined by the value of n. While a bistable system can be resting in
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either of two stable steady states, separated by an unstable state, in a multistable
system, more in general, two or more stable steady states are present.

Example 2.12. The system [Wil09]

{33'1 = 2]€1$2 — ]{321'% — /{331311'2 - ]{]4.1'1

jfg = ]{321,’% — ]{51{L’2

can admit at most three steady states: the trivial i’gl) = Egl) = 0 and the pair

23 = (ky £ vVEiD)/(2ks), 25% = (222 /ky, where D = ky — 4ksky. For D > 0,
all of the three steady states are real, and the second and third are always positive;
at D = 0, a saddle-node bifurcation occurs and the second and third steady states
collapse into a single one, while for D < 0 just the trivial equilibrium exists. It can
be shown that, for D > 0, the first and third steady states are always stable, while
the second is a saddle point (hence, unstable). This system can therefore exhibit
bistability. The system phase-space portrait for k1 =8, ko = ks =1, ky = 1.5, with
the equilibria and some trajectories, is shown in Fig. right.

2.3.6 Oscillations

Building oscillators is crucial to provide timing in man-made systems; for example,
all synchronous electronic circuits rely on a “clock” signal (a periodic signal, usually
a square wave) to govern their activity. But oscillations are fundamental in everyday
life as well, for timing human activities (pendulum clocks work based on the harmonic
oscillations of a swinging bar), and can even make life much happier by producing
music (stringed musical instruments generate their sound thanks to vibrating strings,
woodwinds thanks to the vibrations of an air column, induced by a sharp edge that
splits the airstream or by a vibrating reed, or reeds). Oscillations can be produced
by external inputs (as happens in the case of a string, or of a reed) or can be
self-generated, typically by systems having an unstable equilibrium associated with a
pair of complex eigenvalues with non-negative real part (this is the case of oscillators).
Periodic biochemical and biophysical rhythms are ubiquitous characteristics of living
organisms. Rhythmic phenomena occur at all levels of biological organisation, from
unicellular to multicellular organisms, with periods ranging from fractions of seconds
to years [Gol97]; a lot of physiological properties show periodic changes almost
synchronous to the 24 hours cycle of light and darkness on earth (and are therefore
called circadian rhythms) [Win80].
The simplest oscillations can arise from two-component networks, such as

T = f(.ilﬁ,y),
{z) = g(z,y), (22)

where z,y € R. Bendixson’s negative criterion states that, if 9f/0x + 0g/0y is of
constant sign (not identically zero) in a region D of the (z,y) plane, then there can
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be no periodic solution of system ([2.2) entirely lying in D. The system ([2.2)) can
have in general one or more steady-state solutions satisfying

The stability of such steady states is determined by the eigenvalues A of the Jacobian
matrix evaluated at the steady state

/e {(8]”/83:)(5@ (af/ay)(i,g)} _ |:j11 j12:|
&) (09/07)zq) (99/0Y) @y Jo1 J22|

The steady state is stable if ®(\) is negative for both of the eigenvalues of .J, namely,
the roots of the characteristic equation A —tr(J)A+det(.J) = 0. In view of Descartes’
rule of signs:

e if det(J) < 0, then J has one positive and one negative eigenvalue, resulting in
a saddle point;

e if det(J) > 0 and tr(J) < 0, the steady state is stable;

e if det(J) > 0 and tr(J) > 0, then there is an unstable node or focus.

Since the trace and determinant of J depend continuously on the parameters, if
by varying a parameter k the trace tr(J) can go from negative to positive values,
with det(J) > 0, then the steady state loses stability at tr(J) = 0 (for k = kepit).
At the bifurcation point, tr(J) = 0, the eigenvalues are purely imaginary numbers,
A = tjw, w = /711722 — j12J21. Close to the bifurcation point, for k & k., small
amplitude limit-cycle solutions surround the steady state and the period of oscillation
is close to 27/ |w|: periodic solutions arise due to a Hopf bifurcation at k = kepy.

Oscillations often arise due to a Hopf bifurcation, which can occur in a two-
component network under some requirements. If both j;; and j. are always negative,
then tr(J) never changes sign and a Hopf bifurcation cannot occur (cf. Bendixson’s
negative criterion): thus, one of them must be positive for some parameter values. If
j11 and jao are of opposite sign, then ;15 and jo; must also be of opposite sign in order
for det(J) to be positive (otherwise there cannot be a pair of complex eigenvalues).
Four characteristic sign patterns of the Jacobian matrix can typically produce Hopf
bifurcations in two-dimensional systems:

— + i i
— 4| + 4]

T i P e

Example 2.13. Lotka-Volterra model. [Lot20, [Vol26] The system

{xﬁ = k171 — kox170

To = kox179 — k‘3$2
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Figure 2.15: Lotka-Volterra oscillator: phase-space portrait (left) and time evolution starting from
initial conditions [0.35 0.51]T (right).

where ki, ko, ks are positive parameters, admits two equilibria, the trivial T, = 1o =0
and the positive Ty = ks/ks, To = ki /ka. The system Jacobian matriz is

J o kl - kg[f‘g —]{?2(731
- koTq kot — ks |~

The Jacobian computed at the two equilibrium points is

ki O
J(O,O) - |:O —k'3:| )

hence the origin is a saddle-point (unstable), and

0 —ks
J(kg/k’g,kl/k‘g) - k'l 0 )

which has a pair of purely imaginary complex eigenvalues s = +j+/ki1ks, responsible
for the onset of oscillations. A phase-space portrait showing the equilibria and
some orbits, along with the system time evolution starting from initial conditions
[0.35 0.51]", is reported in Fig. for k1 =10, ko = 12 and k3 = 8. Howewver, it
must be stressed that the oscillatory nature of the positive equilibrium of the system
does not depend on the specific choice of parameter values.

Example 2.14. Van der Pol model. The system

Zi’l = T2
jfg = (1 — ./L‘%)IQ — T

only admits the equilibrium Zo at the origin, which is unstable (the corresponding
Jacobian has two complex conjugate eigenvalues with positive real part). As shown
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in Fig. (left), the orbits tend to a limit cycle either from infinity or escaping
from . Fig. (right) shows instead the time evolution starting from an initial
condition lying on the limit cycle: [—1.45 0.819]T.
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Figure 2.16: Van der Pol oscillator: phase-space portrait (left) and time evolution starting from
initial conditions [—1.45 0.819]T (right).

2.3.7 Monotonicity

Monotone systems [Hir88|, [Enc05l [Son07, [Smi08] enjoy remarkable properties that
can be exploited to facilitate both the analysis [AS04bl [GS07, [ADLS06, [DLASOT,
Son07, [ASO8, WSO8, [ADLS10, BT11, BFG15b] and the control [AS03, [CF06a] of
dynamical systems.

Denote by x(t) = ¢(t, ) the solution at time ¢ of the initial value problem

a(t) = f(z(t)),  2(0)=¢&,

where f: X — R" is a locally Lipschitz vector field and x takes values in a closed set
X C R"; the solutions are unique and defined for all ¢ > 0. Assume that a partial
order denoted by = is defined on X’; a partial order is a binary relation satisfying
the following axioms:

o reflexivity: © = x, Vo € X
e transitivity: x = y and y > z implies x = 2, Vx, y, z € X
e antisymmetry: z > y and y > x implies x =y, Vz, y € X.

Assume also that the defined partial order is closed: if x(n) — x and y(n) — y for
n — oo and x(n) > y(n) for all n, then also x > y. Then, the system is monotone if
z(0) = y(0) implies ¢(t, z(0)) = ¢(¢,y(0)), V¢ = 0.

In R”, a possible partial order is that in which x = y if x; > y; forallt =1,... n;
in general, partial orders associated with any possible orthant in R can be defined.
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In fact, a closed partial order relation can be defined by introducing a closed pointed
positive convex cone I C R™ and claiming that x > y if and only if z — y € K.

Example 2.15. In R?, the “northeast” order can be defined as (Z,y) > (x,y) iff
>z andy>y: (T,9) — (x,y) = (T — 2,9 — y) € Kpe, where K, = {(a,b) : a >
0,b > 0}. Conwversely, the “northwest” order is defined as (Z,y) > (z,y) iff T < x
and gy > y: (z,9)— (z,y) = (T—x,5—y) € Kpw, where Ky = {(a,b) :a <0,b > 0}.

Formally, a cone £ C R" is a nonempty, convexE| set that is closed under
multiplication by a positive scalar and pointed (i.e., N =K = {0}). Assume also
that K is closed (0K C K) and has nonempty interior (intkC # (}). Then, the cone K
can induce the following order relations in R™:

e v -yiff t —y ek,
o v —yiff v > yandz # vy,
o v > yiff v —y € intK.

A signature tuple (s1,...,S,), where s; = 1 or —1 V i, defines the order z >; y
if and only if s;z; > s;9; V i. The cones Ky = {x € R" : x >, 0} are denoted as

orthant cones; the positive orthant cone, defined by s = (1,...,1), is also called the
cooperative cone. [Enc05]

Example 2.16. Given the “northeast” order in R™, associated with the first orthant
Kne = R} @ >y means that x; > y; for all i; x >y means that x; > y; for all
1; © >y means that x; > y; for all i and, moreover, for at least one component j,
T; > Yj.

A system is therefore monotone if, for all x > y and all t > 0, ¢(t,x) = ©(t,y);
if the partial order = is induced by the positive orthant K, = R}, the system is
cooperative. A system is strongly monotone if > y implies ¢(t, z) == ¢(t,y) for
all ¢ > 0.

When dealing with monotone systems, Metzler matrices are fundamental.

Definition 2.2. Matriz A is a Metzler matrix if it has nonnegative off-diagonal
entries: a;; > 0 for all © # j.

A linear system & = Ax is:

e monotone if o > yo implies ¢(t, xg) > @(t,yo) for all t > 0, and this is true iff
A is a Metzler matrix;

e strongly monotone if xy > yo implies p(t, ) > @(t,yo) for all £ > 0, and this
is possible if A is Metzler and irreducible )

2A set C is convex if the line segment between any two points in C lies in C: for any z,y € C
and any real ¥ with 0 <9 <1, 9z + (1 — ¥y € C.

3Given matrix A € R"*" and the associated directed graph G(A) with n nodes, where (i, ) is
an arc iff aj; # 0, A is irreducible if G(A) is strongly connected (each node can be reached, starting
from any other node, by following arcs in the direction in which they point).
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Of course, the above concept can be generalised by considering any orthant cone
KCs and the corresponding directions of the componentwise inequalities.

More in general, a nonlinear system is monotone with respect to the partial order
induced by a generic orthant cone K, in the case of class C! vector fields f(z),
x € X, if and only if the Jacobian matrix of the system, possibly after changing sign
to some of its row-and-column pairs (according to the signature that defines Ky), is
Metzler for all xz € X.

With the additional hypothesis of irreducibility, strongly monotone systems are
obtained: for systems strongly monotone with respect to orthants, x(0) > y(0) implies
that x;(t) > y;(t) for all i. Strongly monotone systems have peculiar dynamical
properties: no chaotic dynamics can occur and not even limit cycles can arise.

Input-to-state monotonicity can be defined by considering the system

T = f(z,u)

and assuming that the solution z(t) = ¢(¢,&,u) at time ¢ with initial conditions
x(0) = £ is defined for all inputs u(-) and all times ¢ > 0. Then, the system is input-
to-state monotone if there are orders in the state and input spaces (corresponding to
an assigned signature) such that

€& ult)>a()Vi=0 imply o(t.&u) > p(t,E,a) Vi 0.

It is input-to-state anti-monotone if the input has a negative effect on the state:

§2& u(t)<a(t)Vt>0 imply o(t,&u) > @(t,E,a) Vi>0.

If an output y = g(z) is present, the system is input-output monotone (respectively,
input-output anti-monotone) if it is input-to-state monotone (respectively, input-to-
state anti-monotone) and, moreover, the output map ¢(-) preserves the order as
well (this means that the components g;(-) are either monotone non-increasing or
monotone non-decreasing functions, depending on the assigned signature that defines
an order in the output space).

Monotone systems have well-defined characteristics and constitute a well-behaved
set of building blocks for arbitrary systems; moreover, cascades of such systems
inherit the same properties. Therefore, interestingly, a system can be analysed by
decomposing it as an interconnection of monotone subsystems. [AS04al, [DESZ07]

2.3.8 Positivity

Often, for real systems, intuitive physical considerations guarantee the non-negativity
of the solutions. In the corresponding mathematical model, non-negative initial
conditions (possibly, in the presence of positive input sequences) must generate
trajectories that are confined in the non-negative orthant. The fact that a system
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naturally has non-negative state variables must be taken into account when designing
a controller, not to alter the natural positivity of the system.

Interestingly, in the linear case, positivity is equivalent to monotonicity: both
properties hold iff the state matrix is Metzler (in the continuous-time case; non-
negative in the discrete-time case).

In the nonlinear case, conversely, there are positive systems that are not monotone,
and monotone systems that are not positive (examples are provided in [BCVIH]).
For instance, in dimension 1 each system @ = f(x), with regular f, is monotone, but
it is not necessarily positive; any chemical reaction network is positive, but it is not
monotone in general. However, the fact that a monotone nonlinear system, under
mild smoothness assumptions, has a Jacobian matrix that is Metzler, when evaluated
at any equilibrium point, corresponds to local positivity of the linearised system.

2.3.9 Perfect Adaptation

The insensitivity of system properties to parameter variations and uncertainties
in the components, as well as in the environment, is essential for both biological
and man-made systems. Adaptation and compensation mechanisms are needed
to preserve the system functionality in spite of changing conditions and persistent
external perturbations. A system is adaptive if its output initially responds to a
stimulus, but then, after a transient response, returns to the pre-stimulus value even
though the stimulus persists. If the output converges exactly to the pre-stimulus
level, adaptation is called perfect, while it is called partial if the output only returns
close to, but not exactly to, the pre-stimulus level.

It is worth pointing out that the word adaptive is used with a completely different
meaning in control theory, where a control system is called adaptive if it automatically
changes its parameters, depending on those of the controlled system, in order to
assure a certain property.

Interesting examples of perfect adaptation in nature are offered by bacterial
chemotaxis [BLI7, [SPO97, [ASBL99|, eukaryotic gradient sensing [LI02] and yeast
osmoregulation [MGUMvOQ9]. Efforts have been made to determine motifs that
can achieve perfect adaptation [MTEST09] and to design biomolecular network
modifications that enable perfect adaptation [WSA12]. Perfect adaptation obeys the
internal model principle [Son03] and is equivalent to the presence of integral feedback
[YHSDOO] and of zeros at the origin in the system transfer function [DURO0S].

In fact, perfect adaptation (seen as a robust property, due to the interconnection
structure and independent of parameter values) can be formulated in terms of integral
feedback control. The standard solution to develop a system that robustly tracks a
desired steady-state output value, or function, is a control scheme that feeds back to
the system the time integral of the system error (the difference between the actual
and the desired output), as shown in Fig. : if the closed loop system is stable,
the steady-state error is driven to zero regardless of perturbations in the input or in
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the parameters. Any equally robust solution leading to zero steady-state error (and,
thus, perfect adaptation) must be equivalent to integral control. [YHSDOO]

yl_ yO

Figure 2.17: Integral feedback control. A process with gain k£ has input u; the difference between
the actual output y; and the desired steady-state output yo (a constant) gives the error y, whose
time integral z is fed back into the system: & =y, y = y1 — yo = k(u — x) — yo. Provided that
k >0,y — 0 ast— oo because at steady-state © =y = 0.

Consider an asymptotically stable linear time invariant (LTI) system

t = Ax + Bu,
y = Cx + Du,

where z € R" is the state vector, u € R is the input, y € R the output and A € R™*",
B € R C ¢ R D € R, with all the eigenvalues )\; of matrix A having
R(N\;) < 0,7 =1,...,n. At steady state (z = 0), y = (D — CA'B)u. For all
constant input values u (neglecting the trivial case in which [C D] =0), y =0 if

and only if
A B
det [ C D] = 0.

Therefore, a LTI dynamical system has perfect adaptation if and only if its transfer
function has a zero at the origin. This condition is satisfied if and only if there
exists a constant row vector k € R™, k # 0 such that k[A B] =[C D] (the matrix
rows are not linearly independent). Hence, if z = kz, then 2 = ki = k(Az + Bu) =
Cx 4+ Du = y. The condition Z = y means that integral feedback control is an
inherent property of the system; this is proved to be equivalent to robust perfect
adaptation.

In the case of a nonlinear system, if the system has robust perfect adaptation,
then its linearisation around the equilibrium point must have perfect adaptation.
Hence, robust perfect adaptation reveals that an integral control is embedded in the
system.

Consider a nonlinear system of the form

& = Ag(x) + Bu,
y = Cx + Du,
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admitting an asymptotically stable equilibrium point (z, ). To check if the system
has perfect adaptation, a constant perturbation on the input, with respect to the
equilibrium input value, must be introduced. To determine if, after a transient, the
system responds by returning to the equilibrium value prior to the perturbation,
consider the linearised system around the equilibrium point,

z=Jz+ Bv,
w=Cz+ Dv,

where z = x — Z, v = u — u and J is the system Jacobian matrix. The perfect
adaptation condition is equivalent to requiring that

J B
det [C’ D} =0,

with the additional condition det J # 0, which is assured by the asymptotic stability
of the equilibrium point.

Example 2.17. The system

. la b gl
m—[c d}x—k{o}u—AJz—l—Bu,

Yy = [nc nd} x=Cux,
with A stable (and D = 0), is structurally perfectly adaptive, since
a b g
det | ¢ d 0| =det A B =0,
C D
nc nd 0

regardless of the chosen parameter values.






Dynamical Networks

Dynamical networks are composed of a finite number of subsystems, each possibly
having its own dynamics, interconnected by suitable interactions (which can be seen
as generalised “flows”). Complex networks of interacting components, ranging from
technological to natural networks, are ubiquitous in every aspect of daily life. Hence,
a wide variety of real systems can be modelled in a dynamical-network framework

[BBV0S, ME10, RC10, Bar12], for instance:

chemical and biochemical processes (gene regulatory networks, signalling path-
ways, metabolic networks) [Lot20), [Fei87, [Fei95al, [Fei95bl [CF05, [Alo06l, [CFO6D)
ICha06, MC08, [CWLA05, DK09, TA10, [CB11l, DVM14];

biological and ecological systems [Vol26|, Lev68| [May74] [Lev75, [PL85, [DLRO3,
DLLR03| [EK05, DLR0O5, DRJ0O7, DGRT09, MDJ™11];

economical networks, social networks and opinion dynamics [FJ99, [EKT0,
FTATIL [Alt12) [CF12, [DCBI12, [Alt13, [ACFO13, [FRTTI3, MJB14, VFFO14,
ALT5L IMEBIS, [FIRT15, [Fril5, RETI15, BCGV1E, BCGV16;

consensus and synchronisation systems [OSMO04, BGP06, [(OSEMO07, RBAQT,
ICEFSZ08]; [SWXO08, [SAS10, [CCSZ11l, [CZ14];

e flow networks [AZ07, [OnZ07, BBP10, WvdS13a, WvdS13bl, [DBO*13, BP15];
e water distribution networks [LK69, BBGP13];

e inventory management and production-distribution systems [SP85 [BYZ95,

This

BMU00, BT06, SPTK0S, BBP10, BPA15];

power networks and smart grids [[TAQ9, [Far10, SHPB12];

transportation networks [ATI98, MOnL0S];

traffic and congestion management systems [[ft96], [ft99];

vehicle platooning and formation flight of aircrafts [RI96], WCS96, [AR98|, [D”A 98|
RBAO7, [SHO7, PTBO3];

telecommunication and data communication networks [MS82, [MP95| [EV89,
1D90, ID02]; ...

chapter presents the distinctive features of dynamical networks, along with

the graph representation that constitutes an effective visual representation of the
structure of a dynamical network. The structural approach discussed in Chapter [2|is
specialised to the case of dynamical networks, exploiting their special characteristics
for both structural analysis and network-decentralised control synthesis.
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3.1 Local Interactions, Global Behaviour

Dynamical networks can be seen as a generalisation of the concept of compartmental
system. Compartmental systems [God83, [JS93|, first arisen in a biological and
physical context (with applications to physiology, pharmacokinetics, metabolism,
epidemiology, ecology, etc.), are fundamental both

e for the dynamic modelling of processes that are subject to conservation laws
(such as mass balance) in various fields [Jac72, [And83, [KIKXA84];
e for the formulation of flow and congestion control problems [BG06, [HHB0G].

A compartmental system is the ensemble of a finite number of compartments (indi-
vidual units, corresponding to amounts of homogeneous material) interconnected by
flows of material. The compartments may either occupy different physical spaces
(so that the flow between compartments corresponds to moving material between
different physical locations) or the same physical space (so that the exchange of
material between compartments corresponds to the transformation of one substance
into another). Compartmental systems have some fundamental properties.

e Transfer flows connect at most two compartments.

e Proper “mass” conservation constraints hold for material transfers between
compartments and from/to the external environment. Denoting by z the
state vector associated with the ensamble of compartments (where each state
variable is the amount of material in the corresponding compartment), the
total “mass” 1"z is preserved in the absence of connections with the external
environment, i.e., for a closed system; conversely, in the presence of exchanges
with the external environment, the total mass variation 1" corresponds to
the difference between the sum of inflows and the sum of outflows.

e The state variables must be non-negative, since they represent the quantity
of material in each compartment. Hence, compartmental systems are positive
systems: the non-negative orthant is forward invariant, and forward controlled-
invariant for any non-negative input sequence [FR00, BF02].

e Compartmental systems are monotone [AS03] [CF06al [Smi0§].

Dynamical networks are not necessarily positive systems and do not need to
include mass conservation constraints. Moreover, while flows in compartmental
systems require interactions between at most two compartments, for dynamical
networks each “flow” can result from interactions among more than two subsystems.

The distinctive feature of dynamical networks is that the interactions occur locally,
since flows involve a subset of the subsystems only; however, local events have global
consequences, since they determine the behaviour of the overall system. It is therefore
interesting to study:

[A] [Analysis] how the global behaviour is affected by the local interactions
(analysis) and, in particular, by their “structure” (structural analysis);
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[C] [Control Synthesis] how a desired global behaviour can be obtained by
deciding the local interactions, given their “structure” (control synthesis),
possibly under constraints depending on the “structure” itself (structural
control synthesis).

To understand more precisely what a structure is, in the special case of dynamical
networks, their graph representation needs to be introduced.

3.1.1 Graph Representation and Structure

A graph G is constituted by a set of nodes and a set of arcs connecting pairwise
the nodes, as in Fig. [3.1] left. More formally, a graph is defined as the ordered pair
G = (N, A), where:

e the nodes are the elements of the set N' = {1,2,...,n}, whose cardinality
|IN'| = n is the order of the graph;

e the arcs are the elements of the set A, which is a 2-element subset of N,
A C {{ni,n2} : ny,ny € N}, and whose cardinality |.A| is the size of the graph.
Note that, for directed graphs (with directed arcs), the set A is composed of
ordered pairs of nodes (n;,n;), such that (n;,n;) # (n;,n;).

If, conversely, the elements of A are subsets of N each including a number of elements
between 2 and |N| (not necessarily the same for all of the elements of A), then A
is said to be the set of the hyperarcs and the resulting pair G = (N, A) is called a
hypergraph (see Fig. , right). Some fundamental concepts of graph theory will be
summarised in Section .1l

i

graph hypergraph

Figure 3.1: A graph of size 7 (left) and of a hypergraph of size 5 (right), both having order 5.

All dynamical networks admit a graph (or, more in general, a hypergraph)
representation, in which nodes represent subsystems and arcs represent flows, or
interactions. A graph strictu senso can be associated with compartmental system,
where flows always require the interaction of at most two compartments. In the more
general case of dynamical networks, it may be necessary to resort to a hypergraph,
since interactions can involve more than two subsystems and are then associated
with hyperarcs. For the sake of simplicity in the exposition, however, hypergraphs
and hyperarcs will be often referred as graphs and arcs.
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In general, in the considered dynamical networks, interactions with entities that
are external to the system may occur as well. In this case, also arcs involving just one
node can be considered, as in Fig. [3.2] to represent a connection with the “external
environment”. External connections may be seen as connections between a node of
the graph and a fictitious node (node 0) representing the external environment.

hypergraph

Figure 3.2: An example of a graph (left) and of a hypergraph (right) with external connections.

Which is, then, the structure of a dynamical network?
A thorough description of a dynamical network is provided by three basic elements:

e the interaction topology, corresponding to the associated graph;

e the internal dynamics of the subsystems (describing the inner, spontaneous
behaviour that each subsystem-node would exhibit if isolated from the rest of
the system-graph);

e the interaction functions (functional expressions associated with the connections-
arcs in the graph).

The precise knowledge of internal node dynamics and of interaction functions
is not fundamental for describing the essence of a dynamical network. The most
essential component is clearly the first: to obtain a structural representation of
a dynamical network, the nodes and the arcs can be seen just as “black-boxes”
(which can be possibly required to satisfy some qualitative properties), while the
topology of the interconnections among the nodes in the graph needs to be known
exactly. Therefore, the structure of a dynamical network is the corresponding graph,
along with possible qualitative requirements on the subsystem dynamics and on the
interaction functions.

It is worth stressing that the graph can be associated with a matrix that fully
describes its interconnection topology: the incidence matrix B, whose rows are
associated with nodes and whose columns are associated with arcs (of course, its
rows and its columns can be arbitrarily permuted, by assigning a different order
to nodes and arcs). Each entry b;; of matrix B is 1 if the jth arc enters node i,
—1 if it leaves node ¢ and 0 otherwise. This means that, for proper graphs (not
externally connected), matrix B has zero-sum columns; this is not true in general
for hypergraphs and for externally connected graphs.
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For instance, the incidence matrices associated with the graph and hypergraph
shown in Fig. are, respectively,

-1 0 o0 1 0 -1 O -1 0 0 -1 0

1 -1 0 0 1 0 O 1 -1 0 0 1
Bg=10 1 -1 0 0 0 0}, By=10 -1 -1 0 0
o o 1 -1 -1 0 1 o 1 1 -1 -1

o o0 o o0 0 1 -1 o 0 0 1 0

Hence, in the following, a graph (hypergraph) will be formally associated with
its incidence matrix, which is an equivalent description of the graph structure.

3.2 A Twofold Goal

Analysis and control synthesis for dynamical networks are needed in different situa-
tions.

[A] The interaction topology is fized, the internal dynamics of the subsystems
are fired and the interaction functions are fized as well; then, the aim is to
investigate how the local interactions produce the global behaviour.

[C] The interaction topology is fized, the internal dynamics of the subsystems are
fized, but the interaction functions can be decided; the aim is then to choose the
local interactions so as to produce the desired global behaviour. Even though
the control strategy is decided locally, the goal is to govern the dynamics of
the whole system.

Also, the two approaches of analysis and synthesis are especially meant for

[A] natural systems (this is the domain of system theory applied to the natural
world, recently capturing a strong interest under the name of systems biology,
which aims at understanding the design principles underlying the functioning
of biological systems, based on system-theoretical tools and techniques);

[C] man-made systems (this is the broad realm of engineering, and control theory).

Analysis and synthesis are far from being disjoint: they have a tight bond, since

e engineers can learn from nature when designing control strategies (and most
often natural systems are organised as dynamical networks in which the global
behaviour is determined by the sum of a huge number of local interactions);

e local interactions can be engineered in natural systems that spontaneously
exhibit a dynamical network structure (such as chemical and biochemical
reaction networks and biomolecular systems, where interactions among species
or molecules occur locally and then produce a global behaviour: complex
metabolic networks and pathways) so as to obtain the desired global behaviour.
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Nature has developed effective strategies to deal with highly complex dynamical
networks, ensuring an extremely robust and reliable behaviour, in spite of severe
uncertainties, intrinsic noise and environmental fluctuations. Conversely, engineers
often experience difficulties in controlling much simpler artificial networks. Both
natural and artificial networks face the same needs and challenges: for instance,
in the most diverse external conditions, living organisms preserve a sturdy and
resilient functioning, thanks to the adjusted regulation provided by enzymes; and
power networks and smart grids, with dynamically changing loads and connections,
should exhibit the same efficiency and promptness. To reach this goal, can engineers
unravel and then adopt nature’s strategy? There are many examples of biologically-
inspired design of dynamical networks: for instance, agents can be coordinated by
mimicking collective animal behaviour such as flocking, swarming, shoaling, as shown
in Fig. [3.3] (this is the approach of the so-called swarm robotics [BFBD13]); the
optimal disposition of wind turbines in a wind farm can be decided inspired by
fish schooling [WLD10]; formation flight of aircraft can mimic bird flocking [AR9S,
PTBO03]. Engineering local biochemical interactions to design from the bottom-up
new large scale biological circuits with specific functionalities is the main goal of
synthetic biology, which aims at building complex functional biomolecular systems
made of simple components, as complex computational systems are built made of
nanometric silicon devices (the analogy is illustrated in Fig. [3.4]) [End05, DWSOT,
Alo00, [Alo07al, [EL00, KWWO06, KW11l, FFK*11, [FGEMI14]. Suitable microscopic
shapes and machines can also be built by engineering interactions at the molecular
level, as shown in Fig. [3.5| [ABY ™10, DBCI2].

On the one hand, studying, analysing and modelling the interactions among
the bricks that compose and sustain life and among living creatures in nature is
interesting per se. On the other hand, once an insight has been gained into the
basic functioning of nature, it is much easier to imitate it in order to both (i) build
artificial systems having the same astounding efficiency and resilience, and (ii) forge
new biomolecular circuits with the desired behaviour (and it must not be forgotten
that designing artificial biological systems and synthetic biochemical circuits can
help a deeper understanding of natural biological design [MvO09]).

Therefore, analysis and synthesis are not only complementary facets of the same
approach, but can also aid and streamline each other in a virtuous circle.

Figure 3.3: Robotic agents can be coordinated, for example, by mimicking a shoal of fish.
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(a) Industrial assembly. (b) Molecular assembly.

Figure 3.4: Analogy between industrial and molecular assembly: (a) electronic components as
sub-blocks of a computational system, (C)Arduino microcontroller; (b) biochemical components as

sub-blocks of cubic RNA-based scaffolds, .

(a) Molecular gear. (b) DNA box.

Figure 3.5: Molecular machines: (a) molecular differential gear, (©)1997 Institute for Molecular
Manufacturing; (b) DNA box for targeted transport of molecular payloads [DBC12].

Recall now the distinction made above between fized (in the case of analysis)
and decidable (in the case of control synthesis) features. Of course a quantity, or
function, that is fized is not necessarily known; it simply cannot be changed or
decided. Often, what is fixed is completely unknown, or only partially known. In the
case of dynamical networks, the internal node dynamics and the interaction functions
are unknown or uncertain in most cases. Hence, a structural approach to the analysis
of dynamical networks is beneficial: the properties and behaviours of a dynamical
network are assessed based on its structure only, independent of precise parameter
values and functional expressions. Conversely, what can be decided is (obviously)
always known. Yet, the choice can be subject to restrictions, due to constraints
that need to be satisfied. Whenever these constraints depend on the interconnection
topology of the dynamical network, hence on its structure, a structural approach to
the control of dynamical networks is beneficial to govern the dynamics of the whole
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systems by means of local agents with structurally restricted information.

Structural analysis aims at studying phenomena and behaviours based exclusively
on the intrinsic nature (i.e., the structure) of the system under consideration. A
structural approach to the analysis of dynamical networks:

e [local interactions structure| takes into account exclusively the structure
(essentially, the graph topology along with qualitative properties) of the local
interactions among subsystems;

e [parameter-free] is independent of parameter values;

e [global behaviour| aims at explaining robustness and characteristic be-
haviours of the global system.

Structural analysis of dynamical networks will be dealt with in Part

When the system is controlled or coordinated by agents making their decisions
based on restricted information, the restriction is likely to depend on the topology
of the interactions (the system structure). Then, the control strategy must be such
that:

e [local interactions] a control agent is associated with each arc of the graph,
allowing local interactions to be decided;

e [local structure-based information] local interactions are decided based on
local information only (the meaning of local depends on the graph topology);

e [global behaviour] the aim is to control or coordinate the global system
behaviour.

In Part the concept of network-decentralised control will be introduced: a
control is network-decentralised if each control agent, associated with an arc of the
graph, decides its strategy exclusively based on information about the subsystems
associated with the nodes it interconnects.



Essential Mathematical Concepts
and Results

This chapter presents some indispensable mathematical concepts, outlines some
fundamental theories and provides essential results that will be useful throughout
the thesis.

4.1 Graph Theory

As seen in Chapter [3| a graph is described by the ordered pair G = (N, A), where
N ={1,2,...,n} is a set of nodes (whose cardinality |N| = n is the order of the
graph) and A C {{n1,n2} : n1,ny € N'} is a set of arcs connecting pairwise the nodes
(whose cardinality |A| = m is the size of the graph); an example is shown in Fig. [4.1]
Hypergraphs are graphs in which each arc (denoted as hyperarc) can connect more
than two nodes. Two nodes of a graph are adjacent if they are connected by an arc.

O—(2)
i

Figure 4.1: An example of a graph of size 5 and order 4.

A graph Gs = (N, Ay) is a subgraph of G = (N, A) if Ny C N and A, C A (all
of the nodes and all of the arcs in the subgraph belong to graph G as well).

A graph may be directed, if a direction is assigned to each of its arcs, or undirected
otherwise. In the present thesis, a direction for all arcs will be almost always indicated
in the graphs; however, for some purposes, the arc orientation may be neglected.

Some special graph topologies are discussed in the following.

e A bipartite graph is a graph whose node set can be partitioned into two sets,
N; and N5, so that each arc connects a pair of nodes belonging one to NV; and
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M

a) Bipartite graph. ) Linear graph, or path, of order 4.
Cycle graph of order 5. ) Tree. ) Star.

Figure 4.2: Special graph topologies.

one to N5; namely, no arc exists that connects either two nodes in N7, or two
nodes in N> (see Fig. [4.2] (a)).

e A linear graph or path graph of order k is a graph whose nodes can be listed in
order, ny,...,ngy1, so that the (undirected) arcs are (n;,n; 1) fori=1,... k;
nodes ny and ny; are denoted as the eztrema of the path (see Fig. (b)). In
an oriented path (or directed path), all the arcs must have a path-consistent
orientation (for instance, the path in Fig. (b) is oriented). If a linear graph
occurs as a subgraph of another graph, it is a path in that graph.

Connectivity. In an undirected graph, a pair of nodes (7, j) (which is unordered)
is connected if a path leads from ¢ to j (and disconnected otherwise). An undirected
graph is then connected if every unordered pair of nodes in the graph is connected.
In a directed graph, an ordered pair of nodes (i, j) is strongly connected if a directed
path leads from i to j; the ordered pair is weakly connected (or connected) if an
undirected path leads from i to j (regardless of the direction of the involved arcs). A
directed graph is then strongly connected if every ordered pair of nodes in the graph
is strongly connected and weakly connected if every (ordered) pair of nodes in the
graph is weakly connected.

e A cycle graph of order k > 2 is a graph whose nodes can be listed in order,
ni, ..., Nk, so that the (undirected) arcs are (n;_1,n;) fori = 2, ...,k in addition
to (ng,n1) (see Fig. (c)). In an oriented cycle (or directed cycle), all the
arcs must have cycle-consistent orientation (for instance, the cycle in Fig.
(c) is oriented). If a cycle graph occurs as a subgraph of another graph, it is a
cycle in that graph.
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A tree is a (weakly) connected graph with no cycles (see Fig. 4.2 (d)). In a
tree, a root (or internal node) is a node with at least two connections, while a
leaf is a node with a single connection. A tree that consists of a single root
(and where all of the other nodes are leaves) is denoted as a star (see Fig. 4.2
(e)). A tree is a spanning tree of a graph G if it is a subgraph of G including
every vertex of G (a spanning tree of a connected graph G can be defined as
the maximal set of arcs of G that contains no cycle, or as the minimal set of
arcs that connects all nodes; there can be several spanning trees of a connected
graph, while a graph that is not connected does not admit a spanning tree).
A forest is a disjoint union of trees, i.e., a graph with no cycles that is not
connected; the spanning forest of a disconnected graph is the union of more
spanning trees, one for each connected component of the graph.

Some matrices can be introduced to mathematically describe a graph topology.

D:

If the number of connections for a node of the graph (namely, the number of
arcs, either incoming or outgoing, attached to the node) is denoted as degree
of the node, then the diagonal degree matriz D € N™™" can be defined, whose
diagonal entry d;; is the degree of the ¢th node.

A fundamental matrix is the symmetric adjacency matriz A € {0,1}"". Tts
entry a;; is 1 if nodes ¢ and j are connected by an arc (in either direction) and
0 otherwise.

: The relationship between nodes and arcs is captured by the incidence matrix

B e {—1,0,1}™™, whose entry b;; is 1 if the jth arc enters node 7, —1 if it
leaves node ¢ and 0 otherwise; matrix B has zero-sum columns.

The Laplacian matriz of the graph is defined as the difference between the
degree matrix and the adjacency matrix: L = D — A. Hence, in the Laplacian
matrix, the diagonal entries [; are equal to the number of arcs involving node 7,
while the off-diagonal entries [;; are equal to —1 if nodes 7 and j are connected,
0 otherwise.

The Laplacian matrix has several interesting properties:

L =BBT;

—L is a Metzler matrix with negative diagonal entries;

L is weakly diagonally dominant and symmetric positive semidefinite: L > 0;
L is singular, with the algebraic multiplicity of its zero eigenvalue equal to
the number of connected components in the graph (i.e., if the whole graph is
connected, zero has multiplicity equal to one);

L has the eigenvector 1 = [1...1]" associated with the eigenvalue zero: L1 = 0,
and also 1TL = 0;

the second smallest eigenvalue of L is the algebraic connectivity (or Fiedler
value) of the graph and is zero if the graph is not connected;

L can be interpreted as a particular matrix discretisation of the Laplace operator
(hence its name; an alternative name is Kirchhoff matrix).
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The relationship L = BBT between the incidence matrix and the Laplacian
matrix justifies the choice of providing an equivalent description of a graph by means
of its incidence matrix only, which actually contains all the necessary information.

The matrices characterising the graph in Fig. are:

2000 0101
03 00 1 011
b= 00 2 0| A= 01 0 1”7

000 3 1 110
-1 0 0 1 O 2 -1 0 -1
1 -1 0 0 1 -1 3 -1 -1
B = 0 1 -1 0 0} L= 0o -1 2 -1
0o o0 1 -1 -1 -1 -1 -1 3

In the presence of a connection with the external environment, namely, of at least
one arc that is attached to a single node of the graph (as discussed in Chapter
the external environment can be seen as a fictitious node 0, not included in the
graph, that accounts for the external world surrounding the graph), the generalised
incidence matriz has no longer zero-sum columns and the generalised Laplacian is
no longer singular. The matrices corresponding to the externally connected graph in

Fig. [4.3] are:

3000 010 1]

040 0 1011

P=looso" “4%lo10 1|

000 4 111 0]
-1 0 0 1 0 -1 0 0 0 (3 -1 0 -1
|1 -1 0 0 1 0 1 0 0of -1 4 -1 -
0 1 -1 0 0 0 0 -1 0 0 -1 3 -1
0 0 1 -1 -1 0 0 0 1 -1 -1 -1 4

In the sequel, we will mainly refer to generalised Laplacian and incidence matrices.

Figure 4.3: An example of an externally connected graph of size 9 and order 4.
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4.2 Chemical Reaction Networks
and Mass Action Kinetics

Chemical reaction networks can be modelled by means of systems of ordinary
differential equations (ODEs), describing the dynamics of the concentrations of the
species involved in the reaction environment. In the sequel, chemical species will be
denoted with uppercase letters, their concentrations with the corresponding lowercase
letter: for example, the chemical species X has concentration x.

The most common approach for converting a chemical reaction network into an
ODE system is given by mass action kinetics (MAK). [CBHBQ9, [Ang09)

A general chemical reaction can be written in the form

ianj iibj)(j, (41)
i=1 j=1

where X; are the chemical species (reactants, or reagents, when they appear on the
left-hand side, products when they appear on the right-hand side), a; and b; are
the stoichiometric coefficients (non-negative integers) and k > 0 is the reaction rate
constant. Equivalently, by exploiting a vector representation,

AX & BX, (4.2)
where A =[a;...a,], B=1[b;...b,) and X = [X;... X,]".

A reversible reaction can be written as
n n
kt
—\
E (Zij — E b]X],
, k= 4
J=1 Jj=1

which is a compact notation grouping the forward and backward reactions, with
reaction rate constants k* and k™ respectively:

n kt n
{Zjl a; Xj — D51 0;X;,

n k~ n
D b Xy — >0 4 X

The compact notation (4.2) is still available, 