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Abstract

A dynamical network is comprised of a finite number of subsystems, each having
its own dynamics, which interact according to a given interconnection topology.
Dynamical networks are a powerful modelling tool to represent a large number
of systems in different contexts, ranging from natural to man-made systems, and
have a peculiar feature: the global behaviour is the outcome of an ensemble of
local interactions. Hence, dynamical networks can be analysed so as to understand
how local events can lead to global consequences and can be controlled by acting
locally so as to achieve the desired global behaviour. The analysis and the control of
dynamical networks are structural when they are grounded on the topology of the
interconnection graph, along with qualitative, parameter-free specifications.

Structural analysis aims at assessing properties for a whole family of systems
having the same structure and is particularly suited for natural systems, which
can exhibit an extraordinary robustness in spite of large uncertainties and intrinsic
variability. In this thesis, results and procedures are presented to structurally assess
relevant properties, such as stability, boundedness and the sign of steady-state
input-output influences, for a wide class of systems whose Jacobian admits the
so-called BDC-decomposition, which embodies the sum of the effects of single local
interactions. A structural classification is also proposed, to discriminate between
systems that can possibly or exclusively admit instability related to oscillations or to
multistationarity, for systems with a sign-definite Jacobian and for systems composed
of the interconnection of stable monotone subsystems; a graph-based classification is
given and applied to examples of artificial biomolecular networks.

In a dynamical network described by a graph, subsystems are associated with
nodes and interactions with arcs. When the interactions are not given, they can be
decided by a control system. In particular, network-decentralised control aims at
governing the global behaviour of a dynamical network through controllers that are
associated with the arcs of the interconnection graph, hence act locally and have
access to local information only. Despite the restricted information constraint, a
large class of systems can be always stabilised resorting to a network-decentralised
controller. Both linear systems composed of independent subsystems, connected
by the control action, and nonlinear compartmental systems are considered; the
robustness and optimality properties of the devised network-decentralised control are
investigated and several application examples are proposed, spanning from traffic
control and data transmission to synchronisation and vehicle platooning. Network-
decentralised estimation is also considered, for systems composed of identical agents;
a robustness result is provided, exploiting the smallest eigenvalue of the generalised
Laplacian matrix associated with the interaction graph.



ii Abstract

Structural analysis and network-decentralised control synthesis are presented in
this work as complementary facets of the same approach, which can streamline each
other. Structural analysis can help explain the robustness of natural systems, so
that the clever resources of nature can be mimicked to improve the control strategies
designed for man-made systems; at the same time, local interactions can be engineered
in biomolecular systems, as is done for artificial systems, to obtain the desired global
behaviour. This virtuous circle will hopefully result in innovative approaches for
biotechnologies and large-scale network engineering, aimed at improving the quality
of our daily life.



Sommario

Una rete dinamica è composta da un insieme finito di sottosistemi, ciascuno con la
propria dinamica, che interagiscono secondo una precisa topologia di interconnessioni.
Le reti dinamiche consentono di rappresentare efficacemente un gran numero di sistemi
nei contesti più svariati, che includono sia i sistemi naturali sia quelli ingegneristici,
e hanno una caratteristica distintiva: il comportamento globale è il risultato di un
insieme di interazioni locali. Perciò, le reti dinamiche possono essere analizzate
al fine di comprendere come eventi locali possano portare a conseguenze globali e
possono essere controllate per mezzo di azioni locali, per ottenere il comportamento
globale desiderato. L’analisi e il controllo di reti dinamiche si possono dire strutturali
quando si basano esclusivamente sulla topologia del grafo delle interconnessioni e su
informazioni qualitative, che prescindono dai parametri.

L’analisi strutturale si propone di determinare proprietà che valgono per un’intera
famiglia di sistemi aventi la stessa struttura ed è particolarmente utile nel caso di
sistemi naturali, che spesso manifestano una straordinaria robustezza nonostante la
presenza di grandi incertezze e di un’intrinseca variabilità nei parametri. In questa
tesi, si presentano risultati e procedure che consentono di valutare da un punto di
vista strutturale proprietà di interesse, quali la stabilità, la limitatezza e il segno
dell’influenza ingresso-uscita a regime, per una vasta classe di sistemi la cui matrice
Jacobiana ammette la cosiddetta decomposizione BDC, che esprime la somma de-
gli effetti dovuti a singole interazioni locali. Si propone inoltre una classificazione
strutturale che consente di distinguere tra sistemi che possono ammettere o che
ammettono esclusivamente instabilità legata a fenomeni oscillatori o a multistaziona-
rietà, per sistemi con una matrice Jacobiana a segno definito e per sistemi formati
dall’interconnessione di sottosistemi monotoni stabili; una classificazione basata su
grafi è proposta e applicata a esempi di reti biomolecolari artificiali.

In una rete dinamica descritta da un grafo, i sottosistemi sono associati ai nodi e
le interazioni agli archi. Quando le interazioni non sono date, esse possono essere
decise da un sistema di controllo. In particolare, il controllo decentralizzato nel
senso delle reti mira a governare il comportamento globale di una rete dinamica per
mezzo di controllori che sono associati agli archi del grafo di interconnessione, dunque
agiscono localmente e hanno a disposizione soltanto informazioni locali. Nonostante
il vincolo dovuto alla limitata informazione disponibile, una vasta classe di sistemi
può essere sempre stabilizzata ricorrendo a un controllore decentralizzato nel senso
delle reti. Si considerano sia sistemi lineari costituiti da sottosistemi indipendenti,
connessi dall’azione di controllo, sia sistemi compartimentali nonlineari; si studiano
le proprietà di robustezza e di ottimalità del controllo proposto, che è decentralizzato
nel senso delle reti, e si propongono molteplici esempi di applicazione, che spaziano



da controllo del traffico e trasmissione di dati fino a sincronizzazione e controllo di
colonne di veicoli. Si considera inoltre una procedura di stima decentralizzata nel
senso delle reti, per sistemi formati da agenti identici; si fornisce un risultato di
robustezza, che si avvale del minimo autovalore della matrice Laplaciana generalizzata
associata al grafo di interazione.

L’analisi strutturale e la sintesi di controllori decentralizzati nel senso delle reti
sono presentate in questa tesi come aspetti complementari dello stesso approccio, che
possono aiutarsi l’un l’altro. L’analisi strutturale può aiutare a spiegare la robustezza
dei sistemi naturali, di modo che le efficienti strategie della natura possano essere
imitate per migliorare gli algoritmi di controllo progettati per i sistemi costruiti
dall’uomo; allo stesso tempo, le interazioni locali nei sistemi biomolecolari possono
essere ingegnerizzate, come accade nel caso dei sistemi artificiali, per ottenere il
comportamento globale desiderato. Questo circolo virtuoso consentirà auspicabil-
mente approcci innovativi per le biotecnologie e per l’organizzazione di reti di grandi
dimensioni, al fine di migliorare la qualità della nostra vita quotidiana.
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to fault detection and isolation;
• Fabio Zanolin, for his suggestions and explanations, and for his precious guidance
during my first teaching experience.

My deepest gratitude goes to my supervisor Franco Blanchini, for his invaluable
advice, his care and his kindness. Working with him has been a challenging and
enriching experience. He has set an example for me of how a good researcher
should be, with his expertise, insight, creativity and with his genuine and contagious
enthusiasm for research. I heartily thank him for all he has taught me, which I have
treasured and I hope to have the possibility of teaching in turn, one day.

Udine, March 2, 2016 Giulia



Contents

Abstract i

Sommario iii

Acknowledgements v

1 Introduction 1
1.1 Notation and Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . 6

I Background and Fundamental Concepts 9

2 Structural: More Than Robust 11
2.1 Structural Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Qualitative Information about Functions . . . . . . . . . . . . . . . . 13
2.3 Properties of Interest . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.1 Boundedness . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.2 Sign-Definiteness . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.3 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.4 Bifurcations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.5 Monostability and Bistability . . . . . . . . . . . . . . . . . . 25
2.3.6 Oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.7 Monotonicity . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.8 Positivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3.9 Perfect Adaptation . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Dynamical Networks 37
3.1 Local Interactions, Global Behaviour . . . . . . . . . . . . . . . . . . 38

3.1.1 Graph Representation and Structure . . . . . . . . . . . . . . 39
3.2 A Twofold Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 Essential Mathematical Concepts and Results 45
4.1 Graph Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Chemical Reaction Networks and Mass Action Kinetics . . . . . . . . 49

4.2.1 Conservation Laws and Stoichiometric Compatibility Class . . 52
4.2.2 Positivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2.3 Zero-Deficiency Theorem . . . . . . . . . . . . . . . . . . . . . 54
4.2.4 Generalised Mass Action Kinetics . . . . . . . . . . . . . . . . 56



viii Contents

4.3 BDC-decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3.1 BDC-decomposition as a Global Property: an Integral Formula 66

4.4 Exploiting Multi-Affinity . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.4.1 The Mapping Theorem . . . . . . . . . . . . . . . . . . . . . . 70

4.5 Results from Topological Degree Theory . . . . . . . . . . . . . . . . 72

II Structural Analysis of Dynamical Networks 75

5 A Foreword on Biochemical Systems 77
5.1 Biology: a System-Theoretic Approach . . . . . . . . . . . . . . . . . 77
5.2 Structural Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.3 Assessing Properties: a Brief Overview . . . . . . . . . . . . . . . . . 80
5.4 Structural Property Detection in Biochemical Systems . . . . . . . . 83

5.4.1 Revealing Potential Oscillators . . . . . . . . . . . . . . . . . . 84
5.4.2 Revealing Perfect Adaptation . . . . . . . . . . . . . . . . . . 86
5.4.3 Stability and Bistability . . . . . . . . . . . . . . . . . . . . . 87

6 Structural Stability and Boundedness of Biochemical Systems 89
6.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.2 Absorbing the System in a Differential Inclusion . . . . . . . . . . . . 92
6.3 Analysis of the Differential Inclusion . . . . . . . . . . . . . . . . . . 100

6.3.1 Computational Procedure . . . . . . . . . . . . . . . . . . . . 104
6.3.2 Non-Unitary Networks and Special Cases . . . . . . . . . . . . 106

6.4 Mismatches in Local Dissipativity . . . . . . . . . . . . . . . . . . . . 107
6.5 Local Asymptotic Stability within the Stoichiometric Compatibility

Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.6 Discrete-Event System Interpretation . . . . . . . . . . . . . . . . . . 110
6.7 Boundedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.8 Structural Stability Analysis of Well-Established Biochemical Models 115

6.8.1 Enzymatic Reactions . . . . . . . . . . . . . . . . . . . . . . . 115
6.8.2 A Metabolic Network . . . . . . . . . . . . . . . . . . . . . . . 115
6.8.3 Gene Expression . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.8.4 MAPK Pathway . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.9 Piecewise-Linear Lyapunov Functions in Reaction Coordinates . . . . 117
6.10 Non-Polyhedral Lyapunov Functions . . . . . . . . . . . . . . . . . . 122
6.11 Examples from the Catalogue . . . . . . . . . . . . . . . . . . . . . . 126
6.12 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7 Structural Steady-State Analysis of Biological Systems 129
7.1 Background and Motivating Examples . . . . . . . . . . . . . . . . . 129
7.2 A Vertex Algorithm to Assess Structural Influences . . . . . . . . . . 136
7.3 Structural Influence Matrix . . . . . . . . . . . . . . . . . . . . . . . 142



Contents ix

7.4 The Case of Marginally Stable Systems . . . . . . . . . . . . . . . . . 144
7.4.1 Laplace Domain: Step Response and Impulse Response . . . . 147

7.5 A Tree-Like Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 147
7.6 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.6.1 E. coli EnvZ-OmpR Osmoregulation . . . . . . . . . . . . . . 150
7.6.2 Biofuel Production . . . . . . . . . . . . . . . . . . . . . . . . 151
7.6.3 Interactions at the Trans-Golgi Network . . . . . . . . . . . . 153
7.6.4 An Enzymatic Cascade . . . . . . . . . . . . . . . . . . . . . . 154
7.6.5 Perfect Adaptation and Stoichiometric Adaptation . . . . . . 157

7.7 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

8 Structurally Oscillatory and Multistationary Biochemical Systems163
8.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
8.2 Structural Classification . . . . . . . . . . . . . . . . . . . . . . . . . 169

8.2.1 Critical Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 179
8.2.2 Systems with Delays . . . . . . . . . . . . . . . . . . . . . . . 180

8.3 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
8.4 Oscillations and Multistationarity in Monotone Aggregates . . . . . . 183
8.5 Examples of Oscillatory and Bistable Biomolecular Systems . . . . . 188

III Network-Decentralised Control of Dynamical Networks
193

9 Network-Decentralised Control Strategies for Stabilisation 195
9.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

9.1.1 Arbitrary Node Dynamics . . . . . . . . . . . . . . . . . . . . 198
9.2 Network-Decentralised Control . . . . . . . . . . . . . . . . . . . . . . 200
9.3 Distinct Unstable Eigenvalues . . . . . . . . . . . . . . . . . . . . . . 202
9.4 Shared Unstable Eigenvalues . . . . . . . . . . . . . . . . . . . . . . . 204

9.4.1 Sufficient LMI Condition . . . . . . . . . . . . . . . . . . . . . 204
9.4.2 Solvability Conditions in Particular Cases . . . . . . . . . . . 206

9.5 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
9.5.1 Double Integrator . . . . . . . . . . . . . . . . . . . . . . . . . 209
9.5.2 Water Distribution System . . . . . . . . . . . . . . . . . . . . 210
9.5.3 Stochastic Traffic Splitting Dynamics . . . . . . . . . . . . . . 212

9.6 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

10 Decentralised, Robust and Optimal Compartmental Flow Control217
10.1 Nonlinear Compartmental Models . . . . . . . . . . . . . . . . . . . . 218
10.2 Stabilisability Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 221

10.2.1 A Slightly Different Control Strategy . . . . . . . . . . . . . . 227
10.3 Decentralised Asymptotic Optimality . . . . . . . . . . . . . . . . . . 228



x Contents

10.4 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
10.5 Positivity Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
10.6 Buffer Systems with Integral Control . . . . . . . . . . . . . . . . . . 232

11 Network-Decentralised Control: Applications 235
11.1 Network-Decentralised Traffic Control . . . . . . . . . . . . . . . . . . 235

11.1.1 Networks with Node Traffic Splitting . . . . . . . . . . . . . . 238
11.1.2 A Robust Network-Decentralised Solution . . . . . . . . . . . 241
11.1.3 Robust Solution Under Saturation . . . . . . . . . . . . . . . . 243
11.1.4 A Non-Robust Network-Decentralised Solution . . . . . . . . . 245
11.1.5 A Traffic Control Problem . . . . . . . . . . . . . . . . . . . . 246
11.1.6 A Data Transmission System . . . . . . . . . . . . . . . . . . 248

11.2 Channel Sharing Communication . . . . . . . . . . . . . . . . . . . . 252
11.3 Clock Synchronisation . . . . . . . . . . . . . . . . . . . . . . . . . . 259
11.4 Vehicle Platooning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

12 Network-Decentralised Estimation 273
12.1 Generalised Laplacian: Smallest Eigenvalue . . . . . . . . . . . . . . . 274
12.2 Network-Decentralised Detectability . . . . . . . . . . . . . . . . . . . 278

12.2.1 Identical Agents . . . . . . . . . . . . . . . . . . . . . . . . . . 280
12.3 Gain Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
12.4 Unknown and Switching Topologies . . . . . . . . . . . . . . . . . . . 284
12.5 Application Examples . . . . . . . . . . . . . . . . . . . . . . . . . . 286

Conclusions and Outlook 291

A Catalogue of Tested Biochemical Networks 295
A.1 Three Nodes Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 296
A.2 Four Nodes Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
A.3 Five Nodes Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
A.4 Six Nodes Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
A.5 Seven Nodes Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 314
A.6 Eight Nodes Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 315
A.7 Synoptic Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316

B Code for Testing Biochemical Networks 319
B.1 Polychem: Polyhedral Functions for Biochemical Systems . . . . . . . 319
B.2 Computing the Steady-State Influence Matrix . . . . . . . . . . . . . 320

C Stability: a Brief Overview 325

D Topological Degree Theory 331

Bibliography 335



List of Figures

2.1 Example of sigmoidal and complementary sigmoidal functions. . . . . 14
2.2 Example of cropped sigmoidal and complementary sigmoidal functions. 14
2.3 A monostable and a bistable system . . . . . . . . . . . . . . . . . . . 15
2.4 An oscillating system. . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 Monotone system trajectories. . . . . . . . . . . . . . . . . . . . . . . 16
2.6 An adaptive system. . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.7 A persistent system. . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.8 A spiking system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.9 A resilient system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.10 Activation/inhibition feedback loops. . . . . . . . . . . . . . . . . . . 18
2.11 Saddle-node bifurcation. . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.12 Transcritical bifurcation. . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.13 Pitchfork bifurcation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.14 Monostability vs. bistability . . . . . . . . . . . . . . . . . . . . . . . 26
2.15 Lotka-Volterra oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.16 Van der Pol oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.17 Integral feedback control. . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1 Graph and hypergraph. . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 Graph and hypergraph with external connections. . . . . . . . . . . . 40
3.3 Robotic agents mimicking a shoal of fish. . . . . . . . . . . . . . . . . 42
3.4 Analogy between industrial and molecular assembly. . . . . . . . . . . 43
3.5 Molecular machines. . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1 Graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Special graph topologies. . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3 Externally connected graph. . . . . . . . . . . . . . . . . . . . . . . . 48
4.4 Complex-reaction graph. . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.5 Three examples of graphs corresponding to the Jacobian structure. . 65
4.6 Geometric visualisation associated with the mapping theorem. . . . . 70
4.7 The mapping theorem robust stability criterion is sufficient only. . . . 71
4.8 Nullclines of the systems in Example 4.12. . . . . . . . . . . . . . . . 74

6.1 Graph representations of biochemical reactions. . . . . . . . . . . . . 94
6.2 Graph of the network in Example 6.1. . . . . . . . . . . . . . . . . . . 95
6.3 The idea: convergent and divergent case. . . . . . . . . . . . . . . . . 100
6.4 Continuous-time and discrete-time solutions. . . . . . . . . . . . . . . 102
6.5 Unit ball of a polyhedral Lyapunov functions. . . . . . . . . . . . . . 103



xii List of Figures

6.6 Graph and discrete-event representation. . . . . . . . . . . . . . . . . 110
6.7 Discrete-event interpretation of the procedure evolution: first step. . . 111
6.8 Discrete-event interpretation of the procedure evolution: second step. 112
6.9 Discrete-event interpretation of the procedure evolution: third step. . 112
6.10 Graph of the network in Example 6.5. . . . . . . . . . . . . . . . . . . 113
6.11 Graph of the network in Example 6.6. . . . . . . . . . . . . . . . . . . 118
6.12 The connection between stability properties. . . . . . . . . . . . . . . 121
6.13 Unit ball of a quadratic Lyapunov function. . . . . . . . . . . . . . . 122
6.14 Graph representation of the considered basic motifs. . . . . . . . . . . 123
6.15 Unit ball of the polyhedral Lyapunov functions for some motifs. . . . 124
6.16 Graph representation of the networks named Telemann3 and Grieg5. 124
6.17 Unit ball of polyhedral functions associated with Telemann3. . . . . . 124
6.18 Graph and Lyapunov function for the network in Example 6.8. . . . . 125

7.1 Self-repression two-gene rate regulatory network: simulations. . . . . 134
7.2 Illustration of the structural input-output influence. . . . . . . . . . . 139
7.3 A function having different signs on different vertices of the cube. . . 142
7.4 A non-perfectly adaptive system. . . . . . . . . . . . . . . . . . . . . 142
7.5 Example 7.10: a graph with stoichiometric adaptation. . . . . . . . . 157
7.6 The stoichiometric adaptation module. . . . . . . . . . . . . . . . . . 158
7.7 Graphs of Verdi4 and Wagner4. . . . . . . . . . . . . . . . . . . . . . 160

8.1 Graphs corresponding to different regulatory actions in system (8.1). 168
8.2 Plot of a νκ,ε(x) differential scaling map. . . . . . . . . . . . . . . . . 174
8.3 Strongly-connected components: hyper-nodes graph. . . . . . . . . . . 176
8.4 Aggregate monotone systems: a sketch. . . . . . . . . . . . . . . . . . 183
8.5 Aggregate graphs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
8.6 Rules for determining the sign of interactions in matrix ΣΠ. . . . . . 187

9.1 Water distribution network. . . . . . . . . . . . . . . . . . . . . . . . 199
9.2 Traffic splitting model. . . . . . . . . . . . . . . . . . . . . . . . . . . 199
9.3 The graph corresponding to Example 9.3. . . . . . . . . . . . . . . . . 201
9.4 Network graph corresponding to the example in Section 9.5.1. . . . . 209
9.5 System trajectories for the double integrator: even states. . . . . . . . 211
9.6 System trajectories for the double integrator: odd states. . . . . . . . 212
9.7 Reservoir volumes evolution with decentralised and optimal control. . 213
9.8 Detailed simulation for reservoir volumes. . . . . . . . . . . . . . . . . 214

10.1 g-type and h-type flows in a fluid system. . . . . . . . . . . . . . . . . 218
10.2 Graph of the network in Example 10.1. . . . . . . . . . . . . . . . . . 219
10.3 The graph in Example 10.2. . . . . . . . . . . . . . . . . . . . . . . . 225
10.4 Strongly-connected components: aggregate graph. . . . . . . . . . . . 226
10.5 Simulation of the system in Section 10.6. . . . . . . . . . . . . . . . . 234



List of Figures xiii

11.1 Example of a network graph. . . . . . . . . . . . . . . . . . . . . . . . 236
11.2 Network with node traffic splitting dynamics. . . . . . . . . . . . . . 238
11.3 Node with internal dynamics. . . . . . . . . . . . . . . . . . . . . . . 238
11.4 A traffic problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
11.5 Simulations for the example in Section 11.1.5. . . . . . . . . . . . . . 249
11.6 A communication network with five routers (macro-nodes). . . . . . . 250
11.7 Data flows among routers (macro-nodes). . . . . . . . . . . . . . . . . 250
11.8 Router A seen as a macro-node with splitting dynamics. . . . . . . . 250
11.9 Simulations of the network in Fig. 11.6 when d is suddenly changed. 253
11.10 Simulations of the network in Fig. 11.6: chattering phenomena. . . . 254
11.11 Simulations of the network in Fig. 11.6: sudden traffic increase. . . . 255
11.12Channel sharing protocol: time evolution of the transmission rates. . 258
11.13The clock synchronisation network. . . . . . . . . . . . . . . . . . . . 259
11.14The time windows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
11.15 Triangle of the stabilising parameters. . . . . . . . . . . . . . . . . . 264
11.16 The clock synchronisation transient. . . . . . . . . . . . . . . . . . . 265

11.17A transmission line: impedance matching is achieved for Z =
√

L
C

. . . 268

11.18The step response for a platoon with 10 cars following a leader. . . . 271
11.19The vehicle formation problem in two dimensions. . . . . . . . . . . . 271

12.1 Graph of the model in Example 12.1. . . . . . . . . . . . . . . . . . . 279
12.2 Graphs composed of (externally connected) connected components. . 285
12.3 The altitude setup problem. . . . . . . . . . . . . . . . . . . . . . . . 288
12.4 Altitude detection evolution. . . . . . . . . . . . . . . . . . . . . . . . 289
12.5 The network of eight moving agents confined in a square. . . . . . . . 290

A.1 Graph of Albinoni3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
A.2 Graph of Buxtehude3. . . . . . . . . . . . . . . . . . . . . . . . . . . 296
A.3 Graph of Corelli3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
A.4 Graph of Frescobaldi3. . . . . . . . . . . . . . . . . . . . . . . . . . . 297
A.5 Graph of Pachelbel3. . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
A.6 Graph of Telemann3. . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
A.7 Graph of Bach4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
A.8 Graph of Beethoven4. . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
A.9 Graph of Boccherini4. . . . . . . . . . . . . . . . . . . . . . . . . . . 298
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1
Introduction

A large number of systems, in the most different contexts, can be modelled as
dynamical networks : in fact, phenomena related both to the evolution of quantities
over time (dynamics) and to interconnections among several units (networks) are
ubiquitous in natural systems, as well as in complex artificial systems.

A dynamical network can be regarded as the interplay of a finite number of
subsystems, each having its own dynamics, interconnected by suitable interactions,
which enforce a relationship between the dynamics of the individual subsystems.
The behaviour of the overall system, then, depends on the internal dynamics of
the individual subsystems and on the topology of the interconnection network.
Interestingly, the interactions are local (since each of them is related to a single
interconnection link in the network topology), but their impact results in global
consequences, affecting the behaviour of the overall system. This motivates us

• on the one hand, to study the mechanisms that produce the global system
behaviour based on the ensemble of local interactions, keeping in mind that
local events have a global outcome (analysis);

• on the other hand, to devise control strategies that obtain the desired global be-
haviour by deciding the local interactions based on local information, according
to the motto: think globally, act locally (control).

In particular, both analysis and control can rely on the peculiar structure of
the system under consideration, defined in terms of the graph representing the
interconnection topology.

The goal of structural analysis for dynamical networks is to assess behaviours and
phenomena based on the system structure only (essentially, on the graph topology,
along with qualitative information about the subsystem dynamics and about the
interaction functions). Hence, parameter-free criteria can be devised to check if a
whole family of systems, all having the same structure, enjoys a relevant property.

This is especially important when dealing with natural systems, which are plagued
by huge uncertainties and whose parameters are highly dependent on environmental
and working conditions: by means of a structural investigation, it may be possible
to explain how they can perform their specific, proper tasks in completely different
conditions, thus revealing the structural source of the extraordinary robustness of
nature and of living organisms.
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The goal of network-decentralised control synthesis, instead, is to control or
coordinate the behaviour of a large number of subsystems resorting to local controllers,
which decide their strategy based on local information only. This means that each
control agent, associated with a link of the network, decides local interactions based
on information about the subsystems associated with the nodes connected by that
specific link. Under proper structural assumptions, it is always possible to govern
the overall behaviour of the system, achieving stability, by simply controlling local
interactions, based on the knowledge of local dynamics only.

This is particularly relevant for complex systems, composed of several geographi-
cally sparse units, when it is impossible to build a centralised and omniscient controller
that governs the system, due to hard constraints on the information available in each
portion of the network.

The aim of this thesis is to propose a unified view of the analysis and the control of
dynamical networks, carried out from a structural standpoint. It is worth underlining
that (structural) analysis and control synthesis, albeit requiring in general different
tools and approaches, are far from being disjoint. In fact, analysis is well suited
for natural systems, while control of course refers to man-made systems; and a
virtuous circle can be built since the analysis of natural systems can help engineers
learn from nature and control man-made systems resorting to a biologically-inspired
control design, while local interactions in natural systems (once their spontaneous
functioning has been deeply understood) can be engineered with the same systematic,
bottom-up approach that is used for building complex artificial systems (this is the
goal of synthetic biology).

Thesis Overview and Contribution

The thesis presents a unified study of the structural analysis and control of dynamical
networks,1 and is articulated in three main parts.

Structural Properties, Dynamical Networks,
Fundamental Concepts and Results

Part I deals with the common background and the fundamental concepts that will
be recurrent throughout the thesis. First of all, structural properties are defined
in Chapter 2 as properties enjoyed by all of the systems belonging to a family,
specified without numerical bounds. Therefore, a structural property can be assessed
according to parameter-free criteria, exclusively based on qualitative information

1Most of the results have been previously published in peer-reviewed conference or journal
papers, or are currently under review or in preparation. The corresponding publications are always
referenced; for the sake of completeness, almost all of the proofs (which can be found in the articles)
have been either reported or sketched in the thesis as well.
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about the considered family of systems. Possible qualitative information that can
be available about functions (hence, about systems) are provided and discussed.
Moreover, fundamental properties that are usually worth assessing are listed and
described in detail, and their significance is motivated by examples. The concept of
dynamical network is further investigated in Chapter 3, where the relationship with
compartmental systems is examined (actually, dynamical networks can be regarded
as a generalisation of compartmental systems). The structure of a dynamical network
is formally associated with its graph representation and with the corresponding
incidence matrix. Then, both structural analysis and control synthesis for the
particular case of dynamical networks are presented, explaining how a structural
approach can exploit the peculiarities of these systems. Fundamental concepts from
several mathematical theories and essential results are reported in Chapter 4. Some
basic concepts of graph theory (fundamental for defining and handling structures of
dynamical networks) are summarised. The theory of chemical reaction networks is
presented [HJ72, Fei72, Hor73a, Hor73b, FH74], along with fundamental established
results such as the zero-deficiency theorem [Fei87], and the limits of mass action
kinetics (representing the rate of a reaction depending on the concentration of the
reactants) are discussed, proposing a generalised approach where reaction rates are
generic functions of the concentrations of the involved species [BF11b]. As a key
point on which the forthcoming investigation is based, a special structure named the
BDC-decomposition is presented [BFG12, BG14, GCFB15]; such a decomposition
exploits the fact that, for any system whose Jacobian matrix is the positive linear
combination of rank-one matrices, this Jacobian can be written as the product of
three matrices, one depending on a vector of positive parameters, the other two
expressing the Jacobian structure. A useful integral formula [Kha02] is exploited to
show that the BDC-decomposition is indeed a global property, and not only a local
property. It is important to stress that the BDC-decomposition actually decomposes
the system Jacobian (hence, the overall set of linearised interactions occurring in the
system) into the sum of several basic local interactions that, summed up, result in the
global dynamic effect. It can thus be seen as a picture of the “local interactions, global
behaviour” effect that has been previously mentioned. It turns out that, for systems
admitting a BDC-decomposition, some important quantities associated with the
Jacobian matrix, for instance the determinant and the coefficients of the characteristic
polynomial, are multi-affine functions of the positive parameters. Consequently, a
vertex result is presented that exploits multi-affinity for testing the structural sign of
a function in a hypercube in the parameter space [BFG12, BG14, GCFB15]. Multi-
affinity also allows to invoke the fundamental mapping theorem [Bar94] and the zero
exclusion theorem, to obtain a sufficient condition for robust stability. Some hints
about fundamental concepts of the topological degree theory and its applications to
the equilibria and the stability of dynamical systems [OC95, Hof90] are also briefly
reported; a more thorough overview of the theory is in Appendix D.

The core contribution of the thesis is in Parts II and III, which deal respectively
with structural analysis and control synthesis for dynamical networks.
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Structural Analysis of Dynamical Networks

Part II, devoted to structural analysis, has a special focus on (bio)chemical and
biological systems, although the proposed results are applicable for a much wider class
of systems, not necessarily describing the dynamics and the interconnections that
rule the behaviour of living organisms, biomolecules and chemical species. However,
for these systems, whose features are investigated more in depth in Chapter 5, the
need of a structural analysis is particularly felt, due to their inherent robustness in
spite of severe uncertainties. A survey of the most investigated properties in the
literature is proposed in Chapter 5 and some results are proposed for the structural
detection of fundamental properties [BFG12], such as the capacity of exhibiting
oscillations or perfect adaptation, simply exploiting multi-affinity (in fact, it can be
shown that systems belonging to a wide class of biochemical and biological systems
always admit a BDC-decomposition, and the proposed criteria are valid for any
system admitting this decomposition); criteria to structurally assess stability and to
rule out oscillatory instability are also discussed.

Chapter 6 structurally investigates stability and boundedness of biochemical
systems, with generic monotonic reaction rates (not necessarily of the mass action
form), by absorbing the non-linear system in a linear differential inclusion and looking
for a polyhedral Lyapunov function, which can be found by a recursive procedure
based on an associated discrete-difference inclusion [BG14]. Stability properties can
be studied by decomposing the chemical reaction network into elementary reactions
(local interactions) and propagating each of them independently to assess the stability
properties of the global system. The results actually apply in general to any system
admitting a BDC-decomposition. A discrete-event interpretation of the numerical
procedure is proposed. Moreover, the results obtained by analysing the system in
concentration coordinates are compared to those obtained by analysing the system in
reaction coordinates [BG15a]. It is also shown that, for a set of fundamental motifs,
structural stability cannot be assessed by means of quadratic Lyapunov functions,
while it can be proved based on polyhedral Lyapunov functions [BG15b]. An example
illustrates the fact that, in some cases, resorting to smooth structural Lyapunov
functions is impossible: to prove structural stability, the only possibility is employing
polyhedral Lyapunov functions. A catalogue of several nontrivial networks, whose
stability and boundedness have been tested by means of the proposed procedure, is
reported in Appendix A, while some details on the code implementing the procedure,
which is available online, are in Appendix B.1.

The steady-state behaviour of a class of biological systems is investigated in
Chapter 7 (and, again, the results can be immediately extended to consider generic
systems admitting a BDC-decomposition). [GCFB15] The system exhibits a struc-
tural steady-state input-output influence if the variation of the steady-state output
value, upon a perturbation due to a constant input, always has the same sign as
the input, or the opposite sign, or is zero, independent of the parameter values;
otherwise, the influence is indeterminate. When a persistent additive input is applied
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to a single state variable and a single state variable is taken as the system output,
the results for all the possible input-output pair combinations can be visualised in
the structural influence matrix, whose entries express the sign of the steady-state
influence on each variable of an external persistent input applied to each variable.
Exploiting multi-affinity, structural influences can be assessed based on a simple
vertex algorithm; as an alternative, a tree-like recursive algorithm is proposed for
systems whose Jacobian entries are independent. Appendix B.2 presents and briefly
discusses the code implementing the vertex procedure, which is available online.

Finally, Chapter 8 proposes a structural classification of biochemical systems
(which can be easily applied to any system with a sign-definite Jacobian), based
on their capacity of possibly/exclusively exhibiting transitions to instability of the
oscillatory type (related to a pair of complex eigenvalues crossing the imaginary axis)
or of the real type (related to a real eigenvalue crossing the imaginary axis at the
origin and associated with multistationarity). [BFG14] The classification is extended
to the case of systems that can be seen as the interconnection of unconditionally
stable monotone subsystems [BFG15b]; this more general result can be applied to
analyse (and to streamline the robust design and synthesis of) several synthetic
biochemical networks [KWW06, KW11, BCFG14, CGK+16].

Network-Decentralised Control of Dynamical Networks

In Part III, the focus is on the control of dynamical networks. In particular, in
Chapter 9, network-decentralised state-feedback strategies are proposed to stabilise
linear systems composed of several dynamically decoupled subsystems (which are
then interconnected by the control action). The rule of the game, for network-
decentralised control, is that control agents, each associated with a link of a given
interconnection topology, can decide their strategy based on the sole knowledge of
the state variables associated with the subsystems they connect. These restricted
information constraints result in a block-structured feedback matrix, where structural
zero-blocks enforce the lack of information available to the controllers; such a feedback
matrix turns out to have the same block structure as the transpose of the overall input
matrix of the system. When the subsystems do not share unstable eigenvalues (a
generically satisfied property), any stabilisable system can be stabilised by means of
a network-decentralised controller. Furthermore, for identical subsystems where each
input affects a pair of subsystems, with input sub-matrices that differ for the sign only
(which is typically the case for flow networks), network-decentralised stabilisability is
shown to be equivalent to the presence of a connection with the external environment
(namely, of an agent affecting a single subsystem). [BFG13, BFG15a]

Chapter 10 analyses the case of nonlinear systems with a compartmental structure,
where two types of flows connecting pairs of compartments are possibly present,
depending either on the difference of the state of the two compartments, or on
the state of the starting compartment only. The saturated network-decentralised
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strategy proposed in [BBGP13] is tailored and adapted to this case. Necessary and
sufficient structural conditions for stabilisability are proposed and the robustness and
asymptotic optimality properties of the devised network-decentralised control are
discussed: the control is intrinsically robust since it does not require the knowledge
of the involved functions (apart from qualitative monotonicity assumptions), it is
still effective in the case of switching topologies and it can face a time-varying and
unknown exogenous demand; optimality is ensured in terms of the minimal Euclidean
norm of the asymptotic controlled flow. An alternative network-decentralised control
is proposed to guarantee the satisfaction of positivity constraints during the whole
system evolution. [BFG+16] Finally, the possibility of equipping the control arcs
with integrators is explored, in order to ensure, along with decentralised asymptotic
optimality, exact convergence to the desired set-point.

Several applications of the network-decentralised control approach are proposed
in Chapter 11, ranging from traffic control problems (where at each node the
traffic splits in several queues, each having a different destination, and a robust
and asymptotically optimal network-decentralised control can be found that is
independent of the traffic splitting rates and just needs information about the
cumulative buffer content) [BGM14] and data transmission systems [BFG+16] to
a network-decentralised channel sharing communication protocol [BCGM16], from
clock synchronisation to the control of vehicle platoons.

Chapter 12 considers the dual framework of network-decentralised control: network-
decentralised estimation. A local estimation problem is formulated: each node of
the network is seen as an agent striving to reconstruct its own state having exclu-
sively information exchanges with the neighbouring agents. Conditions for network-
decentralised detectability are provided. Moreover, the choice of the observer gain
and the proposed observer are robustified to tackle the case of unknown and switching
topologies, exploiting a result on the smallest eigenvalue of the generalised Laplacian
matrix and on the corresponding worst case (the smallest generalised Laplacian
eigenvalue of all the connected graphs with a given number of nodes). [GBF+15]

1.1 Notation and Acronyms

It will be impossible to keep the notation completely coherent through all of the
chapters. However, some notations will be recurrent throughout the thesis. Typically,
Greek letters (α, β, γ, . . . ) will denote scalars, Roman letters (a, b, c, . . . ) vectors,
capital Roman letters (A, B, C, . . . ) matrices, calligraphic letters (A, B, C, . . . )
sets. Moreover, the following notation will be used.

• N is the set of natural numbers, including 0; Z is the set of integer numbers; R
is the set of real numbers, while R+ is the set of non-negative real numbers;

• given a matrix M , M> is its transpose, ker(M) is its kernel (null space, set of
vectors x such that Mx = 0), while its left kernel (or left null space) is the set
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of vectors x such that x>M = 0 (hence, it corresponds to ker(M>)), span(M)
is its column space;

• given a square matrix A, tr(A) is its trace (sum of diagonal elements), det(A)
is its determinant, σ(A) is its spectrum (set of the eigenvalues); an eigenvalue
is called stable if its real part is strictly negative, unstable otherwise2;

• eh denotes a vector of the standard basis in Rn (a vector whose hth component
is 1, while the others are 0);

• 1̄n denotes the vector of ones having dimension n (sometimes the dimension is
not explicitly stated, but it is clear from the context);

• given a function Ψ : Rn → R, its unit ball is the set

N [Ψ, 1] = {x : |Ψ(x)| ≤ 1};

• given a smooth function Ψ : Rn → R, its gradient ∇Ψ(x) is the column vector

∇Ψ(x) =

[
∂Ψ

∂x1

(x)
∂Ψ

∂x2

(x) . . .
∂Ψ

∂xn
(x)

]>
;

• a locally Lipschitz function Ψ : Rn → R is positive definite if Ψ(0) = 0 and
Ψ(x) > 0 for all x 6= 0, positive semidefinite if the strict inequality is replaced
by a weak inequality; the function Ψ(x) is negative (semi)definite if −Ψ(x) is
positive (semi)definite;

• if A and B are matrices (or vectors) of the same dimension m×n, then A > B,
A < B, A ≥ B, A ≤ B have to be intended componentwise (Aij > Bij,
Aij < Bij, Aij ≥ Bij, Aij ≤ Bij for all 1 ≤ i ≤ m and 1 ≤ j ≤ n);

• in the space of symmetric matrices, Q ≺ P , Q � P , Q � P , Q � P denote
that P −Q is positive definite, positive semidefinite, negative definite, negative
semidefinite (namely, the function x>(P − Q)x is positive definite, positive
semidefinite, negative definite, negative semidefinite);

• ‖x‖p, with integer 1 ≤ p <∞, denotes the vector p-norm:

‖x‖p = p

√√√√ n∑
i=1

|xi|p

for finite p and
‖x‖∞ = max

i
|xi|;

• if P � 0 is a symmetric (square) matrix, then ‖x‖P =
√
x>Px;

• given any vector norm ‖ · ‖, the corresponding induced matrix norm is

‖A‖ .= sup
x 6=0

‖Ax‖
‖x‖

;

2A more detailed overview concerning stability of equilibria and related results, including criteria
based on eigenvalues, is reported in Appendix C.
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• for x ∈ Rn, the sign and saturation vector functions sign(x) and sat(x) (for
given bounds x−i ≤ xi ≤ x+

i ) are defined componentwise, respectively, as

[sign(x)]i
.
=


1 if xi > 0

0 if xi = 0

−1 if xi < 0

and

[sat(x)]i
.
=


x+
i if xi > x+

i

xi if x−i ≤ xi ≤ x+
i

x−i if xi < x−i

The following acronyms are also recurrent throughout the thesis.

• DNA: DeoxyriboNucleic Acid
• LMI: Linear Matrix Inequality
• LTI: Linear Time Invariant
• MAK: Mass Action Kinetics
• ODE: Ordinary Differential Equation
• OTI: Oscillatory Transition to Instability
• RNA: RiboNucleic Acid
• RTI: Real Transition to Instability
• TI: Transition to Instability
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2
Structural: More Than Robust

A property can be said structural for a class of systems (specified by given features
that constitute its structure) when it is enjoyed by all of the systems in the class.

The structure of a system captures its inherent nature, its essence; hence, a
structural property has a necessary connection to the essence of the system under
investigation and holds for all of the systems characterised by the same structure
(i.e., for all of the systems belonging to the class specified by that structure). Then
how is a structure determined, i.e., how is the class of systems specified? This is an
important point, especially because the term structural is often confused with robust,
and used to express the same concept, while a crucial distinction should be made.

Usually, the concept of robustness refers to a class of systems expressing the
possible deviations of a system from a given “nominal condition”; such deviations
may be due to modelling uncertainties or to perturbations, and are assumed to be
bounded. Consider, for instance, a parameterised family of systems: if any system of
the family exhibits a certain property, for any choice of the parameter values within
given bounds, then the property is robust ; conversely, if any system of the family
exhibits the property regardless of the chosen parameter values (without numerical
bounds), then the property is structural.

It is therefore apparent that the concept of structural property (which is the key
theme of the present chapter) is much more general and much more demanding. It is
general, since it can refer not only to a family of parametric realisations, but also to
a family of functional realisations (where the functions are simply required to satisfy
some qualitative properties, such as, e.g., monotonicity), or to any family of systems
having a common structure that may be expressed, for instance, by the topology
of an associated graph (as will be seen in Chapter 3). It is demanding, since the
satisfaction of a structural property is a strong requirement, difficult to prove.

However, once a property has been proved to be structural for a given class of
systems (structural analysis), or once a controller for a class of systems has been
built satisfying special constraints based on the corresponding structure (network-
decentralised control synthesis), the benefits are considerable. Engineers have been
striving for decades to build robust systems, which work even under conditions that
vary with respect to the nominal one, while natural systems often preserve some
fundamental properties in the most diverse environmental conditions, practically
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independent of parameter values: they are “more than robust”. To mathematically
explain their extraordinary robustness, a structural analysis is needed. Also, in
the case of artificial systems, a control strategy often needs to be decided with
limited information about the system and its parameters. When the aim is to design
a controller that is able to accomplish the desired task with topology-dependent
limitations, a network-decentralised approach to synthesis is beneficial.

Adopting a structural viewpoint is as powerful as challenging, and in this thesis
the challenge is accepted, focusing in particular on dynamical networks.

2.1 Structural Properties

A property is structural if it is satisfied by all the systems of a family specified
by a structure without numerical bounds. The following definition [BF11b, BF14]
underlines the fundamental difference with respect to the less demanding concept of
robust property.

Definition 2.1. Given a family F of systems and a (relevant) property P, P is a
robust property with respect to F if any system f ∈ F has the property P. P is a
structural property if, moreover, the family F is specified without numerical bounds.

Example 2.1. Given the property of Hurwitz stability (a matrix is Hurwitz stable if
all of its eigenvalues have negative real part), consider the matrices

M1 =

[
−a b
c −d

]
and M2 =

[
−a −b
c −d

]
,

where a, b, c and d are positive coefficients. If 0 ≤ b, c ≤ 1 and 2 ≤ a, d ≤ 3, matrix
M1 is robustly Hurwitz stable. Conversely, matrix M2 is structurally Hurwitz stable
(for any choice of positive values a, b, c, d).

Example 2.2. In the case of a nonlinear parameterised family, such as

ẋ(t) = f(x(t), p), x(t) ∈ Rn, x(0) = x0 ∈ Rn, t ≥ 0,

where f(·, ·) is a fixed function and p = [p1 . . . pk] is a vector of (constant or time-
varying) positive parameters, a property is structural if it holds for any choice of p.
Yet, a family is not necessarily defined by resorting to parameters. For instance, the
family of systems

ẋ(t) = f(x(t)), x(t) ∈ Rn, x(0) = x0 ∈ Rn, t ≥ 0,

can be considered, where f(·) belongs to a family Ff of functions satisfying certain
assumptions. Then, a property is structural if it holds for any f(·) ∈ Ff .

A given system structure can be specified into a dynamic realisation by choosing
specific functions, along with specific parameter values.
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2.2 Qualitative Information about Functions

A system structure may be specified by providing qualitative information about the
functions involved. Some examples of qualitative specifications for scalar functions
(f : R→ R) are the following. [BF11b]

• Smoothness: f(·) is continuous, or continuously differentiable, or of class Ck

in general.
• Positive constant: f(·) = k > 0.
• Bounded: |f(·)| < M for a certain constant M > 0.
• Positive bounded: 0 < f(·) < M for a certain constant M > 0.
• Linearity: f(·) is linear.
• Strict monotonicity: f(·) is strictly increasing, or strictly decreasing.
• Monotonicity: f(·) is non-decreasing, or non-increasing.
• Unbounded monotonicity: f(·) is (strictly) monotonic and asymptotically

unbounded.
• Bounded monotonicity: f(·) is (strictly) monotonic and asymptotically

constant.
• Exact nullity in an open interval: f(·) is exactly null below or above a

given threshold.
• Sigmoid: f(·) = s(·) is sigmoidal, see the cases with n ≥ 2 in Fig. 2.1 (a);
s(0) = s′(0) = 0, it is non-decreasing and asymptotically constant (0 < s(∞) <
∞), with a single inflection point (its first derivative has a unique maximum
point, s′(x) ≤ s′(x̄) for some 0 < x̄ <∞).

• Complementary sigmoid: f(·) = c(·) is complementary sigmoidal, see the
cases with n ≥ 2 in Fig. 2.1 (b); c(x) = s(∞)− s(x), where s(·) is sigmoidal
(hence c(·) is non-increasing, 0 < c(0) <∞, c′(0) = 0, c(∞) = 0 and it has a
single inflection point).

• Cropped sigmoid: f(·) is a cropped sigmoid, or a cropped complementary
sigmoid (examples are shown in Fig. 2.2).

• Shifted sigmoid: f(·) is a shifted (cropped) sigmoid or a shifted (cropped)
complementary sigmoid (this is obtained by adding a constant to a sigmoidal,
or complementary sigmoidal, function).

For more general functions (f : Rn → Rm), the above properties can be assumed
to hold for single components and with respect to specific arguments. For instance,
given the system ẋ = Sf(x) +Rg(x), denoting by fj(·) and gj(·) the components of
the vector functions f(·) and g(·), respectively, in the (scalar) differential equation

ẋi =
m∑
j=1

[sijfj(x1, . . . , xn) + rijgj(x1, . . . , xn)] ,

with sij, rij ≥ 0, the scalar function fj(·) is assumed to be decreasing in xi and
increasing in the other variables, while gj(·) is sigmoidal in all of its arguments.
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(b) c(x) = γ
δ+xn

Figure 2.1: Example of function s(x) = αxn

β+xn , with α = 4 and β = 3, and of function c(x) = γ
δ+xn ,

with γ = αβ = 12 and δ = β = 3, for different values of n; note that s(x) + c(x) = s(∞) = c(0) = α.
For n ≥ 2, s(x) is a sigmoidal function, while c(x) is a complementary sigmoidal function.
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Figure 2.2: Example of a cropped sigmoidal function (left) and of a cropped complementary
sigmoidal function (right).

2.3 Properties of Interest

The goal of a structural analysis is to assess the structural properties of a dynamic
system. It is often interesting to determine if the system is structurally

• bounded (i.e., the system solution x(t) = ϕ(t, x(0)) is bounded for any initial
condition x(0) in the assigned domain);

• sign-definite (i.e., its Jacobian matrix has sign-definite entries);
• (mono)stable (i.e., the system admits a unique stable equilibrium, see Fig. 2.3,

left);
• bistable (i.e., the system admits three equilibria, of which two are stable and

one is unstable, see Fig. 2.3, right), or multistable in general;
• oscillatory (i.e., the system state or output variables exhibit sustained oscilla-

tions, see Fig. 2.4);
• monotone (i.e., the evolution operator preserves a given order in the state
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space, see Fig. 2.5);
• positive (i.e., the positive orthant is invariant for positive inputs);
• adaptive (i.e., the system initially reacts to an external stimulus, but, after a

transient, the original pre-stimulus condition is restored, see Fig. 2.6);
• persistent (i.e., after having received an input and changed its state and output

accordingly, the system remains in the new condition also after the stimulus
has been suppressed, see Fig. 2.7);

• spiking (i.e., a stimulus produces a strong reaction followed, after some time,
by a relaxation, see Fig. 2.8);

• resilient (or robust, i.e., the system can face damages and work properly even
under failure of some components, by self-recovering or by successfully adapting
to the change in conditions, see Fig. 2.9).

It may also be interesting to determine if the system can structurally exhibit bifurca-
tions (often associated with oscillations or with multistability). Some of the listed
properties will be examined more in depth in the following.

    

Figure 2.3: A monostable system (left) and a bistable system (right): phase-space portrait. Green
dots denote stable equilibria, red circles unstable equilibria; blue curves are trajectories of the
system.

Figure 2.4: An oscillating system.
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Figure 2.5: Monotone system trajectories: ξ1 ≥ ξ2 implies that x(t, ξ1) ≥ x(t, ξ2) for all t ≥ 0.

Figure 2.6: An adaptive system.

Figure 2.7: A persistent system.

Figure 2.8: A spiking system.

2.3.1 Boundedness

The trajectories are typically bounded in systems where the variables cannot diverge
due to physical/natural constraints (e.g., the solutions of biochemical systems are
globally bounded due to mass conservation constraints and degradation reactions).
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FAILURE

Figure 2.9: A resilient system (contrasted to a non-resilient system, dotted line).

Example 2.3. A class of systems for which boundedness is assured is

ẋi = −αixi +
m∑
j=1

gij(x), i = 1, . . . , n (2.1)

where αi > 0 and each gij(x) is a globally bounded function (for instance, a sigmoidal
function, either cropped or not). The system has globally bounded solutions, regardless
of both the exact expression of the functions gij(x) and the value of the positive
coefficients αi.

2.3.2 Sign-Definiteness

Given a generic nonlinear system ẋ = f(x), where x ∈ Rn and f : Rn → Rn, the
system Jacobian matrix J , [J ]ij = ∂fi

∂xj
, may be sign-definite. This means that its

entries (which are functions of the parameters) cannot assume both positive and
negative values.

This is an interesting structural property: independent of the chosen functions
and parameters, the Jacobian exhibits a given sign pattern. This may happen, for
instance, when the functions describing the dynamics of a system are monotonic and
appear suitably in the system equations.

Remark 2.1. A given Jacobian sign pattern may be the structure that identifies a
family of systems (cf. Chapter 8).

Surprisingly, most natural systems have a sign-definite structure.

Example 2.4. Activation/inhibition loops in biochemical systems. [Son15]
In (bio)chemical systems, most of the interactions are either negative (inhibitory)
or positive (activating): activation and inhibition, being opposite phenomena, lead
to opposite signs in the partial derivatives composing the system Jacobian matrix.
Activation and inhibition feedback loops are common structures in large biochemical
networks: the simplest examples, involving just two interacting species, are shown in
Fig. 2.10.
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Figure 2.10: Activation/inhibition feedback loops: (a) activation-inhibition, (b) mutual inhibition,
(c) mutual activation. Pointed arrowheads indicate activation, hammer arrowheads indicate
inhibition.

Given two interacting chemical species A and B, suppose that the rate of change of
A is affected by the concentration of B, and vice versa. The corresponding dynamical
system, modelling the time evolution of the concentrations a(t) of A and b(t) of B,
in the presence of a constant mass addition of both, is

ȧ = a0 + f(a, b)

ḃ = b0 + g(a, b).

Then

• either B is an activator of A (for instance, an enzyme that helps catalyse the
production of A, or a protein whose presence enhances the expression of the
gene that produces A) and then the partial derivative ∂f(a,b)

∂b
is always positive,

or at least non-negative;
• or B is an inhibitor of A (for instance, an enzyme that helps degrade A, or

a protein that represses the gene that produces A), and then ∂f(a,b)
∂b

is always
negative, or at least non-positive.

Similarly, A is either an activator of B, hence ∂g(a,b)
∂a
≥ 0 (> 0), or an inhibitor of

B, hence ∂g(a,b)
∂a
≤ 0 (< 0). Also phenomena of auto-activation and auto-inhibition

(positive or negative auto-regulation) may occur. However, auto-inhibition (or auto-
degradation) is the most common, hence diagonal entries are typically negative.

The Jacobian matrix of the system is therefore always (structurally) sign-definite.
Assuming that A is an activator, B is an inhibitor and both species are auto-degrading,
the resulting Jacobian sign pattern is

sign(J) = sign

([
∂f
∂a

∂f
∂b

∂g
∂a

∂g
∂b

])
=

[
− −
+ −

]
.

This is an example of activation-inhibition loop, as in Fig. 2.10 (a). As usual in the
field of control theory, this minimal negative feedback structure guarantees set-point
regulation (or homeostasis, as a biologist would call it).
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In the case of mutual inhibition, each species inhibits the other, as in Fig. 2.10
(b) and the resulting sign pattern of the Jacobian is

sign(J) =

[
− −
− −

]
.

Such a system can memorise which of the two species was last activated externally,
hence enabling “biological memory”. In fact, if an external input signal transiently
increases the concentration of A over that of B, then A will repress B (which, being
at a lower concentration, will not be able to repress A); assuming that A can maintain
its high level due to the influence of external variables, the situation will persist until
some other external factor allows B to increase over A.

In the case of mutual activation, each species activates the other, as in Fig. 2.10
(c) and the resulting sign pattern of the Jacobian is

sign(J) =

[
− +
+ −

]
.

If now some external input signal transiently increases the concentration of A over
that of B, then B will be activated by A and will, in turn, enhance A even more.
Therefore, a sufficiently large external signal applied to either A or B results in a
large increase in both species. This minimal positive feedback structure is fundamental
in biomolecular systems that amplify signals.

2.3.3 Stability

The stability property is the most studied by control engineers, who are often seeking
stabilising controllers for potentially unstable plants. On the contrary, natural
systems are often stable. For example, in biochemical systems, species concentrations
tend to spontaneously reach a stable steady-state value. Even though biochemical
systems are usually stable by their nature, their stability analysis is of interest,
especially when it is carried out with a structural approach: in fact, it is important
to mathematically prove the property of the model corresponding to the considered
system (to check if the model is viable) and to structurally guarantee stability of
highly uncertain models for any choice of the functions (provided they satisfy some
qualitative requirements) along with their parameters.

Example 2.5. Matrix

M =

[
−a b
−c −d

]
,

with a, b, c, d > 0, is structurally Hurwitz stable, since tr(M) = −(a+ d) < 0 and
det(M) = ad+ bc > 0. Therefore, its eigenvalues have negative real part regardless
of the chosen parameter values.
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Example 2.6. Matrix

M =

[
a b
−c d

]
,

with a, b, c, d > 0, is structurally unstable, since tr(M) = a+ d > 0 and det(M) =
ad+ bc > 0: hence, regardless of the chosen parameter values, its eigenvalues have
positive real part.

A brief survey of definitions and results on stability is provided in Appendix C.

2.3.4 Bifurcations

Dynamic phenomena may cause the appearance of sudden discontinuities: a small,
smooth change in the value of a parameter may result in a sudden change in the
system evolution and in a completely different steady-state behaviour. When chaotic
dynamics are present, the dependence on initial conditions is so sensitive that small
differences in initial states lead to trajectories that are abruptly diverging, even
on finite time intervals. Varying a parameter may change not only the stability
properties of a given equilibrium, but also the number of equilibria: when one of
these situations occur, the system is said to undergo a bifurcation. Bifurcation theory,
or bifurcation analysis, allows to study the changes in the qualitative behaviour of
the solutions of a family of differential equations describing a dynamical system, due
to parameter variations. [Str94, AP95, Kuz98, BV13]

Given the continuous-time dynamical system

ẋ(t) = f(x(t), p),

where x ∈ Rn is the system state and the function f is smooth in x and p (a real
parameter), an equilibrium point or fixed point of the system is a constant steady-state
solution (a vector x̄ such that f(x̄, p) = 0); a periodic solution of the system is a
trajectory x(t) such that x(t+ T ) = x(t) for a minimum T > 0 and ∀ t; an invariant
set is a set such that any trajectory starting from an initial condition within the
set remains in the set ∀ t; an isolated invariant set is a bounded invariant set a
neighbourhood of which contains no other invariant set. Both equilibrium points
and periodic orbits (associated with periodic solutions) are invariant sets. A periodic
orbit is called a limit cycle if it is isolated. The positive limit set of a system is the set
of points to which trajectories converge as t→∞, while the negative limit set is the
set of points to which trajectories converge as t→ −∞: their union constitutes the
limit set of the system. An attractor is a bounded invariant set to which trajectories
starting from all sufficiently nearby initial conditions converge as t→∞. A candidate
operating condition of a system can be defined as any possible steady-state solution of
the system, regardless of its stability properties: an equilibrium point, periodic orbit
or any other invariant subset of the limit set. [Lev10] A stable candidate operating
condition is an actual operating condition for the system.
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Thus, a bifurcation is a change in the number or in the stability properties of
candidate operating conditions of a nonlinear system, which occurs when a parameter
is varied; the bifurcation is said to occur at the critical value (bifurcation point,
or bifurcation value) of the bifurcation parameter. Bifurcations from a nominal
operating condition can only occur at parameter values for which the condition either
loses stability or ceases to exist.

Local bifurcations occur in the proximity of an equilibrium point (a small-
amplitude limit cycle or a pair of equilibrium points, for instance, can bifurcate
from a nominal equilibrium point as the parameter is varied) and are revealed by
changes in the local stability properties of equilibria as parameters pass through
critical thresholds. A parameter change may cause the stability properties of an
equilibrium to change (in continuous-time dynamical systems, this means that the
real part of an eigenvalue corresponding to a certain equilibrium point is crossing
zero), or may cause the appearance or disappearance of equilibrium points.

If the nominal operating condition of a system is not stable beyond the critical
parameter value at which a bifurcation occurs, and a new candidate operating
condition emerges from the nominal one at the critical parameter value, then: if the
new operating condition is stable and occurs beyond the critical parameter value,
the bifurcation is supercritical (there is an alternative operating condition near the
nominal one), while if the new operating condition is unstable and occurs prior to
the critical parameter value, the bifurcation is subcritical (the system must leave the
vicinity of the nominal operating condition for parameter values beyond the critical
one).

Some examples of bifurcations occurring due to a real eigenvalue transitioning
through 0 are reported next.

Example 2.7. A saddle-node bifurcation occurs when two equilibria (typically
one stable, node, and the other unstable, saddle) exist before the bifurcation point,
collapse into a single equilibrium at the bifurcation point and disappear afterwards
(or the other way round, of course). For instance, as visualised in Fig. 2.11, for the
scalar differential equation

ẋ(t) = µ− x(t)2,

with x(t), µ ∈ R: if µ > 0, there are two equilibria, one stable (x̄1 =
√
µ) and the

other unstable (x̄2 = −√µ), being the Jacobian given by the scalar −2x̄; if µ = 0,
the two equilibria collide into the only equilibrium x̄0 = 0 (non-hyperbolic); if µ < 0
there are no equilibria and all the orbits tend to −∞.

Example 2.8. A transcritical bifurcation occurs when an equilibrium exists
independently of the value of the parameter, another equilibrium exists and collides
with the previous one at the bifurcation point. After the collision, they exchange
their stability type. For instance, as visualised in Fig. 2.12, for the scalar differential
equation

ẋ(t) = µx(t) + x(t)2,
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 > 0

 = 0

 < 0   

Figure 2.11: The saddle-node bifurcation in Example 2.7: visualisation (left) and corresponding
bifurcation diagram (right; stable equilibria are in green, unstable equilibria in red).

with x(t), µ ∈ R, the origin is always an equilibrium x̄0 (always existing independently
of µ), another equilibrium x̄1 = −µ always exists and collides with x̄0 for µ = 0. For
µ > 0, x̄0 is unstable and x̄1 is stable, while it is the opposite for µ < 0 (since the
Jacobian is 2x̄+ µ).

  

 < 0

 = 0

 > 0

  

Figure 2.12: The transcritical bifurcation in Example 2.8: visualisation (left) and corresponding
bifurcation diagram (right; stable equilibria are in green, unstable equilibria in red).

Example 2.9. A pitchfork bifurcation occurs when an equilibrium exists inde-
pendently of the value of the parameter, while two other equilibria exist on one side
of the bifurcation point, both collide with the previous one at the bifurcation point and
disappear afterwards. In the process, an exchange of stability type occurs. Systems
whose right-hand side is an odd function typically undergo pitchfork bifurcations. For
instance, for the scalar differential equation

ẋ(t) = µx(t)− x(t)3,
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Figure 2.13: The pitchfork bifurcation in Example 2.9: visualisation (left) and corresponding
bifurcation diagram (right; stable equilibria are in green, unstable equilibria in red).

with x(t), µ ∈ R, x̄0 = 0 is an equilibrium point ∀ µ. A bifurcation from the origin
occurs at µ = 0, since x̄0 is the only (stable) equilibrium point for µ ≤ 0, but as
µ > 0 x̄0 loses stability (because the Jacobian is µ− 3x̄2) and two additional (stable)
equilibria appear, at x̄1,2 = ±√µ, which bifurcate from the origin at the critical
parameter value µc = 0. This is visualised in Fig. 2.13.

A Hopf bifurcation occurs instead if, as a consequence of parameter variations,
the equilibrium point of a dynamical system loses stability due to a pair of complex
conjugate eigenvalues of the Jacobian matrix crossing the imaginary axis, while
all of the other eigenvalues remain stable (they have a negative real part for all
parameter values). A periodic solution locally appears from the equilibrium as the
parameter crosses the critical value. In the neighbourhood of a Hopf bifurcation,
under generic assumptions, the equilibrium point can generate a small-amplitude
limit cycle. A system with a stable limit cycle can exhibit self-sustained oscillations,
since trajectories for different initial states converge to the limit cycle and any small
perturbation from the closed trajectory causes the system to return to the limit cycle.
Hence, a Hopf bifurcation generates a periodic solution because, when the real parts
of the eigenvalues are negative, the fixed point is a stable focus; as soon as they cross
zero and become positive, the fixed point becomes an unstable focus, with orbits
spiraling out. Since this change of stability is local, sufficiently far from the fixed
point the phase portrait will be qualitatively unaffected: a periodic orbit will appear
where the near and far trajectory flows find a balance. [vdH04]

Here the 2D version of the Hopf bifurcation theorem is reported, which was
already known to Andronov around 1930 [AVK66] and suggested by Poincaré [Poi92];
in 1942 Hopf proved the result for arbitrary finite dimensions [Hop42].
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Theorem 2.1. In the two-dimensional case, consider the system{
ẋ = fk(x, y)

ẏ = gk(x, y)

where k is a parameter. Let (x0, y0) be a fixed point of the system, possibly depending
on k; the eigenvalues of the linearised system at the fixed point are given by λ(k) =
α(k)± jβ(k). Suppose that for a certain value of k, k = k0, the following statements
hold

• α(k0) = 0, β(k0) = ω 6= 0 (conjugate pair of purely imaginary eigenvalues),
with sgn(ω) = sgn

(
∂gk
∂x

)
k=k0

(x0, y0),

•
(
dα(k)
dk

)
k=k0

= d 6= 0 (the eigenvalues cross the imaginary axis with nonzero

speed),

• γ = 1
16

(fxxx + fxyy + gxxy + gyyy) + 1
16ω

(fxy(fxx + fyy)− gxy(gxx + gyy)− fxxgxx +

fyygyy) 6= 0, with fxy =
(
∂2fk
∂x∂y

)
k=k0

(x0, y0) etc.

Then a unique curve of periodic solutions bifurcates from the origin into the region
k > k0 if γd < 0 or k < k0 if γd > 0. The origin is a stable fixed point for k > k0

(respectively k < k0) and an unstable fixed point for k < k0 (respectively k > k0) if
d < 0 (respectively d > 0); the periodic solutions are stable (respectively unstable) if
the origin is unstable (respectively stable) on the side of k = k0 where the periodic
solutions exist. The amplitude of the periodic orbits grows like

√
|k − k0|, while their

period tends to 2π/ |ω| as k tends to k0. The bifurcation is called supercritical if the
bifurcating periodic solutions are stable, subcritical if they are unstable.

Example 2.10. Consider the equation ẍ− (k−x2)ẋ+x = 0, which, if u = x, v = ẋ,
can be written as the first-order ODE system{

u̇ = v

v̇ = −u+ (k − u2)v

The origin is a fixed point ∀ k, with eigenvalues λ(k) = k±j
√

4−k2
2

. Therefore, the
system has a Hopf bifurcation for k = 0: ω = −1, d = 1

2
, γ = 1

16
(0 + 0− 2 + 0) = −1

8
;

the bifurcation is supercritical and there is a stable limit cycle (isolated periodic orbit)
if k > 0 for each sufficiently small k.

Example 2.11. Hopf bifurcations can arise in biological systems: for instance,
[WH95, WH96] are about the smallest chemical reaction system with Hopf bifurcation,
which has been considered in [KTS08] as well. Hopf bifurcations also occur in the
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system called the Brusselator,1 modelling an autocatalytic chemical reaction, in which
a chemical species acts to increase the rate of its own producing reaction. The
differential equations are {

ẋ = 1− (b+ 1)x+ ax2y,

ẏ = bx− ax2y,

where a and b are constant parameters, real and positive. The only equilibrium of the
system is (1, b

a
); the system Jacobian evaluated at the equilibrium is

J(1, b
a

) =

[
b− 1 a
−b −a

]
.

The characteristic polynomial is s2 + (1 + a− b)s+ a; because of Descartes’ rule of
signs, since a > 0, if b < a+ 1 the equilibrium is stable (two eigenvalues with negative
real part), while if b > a+ 1 it is unstable (two eigenvalues with positive real part).

For a fixed value of a, as b varies, the equilibrium point undergoes a change in
stability. To prove that a Hopf bifurcation is occurring at b = a + 1, it suffices to
show that

• the Jacobian eigenvalues are purely imaginary and nonzero when b = a+ 1: in
fact, the solutions of s2 + a = 0 are s = ±j

√
a

• the rate of change of the eigenvalues real part is nonzero when b = a + 1:
d = ∂

∂b
b−a−1

2
= 1

2
6= 0

• γ = (a+1)(a+2)
4ω

6= 0

Since ω = −
√
a, then γ < 0 and the bifurcation is supercritical: a stable limit cycle

exists, with approximate period 2π/ |ω| = 2π/
√
a.

2.3.5 Monostability and Bistability

Many simple systems have a unique steady state that is globally asymptotically
stable (monostability), but systems with multiple attractors can arise (for instance,
from complex interaction between processes that would be globally stable if isolated).

Bistability is a widespread phenomenon in nature, which explains a large number
of phenomena, e.g., in cellular functioning (decision-making processes in cell cycle
progression, cellular differentiation, apoptosis) and can be generated by a positive
feedback loop (as in the mutual activation case in Example 2.4, where A activates B
and B activates A) with a very sensitive regulatory step. The principle of bistability
underlies as well the operation of several man-made systems, such as mechanical

1The model was proposed by Ilya Romanovich Prigogine at the Free University of Brussels,
hence the model name.
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toggle-switches, flip-flops and memories in digital electronics (bistability is suitable
for storing binary data: one stable state can represent a 0 bit and the other a 1 bit).

Consider the system
ẋ = g(x)− kx,

where x ∈ R+, k > 0 and g(x) = αxn

β+xn
is a hyperbolic function if n = 1, a sigmoidal

function if n > 1.
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Figure 2.14: Monostability vs. bistability: (a) hyperbolic function (n = 1), leading to a single
stable equilibrium; (b) sigmoidal function (n = 8), generating bistability.

Fig. 2.14 shows the plots of both the terms g(x) and kx, with the choice α = 4,
β = 1 and k = 1/2, when (a) n = 1, and (b) n = 8. In the case n = 1, the two
curves have an intersection at the origin and another with abscissa x̄ = 7. For x < x̄,
g(x) > kx (hence ẋ > 0); for x > x̄, kx > g(x) (hence ẋ < 0). Therefore, x(t)
converges to x̄, which is the unique stable steady state (x̄0 = 0 is unstable). When
n > 1, instead, the curves have three intersections, having abscissae x̄1 = 0 and, in
the case n = 8, x̄2 = 0.75 and x̄3 = 8. For x < x̄2, kx > g(x), hence x(t) converges
to zero. For x̄2 < x < x̄3, g(x) > kx and, for x > x̄3, kx > g(x); hence, in both cases
x(t) converges to x̄3. Therefore, when g(x) is sigmoidal, two stable steady states are
created, one low and one high, along with an intermediate, unstable state.

Remark 2.2. Functions of the form αxn

β+xn
, along with their complementary functions

γ
δ+xn

, appear frequently in biochemistry. In the hyperbolic form, n = 1, they are
called Michaelis-Menten functions (used to model enzyme kinetics, as well as binding
of transcriptional activators and repressors); in the sigmoidal form, n > 1, they
are called Hill functions (where the so-called Hill coefficient n expresses the level of
cooperativeness of the ligand binding). [Alo06] It is clear, then, that in biochemical
systems a higher cooperativeness level can induce a bistable behaviour.

The monostable or bistable behaviour depends on the qualitative shape of the
curves, determined by the value of n. While a bistable system can be resting in



2.3. Properties of Interest 27

either of two stable steady states, separated by an unstable state, in a multistable
system, more in general, two or more stable steady states are present.

Example 2.12. The system [Wil09]{
ẋ1 = 2k1x2 − k2x

2
1 − k3x1x2 − k4x1

ẋ2 = k2x
2
1 − k1x2

can admit at most three steady states: the trivial x̄
(1)
1 = x̄

(1)
2 = 0 and the pair

x̄
(2,3)
1 = (k1 ±

√
k1D)/(2k3), x̄

(2,3)
2 = (x̄

(2,3)
1 )2/k1, where D = k1 − 4k3k4. For D > 0,

all of the three steady states are real, and the second and third are always positive;
at D = 0, a saddle-node bifurcation occurs and the second and third steady states
collapse into a single one, while for D < 0 just the trivial equilibrium exists. It can
be shown that, for D > 0, the first and third steady states are always stable, while
the second is a saddle point (hence, unstable). This system can therefore exhibit
bistability. The system phase-space portrait for k1 = 8, k2 = k3 = 1, k4 = 1.5, with
the equilibria and some trajectories, is shown in Fig. 2.3, right.

2.3.6 Oscillations

Building oscillators is crucial to provide timing in man-made systems; for example,
all synchronous electronic circuits rely on a “clock” signal (a periodic signal, usually
a square wave) to govern their activity. But oscillations are fundamental in everyday
life as well, for timing human activities (pendulum clocks work based on the harmonic
oscillations of a swinging bar), and can even make life much happier by producing
music (stringed musical instruments generate their sound thanks to vibrating strings,
woodwinds thanks to the vibrations of an air column, induced by a sharp edge that
splits the airstream or by a vibrating reed, or reeds). Oscillations can be produced
by external inputs (as happens in the case of a string, or of a reed) or can be
self-generated, typically by systems having an unstable equilibrium associated with a
pair of complex eigenvalues with non-negative real part (this is the case of oscillators).
Periodic biochemical and biophysical rhythms are ubiquitous characteristics of living
organisms. Rhythmic phenomena occur at all levels of biological organisation, from
unicellular to multicellular organisms, with periods ranging from fractions of seconds
to years [Gol97]; a lot of physiological properties show periodic changes almost
synchronous to the 24 hours cycle of light and darkness on earth (and are therefore
called circadian rhythms) [Win80].

The simplest oscillations can arise from two-component networks, such as{
ẋ = f(x, y),

ẏ = g(x, y),
(2.2)

where x, y ∈ R. Bendixson’s negative criterion states that, if ∂f/∂x+ ∂g/∂y is of
constant sign (not identically zero) in a region D of the (x, y) plane, then there can
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be no periodic solution of system (2.2) entirely lying in D. The system (2.2) can
have in general one or more steady-state solutions satisfying{

0 = f(x̄, ȳ),

0 = g(x̄, ȳ).

The stability of such steady states is determined by the eigenvalues λ of the Jacobian
matrix evaluated at the steady state

J(x̄,ȳ) =

[
(∂f/∂x)(x̄,ȳ) (∂f/∂y)(x̄,ȳ)

(∂g/∂x)(x̄,ȳ) (∂g/∂y)(x̄,ȳ)

]
=

[
j11 j12

j21 j22

]
.

The steady state is stable if <(λ) is negative for both of the eigenvalues of J , namely,
the roots of the characteristic equation λ2−tr(J)λ+det(J) = 0. In view of Descartes’
rule of signs:

• if det(J) < 0, then J has one positive and one negative eigenvalue, resulting in
a saddle point;

• if det(J) > 0 and tr(J) < 0, the steady state is stable;
• if det(J) > 0 and tr(J) > 0, then there is an unstable node or focus.

Since the trace and determinant of J depend continuously on the parameters, if
by varying a parameter k the trace tr(J) can go from negative to positive values,
with det(J) > 0, then the steady state loses stability at tr(J) = 0 (for k = kcrit).
At the bifurcation point, tr(J) = 0, the eigenvalues are purely imaginary numbers,
λ = ±jω, ω =

√
j11j22 − j12j21. Close to the bifurcation point, for k ≈ kcrit, small

amplitude limit-cycle solutions surround the steady state and the period of oscillation
is close to 2π/ |ω|: periodic solutions arise due to a Hopf bifurcation at k = kcrit.

Oscillations often arise due to a Hopf bifurcation, which can occur in a two-
component network under some requirements. If both j11 and j22 are always negative,
then tr(J) never changes sign and a Hopf bifurcation cannot occur (cf. Bendixson’s
negative criterion): thus, one of them must be positive for some parameter values. If
j11 and j22 are of opposite sign, then j12 and j21 must also be of opposite sign in order
for det(J) to be positive (otherwise there cannot be a pair of complex eigenvalues).
Four characteristic sign patterns of the Jacobian matrix can typically produce Hopf
bifurcations in two-dimensional systems:

J =

[
+ +
− −

]
,

[
+ −
+ −

]
,

[
− +
− +

]
,

[
− −
+ +

]
.

Example 2.13. Lotka-Volterra model. [Lot20, Vol26] The system{
ẋ1 = k1x1 − k2x1x2

ẋ2 = k2x1x2 − k3x2
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Figure 2.15: Lotka-Volterra oscillator: phase-space portrait (left) and time evolution starting from
initial conditions [0.35 0.51]> (right).

where k1, k2, k3 are positive parameters, admits two equilibria, the trivial x̄1 = x̄2 = 0
and the positive x̄1 = k3/k2, x̄2 = k1/k2. The system Jacobian matrix is

J =

[
k1 − k2x̄2 −k2x̄1

k2x̄1 k2x̄1 − k3

]
.

The Jacobian computed at the two equilibrium points is

J(0,0) =

[
k1 0
0 −k3

]
,

hence the origin is a saddle-point (unstable), and

J(k3/k2,k1/k2) =

[
0 −k3

k1 0

]
,

which has a pair of purely imaginary complex eigenvalues s = ±j
√
k1k3, responsible

for the onset of oscillations. A phase-space portrait showing the equilibria and
some orbits, along with the system time evolution starting from initial conditions
[0.35 0.51]>, is reported in Fig. 2.15 for k1 = 10, k2 = 12 and k3 = 8. However, it
must be stressed that the oscillatory nature of the positive equilibrium of the system
does not depend on the specific choice of parameter values.

Example 2.14. Van der Pol model. The system{
ẋ1 = x2

ẋ2 = (1− x2
1)x2 − x1

only admits the equilibrium x̄0 at the origin, which is unstable (the corresponding
Jacobian has two complex conjugate eigenvalues with positive real part). As shown
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in Fig. 2.16 (left), the orbits tend to a limit cycle either from infinity or escaping
from x̄0. Fig. 2.16 (right) shows instead the time evolution starting from an initial
condition lying on the limit cycle: [−1.45 0.819]>.
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Figure 2.16: Van der Pol oscillator: phase-space portrait (left) and time evolution starting from
initial conditions [−1.45 0.819]> (right).

2.3.7 Monotonicity

Monotone systems [Hir88, Enc05, Son07, Smi08] enjoy remarkable properties that
can be exploited to facilitate both the analysis [AS04b, GS07, ADLS06, DLAS07,
Son07, AS08, WS08, ADLS10, BT11, BFG15b] and the control [AS03, CF06a] of
dynamical systems.

Denote by x(t) = ϕ(t, ξ) the solution at time t of the initial value problem

ẋ(t) = f(x(t)), x(0) = ξ,

where f : X → Rn is a locally Lipschitz vector field and x takes values in a closed set
X ⊂ Rn; the solutions are unique and defined for all t ≥ 0. Assume that a partial
order denoted by � is defined on X ; a partial order is a binary relation satisfying
the following axioms:

• reflexivity: x � x, ∀x ∈ X ;
• transitivity: x � y and y � z implies x � z, ∀x, y, z ∈ X ;
• antisymmetry: x � y and y � x implies x = y, ∀x, y ∈ X .

Assume also that the defined partial order is closed: if x(n)→ x and y(n)→ y for
n→∞ and x(n) � y(n) for all n, then also x � y. Then, the system is monotone if
x(0) � y(0) implies ϕ(t, x(0)) � ϕ(t, y(0)), ∀ t ≥ 0.

In Rn, a possible partial order is that in which x � y if xi ≥ yi for all i = 1, . . . , n;
in general, partial orders associated with any possible orthant in Rn can be defined.
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In fact, a closed partial order relation can be defined by introducing a closed pointed
positive convex cone K ⊂ Rn and claiming that x � y if and only if x− y ∈ K.

Example 2.15. In R2, the “northeast” order can be defined as (x̄, ȳ) ≥ (x, y) iff
x̄ ≥ x and ȳ ≥ y: (x̄, ȳ) − (x, y) = (x̄ − x, ȳ − y) ∈ Kne, where Kne = {(a, b) : a ≥
0, b ≥ 0}. Conversely, the “northwest” order is defined as (x̄, ȳ) ≥ (x, y) iff x̄ ≤ x
and ȳ ≥ y: (x̄, ȳ)− (x, y) = (x̄−x, ȳ−y) ∈ Knw, where Knw = {(a, b) : a ≤ 0, b ≥ 0}.

Formally, a cone K ⊆ Rn is a nonempty, convex2 set that is closed under
multiplication by a positive scalar and pointed (i.e., K ∩−K = {0}). Assume also
that K is closed (∂K ⊆ K) and has nonempty interior (intK 6= ∅). Then, the cone K
can induce the following order relations in Rn:

• x � y iff x− y ∈ K,
• x � y iff x � y andx 6= y,
• x �� y iff x− y ∈ intK.

A signature tuple (s1, . . . , sn), where si = 1 or −1 ∀ i, defines the order x ≥s y
if and only if sixi ≥ siyi ∀ i. The cones Ks = {x ∈ Rn : x ≥s 0} are denoted as
orthant cones; the positive orthant cone, defined by s = (1, . . . , 1), is also called the
cooperative cone. [Enc05]

Example 2.16. Given the “northeast” order in Rn, associated with the first orthant
Kne = Rn

+: x ≥ y means that xi ≥ yi for all i; x � y means that xi > yi for all
i; x > y means that xi ≥ yi for all i and, moreover, for at least one component j,
xj > yj.

A system is therefore monotone if, for all x � y and all t ≥ 0, ϕ(t, x) � ϕ(t, y);
if the partial order � is induced by the positive orthant Kne = Rn

+, the system is
cooperative. A system is strongly monotone if x � y implies ϕ(t, x) �� ϕ(t, y) for
all t > 0.

When dealing with monotone systems, Metzler matrices are fundamental.

Definition 2.2. Matrix A is a Metzler matrix if it has nonnegative off-diagonal
entries: aij ≥ 0 for all i 6= j.

A linear system ẋ = Ax is:

• monotone if x0 ≥ y0 implies ϕ(t, x0) ≥ ϕ(t, y0) for all t ≥ 0, and this is true iff
A is a Metzler matrix;

• strongly monotone if x0 > y0 implies ϕ(t, x0)� ϕ(t, y0) for all t > 0, and this
is possible if A is Metzler and irreducible.3

2A set C is convex if the line segment between any two points in C lies in C: for any x, y ∈ C
and any real ϑ with 0 ≤ ϑ ≤ 1, ϑx+ (1− ϑ)y ∈ C.

3Given matrix A ∈ Rn×n and the associated directed graph G(A) with n nodes, where (i, j) is
an arc iff aji 6= 0, A is irreducible if G(A) is strongly connected (each node can be reached, starting
from any other node, by following arcs in the direction in which they point).



32 2. Structural: More Than Robust

Of course, the above concept can be generalised by considering any orthant cone
Ks and the corresponding directions of the componentwise inequalities.

More in general, a nonlinear system is monotone with respect to the partial order
induced by a generic orthant cone Ks, in the case of class C1 vector fields f(x),
x ∈ X , if and only if the Jacobian matrix of the system, possibly after changing sign
to some of its row-and-column pairs (according to the signature that defines Ks), is
Metzler for all x ∈ X .

With the additional hypothesis of irreducibility, strongly monotone systems are
obtained: for systems strongly monotone with respect to orthants, x(0) > y(0) implies
that xi(t) > yi(t) for all i. Strongly monotone systems have peculiar dynamical
properties: no chaotic dynamics can occur and not even limit cycles can arise.

Input-to-state monotonicity can be defined by considering the system

ẋ = f(x, u)

and assuming that the solution x(t) = ϕ(t, ξ, u) at time t with initial conditions
x(0) = ξ is defined for all inputs u(·) and all times t ≥ 0. Then, the system is input-
to-state monotone if there are orders in the state and input spaces (corresponding to
an assigned signature) such that

ξ ≥ ξ̃, u(t) ≥ ũ(t)∀ t ≥ 0 imply ϕ(t, ξ, u) ≥ ϕ(t, ξ̃, ũ) ∀ t ≥ 0.

It is input-to-state anti-monotone if the input has a negative effect on the state:

ξ ≥ ξ̃, u(t) ≤ ũ(t)∀ t ≥ 0 imply ϕ(t, ξ, u) ≥ ϕ(t, ξ̃, ũ) ∀ t ≥ 0.

If an output y = g(x) is present, the system is input-output monotone (respectively,
input-output anti-monotone) if it is input-to-state monotone (respectively, input-to-
state anti-monotone) and, moreover, the output map g(·) preserves the order as
well (this means that the components gi(·) are either monotone non-increasing or
monotone non-decreasing functions, depending on the assigned signature that defines
an order in the output space).

Monotone systems have well-defined characteristics and constitute a well-behaved
set of building blocks for arbitrary systems; moreover, cascades of such systems
inherit the same properties. Therefore, interestingly, a system can be analysed by
decomposing it as an interconnection of monotone subsystems. [AS04a, DESZ07]

2.3.8 Positivity

Often, for real systems, intuitive physical considerations guarantee the non-negativity
of the solutions. In the corresponding mathematical model, non-negative initial
conditions (possibly, in the presence of positive input sequences) must generate
trajectories that are confined in the non-negative orthant. The fact that a system
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naturally has non-negative state variables must be taken into account when designing
a controller, not to alter the natural positivity of the system.

Interestingly, in the linear case, positivity is equivalent to monotonicity: both
properties hold iff the state matrix is Metzler (in the continuous-time case; non-
negative in the discrete-time case).

In the nonlinear case, conversely, there are positive systems that are not monotone,
and monotone systems that are not positive (examples are provided in [BCV15]).
For instance, in dimension 1 each system ẋ = f(x), with regular f , is monotone, but
it is not necessarily positive; any chemical reaction network is positive, but it is not
monotone in general. However, the fact that a monotone nonlinear system, under
mild smoothness assumptions, has a Jacobian matrix that is Metzler, when evaluated
at any equilibrium point, corresponds to local positivity of the linearised system.

2.3.9 Perfect Adaptation

The insensitivity of system properties to parameter variations and uncertainties
in the components, as well as in the environment, is essential for both biological
and man-made systems. Adaptation and compensation mechanisms are needed
to preserve the system functionality in spite of changing conditions and persistent
external perturbations. A system is adaptive if its output initially responds to a
stimulus, but then, after a transient response, returns to the pre-stimulus value even
though the stimulus persists. If the output converges exactly to the pre-stimulus
level, adaptation is called perfect, while it is called partial if the output only returns
close to, but not exactly to, the pre-stimulus level.

It is worth pointing out that the word adaptive is used with a completely different
meaning in control theory, where a control system is called adaptive if it automatically
changes its parameters, depending on those of the controlled system, in order to
assure a certain property.

Interesting examples of perfect adaptation in nature are offered by bacterial
chemotaxis [BL97, SPO97, ASBL99], eukaryotic gradient sensing [LI02] and yeast
osmoregulation [MGUMvO09]. Efforts have been made to determine motifs that
can achieve perfect adaptation [MTES+09] and to design biomolecular network
modifications that enable perfect adaptation [WSA12]. Perfect adaptation obeys the
internal model principle [Son03] and is equivalent to the presence of integral feedback
[YHSD00] and of zeros at the origin in the system transfer function [DUR08].

In fact, perfect adaptation (seen as a robust property, due to the interconnection
structure and independent of parameter values) can be formulated in terms of integral
feedback control. The standard solution to develop a system that robustly tracks a
desired steady-state output value, or function, is a control scheme that feeds back to
the system the time integral of the system error (the difference between the actual
and the desired output), as shown in Fig. 2.17: if the closed loop system is stable,
the steady-state error is driven to zero regardless of perturbations in the input or in
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the parameters. Any equally robust solution leading to zero steady-state error (and,
thus, perfect adaptation) must be equivalent to integral control. [YHSD00]

+
–

–

+

∫

Figure 2.17: Integral feedback control. A process with gain k has input u; the difference between
the actual output y1 and the desired steady-state output y0 (a constant) gives the error y, whose
time integral x is fed back into the system: ẋ = y, y = y1 − y0 = k(u − x) − y0. Provided that
k > 0, y → 0 as t→∞ because at steady-state ẋ = y = 0.

Consider an asymptotically stable linear time invariant (LTI) system{
ẋ = Ax+Bu,

y = Cx+Du,

where x ∈ Rn is the state vector, u ∈ R is the input, y ∈ R the output and A ∈ Rn×n,
B ∈ Rn×1, C ∈ R1×n, D ∈ R, with all the eigenvalues λi of matrix A having
<(λi) < 0, i = 1, . . . , n. At steady state (ẋ = 0), y = (D − CA−1B)u. For all
constant input values u (neglecting the trivial case in which [C D] = 0), y = 0 if
and only if

det

[
A B
C D

]
= 0.

Therefore, a LTI dynamical system has perfect adaptation if and only if its transfer
function has a zero at the origin. This condition is satisfied if and only if there
exists a constant row vector k ∈ Rn, k 6= 0 such that k[A B] = [C D] (the matrix
rows are not linearly independent). Hence, if z = kx, then ż = kẋ = k(Ax+Bu) =
Cx + Du = y. The condition ż = y means that integral feedback control is an
inherent property of the system; this is proved to be equivalent to robust perfect
adaptation.

In the case of a nonlinear system, if the system has robust perfect adaptation,
then its linearisation around the equilibrium point must have perfect adaptation.
Hence, robust perfect adaptation reveals that an integral control is embedded in the
system.

Consider a nonlinear system of the form{
ẋ = Ag(x) +Bu,

y = Cx+Du,
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admitting an asymptotically stable equilibrium point (x̄, ū). To check if the system
has perfect adaptation, a constant perturbation on the input, with respect to the
equilibrium input value, must be introduced. To determine if, after a transient, the
system responds by returning to the equilibrium value prior to the perturbation,
consider the linearised system around the equilibrium point,{

ż = Jz +Bv,

w = Cz +Dv,

where z = x − x̄, v = u − ū and J is the system Jacobian matrix. The perfect
adaptation condition is equivalent to requiring that

det

[
J B
C D

]
= 0,

with the additional condition det J 6= 0, which is assured by the asymptotic stability
of the equilibrium point.

Example 2.17. The system

ẋ =

[
a b
c d

]
x+

[
g
0

]
u = Ax+Bu,

y =
[
nc nd

]
x = Cx,

with A stable (and D = 0), is structurally perfectly adaptive, since

det

 a b g
c d 0
nc nd 0

 = det

[
A B
C D

]
= 0,

regardless of the chosen parameter values.





3
Dynamical Networks

Dynamical networks are composed of a finite number of subsystems, each possibly
having its own dynamics, interconnected by suitable interactions (which can be seen
as generalised “flows”). Complex networks of interacting components, ranging from
technological to natural networks, are ubiquitous in every aspect of daily life. Hence,
a wide variety of real systems can be modelled in a dynamical-network framework
[BBV08, ME10, RC10, Bar12], for instance:

• chemical and biochemical processes (gene regulatory networks, signalling path-
ways, metabolic networks) [Lot20, Fei87, Fei95a, Fei95b, CF05, Alo06, CF06b,
Cha06, MC08, CWLA05, DK09, IA10, CB11, DVM14];

• biological and ecological systems [Vol26, Lev68, May74, Lev75, PL85, DLR03,
DLLR03, EK05, DLR05, DRJ07, DGR+09, MDJ+11];

• economical networks, social networks and opinion dynamics [FJ99, EK10,
FIA11, Alt12, CF12, DCB12, Alt13, ACFO13, FRTI13, MJB14, VFFO14,
AL15, JMFB15, FIRT15, Fri15, RFTI15, BCGV15, BCGV16];

• consensus and synchronisation systems [OSM04, BGP06, OSFM07, RBA07,
CFSZ08]; [SWX08, SAS10, CCSZ11, CZ14];

• flow networks [AZ07, OnZ07, BBP10, WvdS13a, WvdS13b, DBO+13, BP15];
• water distribution networks [LK69, BBGP13];
• inventory management and production-distribution systems [SP85, BYZ95,

BRU97, BMU00, BT06, SPTK08, BBP10, BPA15];
• power networks and smart grids [IA09, Far10, SHPB12];
• transportation networks [AI98, MOnL08];
• traffic and congestion management systems [Ift96, Ift99];
• vehicle platooning and formation flight of aircrafts [RI96, WCS96, AR98, D’A98,

RBA07, SH07, PTB03];
• telecommunication and data communication networks [MS82, MP95, EV89,

ID90, ID02]; ...

This chapter presents the distinctive features of dynamical networks, along with
the graph representation that constitutes an effective visual representation of the
structure of a dynamical network. The structural approach discussed in Chapter 2 is
specialised to the case of dynamical networks, exploiting their special characteristics
for both structural analysis and network-decentralised control synthesis.
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3.1 Local Interactions, Global Behaviour

Dynamical networks can be seen as a generalisation of the concept of compartmental
system. Compartmental systems [God83, JS93], first arisen in a biological and
physical context (with applications to physiology, pharmacokinetics, metabolism,
epidemiology, ecology, etc.), are fundamental both

• for the dynamic modelling of processes that are subject to conservation laws
(such as mass balance) in various fields [Jac72, And83, KKA84];

• for the formulation of flow and congestion control problems [BG06, HHB06].

A compartmental system is the ensemble of a finite number of compartments (indi-
vidual units, corresponding to amounts of homogeneous material) interconnected by
flows of material. The compartments may either occupy different physical spaces
(so that the flow between compartments corresponds to moving material between
different physical locations) or the same physical space (so that the exchange of
material between compartments corresponds to the transformation of one substance
into another). Compartmental systems have some fundamental properties.

• Transfer flows connect at most two compartments.
• Proper “mass” conservation constraints hold for material transfers between

compartments and from/to the external environment. Denoting by x the
state vector associated with the ensamble of compartments (where each state
variable is the amount of material in the corresponding compartment), the
total “mass” 1̄>x is preserved in the absence of connections with the external
environment, i.e., for a closed system; conversely, in the presence of exchanges
with the external environment, the total mass variation 1̄>ẋ corresponds to
the difference between the sum of inflows and the sum of outflows.

• The state variables must be non-negative, since they represent the quantity
of material in each compartment. Hence, compartmental systems are positive
systems: the non-negative orthant is forward invariant, and forward controlled-
invariant for any non-negative input sequence [FR00, BF02].

• Compartmental systems are monotone [AS03, CF06a, Smi08].

Dynamical networks are not necessarily positive systems and do not need to
include mass conservation constraints. Moreover, while flows in compartmental
systems require interactions between at most two compartments, for dynamical
networks each “flow” can result from interactions among more than two subsystems.

The distinctive feature of dynamical networks is that the interactions occur locally,
since flows involve a subset of the subsystems only; however, local events have global
consequences, since they determine the behaviour of the overall system. It is therefore
interesting to study:

[A] [Analysis] how the global behaviour is affected by the local interactions
(analysis) and, in particular, by their “structure” (structural analysis);
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[C] [Control Synthesis] how a desired global behaviour can be obtained by
deciding the local interactions, given their “structure” (control synthesis),
possibly under constraints depending on the “structure” itself (structural
control synthesis).

To understand more precisely what a structure is, in the special case of dynamical
networks, their graph representation needs to be introduced.

3.1.1 Graph Representation and Structure

A graph G is constituted by a set of nodes and a set of arcs connecting pairwise
the nodes, as in Fig. 3.1, left. More formally, a graph is defined as the ordered pair
G = (N ,A), where:

• the nodes are the elements of the set N = {1, 2, . . . , n}, whose cardinality
|N | = n is the order of the graph;

• the arcs are the elements of the set A, which is a 2-element subset of N ,
A ⊆ {{n1, n2} : n1, n2 ∈ N}, and whose cardinality |A| is the size of the graph.
Note that, for directed graphs (with directed arcs), the set A is composed of
ordered pairs of nodes (ni, nj), such that (ni, nj) 6= (nj, ni).

If, conversely, the elements of A are subsets of N each including a number of elements
between 2 and |N | (not necessarily the same for all of the elements of A), then A
is said to be the set of the hyperarcs and the resulting pair G = (N ,A) is called a
hypergraph (see Fig. 3.1, right). Some fundamental concepts of graph theory will be
summarised in Section 4.1.

  

1 2

4 3

5

1 2

4 3

5

graph hypergraph

Figure 3.1: A graph of size 7 (left) and of a hypergraph of size 5 (right), both having order 5.

All dynamical networks admit a graph (or, more in general, a hypergraph)
representation, in which nodes represent subsystems and arcs represent flows, or
interactions. A graph strictu senso can be associated with compartmental system,
where flows always require the interaction of at most two compartments. In the more
general case of dynamical networks, it may be necessary to resort to a hypergraph,
since interactions can involve more than two subsystems and are then associated
with hyperarcs. For the sake of simplicity in the exposition, however, hypergraphs
and hyperarcs will be often referred as graphs and arcs.
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In general, in the considered dynamical networks, interactions with entities that
are external to the system may occur as well. In this case, also arcs involving just one
node can be considered, as in Fig. 3.2, to represent a connection with the “external
environment”. External connections may be seen as connections between a node of
the graph and a fictitious node (node 0) representing the external environment.
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Figure 3.2: An example of a graph (left) and of a hypergraph (right) with external connections.

Which is, then, the structure of a dynamical network?

A thorough description of a dynamical network is provided by three basic elements:

• the interaction topology, corresponding to the associated graph;
• the internal dynamics of the subsystems (describing the inner, spontaneous

behaviour that each subsystem-node would exhibit if isolated from the rest of
the system-graph);

• the interaction functions (functional expressions associated with the connections-
arcs in the graph).

The precise knowledge of internal node dynamics and of interaction functions
is not fundamental for describing the essence of a dynamical network. The most
essential component is clearly the first: to obtain a structural representation of
a dynamical network, the nodes and the arcs can be seen just as “black-boxes”
(which can be possibly required to satisfy some qualitative properties), while the
topology of the interconnections among the nodes in the graph needs to be known
exactly. Therefore, the structure of a dynamical network is the corresponding graph,
along with possible qualitative requirements on the subsystem dynamics and on the
interaction functions.

It is worth stressing that the graph can be associated with a matrix that fully
describes its interconnection topology: the incidence matrix B, whose rows are
associated with nodes and whose columns are associated with arcs (of course, its
rows and its columns can be arbitrarily permuted, by assigning a different order
to nodes and arcs). Each entry bij of matrix B is 1 if the jth arc enters node i,
−1 if it leaves node i and 0 otherwise. This means that, for proper graphs (not
externally connected), matrix B has zero-sum columns; this is not true in general
for hypergraphs and for externally connected graphs.
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For instance, the incidence matrices associated with the graph and hypergraph
shown in Fig. 3.1 are, respectively,

BG =


−1 0 0 1 0 −1 0

1 −1 0 0 1 0 0
0 1 −1 0 0 0 0
0 0 1 −1 −1 0 1
0 0 0 0 0 1 −1

 , BH =


−1 0 0 −1 0

1 −1 0 0 1
0 −1 −1 0 0
0 1 1 −1 −1
0 0 0 1 0

 .
Hence, in the following, a graph (hypergraph) will be formally associated with

its incidence matrix, which is an equivalent description of the graph structure.

3.2 A Twofold Goal

Analysis and control synthesis for dynamical networks are needed in different situa-
tions.

[A] The interaction topology is fixed, the internal dynamics of the subsystems
are fixed and the interaction functions are fixed as well; then, the aim is to
investigate how the local interactions produce the global behaviour.

[C] The interaction topology is fixed, the internal dynamics of the subsystems are
fixed, but the interaction functions can be decided ; the aim is then to choose the
local interactions so as to produce the desired global behaviour. Even though
the control strategy is decided locally, the goal is to govern the dynamics of
the whole system.

Also, the two approaches of analysis and synthesis are especially meant for

[A] natural systems (this is the domain of system theory applied to the natural
world, recently capturing a strong interest under the name of systems biology,
which aims at understanding the design principles underlying the functioning
of biological systems, based on system-theoretical tools and techniques);

[C] man-made systems (this is the broad realm of engineering, and control theory).

Analysis and synthesis are far from being disjoint: they have a tight bond, since

• engineers can learn from nature when designing control strategies (and most
often natural systems are organised as dynamical networks in which the global
behaviour is determined by the sum of a huge number of local interactions);

• local interactions can be engineered in natural systems that spontaneously
exhibit a dynamical network structure (such as chemical and biochemical
reaction networks and biomolecular systems, where interactions among species
or molecules occur locally and then produce a global behaviour: complex
metabolic networks and pathways) so as to obtain the desired global behaviour.
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Nature has developed effective strategies to deal with highly complex dynamical
networks, ensuring an extremely robust and reliable behaviour, in spite of severe
uncertainties, intrinsic noise and environmental fluctuations. Conversely, engineers
often experience difficulties in controlling much simpler artificial networks. Both
natural and artificial networks face the same needs and challenges: for instance,
in the most diverse external conditions, living organisms preserve a sturdy and
resilient functioning, thanks to the adjusted regulation provided by enzymes; and
power networks and smart grids, with dynamically changing loads and connections,
should exhibit the same efficiency and promptness. To reach this goal, can engineers
unravel and then adopt nature’s strategy? There are many examples of biologically-
inspired design of dynamical networks: for instance, agents can be coordinated by
mimicking collective animal behaviour such as flocking, swarming, shoaling, as shown
in Fig. 3.3 (this is the approach of the so-called swarm robotics [BFBD13]); the
optimal disposition of wind turbines in a wind farm can be decided inspired by
fish schooling [WLD10]; formation flight of aircraft can mimic bird flocking [AR98,
PTB03]. Engineering local biochemical interactions to design from the bottom-up
new large scale biological circuits with specific functionalities is the main goal of
synthetic biology, which aims at building complex functional biomolecular systems
made of simple components, as complex computational systems are built made of
nanometric silicon devices (the analogy is illustrated in Fig. 3.4) [End05, DWS07,
Alo06, Alo07a, EL00, KWW06, KW11, FFK+11, FGFM14]. Suitable microscopic
shapes and machines can also be built by engineering interactions at the molecular
level, as shown in Fig. 3.5 [ABY+10, DBC12].

On the one hand, studying, analysing and modelling the interactions among
the bricks that compose and sustain life and among living creatures in nature is
interesting per se. On the other hand, once an insight has been gained into the
basic functioning of nature, it is much easier to imitate it in order to both (i) build
artificial systems having the same astounding efficiency and resilience, and (ii) forge
new biomolecular circuits with the desired behaviour (and it must not be forgotten
that designing artificial biological systems and synthetic biochemical circuits can
help a deeper understanding of natural biological design [MvO09]).

Therefore, analysis and synthesis are not only complementary facets of the same
approach, but can also aid and streamline each other in a virtuous circle.

Figure 3.3: Robotic agents can be coordinated, for example, by mimicking a shoal of fish.
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(a) Industrial assembly. (b) Molecular assembly.

Figure 3.4: Analogy between industrial and molecular assembly: (a) electronic components as
sub-blocks of a computational system, ©Arduino microcontroller; (b) biochemical components as
sub-blocks of cubic RNA-based scaffolds, [ABY+10].

(a) Molecular gear. (b) DNA box.

Figure 3.5: Molecular machines: (a) molecular differential gear, ©1997 Institute for Molecular
Manufacturing; (b) DNA box for targeted transport of molecular payloads [DBC12].

Recall now the distinction made above between fixed (in the case of analysis)
and decidable (in the case of control synthesis) features. Of course a quantity, or
function, that is fixed is not necessarily known; it simply cannot be changed or
decided. Often, what is fixed is completely unknown, or only partially known. In the
case of dynamical networks, the internal node dynamics and the interaction functions
are unknown or uncertain in most cases. Hence, a structural approach to the analysis
of dynamical networks is beneficial: the properties and behaviours of a dynamical
network are assessed based on its structure only, independent of precise parameter
values and functional expressions. Conversely, what can be decided is (obviously)
always known. Yet, the choice can be subject to restrictions, due to constraints
that need to be satisfied. Whenever these constraints depend on the interconnection
topology of the dynamical network, hence on its structure, a structural approach to
the control of dynamical networks is beneficial to govern the dynamics of the whole
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systems by means of local agents with structurally restricted information.
Structural analysis aims at studying phenomena and behaviours based exclusively

on the intrinsic nature (i.e., the structure) of the system under consideration. A
structural approach to the analysis of dynamical networks:

• [local interactions structure] takes into account exclusively the structure
(essentially, the graph topology along with qualitative properties) of the local
interactions among subsystems;

• [parameter-free] is independent of parameter values;
• [global behaviour] aims at explaining robustness and characteristic be-

haviours of the global system.

Structural analysis of dynamical networks will be dealt with in Part II.
When the system is controlled or coordinated by agents making their decisions

based on restricted information, the restriction is likely to depend on the topology
of the interactions (the system structure). Then, the control strategy must be such
that:

• [local interactions] a control agent is associated with each arc of the graph,
allowing local interactions to be decided;

• [local structure-based information] local interactions are decided based on
local information only (the meaning of local depends on the graph topology);

• [global behaviour] the aim is to control or coordinate the global system
behaviour.

In Part III, the concept of network-decentralised control will be introduced: a
control is network-decentralised if each control agent, associated with an arc of the
graph, decides its strategy exclusively based on information about the subsystems
associated with the nodes it interconnects.



4
Essential Mathematical Concepts

and Results

This chapter presents some indispensable mathematical concepts, outlines some
fundamental theories and provides essential results that will be useful throughout
the thesis.

4.1 Graph Theory

As seen in Chapter 3, a graph is described by the ordered pair G = (N ,A), where
N = {1, 2, . . . , n} is a set of nodes (whose cardinality |N | = n is the order of the
graph) and A ⊆ {{n1, n2} : n1, n2 ∈ N} is a set of arcs connecting pairwise the nodes
(whose cardinality |A| = m is the size of the graph); an example is shown in Fig. 4.1.
Hypergraphs are graphs in which each arc (denoted as hyperarc) can connect more
than two nodes. Two nodes of a graph are adjacent if they are connected by an arc.

  

1 2

4 3

Figure 4.1: An example of a graph of size 5 and order 4.

A graph Gs = (Ns,As) is a subgraph of G = (N ,A) if Ns ⊆ N and As ⊆ A (all
of the nodes and all of the arcs in the subgraph belong to graph G as well).

A graph may be directed, if a direction is assigned to each of its arcs, or undirected
otherwise. In the present thesis, a direction for all arcs will be almost always indicated
in the graphs; however, for some purposes, the arc orientation may be neglected.

Some special graph topologies are discussed in the following.

• A bipartite graph is a graph whose node set can be partitioned into two sets,
N1 and N2, so that each arc connects a pair of nodes belonging one to N1 and
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(b) Linear graph, or path, of order 4.

1 2

4 3

5

(c) Cycle graph of order 5.
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(e) Star.

Figure 4.2: Special graph topologies.

one to N2; namely, no arc exists that connects either two nodes in N1, or two
nodes in N2 (see Fig. 4.2 (a)).

• A linear graph or path graph of order k is a graph whose nodes can be listed in
order, n1, . . . , nk+1, so that the (undirected) arcs are (ni, ni+1) for i = 1, . . . , k;
nodes n1 and nk+1 are denoted as the extrema of the path (see Fig. 4.2 (b)). In
an oriented path (or directed path), all the arcs must have a path-consistent
orientation (for instance, the path in Fig. 4.2 (b) is oriented). If a linear graph
occurs as a subgraph of another graph, it is a path in that graph.

Connectivity. In an undirected graph, a pair of nodes (i, j) (which is unordered)
is connected if a path leads from i to j (and disconnected otherwise). An undirected
graph is then connected if every unordered pair of nodes in the graph is connected.
In a directed graph, an ordered pair of nodes (i, j) is strongly connected if a directed
path leads from i to j; the ordered pair is weakly connected (or connected) if an
undirected path leads from i to j (regardless of the direction of the involved arcs). A
directed graph is then strongly connected if every ordered pair of nodes in the graph
is strongly connected and weakly connected if every (ordered) pair of nodes in the
graph is weakly connected.

• A cycle graph of order k ≥ 2 is a graph whose nodes can be listed in order,
n1, . . . , nk, so that the (undirected) arcs are (ni−1, ni) for i = 2, . . . , k in addition
to (nk, n1) (see Fig. 4.2 (c)). In an oriented cycle (or directed cycle), all the
arcs must have cycle-consistent orientation (for instance, the cycle in Fig. 4.2
(c) is oriented). If a cycle graph occurs as a subgraph of another graph, it is a
cycle in that graph.
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• A tree is a (weakly) connected graph with no cycles (see Fig. 4.2 (d)). In a
tree, a root (or internal node) is a node with at least two connections, while a
leaf is a node with a single connection. A tree that consists of a single root
(and where all of the other nodes are leaves) is denoted as a star (see Fig. 4.2
(e)). A tree is a spanning tree of a graph G if it is a subgraph of G including
every vertex of G (a spanning tree of a connected graph G can be defined as
the maximal set of arcs of G that contains no cycle, or as the minimal set of
arcs that connects all nodes; there can be several spanning trees of a connected
graph, while a graph that is not connected does not admit a spanning tree).

• A forest is a disjoint union of trees, i.e., a graph with no cycles that is not
connected; the spanning forest of a disconnected graph is the union of more
spanning trees, one for each connected component of the graph.

Some matrices can be introduced to mathematically describe a graph topology.

D: If the number of connections for a node of the graph (namely, the number of
arcs, either incoming or outgoing, attached to the node) is denoted as degree
of the node, then the diagonal degree matrix D ∈ Nn×n can be defined, whose
diagonal entry dii is the degree of the ith node.

A: A fundamental matrix is the symmetric adjacency matrix A ∈ {0, 1}n×n. Its
entry aij is 1 if nodes i and j are connected by an arc (in either direction) and
0 otherwise.

B: The relationship between nodes and arcs is captured by the incidence matrix
B ∈ {−1, 0, 1}n×m, whose entry bij is 1 if the jth arc enters node i, −1 if it
leaves node i and 0 otherwise; matrix B has zero-sum columns.

L: The Laplacian matrix of the graph is defined as the difference between the
degree matrix and the adjacency matrix: L = D − A. Hence, in the Laplacian
matrix, the diagonal entries lii are equal to the number of arcs involving node i,
while the off-diagonal entries lij are equal to −1 if nodes i and j are connected,
0 otherwise.

The Laplacian matrix has several interesting properties:

• L = BB>;
• −L is a Metzler matrix with negative diagonal entries;
• L is weakly diagonally dominant and symmetric positive semidefinite: L � 0;
• L is singular, with the algebraic multiplicity of its zero eigenvalue equal to

the number of connected components in the graph (i.e., if the whole graph is
connected, zero has multiplicity equal to one);

• L has the eigenvector 1̄ = [1 . . . 1]> associated with the eigenvalue zero: L1̄ = 0,
and also 1̄>L = 0;

• the second smallest eigenvalue of L is the algebraic connectivity (or Fiedler
value) of the graph and is zero if the graph is not connected;

• L can be interpreted as a particular matrix discretisation of the Laplace operator
(hence its name; an alternative name is Kirchhoff matrix).
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The relationship L = BB> between the incidence matrix and the Laplacian
matrix justifies the choice of providing an equivalent description of a graph by means
of its incidence matrix only, which actually contains all the necessary information.

The matrices characterising the graph in Fig. 4.1 are:

D =


2 0 0 0
0 3 0 0
0 0 2 0
0 0 0 3

 , A =


0 1 0 1
1 0 1 1
0 1 0 1
1 1 1 0

 ,

B =


−1 0 0 1 0

1 −1 0 0 1
0 1 −1 0 0
0 0 1 −1 −1

 , L =


2 −1 0 −1
−1 3 −1 −1

0 −1 2 −1
−1 −1 −1 3

 .
In the presence of a connection with the external environment, namely, of at least

one arc that is attached to a single node of the graph (as discussed in Chapter 3,
the external environment can be seen as a fictitious node 0, not included in the
graph, that accounts for the external world surrounding the graph), the generalised
incidence matrix has no longer zero-sum columns and the generalised Laplacian is
no longer singular. The matrices corresponding to the externally connected graph in
Fig. 4.3 are:

D =


3 0 0 0
0 4 0 0
0 0 3 0
0 0 0 4

 , A =


0 1 0 1
1 0 1 1
0 1 0 1
1 1 1 0

 ,

B =


−1 0 0 1 0 −1 0 0 0

1 −1 0 0 1 0 1 0 0
0 1 −1 0 0 0 0 −1 0
0 0 1 −1 −1 0 0 0 1

 , L =


3 −1 0 −1
−1 4 −1 −1

0 −1 3 −1
−1 −1 −1 4

 .
In the sequel, we will mainly refer to generalised Laplacian and incidence matrices.
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Figure 4.3: An example of an externally connected graph of size 9 and order 4.
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4.2 Chemical Reaction Networks
and Mass Action Kinetics

Chemical reaction networks can be modelled by means of systems of ordinary
differential equations (ODEs), describing the dynamics of the concentrations of the
species involved in the reaction environment. In the sequel, chemical species will be
denoted with uppercase letters, their concentrations with the corresponding lowercase
letter: for example, the chemical species X has concentration x.

The most common approach for converting a chemical reaction network into an
ODE system is given by mass action kinetics (MAK). [CBHB09, Ang09]

A general chemical reaction can be written in the form

n∑
j=1

ajXj
k−⇀

n∑
j=1

bjXj, (4.1)

where Xj are the chemical species (reactants, or reagents, when they appear on the
left-hand side, products when they appear on the right-hand side), aj and bj are
the stoichiometric coefficients (non-negative integers) and k > 0 is the reaction rate
constant. Equivalently, by exploiting a vector representation,

AX
k−⇀ BX, (4.2)

where A = [a1 . . . an], B = [b1 . . . bn] and X = [X1 . . . Xn]>.
A reversible reaction can be written as

n∑
j=1

ajXj
k+−⇀↽−
k−

n∑
j=1

bjXj,

which is a compact notation grouping the forward and backward reactions, with
reaction rate constants k+ and k− respectively:{∑n

j=1 ajXj
k+−⇀
∑n

j=1 bjXj,∑n
j=1 bjXj

k−−⇀
∑n

j=1 ajXj.

The compact notation (4.2) is still available, although now A and B are two-row
matrices instead of row vectors.

A system of r chemical reactions can thus be written in the form

n∑
j=1

aijXj
ki−⇀

n∑
j=1

bijXj, i = 1, . . . , r (4.3)

where ki > 0 is the reaction rate constant of the ith reaction. Reversible reactions are
assumed to be split into the forward and the backward reactions. In the matrix-vector
form (4.2), A = [aij] ∈ Nr×n, B = [bij] ∈ Nr×n and k = [k1 . . . kr] ∈ Rr

+, ki 6= 0 ∀i.
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It is assumed that each species appears in the reaction network (4.3) with at least
one nonzero stoichiometric coefficient and that ∀ i, rowi(A) 6= rowi(B), to avoid

trivial reactions such as X
k−⇀ X or X + Y

k−⇀ X + Y .
A typical method for deriving the dynamics of a reaction network is based on the

law of mass action, which states that the rate of an elementary reaction (a reaction
that proceeds through only one transition state) is proportional to the product of
the concentrations of all the involved reactants, each with an exponent equal to the
corresponding stoichiometric coefficient. In the case of stoichiometrically (but not

kinetically) equivalent reactions, such as X
k−⇀ Y and 2X

k−⇀ 2Y , the law of mass
action can be assumed to apply to the reaction involving the minimum number of
molecules necessary for the reaction to occur.

By applying the law of mass action to the general chemical reaction network
(4.3), the dynamics of the species concentrations are given by the system

ẋ(t) = (B − A)>KxA(t), t ≥ 0, (4.4)

where K = diag{k1, . . . , kr} and, for x = [x1 . . . xn]> ∈ Rn and A = [aij] ∈ Nr×n,
xA ∈ Rr is the column vector whose ith component is the product xai11 · · · · · xainn . For
example, given a matrix A and a vector x, vector xA can be computed as follows:

A =

[
2 4
6 8

]
, x =

[
x1

x2

]
=⇒ xA =

[
x2

1x
4
2

x6
1x

8
2

]
.

The kinetic equations are linear if and only if each row of A contains just a 1 entry,
while all the remaining entries are equal to zero (i.e., each reaction is unimolecular).
In this case, xA = Ax and, defining M ∈ Rn×n as M = (B −A)>KA, (4.4) becomes

ẋ(t) = Mx(t), t ≥ 0. (4.5)

Reaction networks of the form (4.3) can describe not only closed systems, for
which conservation of mass holds, but also open systems, in which mass can be

added or removed: the reactions X
k−⇀ ∅ and ∅ k−⇀ X represent, respectively, mass

removal and mass addition, and correspond to the differential equations ẋ = −kx
and ẋ = +k.

System (4.4) can be rewritten using a different notation that involves the stoi-
chiometric matrix [DP12]

S
.
= (B − A)> ∈ Zn×r (4.6)

and the vector of reaction rate functions

f(x(t))
.
= KxA(t) ∈ Rr, (4.7)

resulting in a system of the form

ẋ(t) = Sf(x(t)). (4.8)
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In the presence of influxes or outfluxes, represented by vector u ∈ Rv, the system
can be rewritten in the more general form

ẋ(t) = Sf(x(t)) + V u(t), (4.9)

where matrix V ∈ Rn×v.
Here a general matrix-vector framework based on mass action law has been

presented, but of course the equations corresponding to simple chemical reaction
systems can be derived immediately, based on mass action kinetics, without resorting
to the computation of matrices A, B and of vector xA.

Example 4.1. For the reaction

aX + bY
k−⇀ mP,

with n = 3 and r = 1, A =
[
a b 0

]
, B =

[
0 0 m

]
, K = k, xA(t) = xayb. Hence,

the species concentration dynamics are described by the system
ẋ = −akxayb,
ẏ = −bkxayb,
ṗ = mkxayb.

Example 4.2. The reversible reaction, split into the forward and backward reactions,

X
k1−⇀↽−
k2
Y ⇐⇒ X

k1−⇀ Y, Y
k2−⇀ X

has n = 2 and r = 2, A =

[
1 0
0 1

]
, B =

[
0 1
1 0

]
, K = diag{k1, k2}. The corresponding

system is {
ẋ = −k1x+ k2y,

ẏ = k1x− k2y,

which is linear:

M = (B − A)>KA =

[
−1 1

1 −1

] [
k1 0
0 k2

] [
1 0
0 1

]
=

[
−k1 k2

k1 −k2

]
.

Example 4.3. The reversible reaction involving species X1 and X2 corresponds to
the dynamics

X1 +X2
k1−⇀↽−
k2

2X1

{
ẋ1 = k1x1x2 − k2x

2
1,

ẋ2 = −k1x1x2 + k2x
2
1.

Example 4.4. The reversible reaction involving species X1, X2 and X3 corresponds
to the dynamics

X1 +X2
k1−⇀↽−
k2

2X3


ẋ1 = −k1x1x2 + k2x

2
3,

ẋ2 = −k1x1x2 + k2x
2
3,

ẋ3 = 2k1x1x2 − 2k2x
2
3.
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Example 4.5. The chemical reaction network is associated with the system
X1

k1−⇀ X1 +X2

X3
k2−⇀ X3 +X4

X2 +X4
k3−⇀ X5

ẋ =


0 0 0
1 0 −1
0 0 0
0 1 −1
0 0 1


 k1x1

k2x3

k3x2x4

 .
Example 4.6. A typical reaction network involves a substrate X1 that interacts with
an enzyme X3 to generate a product X4 by means of an intermediate species X2. The
corresponding reactions

X1 +X3
k1−⇀↽−
k2
X2

k3−⇀ X3 +X4

can be expanded and associated with the system
X1 +X3

k1−⇀ X2

X2
k2−⇀ X1 +X3

X2
k3−⇀ X3 +X4

ẋ =


−1 1 0

1 −1 −1
−1 1 1

0 0 1


k1x1x3

k2x2

k3x2

 .

4.2.1 Conservation Laws and
Stoichiometric Compatibility Class

In some chemical reaction networks, it may happen that the corresponding differential
equations are redundant: the sum of some of the partial derivatives is zero; hence,
the sum of the corresponding state variables is a constant (which depends on the
initial conditions). This expresses the conservation of the total amount of some
substance that may be present in different forms (for instance, x+ x∗ = xtot, where
x is the species in the active form, while x∗ is the species in the inactive form). In
the presence of k conservation laws, k differential equations of the system can be
replaced with k algebraic equations (the conservation laws, indeed).

The conservation laws are synthetically represented by the left kernel of the
stoichiometric matrix S: ker(S>) = {x ∈ Rn : S>x = 0}. If rank(S) = h ≤
min{n, r}, then the system has n−h conservation laws (since n−h is the dimension
of ker(S>)).

In the presence of conservation laws, the whole space Rn can be seen as parti-
tioned in stoichiometric compatibility classes, each uniquely identified by the initial
condition x0, where the system evolution x(t) = ϕ(t, x0) is confined for all t > 0. A
stoichiometric compatibility class can be expressed as

C(x0) = {x0 + span(S)} ∩ Rn
+, (4.10)

where span(S) denotes the range (column space) of matrix S. Note that each
stoichiometric compatibility class is a positively invariant set for the system (namely,
for any initial condition in this set, the solution remains in it).
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4.2.2 Positivity

The variables in biochemical systems must have non-negative values, since they
represent the concentrations of chemical species. Hence, the non-negativity of
the solutions must be guaranteed: non-negative initial conditions must generate
trajectories confined in the non-negative orthant.

A rigorous proof is provided in [CBHB09], to show that the class of essentially
non-negative systems is non-negative and that systems derived through mass action
kinetics actually belong to that class.

Definition 4.1. Function f = [f1 . . . fn]> : Rn
+ → Rn is essentially non-negative if,

for all i = 1, . . . , n, fi(x) ≥ 0 for all x ∈ Rn
+ such that xi = 0, where xi denotes the

ith component of x.

The linear function f(x) = Mx, where M ∈ Rn×n, is essentially non-negative if
and only if M is Metzler (namely, it has non-negative off-diagonal entries).

Consider the system

ẋ(t) = f(x(t)), x(0) = x0, (4.11)

where f : D → Rn is a locally Lipschitz function and D is an open subset of Rn.

Recall that the set U ⊆ D is invariant with respect to (4.11) if x0 ∈ U implies
that x(t) ∈ U ∀ t ≥ 0 and the following fundamental result holds as a consequence of
Nagumo’s theorem. [Nag42]

Lemma 4.1. Given the dynamical system (4.11) and the set U ⊂ D, closed with
respect to D, then U is an invariant set with respect to (4.11) if and only if, ∀x ∈ U ,

lim
h→0+

inf
y∈U

‖x+hf(x)−y‖
h

= 0, where ‖·‖ denotes the Euclidean vector norm on Rn.

This allows to prove that [CBHB09]

• Rn
+ ⊂ D is an invariant set with respect to (4.11) if and only if f : D → Rn is

essentially non-negative;
• if f : Rn

+ → Rn is defined as f(x) = (B − A)>KxA, then it is locally Lipschitz
and essentially non-negative.

It follows that Rn
+ is invariant for the dynamical system (4.4).

Alternatively, the same positivity result for mass action kinetics can be obtained
from the observation that all negative terms in the differential equation corresponding
to ẋi vanish when xi = 0; hence, if x(0) ∈ Rn

+ (namely, x(0) ≥ 0 componentwise),
then the solution x(t) ∈ Rn

+ for all t ≥ 0.
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4.2.3 Zero-Deficiency Theorem

Among the celebrated results provided by the structural analysis of chemical reaction
networks [HJ72, Fei72, Hor73a, Hor73b, FH74], the zero-deficiency theorem and the
one-deficiency theorem [Fei87, Fei88, Fei95a, Fei95b] are well-renowned and have
fostered a lot of subsequent work [CF05, CF06b, Cha06, And08, Han10, vRJ13].

The zero-deficiency theorem is fundamental to assess the existence and the
stability properties of (positive) equilibria in chemical reaction networks, independent
of the value of the reaction rate constant k, under mass action kinetics assumptions.

Consider a graph Gcr, called complex-reaction graph, whose nodes are the com-
plexes and whose arcs are the reactions, with their generic reaction rate constant (see
Fig. 4.4): Gcr = (C,R), where C is the set of complexes and R is the set of reactions
(ordered pairs of complexes). In the case of Fig. 4.4, C = {A; 2B; A+C; D; B+E}
and R = {(A, 2B); (2B,A); (A+C,D); (D,A+C); (B +E,A+C); (D,B +E)}.
A complex-reaction graph is in normal form if each complex appears only once; here
graphs in normal form will be considered.

A complex Ci is said to react to a complex Cj if (Ci, Cj) ∈ R and to react from a
complex Ck if (Ck, Ci) ∈ R. A complex Ci is said to be connected to a complex Cj if
there exists a sequence of complexes Cσ(k), k = 1, . . . , s that starts from Ci (σ(1) = i)
and ends up to Cj (σ(s) = j), such that Cσ(k) reacts either to or from Cσ(k+1) for all
k = 1, . . . , s− 1; this by no means implies directionality of the intermediate reactions.
Conversely, a path exists from Ci to Cj if there exists a sequence of complexes Cσ(k),
k = 1, . . . , s that starts from Ci (σ(1) = i) and ends up to Cj (σ(s) = j), such that
Cσ(k) reacts to Cσ(k+1) for all k = 1, . . . , s− 1.

A linkage class L ⊆ C is a maximal connected component of the graph, namely, a
maximal set of connected complexes: all complexes belonging to L are connected to
each other, but none of them is connected with complexes not in L. Linkage classes
form a partition of the complex set C: the network in Fig. 4.4 is partitioned into two
linkage classes.

Given the corresponding complex-reaction graph, a chemical reaction network
is said to be reversible if (Ci, Cj) ∈ R implies (Cj, Ci) ∈ R; weakly reversible if the
existence of a path from Ci to Cj implies the existence of a path from Cj to Ci as
well. Reversibility and weak reversibility are local properties, which do not imply
a connection between all of the complexes in the network; also, a network can be
weakly reversible even though not every complex is connected to every other (cf. the
network in Fig. 4.4).

Denote by:

• C the number of complexes, C = |C|;
• L the number of linkage classes;
• R the reaction rank, i.e., the dimension of the stoichiometric (sub)space:
R = rank(S) = dim[span(S)].

The reaction rank reveals that the positive system (4.8) evolves in a R-dimensional
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affine manifold: the stoichiometric compatibility class (4.10).
The deficiency ∆ of a chemical reaction network is then defined as

∆ = C − L−R

and is a non-negative, integer number.

Figure 4.4: Examples of a complex-reaction graph, along with the indication of complexes and
linkage classes. The above linkage class is reversible, while the bottom linkage class is weakly
reversible (hence, the whole graph is weakly reversible).

In the case of Fig. 4.4, C = 5, L = 2 and R = 3, since

S =


−1 1 −1 1 1 0

2 −2 0 0 −1 1
0 0 −1 1 1 0
0 0 1 −1 0 −1
0 0 0 0 −1 1

 .
Hence, ∆ = 0.

In a mass action kinetics framework, weakly reversible networks having deficiency
∆ = 0 enjoy particular properties, as shown in [Fei87, Fei95a].

Theorem 4.1. (Zero-Deficiency Theorem.) Given a weakly reversible network
where the reactions are of the mass-action-kinetics type, assume that its deficiency
is zero. Then, for all choices of reaction rate constants, there is a unique (positive)
equilibrium x̄ in each stoichiometric compatibility class C(x(0)) and such an equilib-
rium is asymptotically stable (globally in int(Rn

+)) in each stoichiometric compatibility
class.

The proof employs the fact that entropy
∑n

i=1 xi ln(xi
x̄i

)− xi + x̄i is a Lyapunov
function [Lya66]. Although the theorem is based on assuming mass action, hence
polynomial, kinetics, a generalisation can be proposed that holds when reaction rates
of the form kapbq are replaced by kθa(a)pθb(b)

q, where θi(·) are suitable functions.
[Son01]

When restricting to the stoichiometric compatibility class C(x(0)) associated with
the given initial condition x(0), global stability of the unique equilibrium follows.
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However, since there is a continuum of stoichiometric compatibility classes depending
on x(0), there is also a continuum of equilibria: when conservation laws are present,
any neighbourhood of x̄ contains infinitely many other equilibrium points. Hence, if
not restricting to the stoichiometric compatibility class, the equilibrium point is only
marginally stable.

For networks of higher deficiency (∆ ≥ 1), other results have been proved, such
as the one-deficiency theorem; in this case, necessary conditions for multistationarity
(namely, the network capacity of exhibiting multiple equilibria in Rn

+ within a single
stoichiometric compatibility class, for some choice of the reaction rate constants) are
provided concerning networks with deficiency ∆ = 1, along with an algorithm to test
them. [Fei88, Fei95b]

4.2.4 Generalised Mass Action Kinetics

The dynamics of a reaction network can be derived based on the law of mass action;
yet, it is important to underline that this semi-empirical law (phenomenologically
explained based on collision-theory-like reasonings) has limited validity and implies an
approximation. The law of mass action, in fact, requires that the reaction occurs in a
well-mixed compartment, with constant temperature and involving a high number of
molecules (i.e., of the order of magnitude of the Avogadro number NA = 6.022 · 1023).
Moreover, it is valid for reactions proceeding through only one transition state (i.e.,
elementary reactions). Although elementary reactions may occur, they are not the
rule. Generally, a reaction occurs by means of following steps and thus proceeds
through more transitions. Hence, approximations different from mass-action can be
adopted under suitable assumptions (such as time-scale separation).

Example 4.7. The generation rate of the product of the reaction

2A+B
k′−⇀ C (4.12)

is expressed by k′a2b according to mass action kinetics. Yet, the reactions that are
really likely to occur are

A+B
k−⇀↽−
h
X, X + A

r−⇀ C. (4.13)

Then the overall reaction occurs in two following steps and the production rate is
limited by the slowest of the two. Expressing the reaction rate by means of a mass
action kinetics approach would lead to a misleading simplification.

Based on the law of mass action, the equations corresponding to the chemical
reaction in (4.12) are 

ȧ = −2k′a2b

ḃ = −k′a2b

ċ = k′a2b

(4.14)
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while the equations corresponding to (4.13) are
ȧ = −kab+ hx− rax
ḃ = −kab+ hx

ẋ = kab− hx− rax
ċ = rax

(4.15)

Concentration dynamics are significantly different in the two cases. However, if it is
assumed that the dynamics of x are much faster (hence x has already reached steady
state, ẋ = 0), then x = kab

h+ra
and the system becomes

ȧ = −2 kr
h+ra

a2b

ḃ = − kr
h+ra

a2b

ċ = kr
h+ra

a2b

(4.16)

Interestingly, (4.16) has the same structure as (4.14) for “large enough” values of h
(h� ra, so that kr

h+ra
≈ kr

h

.
= k̂).

Analogously, the reaction

A+B + C
k′−⇀ D, (4.17)

associated with the mass action kinetics system{
ȧ = ḃ = ċ = −k′abc
ḋ = k′abc

(4.18)

is more likely to actually occur as the reaction network

A+B
k−⇀↽−
h
X, X + C

r−⇀ D, (4.19)

associated with system 
ȧ = ḃ = −kab+ hx

ẋ = kab− hx− rcx
ċ = −rcx
ḋ = rcx

(4.20)

Again, if ẋ = 0, then x = kab
h+rc

and the system becomes{
ȧ = ḃ = ċ = − kr

h+rc
abc

ḋ = kr
h+rc

abc
(4.21)

which has the same structure as (4.18) for h� rc, so that kr
h+rc
≈ kr

h

.
= k̂.
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Therefore, mass action kinetics can be regarded as an approximation of actual
reaction functions, which is valid under some assumptions. An alternative analysis
involves generalised mass action kinetics: reaction rates are expressed by general
functions of the concentrations of all the participating molecules. It can be assumed
that these functions, despite unknown, have certain suitable properties: usually,
they are nonnegative, continuously differentiable and monotonic (either decreasing
or increasing) in each argument; moreover, they are zero when at least one of the
arguments is zero.

In Example 4.7, the rate of generation of the product becomes g(a, b) with a
generalised approach, where g(·, ·) is a function satisfying general assumptions.

Example 4.8. With the generalised approach, the dynamical system corresponding
to the reversible reaction in Example 4.2 becomes{

ẋ = −gx(x) + gy(y)

ẏ = gx(x)− gy(y)

and that corresponding to the reversible reaction in Example 4.3 becomes{
ẋ1 = g12(x1, x2)− g1(x1)

ẋ2 = −g12(x1, x2) + g1(x1).

Example 4.9. Consider the chemical reactions:

∅ u1−⇀ X1
g1(x1)−−−⇀ X2

g2(x2)−−−⇀ X3
g3(x3)−−−⇀ X4

pX1 +X4
g14(x1, x4)−−−−−−⇀ ∅

X1 is supplied to the system with a constant influx u1, and a chain of reactions
generates X4; a negative feedback loop is introduced by the reaction between X1 and
X4. The system dynamics can be written as

ẋ1 = u1 − g1(x1)− p g14(x1, x4)

ẋ2 = g1(x1)− g2(x2)

ẋ3 = g2(x2)− g3(x3)

ẋ4 = g3(x3)− g14(x1, x4)

where g1(x1), g2(x2), g3(x3) are smooth, strictly increasing functions that are zero
at the origin, while g14(x1, x4) is smooth, strictly increasing in both arguments and
zero when either x1 or x4 are zero. The dynamics can be equivalently written in the
compact form (4.9):

ẋ1

ẋ2

ẋ3

ẋ4

 =


−1 0 0 −p

1 −1 0 0
0 1 −1 0
0 0 1 −1




g1(x1)
g2(x2)
g3(x3)

g14(x1, x4)

+


1
0
0
0

u1. (4.22)
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Thus, biochemical network models can be generically expressed by systems of
first order differential equations [BF11b]

ẋi =
∑
j∈Ji

fij(xi, xj) +
∑
h∈Hi

gih(xi, xh) +
∑
k∈Ki

sik(xk) +
∑
d∈Di

cid(xd), i = 1, . . . , n,

where functions fij are strictly increasing (associated with production), gih are strictly
decreasing (associated with degradation), sik and cid are associated with monotonic
nonlinear terms (sigmoidal and complementary sigmoidal respectively); Ji,Hi,Ki,Di
denote the subset of variables affecting xi through each type of function. Such models
are particularly apt for studying structural properties, assessed independent of the
specific realisation of the functions: qualitative knowledge about the functions is
often sufficient to achieve structural conclusions on the system behaviour.

4.3 BDC-decomposition

Consider the generic nonlinear system

ẋ(t) = g(x(t)), (4.23)

where x ∈ D ⊆ Rn, g : D ⊆ Rn → Rn is a continuously differentiable function, and
D is an open, convex domain.

Definition 4.2. System (4.23) admits a BDC-decomposition iff, for any x ∈ D,
J(x) = ∂g/∂x can be written as the non-negative linear combination of rank-one
matrices, namely

J(x) =

q∑
h=1

RhDh(x) =

q∑
h=1

BhDh(x)C>h , (4.24)

where Bh and C>h are column and row vectors, respectively, so that Rh = [BhC
>
h ]

are rank-one matrices, and are independent of x, while Dh(x), h = 1, . . . , q, are
non-negative scalar functions depending on x.

Note that a rank-one matrix Rh can always be written as the product of a column
vector Bh and a row vector C>h . In a compact form,

J(x) = BD(x)C,

where D(x) is a diagonal matrix with non-negative diagonal entries Dh(x), B is the
matrix formed by the columns Bh and C is the matrix formed by the rows C>h .

It is worth stressing that the above definition holds for any x in the domain D,
hence, in particular, for any equilibrium point x̄ ∈ D (such that g(x̄) = 0).

Remark 4.1. Although Definition 4.2 allows some of the diagonal elements Dh(x)
to be possibly zero, often the analysis will be restricted to points x at which, for all h,
Dh(x) are strictly positive.
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This decomposition has been proposed and exploited in [BFG12, BG14, GCFB15].
Not any system admits a BDC-decomposition. Of course, any Jacobian matrix can
be written as J(x) =

∑q
h=1RhDh(x), where Dh(x), h = 1, . . . , q, are scalar functions

associated with the partial derivatives and Rh are constant matrices. Yet, it may
happen that Dh(x) are not sign-definite, and/or that Rh do not have rank 1. For

instance, the simple Jacobian matrix J =

[
−µ ω
ω −µ

]
= µR1 + ωR2 does not

admit a BDC-decomposition, even though µ, ω > 0, because R1 and R2 have rank 2.
Nonetheless, for a wide class of models, including (bio)chemical reaction networks,
a BDC-decomposition (having a graph interpretation that will be described later)
always exists, and can be easily and systematically computed. Consider the system

ẋ(t) = Sf(x(t)) + f0, (4.25)

where the state x(t) ∈ Rn
+ represents species concentrations evolving over time,

f(x(t)) ∈ Rm is a vector of reaction rate functions and f0 ∈ Rn is a vector of constant
influxes (f0 ≥ 0 componentwise); S ∈ Zn×m is the stoichiometric (flow) matrix of
the system, whose entries [S]ij represent the net amount of the ith species produced
or consumed by the jth reaction, excluding the contribution of constant influxes.
Denote by x̄ the equilibrium point, such that Sf(x̄) + f0 = 0. This class of models
includes any chemical reaction network, or any phenomenological biomolecular model
(e.g., gene regulatory models, signalling networks, etc.) that can be written as an
equivalent chemical reaction network. Also models typically used in ecology and
population dynamics (such as Lotka-Volterra systems) can be rewritten as in (4.25),
where x(t) and f(x(t)) represent population density and growth rate functions.

Assumption 4.1. Each function fj(·), for j = 1, . . . ,m, is nonnegative and con-
tinuously differentiable, with sign-definite ( i.e., always positive, always negative or
always zero) partial derivatives in the interior of the positive orthant.

Assumption 4.2. Each function fj(·), for j = 1, . . . ,m, is zero if and only if at
least one of its arguments is zero. Furthermore, if [S]ij < 0, then fj(·) must have
xi(t) as an argument.

Remark 4.2. Assumption 4.2 ensures that (4.25) is a positive system (in fact, ẋi ≥ 0
for xi = 0), since the considered class of systems is intended to model biochemical
and biological systems. For the existence of a BDC-decomposition, system positivity
is not necessary in general: the fundamental requirement is the sign-definiteness of
the partial derivatives. For instance, the system{

ȧ = −k1a− k2b+ a0,

ḃ = h1a− h2b,

with k1, k2, h1, h2 > 0, is not necessarily positive (when a = 0, ȧ may be negative if b
is large enough), but its Jacobian indeed admits a BDC-decomposition. Note that,
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depending on the considered domain D, the same system may admit or not a BDC-
decomposition; and it may happen that the system admits a BDC-decomposition if
D = Rn

+, but not if D = Rn. For example, the system{
ȧ = −ab− a+ a0,

ḃ = −ab− b+ b0,

whose Jacobian is

J(a, b) =

[
−(b+ 1) −a
−b −(a+ 1)

]
,

admits a BDC-decomposition if the domain is the positive orthant, but not if it is the
whole plane (because, in this latter case, the variables are no longer sign-definite).

The following result guarantees that systems of the form (4.25) always admit a
BDC-decomposition.

Proposition 4.1. Any system falling in the class (4.25) admits a BDC-decomposition:
J(x) = BD(x)C. Matrices B and C can be built systematically, based on the stoi-
chiometric matrix S and on qualitative information about f(·).

Proof. The statement can be proved constructively, by rewriting equation (4.25) as

ẋ =
s∑
j=1

Sj fj(x) + f0,

where Sj is the jth column of matrix S. The corresponding Jacobian is

J(x) =
s∑
j=1

Sj

[
∂fj
∂x1

∂fj
∂x2

. . .
∂fj
∂xn

]
.

Denoting by D1(x), D2(x), . . . , Dq(x) the absolute values of all the non-zero partial
derivatives, it can be written

J(x) =

q∑
h=1

BhDh(x)C>h ,

where

• Dh(x) =
∣∣∣∂fj∂xi

∣∣∣ for some i and j;

• Bh = Sj, the column of S associated with fj;

• C>h has a single non-zero entry in the ith position, equal to the sign of
∂fj
∂xi

.
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It is now described more in detail how to construct the decomposition matrices.
First of all, identify all the distinct, non-zero partial derivatives

∂fj
∂xi

and take their
absolute values, denoted as Dh; second, assign an order to elements Dh and build
the diagonal matrix D = diag{D1, . . . , Dq} ∈ Rq×q. Then, in correspondence to each

element Dh =
∣∣∣∂fj∂xi

∣∣∣, matrix B ∈ Zn×q includes the column Sj of S associated with

fj. Since each function fj may depend on pj different variables, the corresponding
column Sj will be repeated pj times in matrix B. Finally, in correspondence to each

element Dh =
∣∣∣∂fj∂xi

∣∣∣, matrix C ∈ Zq×n includes a row that has a +1 or −1 entry in the

ith position (corresponding to the variable xi with respect to which the derivative in
Dh is taken), while the other entries are zero; the sign of the non-zero entry depends
on the sign of the corresponding derivative.

The BDC-decomposition is built step by step in the following example.

Example 4.10. Consider the metabolic network proposed by [CWLA05], p. 106,

defined by reactions ∅ a0−⇀ A, A + B
fab−−⇀ C + D, D

fd−⇀ B, C
fc−⇀ ∅. Species B

and D, involved in the second and third reactions, are linked by a mass conservation
constraint: b+ d = K is constant. Hence, ḋ = −ḃ and variable d can be neglected, so
as to obtain the reduced-order system

ȧ = a0 − fab(a, b)
ḃ = −fab(a, b) + fd(K − b)
ċ = fab(a, b)− fc(c).

This system can be rewritten as in model (4.25) defining x =
[
a b c

]>
,

S =

 −1 0 0
−1 1 0

1 0 −1

 , f(x) =

 fab(a, b)
fd(K − b)
fc(c)

 , f0 =

 a0

0
0

 .
The Jacobian matrix and its BDC-decomposition are

J =

 −α −β 0
−α −(β + δ) 0
α β −γ



=

 −1 −1 0 0
−1 −1 0 1

1 1 −1 0


︸ ︷︷ ︸

=B

diag{α, β, γ, δ}︸ ︷︷ ︸
=D


1 0 0
0 1 0
0 0 1
0 −1 0


︸ ︷︷ ︸

=C

,

where the Greek letters denote partial derivatives, in absolute value: α = ∂fab/∂a >
0, β = ∂fab/∂b > 0, γ = ∂fc/∂c > 0, δ = |∂fd/∂b|. To compute the BDC-
decomposition, choose an order for the non-zero partial derivatives: 1) α, 2) β, 3) γ
and 4) δ. Then:
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1) the first column of B corresponds to S1, associated with the reaction rate
function fab(·, ·), and the first row of C has a 1 entry in the first position,
corresponding to variable a;

2) the second column of B corresponds to S1, associated with fab(·, ·), and the
second row of C has a 1 entry in the second position, corresponding to b;

3) the third column of B corresponds to S3, associated with fc(·), and the third
row of C has a 1 entry in the third position, corresponding to c;

4) the fourth column of B corresponds to S2, associated with fd(·), and the fourth
row of C has a −1 entry in the second position, corresponding to b (since δ is
the opposite of ∂fd/∂b < 0).

Column S1 is repeated twice in B because fab(·, ·) has two arguments.

Remark 4.3. The BDC-decomposition is not unique. Even when an order for
the diagonal entries of D is assigned, the sign of both Bk and C>k can be changed,
resulting in matrices B̂ and Ĉ, and still J = B̂DĈ. More in general, Bk can be
divided and C>k can be multiplied by the same quantity. The only requirement is that
matrix D, containing the free non-negative parameters, is diagonal.

The proposed approach for computing the BDC-decomposition can be extended
to non-positive systems (cf. Remark 4.2) and also to the case of dependencies between
partial derivatives. For instance, the system{

ȧ = a0 − fab(a− b)
ḃ = fab(a− b)− fb(b)

with

S =

[
−1 0

1 −1

]
, f =

[
fab(a− b)
fb(b)

]
, f0 =

[
a0

0

]
,

would have the BDC-decomposition

J =

[
−α β
α −(β + γ)

]
=

[
−1 −1 0

1 1 −1

]
︸ ︷︷ ︸

=B

diag{α, β, γ}︸ ︷︷ ︸
=D

 1 0
0 −1
0 1


︸ ︷︷ ︸

=C

if considering the three parameters α = ∂fab/∂a > 0, β = |∂fab/∂b| and γ =
∂fb/∂b > 0. However, since β = α, two parameters only, α and γ, are needed. Hence:

J =

[
−α α
α −(α + γ)

]
=

[
−1 0

1 −1

]
︸ ︷︷ ︸

=B

diag{α, γ}︸ ︷︷ ︸
=D

[
1 −1
0 1

]
︸ ︷︷ ︸

=C

.

Also when the Jacobian of system (4.25) has independent (hence sign-definite,
due to Assumption 4.1) entries, the system always admits a BDC-decomposition.
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Remark 4.4. A system can admit a BDC-decomposition when an external input u
is present, affecting the system, or when one of the system parameters is considered
as an external input u,

ẋ(t) = g(x(t), u(t)),

as long as g(·, ·) is continuously differentiable and the system Jacobian J(x, u) can
be written as the positive (or non-negative) linear combination of rank-one matrices,
as in (4.24).

The BDC-decomposition can be an interesting tool and play a key role when as-
sessing structural properties. For a family of systems admitting aBDC-decomposition,
the concept of structure can be defined as follows.

Definition 4.3. The structure of a family of systems admitting a BDC-decomposition
is given by the matrices B and C. A realisation of the structure is given by a choice of
the positive (or non-negative) diagonal entries of D, Dk > 0 (Dk ≥ 0), k = 1, . . . , q.

The BDC-decomposition is a structural representation associated with the Ja-
cobian matrix of the system, which can be equivalently represented by a graph
whose nodes and arcs denote, respectively, species and interactions among them.
Examples are provided by the graphs in Fig. 4.5. Each arc is associated with positive
parameters that are in the diagonal of D; if the arc has k tails, it is associated with
k parameters. The arc corresponds to k identical columns of matrix B (having a
negative entry in the positions associated with the nodes from which the arc tails
start, a positive entry in the positions associated with the nodes reached by the
arc arrows, zero entries elsewhere) and to k rows of matrix C, each having a single
non-zero entry in one of the positions associated with the nodes from which the arc
tails start.

Note that, according to the considerations in Section 3.1.1, this graph – actually,
a hypergraph – is fully represented by the stoichiometric matrix S, which is its
incidence matrix.

Example 4.11. Consider the system
ȧ = −fab(a, b) + fc(c)

ḃ = −fab(a, b)− fb(b) + fc(c) + f ∗c (c)

ċ = fab(a, b) + fb(b)− fc(c)− f ∗c (c)

(4.26)

with

S =

 −1 1 0 0
−1 1 −1 1
1 −1 1 −1

 , f =


fab(a, b)
fc(c)
fb(b)
f ∗c (c)

 .
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(a) System in Exam-
ple 4.11.

(b) System in Example 7.5.

(c) System in Section 7.6.1.

Figure 4.5: Three examples of graphs corresponding to the Jacobian structure. [GCFB15]

Denoting by α = ∂fab/∂a, β = ∂fab/∂b, γ = ∂fc/∂c, δ = ∂fb/∂b and ε = ∂f ∗c /∂c
the positive partial derivatives, the system Jacobian matrix, along with its BDC-
decomposition,

J =

 −α −β γ
−α −(β + δ) γ + ε
α β + δ −(γ + ε)

 (4.27)

=

 −1 −1 1 0 0
−1 −1 1 −1 1

1 1 −1 1 −1


︸ ︷︷ ︸

=B

diag{α, β, γ, δ, ε}︸ ︷︷ ︸
=D


1 0 0
0 1 0
0 0 1
0 1 0
0 0 1


︸ ︷︷ ︸

=C

(4.28)

corresponds to the graph in Fig. 4.5 (a).

Remark 4.5. The BDC-decomposition has an obvious connection with the system
Jacobian, as shown by both its definition and its construction in the proof of Theo-
rem 4.1. However, it is not just a local property, or a linearisation. Consider, for
instance, the two scalar systems

ẋ = ±x3,
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both admitting the equilibrium x̄ = 0. By computing the Jacobian at the equilibrium,
in both cases, it is impossible to draw conclusions on its stability: Jx̄ = ±3x2|x=x̄ = 0.
However, both of the systems can be written as ẋ = ±x2x = ±D1(x)x, where
D1(x) = x2 ≥ 0. Hence, the structure B = ±1 and C = 1 not only yields a
BDC-decomposition of the Jacobian (J(x) = BD(x)C, for D(x) = 3x2), but also a
global representation for the system (by choosing D1(x) = x2). This aspect will be
better explained in the next section. By means of such a global representation, the
original nonlinear system can be absorbed in a linear differential inclusion, which can
help assessing the stability properties of its equilibrium at zero (as will be shown in
Chapter 6).

4.3.1 BDC-decomposition as a Global Property:
a Useful Integral Formula

Based on a simple but powerful integral formula, it can be shown that the BDC-
decomposition associated with a system is not only a local, but also a global property.

Given a continuously differentiable function g(x), g : D ⊂ Rn → Rn, where D is
an open convex domain containing the origin and g(0) = 0, then

g(x) =

(∫ 1

0

∂g

∂x
(σx)dσ

)
x, ∀x ∈ D

(see [Kha02], p. 108, Exercise 3.23).
More in general, it can be shown that, for arbitrary g(0),

g(x)− g(0) =

(∫ 1

0

∂g

∂x
(σx)dσ

)
x, ∀x ∈ D. (4.29)

In fact, denoting by ϕ(σ)
.
= g(σx) for 0 ≤ σ ≤ 1,

g(x)− g(0) = ϕ(1)− ϕ(0) =

∫ 1

0

ϕ′(σ)dσ =

∫ 1

0

∂g

∂x
(σx)dσ x,

since
dϕ

dσ
(σ) =

∂g

∂x
(σx)

d(σx)

dσ
=
∂g

∂x
(σx)x.

Then, reconsider system (4.25), with x ∈ D open and convex,

ẋ(t) = Sf(x(t)) + f0,

along with the equilibrium condition

0 = Sf(x̄) + f0.
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Denoting z
.
= x− x̄ and subtracting the two equations, the shifted system

ż = S[f(z + x̄)− f(x̄)] (4.30)

is obtained; since the system admits a BDC-decomposition, as previously shown,
for any fixed equilibrium x̄ its Jacobian can be written as J(z) = BD(z)C, hence
the system can be equivalently rewritten (not linearised) as

ż = [BD(z)C]z. (4.31)

In fact, an immediate application of the integral formula (4.29) to the right-hand
side of system (4.30) provides

ż =

[∫ 1

0

J(σz + x̄)dσ

]
z,

where J is the Jacobian of the function ψ(z)
.
= Sf(z + x̄) = Sf(x). In view of the

BDC-decomposition, equivalently

ż =

[
B

(∫ 1

0

diag

{
∂fi(σz + x̄)

∂xj

}
dσ

)
C

]
z.

Therefore, denoting by

Γij(z) =

∫ 1

0

∂fi(σz + x̄)

∂xj
dσ, (4.32)

it follows that

D(z) =

∫ 1

0

diag

{
∂fi(σz + x̄)

∂xj

}
dσ = diag

{∫ 1

0

∂fi(σz + x̄)

∂xj
dσ

}
= diag {Γij(z)} .

(4.33)
It is worth underlining that, due to monotonicity of the functions fi(·), whose integral
is computed on a non-zero interval, Γij(z) is strictly positive and admits a maximum
and a minimum in any closed and bounded domain:

ν < νij ≤ Γij(z) ≤ µij < µ.

Hence the integral formula (4.29), which will be useful in Chapters 6 and 10,
allows the computation of the BDC-decomposition with a uniquely determined
matrix D(z).

It is worth stressing that a system admits a “global” BDC-representation of the
form (4.31) if and only if it admits a “local” BDC-decomposition J = BDC.

Proposition 4.2. A nonlinear system (4.25), admitting equilibrium x̄, can be equiv-
alently written in the form

ż = BD(z)Cz,

where z = x − x̄, if and only if it admits a BDC-decomposition, according to
Definition 4.2.
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Proof. If J(x) = BD(x)C for any x in the domain, then, denoting z = x − x̄,
J(z) = BD(z)C holds for any z. Then, integration exploiting the integral formula
(4.29) entails the result, as shown in the derivation above. Conversely, if system
(4.25) is equivalent to ż = BD(z)Cz, then linearisation immediately provides J(z) =
BD(z)C, hence J(x) = BD(x)C.

Note that, if x̄ is not an equilibrium point, the nonlinear system (4.25) can be
equivalently written as

ż = BD(z)Cz + f̂0,

where z = x− x̄ and f̂0 = Sf(x̄) + f0.
By exploiting the BDC-decomposition, some interesting structural results can be

derived, which hold regardless of the value of the positive diagonal entries of matrix
D. A first result concerns the number of equilibrium points of the nonlinear system.

Theorem 4.2. Consider a nonlinear system (4.25), defined on an open and convex
domain D, admitting a BDC-decomposition with D having a positive diagonal. If
in D there are more than one distinct equilibrium points, then the system Jacobian
J = BDC cannot be structurally nonsingular.

Proof. Given the system ẋ = Sf(x) + f0, consider two distinct equilibrium points x̄
and x̃. Then, both equilibrium conditions 0 = Sf(x̄) + f0 and 0 = Sf(x̃) + f0 must
hold. Since the equality S[f(x)− f(x̄)] = BD(z)Cz, with z = x− x̄, can be written
for any x, it is possible to choose x = x̃. This choice provides S[f(x̃) − f(x̄)] =
BD(z)Cz = 0, in view of the equilibrium conditions. Since z = x̃ − x̄ 6= 0, being
x̃ 6= x̄ (the equilibria are distinct by assumption), then BD(z)C must be singular.

Hence, if J = BDC is structurally nonsingular, there cannot be more than one
equilibrium point: the equilibrium (if any) must be unique.

Another results concerns monotonicity. As mentioned earlier, a monotone nonlin-
ear system has a Jacobian matrix that is Metzler, when evaluated at any equilibrium
point.

Proposition 4.3. The system (4.25), admitting a BDC-decomposition

J(x) =

q∑
k=1

BkC
>
k Dk(x),

is structurally monotone if and only of BkC
>
k are Metzler matrices for all k.

Proof. Sufficiency is immediate, since the non-negative linear combination of Metzler
matrices is of course a Metzler matrix. Necessity can be proved by contradiction:
should BkC

>
k have a negative off-diagonal entry, for some k, then, for large enough

values of Dk(x̄), the resulting matrix J(x̄) would have a negative off-diagonal entry
as well, hence it would not be Metzler for some x̄, and the system would not be
structurally monotone.
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4.4 Exploiting Multi-Affinity

As will be shown later, for a system admitting a BDC-decomposition, some important
functions, such as the determinant and the coefficients of the characteristic polynomial
of the Jacobian, are multi-affine functions of the diagonal entries of matrix D.

A fundamental result states that a multi-affine function defined on a hypercube
reaches its minimum (and maximum) value on a vertex of the hypercube ([Bar94],
Lemma 14.5.5). The following theorem will be useful for structural analysis [BFG12,
BG14, GCFB15].

Theorem 4.3. Given the hypercube

Cx = {x ∈ Rn : 0 ≤ xk ≤ C, k = 1, . . . , n},

and the multi-affine function h : Cx → R, denote by x(v) the vertices of the hypercube
Cx, v = 1, . . . , 2n, where x(1) = [C C . . . C]. Then:

a) h(x) > 0 for all x in the interior of Cx if and only if h(x(v)) ≥ 0 for all v and
h(x(1)) > 0;

b) h(x) < 0 for all x in the interior of Cx if and only if h(x(v)) ≤ 0 for all v and
h(x(1)) < 0;

c) h(x) = 0 for all x in Cx if and only if h(x(v)) = 0 for all v.

Proof. Just the first claim is proved, since the derivation is similar for the others.
Necessity is immediately based on continuity arguments. Sufficiency can be proved
by contradiction. Since a multi-affine function defined on a hypercube reaches its
minimum (and maximum) value on a vertex of the hypercube, it must be h(x) ≥ 0
in the whole cube. Assume there is an internal point x∗ > 0 of the hypercube such
that h(x∗1, x

∗
2, . . . , x

∗
n) = 0. Consider variations along the direction of 0 ≤ x1 ≤ C.

The restricted function is linear and nonnegative; hence, since it is zero in one point,
it must be zero in the extrema: h(0, x∗2, . . . , x

∗
n) = h(C, x∗2, . . . , x

∗
n) = 0. Fix x1 = C,

corresponding to the second condition: the new point (C, x∗2, . . . , x
∗
n) is in the relative

interior of the (n − 1)-dimensional cube where x1 = C. Then the same argument
can be repeated along the direction of x2, to conclude that h(C,C, x∗3, . . . , x

∗
n) = 0.

Proceeding in the same way for all the directions gives h(C,C,C, . . . , C) = 0, in
contradiction with h(x(1)) > 0.

Remark 4.6. If x has n components, it is necessary to check 2n vertices; hence,
an algorithm exploring the sign of h(x) on all vertices has exponential complexity.
However, remarkably, checking the sign on a finite number of vertices can provide
information on the sign in the whole hypercube.

The BDC-decomposition of a matrix, defined in (4.24), is a multi-affine function
of the coefficients Dh, because [BhC

>
h ] are rank-one matrices. [Bar94] This property

can be exploited for structurally assessing properties of the associated system (see
Chapters 5, 6 and 7).
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4.4.1 The Mapping Theorem

The mapping theorem ([Bar94], Sections 14.6-14.10) is a fundamental tool in the
robust stability analysis of polynomials with multi-affine uncertainty structures;
it provides a sufficient condition for stability based on an overbounding family of
polynomials: the convex hull of the original family.

Definition 4.4. The convex hull conv I of the set I is the smallest convex set
including I, or equivalently the intersection of all the convex sets that include I.
When I ⊆ Rn, the convex hull is the set of all the convex combinations of points in
I, i.e., the set of all the points of the form

n∑
i=1

λixi with xi ∈ I, λi ≥ 0 ∀ i,
n∑
i=1

λi = 1.

Theorem 4.4. (Mapping theorem). Let Q ⊂ Rl be a hyper-rectangle with vertices
{q(i)} and f : Q → Rn a multi-affine function. If the range of f is denoted by
f(Q) = {f(q) : q ∈ Q}, then conv f(Q) = conv {f(q(i))}.

Proof. See [Bar94].

Figure 4.6: Geometric visualisation associated with the mapping theorem.

A geometric visualisation is shown in Fig. 4.6. To have an example of a possible
application, consider an uncertain polynomial p(s, q) of degree n in the complex
variable s, whose real coefficients ai(q) are continuous, multi-affine functions of a
vector of real uncertain parameters q ∈ Rl, with qi ∈ [q−i , q

+
i ]:

p(s, q) = a0(q) + a1(q)s+ · · ·+ an(q)sn, with an(q) 6= 0∀ q ∈ Q,

q = [q1 q2 . . . ql],

Q = {q : q−i ≤ qi ≤ q+
i , i = 1, . . . , l}.
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Of course, p(s, q) can be thought of as a two-dimensional vector in the complex plane;
both real and imaginary parts are multi-affine (real) functions of the parameters.
Then, if the coefficient vector a(q) is considered, the mapping theorem provides a
simple description of the convex hull of the coefficient set: conv a(Q) = conv {a(q(i))}.

For a fixed frequency s = ω, the value set of the polynomial can be defined as

p(ω,Q) = {p(ω, q) : q ∈ Q}

and is the set of the possible values of the polynomial for a given s, when q is varying.
The mapping theorem allows to state that conv p(s,Q) = conv {p(s, q(i))}.

If the roots of p(s, q) for all q ∈ Q need to be studied, in order to check robust
stability (which is guaranteed if p(s, q) has roots in the open left half complex plane
for all q ∈ Q), an extension of the Nyquist stability criterion provides a robustness
criterion: the Nyquist criterion must hold for all the possible polynomials obtained
with different choices of q. The following theorem can be demonstrated based on
continuity arguments.

Theorem 4.5. (Zero exclusion theorem). The polynomial p(s, q), whose coeffi-
cients are multi-affine functions of the parameter vector q, is robustly stable for all
q ∈ Q if and only if p(s, q̄) is stable for some q̄ ∈ Q and 0 /∈ p(ω,Q)∀ω ≥ 0.

Figure 4.7: Inconclusive robust stability test based on the mapping theorem, showing that the
criterion is sufficient only: zero belongs to the convex hull, but not to the actual value set.

Thanks to the mapping theorem, it is possible to have a sufficient condition
for stability if the convex hull of the original family is used as a tight overbound.
Being grounded on an overbound, a stability analysis based on the mapping theorem
provides sufficient but not necessary conditions; in fact, zero may be a point of the
convex hull, but not of the original family. As shown in Fig. 4.7, it might happen
that, at some frequency ω∗, 0 ∈ conv p(ω∗, Q) but 0 /∈ p(ω∗, Q): the true value set
remains unknown. Yet the mapping theorem provides a sufficient condition, since if
0 /∈ conv p(ω∗, Q), of course 0 /∈ p(ω∗, Q).
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Note that the mapping theorem and the zero exclusion theorem apply to any
parametric polynomial whose coefficients are multi-affine functions of the parameters.
Interestingly, this is the case of systems admitting a BDC-decomposition.

Theorem 4.6. Theorems 4.4 and 4.5 apply to the characteristic polynomial of any
system admitting a BDC-decomposition.

Proof. By definition, the Jacobian of any system that admits a BDC-decomposition
can be written as the positive linear combination of rank-one matrices. Therefore,
the coefficients of the characteristic polynomial are multi-affine functions of the
Jacobian entries and the assumptions required by the mapping theorem and by the
zero exclusion theorem are satisfied.

4.5 Results from Topological Degree Theory

The topological degree d(f,S, p) ∈ Z is a useful notion to investigate the solutions
of the equation f(x) = p in a given open set S ⊆ X,1 where f : S̄ → X is a
continuous function, p ∈ X and p /∈ f(∂S) (namely, f(z) 6= p for all z ∈ ∂S) and X
is a topological space (often a metric space). The topological degree theory can be
fruitfully applied to the study of both fixed points and zeros of functions, and also
to the study of dynamical systems and stability theory. [Hof90, Zan96, OC95]

A more detailed overview of the topological degree theory is provided in Ap-
pendix D; the reader is referred to [Sch69, Llo78, Dei85, FG95, OJCC06, Feč08,
Ams14] for a thorough handling of the theory and its applications. Here, just a few
applications of the theory that will be used in Chapter 8 are reported, along with
some useful observations that are immediately based on the presented results.

Consider the dynamical system

ẋ(t) = f(x(t)), (4.34)

where f : Rn → Rn is a sufficiently smooth function. Assume that the system
solution x(t) = ϕ(t, x(0)) (for any given initial condition x(0)) is unique and depends
continuously on the initial condition. Note that, of course, x(t) = ϕ(t, x(0)) must be
continuous, and even differentiable, in the variable t. Assume, moreover, that all the
system solutions are globally uniformly asymptotically bounded in an open ball S:
namely, for any compact set S0 ⊆ Rn including S, there exists T > 0 (depending on
S0) such that ϕ(t, x(0)) ∈ S for any x(0) ∈ S0 and any t ≥ T . Then, the existence
of (at least) an equilibrium point is automatically assured based on the results in
[Srz85], see also [RW02, RW04].

Once the existence of equilibria is guaranteed, it is interesting to inquire into their
number and their stability properties. To this aim, the topological degree theory
turns out to be very powerful. The degree is here defined for functions f that are
continuous in S̄ and also continuously differentiable in S, with p a regular value of f .

1Given a set S, S̄ denotes its closure, intS its interior, ∂S its boundary.
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Definition 4.5. Given f ∈ C(S̄)
⋂
C1(S), x̄ ∈ S is a critical point of f if the

determinant of the Jacobian matrix evaluated at x̄ is zero: det(Jf (x̄)) = 0. Moreover,
let Zf = {x ∈ S : det(Jf (x)) = 0}; if p /∈ f(Zf ), then p is a regular value of f .

Using Sard’s lemma, the following definition can be provided.

Definition 4.6. Consider f ∈ C(S̄)
⋂
C1(S) and p /∈ (f(Zf)

⋃
f(∂S)). Then, the

degree of f at p with respect to S is defined as

d(f,S, p) =
∑

x∈f−1(p)

sign[det(Jf (x))], (4.35)

where sign(t) = 1 for t > 0 and sign(t) = −1 for t < 0.

Since p /∈ f(Zf ), f−1(p) is finite, hence (4.35) is well defined. Then the following
result holds (descending from Lemma 2 in [Hof90]).

Theorem 4.7. Assume that the system (4.34) has solutions that are globally uni-
formly asymptotically bounded in an open ball S ⊂ Rn and admits N <∞ equilibria
x̄i, i = 1, . . . , N , each contained in S, none of which is a critical point. Then

N∑
i=1

sign [det(J(x̄i))] = (−1)n. (4.36)

From this fundamental theorem, several useful consequences can be drawn, once
the analytical expression of the Jacobian matrix has been determined as a function
of the generic equilibrium point. First of all, notice that (4.36) is equivalent to

N∑
i=1

sign [det(−J(x̄i))] = 1, (4.37)

which is convenient since it is independent of the system dimension.
For instance, under boundedness assumptions, if det(−J) > 0, regardless of the

specific values of the parameters and of the equilibrium point, and there are no
degenerate equilibria, then the equilibrium must be unique. In fact, if there were
two or more equilibria, the sum in (4.37) (in which all of the addends must be 1,
being det(−J) always positive) would be more than 1.

If det(−J) < 0 for a given equilibrium point x̄j, then x̄j must be unstable (in
fact, if det(−J) = p0, the constant term of the characteristic polynomial, is negative,
then there is at least an eigenvalue with positive real part); hence, at least other two
equilibria must exist of degree 1, so that −1 + 1 + 1 = 1 and (4.37) is satisfied. Of
course other n equilibria might exist, with n even, so that (4.37) is satisfied.

If there are two stable equilibria, then at least another equilibrium must exist of
degree −1, so that 1 + 1−1 = 1 (of course, again, there might be other n equilibria,
with n odd), so that (4.37) is satisfied.

Note that assuming that all of the equilibria are contained in a proper open set
S (or, equivalently, that there are no equilibria on the boundary of D, whenever a
closed set D is considered) is crucial, as shown by the following example.
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(a) An equilibrium is on the boundary of Rn+.
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(b) No equilibria on the boundary of Rn+.

Figure 4.8: Nullclines of the systems in Example 4.12.

Example 4.12. Consider the system{
ẋ = −x+ 2 y

1+y

ẏ = −y + 2 x
1+x

defined on the domain D = Rn
+ (in fact, it can be seen that the positive orthant

is a positively invariant set for the system), which admits two equilibrium points:
x̄1 = (0, 0) and x̄2 = (1, 1), such that x̄1 ∈ ∂D, while x̄2 ∈ intD (the nullclines are
shown in Fig. 4.8, (a)). The Jacobian matrix is

J =

[
−1 2

(y+1)2
2

(x+1)2
−1

]

and det(−Jx̄1) = −3 < 0, while det(−Jx̄2) = 3
4
> 0. Hence, (4.37) is not satisfied,

being sign [det(−Jx̄1)]+sign [det(−Jx̄2)] = −1+1 = 0. However, this happens because
the assumptions of Theorem 4.7 are not satisfied: indeed, x̄1 belongs to the boundary
of D. If the system {

ẋ = 1− x+ 2 y
1+y

ẏ = 1− y + 2 x
1+x

is considered, then the equilibrium x̄1 = (k, k) in D = Rn
+ is unique and lies in the

interior of D, as shown by the nullclines represented in Fig. 4.8, (b). As expected
based on Theorem 4.7, sign [det(−Jx̄1)] = 1. In fact, det(−Jx̄1) = 1− 4

(k+1)4
, which

is positive, being k >
√

2− 1.
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5
A Foreword on Biochemical Systems

This part of the thesis is devoted to the structural analysis of dynamical networks.
The focus is especially on biochemical and biological systems, due to their strong
robustness properties in spite of a high level of uncertainty. These particular features,
which will be discussed in this chapter, make natural systems particularly suitable
and interesting to be structurally analysed. [Gio12b]

It is worth stressing that, although the results are often formulated in terms
of biochemical or biological systems, the proposed analysis tools can be applied to
much more general classes of systems. In fact, essentially, the results in Chapters 6
and 7 simply require that the system admits a BDC-decomposition, while the results
in Chapter 8 require that the system either has a sign-definite Jacobian or is the
sign-definite interconnection of stable monotone subsystems.

5.1 Biology: a System-Theoretic Approach

The high complexity and astounding efficiency of living organisms has gained the
attention of many researchers: cellular networks are mapped and analysed with
the goal of understanding how biological behaviours arise and of extracting general
design principles and rules that can explain how certain networks can perform
particular biological functions [MTES+09]. To survive, all living organisms need to
sense external stimuli and face variations in the environment [Fra11]. Cells process
information, for survival and reproduction, by means of biochemical circuits made
of many species of interacting molecules [HHLM99, KWW06]. Complex structures
assemble, perform elaborate biochemical tasks and vanish when their work is done:
these phenomena seem to be simple, since they are so spontaneous and efficient, but it
is very difficult to understand the general design principles beneath their mechanisms
[Alo06]. The dynamic processes, feedback control loops and signal processing systems
underlying life [Son05] need to be explored and unraveled. Mathematical models can
help describe biological systems with quantitative methods and from a whole-istic
perspective [CR02]. A systemic attitude will streamline the identification of targets
for novel pharmaceuticals and the understanding of their effects on the cell and
the body as a whole; a global understanding of dynamic interactions among genes
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and cellular environment will be the first step towards future gene therapies; also,
more quantitative experimental methods will allow making falsifiable predictions
[Pop34, Pop63], thus bringing modern biology closer to other established experimental
sciences [Son05]. This inter-disciplinary approach to biology, requiring the joint effort
of scientists with different backgrounds, such as biologists, chemists, physicists,
mathematicians and engineers [Kit02], has led to the emerging field of systems
biology.

Systems biology aims at understanding biology at a system level, through an
inquiry of the structure and the dynamics of cellular and organismal functions: many
properties of life arise from interaction among different parts of a cell or organism,
so that the behaviour of a biological system as a whole cannot be explained by
considering its isolated constituents. Molecular systems biology, in particular, is
focused on life mechanisms at the cellular level, such as metabolic networks and
pathways and cell signalling networks.

Among the pioneers of a system-level understanding of biology were Norbert
Wiener [Wie48] and Ludwig von Bertalanffy [vB69], but the rising interest that
makes systems biology an emerging area of research is due to the recent progresses
in molecular biology: new and big data are provided, enabling experimental and
applied work, allowing for mathematical and computational models of molecules,
cells, organisms. As is discussed in [Son05], holistic studies have been already pursued
in biological and biomedical engineering, biomathematics and biophysics and many
quantitative theories have been developed, e.g., of physiological regulation, metabolic
pathways, insulin control, heart electrical patterns, neural and circadian oscillations;
bioinformatics has helped in handling and analysing the huge and rapidly growing
amount of data stored in biology databases, and has allowed the sequencing of
genomes and the prediction of protein and DNA structure; mathematical ideas and
algorithms have provided software tools that support the daily work of biologists
and pharmaceutical researchers; new sophisticated approaches to data collection
and measurement enable a quantitative study of microscopic dynamic interactions
among cellular components and a system-level view of cells; at the same time, new
theoretical approaches are required to interpret and organise these huge amounts of
data. To better understand the network of dynamic interactions among molecules,
systems biology adopts an integrated, systematic approach.

Tied to systems biology, a new and challenging field of research is emerging:
synthetic biology, which aims at systematically designing from the bottom-up new
large scale biochemical circuits. Synthetic circuits with specific functionalities,
composed of nucleic acids and proteins, have already been built and promise to
be programmable components in larger, integrated systems for nanomanufacturing,
pattern formation and artificial biomaterials. [Fra11, Gio12a, BFG14] The creation
of synthetic circuits [DWS07] can offer a powerful insight into the design principles
present in nature [MvO09] and selected by evolution, which, although it works by
random tinkering, seems to converge onto a defined set of basic circuit elements [Alo06,
Alo03, Alo07b]. Yet, it is also useful in practical applications: new biotechnologies,
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gene and cell therapy can improve human health and quality of life, and the ability
of engineering genes and cells and of creating new biomolecular circuits is useful for
devising innovative biotechnologies and drugs (for instance, some genes have been
used as blocks to insert in a host genome, which is reprogrammed to induce the desired
behaviour; yeasts and bacteria have been engineered to produce pharmaceuticals
and remedies, such as insulin). [Fra11, Gio12a]

Developing reliable models is the main goal that systems and synthetic biology
have in common, since it allows to gain a deeper understanding of the properties of
natural complex systems, and to predict their dynamics, as well as to devise general
design principles for engineering biomolecular networks that are synthesised de novo,
so as to optimally and/or robustly tune their features.

5.2 Structural Analysis

Predictive mathematical models are crucial for highlighting the fundamental features
of biological systems and the basic laws that rule the behaviour of living matter,
in order to perform both the study of natural systems and the design of artificial
gene circuits. [Kit02, WGC04, Alo06] Yet, developing suitable models for biological
systems requires a remarkable endeavor: a significant challenge arises from the lack
of exact quantitative knowledge and from the variability of parameters present in
nature, which must be taken into account. Most data so far are qualitative rather
than quantitative [Kit02] and a lot of system parameters are not exactly measured:
at most, they may be known to lie within certain bounds, but the intrinsic variability
inherently prevents from attaining precise knowledge about their values [ATS09].
Therefore, models are plagued by uncertainty (due for instance, in molecular systems,
to the variability of reaction parameters and to the presence of unknown interactions).

Interestingly, although parametric uncertainty is a considerable and often intrinsic
issue, biochemical networks are incredibly robust to component tolerance [Alo03] and
the molecular circuitry of living organisms is able to perform robust regulatory tasks,
despite the large variability of its components [Kit04, Alo07a, SWSK11, BF11b];
hence the need to understand the inherent roots of such an extraordinary robustness
[GR07, Kit07].

So, given limited, qualitative information, what can be demonstrated about the
behaviour of a biochemical system? [RBB10] Is it possible to state if a certain system
is, for instance, always stable, or monotone, if it can exhibit oscillations, or perfect
adaptation, regardless of parameter values (within a feasible domain)?

Yes, it is, provided that theoretic and computational tools are devised to analyse
biological and biochemical systems independent of parameter values. Structural
properties [NYWP07, SF10, BF11b] must be sought, which ground on the inherent
nature of the system only. In this context, a control-theoretic approach is very
powerful to structurally assess the key properties of biochemical dynamical systems
and to help biotechnologists tune their performance and robustness.
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In this part of the thesis, indeed, biochemical systems are the primary object of
the investigation and are analysed, looking for parameter-independent, structural
properties. Focusing on sign-definiteness, monotonicity and boundedness of inter-
actions, given a family of biological systems (associated with a structure), it is
possible to rule out behaviours that the structure cannot exhibit and to determine
which are instead the potential dynamic outcomes that the structure can yield. The
proposed structural analysis is based on the systematic methodologies proposed in
[BF11b, BF11a, BFG12, BG14, BG15b, BG15a, GCFB15, BFG14, BFG15b] and
founded on classical control-theoretic and system-theoretic methods, in particular on
the analysis of the system Jacobian matrix, Lyapunov functions and invariant sets
theory [BM15]. In most cases, the achieved structural criteria can be easily verified
via numerical analysis (see Appendix B).

5.3 Assessing Properties: a Brief Overview

Dynamic behaviours of biological, biochemical and biomolecular systems have been
investigated through various methods, ranging from statistical techniques [BSSS11]
and numerical simulations [MI02] to graph-based approaches [DLAS07, RBB10],
Petri-net approaches [AdLS07, Sol12] and qualitative modelling techniques [BF11b,
BF11a, FB12, GFM13, FGFM14, BCFG14, CGK+16].

Extensive numerical simulations [DJ02] exploring the parameter space are often
employed to investigate structural (or robust) properties of biological systems [MI02,
KC08]. However, even though numerical simulations can be useful to falsify a
conjecture, by providing a counterexample, and can be the only viable method for
analysing very complex systems, which cannot be tackled analytically, no campaign
of numerical trials will ever provide an actual warranty of robustness. Fortunately,
many analytical tools are available, based for instance on the renowned deficiency
theory [Fei87, Fei95a, Fei95b, SMRMA07], the theory of monotone systems [Smi08,
Son07, DLAS07], algebraic geometry and graph theory [CF05, CF06b, MC08, AS09,
ADLS10, Min11, DP12, BFG14]. Control theoretic methods have also been employed
[ESPP+06], providing criteria based on the analysis of the Jacobian matrix [BFG12]
and on Lyapunov theory and set-invariance [BM15, ATS09, CH08, BF11b, BG14].
Rigorous mathematical tools allow to demonstrate that certain biochemical networks
structurally enjoy a given property, independent of specific parameter values. Among
the properties of interest, particularly relevant for biochemical systems are robustness,
monotonicity, perfect adaptation, the capacity of oscillating or of having multiple
stable equilibria.

Robustness

Stability against external perturbations and internal variability is a common feature
of living systems: evolution selects the fittest organisms, able to resist to diseases,
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imperfections or damages of regulatory mechanisms and to survive in various con-
ditions [Kit04, GR07]. Thus, complex biological systems must be robust against
environmental and genetic perturbations to be evolvable [CWWL07]. Several reports
have been published on how robustness is involved in various biological processes,
showing examples of natural phenomena exhibiting robustness and studying the
mechanisms that allow living systems to be robust [Kit07]. Robustness in bio-
chemical networks has been analysed, in order to discover natural classes of robust
networks [Kit04, Kit10, SWSK11, WAJS12], among which the famous case of bac-
terial chemotaxis [BL97, ASBL99, YHSD00], and to devise control strategies for
achieving robustness [ESKD+05, DIR+12]. The link of robustness with complexity
and redundancy has been investigated [TSE99, CD02a, CD02b].

Numerical simulations have been the most pervasive tool for a quantitative
analysis of robustness in biological networks and for investigating how topological
properties affect robustness [MI02, AC03, Tia04, GGMF05, GR07, KE09, KC08].
In [PIL05], for instance, the Jacobian eigenvalues for two, three and four node
networks have been numerically computed to check whether some properties are
robust to parameter variability: many interconnections recognised to be robustly
stable have turned out to be the most frequent topologies in biological databases. But
analytic approaches have been adopted too [SMRMA07]. Advanced mathematical
tools have been employed to achieve parameter-independent conclusions on the
dynamic behaviour of specific classes of biological systems. A geometric approach
has been attempted to devise a graph-based robustness definition for biochemical
networks [AK07]; the deficiency theory has provided general results to establish
robust stability of a chemical reaction network [SF10, Fei87], as well as the theory
of monotone systems [Son07]. Methods based on set-invariance and Lyapunov
theory [ESPP+06, ATS09, CH08, BF11b] have been employed too; in [BWW+11] a
robustness measure for gene regulation networks has been proposed, leading to convex
optimisation problems. Robustness analysis of existing and well-known biochemical
networks and pathways [BL97, ASBL99, YHSD00, BF11a] has provided consolidated
knowledge useful for designing robust synthetic networks [BYWB07, Fra11].

Monotonicity

Monotonicity is an important structural property in several biological models. The
theory of monotone systems [Hir88, MPS90, Smi08, BT11] has been widely applied
to biochemical systems [AS03, AS04b, Enc05, GS07, Son07, WS08, ADLS06, AS08,
ADLS10, BFG15b], following a graph-based approach to prove monotonicity of chem-
ical reaction network models [DLAS07] and tackling large-scale biological networks
by means of a decomposition into monotone subsystems [AS04a, DESZ07].
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Adaptation

Adaptation is recurring in biological systems and is a fundamental feature for
gradient sensing [LI02]. Among the biochemical systems having the property of
adaptation, there are cellular sensory systems displaying fold change detection
[SGH+10], osmoregulation [MMGUvO08, MGUMvO09] and the robust molecular
circuitry involved in bacterial chemotaxis [BL97, SPO97, ASBL99]. The flagellar
motor of Escherichia coli cells is controlled by a cascade of signalling proteins,
whose active or inactive state is determined by the presence of nutrient or toxin
in the environment. The flagellar motion of E. coli presents a robustly stable and
perfectly adaptive steady state: cells are sensitive to gradients, but steps in the
nutrient or toxin concentration only temporarily alter the motion equilibrium (in
order to move towards the nutrient or far from the toxin), which after a transient
always returns to its stable mode, depending exclusively on the concentrations of
signalling cascade proteins and binding rates, and not on external inputs: this has
been shown by both analysis of an ordinary differential equation model [BL97] and
experimental data [ASBL99] and has thus drawn the attention for further analysis.
In [YHSD00] an integral feedback control structure has been shown to be present in
the chemotaxis network and to guarantee its robust perfect adaptability: more in
general a link has been established between perfect adaptation and integral feedback;
by means of frequency response analysis, perfect adaptation has been associated
with the presence of zeros in the system transfer function [DUR08]. Adaptation
has also been explored analytically to highlight its link with the existence of an
internal model [Son03]. Efforts have been made to determine motifs that can achieve
perfect adaptation (showing through numerical simulations that the adaptability of
three-node networks can be investigated solely based on their structure, regardless
of the chosen reaction parameters [MTES+09]) and to design biomolecular network
modifications that enable perfect adaptation [CWWL07, KM11, WSA12].

Oscillations

Oscillations are fundamental in cells and organisms to provide the timing of life:
the so-called circadian rhythms [Win80, CLD95, Dun99, BL00, HHS+00, NII+05,
Wag05, KNN+06, BTM+08, QBM+10, YFJ13]. The qualitative and experimental
analysis of oscillations from a chemical and biological point of view [SS61, PC66,
BR79, KEK81, LSA11] has been soon supported by mathematical analysis [Lot20,
Vol26, Hig67, Rap76a, Rap76b, WLCA10] aimed at developing simple but realistic
models of complex oscillatory biological processes [FPK+09].

Oscillatory phenomena in biochemical systems have been understood in their
pathway dynamics and their properties [BTM+08], providing suitable models [Gol97,
Con99, Gol07, QNKS07, QBM+10] and underlining trade-offs between robustness
and efficiency [CBD11]. The oscillatory behaviour of chemical and biochemical
reaction networks has been analysed based on the theory of monotone systems
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[GS07, AS08], on bifurcation theory [DK09], as well as on qualitative techniques
founded on Lyapunov theory and Jacobian matrix analysis [FB12, BFG14, BFG15b].
Structural analysis of biochemical networks exhibiting an oscillatory behaviour has
been recently considered also in [MC08, Min11], which, using the formalism of mass
action kinetics, provide necessary conditions based on the network graph structure.

Mathematical analysis has helped look for general design principles, strategies and
motifs [LE90, ROE90, VKBL02, Lew03, GP06, WCA06, NT08, TCM+08, TKSS09,
LW10, BJ11, HH11, Ngu12], which are very useful for supporting the experiments
and the actual realisation of synthetic chemical and biochemical oscillators, often in
vitro [AWM98, EL00, ASMN03, PSF03, FWS+05, KCEO05, LS05, NII+05, WTL07,
BSO+08, SCB+08, TMLSF09, TDG+10, SFM10, FFK+11, MPS+11, KW11]; a com-
parative analysis is provided in [PSGdB10].

Multistability

Efforts have been made to mathematically analyse, explain and forecast bistable
behaviours in biochemical networks and biological systems [XF03, YM03, YSHM04,
MHK04, MB04, VRMG04, TB05, WB05, CF06b, SP07, QNKS07, CEA08, DK09,
FPK+09, RGBB09, Wil09, MY10, SGMGSG11, CGK+16] and more in general bio-
chemical systems exhibiting multistability have been considered [AS04b, AFS04,
CTF06, KST07, MC08, SGGS09, LW10, SGMGSG11, BF11a, BFG14, BFG15b].
Bifurcation analysis has helped detect bistability, multistability and hysteresis in bio-
logical models [AFS04], but bistability has also been inquired by means of Bayesian
techniques for parameter space analysis [SKW12]. The theoretical investigation
has been advancing in parallel to the construction of in vitro bistable circuits
[GCC00, HPDC00, KWW06, SKW11, CA12, MTF14].

5.4 Structural Property Detection
in Biochemical Systems

This section presents the systematic methodology proposed in [BFG12] to investigate
the structural nature of oscillatory behaviours (related to Hopf-type bifurcations)
and perfect adaptation, based on the analysis of the system Jacobian matrix, for
systems admitting a BDC-decomposition.

Again, although the focus in [BFG12] is on biological and biochemical systems, it
is worth stressing that the proposed results are applicable to any system admitting
a BDC-decomposition. Based on the multi-affinity of the BDC-decomposition,
simple criteria, easy to verify numerically, can be provided to check if a given model
structurally has the potential to exhibit an oscillatory or an adaptive behaviour.

Systems of the form (4.9), namely

ẋ(t) = Sf(x(t)) + V u(t), (5.1)
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with x ∈ Rn, S ∈ Zn×m, f : Rn → Rm, V ∈ Rn×v and u ∈ Rv, of course admitting a
BDC-decomposition, are considered here under boundedness assumptions.

Assumption 5.1. The solutions of (5.1) are globally bounded.

Conditions that exclude a certain type of instability relying on structural proper-
ties of the Jacobian (and the corresponding characteristic polynomial) are illustrated
in the following two examples.

Example 5.1. Consider the Jacobian matrix

J =

−(α + ε) 0 −δ
α −β 0
−ε β −(γ + δ)

 ,
where Greek letters denote positive partial derivatives. Clearly, J admits a BDC-
decomposition. It can be verified that the characteristic polynomial has positive
coefficients for any choice of the parameters and corresponding equilibria. Hence, the
Jacobian cannot have positive real eigenvalues.

Example 5.2. The Jacobian matrix

J =

−(α + ε) 0 −δ
α −β 0
0 β −γ

 ,
where again Greek letters denote positive partial derivatives, has a characteristic poly-
nomial with positive coefficients for any choice of the parameters and corresponding
equilibria. Hence, the Jacobian cannot have positive real eigenvalues.

In both Examples 5.1 and 5.2, instability of equilibria can only arise in association
with pairs of complex eigenvalues having positive real part. Can instability occur at
all for the equilibria? It turns out that the system of Example 5.1 is unconditionally
stable. Conversely, the system of Example 5.2 may become unstable for very large δ.

A similar analysis setup can be adopted for structurally detecting oscillatory
behaviours and perfect adaptation.

5.4.1 Revealing Potential Oscillators

Consider the general model (5.1), under Assumption 5.1, and suppose that its
Jacobian

J =

q∑
k=1

BkC
>
k Dk,

where [BkC
>
k ] = Rk are rank-one matrices and Dk are scalars, can be an unstable

matrix for some choice of the parameters. Instability can be exponential (due
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to nonnegative real eigenvalues) or oscillatory (due to complex eigenvalues with
nonnegative real part). If structural conditions exclude exponential instability for J ,
any choice of parameters destabilising J yields oscillatory dynamics.

A condition to exclude exponential instability is:

det(λI −
q∑

k=1

RkDk) 6= 0, for λ ∈ R+.

Since Dk are arbitrary, positive scalars, they can be normalised as 0 < Dk ≤ 1. In
addition, to exclude zero eigenvalues, the condition becomes

det(λI −
q∑

k=1

RkDk) 6= 0 (5.2)

s.t. ε ≤ λ ∈ R+, ε > 0, 0 < Dk ≤ 1. (5.3)

Dividing by λ

det

(
I −

q∑
k=1

Rk
Dk

λ

)
, λ ≥ ε

and taking D̄k =
Dk
λ , 0 < D̄k ≤

1
ε , the problem is equivalent to analysing function:

f(D̄) = det

(
I −

q∑
k=1

RkD̄k

)
. (5.4)

Proposition 5.1. Consider the cube:

CD̄ = {D̄k : 0 < D̄k ≤ Θ}, Θ =
1

ε
. (5.5)

Function f(D̄) in (5.4) is nonzero in the cube CD̄ if and only if f(D̄) is positive on
each vertex of CD̄.

Proof. It is immediately based on Theorem 4.3, since f(0) = 1 is positive (where 0
is the zero vector).

Proposition 5.1 provides a criterion to detect a potential oscillatory system.

Lemma 5.1. If the determinant function (5.2) is positive on all the vertices of
the parameter cube (5.5), then system (5.1) under Assumption 5.1 can exhibit only
oscillatory unstable linearised dynamics.

Example 5.3. Recall the system in Example 4.9, for which

J =


−1 0 0 −p −p

1 −1 0 0 0
0 1 −1 0 0
0 0 1 −1 −1

 D


1 0 0 0
0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

 ,
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D = diag {d1, d2, d3, d4, d5} = {α, β, γ, δ, ε}. The determinant function is

f = det


1 + (α + pδ) 0 0 pε
−α 1 + β 0 0
0 −β 1 + γ 0
δ 0 −γ 1 + ε



and is positive on all the 32 vertices, as can be numerically verified. Therefore, the
system is a potential oscillator, since instability is necessarily associated with complex,
unstable eigenvalues.

5.4.2 Revealing Perfect Adaptation

Consider a system of the form (5.1), with output y = Nx(t). Suppose a constant
perturbation is introduced on the input, with respect to its equilibrium value. If
the system is perfectly adaptive, after a transient it responds by returning to the
pre-perturbation equilibrium. As seen in Section 2.3.9, the linearised system{

ż = Jz + V v

w = Nz,
(5.6)

being a linear time invariant dynamical system, has perfect adaptation if and only if
its transfer function has a zero at the origin, which is equivalent to requiring that

det

[
J V
N 0

]
= det(H) = 0.

Assume that Dk, k = 1, ..., q, can be normalised as: 0 ≤ D̄k ≤ 1. Since det(H) is a
multi-affine function of the variables Dk, the next result immediately follows from
Theorem 4.3.

Proposition 5.2. Function f(D̄) = det(H) is identically zero if and only if it is
zero at each vertex of the cube CD̄, defined consistently with expression (5.5).

A zero at the origin assures zero response to a step input, provided that there is
no cancellation, i.e., no pole at the origin; hence,

det(J) 6= 0.

This second condition can be verified by exploiting the same principle. Normalising
Dk as ε ≤ D̄k ≤ 1, with ε > 0, it requires checking if f(D̄) = det[J(D̄)] is sign
definite on the cube defined by the possible values of D̄k.

Proposition 5.3. Function f(D̄) is nonzero inside the cube ε ≤ D̄k ≤ 1 if and only
if it has the same sign (either positive or negative) at all of the vertices.
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Example 5.4. The system
ẋ1 = u1 − g12(x1, x2) + g3(x3)− g1(x1)

ẋ2 = u2 − g12(x1, x2)

ẋ3 = g12(x1, x2)− g3(x3),

where u1 and u2 are constant positive functions, while g1(x1), g3(x3) and g12(x1, x2)
are smooth, strictly increasing in each argument and zero when either argument is
zero, has Jacobian matrix:

J =

−(α + η) −β γ
−α −β 0
α β −γ

 ,
where Greek letters denote (positive) partial derivatives. It can be numerically verified
that det(−J) > 0. If perturbations on input u1 are considered and x3 is taken as the
system output, the condition

det


−(α + η) −β γ 1
−α −β 0 0
α β −γ 0
0 0 1 0

 = 0

is always satisfied, hence the system admits perfect adaptation to perturbations in u1.

5.4.3 Stability and Bistability

Stability and D-Stability

When structurally investigating potential oscillations or perfect adaptation, stability
(or instability) has an important role because (i) oscillations cannot be achieved if the
system does not transition to instability due to a pair of complex eigenvalues crossing
the imaginary axis; (ii) to have perfect adaptation, the system must be asymptotically
stable. As discussed in Section 4.4.1, since the Jacobian of any system that admits
a BDC-decomposition can be written, by definition, as the non-negative sum of
rank-one matrices, then the coefficients of the characteristic polynomial are multi-
affine functions of the Jacobian entries and the mapping theorem [Bar94] applies,
providing a sufficient condition for robust stability (given by the zero exclusion
theorem). Other conditions for stability, suitably tailored to the case of systems
admitting a BDC-decomposition, will be provided in Chapter 6.

Interestingly, stability of the BDC-decomposition of the system Jacobian matrix
is related to D-stability problems. A matrix A is said to be D-stable if the product
DA is stable for all real positive definite diagonal matrices D. Hence, the problem
of analysing robust stability of a matrix of the form A∗ = DA, where D is a positive
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definite diagonal matrix, is a D-stability problem. [Cro78] In the BDC-decomposition
(J = BDC as in (4.24)), assume that q ≥ n (which is a necessary condition for J
to be invertible, otherwise asymptotic stability would be structurally lost due to an
eigenvalue at the origin; in fact, the rank of a product of matrices is lesser or equal
to the minimum rank of the factors). Consider now the matrix obtained from J by
permuting its factors

J∗ = DC B = DN ∈ Rq×q.

The dimension of J∗ is q. Hence, for q ≥ n, the spectral set of J is included in the
spectral set of J∗: the eigenvalues of J∗ are those of J plus the eigenvalue λ = 0 with
multiplicity q − n. The presence of zero eigenvalues is a problem that can be dealt
with numerically by means of an ε perturbation: εI + J∗. The D-stability property
has been proved to be equivalent to a µ-type condition [CFY95] and an approach
based on Linear Matrix Inequalities (LMIs) has been proposed to test D-stability
[GdOH98]; for large scale problems, this type of investigation may become highly
complex and a probabilistic approach [CDT11] may be more effective.

Bistability

It has been shown how to exclude the presence of real positive eigenvalues, ruling out
exponential transitions to instability (through the origin), hence revealing potential
oscillations. Is it possible to rule out oscillatory transitions to instability, hence
revealing potential bistability? If a system is monotone, instability can be only due
to real unstable eigenvalues. More in general, to exclude oscillatory bifurcations, it
is necessary to assure that

det[jωI − J(D)] 6= 0,

with ω > 0, for all diagonal matrices D � 0. Equivalently, normalising the expression
to ω = 1, it can be written that det[jI − J(D)] 6= 0. Multiplying the expression by
its conjugate provides the condition

h(D) = det[jI − J(D)] det[−jI − J(D)] 6= 0.

Function h(D) is a real polynomial in the variables Dk, k = 1, ..., q. Then the
problem reduces to determining if the polynomial h(D) is copositive (i.e., positive
for Dk > 0). Unfortunately, h(D) is not a multi-affine function of Dk: no vertex
results based on Theorem 4.3 can be obtained and more sophisticated algorithms
are required. For instance, stability analysis by means of positive polynomials has
been considered in the literature (see [QD92], and [Las11] for more recent results
and references).



6
Structural Stability and Boundedness

of Biochemical Systems

The extraordinary robustness of biochemical systems can be explained based on the
fact that they enjoy structural properties, independent of specific parameter values.

In this chapter, the main goal is assessing structural stability of biochemical
reaction networks with monotonic reaction rates, i.e., establishing if all the networks
with a certain structure are stable, regardless of specific parameter values. Following
[BG14], stability is investigated by absorbing the system equations in a linear
differential inclusion and seeking a polyhedral Lyapunov function proper to the
considered network structure. A numerical recursive procedure is devised to generate
such a function. For a wide class of mono- and bimolecular reaction networks, named
unitary, the procedure is shown to be very efficient since, due to the particular
structure of the problem, it requires iterations in the space of integer-valued matrices.
Even when a Lyapunov function certifying stability cannot be found, with a similar
(but less conservative) procedure it is possible to test whether the system evolution
is structurally bounded; in this case, the system equations are absorbed in a positive
linear differential inclusion.

It is also briefly shown that the proposed numerical procedure can be interpreted
in a discrete-event system framework.

To certify the effectiveness of the approach, many non-trivial biochemical reaction
networks have been tested (which are thoroughly described in Appendix A, along
with the outcomes of both a stability and a boundedness test) and well established
models in the literature are analysed.

[BG14] considers systems in concentration coordinates, where the state variables
are species concentrations. It is also shown, along the lines in [BG15a], that the
proposed theoretical results can be applied to systems in reaction coordinates, as
well. Stability of these systems, where the state variables are reaction rates, was
first investigated by Al-Radhawi and Angeli. For these systems, the same numerical
test as in [BG14] can be employed to find a polyhedral Lyapunov function and thus
certify stability. Under suitable assumptions on the rank of structural matrices, it is
proved that the test can be equivalently performed for the system in concentration
coordinates or for the system in reaction coordinates, since it has the same outcome
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in both cases.
Moreover, for basic motifs in biochemical networks (which admit piecewise-linear

Lyapunov functions, based on the results in [BG14]), it is shown that stability cannot
be structurally proved resorting to quadratic Lyapunov functions [BG15b] and even
to smooth Lyapunov functions.

Most of the results apply not only for the considered class of biochemical reaction
networks, but also for any system admitting a BDC-decomposition (see Section 4.3).

6.1 Background

Often, in chemical and biochemical networks, parameter values are widely uncertain,
time-varying and depending on unpredictable factors due to specific environmental
and working conditions. In spite of this, particular behaviours are extremely robust,
since they depend on particular structures (often called motifs, [Alo07b]), regardless
of specific parameter values. [Alo06] Structural analysis is a powerful tool to gain
insight into this phenomenon.

Recall that a structural property (see Chapter 2) is satisfied by all the systems
belonging to a class, characterised by a structure, regardless of parameter values
[NYWP07, BF11b]; this concept is related with robustness [CH08, ESPP+06], which
is however a less demanding requirement: to be robust, a property just needs to be
preserved by the system under large parameter variations.

Structural analysis of chemical reaction networks, begun in the early seventies
[HJ72, Hor73a, Hor73b], has provided fundamental results, such as the zero-deficiency
theorem and the one-deficiency theorem [Fei87, Fei95a, Fei95b], on which a lot of
subsequent work is grounded [CF05, CF06b, Cha06, And08, Han10]. The zero-
deficiency theorem (thoroughly presented in Section 4.2.3) provides a structural
general sufficient condition (0-deficiency, which is immediately verifiable from an easy
test on the network structure) to assure that a chemical network described by mass
action kinetics admits a single positive stable equilibrium; the result is nicely proved
by adopting the system entropy as a Lyapunov function. A fundamental assumption
in the zero-deficiency theorem requires the reaction kinetics to be of the mass action
type (hence polynomial, although a possible generalisation is proposed in [Son01]).
However this assumption, although being widely accepted, is not necessarily satisfied,
as discussed in Section 4.2.4.

It is therefore interesting to study the behaviour of networks for which the mass
action kinetics assumption does not necessarily hold. In this chapter, structural
stability is investigated for a wide class of (bio)chemical reaction networks, under the
sole requirement of monotonicity of the reaction rates. To prove stability, polyhedral
Lyapunov functions are employed, which have a successful history in the robustness
analysis of uncertain systems (see [BM15] for a literature survey) and have been used
to prove the stability of compartmental systems [MKO78]. Indeed, compartmental
systems can be seen as monomolecular chemical reactions in which each species can
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be transformed into another (e.g., A
g(a)−−⇀ B). Under the assumption of increasing

reaction rate functions, stability can be proved by adopting as a Lyapunov function
the 1-norm, which is a particular polyhedral (i.e., piecewise-linear) norm.

Polyhedral norms have been used as candidate Lyapunov functions for biochemical
networks in [BF11b], [FB13], although applied to specific problems. Also piecewise-
linear in rate Lyapunov functions have been recently considered in [ARA13, ARA14,
ARA15] for the stability analysis of chemical reaction networks.

The main idea in this chapter is that of adopting polyhedral norms (including the
1-norm as a special case) as candidate Lyapunov functions to investigate structural
stability of chemical reaction networks with general, monotonic reaction rates.1

A theoretical framework is proposed and leads to a numerical procedure to
generate piecewise-linear Lyapunov functions, which may certify the stability of all
chemical reaction networks with a certain structure. If a piecewise-linear Lyapunov
function is derived, network stability is structural: under monotonicity assumptions,
it is assured for all reaction rate functions.

General chemical networks are considered, both isolated and with external inputs,
under general monotonicity assumptions on the involved reaction rate functions
(hence, without restricting to mass action kinetics reactions). Based on the network
structure only, a polyhedral Lyapunov function (actually a norm) is sought for
the system; to this aim, the nonlinear system equations are absorbed in a linear
differential inclusion. The existence of a polyhedral Lyapunov function is shown to
be equivalent to the stability of a suitable discrete difference inclusion, based on
which a numerical recursive procedure is proposed to generate the unit ball of the
associated polyhedral norm. Whenever a polyhedral Lyapunov function is found, the
proposed procedure structurally certifies the stability of the system for any choice of
monotonic reaction rate functions. In the case of unitary reaction networks, in which
the stoichiometric matrix has coefficients in {−1, 0, 1}, the procedure enormously
benefits from the fact that iterations occur in the set of integer-valued matrices. As
expected, the seminal results in [MKO78] follow as a special case, since the procedure
generates the 1-norm for compartmental systems. It is also shown that, once a
polyhedral Lyapunov function is found, local stability of the equilibrium can be
investigated, in isolated systems, within the stoichiometric compatibility class. An
interpretation of the recursive numerical procedure in terms of the evolution of a
discrete-event system is briefly outlined. A similar procedure is reported as well,
which can be adopted, even when structural stability is not satisfied, to prove at
least boundedness of the state variables.

1The monotonicity assumption is satisfied by almost all biochemical systems. Since experimental
data are often noisy and uncertain, the estimated parameters in the dynamical model are expected
to be highly uncertain too, and even finding an analytical expression for the involved functions
may be extremely challenging (this is why it is crucial to be able to structurally assess properties,
regardless of precise parameter values and exact functional expressions). However, typically the
qualitative trends of the interactions are reliably evaluated according to the dynamic or steady
state correlation of biochemical quantities. [BF14]
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Structural stability and boundedness of several networks are investigated in
Appendix A based on the proposed methods. Surprisingly, non-trivial systems can
be managed without difficulties, providing either a positive stability certificate (by
finding a piecewise-linear function with quite a small number of vertices) or a negative
certificate (non-existence of such a function).

The methods in [BG14] can also be recast to the framework proposed in [ARA13,
ARA14, ARA15], where the system variables are reaction rates, instead of species
concentrations. All the results provided in [BG14], including the computational
procedure, apply in the reaction-coordinates setup as well, because the system in
reaction coordinates has the same structure as the differential inclusion considered
in concentration coordinates. Under suitable assumptions on the rank of structural
matrices, it can be shown that the stability of the system in reaction coordinates is
equivalent to the stability of the corresponding differential inclusion in concentration
coordinates. For unitary networks, this means that the proposed computational
procedure converges in the former case if and only if it converges in the latter.

Can the same structural (parameter-free) stability results be achieved resorting to
different candidate Lyapunov functions? For instance, quadratic Lyapunov functions
have been successfully employed for the robustness analysis of uncertain systems
[ZDG96, SPS98, BEGFB94]. However, it is well known that, for proving robust sta-
bility of linear differential inclusions, quadratic Lyapunov functions are conservative,
while polyhedral Lyapunov functions are not [BT80, MP86a, MP86b, MP86c, MP89].
Consistently with previous work, it is shown that structural stability of some funda-
mental chemical reaction network motifs cannot be proved by means of quadratic
Lyapunov functions, although these motifs are structurally stable, as can be demon-
strated based on polyhedral Lyapunov functions. A simple example shows that
furthermore, in some cases, it is not possible to resort to smooth Lyapunov func-
tions at all. This substantiates the effectiveness of a polyhedral-Lyapunov-function
approach to the structural stability analysis of biochemical networks.

6.2 Absorbing the System
in a Differential Inclusion

Consider the class of models

ẋ = Sg(x) + g0, (6.1)

where the state x ∈ Rn
+ represents the concentration of biochemical species, g(x) ∈ Rm

is a vector of functions representing the reaction rates and g0 ≥ 0 is a vector of
constant influxes; S ∈ Zn×m is the stoichiometric matrix of the system, whose entries
sij represent the net amount of the ith species produced or consumed by the jth
reaction, excluding the contribution of constant influxes.
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Assumption 6.1. All the component functions of vector g(x) are nonnegative and
continuously differentiable. All their partial derivatives are positive in the interior of
the positive orthant.

Decreasing trends can be considered as well: in some cases, this just requires
changing sign to g. An important case is that of a species which is present in a total
amount xtoti > 0 and can be either active, xi, or inactive, x∗i , with xi + x∗i = xtoti .
Since 0 ≤ xi ≤ xtoti , the activation term must be the only positive term in the right
side of the equation. For instance, the equation

ȧ = −gin(a, b) + gact(a
tot − a, c) (6.2)

includes the inhibition term gin and the activation term gact.

Assumption 6.2. Each component function of vector g(x) is zero if and only if at
least one of its arguments is zero. Moreover, if sij < 0, then gj must depend on xi.

Assumption 6.2, ensuring that ẋi ≥ 0 for xi = 0, is required to guarantee that
(6.1) is a positive system. For instance, gin(a, b) in (6.2) can be of the form κ ba

1+a
,

but not of the form κ b
1+a

.

Example 6.1. A biochemical network is proposed in [FB12] representing an oscillator
model inspired by the experimental system in [KW11], where a synthetic oscillator is
built in vitro. The synthetic system is composed of two short synthetic genes, termed
genelets, which are interconnected through their RNA outputs and, in the absence
of enzymes, are activated (inactivated) thanks to the binding of a DNA activator
(inhibitor) strand. A subset of the overall set of reactions, corresponding to the
activated subsystem, is considered here as a standalone system. The corresponding
chemical reactions

A+B
gab(a, b)−−−−⇀ A∗, B∗

gb(b
∗)−−−⇀ B,

C + A∗
gac(a∗, c)−−−−−⇀ A+B∗, ∅ c0−⇀ C

involve the genelet species A (and its inactive form A∗), the inhibitor strand B (and
its inactive form B∗) and the RNA output C. Along with the mass conservation
constraints atot = a + a∗ and btot = b + b∗ + a∗, these reactions correspond to the
following ODEs for x = [a b c]>:

ȧ = gac(a
tot − a, c)− gab(a, b)

ḃ = gb(b
tot − atot + a− b)− gab(a, b)

ċ = c0 − gac(atot − a, c)

Then,

S =

 1 −1 0
0 −1 1
−1 0 0

 , g(x) =

 gac(a
tot − a, c)

gab(a, b)
gb(b

tot − atot + a− b)

 , g0 =

 0
0
c0

 .
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Possible reactions, along with the corresponding reaction terms appearing in the
proper equations, are in the following (non-exhaustive) list.

(a) ∅ a0−⇀ A: ȧ = a0, a0 constant

(b) A
g(a)−−⇀ ∅: ȧ = −g(a)

(c) A
g(a)−−⇀ B: ȧ = −g(a), ḃ = g(a)

(d) A+B
g(a, b)−−−⇀ ∅: ȧ = −g(a, b), ḃ = −g(a, b)

(e) A+B
g(a, b)−−−⇀ C: ȧ = −g(a, b), ḃ = −g(a, b), ċ = g(a, b)

(f) A
g(a)−−⇀ B + C: ȧ = −g(a), ḃ = g(a), ċ = g(a)

(g) A+B
g(a, b)−−−⇀ C +D: ȧ = −g(a, b), ḃ = −g(a, b), ċ = g(a, b), ḋ = g(a, b)

(h) Activation A∗ + B
g(a∗, b)−−−−⇀ A: ȧ = g(atot − a, b), ḃ = −g(atot − a, b), with

a+ a∗ = atot, where atot is the total concentration
(i) Difference dependence (see Example 6.1): ȧ = g(atot − btot − a+ b)

Any network can be represented by a graph, whose nodes are associated with
biochemical species and whose arcs represent interactions (reactions). Fig. 6.1 defines
the arcs corresponding to the reactions in the above list. The graph of Example 6.1
corresponds to that in Fig. 6.2.

(a) ∅ a0−⇀ A (b) A
g(a)−−−⇀ ∅ (c) A

g(a)−−−⇀ B

(d) A+B
g(a, b)−−−−⇀ ∅ (e) A+B

g(a, b)−−−−⇀ C (f) A
g(a)−−−⇀ B + C

(g) A+B
g(a, b)−−−−⇀ C +D

(h) Activation (i) Difference dependence

Figure 6.1: Graph representations of biochemical reactions. [BG14]
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Figure 6.2: Graph of the network in Example 6.1. [BG14]

Assumption 6.3. Functions gj(·) in which each argument depends on a single

variable xi are admitted if sij
∂gj
∂xi

< 0 for each argument. Functions having as an
argument the sum or difference of more variables, such as gj(xi− xk), or gj(xi + xk),
are admitted if they appear in a single equation, ẋk = . . . , where xk is one of the
variables of the linear combination, and skj

∂gj
∂xk

< 0.

Hence, the diagonal entries of the Jacobian of Sg(x) are negative and no auto-
catalytic reactions are considered. Also reactions of the form A −⇀ A + B, often
used to model gene expression, are not allowed. Nevertheless, a more complete gene
expression model will be successfully analysed in Section 6.8.

Remark 6.1. Ruling out autocatalytic reactions is not necessary at all for the
proposed theoretical framework, or for the numerical procedure in Section 6.3.1, to be
applicable. Simply, for networks with autocatalytic reactions, the polyhedral-function
procedure would not converge and, of course, no structural stability certificate would
be issued.

Networks composed of reactions in the list (cf. Fig. 6.1) form a subset of those
satisfying Assumption 6.3. These networks are also unitary, according to the next
definition.

Definition 6.1. The network is unitary if sij ∈ {−1, 0, 1}.

Remark 6.2. Requiring a network to be unitary is a restriction: for instance,
multimolecular reactions of the type nA + B ⇀ P , with n > 1, would be ruled out.
However, two basic points are worth noticing.

• In the considered setup, the restriction is not theoretical, but essentially compu-
tational. In fact, the theory works in general, although the numerical procedure
might not converge in finite time for non-unitary networks. This issue will be
reconsidered in Section 6.3.2.

• Multimolecular reactions can be always expressed as a cascade of bimolecular
reactions, which are unitary. For instance, 2A+B ⇀ P can be decomposed as
the pair of unitary reactions A+B ⇀ C and C+A ⇀ P . Such a decomposition
is justified, since trimolecular reactions are considered unlikely to happen and
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no reactions concurrently involving more than three molecules have yet been
observed; therefore an overall reaction is more plausibly modelled by a chain
of bimolecular steps (see, for instance, [EK05] Section 7.4 or [Lev99] Sections
2.1, 2.3).

Both isolated systems (g0 = 0) and non-isolated systems (g0 6= 0) can be
considered in the proposed framework. For g0 = 0, as discussed in Section 4.2.1,
the solution of the system is forced to stay in the stoichiometric compatibility class
C(x(0)):

x(t) ∈ C(x(0)) = {x(0) + span(S)} ∩ Rn
+.

Example 6.2. Consider the reactions

X1

g1(x1)−−−⇀↽−−−
g2(x2)

X2, ∅ g01−−⇀ X1, ∅ g02−−⇀ X2

corresponding to the second order nonlinear system[
ẋ1

ẋ2

]
=

[
−1 1

1 −1

] [
g1(x1)
g2(x2)

]
+

[
g01

g02

]
.

Then, for g0 = 0, the stoichiometric compatibility class is

C(x(0)) = {x1 + x2 = x1(0) + x2(0), x1, x2 ≥ 0}.

To perform a structural analysis, the ε-modified system

ẋ(t) = −εx(t) + Sg(x(t)) + g0, (6.3)

with ε > 0 arbitrarily small, is considered and the following definitions of stability
are introduced.

Definition 6.2. System (6.1) is

i) structurally stable if any equilibrium point x̄ of the system with ε = 0 and
g0 ≥ 0 (if such a point exists) is Lyapunov stable: there exists a continuous,
strictly increasing and unbounded function ω : R+ → R+, with ω(0) = 0, such
that ‖x(t)− x̄‖ ≤ ω(‖x(0)− x̄‖);

ii) structurally convergent if it is structurally stable and, for any ε > 0 and
g0 ≥ 0, the perturbed system (6.3) has globally bounded solutions and admits
an equilibrium which is globally asymptotically stable in Rn

+.

The previous definitions are structural, in that they do not require the knowledge
of function g(·): hence, they hold for any choice of g(·) and its parameters, provided
that it satisfies the stated assumptions. Note that the existence of an equilibrium is
not always guaranteed.
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Example 6.3. The reaction network{
ȧ = −gab(a, b) + a0

ḃ = −gab(a, b) + b0

has no equilibrium if a0 6= b0. Conversely, the reaction network{
ȧ = −gab(a, b) + a0

ḃ = −gab(a, b)− gb(b) + b0

admits an equilibrium iff b0 > a0.

The existence of equilibria typically requires boundedness of the system solutions,
a problem that will be considered later (in Section 6.7), assuming ε-dissipation.

The infinitesimal parameter ε > 0 in (6.3) is required for technical reasons. The
considered parameters are sign definite but, having unknown values, they can be
arbitrarily close to zero. Therefore, after absorbing the system in a differential inclu-
sion, to assess asymptotic stability, a natural degradation of the species (represented
by ε > 0) needs to be considered in general. Considering a spontaneous degradation
is reasonable in biochemical systems and, in practice, the introduction of ε in Defini-
tion 6.2 ii) does not lead to the classification as stable of systems which are unstable
(namely, a wrong stability certificate for unstable systems cannot be produced). The
presence of the degradation term is necessary for the system to tolerate persistent
positive inputs. For instance, according to the definition, the system of Example 6.2
is structurally stable and convergent. Without any ε-degradation, it would produce
unbounded solutions, unless g0 = 0. For g0 = 0, any of its equilibrium points is
only marginally stable. However, it has the property of asymptotic stability within
the stoichiometric compatibility class, a problem that will be faced later without
considering any ε > 0.

Assume that an equilibrium x̄ = x̄(ε) exists ∀ ε ≥ 0.2 To find a criterion for
global asymptotic stability, the system is absorbed in a differential inclusion.

Denote z
.
= x− x̄, hence x = z + x̄. Since 0 = S g(x̄)− εx̄+ g0, it is possible to

write
ż(t) = S [g(z(t) + x̄)− g(x̄)]− εz(t). (6.4)

Note that this is not a linearisation: it is a nonlinear shifted system, which is globally
(and not only locally) equivalent to the original system. For this system, the following
proposition holds.

Proposition 6.1. System (6.4) can be equivalently written as

ż(t) = BD(z(t))C z(t)− εz(t), (6.5)

2As will be shown later, such an equilibrium indeed exists if the system passes the proposed
computational test.
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where matrix B ∈ Zn×q is formed by a selection of columns of S, C ∈ Zq×n and D(z)
is a diagonal matrix with nonnegative diagonal entries. q is the number of possible
partial derivatives with respect to all arguments (q ≥ n, q ≥ m).

Proof. Consider the generic function gk(xi, xj) (the argument applies to functions of
more than two variables as well) and write it as

gk(zi + x̄i, zj + x̄j)− gk(x̄i, x̄j) =

gk(zi + x̄i, zj + x̄j)− gk(x̄i, zj + x̄j)

zi
zi +

gk(x̄i, zj + x̄j)− gk(x̄i, x̄j)
zj

zj =

∂gk(x̃i, x̄j)

∂xi
zi +

∂gk(x̄i, x̃j)

∂xj
zj = (±Dki)zi + (±Dkj)zj,

in view of the differential mean value theorem, where x̃i and x̃j are proper values
in the intervals [x̄i, zi + x̄i] and [x̄j, zj + x̄j] respectively, while Dki and Dkj are
nonnegative scalar functions of x̄ and z. The values x̃i and x̃j are not necessarily
unique and depend on the function gk.

Alternatively, the same expression can be derived by adopting the integral
expressions (4.32) and (4.33) in Section 4.3.1. Ordering the partial derivatives
Dki and Dkj as D1, D2, etc., D = diag{D1, D2, . . . , Dq}. Matrix B is achieved by
replicating (up to the sign) each column of S, say the kth, a number of times equal
to the arguments of gk. In matrix C, cki is ±1 if Dk is with respect to xi, 0 if it is
not.

Example 6.4. Consider the system of Example 6.1 and let D1 = −∂gac
∂a

, D2 = ∂gab
∂a

,

D3 = ∂gab
∂b

, D4 = ∂gac
∂c

, D5 = ∂gb
∂a

be positive parameters. Then

B =

−1 −1 −1 1 0
0 −1 −1 0 1
1 0 0 −1 0

 , D = diag(D1, . . . , D5), C =

 1 1 0 0 1
0 0 1 0 −1
0 0 0 1 0

> .
Remark 6.3. The system Jacobian Jε evaluated at any point has exactly the same
structure Jε = BDC − εI as the matrix of (6.5). Hence, it can be said that the
system admits a BDC-decomposition (see Section 4.3).

Remark 6.4. Denoting by Bi the ith column of matrix B and by C>i the ith row of
matrix C, Assumption 6.3 implies that

C>i Bi < 0 ∀ i. (6.6)

For unitary networks, C>i Bi = −1 ∀ i, with noteworthy numerical benefits.

System (6.5) is equivalent to the original nonlinear shifted system; if in (6.5)
D(z(t)) is replaced by D(t), a linear differential inclusion is obtained, such that all the
trajectories of (6.5) are also trajectories of the differential inclusion. With an abuse,
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the notation ż = ... will be used instead of ż ∈ ..., since the differential inclusion
will be actually studied as a standalone system. The goal will be to exploit the
tight relationship between the original system and the associated linear differential
inclusion, in order to show that stability of the original system can be structurally
proved by means of a polyhedral Lyapunov function if and only if that function is a
polyhedral Lyapunov function for the differential inclusion.

The following theorem can be stated.

Theorem 6.1. Consider the linear differential inclusion

ż(t) =

[
−εI +

q∑
i=1

BiDi(t)C
>
i

]
z(t), z(0) = z0 (6.7)

where Di(t) are arbitrary nonnegative scalar piecewise-continuous functions.3 Then:

1. marginal stability of (6.7) for ε = 0 implies structural stability of any equilib-
rium of (6.1);

2. asymptotic stability of (6.7) for ε > 0 implies structural convergence of (6.1).

Proof. If x̄ is any equilibrium point, then, denoting by z = x − x̄, the nonlinear
system can be absorbed in the linear differential inclusion. All the solutions z(t) are
then solutions of (6.7) for ε = 0, hence stability of (6.7) implies structural stability.

In the case ε > 0, being the set of solutions of (6.5) a subset of the set of
solutions of the differential inclusion (6.7), it is just necessary to prove that, if (6.7)
is asymptotically stable, then (6.3) admits a steady state x̄ for any ε > 0; its global
stability is then immediate.

After some computations (see [BG14] for details), (6.3) can be written in the
form of (6.7) with an additive constant term; indeed, replacing D(z(t)) with D(t)
leads to the differential inclusion

ż(t) = [−εI +BD(t)C]z(t) + g̃0.

If (6.7) is asymptotically stable, then the solutions of the differential inclusion are
bounded; since they are a superset of the solutions of (6.3), then (6.3) has bounded
solutions as well and it necessarily admits a steady-state value x̄ (depending on
ε).

Remark 6.5. Absorbing the trajectories of the nonlinear system in those of a linear
differential inclusion is completely different from considering the system linearisation
around an equilibrium point. The stability of the differential inclusion is a sufficient
condition for the stability of the original system. As will be seen later, a polyhedral
function exists for the former iff it exists for the latter.

3Piecewise-continuous means that the number of discontinuity points is finite in each finite
interval and, in each of these intervals, right and left limits are finite.
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From the proof of Theorem 6.1 the next Corollary follows.

Corollary 6.1. If the differential inclusion (6.7) is asymptotically stable, then (6.3)
admits an equilibrium.

The following equivalence is worth pointing out.

Proposition 6.2. Marginal stability of (6.7) for ε = 0 is equivalent to its asymptotic
stability for ε > 0.

Proof. The statement is immediately proved since, given Di(t) ≥ 0 and denoting by
z0(t) the solution corresponding to ε = 0, the solution corresponding to ε > 0 is

zε(t) = e−εtz0(t).

In view of Proposition 6.2, the two claims of Theorem 6.1 can only be verified
together.

6.3 Analysis of the Differential Inclusion

The stability of the differential inclusion (6.7) can be analysed by considering an
associated discrete-time difference inclusion. Then, the main idea (depicted in
Fig. 6.3) is the following: if all the possible discrete transitions starting from the
vertices of the diamond (the unit ball of ‖x‖1) remain bounded, then the continuous-
time solution remains trapped inside the convex hull of the reached points (stable
case); conversely, if the difference inclusion diverges, so does the differential inclusion,
since there exist continuous-time solutions arbitrarily close to the discrete-time
solutions.
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Figure 6.3: The idea: convergent case (left); divergent case (right). [BG14]

First consider the case ε = 0 in (6.7). Since Di(t) are arbitrary nonnegative, at
best marginal stability can be proved.4 For any state value z ∈ Rn, the set of all

4For instance, ẋ(t) = −D(t)x(t), D(t) > 0 is not necessarily asymptotically stable: the solution
does not converge to 0 if D(t) goes to 0 too quickly.
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derivatives is included in a cone of directions ±Bi:

ż ∈ {v : v =

q∑
i=1

viDi, Di ≥ 0}, where vi = BiC
>
i z.

Therefore, if a common convex Lyapunov function exists for all the special systems

ż = BiC
>
i z, (6.8)

with i = 1, . . . , q, then the same function is a Lyapunov function for the differential
inclusion (and the nonlinear system).

The solutions of (6.8) with initial state z0 can be written as

z(t) = z0 +

∫ t

0

BiC
>
i z(σ)dσ = z0 +Biϑ(t)

where ϑ(t) =
∫ t

0
C>i z(σ)dσ. To find ϑ, the variable (C>i z) can be considered, which

satisfies the differential equation

d

dt
(C>i z) = (C>i Bi)(C

>
i z).

Its solution is C>i z(t) = C>i z0e
C>i Bit and asymptotically converges to zero, since

C>i Bi < 0 (see Remark 6.4). Then z(t) converges to a finite value z∞. Without
computing the integral, the limit can be achieved as the value such that

C>i z∞ = C>i (z0 +Biϑ∞) = 0,

which yields ϑ∞ = −C>i z0/(C
>
i Bi).

The dynamics (6.8) asymptotically drives the state from z0 to

z∞ = z0 +Biϑ∞ = z0 −
BiC

>
i z0

C>i Bi

=

[
I − BiC

>
i

C>i Bi

]
z0.

Then, the family of matrices

F =

{
Φi

.
=

[
I − BiC

>
i

C>i Bi

]
, i = 1, . . . q

}
(6.9)

can be considered, along with the discrete linear difference inclusion (actually a
discrete-time switching system) y(k + 1) = Φ(k)y(k), where Φ(k) is an arbitrary
sequence in F and y(k) ∈ Rn.

Consider then the two systems

ż(t) = BD(t)Cz(t), Di(t) ≥ 0 (6.10)

and
y(k + 1) = Φ(k)y(k), Φ(k) ∈ F . (6.11)

A technical lemma, thoroughly proved in [BG14], shows that any solution of the
discrete-time system is approached by a continuous-time solution for large enough
time.



102 6. Structural Stability and Boundedness of Biochemical Systems

Lemma 6.1. Given systems (6.10) and (6.11), both starting from the initial condition
y(0) = z(0), then ∀ k > 0 and ∀ δ > 0, no matter how small, there exists t > 0 such
that ‖z(t)− y(k)‖ < δ.

The result in Lemma 6.1 is interesting per se, because it proves that, in view of
the peculiar properties of the considered systems, the stability of the continuous-time
system implies that of the discrete-time system (while, in general, only the opposite is
true). Moreover, based on Lemma 6.1, the following result in [BG14] can be proved,
stating that discrete and continuous-time stability are equivalent.

Theorem 6.2. Robust stability of the continuous-time system (6.10) is equivalent
to robust stability of the discrete-time system (6.11).

Proof. If the continuous-time system (6.10) is stable, Theorem 5.2 in [Bla91] guar-
antees that there exists a convex and compact set including 0 in its interior (namely,
a C-set), S, which is robustly positively invariant for (6.10). Then, S must be
robustly positively invariant also for (6.11). In fact, assume by contradiction that,
for y(0) ∈ ∂S (the boundary of S), it can be written

y(1) = Φiy(0) 6∈ S for some Φi ∈ F .

A neighbourhood B of y(1) exists such that B
⋂
S = ∅. In view of Lemma 6.1 a

continuous-time solution z(t) exists that is arbitrarily close to y(1) and, hence, enters
the set B. Yet, this violates the assumption that S is positively invariant for (6.10).
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Figure 6.4: Continuous-time solutions (solid) point inside the cone defined by discrete-time solutions
(dashed). [BG14]

If, conversely, the discrete-time system (6.11) is stable, then Theorem 5.1 in
[Bla91] guarantees that there exists a C-set S which is positively invariant for (6.11).
Hence, if y(0) ∈ ∂S, by the definition of Φi,

y(1) = Φiy(0) =

[
I − BiC

>
i

C>i Bi

]
y(0) ∈ S.

The Bouligand tangent cone to S in y(0) (see Fig. 6.4) is defined as [BM15]

T (y(0)) =

{
z : lim

h→0

dist(y(0) + hz,S)

h
= 0

}
,
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where dist(u,S) = infv∈S ‖u− v‖ is the distance of u from the set S. Since y(0) and
y(1) are both in the convex set S, their difference is in the tangent cone: for all i,

y(1)− y(0) = −BiC
>
i

C>i Bi

y(0) ∈ T (y(0)).

The tangent cone to a convex set is convex. Therefore, by combining the vectors
achieved for all i with arbitrary nonnegative coefficients D̃i ≥ 0, the derivative can
be expressed as

ż =

q∑
i=1

(−D̃i)
BiC

>
i

C>i Bi

y(0) =

q∑
i=1

BiDiC
>
i y(0) ∈ T (y(0)),

where Di
.
= −D̃i/(C

>
i Bi) ≥ 0. Then Nagumo’s theorem [Nag42, Bla91] can be

invoked, which states that any convex and compact set S is positively invariant for
(6.10) if and only if ż ∈ T (z) for all z ∈ ∂S. Hence, it can be concluded that S is
positively invariant for (6.10). Details are provided in [BG14].

Remark 6.6. In general, the theorem holds in one direction only (namely, the
differential inclusion is stable if the difference inclusion is stable) and the opposite
is not true: for instance, taking q = 1 and the stable A1 =

[
0 1
−1 0

]
, I + D1A1 is

unstable.

Polyhedral Lyapunov function. Given a full row rank matrix X ∈ Rn×s,

VX(x) = inf{‖w‖1 : Xw = x, w ∈ Rs}

is a polyhedral norm; the vertices of its unit ball are the columns of matrix X and
their opposites (see Fig. 6.5). Given a full column rank matrix M ∈ Rs×n, the dual
function is

V M(x) = ‖Mx‖∞;

the facets of its unit ball are on the planes Mkx = 1 or Mkx = −1, where Mk is
the kth row of M . Then, the positive definite function VX(x) (V M(x)) is a weak
Lyapunov function if it is non-increasing along all possible system trajectories.

x1

x2

x3

x4

X = [ x1  x2  x3  x4 ]

Figure 6.5: Polyhedral unit ball of a piecewise-linear Lyapunov function.

Theorem 6.2 admits the following corollary.
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Corollary 6.2. (6.11) is marginally stable and admits a weak polyhedral Lyapunov
function if and only if (6.10) is marginally stable and admits the same weak Lyapunov
function.

Proof. By homogeneity, a norm is a weak Lyapunov function iff its unit ball B (which
is a C-set) is positively invariant. In view of the proof of Theorem 6.2, such B is
positively invariant for (6.11) if and only if it is positively invariant for (6.10).

The main asymptotic stability result in [BG14] is the following.

Theorem 6.3. If (6.11) admits a weak Lyapunov function, then

1. (6.7) is marginally stable for ε = 0;
2. (6.7) is asymptotically stable for ε > 0;
3. (6.1) is structurally convergent.

6.3.1 Computational Procedure

The unit ball of a polyhedral Lyapunov function for (6.11) can be computed as
follows. Given matrix X, let Y = mr(X) be its minimal polytopic representation
(i.e., the minimal subset of columns of X for which VX(x) = VY (x)), achieved from
X by removing all the redundant vertices. In the set of polyhedra, define the iterate:

Xk+1 = Ψ(Xk), (6.12)

where

Ψ(X) = mr [X Φ1X · · · ΦqX] .

The linear differential inclusion (6.11) admits a polyhedral Lyapunov function if
and only if Ψ has a fixed point Ψ(X) = X. [AR08]

The computation of Xk can start from any arbitrary full row rank integer matrix
X0; for simplicity, set X0 = [−I I]. Then the procedure works as follows.5

Procedure 6.1. Polyhedral function algorithm.

1. Fix ν > 1, integer. Let X0 := [−I I]
2. Compute the sequence (6.12), until either

Successful stop: Xk ≡ Xk−1,

Unsuccessful stop: maxij |Xk|ij > ν.

5A MATLAB implementation of the procedure is available at http://users.dimi.uniud.it/

~franco.blanchini/polychem.zip (see also Appendix B.1).

http://users.dimi.uniud.it/~franco.blanchini/polychem.zip
http://users.dimi.uniud.it/~franco.blanchini/polychem.zip
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Remark 6.7. The quantity ν represents the maximum “tolerated escape”; for in-
stance, the unsuccessful stop due to violation for ν = 10 means that a trajectory has
gone far away 10 times with respect to the initial ball size. In fact, if the procedure
does not converge with a certain ν, there will be a continuous-time trajectory origi-
nating from ‖x(0)‖1 ≤ 1 such that ‖x(t)‖∞ approaches the value ν for large t, since
continuous-time trajectories can get arbitrarily close to discrete-time trajectories.
Since ‖x‖1 ≥ ‖x‖∞, ν corresponds to the accepted tolerance for the ratio of the
maximum 1-norm during the transient evolution of the system to the initial 1-norm,
and can be fixed accordingly. Moreover, if the convex hull of X includes the convex
hull of X0 in its interior, then the difference inclusion is unstable, hence no Lyapunov
function exists: this will be proved soon, by resorting to the dual procedure.

A dual procedure can be considered, having the same properties, in which the
iterations are applied to the dual system

y(k + 1) = Φ(k)>y(k),

whose stability is equivalent to stability of the primal [BM15]; hence, the dual
procedure converges iff the primal does. In case of convergence to a matrix X̄, the
primal system admits the polyhedral Lyapunov function V M(x) = ‖X̄>x‖∞.

The dual procedure adopts the dual representation F for each set

{x : −1̄ ≤ Fx ≤ 1̄}

and proceeds backward in time. Starting from the dual set of the unit diamond,
namely, from the unit box {x : −1̄ ≤ F0x ≤ 1̄}, where F0 = I, the set sequence is
computed backward in time, as follows. Let the pre-image be defined as

Fk+1 = Ψ−1(Fk) = mr {x : −1̄ ≤ F0x ≤ 1̄, −1̄ ≤ FkΦhx ≤ 1̄, h = 1, . . . , q} .

This is the set of all the states x in the original set, such that Φhx (and all their
convex combinations) are in the set {y : −1̄ ≤ Fy ≤ 1̄}. The dual iteration is then

Fk+1 = Ψ−1(Fk). (6.13)

Procedure 6.2. Polyhedral function dual algorithm.

1. Fix ν > 1, integer. Let F0 := I
2. Compute the sequence (6.13), until either

Successful stop: Fk ≡ Fk−1,

Unsuccessful stop: maxij |Fk|ij > ν.
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The unsuccessful condition implies that the backward procedure has produced a set
that has “collapsed inside” (the larger F , the smaller the set). The following result
can then be invoked.

Proposition 6.3. If the set represented by {x : −1̄ ≤ Fkx ≤ 1̄} is included in the
interior of the convex hull of the original one, then the procedure will not converge.

The proof is reported in [BM96]. Since the dual procedure corresponds to the
primal procedure applied to the dual system, the stopping criterion applies to the
primal procedure as well, if the set obtained at a certain iteration includes the original
one in its interior.

For unitary networks, the computation of the iterates turns out to be particularly
efficient: if C>i Bi = −1 for all i, indeed, then the sequence Xk is integer for any X0

integer (because, for unitary networks, Φk as in (6.9) are integer matrices). Therefore,
when assessing structural stability of unitary networks, polyhedral functions with
integer vertices can be determined and it can be guaranteed that the procedure
stops in a finite number of steps (since the number of integer matrices satisfying the
condition maxij |X|ij ≤ ν is finite, then the iterate Xk can either leave the set or hit
a fixed point).

Moreover, for unitary networks, the next corollary holds.

Corollary 6.3. If C>i Bi = −1, then stability of (6.7) is equivalent to the existence
of a polyhedral Lyapunov function.

An equivalence result can then be stated: a polyhedral function is a Lyapunov
function for the nonlinear system if and only if it is a Lyapunov function for the
linear differential inclusion.

Theorem 6.4. System (6.1), admitting a steady state x̄, is stable with a polyhedral
Lyapunov function V (x − x̄) for any possible choice of functions g satisfying the
stated assumptions if and only if V (z) is a Lyapunov function for (6.7) ∀ ε ≥ 0.

Proof. The proof is based on the fact that a Lyapunov function for the nonlinear
system must be a local Lyapunov function for the linearised system ż = Jz as well,
where J = BDC is the Jacobian, having exactly the same structure as the state
matrix of the differential inclusion (cf. Remark 6.3). If g is arbitrary, then the
diagonal matrix D (whose diagonal entries are the partial derivatives computed at
x̄) has arbitrary nonnegative diagonal entries. Details are in [BG14].

6.3.2 Non-Unitary Networks and Special Cases

The procedure can be applied to non-unitary systems without conceptual restrictions.
However, since integer terms of magnitude greater than 1 can appear, the procedure
might not converge in finite time. In this case, it may be useful to normalise the
columns of B or the rows of C (this is always possible, because it is equivalent to
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the substitution Di := κDi), to get 1 as the maximum magnitude. For example, the

reactions 2A+B
g2ab−−⇀ C, B

gb−⇀ ∅ and C
gc−⇀ ∅ correspond to

B =

−1 −1 0 0
−1

2
−1

2
−1 0

1
2

1
2

0 −1

 , C =

 1 0 0 0
0 1 1 0
0 0 0 1

> .
In this case the procedure converges, although it generates a unit ball with non-integer
vertices. Due to non-integer values, finite time convergence is not assured in general.
Interestingly, decomposing the g2ab reaction as A + B

gab−−⇀ D, A + D
gad−−⇀ C or as

A+ A
gaa−−⇀ D, B +D

gbd−⇀ C still leads to convergence in both cases.
For some special structures there is no need to apply the procedure, since they

always admit a polyhedral Lyapunov function. This is the case, for instance, of
compartmental systems [MKO78], formed by arcs as in Fig. 6.1 (a), (b) and (c).
Actually, also arcs as in Fig. 6.1 (d) are admitted.

Proposition 6.4. Networks containing only reactions of the types in Fig. 6.1 (a),
(b), (c) and (d) admit a polyhedral Lyapunov function ‖x‖1 (the proposed procedure,
initialised with [−I I], stops at the first step, yielding [−I I]).

In fact, for each of these arcs, the iterate Ψ maps each versor ±eh in another
versor, thus Ψ has a fixed point X = [−I I] and VX is a polyhedral Lyapunov
function; linearity assures that any combination of arcs of these types admits the
same polyhedral Lyapunov function.

Applying the procedure can turn out to be unnecessary also in the case of networks
which are subsets/supersets of others already tested. A network N1 is a subset of
N2 if it is achieved from N2 by removing arcs; N2 is then a superset of N1.

Lemma 6.2. If a biochemical network admits a polyhedral Lyapunov function, then
any of its subsets admits a polyhedral Lyapunov function too. Conversely, if a
biochemical network does not admit polyhedral Lyapunov functions, then none of its
supersets can admit a polyhedral Lyapunov function.

6.4 Mismatches in Local Dissipativity

In the proposed framework, asymptotic stability is assured by introducing an ε
dissipativity. Yet, the same level of local dissipativity is added to each node. Does
the system tolerate a mismatch in the dissipation terms? Instead of (6.3) and (6.7),
a system may be considered where the dissipation terms are in general different:

ż(t) =

[
−∆ +

q∑
i=1

BiDi(t)C
>
i

]
z(t), z(0) = z0 (6.14)

where ∆ is a diagonal matrix with nonnegative elements (including ∆ = εI as a
special case). Then, the following result is proved in [BG14].
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Proposition 6.5. Assume that the system passes the computational test with a
Lyapunov function VX . Hence, VX is a Lyapunov function for (6.14) with ∆ = 0.
Then VX is a Lyapunov function for (6.14) if and only if it is a Lyapunov function
for the ∆-system

ż(t) = −∆z(t).

If each diagonal entry of ∆ is bounded in an interval, checking if the provided
Lyapunov function works for the ∆-system simply requires linear programming
[Bla91]. The details are discussed in [BG14].

6.5 Local Asymptotic Stability within the
Stoichiometric Compatibility Class

Introducing the ε perturbation may seem unnatural; on the other hand, if ε = 0, a
polyhedral Lyapunov function can assure only marginal stability of the system. Still,
for systems naturally evolving in a stoichiometric compatibility class, a test can be
performed to guarantee at least local asymptotic stability of the equilibrium (if any).

Recall the following theorem from [BM15].

Theorem 6.5. A linear time-invariant continuous-time system admits polyhedral
Lyapunov functions if and only if it is stable (at least marginally) and there are no
purely imaginary eigenvalues (i.e., only λ = 0 is admitted).

This result can be used to show that, if the system admits a polyhedral Lya-
punov function, then asymptotic stability is equivalent to non-singularity inside
the stoichiometric compatibility class. Let z = x − x̄ and consider the orthogonal
transformation [

H>

K>

]
z =

[
zH
zK

]
, z =

[
H K

] [ zH
zK

]
,

where H is an orthonormal basis of ker[S>] (hence H>S = 0) and K is an orthonor-
mal basis of span(S). If in (6.1) g0 = 0, then H>ẋ = 0. By means of a state
transformation, system (6.5) with ε = 0 can be rewritten as[

żH
żK

]
=

[
H>

K>

]
BDC

[
H K

] [ zH
zK

]
.

Since B is formed by columns of S, H>B = 0 and[
żH
żK

]
=

[
0 0

BKDCH BKDCK

] [
zH
zK

]
,
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where BK = K>B, CK = CK and CH = CH. Therefore zH(t) = zH(0) is constant.
If x̄ is an equilibrium in the same stoichiometric class of x(0), then zH(0) = 0 and

żK = BKDCKzK .

Hence, it is enough to assess the asymptotic stability of this latter system. If a
polyhedral Lyapunov function has been found for the original system, then also
the zK subsystem admits a polyhedral Lyapunov function, because it has been
obtained by a linear state transformation. Therefore, in view of Theorem 6.5, the
next proposition follows.

Proposition 6.6. Assume that the system admits a polyhedral Lyapunov function.
Let x̄ be an equilibrium point in the stoichiometric compatibility class of x(0) =
x0. Assume that all the partial derivatives of the functions gk are non-zero at the
equilibrium. Then such an equilibrium is asymptotically stable iff K>BDCK is
structurally non-singular, where K is any basis of span(S).

Since a non-singularity problem is considered, any basis K, not necessarily
orthonormal, is suitable.

The only issue left is how to check the non-singularity of K>BDCK = BKDCK .
To this aim, notice that

ψ(D1, D2, . . . , Dq) = det[−BKDCK ]

is a multi-affine function of the nonnegative diagonal elements Dk of D. To verify
whether ψ(D1, D2, . . . , Dq) 6= 0, since Dk are arbitrary nonnegative scalars, they can
be normalised as 0 ≤ Dk ≤ 1. Then the unit hypercube

CD = {Dk : 0 ≤ Dk ≤ 1, k = 1, . . . , q}

can be considered. Since matrices BDC and BKDCK have the same structure, the
function ϕ(D1, D2, . . . , Dq) = det[−BDC] (which must be nonnegative if the system
admits a polyhedral Lyapunov function) can be equivalently analysed. Denoting by
D(v) the matrices corresponding to the vertices of the hypercube CD, the following
result holds immediately, based on Theorem 4.3 (see [BG14] for a complete proof).

Proposition 6.7. det[−BDC] > 0 ∀D � 0 if and only if det[−BC] > 0 and
det[−BD(v)C] ≥ 0 ∀ v.

In view of this result, non-singularity of the matrix inside the hypercube CD can
be assessed by simply checking the value of ψ(D1, D2, . . . , Dq) = det[−K>BDCK]
on the vertices of CD, thus on a finite number of points.
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6.6 Discrete-Event System Interpretation

Chemical reaction networks have been often analysed resorting to discrete-event
frameworks, employing for instance Petri nets [AdLS07, Sol12]. Also the proposed
procedure admits a nice interpretation in terms of the evolution of a discrete-event
system, which is briefly presented here by means of an example. Note that the
considered discrete-event system, albeit similar to a Petri net, does not work as a
Petri net; indeed, the number of tokens at the nodes here can be negative, which is
not the case for Petri nets.

A
B

C

I II

III

Figure 6.6: Graph and discrete-event representation of the system considered in Section 6.6.

Consider the system whose graph is in Fig. 6.6, along with its “Petri-net-like”
discrete-event representation. The corresponding matrices B and C are

B =

−1 0 −1 −1
1 −1 0 0
1 0 −1 −1

 and C =


1 0 0
0 1 0
0 0 1
1 0 0


and the evolution of the discrete-time system y(k + 1) = Φ(k)y(k) is determined by

the matrices in the family F , having the form Φi = I − BiC
>
i

C>i Bi
, i = 1, . . . , 4. Hence,

Φ1 =

0 0 0
1 1 0
1 0 1

 , Φ2 =

1 0 0
0 0 0
0 0 1

 , Φ3 =

1 0 −1
0 1 0
0 0 0

 , Φ4 =

 0 0 0
0 1 0
−1 0 1

 .
The numerical procedure then monitors convergence of the sequence given by the
evolution of the system according to each of these matrices, starting from the unit ball
of the 1-norm: X0 = [−I I] = [−v1 − v2 − v3 v1 v2 v3]. Consider just the positive
vertices of X0 (the evolution of the others can be immediately obtained, being the
opposite). Vertex v1 = [1 0 0]> is transformed into Φ1v1 = [0 1 1]> = v4, Φ2v1 =
Φ3v1 = [1 0 0]> = v1, Φ4v1 = [0 0 − 1]> = −v3; vertex v2 = [0 1 0]> is transformed
into Φ1v2 = Φ3v2 = Φ4v2 = [0 1 0]> = v2, Φ2v2 = [0 0 0]>; vertex v3 = [0 0 1]> is
transformed into Φ1v3 = Φ2v3 = Φ4v3 = [0 0 1]> = v3, Φ3v3 = [−1 0 0]> = −v1.
The sole newly generated vertex is v4 = [0 1 1]> (always along with its opposite,
of course). The procedure applied to v4 gives Φ1v4 = Φ4v4 = [0 1 1]> = v4,
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Φ2v4 = [0 0 1]> = v3, Φ3v1 = [−1 1 0]> = v5. Applying the procedure to the only
new vertex, v5 = [−1 1 0]>, gives Φ1v5 = [0 0 − 1]> = −v3, Φ2v5 = [−1 0 0]> = −v1,
Φ3v5 = [−1 1 0]> = v5, Φ4v5 = [0 1 1]> = v4. No new vertices are generated at
this step, hence the procedure stops successfully: the system admits a polyhedral
Lyapunov functions with 10 vertices, whose matrix X = [v1 v2 v3 v4 v5] is

X =

 1 0 0 0 −1
0 1 0 1 1
0 0 1 1 0

 (6.15)

and whose unit ball is shown in Fig. 6.17 (a).

  

1
0

0

I II

III

0
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I II

III
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(a) Initial marking v1.

0
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0

I II

III

0
0

0

I II
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(b) Initial marking v2.

0
0

1

I II

III

-1
0

0

I II

III

(c) Initial marking v3.

Figure 6.7: Discrete-event interpretation of the procedure evolution: first step.

The evolution of the discrete-time system in the numerical procedure can be
related to the evolution of a particular discrete-event system, in which the initial
condition represents an “initial marking”, assigning a number of tokens to each
node, and a transition (associated with each of the black rectangles in Fig. 6.6, left,
i.e., with each of the reactions occurring in the network) is “enabled” whenever
at least one of the starting nodes of the transition contains a non-zero number
of tokens. When either the number of tokens in the starting node is positive, or
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Figure 6.8: Discrete-event interpretation: second step. Initial marking v4.
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Figure 6.9: Discrete-event interpretation: third step. Initial marking v5.

the starting nodes are two and the number of tokens is non-negative in both (and
positive in at least one of them), then the transition takes tokens from the starting
node(s) and moves them to the arrival node(s), if explicitly present (otherwise, they
simply disappear). When either the starting node is one only and the number of
tokens therein is negative, or the starting nodes are two and the number of tokens is
non-positive in both (and negative in at least one of them), then the transition takes
“holes” from the starting node(s) and moves them to the arrival node(s), again, if
explicitly present. The evolution in the case of the considered system is shown in
Figs. 6.7, 6.8 and 6.9: on the left side, the initial marking is illustrated, and enabled
transitions are in green, non-enabled transitions in red; on the right side, the new
marking generated by the action of each of the enabled transitions is illustrated.
Reaction I corresponds to evolution matrix Φ1 (and generates the same outcome
for the same initial conditions), reaction II corresponds to evolution matrix Φ2 (and
again generates the same outcome for the same initial conditions), while reaction
III corresponds to evolution matrices Φ3 and Φ4. In this latter case, the outcome
of (at least) one of the two evolution matrices is the same as that of the transition
related to reaction III in the discrete-event evolution, while the outcome of the other
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(if different) is always the unchanged input vertex. Interestingly, the evolution is
the very same as that of the numerical procedure, and the same new vertices are
generated at each iteration.

Let Φ(k) ∈ Zn×n represent the integer operator acting on the discrete-event
system with state τ(k). Then we have the following.

Proposition 6.8. Let τ(0) = [τ1(0) . . . τn(0)] be any integer vector, whose compo-
nents represent tokens and holes. The evolution of the discrete-event system with all
possible operator sequences Φ(k) ∈ F and initial marking τ generates a finite number
of configurations if and only if Procedure 6.1 converges in finite time.

This analogy has a conceptual interest, although the discrete-event approach does
not present any computational advantage with respect to the numerical approach
illustrated in Section 6.3.1, which is fairly efficient (especially for unitary networks).

6.7 Boundedness

If the associated differential inclusion admits a polyhedral function, then, in view of
Theorem 6.3 and Corollary 6.1, the original system has a bounded solution. However,
the system might be bounded as well, even though it does not pass the proposed
stability test. Since boundedness is a fundamental property on its own [Ang11], it is
worth being investigated; to this aim, a different test is provided, inspired by the
proposed stability procedure, but less conservative. The idea is to absorb the system
in a positive differential inclusion, by dividing and multiplying each negative term
appearing in an equation by the variable associated with that equation, for instance

ȧ = · · · − g(a, b) · · · = · · · − g(a, b)

a
a · · · = · · · − k a . . . ,

and then writing in the same way the same positive term in the other equations. An
absorbing differential inclusion associated with a Metzler matrix is thus achieved.

Figure 6.10: Graph of the network in Example 6.5. [BG14]
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Example 6.5. Consider the chemical system

A+B
gab(a, b)−−−−⇀ C, ∅ a0−⇀ A,

C +D
gcd(c, d)−−−−⇀ E, ∅ b0−⇀ B,

A+ E
gae(a, e)−−−−⇀ ∅, ∅ d0−⇀ D,

corresponding to the graph named Berlioz5 in Fig. 6.10, and the associated ODE
model 

ȧ = −gab(a, b)− gae(a, e) + a0

ḃ = −gab(a, b) + b0

ċ = gab(a, b)− gcd(c, d)

ḋ = −gcd(c, d) + d0

ė = gcd(c, d)− gae(a, e)

Denoting α = gab(a, b)/a, β = gae(a, e)/a, γ = gab(a, b)/b, δ = gcd(c, d)/c, η =
gcd(c, d)/d, ζ = gae(a, e)/e, the system can be rewritten as

ȧ

ḃ
ċ

ḋ
ė

 =


−(α + β) 0 0 0 0

0 −γ 0 0 0
α/2 γ/2 −δ 0 0

0 0 0 −η 0
0 0 δ/2 η/2 −ζ



a
b
c
d
e

+


a0

b0

0
d0

0

 .
Defining the matrices Φk as before, it can be seen that, for unitary systems,

they are nonnegative but, unfortunately, not necessarily integer. Then, an iterative
procedure can be used that is initialised with matrix I. The sequence Xk includes
only nonnegative matrices, non-integer in general, and the condition Xk = Xk−1

means that the polyhedron defined as the convex hull of the columns of Xk and 0,

P = {x = Xkw :
∑
i

wi ≤ 1, wi ≥ 0},

is positively invariant for the discrete-time system and also for the differential
inclusion. Yet, it can no longer be ensured that the procedure stops in a finite
number of steps. Convergence of the procedure implies boundedness for g0 = 0
and, assuming ε > 0, boundedness for any, arbitrary, constant g0 > 0. Actually, it
is sufficient that the additive term g0 > 0 is bounded; this is relevant to systems
including functions of the form g(xtoti −xi), with 0 ≤ xi ≤ xtoti , which can be handled
just as bounded terms.

When, as in Example 6.5, the positive system is diagonally dominant, boundedness
can be immediately inferred without resorting to the numerical procedure.

Proposition 6.9. A system formed only by arcs (a), (b), (c), (d), (e), (g), (h) as
in Fig. 6.1 is structurally bounded.
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Proof. The matrix is at least weakly diagonally dominant in presence of arcs (a),
(b), (c), (d), (e), (g), (h); in the case of diagonal dominance, the unit simplex

P = {x :
∑
i

xi ≤ 1, xi ≥ 0}

is positively invariant for both the discrete and the continuous-time systems.

Diagonal dominance is not assured in the presence of arcs (f), (i).

6.8 Structural Stability Analysis of
Well-Established Biochemical Models

Polyhedral functions can prove structural stability of some well-known models in the
literature.

6.8.1 Enzymatic Reactions

Consider the reaction of an enzyme E binding to a substrate S to form a complex C;
the product P results from the modification of the substrate S due to the binding
with the enzyme E [Alo07b, DVM14, EK05].

∅ gs0−⇀ S, S + E
ges−⇀↽−
gc

C
g∗c−⇀ P + E

Since c+ e = κ is constant, the equations for x = [s e]> are{
ṡ = −ges(e, s) + gc(κ− e) + gs0

ė = −ges(e, s) + gc(κ− e) + g∗c (κ− e)

This system is bounded and, in view of Proposition 6.4, structurally stable with a
Lyapunov function ‖x − x̄‖1. Of course neither stability nor boundedness can be
inferred for the final product P , which in general diverges.

6.8.2 A Metabolic Network

Reconsider the metabolic network proposed in Example 4.10, having reactions
[CWLA05]

∅ ga0−−⇀ A, A+ C
gac−−⇀ B +D, D

gd−⇀ C, B
gb−⇀ ∅.

Since c+ d = const, a system can be obtained in the variables a, b and c, as shown
in Example 4.10. This system turns out to be structurally stable: the procedure
generates a Lyapunov function whose unit ball has 10 vertices, while the dual unit
ball has 12 facets.
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6.8.3 Gene Expression

Both transcription and translation can be modelled by the reduced reactions [DVM14]

A+ E
gae−−⇀↽−−
gc

C
g∗c−⇀ A+ E +B.

In the case of transcription, E is RNA polymerase, A is DNA and B is produced
mRNA. In the case of translation, E stands for ribosomes, A is mRNA and B is the
produced protein. In both cases, C is an intermediate complex. This mechanism,
in the variables a, c and e, is both bounded and structurally stable: the procedure
generates a Lyapunov function with 12 vertices (the dual unit ball has 12 facets).
Yet, if the final product B is considered, e.g., by including a degradation reaction
B

gb−⇀ ∅, the procedure does not converge. However, it can be proved that the system
is stable (hence bounded): a, c and e, whose evolution is independent of b, converge
to a steady state ā, c̄ and ē; the equation for b is ḃ = g∗c (c)− gb(b), therefore b also
converges to a steady state.

6.8.4 MAPK Pathway

Consider the open-loop MAPK pathway equations


ẏ1 = gy13(ytot − y1 − y3)− gy1(x, y1),

ẏ3 = gxy(x, y
tot − y1 − y3)− gy3(y3),

ż1 = gz13(ztot − z1 − z3)− gz1(y3, z1),

ż3 = gyz(y3, z
tot − z1 − z3)− gz3(z3),

where x is a constant input. The model results from the substitutions of y1 +y2 +y3 =
ytot and z1 + z2 + z3 = ztot in the two phosphorylation processes, where ytot and ztot

are constant total concentrations (see [CWLA05] p. 207 and also [FB13]). Numerical
tests show that the system is bounded, but does not admit an overall Lyapunov
function. In these cases, it is possible to adapt the framework and check only a subset
of reactions. In fact, by separately analysing the two modules of the cascade, it can be
seen that the considered system is robustly stable. For constant x, the y-subsystem
admits a polyhedral Lyapunov function (the unit ball has 6 vertices, the dual 4
facets). Hence the y variables converge to a steady state, which is asymptotically
stable in view of Proposition 6.6. Convergence of y3 to a steady state allows to apply
the same analysis to the z-subsystem.
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6.9 Piecewise-Linear Lyapunov Functions in
Reaction Coordinates

The stability results proposed so far concern systems in concentration coordinates,
whose state variables are species concentrations. However, systems in reaction
coordinates, whose state variables are reaction rates, can be considered too; their
stability has been previously studied based on piecewise-linear in rate Lyapunov
functions [ARA13, ARA14, ARA15].

In this section, it is shown that the same stability results hold for systems in
reaction coordinates as well, at least for a special class of chemical reaction networks,
which are called regular.

Definition 6.3. System (6.1) is regular if (i) it admits an equilibrium point x̄, and
(ii) g(·) is left invertible (injective), so that, given ḡ = g(x̄), x̄ is unique.

In the case of regular systems, an equilibrium exists for the system in reaction
coordinates if and only if it exists for the system in concentration coordinates.

Define the new variable r
.
= g(x)− g(x̄), which can be thought of as a “relative”

reaction rate, such that r → 0 iff x → x̄ (due to the regularity assumption). The
corresponding dynamics are

ṙ =

[
∂g

∂x

]
[Sg(x) + g0] =

[
∂g

∂x

]
Sr. (6.16)

Remark 6.8. Reaction and concentration representations are both valid, in general,
but may lead to different conclusions. For instance, given the non-regular system{

ȧ = −g(a, b) + a0

ḃ = −g(a, b) + b0

consider the reaction variable r = g(a, b) and the set

Sν,µ = {(a, b) ≥ 0 : 0 < ν ≤ g(a, b) ≤ µ},

which is invariant for the system, provided that µ is large enough and ν is small
enough. Indeed,

ṙ =
∂g(a, b)

∂a
ȧ+

∂g(a, b)

∂b
ḃ = −D1(r − a0)−D2(r − b0) ≤ 0

for r large enough (take, for instance, r ≥ max{a0, b0}). Note also that ṙ ≥ 0 for
r small enough (r ≤ min{a0, b0}). This means that r is ultimately bounded in the
interval [ν µ]. However, for a0 6= b0, the concentration variables diverge (unless an
ε-dissipation is assumed to be present), as it can be seen by noting that ȧ− ḃ = a0−b0.
Later, it will be shown that the analysis in reaction and in concentration coordinates
lead in general to different results.
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Proposition 6.10. System (6.16) can be equivalently written as

ṙ(t) = ED(z(t))F r(t), (6.17)

where E ∈ Zm×q, F ∈ Zq×m is formed by rows of S, while q and D are as in (6.5).

Proof. Matrix [∂g/∂x]S can be equivalently expressed as the product EDF , where
the diagonal entries Dj of D are the partial derivatives ∂gk/∂xh, the entries of E
are |eij| = 1 if gk in Dj appears in the ith equation, 0 otherwise, and the jth row of
F is the hth row of S if the derivative in Dj is with respect to xh (or also a sum or
difference of more rows of S, if the function has as an argument a sum or difference
of more variables, see Assumption 6.3).

Remark 6.9. D(z(t)) is a matrix of partial derivatives, as in (6.5), but it is not
the same matrix. Consider ẋ = g(x) + g0, with steady state 0 = g(x̄) + g0, and let
z = x− x̄ (x̄ is fixed). Then ż = g(z + x̄)− g(x̄) = g′(z̃)z, for some z̃. Conversely,
if r = g(x)− g(x̄), then ṙ = g′(x)ẋ = g′(x)r, where x = z + x̄. In principle, a formal
expression should be DBC(z(t)) and DEF (z(t)); however, this is not necessary because
only the structural property that D has non-negative diagonal entries will be used.

Figure 6.11: Graph of the network in Example 6.6. [BG14]

Example 6.6. Consider the reaction network associated with the graph in Fig. 6.11.
The system in concentration coordinates has equations

ȧ = a0 − ga(a)− gac(a, c)
ḃ = ga(a)− gbc(b, c)
ċ = ga(a)− gac(a, c)− gbc(b, c)

corresponding to the general model (6.1) with x = [a b c]>,

S =

−1 −1 0
1 0 −1
1 −1 −1

 , g(x) =

 ga(a)
gac(a, c)
gbc(b, c)

 , g0 =

 a0

0
0

 .
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Let α = ∂ga(a)/∂a, β = ∂gac(a, c)/∂a, γ = ∂gac(a, c)/∂c, δ = ∂gbc(b, c)/∂b and
ε = ∂gbc(b, c)/∂c be positive parameters. Then D = diag{α, β, γ, δ, ε},

B =

−1 −1 −1 0 0
1 0 0 −1 −1
1 −1 −1 −1 −1

 , C =

1 1 0 0 0
0 0 0 1 0
0 0 1 0 1

> .
Given r = [ga(a)−ga(ā) gac(a, c)−gac(ā, c̄) gbc(b, c)−gbc(b̄, c̄)]>, the corresponding
system in reaction coordinates is

ṙ =

α 0 0
β 0 γ
0 δ ε

Sr =

 −α −α 0
−β + γ −(β + γ) −γ
δ + ε −ε −(δ + ε)

 r = EDFr,

where

E =

1 0 0 0 0
0 1 1 0 0
0 0 0 1 1

 , F =

−1 −1 1 1 1
−1 −1 −1 0 −1

0 0 −1 −1 −1

> .
System

ṙ(t) = ED(t)Fr(t), Di(t) ≥ 0, (6.18)

has the same structure as system (6.10) and in the following, when relating BDC
and EDF , it will be assumed that the diagonal entries of D are ordered in the same
way in both expressions. Again, a spontaneous ε-degradation must be added to
assess asymptotic stability; the system can be rewritten as

ṙ(t) = [−εI + ED(t)F ] r(t), r(0) = r0, (6.19)

which has the same structure as system (6.7). Hence, all the reasoning and the results
in [BG14] still hold in the new reaction coordinates framework. Then, the numerical
procedure based on iterates (6.12) in the set of polyhedra can be employed to find
a polyhedral Lyapunov function, thus ensuring stability of the system in reaction
coordinates.

A strong analogy between the two formulations is shown by the following result.

Proposition 6.11. Given a reaction network, consider the corresponding matrices
B and C as in (6.5), and the corresponding matrices E and F as in (6.17). Then,
the equality CB = FE holds.

Proof. Denote by Si the ith column and by Si the ith row of the stoichiometric
matrix S, and by ~ei the column versor having the ith element equal to 1, and all other
elements equal to 0. Matrix B is composed by columns of S, B =

[
Sj1 Sj2 . . . Sjq

]
,

while F by rows of S, F =
[
(Si1)> (Si2)> . . . (Siq)>

]>
(more in general, a row of

F could be a sum or difference of more rows of S); the rows of C are versors,
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C =
[
~ei1 ~ei2 . . . ~eiq

]>
(more in general, a row of C could be a sum or difference

of versors), while the columns of E are versors, E =
[
~ej1 ~ej2 . . . ~ejq

]
. Whenever a

row of F is the sum or difference of more rows of S, the corresponding row of C
is the same sum or difference of the corresponding versors, and vice versa (e.g., if
F>k = S1 − S2, then C>k = ~e>1 − ~e>2 ). The columns of B and of E (and the rows
of C and F accordingly) can be always swapped so that the order of the indices
{jk} (respectively, {ik}) is the same. Then, consider the two matrix products and
observe that, if the entry [CB]uv = ~e>ihSjl , the corresponding entry [FE]uv = Sih~ejl
(and analogously for the case of linear combinations). The former expression selects
the ihth element of the jlth column of S; the latter selects the jlth element of the
ihth row of S, which is clearly the same. Hence, CB = FE.

The following corollary ensures that the same computational benefits are guaran-
teed when applying the numerical procedure to the system in reaction coordinates.

Corollary 6.4. A network is unitary in reaction coordinates iff it is unitary in
concentration coordinates.

Proof. In view of the equality CB = FE, C>i Bi = −1 ∀i iff F>i Ei = −1 ∀i.

It is interesting to investigate the connection between robust stability of the
differential inclusion in concentration coordinates

ż(t) = [−εI +BD(t)C]z(t), Di(t) ≥ 0, (6.20)

and robust stability of the system in reaction coordinates,

ṙ(t) = [−εI + ED(t)F ]r(t), Di(t) ≥ 0. (6.21)

In both cases, the existence of a polyhedral Lyapunov function ensures asymptotic
stability of the system. For unitary networks, for which C>i Bi = −1 (resp. F>i Ei =
−1), stability of (6.7) (resp. of (6.19)) is equivalent to the existence of a polyhedral
Lyapunov function, according to Corollary 6.3. Once stability of the system has been
shown in one of the two frameworks (because the numerical procedure converges and
generates the unit ball of the corresponding polyhedral Lyapunov function), what
can be inferred about stability of the system in the other framework?

Let η(t)
.
= Cz(t) and ξ(t)

.
= Fr(t). Consider the systems

η̇(t) = [−εI + CBD(t)]η(t), Di(t) ≥ 0, (6.22)

ξ̇(t) = [−εI + FED(t)]ξ(t), Di(t) ≥ 0, (6.23)

and the following definition.

Definition 6.4. System (6.23) (resp. (6.22)) is F -stable (C-stable) if the subspace
span(F ) (span(C))6 is invariant and all the trajectories starting from that subspace
converge to zero for any D(t).

6span(A) denotes the column space of matrix A.
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For a fixed D(t), FED = CBD in view of Proposition 6.11. Then, the following
results hold.

Lemma 6.3. If system (6.21) (resp. (6.20)) is asymptotically stable for any D(t),
then system (6.23) is F -stable (resp. (6.22) is C-stable).

Proof. Fix a matrix D(t). Given the solution r(t) of (6.21) for initial conditions r(0),
ξ(t) = Fr(t) is the solution of (6.23) for initial conditions ξ(0) = Fr(0). If r(t)→ 0,
then also ξ(t) = Fr(t)→ 0.

Lemma 6.4. Assume span(F ) = span(C).7 If (6.21) (resp. (6.20)) is asymptotically
stable for any D(t), then (6.22) is C-stable (resp. (6.23) is F -stable).

Proof. Since FE = CB, under the stated assumptions C-stability of (6.22) is
equivalent to F -stability of (6.23), which is guaranteed by Lemma 6.3. Hence, starting
from initial conditions of the form ξ(0) = Cz(0), the solution ξ(t) = Cz(t) → 0,
where z(t) is the solution of system (6.20).

BDC
as. stable

CBD

FEDEDF
as. stable F-stable

C-stable

CC-system

RC-system

h-system

x-system

C full rank

F full rank

span(C)=span(F)

Figure 6.12: The connection between stability properties.

Lemma 6.5. If C (resp. F ) has full column rank and system (6.22) is C-stable
(resp. system (6.23) is F -stable), then system (6.20) (resp. (6.21)) is asymptotically
stable.

Proof. Obviously, η(t) = Cz(t)→ 0 implies z(t)→ 0 if C has full column rank. The
full rank assumption is fundamental; otherwise Cz(t) may converge to zero, but z(t)
might diverge in the kernel of C.

The connection between stability properties of the four systems (RC-system, in
reaction coordinates; ξ-system; η-system; CC-system, in concentration coordinates)
is summarised in Fig. 6.12 and leads to the main result of this section.

Theorem 6.6. Assume that:

7This means that rank([F C]) = rank(F ) = rank(C).
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(i) both F and C have full column rank;
(ii) span(F ) = span(C).

Then the stability of system (6.20), in concentration coordinates, is equivalent to the
stability of system (6.21), in reaction coordinates.

Since, for unitary networks, stability is equivalent to the existence of a polyhedral
Lyapunov function, under the assumptions of Theorem 6.6 the outcome of the
computational procedure must be the same.

Remark 6.10. The injectivity assumption typically requires m ≥ n (the number of
reactions is greater or equal to the number of species), while matrix F having full
column rank typically requires n ≥ m. Hence, the result in Theorem 6.6 particularly
applies to the case n = m.

6.10 Non-Polyhedral Lyapunov Functions

It is natural to wonder, at this point, whether structural stability of biochemical
networks can be alternatively proved resorting to different (simpler, or smoother)
Lyapunov functions.

The simplest possibility is resorting to quadratic Lyapunov functions; recall that
the positive definite function

VP (x) = x>Px, P � 0,

is a weak quadratic Lyapunov function for the system with state matrix A if A>P +
PA = −Q for a proper Q � 0, or equivalently if A>P+PA � 0. Quadratic Lyapunov
functions have an ellipsoidal unit ball, as shown in Fig. 6.13.

Figure 6.13: Ellipsoidal unit ball of a quadratic Lyapunov function.

To compare the effectiveness of polyhedral and quadratic Lyapunov functions
for proving structural stability of chemical reaction networks, under the assumption
of monotonicity of reaction rates, consider the basic chemical reaction motifs in
Fig. 6.14, corresponding respectively to a chain of monomolecular reactions, a
reversible monomolecular reaction, a bimolecular reaction, a bimolecular reversible
reaction and a bimolecular-monomolecular reaction chain. In [BG15b], their stability
has been structurally inquired by means of both quadratic and polyhedral Lyapunov
functions, achieving the following result.
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(a) ∅ a0−⇀ A
g(a)−−−⇀ B

g(b)−−⇀ ∅ (b) A
g(a)−−−⇀↽−−−
g(b)

B (c) ∅ a0−⇀ A, ∅ b0−⇀ B,

A+B
g(a, b)−−−−⇀ ∅

(d) A+B
g(a, b)−−−−⇀↽−−−−
g(c)

C (e) ∅ a0−⇀ A, ∅ b0−⇀ B,

A+B
g(a, b)−−−−⇀ C

g(c)−−⇀ ∅

Figure 6.14: Graph representation of the considered basic motifs. [BG15b]

Proposition 6.12. All of the chemical reaction networks in Fig. 6.14 are structurally
stable and convergent, but none of them is structurally quadratically stable. Their
structural stability can be proved resorting to polyhedral Lyapunov functions.

For each case, the proof in [BG15b] shows in detail that, denoting by J the
Jacobian matrix of the system, depending on the partial derivatives seen as positive
parameters Dk, it is impossible to find a symmetric positive definite matrix P such
that J>P + PJ � 0 for any choice of the parameters Dk > 0; however, for all of the
examined motifs, the numerical procedure proposed in [BG14] converges, ensuring
the existence of a polyhedral Lyapunov function and, therefore, structural stability
of the motif. The unit ball of the polyhedral Lyapunov functions corresponding to
some of the motifs is shown in Fig. 6.15.

One could argue that the counterexamples are valid for the differential inclusion,
but not for the original system. Yet, it must be reminded that structural (parameter-
free) results are sought and that, as underlined in Remark 6.3, the Jacobian of the
linearised original system (6.4) at the equilibrium z̄ = 0 has the same structure as
the state matrix of system (6.5) (J = BDC − εI). Therefore, if there is no quadratic
Lyapunov function for the differential inclusion, there cannot be a local quadratic
Lyapunov function that is independent of parameter values.

The networks analysed in Proposition 6.12 are simple but fundamental, being
actual building blocks for huge and complex chemical reaction networks. Hence, for
a network that contains one of these building blocks (practically, any reaction net-
work), stability cannot be structurally investigated by means of quadratic Lyapunov
functions.
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Figure 6.15: Unit ball of the polyhedral Lyapunov functions associated with the motif in Fig. 6.14
(d), left, and with the motif in Fig. 6.14 (e), right. [BG15b]

(a) ∅ a0−⇀ A
g(a)−−−⇀ B + C,

B
g(b)−−⇀ ∅, A+ C

g(a, c)−−−−⇀ ∅

(b) ∅ a0−⇀ A
g(a)−−−⇀ B, ∅ c0−⇀ C

g(c)−−⇀ E
g(e)−−−⇀ ∅,

B + C
g(b, c)−−−−⇀ D

g(d)−−−⇀ E

Figure 6.16: Graph representation of the networks named Telemann3 and Grieg5. [BG14]
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(b) Dual

Figure 6.17: Unit ball of the polyhedral Lyapunov functions (in concentration coordinates) associated
with the network named Telemann3 in Fig. 6.16. [BG15a]

Example 6.7. The chemical reaction networks in Fig. 6.16 include some of the
basic motifs in Fig. 6.14. For these networks, according to Proposition 6.12, there is
no hope to prove structural stability based on quadratic Lyapunov functions. However,
the existence of a polyhedral Lyapunov function assures their structural stability,
independent of parameters.

Indeed, the network named Telemann3 in Fig. 6.16, which includes the motif in
Fig. 6.14 (c), and therefore cannot be structurally quadratically stable, admits the
polyhedral Lyapunov function with X as in (6.15), having the unit ball shown in
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Fig. 6.17 (a), and the dual with

F =

 0 1 1 −1 1 0
1 1 0 0 1 1
0 0 1 1 −1 −1

> , (6.24)

having the unit ball shown in Fig. 6.17 (b).
The reaction network named Grieg5 in Fig. 6.16, including the motifs in Fig. 6.14

(a), (c), (e), admits polyhedral Lyapunov functions whose unit ball has 22 vertices in
the primal case, 68 facets in the dual case.

It can also be conjectured that the same negative result holds for logarithmic
Lyapunov functions, such as entropy [Fei87, Han10], when considering more general
reaction rates than mass action kinetics, since a logarithmic candidate Lyapunov
function can be approximated as a quadratic function in a neighbourhood of the
equilibrium.

In some interesting cases, it can be shown that a biochemical network whose
structural stability can be proved resorting to polyhedral Lyapunov functions, by
means of the procedure in [BG14], does not admit any smooth structural Lyapunov
function.

A

B

a0

b0
  

Figure 6.18: Example 6.8: graph (left) and unit ball of the Lyapunov function (right).

Example 6.8. The simple system corresponding to the graph in Fig. 6.18 (left){
ȧ = −ga(a) + gb(b)− gab(a, b) + a0

ḃ = ga(a)− gb(b)− gab(a, b) + b0
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(for which it is not difficult to see that an equilibrium always exists if all functions
grow unbounded as a and b get large) has Jacobian matrix

J =

[
−(α + β) δ − γ
β − α −(γ + δ)

]
.

Assume that the linearised system ż = Jz admits the structural Lyapunov function
V (z), having gradient ∇V = [∇V1 ∇V2]. This means that V̇ (z) = ∇V Jz < 0 for
any choice of α, β, γ, δ > 0. Detailed computations provide

V̇ (z) = [β(∇V2−∇V1)−α(∇V2 +∇V1)]z1 + [δ(∇V1−∇V2)− γ(∇V1 +∇V2)]z2 < 0.

For z1, z2 > 0, the inequality structurally holds iff ∇V2 = ∇V1 > 0. For z1, z2 < 0,
the inequality structurally holds iff ∇V2 = ∇V1 < 0. For z1 > 0 and z2 < 0,
the inequality structurally holds iff ∇V2 = −∇V1 < 0. For z1 < 0 and z2 > 0,
the inequality structurally holds iff ∇V1 = −∇V2 < 0. Based on the previous
considerations, the function V (z) is also decreasing when z1 = 0, z2 6= 0 and when
z1 6= 0, z2 = 0. As shown in Fig. 6.18 (right), the only possible unit ball corresponding
to such a function is the diamond. Hence, the unique structural Lyapunov function
is polyhedral and no smooth Lyapunov functions can be found.

6.11 Examples from the Catalogue

To evidence the potentiality of the proposed procedure, a stability test and a
boundedness test have been performed for a large number of nontrivial biochemical
networks, reported in Appendix A. [BG14] Each network is identified by the name
of a musician and a number representing the order of the system.

Test results are summarised in Table A.1 (Appendix A, page 317), where in column
CV (convergence) the outcome (Yes/No) of the procedure described in Section 6.3.1
is reported; in the Yes case, the number of vertices and the number of facets of the
unit ball of the polyhedral function are indicated in the columns labelled as nV and
nF , respectively. It can be noticed that the numbers nV and nF are surprisingly
small, while in general polyhedral Lyapunov functions can be extremely complex
[BM15]. Clearly the verdict on the existence of the function is always consistent,
but the primal and the dual procedure may produce quite different numbers. The
rank of S, reported in column r(S), evidences the dimension of the stoichiometric
compatibility class; also the outcome (NCC=Yes/No) of the non-singularity test
in the stoichiometric class is reported. To analyse the conservativeness of the test,
random points (105) have been generated in the hypercube CD: column MR reports
the sign of the maximum real part of the eigenvalues of all samples. All the networks
whose eigenvalues have a positive random maximum real part are recognised as
unstable, as expected. However, some networks that are locally marginally stable,
according to the random eigenvalues outcome, do not pass the polyhedral function
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Table 6.1: Results of the comparative numerical tests.

Network CVz nv nf CVr nv nf

Buxtehude3 No - - No - -
Corelli3 Yes 6 6 Yes 6 6
Frescobaldi3 No - - No - -
Telemann3 Yes 10 12 Yes 8 6
Boccherini4 No - - No - -
Čajkovskij4 No - - No - -
Gounod4 No - - No - -
Offenbach4 No - - No - -
Paganini4 Yes 14 18 Yes 12 8
Grieg5 Yes 22 68 Yes 52 22
Liszt5 Yes 28 66 Yes 52 22
Martucci5 No - - No - -
Mahler6 Yes 12 62 No - -

CV = Convergence (Yes/No);
nv = number of vertices (primal procedure);
nf = number of facets (dual procedure).

test. The boundedness test is instead much less conservative, as evidenced by the
results reported in the last column (BO=Yes/No).

The proposed numerical procedures appear effective and useful for detecting
stability also in complex, quite large reaction networks: Table A.1 shows that
systems up to 8-10 variables can be efficiently analysed, which is still surprising in the
context of polyhedral functions, which are known to be computationally challenging.

A subset of the systems in Appendix A has been analysed both in concentra-
tion (z) and in reaction (r) coordinates: comparative test results are reported in
Table 6.1. Column CVz/r shows whether the procedure converges (Yes/No) in con-
centration/reaction coordinates. In both cases, whenever the polyhedral function is
found, the number of vertices and the number of facets of its unit ball are shown
in the columns labelled as nv and nf respectively. All the networks in Table 6.1
correspond to regular systems. For all of them, apart from Mahler6, the assumptions
of Theorem 6.6 hold and, as expected, the convergence outcome of the computational
procedure is the same in the two frameworks. For the network named Mahler6, the
procedure converges in concentration coordinates, but not in reaction coordinates;
for this system, as can be verified, matrix F does not have full (column) rank.

For instance, the network named Telemann3 (see Fig. 6.16) admits in concen-
tration coordinates the primal and dual polyhedral Lyapunov functions reported
in (6.15) and (6.24) (the unit ball is shown for both cases in Fig. 6.17); in reaction
coordinates, it admits the polyhedral Lyapunov function with

X =

−1 1 −1 −1
−1 1 1 1

1 1 1 −1

 ,
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whose unit ball is the cube of side 2, centered in the origin, and the dual function with
F = I, the identity matrix, corresponding to the unit ball of the 1-norm (diamond).

6.12 Remarks

The proposed method to structurally assess stability and boundedness of biochemical
reaction networks with monotonic reaction rates can admit several extensions. Further
work in this framework aims at proving the existence of a positive equilibrium point
for the system. An intriguing direction for further research concerns the global
stability property; so far, global stability can be established under the assumption
that an ε-degradation is present. Without any ε-degradation assumption, it has
been shown that the existence of a polyhedral Lyapunov function (in concentration
coordinates) assures just local stability of the equilibrium (if any), provided that
matrix BDC is robustly non-singular. It would be interesting to understand whether,
under appropriate conditions, it is possible to remove the assumption of ε-degradation
and still ensure global stability.



7
Structural Steady-State Analysis

of Biological Systems

The problem of identifying structural influences of external inputs on steady-state
outputs is considered here, with a special focus on biological network models, following
[GCFB15]. A structural influence is identified when, upon a perturbation due to a
constant input, the ensuing variation of the steady-state output value has the same
sign as the input (positive influence), the opposite sign (negative influence), or is
zero (perfect adaptation), for any feasible choice of the model parameters. When
persistent additive inputs are applied to a single state variable and outputs are taken
as single state variables, all the resulting signs and zeros can constitute a structural
influence matrix, whose (i, j) entry indicates the sign of the steady-state influence
of the jth system variable on the ith variable (namely, the variation in the steady
state of the ith variable, caused by an external persistent input applied to the jth
variable). Each entry is structurally determinate if the sign of the variation does
not depend on the choice of the parameters, but is indeterminate otherwise. In
principle, determining the influence matrix requires exhaustive testing of the system
steady-state behaviour in the widest range of parameter values. However, for any
system admitting a BDC-decomposition, the influence matrix can be evaluated with
an algorithm that tests the system steady-state behaviour only at a finite number of
points (i.e., the vertices of a hypercube defined in the parameter space). By means
of the same algorithm, the structural effect of any perturbation, such as variations
of relevant parameters, can be assessed as well.

In this chapter, a broad class of biological networks is considered; the method
is applied to nontrivial models of biochemical reaction networks and population
dynamics drawn from the literature, providing a parameter-free insight into the
system dynamics.

7.1 Background and Motivating Examples

The general concept of steady-state influence concerns the effect of a persistent input
applied to the system on the steady-state variation of a suitable output. This includes
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perfect adaptation as a special case: as seen in Section 2.3.9, a variable embedded
in a system is adaptive if, in the presence of a persistent input, after a transient it
reverts to its pre-perturbation value, and adaptation is perfect if the pre-perturbation
value is exactly recovered at steady state.

Suppose that a persistent input is applied to the system. Then, the steady-state
variation of a system variable (regarded as an output) may have the same or the
opposite sign of the applied input, or may be zero (perfect adaptation). A structural
influence is present if the sign of the variation does not depend on the value of the
system parameters. In particular, the effect of an external input applied to each
of the system variables on the steady-state variation of each of the variables can
be considered: in this case, the steady-state interactions can be represented by the
structural influence matrix.

The problem of determining structural influences is well known in the field of
ecology, and is related to the notion of community matrix [Lev68], which is the
Jacobian matrix of the system of growth equations and thus describes interactions
among and within species in a community near equilibrium. The community matrix,
expressing direct effects only, was first qualitatively analysed in [Lev74, Lev75] in
terms of signed entries, graphs and loops. The net steady-state effect, combining all
direct and indirect effects, is expressed by the adjoint matrix of the negative of the
community matrix. [Lev74, Lev75, DLR02, DLR03, DLLR03, DLR05] When the
sign of some entries of the adjoint matrix is indeterminate, the net response predicted
by the model is uncertain: to quantify this uncertainty, a weighted-predictions matrix
was introduced [DLR02, DRJ07] that assigns a probability to the predicted sign
of the response. Recently, a theoretical approach and an algorithm to determine
the sign of changes in steady states upon parameter perturbations in biochemical
reaction networks have been proposed in [Son14b, Son14a]. In [MF15], the structural
variation in species concentrations/fluxes when a reaction in the network is altered has
been studied, under qualitative assumptions (positivity, smoothness, monotonicity of
rate functions). This type of investigation is focused on the steady-state response
to external stimuli, in contrast with other approaches that consider the dynamic
interactions between variables.

This chapter presents the computational approach proposed in [GCFB15] to
structurally assess the steady-state input-output influences. The structural influence
is determinate if, for any feasible choice of the system parameters, the steady-
state variation in the output value is zero (‘0’, perfect adaptation), or its sign is
concordant (‘+’) or discordant (‘−’) with the sign of the external stimulus. In
contrast, if the sign of the variation depends on the magnitude of the parameters, the
influence is indeterminate (‘?’). A particular type of structural steady-state influences
can be represented by means of the influence matrix: the (i, j) entry of this matrix
represents the influence on variable i (output) of an additive input persistently applied
to variable j. In ecological models (at least, in their Lotka-Volterra approximations),
the structural influence matrix corresponds to the sign pattern of the adjoint of the
negative of the community matrix. An efficient algorithm is proposed that allows to
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compute structural steady-state variations due to external stimuli, and in particular
the structural influence matrix, for any system admitting the BDC-decomposition
described in Section 4.3. The structural sign of the input-output influence, for any
feasible choice of the parameters, can be determined by checking just a finite number
of points in the parameter space, corresponding to the vertices of the unit hypercube.
This is possible because, for systems admitting a BDC-decomposition, the expression
of the input-output influence turns out to be a multi-affine function defined on a
hypercube, hence it reaches its extreme values on the vertices of the hypercube (as
discussed in Section 4.4).

Recall that a wide class of biological systems, which can be written in terms of
a “stoichiometry” matrix and a vector of “reaction rates”, have a Jacobian matrix
that always admits a BDC-decomposition where matrices B and C depend on the
stoichiometry matrix and matrix D depends on the partial derivatives of the reaction
rate functions (cf. Section 4.3).

A noteworthy feature of the algorithm proposed in [GCFB15] is that it can
handle parametric dependencies between the entries of the Jacobian matrix; thus,
the algorithm can assess structural sign determinacy of the influence even when the
Jacobian matrix is not sign-definite. This is an advantage relative to the existing
literature that considers solely matrices with independent entries. For systems
with independent Jacobian entries, a tree-like recursive algorithm can be used to
compute the influence matrix, which enhances computational efficiency. Also the
case of marginally stable systems, whose trajectories evolve in the stoichiometric
compatibility class associated with the initial conditions, is considered. For these
systems, any persistent input might cause divergence of the trajectories in time;
however, a structural input-output influence analysis can be carried out by considering
impulsive, rather than persistent, inputs.

To show the effectiveness of the algorithm in explaining the intrinsic behaviour
of the system in terms of steady-state response to external stimuli, several models of
biochemical and ecological systems proposed in the literature are analysed.

First, some background is provided and the concept of influence matrix is intro-
duced by means of two illustrative examples, which show what structural information
can be obtained.

Example 7.1. Consider the following Lotka-Volterra prey-predator model [May74]{
Ḣ(t) = H(t)[r(1−H(t)/K)− aP (t)] + u1,

Ṗ (t) = P (t)(−b+ cH(t)) + u2,
(7.1)

where H(t) are the prey and P (t) the predators; a, b, c, r and K are positive
parameters; u1 and u2 are persistent external inputs. The birth rate of the prey
population is modelled with the Verhulst-Pearl logistic term r(1−H(t)/K). When
u1 = u2 = 0, the stable equilibrium is E0: H̄0 = b

c
, P̄0 = r

a

(
1− b

cK

)
(other equilibria

are E1: H̄1 = K, P̄1 = 0 and E2: H̄2 = 0, P̄2 = 0). Consider the equilibrium E0



132 7. Structural Steady-State Analysis of Biological Systems

and suppose now that there is a constant injection or removal of prey or predators,
i.e., inputs u1 or u2 become non-zero and constant. How does this perturbation
affect the equilibria? The perturbation is assumed to be sufficiently small, so that the
equilibrium remains stable and non-zero, and does not disappear (for instance, for
large negative values of ui the equilibrium may not exist).

Assume there is an injection or removal of prey, i.e., input u1 6= 0, and denote as
H̄ and P̄ the new coordinates of the equilibrium E0. From the second equation,

P̄ (−b+ cH̄) = 0,

so the steady-state value of the prey will be unchanged: H̄ = b/c. From the first
equation

H̄[r(1− H̄/K)− aP̄ ] + u1 = 0,

being H̄ unchanged, it can be seen that P̄ is an increasing function of u1.
The conclusion is that, no matter how the parameters are taken within the domain

where E0 exists, after a transient the predator population variation P̄ − P̄0 has the
same sign of u1: P̄ > P̄0 if u1 > 0, P̄ < P̄0 if u1 < 0. Hence, the influence of u1 on
P is structurally positive. Conversely, since H̄ = H̄0 is unchanged, the influence of
u1 on H is structurally zero. This phenomenon corresponds to perfect adaptation:
a positive (negative) u1 causes an initial increase (decrease) of the prey, but at
steady-state the prey population converges to the unperturbed value H̄0, due to a
compensating effect associated with the variation in the predator population.

With similar computations it can be argued that, if a predator injection is consid-
ered (input u2 6= 0), the structural influence on H is negative and on P is positive:
if u2 > 0 (u2 < 0 respectively), H̄ < H̄0 and P̄ > P̄0 (H̄ > H̄0 and P̄ < P̄0).

Since the steady-state values H̄ and P̄ are functions of u1 and u2, H̄(u1, u2) and
P̄ (u1, u2), implicitly defined by the equilibrium conditions, it is possible to equiva-
lently compute and inspect the signs of the corresponding partial derivatives. Then,
structurally, ∂H̄/∂u1 = 0, ∂P̄ /∂u1 > 0, ∂H̄/∂u2 < 0, ∂P̄ /∂u2 > 0.

To visualise at once the steady-state interactions between inputs applied to each
system variable and outputs taken as a single system variable, a structural steady-state
influence matrix can be built, which in the following will be denoted as matrix M .
The (i, j) entry of matrix M is ‘+’, ‘−’, or ‘0’ if, for any feasible choice of the model
parameters, an input uj (representing a persistent external injection applied to the
jth population) causes a change of the same sign, opposite sign, or no change in
the steady state of the ith population (seen as an output). Based on the performed
calculations, the influence matrix M for the prey-predator system (7.1) is:

M =

[
0 −
+ +

]
. (7.2)

The prey-predator model is a sufficiently simple case where the influence matrix
can be computed analytically. However, building matrix M in large and complex
networks requires a more sophisticated and computationally efficient approach. Two
issues are worth pointing out.
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(a) An equilibrium (steady-state) may not exist, or it may be unstable. However,
in many cases of practical interest in biology and ecology, the existence of
a stable equilibrium is possible or even guaranteed. In the following, it is
assumed that an equilibrium exists and is stable. In the concluding remarks,
parameter-independent criteria for the existence of an equilibrium and its
stability will be discussed.

(b) Especially in complex systems, some entries of M may not be structurally
determinate, namely, the sign may depend on the choice of the system parame-
ters. The structural influence matrix M has a ‘?’ entry in the position (i, j)
whenever the sign of the variation in the steady state of the ith variable, due
to an additive input persistently applied to the jth variable, is not structurally
determinate.

As shown in [DLR02, DLR03], the influence matrix M corresponds to the sign
pattern of adj(−J), where J is the system Jacobian matrix computed at the equi-
librium. This highlights the relationship between the system Jacobian and the
structural influence matrix M .

For instance, for the prey-predator model (7.1), at the equilibrium E0, the
Jacobian matrix, along with its BDC-decomposition, is

J =

[
−rH̄/K −aH̄
cP̄ 0

]
=

[
−α −β
γ 0

]
=
[

1 1 0
0 0 1

]
︸ ︷︷ ︸

=B

diag{α, β, γ}︸ ︷︷ ︸
=D

−1 0
0 −1
1 0


︸ ︷︷ ︸

=C

.

(7.3)
Then it can be immediately seen that

adj(−J) =

[
0 −aH̄
cP̄ rH̄/K

]
=

[
0 −β
γ α

]
has the same sign pattern shown in (7.2).

However, sign-definiteness of the Jacobian entries does not directly relate to the
existence or absence of structural steady-state influences.

Example 7.2. Consider a synthetic gene network designed to regulate the tran-
scription rate of RNA species, which bind to form output products [FFM08, FM08,
GFM13, FGFM14]. Two RNA species, transcribed by two separate genes, bind to
form a product; the presence of self-repression loops causes their transcription rates
to be equated at steady state. The system is described by the following equations
[FFM08, FGFM14]:{

ġi = αi(g
tot
i − gi)− δigiri

ṙi = βigi − δigiri − krirj
, i, j ∈ {1, 2}, i 6= j,

where gi are active gene template concentrations (active and inactive gene templates
are present in a total amount gtoti = gi + g∗i ), transcribed to produce RNA species
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(a) gtot1 is increased to 300 nM at t∗ = 300 min
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(b) gtot2 is decreased to 50 nM at t∗ = 300 min

Figure 7.1: Simulation results for the self-repression two-gene rate regulatory network: time evolution
of species concentrations. Top: free RNA concentrations. Bottom: active gene concentrations.
Parameter values are consistent with the literature about synthetic gene networks: α1 = α2 = 3·10−4

s−1, β1 = β2 = 1 · 10−2 s−1, δ1 = δ2 = 500 M−1 s−1, k = 2 · 10−3 M−1 s−1; initially, gtot1 = 100 nM
and gtot2 = 200 nM.

(with concentrations ri), which in turn bind to form a product; αi are gene activation
rates, βi are transcription rates, δi is the self-repression coefficient for subsystem
gi-ri, while k is the product generation rate. Besides its rate regulatory task, it can
be expected that this network exhibits tracking properties when the total concentration
of a gene template varies. In fact, if gtoti increases (this is equivalent to an input ui
acting on gi), then, at steady state, gi increases and so does ri. Due to the increase
in ri, more binding sites are created, hence rj decreases (the RNA species is more
required). Stoichiometric self-inhibition is reduced and gj increases. Of course, the
concentration increases provided that it can: since the reagents bind according to a
given stoichiometry, the expected increase can only occur if the reagent with the lowest
concentration is augmented until it is no more a bottleneck for the output production.
Still, the behaviour of rj is not clearly predictable: the increase in ri should increase
its consumption, while the increase in gj should increase its production. Does one of
the two opposite effects structurally dominate?

The system tracking properties may be inquired via simulation: results are shown
in Fig. 7.1. It can be seen that, when gtot1 increases, g1 increases too and this leads
to an increase in r1 and in g2, while r2 decreases. Analogously, when gtot2 decreases,
g2 decreases as well and this leads to a reduction in r2 and in g1, while r1 increases.
Yet, a simulation performed for a particular choice of the parameters cannot provide
a structural answer. Even a huge number of simulations with different parameter
values cannot assure that the property holds in the whole parameter space, no matter
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how densely sampled.1

It is then fundamental to resort to a structural analysis. The Jacobian matrix for
this network is

J =


−(α1 + δ1r̄1) −δ1ḡ1 0 0
β1 − δ1r̄1 −(δ1ḡ1 + kr̄2) 0 −kr̄1

0 0 −(α2 + δ2r̄2) −δ2ḡ2

0 −kr̄2 β2 − δ2r̄2 −(δ2ḡ2 + kr̄1)

 .
Note that J21 and J43 are structurally positive, in view of the equilibrium conditions
(βi − δir̄i)ḡi = kr̄ir̄j.

Computation of the steady-state influence shows that, for any feasible choice of
the parameters, when gtot1 increases, g1 increases too and this leads to an increase
in r1 and in g2, while r2 decreases. Analogously, when gtot2 decreases, g2 decreases
as well and this leads to a reduction in r2 and in g1, while r1 increases. Hence, the
rate regulatory system exhibits tracking properties at steady state for any feasible
choices of the parameters. The influence matrix M , which can be computed as the
sign pattern of adj(−J), is

effect on variable

g1 {
r1 {
g2 {
r2 {

input applied to variable
g1︷︸︸︷
+
+
+
−

r1︷︸︸︷
−
+
+
−

g2︷︸︸︷
+
−
+
+

r2︷︸︸︷
+
−
−
+

 .
Independent of the system parameters, an external input affecting ri decreases both gi
and rj, while increases gj and ri itself. The effect of an external input affecting gi is
the same that is obtained when incrementing gtoti . A powerful parameter-free insight
has thus been gained into the system behaviour, in terms of sign of the change in the
steady states of the variables due to an external stimulus.

The size and complexity of this second example are still tractable: the analytical
computation of the influence matrix is tedious but possible. However, for large
and complex systems, algebraic calculations are not scalable and a computational
approach is needed. In this chapter, a systematic and efficient numerical method
will be described for computing steady-state influences.

Remark 7.1. As will be shown, with respect to [DLR02, DLR03, DLLR03, DLR05],
the algorithm proposed in [GCFB15] can deal with the existence of constraints due to
parameters repeated in more than one entry (e.g., in Example 7.2, δ1r̄1 appearing in
both J11 and J21).

1A property may hold everywhere except for a zero-measure set of points, which would be
practically undetectable by means of a random analysis.
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7.2 A Vertex Algorithm to Assess
Structural Influences

An efficient algorithm to compute structural steady-state input-output influences
is described in this section. The algorithm applies to any system admitting a
BDC-decomposition (see Section 4.3); in this case, in fact, parameter-independent
steady-state influences between the input and the output can be structurally assessed
based on matrices B and C. The algorithm is based on the evaluation of the sign of
the determinant of a matrix at a finite number of points.

Consider a general nonlinear system

ẋ(t) = f(x(t), u(t)), (7.4)

y(t) = g(x(t)), (7.5)

where f(·, ·) and g(·) are continuously differentiable, x ∈ Rn, u ∈ R is an input
and y ∈ R is an output. Assume that there exists an equilibrium point x̄ > 0
(componentwise), corresponding to ū, such that f(x̄, ū) = 0, and consider the
corresponding output steady-state value ȳ = g(x̄). So both the steady-state values
x̄(u) and ȳ(u) are functions of u. The following standing assumptions are made.

B1 The considered equilibrium x̄ is asymptotically stable.
B2 The input perturbation u is small enough to ensure that the stability of x̄(u)

is preserved.2

The influence is determined by the derivative of the steady-state map that relates
a given input u to a specific output y. For system (7.4)-(7.5), the implicit function
theorem provides an analytical expression for the derivative of the steady-state
input-output map:

∂ȳ

∂ū
=
∂g

∂x

∣∣∣∣
x̄

(
−∂f
∂x

∣∣∣∣
(x̄,ū)

)−1
∂f

∂u

∣∣∣∣
(x̄,ū)

. (7.6)

Consider the linear approximation of the nonlinear system in a neighbourhood of
the equilibrium x̄. Then, denoting by z(t) = x(t)− x̄, v(t) = u(t)− ū, w(t) = y(t)− ȳ,
the linearised system is {

ż(t) = Jz(t) + Ev(t),

w(t) = Hz(t),

where [J ]ij = ∂fi
∂xj

∣∣∣
(x̄,ū)

, [E]i = ∂fi
∂u

∣∣
(x̄,ū)

and [H]j = dg
dxj

∣∣∣
x̄
. J is the Jacobian matrix,

while E and H are a column and a row vector representing, respectively, how the
input acts on the system state and how the output depends on the system state in
the linearised system.

2The eigenvalues of the Jacobian matrix are continuous functions of its entries, which, in turn,
are continuous functions of u.
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Proposition 7.1. For system (7.4)-(7.5),

∂ȳ

∂ū
= H(−J)−1E =

1

det(−J)
det

[
−J −E
H 0

]
. (7.7)

Proof. The first equality is immediate in view of (7.6). As for the second equality,
since [

−J −E
H 0

]
=

[
In 0

−HJ−1 1

] [
−J −E
0 H(−J)−1E

]
,

where the matrices in the product are block-triangular and H(−J)−1E is a scalar, it
follows that

det

[
−J −E
H 0

]
= 1 · det(−J)

[
H(−J)−1E

]
.

Since the equilibrium is assumed to be stable, det(−J) is always positive. For
any system whose Jacobian J admits a BDC-decomposition, to evaluate the sign of
∂ȳ
∂ū

, it suffices to consider the sign of

r(D)
.
= det

[
−J −E
H 0

]
= det

[
−BDC −E
H 0

]
. (7.8)

To assess the structural influence on the output y due to the input u, it must
be verified whether function r(D) is sign-definite, namely, it has the same sign for
all the possible choices of D. The following result states that the structural sign of
r(D) in (7.8) can be determined by checking a finite number of points, namely, the
vertices of the unit hypercube

CD = {Dk : 0 ≤ Dk ≤ 1, k = 1, . . . , q}.

Theorem 7.1. [GCFB15] Denote by D(v) the matrices corresponding to the vertices
of the hypercube CD, v = 1, . . . , 2q. Then:

a) r(D) > 0 structurally if and only if r(D(v)) ≥ 0 for all v and r(D) > 0 for
D = I;

b) r(D) < 0 structurally if and only if r(D(v)) ≤ 0 for all v and r(D) < 0 for
D = I;

c) r(D) = 0 structurally if and only if r(D(v)) = 0 for all v.

Proof. First, notice that r(D) is multi-affine and positively homogeneous; hence, the
sign of r(D), with Di > 0, does not change if D is scaled with a positive factor:
sign[r(D)] = sign[r(ϕD)] for any positive ϕ. Indeed, consider ϕJ = B(ϕD)C. Then

det

[
−ϕJ −E
H 0

]
= det

[
ϕIn 0
0 1

]
det

[
−J −E
H 0

]
det

[
In 0
0 1/ϕ

]
= ϕn−1 det

[
−J −E
H 0

]
.
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Therefore, r(D) is positive (negative, zero) for all Di > 0 if and only if it is positive
(negative, zero) in all points Di > 0 in the unit cube. The claims can then be proved
based on Theorem 4.3 presented in Section 4.4.

Based on Theorem 7.1, for any system (7.4) admitting a BDC-decomposition,
the structural steady-state influence of any input provided to the system on any
output of the form (7.5) can be tested as follows.3

Procedure 7.1. Vertex algorithm.
Input: Matrices B and C of the BDC-decomposition and matrices E and H
appearing in (7.8).
Output: The steady-state structural influence sign σ ∈ {+,−, 0, ?}.

1. Let ωmax = ωmin := 0.
2. For k = 0, 1, . . . , 2q − 1, consider its binary representation

kbin := [D1, D2, . . . , Dq] ∈ {0, 1}q.
(a) Let D = diag{D1, D2, . . . , Dq}.
(b) Let ωmin := min{ωmin, sign[r(D)]} and ωmax := min{ωmax, sign[r(D)]};

3. IF ωmin = 0 and ωmax = 1, then σ := +;
4. IF ωmin = −1 and ωmax = 0, then σ := −;
5. IF ωmin = 0 and ωmax = 0, then σ := 0;
6. IF ωmin = −1 and ωmax = 1, then σ :=?.

The outcome of the procedure is one of the four cases represented in Fig. 7.2.
Figures 7.2 (a)-(c) illustrate the cases where the sign of the output variation, when
the input varies as a step function, is structurally determinate; Fig. 7.2 (d) depicts the
case where no structural influence can be identified, because the output could either
increase, decrease or not vary, depending on the specific choice of the parameters.

Remark 7.2. The algorithm has exponential complexity: if the diagonal matrix D
has dimension q, the sign of r(D) must be explored on the 2q vertices of the hypercube.

The result exploits the fact that J is the positive linear combination of rank-
one matrices, hence r(D) is a multi-affine function defined on a hypercube (or a
hyper-box) and reaches its extrema on the vertices (which is crucial in the proof
of Theorem 7.1, since it is based on Theorem 4.3). In the general case of a convex
combination of matrices that do not have rank one (hence, the system does not
admit a BDC-decomposition), such a vertex result is not assured. For instance,

det

[
a 0
0 a− b

]
= a(a− b)

3A MATLAB implementation of the algorithm is available at https://users.dimi.uniud.it/

~franco.blanchini/influence.zip (see also Appendix B.2).

https://users.dimi.uniud.it/~franco.blanchini/influence.zip
https://users.dimi.uniud.it/~franco.blanchini/influence.zip
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�

(a) Increase: the structural influence is ‘+’.

�

(b) Perfect adaptation: the structural influence is ‘0’.

�

(c) Decrease: the structural influence is ‘−’.

�

(d) Indeterminate: the structural influence is ‘?’.

Figure 7.2: Illustration of the structural input-output influence. The structural influence is
determinate if a step in the input causes a positive (a), zero (b), or negative (c) change in the
output steady state, for any feasible choice of the system parameters. The structural influence
is indeterminate when the output variation can be positive, zero, or negative, depending on the
system parameters (d). [GCFB15]
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is not multi-affine in the parameters: given for instance the square 0 ≤ a, b ≤ 1, this
determinant is never negative on the four vertices; however, for b = 1 and a = 1/2,
the determinant is −1/4 < 0. This happens because the matrix associated with a
(which is the identity I2 ∈ R2×2) has rank two.

Remark 7.3. The vectors E and H are in general functions of the parameters,
namely, of the partial derivatives (with respect to x and to u): [E]i = ∂fi

∂u

∣∣
(x̄,ū)

and

[H]j = dg
dxj

∣∣∣
x̄
. This not an issue, because r(D) is still a multi-affine function of the

parameters.

The proposed approach can be used to establish the existence of a structural
influence of any input on a given output. Since uncertain parameters (for example,
in biochemical systems, binding rates, dissociation constants, or Hill coefficients)
can be considered as inputs subject to variations, the method can be applied to
identify the structural influence of a system parameter on the system outputs. This
interesting case is illustrated with an example.

Example 7.3. Consider the system
ẋ1 = −pf1(x1, x2) + f3(x3) + x1,0

ẋ2 = −pf1(x1, x2)− f2(x2) + x2,0

ẋ3 = pf1(x1, x2)− f3(x3)− f4(x3)

where p is a positive parameter considered as input, u = p. In its Jacobian

J =

 −α̃ −β̃ γ

−α̃ −(β̃ + δ) 0

α̃ β̃ −(γ + ε)

 , α̃ = pα, β̃ = pβ,

Greek letters denote the absolute value of the partial derivatives |∂fj/∂xi|. The
characteristic polynomial has only positive coefficients; it can be shown by means of
the Routh-Hurwitz criterion (the Routh-Hurwitz table is not reported here for brevity)
that it is stable for any choice of the positive parameters. The BDC-decomposition
and vector E are

J =

 −1 −1 1 0 0
−1 −1 0 −1 0

1 1 −1 0 −1


︸ ︷︷ ︸

=B

diag{α̃, β̃, γ, δ, ε}︸ ︷︷ ︸
=D


1 0 0
0 1 0
0 0 1
0 1 0
0 0 1


︸ ︷︷ ︸

=C

,

E =

 −ζ−ζ
ζ

 ,
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where ζ = |∂ẋi/∂p| = f1 (see Remark 7.3). If the variable xi is considered as an
output, then H = Hi will have a 1 in the ith position and zero elsewhere. By means
of the proposed vertex algorithm, the following steady-state influence of p on the
variables x1, x2 and x3 can be derived:

x1 {
x2 {
x3 {

p︷ ︸︸ ︷ −0
0

 .
In this simple case, the results can be checked by direct computation of

det

[
−J −E
Hi 0

]
,

by considering Hi associated with the considered variable (e.g., for x1, H1 = [ 1 0 0 ]).
It can be seen that both x2 and x3 are subject to a perfect adaptation with respect to
variations of p. This fact, although surprising, can be explained by considering the
system steady state: x̄3 and x̄2 depend on the constant influx only (since adding the
first and third equation at steady state gives f4(x̄3) = x1,0, and subtracting the second
to the first gives f3(x̄3) + f2(x̄2) = x2,0 − x1,0), while x̄1 depends on p and can thus
compensate any variation in p, preventing it from affecting x̄2 and x̄3.

The observation in Example 7.3 can be generalised in the following proposition.

Proposition 7.2. Consider a system of the form (4.25), namely

ẋ(t) = Sf(x(t)) + f0,

and assume that the jth reaction has rate fj(·) = pf̃j(·), with p a positive parameter,
and that (at least) one of the species, having concentration xi, is involved as a reagent
in the jth reaction only and in no other reactions (hence the corresponding column
Ji of the Jacobian matrix contains one coefficient only). Then all the variables of
the system are insensitive to variations in p, except for xi itself.

Proof. Since E and Ji are linearly dependent columns, the determinant in (7.8) is
zero as long as hi is zero.

Note that, even though none of the conditions in Theorem 7.1 is satisfied, some
useful (although non-structural) information can be derived as well, based on the
computation of the function r(D) for all the vertices of the hypercube. Consider for
instance the case depicted in Fig. 7.3. The function has different signs at different
vertices of the hypercube (actually, a cube in R3): it is neither always non-positive,
nor always non-negative; yet, it is always zero at the vertices in which the parameter
ϑ is zero. It cannot be said that the system output is perfectly adaptive (this would
be the case if the function were zero for all vertices). However, it is perfectly adaptive
if ϑ = 0. Moreover, this suggests that the considered output is adaptive (see Fig. 7.4)
for small enough values of ϑ.
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Figure 7.3: A function having different signs on different vertices of the cube.

Figure 7.4: A non-perfectly adaptive system: when a persistent input is applied, after a transient
the output returns very close to its pre-perturbation value.

7.3 Structural Influence Matrix

To assess the structural influence on the ith variable of a persistent, additive input
applied to the jth variable [GCFB15], consider a system (7.4)-(7.5) having the form

ẋ(t) = f(x(t)) + Eu(t), (7.9)

y(t) = Hx(t), (7.10)

and take vectors E = Ej and H = Hi with a single non-zero entry equal to one

Ej = [0 . . . 0 1︸︷︷︸
position j

0 . . . 0]>, Hi = [0 . . . 0 1︸︷︷︸
position i

0 . . . 0].

If the system admits a BDC-decomposition, then each entry [M ]ij of the influence
matrix M ∈ Rn×n can be generated by means of the numerical vertex algorithm
described in Procedure 7.1, choosing the corresponding Ej and Hi. [M ]ij is:

• ‘+’ if the influence is positive for any realisation of the structure;
• ‘0’ if there is perfect adaptation for any realisation of the structure;
• ‘−’ if the influence is negative for any realisation of the structure;
• ‘?’ if the influence is not structurally sign-definite.

As illustrated in Fig. 7.2, each entry of the influence matrix (or, more in general,
any structural steady-state derivative) can be interpreted as the response of the
system output to a step input.
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Remark 7.4. Consistently with the results in [DLR02, DLR03, DLLR03, DLR05,
DRJ07], computing the influence matrix is equivalent to determining the sign pattern
of the adjoint matrix adj(−J) of −J , namely, the matrix such that (−J)−1 =
adj(−J)/ det(−J).

Example 7.4. (Metabolic network: influence matrix). Reconsider the system pro-
posed in Example 4.10: det(−J) is structurally positive and the vertex algorithm
provides the influence matrix

M =

 + − 0
− + 0
+ 0 +

 .
Example 7.5. The system in Fig. 4.5 (b) corresponds to the Jacobian matrix

J =



−(α+ ζ) 0 0 0 −η 0 0
α −(γ + ε) 0 −δ 0 0 0
0 0 −(β + ι) 0 0 −λ 0
0 −γ β −(δ + ϕ) 0 0 0
−ζ ε 0 0 −η 0 0
0 0 −ι ϕ 0 −λ 0
0 γ 0 δ 0 0 −µ


.

By means of the proposed algorithm, it can be verified that det(−J) > 0 structurally
and

M =



+ − + + − − 0
+ + − − − + 0
+ + + − − − 0
− − + + + − 0
? + − − + + 0
− − ? + + + 0
+ + + + − − +


.

Finally, some peculiarities of the influence matrix in two particular classes of
systems are worth underlining.

First of all, consider the case of monotone systems (described in Section 2.3.7).
Recall that a system of the form ẋ(t) = f(x(t)), with f differentiable, is monotone
[Smi08, Son07] iff its Jacobian J(x) is a Metzler matrix for any x (i.e., its off-diagonal
entries are nonnegative). The following result holds.

Proposition 7.3. Given a monotone system, denote by J its Jacobian evaluated at
a stable equilibrium. Then its influence matrix is such that [M ]ij ∈ {+, 0} for all
(i, j). If furthermore J is irreducible, [M ]ij = + for all (i, j).

Proof. If J is a stable Metzler matrix (hence its diagonal entries are negative, see
[FR00]), then (−J)−1 ≥ 0, where the inequality has to be intended componentwise; if,
moreover, the matrix is irreducible, the inequality is strict: (−J)−1 > 0. [HLMQ14]
Since the equilibrium is stable, det(−J) > 0. Then adj(−J) = (−J)−1 det(−J) ≥ 0
(> 0 in the irreducible case), which proves the thesis.
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However, monotonicity is not necessary to have a positive influence matrix. In
fact, there are stable matrices which are not Metzler, but for which all of the entries
of adj(−J) are positive. For instance, the following matrix J is not Metzler:

J =

 −15 2 12
−5 −10 14

8 −1 −18

 . However, adj(−J) =

 194 24 148
22 174 150
85 1 160


is elementwise positive. Yet, interestingly, in this case matrix J is eventually
positive (namely, it satisfies the Perron-Frobenius property with positive left and
right eigenvectors, see [Nou06, AL15]). This suggests a connection between eventual
positivity and elementwise positivity of the influence matrix, which will be worth
investigating.

Another remarkable case is that in which some diagonal entries of the influence
matrix are zero, as in the prey-predator case in Example 7.1, or even negative.
Consider the system

J =

[
−α β
−γ δ

]
, for which M =

[
− +
− +

]
.

Assuming stability, if a constant additive input is applied to the first state variable,
its own steady-state value decreases. This situation may arise because this is a non
minimum-phase system; such systems have been recently studied in a biological
context. [MCB+10, YKM13]

7.4 The Case of Marginally Stable Systems

As discussed in Section 4.2.1, some chemical reaction networks correspond to a
marginally stable system, whose state is forced to stay inside the stoichiometric
compatibility class associated with the initial conditions:

x(t) ∈ C(x(0)) = {x(0) + span(S)} ∩ Rn
+.

This happens, for instance, in the presence of mass conservation constraints. The
rank of the stoichiometric matrix S (hence of B) corresponds to the dimension of
the stoichiometric compatibility class. If matrix B is not full row rank, the system
trajectories evolve inside a subspace having dimension smaller than n and, of course,
BDC is structurally singular. It is assumed, however, that 0 is the only eigenvalue
of the system having nonnegative real part.

In this case, to restrict the analysis to the stoichiometric compatibility class, a
transformation can be considered that provides a full row rank B̃. Let z(t) = x(t)− x̄,
v(t) = u(t)− ū, w(t) = y(t)− ȳ and consider the linearised system

ż(t) = BDCz(t) + Ev(t), (7.11)

w(t) = Hz(t). (7.12)



7.4. The Case of Marginally Stable Systems 145

Given the state transformation[
M
N

]
z =

[
zM
zN

]
, z =

[
P Q

] [ zM
zN

]
,

where M> is a basis of ker(B>) (ker denotes the kernel of a matrix; i.e., M> is such
that MB = 0) and N is a basis of span(B), the transformed system is[

żM
żN

]
=

[
0 0

NBDCP NBDCQ

] [
zM
zN

]
+

[
ME
NE

]
v

.
=

[
0 0

BNDCP BNDCQ

] [
zM
zN

]
+

[
EM
EN

]
v,

y =
[
HP HQ

] [ zM
zN

]
.
=
[
HP HQ

] [ zM
zN

]
.

If EM = 0, the step response of the system can be computed: zM (t) ≡ zM (0) = 0
∀t and the zN -subsystem is asymptotically stable by assumption. Then det(−BNDCN )
can be considered, along with the sign of

det

[
−BNDCQ −EN

HQ 0

]
,

and the analysis can be carried out without changes.
If instead EM 6= 0, the equation for zM would be żM = EMu, so that zM(t) =

zM(0) + EMut would diverge. The analysis can be carried out by considering the
impulse response of the system, namely, by assuming u to be the Dirac delta function.
In this case, zM(t) ≡ zM(0+) = EM is constant and can be considered as the input
for the zN -subsystem, which is asymptotically stable (therefore its impulse response
converges to zero) so that the sign of the steady-state derivative is given by the sign
of

det

[
−BNDCQ −BNDCPEM

HQ HPEM

]
.

In the previous cases, BNDCQ has been assumed to be non-singular. If BNDCQ is
singular because C does not have full column rank, an additional state transformation
can be considered that provides a full column rank C̃, as previously done for B.
However, even when both B and C have full rank, matrix BDC can be structurally
singular. In this case, as long as zero is a simple eigenvalue, the (i, j) entry of the
structural influence matrix can represent the sign of the steady-state variation of the
ith variable due to an impulsive additive input applied to the jth variable. Otherwise,
unfortunately, it is useless to resort to further transformations.

Example 7.6. Consider the system introduced in Example 4.11 and depicted in
Fig. 4.5 (a). Its Jacobian matrix, provided in (4.27) along with its BDC-decomposition,
is structurally singular. A mass conservation constraint is present, because ḃ+ ċ = 0



146 7. Structural Steady-State Analysis of Biological Systems

in system (4.26), hence b+ c is constant. Since zero is a simple root of the character-
istic polynomial p(s) = s3 + (α + β + γ + δ + ε)s2 + α(δ + ε)s, the influence matrix
can be used to describe structural steady-state variations induced by impulsive inputs:

M =

 0 ? ?
0 + +
0 + +

 . (7.13)

While C has full column rank, rank(B) = 2. Therefore, the analysis can be restricted
to the stoichiometric compatibility class. A basis of ker(B>) is given by the vector
[0 1 1]>. Completing with a basis of span(B), the following state transformation is
achieved:

T−1 =

 0 1 1
0 1 0
1 0 0

 , T =

 0 0 1
0 1 0
1 −1 0

 .
To account for all the possible variable selections, take E = I3 and H = I3 as the
identity matrices, so that the influence (i, j) is achieved by selecting the jth column
of E and the ith row of H. The transformed system becomes

T−1JT =

 0 0 0
γ + ε −(β + γ + δ + ε) −α
γ −(β + γ) −α

 =

[
0 0

BNDCP BNDCQ

]
,

T−1E =

 0 1 1
0 1 0
1 0 0

 =

[
EM
EN

]
,

HT =

 0 0 1
0 1 0
1 −1 0

 =
[
HP HQ

]
.

Denote by E
(j)
M the jth column of EM and by H

(i)
Q the ith row of HQ. Now det(−BNDCQ)

is structurally positive and, by considering the sign of

det

[
−BNDCQ −BNDCPE

(j)
M

H
(i)
Q H

(i)
P E

(j)
M

]
,

the (i, j) entry of the influence matrix associated with the impulse response can be
computed:

M(scc) =

 0 ? ?
0 + +
0 + +

 . (7.14)

As expected, matrix (7.14) is equal to (7.13), which has been previously computed
without any state transformation just because dim[ker(B>)] = 1. When the kernel
has a higher dimension, a state transformation is necessary to compute the influence
matrix in the stoichiometric compatibility class.
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Example 4.10, with mass conservation constraints, has been previously analysed
in a reduced-order form, neglecting the variable d = K − b (see Example 7.4). Yet,
it is also possible to consider all of the four variables: in this case, the influence
matrix in the stoichiometric compatibility class can be computed as illustrated in
this section.

7.4.1 Laplace Domain:
Step Response and Impulse Response

An interpretation of the proposed analysis can be provided in terms of transfer
functions. Given a stable system with input u(t) and output y(t), the steady-
state derivative ∂ȳ

∂ū
is related to the transfer function F (s) = Y (s)/U(s). Precisely,

∂ȳ
∂ū

= F (0) = n(0)
d(0)

= n0

d0
, where n(s) =

∑k
h=0 nhs

h, nk = 1, and d(s) =
∑n

h=0 dhs
h,

dn = 1, d0 6= 0, are computed as

n(s) = det

[
sI − J −E
H 0

]
and d(s) = det (sI − J) .

This can be regarded as the asymptotic value of the system unit step response, as
illustrated in Fig. 7.2. Indeed, if u(t) is the Heaviside step function, whose Laplace
transform is U(s) = 1

s
, the steady-state value of the step response, ȳ = y(∞), can be

evaluated by applying the final value theorem:

lim
t→∞

y(t) = lim
s→0

sY (s), (7.15)

provided that both the limits exist and are finite. Clearly, if the system is asymptoti-
cally stable, y(t) converges to a finite value. Moreover, lims→0 sY (s) = lims→0 sF (s)1

s
=

F (0) is finite, since there are no poles at the origin of the complex plane. Therefore,
the hypotheses of the final value theorem are satisfied.

In the case of an asymptotically stable system, it is pointless to consider the
impulse response: if u(t) = δ(t), Dirac’s delta distribution, then U(s) = 1 and, since
there are no poles at the origin, ȳ = lims→0 sF (s) = 0. However, if the system

is marginally stable and zero is a simple eigenvalue, then d0 = 0, F (s) = n(s)
sd′(s)

and the steady-state derivative can be seen as expressing the asymptotic value of
the system impulse response: lims→0 sF (s) = lims→0

n(s)
d′(s)

= n0

d1
. In the proposed

setup, performing the vertex test in Procedure 7.1 remains possible, since all of the
polynomial coefficients are multi-affine functions of the parameters Dk.

7.5 A Tree-Like Algorithm

Most of the analysis in Section 7.3 focuses on flow-governed systems, in which
simultaneous production and consumption occur: with a given reaction rate, one
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or more species are converted into other species, leading to Jacobian matrices with
coefficients appearing repeatedly on the same column (possibly with different sign).
Yet, in several cases all the Jacobian entries are independent: hence, for systems
admitting a BDC-decomposition (due to Assumption 4.1), J is a sign-definite matrix,
as in the prey-predator system (7.1), having Jacobian (7.3).

When the entries are independent, the problem can still be solved by adopting
the proposed vertex algorithm. However, this can involve a very large number of
parameters. For instance, in Example 4.10 there are 4 parameters, thus 16 vertices;
if all the non-zero entries were independent, there would be 128 vertices. If all the
non-zero entries of Example 7.5 were independent, the number of vertices would be
219 = 524288.

Example 7.7. (Snowshoe hare population dynamics). To describe the interactions
among vegetation, snowshoe hare and predators in boreal forests, a simple model is
proposed in [DRJ07], corresponding to the sign-definite community matrix

J =

 −α −β 0
γ −δ −ε
ϕ η −ψ

 (7.16)

having sign pattern

ΣJ =

 − − 0
+ − −
+ + −

 .
The influence matrix

M =

 + − +
? + −
+ ? +

 (7.17)

can be found by simply computing the adjoint, as well as by means of the proposed
vertex algorithm, which involves 8 parameters, hence 256 vertices.

For systems with very high dimension, complexity could render the vertex algo-
rithm unfeasible. Yet, complexity can be reduced by adopting a tree-like algorithm
[GCFB15] that takes advantage of the sparsity of the Jacobian (namely, of the
presence of several zero entries). To determine the influence matrix, the sign of the
determinant (7.8) must be structurally assessed for all input-output pairs; equiva-
lently, the sign of the entries of adj(−J), which are just determinants of sub-matrices,
must be established.

Procedure 7.2. Tree Recursive Algorithm for Determinant Sign:
TRADS(Σn).
Input: Σn ∈ Rn×n, the sign matrix which forms the root of the tree.
Output: The structural sign of the determinant of Σn, σ ∈ {+,−, 0, ?}.



7.5. A Tree-Like Algorithm 149

1. Consider the first row of matrix Σn.
2. For each non zero entry [Σn]1i, create a link to a new node, marked by ‘−’

or by ‘+’ depending on the sign of [Σn]1i (−1)i+1, and associate with this
node the sign matrix Σn−1 (of dimension n−1), which is the complementary
matrix of the considered entry.

3. For each new node connected to the original node with a ‘−’ arc, change
sign to the first row of the corresponding matrix Σn−1.

4. Apply the procedure TRADS(Σn−1) to all the new nodes.

The procedure stops when all of the sign matrices have dimension 1. Then σ = +
if all the matrices are [+], or [0] with at least a [+] matrix; σ = − if all the
matrices are [−], or [0] with at least a [−] matrix; σ = 0 if all the matrices are
[0]; σ = ? otherwise.

Obviously, the outcome of the procedure is the same if the matrix is altered by
transposing it or by permuting rows and/or columns, with appropriate sign changes.
This can be done at each iteration, preferably choosing the row or column having
most zero entries.

Example 7.8. (Snowshoe hare population dynamics). Consider the signed Jacobian
matrix (7.16), in Example 7.7. To find the sign of the structural influence on the third
variable of an additive input persistently applied to the first variable, the algorithm
(applied without transposing or permuting) produces

Indices [](−)/[](+) mean that the sign of the first row is changed/unchanged. Since
the final matrices are all [0] with at least a [+], the determinant is structurally positive,
consistently with [M ]31 = + in (7.17). Of course, the number of computations
dramatically reduces if it is noticed that the most convenient choice at the beginning
is the last row, or the last column, having a single non-zero entry.

Remark 7.5. In the worst case in which all the entries are non-zero, the tree
algorithm would have a complexity of n!, where n is the matrix dimension. This
complexity is negligible if compared to that of the vertex algorithm directly applied,
which would be 2n

2
. For instance, for a 5 × 5 matrix, the complexity is 5! = 120

instead of 225 (roughly 32 · 106). In general, meaningful matrices are sparse; therefore,
the operation count would be at most ν1 · ν2 · . . . · νn, where νi is the number of
non-zero entries of the ith row.
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Sparsity is typical in several cases of practical interest.

Example 7.9. (Population dynamics in Danish shallow lakes). Two models are
analysed in [DRJ07] to describe the interactions among 10 different species in Danish
shallow lakes: model “I” considers modified or non-linear interactions in a model of
eutrophic shallow lakes, while model “J” considers only linear trophic interactions in
a model of mesotrophic lakes. In both cases, starting from a sign-definite community
matrix A, a qualitative adjoint matrix adj(−A) is computed. The qualitative adjoint
matrices of the two models are then compared with experimental responses measured
in field studies: model J is considered less reliable, because the resulting signs are
largely inconsistent with the observed response. By means of the proposed algorithm,
the structural influence matrices can be computed. The entries are all indeterminate
for model “I”. Also for model “J” most entries are indeterminate, however there
are notable exceptions: [M ]34 = +, [M ]43 = −, [M ]44 = +, [M ]99 = + have sign
consistent with that reported in [DRJ07] and, interestingly, are not among the entries
reported to be inconsistent with field observations.

7.6 Examples

7.6.1 E. coli EnvZ-OmpR Osmoregulation

The proposed vertex algorithm can be applied to the biochemical network in Fig. 4.5
(c), representing the complex EnvZ-OmpR osmoregulation model in Escherichia coli,
studied in [SF10], with additional auto-degradation reactions for species C and D.
For this system, steady-state effects are not easy to foresee based on qualitative
considerations. The system has Jacobian matrix

J =



−(α+ β) γ 0 0 ϑ 0 0 µ
β −(γ + δ) 0 0 0 −ε κ+ λ 0
0 0 −(ζ + ϕ) −η ξ 0 0 ν
0 0 −ζ −(η + ψ) ξ 0 κ 0
0 0 ζ η −(ξ + ϑ) 0 0 0
0 −δ 0 0 ϑ −ε λ 0
0 δ 0 0 0 ε −(κ+ λ) 0
α 0 0 0 0 0 0 −(µ+ ν)


.

By means of the vertex algorithm, it can be seen that det(−J) is structurally positive
and the influence matrix is

M =



+ + + + + + + +
+ + + + + + + +
+ + + 0 + 0 + +
0 0 0 + + + + 0
+ + + + + + + +
? ? ? ? ? ? ? ?
+ + + + + + + +
+ + + + + + + +


.
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7.6.2 Biofuel Production

In this section, two biofuel production models are structurally compared and it is
shown that their peculiar properties can be inferred independent of parameter values.
An important issue of microbial biofuel production methods, based on engineered
bacteria, is that production cannot be unrestrictedly increased because biofuel is
toxic to the cell that is producing it. Efflux pumps have been shown to be effective
at increasing tolerance to biofuel, but an over-expression of efflux pumps hinders the
growth of the cell population, hence decreases biofuel production: the toxicity of
biofuel and of pump over-expression must then be properly balanced to maximise
the biofuel output. Consider the two models for cell growth and biofuel production
provided in [HD12]: in the former, efflux pumps are expressed at a constant level; in
the latter, a synthetic feedback loop is implemented, using a biosensor to control
efflux pump expression.

The feedback system is described by the equations

ṅ = n
[
αn

(
1− n

nmax

)
− δnbi − αnp

p+γp

]
Ṙ = αR + kR

(
I

I+γI

)
− βRR

ṗ = αp + kp
1

R
1+kbbi

+γR
− βpp

ḃi = αbn− δbpbi

,

where n is the cell density, R is the concentration of repressor proteins, p is the
concentration of pumps, bi is the concentration of intracellular biofuel; nmax is the
maximum population size. Both biofuel toxicity and pump toxicity can prevent
population growth. Repressor activation by the inducer is modelled as I/(I + γI),
where γI indicates the inducer value that corresponds to half maximal activation
of the repressor and I can be considered as a constant input. Since R reaches its
steady state independently of all other state variables, it can be considered just as
an external inflow.

There are two possible equilibrium values for n: the trivial n̄ = 0 (all the cells
are dead) and the nontrivial n̄, such that[

αn

(
1− n̄

nmax

)
− δnb̄i −

αnp̄

p̄+ γp

]
= 0.

Thus [J ]11, i.e., the partial derivative computed at the equilibrium point, is simply
− αnn̄
nmax

. Denote by ϕp the positive partial derivative of p
p+γp

with respect to p and

by ψbi the positive partial derivative of kp
1

R
1+kbbi

+γR
with respect to bi. The Jacobian

matrix of the reduced system, including only the variables n, p, bi, is then:

JFL =

 − αnn̄
nmax

−αnn̄ϕp −δnn̄
0 −βp ψbi
αb −δbb̄i −δbp̄

 .
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It can be seen that det(−JFL) is structurally positive and the influence matrix is

MFL =

 + ? −
+ + +
+ − +

 .
As expected, bi is reduced by a positive input applied to p and augmented by a
positive input applied to n; a positive input applied to bi reduces n, due to the biofuel
toxicity for the cells. The effect on n of an input applied to p is not structurally
determinate, which is consistent with the considerations about the trade-off regarding
efflux pumps expression: a significant level of p helps increasing cell tolerance to
biofuel (enhancing population growth), but, when over-expressed, pumps burden cells
(hindering population growth). The effect of the feedback, which allows modulating
the expression of efflux pumps, is worth pointing out. In fact, an input applied to n
increases p, to adjust it to the needs of a grown population, and an input applied to
bi also increases p, because more efflux pumps are needed to protect the cells from
an increased level of toxicity.

Consider now the system in which efflux pumps are expressed at a constant
level. The repressor equation is no longer present in the system, since an inducer
is now directly used to control pump expression, while the other equations remain
unchanged: 

ṅ = n
[
αn

(
1− n

nmax

)
− δnbi − αnp

p+γp

]
ṗ = αp + kp

(
I

I+γI

)
− βpp

ḃi = αbn− δbpbi

JC =

 − αnn̄
nmax

−αnn̄ϕp −δnn̄
0 −βp 0
αb −δbb̄i −δbp̄

 .
It can be seen that det(−JC) is structurally positive. The influence matrix is:

MC =

 + ? −
0 + 0
+ − +

 .
The comparison between MC and MFL immediately highlights the effect of the

feedback loop: all the structural influences are the same but those on p due to a
persistent input applied to n and to bi. In the absence of feedback, p is completely
insensitive to both inputs applied to n and to bi; feedback allows to tune the expression
of efflux pumps, increasing it when a positive input is applied to n or to bi. Thanks
to the feedback regulation, pumps can be produced at the exact amount needed for
increasing cell tolerance to toxic biofuel, without excessively burdening cells.

According to the sensitivity analysis performed in [HD12], the feedback model is
almost insensitive to many system parameters, while a few key parameters (αn, δn,
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γp, nmax, αb, δb) strongly influence growth and production. To assess if the sign of
such an influence is independent of the other parameter values, a structural analysis
can be performed by computing the determinant in (7.8) for each parameter κ, where
Eκ = [∂ṅ/∂κ ∂ṗ/∂κ ∂ḃi/∂κ]> and H selects the desired output among n, p and bi.
The influence of parameter variations on the steady-state of the state variables can
be summarised as follows:

n {
p {
bi {


αn︷︸︸︷
+
+
+

δn︷︸︸︷
−
−
−

γp︷︸︸︷
+
+
+

nmax︷︸︸︷
+
+
+

αb︷︸︸︷
−
+
+

δb︷︸︸︷
+
−
−

αp︷︸︸︷
?
+
−

kp︷︸︸︷
?
+
−

βp︷︸︸︷
?
−
+

kb︷︸︸︷
?
+
−

γR︷︸︸︷
?
−
+

.
The obtained structural influences are fully consistent with numerical results, but
structural analysis gives a noteworthy advantage: the same trends are guaranteed to
be achieved independently of the other system parameters.

7.6.3 Interactions at the Trans-Golgi Network

The interactions at the cellular Golgi apparatus are well studied (see for instance
[TWH+13, WHO+15] and the references therein), but not yet completely understood
in terms of exact modelling. Two different models describing PKD-CERT interactions
at the trans-Golgi network in mammalian cells are proposed in [WHO+15], where
sampling-based Bayesian analysis and perturbation experiments are performed for
model calibration and validation. It is natural to wonder whether the two models
present structural differences and, in case, which of the two is more suitable for
describing actual interactions occurring in the network. To this aim, a comparative
structural influence analysis is briefly provided here.

It can be shown that model A (“short distance shuttle”) corresponds to a Jacobian
matrix of the form

JA =



−(α+ ϑ+ ξ) π 0 −ν −µ 0 0
ϑ+ ξ −(β + π) 0 ν µ 0 0

0 −ρ −(γ + σ) κ 0 0 0
0 ρ σ −(δ + κ) 0 0 0
0 0 0 −ψ −(ε+ ϕ) λ 0
0 τ 0 0 0 −(ζ + λ) ω
0 −τ 0 ψ ϕ 0 −(η + ω)


,

while model B (“neck swinging”) has Jacobian

JB =



−(α+ ϑ+ ξ) π 0 0 0 0 −µ
ϑ+ ξ −(β + π) 0 0 0 0 µ

0 −ρ −(γ + σ) κ 0 0 0
0 ρ σ −(δ + κ) 0 0 0
0 0 0 0 −(ε+ ν) λ 0
0 τ 0 −ψ ν −(ζ + λ+ ϕ) ω
0 −τ 0 ψ 0 ϕ −(η + ω)


;
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in both cases, Greek letters denote positive parameters associated with partial
derivatives.

Both det(−JA) and det(−JB) are not sign determined. The corresponding
influence matrices are

MA =



? ? ? ? − − −
+ + ? ? + + +
− − ? ? − − −
+ + ? ? + + +
? ? ? ? ? ? ?
+ + ? ? ? ? ?
? ? ? ? ? ? ?


and

MB =



? ? − − − − −
+ + + + + + +
− − ? ? − − −
+ + + + + + +
? ? − − ? ? ?
? ? − − ? ? ?
? ? + + + + +


.

This example shows how the structural influence matrix may be used to falsify
a model. Influence matrices are useful, indeed, both for diagnostics and model
validation: in fact, for instance, a structural sign of a matrix entry that is conflicting
with experimental observations indicates that the model is not suitable for describing
the observed phenomenon.

In this case, it is interesting to notice that the two influence matrices are fully
consistent: there is no pair of corresponding entries having inconsistent signs. The
influence matrix for model B is much more sign determined than that for model A,
hence the sensitivity of the steady-state to parameter variations is higher for the
“short distance shuttle” model.

7.6.4 An Enzymatic Cascade

While [GCFB15] was still under review, simultaneous work by Sontag [Son14a] was
presented at a conference. Using completely different methods, [Son14b, Son14a] deal
with a similar problem: determining the sign of global changes in steady states upon
perturbation of parameter values in individual modules, for biomolecular networks
formed by the interconnection of several subsystems, in the presence of conservation
laws that lead to stoichiometric constraints. The example of an enzymatic cascade is
proposed and discussed in [Son14b, Son14a], where the structural signs of steady-
state variations upon perturbation of total amounts of species are assessed based on
the procedure by Sontag. The same results can be obtained based on the methods
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proposed in [GCFB15] and presented in this chapter, which also allow to immediately
compute the structural influence matrix for the system; the example and its structural
analysis are reported here for the sake of completeness.

The chemical reactions proposed in [Son14b, Son14a]

E +M0

gem0−−−⇀↽−−−
ga

A
g∗a−⇀M1 + E, M1 +G

gm1g−−−⇀↽−−−
gb

B
g∗b−⇀M0 +G,

M1 +N0

gm1n0−−−⇀↽−−−
gc

C
g∗c−⇀ N1 +M1, F +N1

gfn1−−⇀↽−−
gd

D
g∗d−⇀ N0 + F,

along with the conservation laws

e+ a = ET , g + b = GT , f + d = FT ,

m0 + a+m1 + b+ c = MT , n0 + c+ n1 + d = NT ,

where the letters with the subscript T indicate the total amount of enzymes and
phosphatases, are equivalent to the reduced order ODE system

ȧ = gem0(ET − a,m0)− ga(a)− g∗a(a)

ḃ = gm1g(MT − a− b− c−m0, GT − b)− gb(b)− g∗b (b)
ċ = gm1n0(MT − a− b− c−m0, n0)− gc(c)− g∗c (c)
ḋ = gfn1(FT − d,NT − c− d− n0)− gd(d)− g∗d(d)

ṁ0 = −gem0(ET − a,m0) + g∗b (b) + ga(a)

ṅ0 = −gm1n0(MT − a− b− c−m0, n0) + gc(c) + g∗d(d)

together with the algebraic relationships

e = ET − a
f = FT − d
g = GT − b
m1 = MT − a− b− c−m0

n1 = NT − c− d− n0

The corresponding Jacobian matrix has the structure

J =


−(α + γ + δ) 0 0 0 β 0

−ε −(ε+ η + ϑ+ ζ) −ε 0 −ε 0
−κ −κ −(κ+ µ+ ν) 0 −κ λ
0 0 −ρ −(ξ + ρ+ σ + τ) 0 −ρ

α + γ ϑ 0 0 −β 0
κ κ κ+ µ τ κ −λ

 ,

with det(−J) > 0.
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The structural effect of perturbations affecting the total amount of species can
be computed as follows. The linearisation is of the form ẋ = Jx+Eu, y = Hx+ D̂u,
hence, based on the decomposition J = BDC, the structural sign can be determined
as

sign

(
det

[
−BDC −E
H D̂

])
.

The computation is straightforward, based on the techniques proposed so far, when-
ever the output is chosen as one of the variables of the reduced order system and
matrix (actually, vector) E depends on a single parameter. In fact, in this case D̂ = 0,
hence the parameter in vector E can be replaced by 1 (this is equivalent to dividing
the whole column by the parameter). When, conversely, either E depends on more

parameters (for instance, the choice u = MT leads to E =
[
0 ε κ 0 0 −κ

]>
) or

D̂ = 1 (as happens for the choice y = e when u = ET , y = f when u = FT , y = g
when u = GT , y = m1 when u = MT and y = n1 when u = NT ), then it is necessary
to provide a sort of BDC-decomposition for vector E as well, E = EbDEa, and to
compute

sign

(
det

[
−BDC −EbDEa
H D̂

])
.

Note that the above determinant is still a multi-affine function of the positive
parameters associated with the partial derivatives.

The structural influences obtained with the approach in [GCFB15] are fully
consistent with those in [Son14b, Son14a] and can be summarised as follows:

a {
b {
c {
d {
e {
f {
g {
m0 {
m1 {
n0 {
n1 {



ET︷︸︸︷
+
+
+
+
+
−
−
−
+
−
+

FT︷︸︸︷
−
−
+
+
+
+
+
−
−
+
−

GT︷︸︸︷
+
+
−
−
−
+
+
+
−
+
−

MT︷︸︸︷
+
+
+
+
−
−
−
+
+
−
+

NT︷︸︸︷
−
−
+
+
+
−
+
−
−
+
+


.

Important quantities that can be experimentally measured are the concentrations
of total active enzymes: m1 +b+c and n1 +d. Taking as an output ym = m1 +b+c =
MT − a−m0 and yn = n1 + d = NT − c− n0 and exploiting the technique discussed
above to handle the case of a direct dependency of the output on the input (D̂ 6= 0),
again the structural influences are consistent with those in [Son14b, Son14a]:
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ym {
yn {

[ ET︷︸︸︷
+
+

FT︷︸︸︷
+
−

GT︷︸︸︷
−
−

MT︷︸︸︷
+
+

NT︷︸︸︷
+
+

]
.

Moreover, with the method in [GCFB15] the influence matrix for the reduced
order system can be immediately computed:

M =


+ + − − + −
− + − − − −
− − + + − +
− − − + − −
? + − − + −
+ + ? + + +

 .

7.6.5 Perfect Adaptation
and Stoichiometric Adaptation

An interesting side result of the proposed approach is its ability to structurally
identify perfect adaptation, a property widely observed and studied in the literature
[YHSD00, DUR08, MTES+09, WSA12]. In this framework, in fact, a 0 influence
represents a structural perfect adaptation. This phenomenon may occur in two
different cases: the first is the trivial case in which there is no path leading from the
input to the output variable in the system graph (this corresponds to a reducible
Jacobian); the second is the case in which a path between the input and the output
variables exists and has a zero complement, resulting in zero complementary feedback.
[PL85, DLR02] An example of non-trivial structure that produces perfect adaptation
is given by stoichiometric adaptation.

A

B C D

a0

b0

Stoichiometric Adaptation

Figure 7.5: Example 7.10: a graph with stoichiometric adaptation.

Example 7.10. (Stoichiometric adaptation.) Consider the graph in Fig. 7.5, corre-
sponding to the reaction network

∅ a0−⇀ A, A+D
gad−−⇀ ∅, D

gd−⇀ ∅
∅ b0−⇀ B, A + B

gab−−⇀ C, C
gc−⇀ D
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A

B C D

a0

b0

E F G

(a)

A

B C D

a0

b0

(b)

A

B C D

a0

b0

(c)

A

B C D

a0

b0

(d)

A

B C D

a0

b0

E

(e)

Figure 7.6: The stoichiometric adaptation module can be immersed in a generic network, as shown
in (a), provided that no other reactions involve B or have C as a reagent. The networks in (b), (c)
and (d) are no longer perfectly adaptive, while the network in (e) still exhibits perfect adaptation.

and to the system 
ȧ = −gab(a, b)− gad(a, d) + a0

ḃ = −gab(a, b) + b0

ċ = gab(a, b)− gc(c)
ḋ = gc(c)− gad(a, d)− gd(d)

with b0 > a0. The corresponding Jacobian matrix has the structure

J =


−(α + µ) −β 0 −ν
−α −β 0 0
α β −γ 0
−µ 0 γ −(ν + δ)

 ,
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with det(−J) > 0, and the proposed algorithm allows to verify that, if variable c is
considered as an output, there is perfect adaptation in response to a persistent input
applied to any of the variables, except for b and c itself. In fact, the influence matrix
is

M =


+ − − −
− + + +

0 + + 0
− + + +

 .
Actually, it can be seen that such a structure corresponds to the presence of an
integrator. Indeed, at the equilibrium, gc(c̄) = b0. Hence, if the variable w = b + c
is considered, its derivative ẇ = b0 − gc(c) is zero at the equilibrium. Likewise, by
considering w = c+ d, it can be noticed that ẇ = gab(a, b)− gad(a, d)− gd(d) is zero
at the equilibrium. The presence of the stoichiometric-adaptation motif (squared in
Fig. 7.5 and corresponding to the reactions emphasised in boldface) in the system
graph always ensures perfect adaptation, provided that no other reactions involve
species B or have species C as a reagent (additional reactions where C is a product
do not alter the perfect adaptation property). The reaction network in Fig. 7.6 (a) is
an example. For instance, it can be seen that if either the reaction B −⇀ ∅, or D −⇀ B,
or C −⇀ ∅ is added, then the system no longer reveals perfect adaptation; while, if
E −⇀ C is added, variable c is still perfectly adaptive with respect to persistent inputs
applied to a or to d (see Fig. 7.6 (b)-(e)).

Note that the presence of the stoichiometric-adaptation motif is sufficient, but
not necessary for perfect adaptation. Two examples of systems exhibiting perfect
adaptation without including the stoichiometric adaptation module are discussed in
the next example.

Example 7.11. Verdi4. The chemical reaction network in Fig. 7.7, left,

∅ b0−⇀ B
gb−⇀ A, B + C

gbc−⇀ A, A
ga−⇀ D, C +D

gcd−⇀ ∅, ∅ c0−⇀ C,

where the stoichiometric adaptation condition is violated by the presence of the
reaction B

gb−⇀ A, correspond to the system
ȧ = gb(b) + gbc(b, c)− ga(a)

ḃ = −gb(b)− gbc(b, c) + b0

ċ = −gbc(b, c)− gcd(c, d) + c0

ḋ = ga(a)− gcd(c, d)

with 2b0 > c0 > b0, whose Jacobian matrix is

J =


−α β + η γ 0
0 −(β + η) −γ 0
0 −η −(γ + ε) −δ
α 0 −ε −δ

 .
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It can be checked that det(−J) > 0 and the influence matrix is

M =


+ + 0 0
+ + − +
− − + −
+ + − +

 ,
which shows that the variable a is still perfectly adaptive with respect to persistent
inputs applied to variable c or d.

C

B A D

c0

b0

(a)

D

C

A

B
b0

d0

c0

(b)

Figure 7.7: The graphs of the systems in Example 7.11: Verdi4 (left) and Wagner4 (right).

Wagner4. The system
ȧ = gb(b) + gbc(b, c)− ga(a)

ḃ = −gbc(b, c)− gb(b) + b0

ċ = −gbc(b, c)− gcd(c, d) + gb(b) + c0

ḋ = ga(a)− gcd(c, d) + d0

with 2b0 + d0 > c0 > d0, associated with the reactions

∅ b0−⇀ B
gb−⇀ A+ C, B + C

gbc−⇀ A, A
ga−⇀ D, C +D

gcd−⇀ ∅, ∅ c0−⇀ C, ∅ d0−⇀ D

(see the graph in Fig. 7.7, right), has a Jacobian matrix with the structure

J =


−α β + δ γ 0
0 −(β + δ) −γ 0
0 β − δ −(γ + ζ) −ε
α 0 −ζ −ε

 .
It can be checked that det(−J) > 0; interestingly, the influence matrix is exactly the
same as in the previous case (hence, again, variable a exhibits perfect adaptation
whenever a persistent input is applied to variable c or d).

7.7 Remarks

An efficient numerical algorithm has been proposed to structurally assess the steady-
state input-output influence of a stimulus, regarded as a persistent input provided to
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a system, on a system variable, regarded as an output: this simply requires checking
the determinant of a matrix at a finite number of points (the vertices of the hypercube
defined by the space of parameters). Under asymptotic stability assumptions, the
steady-state influence can be used to describe the system response to a step input.
In the case of marginally stable systems, it can be used instead to describe the
system response to an impulsive input in the stoichiometric compatibility class, after
a suitable state transformation. The influence matrix summarises the steady-state
net influence on each variable due to an additive input persistently applied to a
single variable. In some cases, entries with indeterminate sign are found in the
influence matrix. Remarkably, several complex systems proposed in the literature
have a surprisingly small fraction of indeterminate entries, so revealing an intrinsic
robustness aspect in the system steady-state interactions.

Robust stability analysis may be a preliminary step for the application of the
proposed algorithm. It has been assumed that the equilibrium exists and is locally
stable. However, it may be necessary to check if this assumption holds. The existence
of an equilibrium is assured if the system solutions are bounded. Some structural
boundedness criteria have been suggested in Chapter 6, based on [BG14], along
with stability criteria based on Lyapunov theory. Stability investigation can be
also carried out with the methodologies described in the book by [Bar94] (and
reported in Section 4.4.1). In fact, for a system admitting a BDC-decomposition,
the characteristic polynomial

det(sI −BDC) = p0(D) + p1(D)s+ p2(D)s2 + · · ·+ sn

has coefficients pi(D) which are multi-affine functions of the coefficientsDk. Therefore,
if reasonable bounds 0 < D−k ≤ Dk ≤ D+

k can be assumed for each coefficient Dk

(which is true based on the results in Section 4.3.1), then the graphical test based on
the Mapping Theorem provides a nice sufficient condition for robust stability.

An important extension of the proposed approach (and algorithm) would be the
inclusion of a priori information to determine structural influences. Consider for
instance the community matrix associated with a stable three-dimensional system
involving two species in competition, x1 and x2, preyed upon by a common predator
x3 ([Lev75], Figure 6b):

J =

 −a11 −a12 −a13

−a21 −a22 −a23

a31 a32 0

 .
Its influence matrix is

M =

 + − ?
− + ?
? ? ?

 .
Without any additional information, the entry M33 of the influence matrix is ‘?’.
However, if it is assumed that the system involving only the prey x1 and x2 is unstable,
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so that a11a22 < a12a21 (thus the overall system is stabilised by the presence of the
predator), then M̂33 =‘−’ and the influence matrix becomes

M̂ =

 + − ?
− + ?
? ? −

 .
Hence, a positive input to the predator population results in a steady-state decline
in the abundance of the predator itself, due to the instability of the competing-prey
subsystem.



8
Structural Classification of

Oscillatory and Multistationary
Biochemical Systems

Periodic and multistationary dynamics are relevant in several contexts, ranging
from engineering and physics to biology. When models and parameters are un-
certain, determining whether a system has the capacity to exhibit oscillations or
multistationarity can be difficult. As discussed in Chapter 5, this issue is particularly
pronounced for biological network models; hence, structural analysis is particularly
important, since it is crucial to predict or rule out potential dynamic behaviours of a
system independent of parameter values. In spite of considerable uncertainties, strong
conclusions on the admissible dynamic behaviours of a system can often be achieved
without detailed knowledge of its specific parameters, when a proper class of models is
considered. A rich literature, related to Thomas’ conjectures [Tho81], has focused on
systems with a sign-definite Jacobian, providing cycle-based parameter-free criteria
to identify potential oscillatory and multistationary dynamic outcomes.

This chapter reports the results in [BFG14], which considers dynamical systems
with sign-definite Jacobian, associated with non-autocatalytic biochemical networks,
and proposes a general, cycle-based classification of multistationary and oscillatory
behaviours, which summarises and integrates several existing results in the literature.
Distinguishing between transitions to instability due to a complex pair of eigenvalues
or to a real eigenvalue crossing the imaginary axis, a complete characterisation is
provided for candidate oscillatory and multistationary systems, based on the exclusive
or simultaneous presence of positive and negative cycles in the Jacobian sign graph
(where nodes are associated with species concentrations and arcs with signed Jacobian
entries). Necessary and sufficient conditions are achieved, relying on the ability of
locally scaling the independent entries of the Jacobian. This characterisation is
robust with respect to model uncertainties, because it depends exclusively on the
sign-definite Jacobian of the model, regardless of the chosen functions or parameters.

Although sign-definiteness of the system Jacobian is a strong requirement, it is
actually satisfied by some relevant models in biochemistry and biology, which can thus
be classified in the proposed framework. Significant molecular networks exhibiting
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oscillations or bistability fall in the categories of strong candidate oscillators or
multistationary systems; yet, in detailed models capturing the complexity of the
cellular environment, often either the Jacobian is not sign-definite, or both positive
and negative cycles are present (hence, both oscillatory and bistable behaviours are
in principle possible).

To address a wider class of systems, the proposed structural classification is ex-
tended, following [BFG15b], to provide necessary and sufficient structural conditions
for multistationarity and oscillations in aggregate monotone systems, defined as the
interconnection of stable monotone components. The characterisation is then based
on the presence of exclusively positive or exclusively negative cycles in the system
aggregate graph, whose nodes are associated with the monotone subsystems.

The classifications proposed in [BFG14, BFG15b] apply to in vitro biomolecular
networks such as those in [FFK+11, KWW06, KW11, MPS+11] and can thus aid the
design of tunable and robust artificial biomolecular networks that are structurally
well suited to achieve the desired dynamics.

8.1 Background

Understanding what interaction networks can generate multistationary and periodic
behaviours in dynamical systems is fundamental in many different contexts; in
particular, in the area of systems and synthetic biology, it is relevant both when
analysing biochemical networks naturally present in an organism [GGG+12, QNKS07]
and when building artificial networks to achieve target dynamics. Due to the
intrinsic variability and uncertainty of molecular systems, structural sources of
multistationarity and periodicity need to be identified, based on parameter-free
criteria. Many different tools have been employed to achieve structural conclusions
on the behaviour of biochemical systems. For chemical reaction networks governed
by mass-action kinetics, the zero deficiency theorem [Fei87] rules out the presence
of oscillations and multistationarity regardless of specific kinetic rates, while cycle
conditions associated with the presence of Hopf or saddle-node/pitchfork instability
have been proposed using species-reaction graphs [CF05, CF06b, LW10, Min11] and
algebraic geometry [DK09, DP12]. Chemical reaction networks are a very important
class of models, but phenomenological models are often preferred in biology when
pathways are not known in detail; and most criteria that apply for mass-action
kinetics cannot account for Michaelis-Menten or Hill type kinetics, or for qualitative
relationships. Graphical or algebraic conditions based on the Jacobian matrix enable
a qualitative analysis also when the precise stoichiometry of the interactions is
unknown. [MC08]

For generic systems with a sign-definite Jacobian, indeed, structural results
can be achieved by studying Jacobian graphs, where species concentrations (states
of the dynamical system) are associated with nodes and signed Jacobian entries
linking different states are associated with arcs. Criteria based on the presence of
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positive or negative cycles in the Jacobian graph have been proposed to explain
multistationarity and oscillations in molecular and chemical systems [TCM+08].
Well known mathematical conjectures in this area have been formulated by Thomas
[Tho81] (given a Jacobian graph, a negative cycle is a necessary condition for stable
periodic behaviour, while a positive cycle is a necessary condition for multistationarity;
see [DP12] for a very thorough survey) and proved in [Hir88, Gou98, Sno98], with
several further extensions and refinements [Sou04, KST07, BC09, RC11].

Proper design of feedback loops enables the successful creation of many artificial
biochemical networks exhibiting bistability [GCC00, ASMN03, KWW06, PFR12] or
oscillations [EL00, SCB+08, TMLSF09, KW11, MPS+11, FFK+11]. However, this
is extremely challenging in experimental systems; even in vitro artificial networks
[KW11, MPS+11, FFK+11] with a small number of components are affected by
unknown interactions that can create additional parasitic feedback loops of uncertain
strength. Structural criteria are needed to predict dynamic outcomes of networks
where several cycles (with potentially unknown magnitude) coexist.

Building on the vast literature flourished thanks to Thomas’ conjectures, a
structural classification of oscillatory and multistationary networks is proposed in
[BFG14], based on the exclusive or concurrent presence of positive and negative
cycles in the Jacobian graph. Non-autocatalytic systems having a sign-definite
Jacobian are considered, whose structure is identified with the sign pattern of
the Jacobian matrix and the corresponding directed graph. A structure can be
specified into a dynamic realisation by choosing a specific set of functions, along
with specific parameter values. Candidate dynamic behaviours are defined based
on the admissible types of transition to instability, occurring when the Jacobian
eigenvalues cross the imaginary axis due to a change in parameters. Multistationarity
is associated with a real eigenvalue transitioning to instability (i.e., changing sign
from negative to positive), while oscillatory behaviours are associated with a complex
pair of eigenvalues transitioning to instability (i.e., whose real part changes sign
from negative to positive) as parameter values change.

Weak (strong) candidate oscillators can possibly (exclusively) transition to in-
stability due to a complex pair of eigenvalues, while weak (strong) candidate multi-
stationary systems can possibly (exclusively) transition to instability due to a real
eigenvalue. Following [BFG14], it is shown that a system can be classified as a strong
candidate oscillator when all cycles in its structure are negative, as a weak candidate
oscillator if there exists at least one negative cycle in its structure. Similarly, a
system can be classified as a strong (weak) candidate multistationary system if its
structure presents exclusively positive cycles (at least one positive cycle). Proofs
rely on the topological degree theory (see [Hof90], along with the overview and
references suggested in Section 4.5 and in Appendix D) and on the properties of
sign-definite systems [MQ69]. The approach can be also used to characterise systems
affected by delays, which are often present in models of gene networks [Lew03]:
cycle-based sufficient conditions can be proposed to identify candidate oscillators
and multistationary systems in the presence of delays.
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Following [BFG15b], the classification is extended to the case of aggregate mono-
tone systems, defined as the interconnection of stable monotone subsystems. The
theory of monotone systems [Smi08, Son07] provides powerful robust analysis meth-
ods and simplifies the analysis of large, complex networks, which can be decomposed
into interconnections of input-output monotone subsystems [AS03]: monotonicity
(along with the existence of steady-state characteristics) facilitates the detection of
multistationarity in systems of arbitrary size [AFS04] and, accompanied by small-gain
conditions, provides necessary conditions for oscillations [AS08]. Many biochemical
systems are monotone [Son07], or can be regarded as the interconnection of mono-
tone subsystems: notable examples are the Cds-Wee1 network [AS03], the MAPK
pathway [Son07], the Goldbeter oscillator [AS08] in Drosophila. Monotonicity is a
property that can be verified without the exact knowledge of functional expressions
and system parameters: therefore, criteria relying on monotonicity are robust with
respect to modelling choices and parametric uncertainty.

Exploiting the fact that a monotone subsystem within a large network can be
regarded as a single element having a sign-definite input-output mapping, the classifi-
cation for sign-definite biochemical systems proposed in [BFG14] can be successfully
scaled to consider interconnections of monotone subsystems, rather than interconnec-
tions of a multitude of individual molecular species, providing structural necessary
and sufficient conditions for potential oscillatory and multistationary behaviours in
aggregate monotone systems. [BFG15b] Focusing on networks comprised of stable
monotone subsystems, strong candidate oscillators and multistationary systems can
be characterised based on the exclusive presence of negative or positive cycles in the
system aggregate graph; no strong conclusions can be drawn for aggregate graphs
where positive and negative cycles are concurrently present. The approach is valid
only for systems in which interactions between unconditionally stable monotone
components are independent, so that they can be independently scaled (although
this requirement is generally satisfied, interactions between bimolecular systems may
be coupled by retroactivity or competition for common cellular resources).

A simple example clarifies the relevance of the proposed classification.

Example 8.1. A nondimensional biomolecular model is considered in [BFG14],
accounting for transcription and translation of two genes, where proteins reciprocally
modulate their expression forming a feedback loop [EL00, KW11]:

{
ṙ1 = γ1 +H1(p2)− r1, ṗ1 = β1r1 − p1,

ṙ2 = γ2 +H2(p1)− r2, ṗ2 = β2r2 − p2,
(8.1)

where, for i = 1, 2, ri are RNA species concentrations, pi are protein concentrations,
Hi(·) are Hill functions, and all Greek letters denote reaction rates that are constant
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positive scalars. The system can be rewritten as
ṙ1

ṗ1

ṙ2

ṗ2

 =


−1 0 0 0
β1 −1 0 0
0 0 −1 0
0 0 β2 −1



r1

p1

r2

p2

+


γ1 +H1(p2)

0
γ2 +H2(p1)

0

 = M̃


r1

p1

r2

p2

+ H̃(p1, p2),

to evidence global boundedness of the two-gene system trajectories. In fact, M̃ is an
asymptotically stable matrix and H̃(p1, p2) is a bounded quantity, ‖H̃(p1, p2)‖ ≤ η.
The right-hand side of the equation is given by the sum of a linear term and a
globally bounded nonlinear term. If the nonlinear part is neglected, an asymptotically
stable linear system is achieved, which admits a global quadratic Lyapunov function
V (x) = x>Px, where M̃>P + PM̃ = −Q, with Q positive definite. Hence, all of
the system solutions are globally ultimately bounded in an ellipsoidal set of the form
x>Px ≤ k, for some k > 0 which depends on P , Q and η (see [Kha02, BM15]).

Depending on the regulatory action of the proteins, hence on the type of Hill
functions, the network presents a different number of equilibria and different possible
dynamic behaviours.

Case (a):

H1(p2) = α1
pn2

1 + pn2
and H2(p1) = α2

pn1
1 + pn1

.

A two-gene positive feedback loop is obtained, often encountered in developmental
networks [Alo06, DRO+02], whose Jacobian is

J =


−1 0 0 ∂H1

∂p2

β1 −1 0 0
0 ∂H2

∂p1
−1 0

0 0 β2 −1

 , where
∂Hi

∂pj
= αi

npn−1
j

(1 + pnj )2
. (8.2)

The system is non-autocatalytic: there is spontaneous degradation of each species,
hence the diagonal terms of the Jacobian are negative. Moreover, all of the Jacobian
entries, evaluated at a positive equilibrium, are sign definite: they do not change
sign for arbitrary choices of the (positive) parameters αi, βi and n. Therefore, the
Jacobian sign pattern is a structural property of this system and can be associated with
a graph, where nodes correspond to the concentrations of biochemical species and are
interconnected by positive (+1) or negative (−1) arcs according to the corresponding
Jacobian entries,1 as shown in Fig. 8.1 (a).

The characteristic polynomial is

p(s) = (s+ 1)4 −K, with K = β1β2
∂H1

∂p2

∂H2

∂p1

> 0.

1Only the sign of each Jacobian entry is considered as the weight of the corresponding arc in
the graph.
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lation (overall negative cycle).

Figure 8.1: Graphs corresponding to different regulatory actions in the two-gene system (8.1).

As shown in [BFG14], for n = 1 there is a single positive equilibrium, while for n > 1
the system admits multiple (typically three) positive equilibria. The stability properties
of an equilibrium can be examined based on the eigenvalues of the Jacobian matrix,
which are the roots of its characteristic polynomial; when the parameters change,
these roots change accordingly. If instability occurs, then it is due to a single real
root which becomes positive: in fact, if K > 1, there is a single root having positive
real part, and it is on the real axis, while, if K < 1, all of the roots have negative
real part. Therefore, the system can only admit real (exponential) instability, arising
due to a real eigenvalue changing sign from negative to positive. The transition to
instability of the equilibrium is associated with the appearance of new equilibria.

Case (b):

H1 = α1
1

1 + pn2
and H2 = α2

1

1 + pn1
.

System (8.1) represents a two-gene double negative feedback loop, depicted in Fig. 8.1
(b), also known as toggle switch (a synthetic biological example is in [GCC00]; a
natural example is the Cdc2-Wee1 network [AS03]). The same analysis performed
for the two-gene double positive feedback loop can be repeated, getting similar results
in terms of admissible transitions to instability, which can be only real (exponential),
regardless of the considered equilibrium.

Case (c):

H1 = α1
pn2

1 + pn2
and H2 = α2

1

1 + pn1
.

When Hill functions have opposite regulatory roles, the network can behave as a
two-gene oscillator [KW11]. The Jacobian is still a sign-definite matrix; however,
∂H1

∂p2
and ∂H2

∂p1
have opposite signs, due to the different slopes of the Hill functions,

hence generate an overall negative feedback loop, as shown in Fig. 8.1 (c). The
characteristic polynomial is

p(s) = (s+ 1)4 +K, with K > 0.
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The equilibrium conditions now admit a single intersection regardless of the value of
αi, βi, and n, as is graphically shown in [BFG14]; since in this case K < 0, all of
the Jacobian eigenvalues are complex, hence only oscillatory unstable dynamics can
arise (and do arise when K < −4). In fact, for any given value of n there is only
one equilibrium, whose stability properties can change depending on the values of αi
and βi.

For details, the reader is referred to [BFG14], where equilibrium conditions and
example trajectories in the p1 − p2 plane of the phase space are shown for different
values of n in each of these three cases.2

The structural analysis of the simple two-gene system in Example 8.1 shows that,
even without a precise knowledge of the involved functions, very strong conclusions
on the possible dynamic behaviours of the system can be reached, independent of
specific functions or parameter choices. In particular, a strong relationship has been
highlighted between the presence of positive or negative cycles in the graph associated
with the system and admissible transitions to instability.

8.2 Structural Classification

Consider the dynamical system

ẋ = f(x), x ∈ Rn, (8.3)

where f(·) is continuously differentiable in all its components fi(·), i = 1, ..., n, and
may be any function satisfying the following assumptions.

Assumption 8.1. All the solutions of system (8.3) are globally uniformly asymptot-
ically bounded in a ball S.

As a consequence, the system admits an equilibrium point x̄ in S (as discussed
in Section 4.5; [Srz85], see also [RW02, RW04]).

Assumption 8.2. For each component fi(·), ∂fi/∂xj is either always positive, always
negative, or always null in all the considered domain.

Assumption 8.3. The system is non-autocatalytic, i.e., for all i, ∂fi/∂xi < 0.

In the sequel, it will be always assumed that the above hypotheses are satisfied.

Since fi(·) is monotonic (either non-increasing or non-decreasing) with respect to
each argument, the Jacobian of system (8.3) is sign definite.

2A qualitatively similar study was carried out and validated by building synthetic bacterial
circuits in [ASMN03], where analysis relied on the S-systems formalism [SV87].



170 8. Structurally Oscillatory and Multistationary Biochemical Systems

Definition 8.1. Given a system with a sign-definite Jacobian, its structure is the
sign pattern matrix Σ = sign(J). Matrix Σ can be associated with a directed n-node
graph, whose arcs are positive (+1), negative (−1), or zero depending on the sign of
the corresponding matrix entries.

Graph examples are provided in Fig. 8.1.

Definition 8.2. A realisation of the system structure Σ is given by any choice of
functions fi(·), along with specific parameter values,3 which is compatible with Σ.

For example, the structure corresponding to the two-node double positive feedback
loop is

Σ =


− 0 0 +
+ − 0 0
0 + − 0
0 0 + −

 , (8.4)

associated with the graph shown in Fig. 8.1 (a), while the specific model considered in
Example 8.1 and its Jacobian matrix (8.2) are a possible realisation of this structure.

According to the definition proposed in Chapter 2, a property is structural if
it is satisfied by any system with a given structure, independently of the specific
realisation [BF11b]. Hence, a property is not structural if there exists at least one
realisation which does not satisfy the property.

Definition 8.3. Given a graph, a cycle is an oriented, closed sequence of distinct
nodes connected by distinct directed arcs. A cycle is negative (respectively, positive)
if the number of negative arcs is odd (respectively, even). The order of the cycle is
the number of arcs involved in the cycle.

For example, all of the two-gene networks in Example 8.1 have a single cycle; the
double positive feedback system and the toggle switch exhibit an overall positive
cycle, while the two-nodes oscillator presents an overall negative cycle.

Definition 8.4. System (8.3) with structure Σ is critical iff all the negative cycles
of its structure (if any) are of order two.

Non-critical systems are considered here; the validity of the proposed results for
possibly critical structures is briefly discussed in Section 8.2.1.

To define the concept of transition to instability, consider the parameter-dependent
dynamical system (satisfying Assumptions 8.1–8.3)

ẋ(t) = g(x(t), µ), x ∈ Rn, (8.5)

where µ is a real-valued parameter and g(·, ·) is a sufficiently smooth function,
continuous in µ, satisfying all of the previously stated assumptions for every value

3Clearly, the choice of fi(·) and its parameters uniquely determines the entries of the Jacobian
matrix Jij = [∂fi/∂xj ].
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of µ. The structure Σ of system (8.5) is assumed to be invariant with respect to
µ. Assumption 8.1 ensures that an equilibrium exists; all the following definitions
refer to this equilibrium, which is, in general, a function of µ: g(x̄µ, µ) = 0. It is
assumed that x̄µ depends continuously on µ. A suitable change of coordinates always
allows to shift the equilibrium to the origin, without affecting the analysis. Indeed, if
z = x− x̄µ, then ż(t) = g(z(t) + x̄µ, µ) and g(z̄ + x̄µ, µ) = 0 for z̄ = 0. The Jacobian
matrix is unchanged, since ∂g

∂z

∣∣
z=0

= ∂g
∂x

∣∣
x=x̄µ

. This equilibrium translation will be

used in the following to simplify the notation.

Recall that a matrix is asymptotically stable if all its eigenvalues have a negative
real part, while it is (asymptotically) unstable if at least one of its eigenvalues has a
positive real part.

Definition 8.5. System (8.5) undergoes a Transition to Instability at µ = µ∗ iff its
Jacobian matrix J(x̄µ) is asymptotically stable in a left neighbourhood of µ∗, and
unstable in a right neighbourhood.4 A TI is simple if at most a single real eigenvalue
or a single pair of complex conjugate eigenvalues crosses the imaginary axis.

In principle, many eigenvalues could leave the stability region simultaneously.
However, since most systems have a dominant eigenvalue,5 non-simple TIs are unlikely
to occur.

Two types of simple TIs are considered, related to oscillatory and multistationary
dynamic behaviours.

Definition 8.6. System (8.5) undergoes an Oscillatory Transition to Instability
(OTI) at µ = µ∗ iff its Jacobian matrix J(x̄µ∗) has a single pair of pure imaginary
eigenvalues, while all the other eigenvalues have negative real part:

σ (J(x̄µ∗)) = {λ1, λ2, . . . , λn}, where λ1,2 = ±jω,

with Re(λk) < 0 for k > 2 and Re(λk) > 0 for k = 1, 2 in a right neighbourhood of
µ∗.

Definition 8.7. System (8.5) undergoes a Real Transition to Instability (RTI) at
µ = µ∗ iff its Jacobian matrix J(x̄µ∗) has a single zero eigenvalue, while all the other
eigenvalues have negative real part:

σ (J(x̄µ∗)) = {λ1, . . . , λn}, where λ1 = 0,

with Re(λk) < 0 for k > 1 and Re(λ1) > 0 in a right neighbourhood of µ∗.

4This definition holds for systems transitioning to instability from the right to the left neigh-
bourhood of µ∗ as well: it suffices to take µ̂ = µ∗ − µ as the bifurcation parameter.

5A dominant eigenvalue (or complex pair of eigenvalues) has real part larger than any other
eigenvalue of the system and substantially characterises the dynamic behaviour.
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When an RTI occurs, the determinant of the Jacobian changes sign as the
parameter crosses the stability limit. Indeed, the characteristic polynomial can
be factored out as pµ(λ) = [λ− z(µ)]p̃µ(λ), with p̃µ(λ) having roots with negative
real part in a neighbourhood of µ = µ∗. Then z(µ) < 0 for µ < µ∗, in view of
the stability assumption, and z(µ) > 0 for µ > µ∗. Since the constant term is
pµ(0) = −z(µ)p̃µ(0) = − det[J(x̄µ)], the determinant changes sign at µ∗. As shown
later in Corollary 8.2, under overall boundedness assumptions, this implies that
an RTI causes the appearance of new equilibrium points. This is not the case
for OTIs. These concepts are related to bifurcation theory (see Section 2.3.4 and
[Str94, AP95, Kuz98, Mei07]): typically, RTIs are associated with zero-eigenvalue
bifurcations [Str94], while OTIs are related to Andronov-Hopf bifurcations. Formally,
however, additional assumptions are required for these bifurcations to occur, which
complicates their mathematical analysis (a sample of this is provided in Section 2.3.4).

Consider now a system of the form (8.3), under Assumptions 8.1, 8.2 and 8.3,
with a given structure Σ defined as the sign pattern matrix associated with the
system Jacobian.

Remark 8.1. An alteration of (8.3) is a system of the form (8.5), such that for
µ = µ0, g(x, µ0) = f(x) and for µ 6= µ0 the structure Σ is preserved, yielding the
equilibrium x̄µ.

To structurally assess the system capacity to exhibit multistability or oscillations,
the sign of the cycles in the corresponding directed graph can be examined. First of
all, general definitions need to be stated for candidate oscillatory and multistationary
systems. Based on these definitions, the necessary and sufficient conditions proposed
in [BFG14] link the presence of negative and positive cycles in a structure to the
oscillatory or multistationary nature of the system.

Definition 8.8. A system of the form (8.3), with structure Σ, is structurally

i) a candidate oscillator in the weak sense iff there exists an alteration (8.5) which
admits an OTI;

ii) a candidate oscillator in the strong sense iff, for any alteration (8.5), every
simple TI (if any) is an OTI;

iii) a candidate multistationary system in the weak sense iff there exists an alter-
ation (8.5) which admits an RTI;

iv) a candidate multistationary system in the strong sense iff, for any alteration
(8.5), every simple TI (if any) is an RTI.

A weak candidate oscillator admits an unstable equilibrium point where trajec-
tories spiral out of the equilibrium with oscillatory dynamics. A strong candidate
oscillator admits transitions to instability exclusively of oscillatory nature. The
two-gene oscillatory system described in Example 8.1 is a strong candidate oscilla-
tor, since unstable dynamics can arise only in association with complex conjugate
eigenvalues, hence must be oscillatory. Conversely, a weak candidate multistationary
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Candidate oscillator Candidate multistationary

Weak A negative cycle exists A positive cycle exists
Strong All cycles are negative All cycles are positive

Table 8.1: Table summarising the structural cycle-based classification of candidate oscillators and
multistationary systems. [BFG14, BFG15b]

system admits unstable behaviours due to a real unstable eigenvalue. A strong
candidate multistationary system can admit solely unstable dynamics due to a real
unstable eigenvalue. In Example 8.1, both the two-gene double positive feedback loop
and the toggle switch are strong candidate multistationary systems, since unstable
dynamics can arise only due to a real unstable eigenvalue.

Necessary and sufficient conditions can be provided that characterise candidate
oscillators and multistationary systems based on the sign of the cycles in their
structure Σ: indeed, a system is a candidate oscillator in the strong sense iff all
the cycles are negative, in the weak sense iff there is at least one negative cycle;
conversely, a system is a candidate multistationary system in the strong sense iff all
the cycles are positive, in the weak sense iff there is at least one positive cycle. The
classification based on cycles in the system structure is summarised in Table 8.1.

Some of the proofs in [BFG14, BFG15b] are built with the following argument:
given a condition C on a structure associated with a system ẋ(t) = f(x(t)), to prove
that C is necessary for a certain structural property P to hold, it can be supposed
by contradiction that C is not satisfied by the structure. Then, it can be shown that
there always exists a realisation of the structure for which P does not hold.

To this aim, an alteration (8.5) of systems of the form (8.3) that leaves Σ
unchanged can be useful to find, given a structure, a realisation which satisfies a
property of interest. The proposed vector field alteration is achieved by means of
νκ,ε differential scaling maps. To simplify the notation, it is henceforth assumed that
the equilibrium is at zero.

Definition 8.9. A differential scaling map νκ,ε (see for example Fig. 8.2), where
κ, ε > 0 are real parameters, is a strictly increasing, continuously differentiable, odd6

scalar function, such that: {
νκ,ε(x) = x for |x| ≥ ε,
dνκ,ε(0)

dx
= κ.

Therefore, a differential scaling map νκ,ε has a scalable derivative at the origin
and is the identity function outside the infinity-norm ε-ball.

6A function is odd iff νκ,ε(−x) = −νκ,ε(x).
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Figure 8.2: Plot of the νκ,ε(x) differential scaling map in equation (8.6), with ε = 1, κ = 2 (red)
and κ = 0.5 (blue). [BFG14]

Example 8.2. [BFG14] For illustrative purposes, consider:

νκ,ε(x) =

{
x+ arctan[(κ− 1)x]

[
1−

(
x
ε

)2
]2

for |x| < ε

x for |x| ≥ ε
(8.6)

The derivative of function (8.6) inside the interval (−ε, ε) is

ν ′κ,ε(x) = 1 +
(κ− 1)

[
1−

(
x
ε

)2
]2

1 + (κ− 1)2x2
− 4

ε2
x arctan[(κ− 1)x]

[
1−

(x
ε

)2
]
, for |x| < ε,

while ν ′κ,ε(x) = 1 for |x| ≥ ε; ν ′κ,ε(x) > 0 is continuous and positive for all κ > 0, and
in x = 0 it is equal to κ as desired. This example function is plotted in Fig. 8.2.

Alteration by differential scaling maps νκ,ε. The alteration obtained by
composing the vector field f(x) and a differential scaling map νκ,ε results in the
transformation

ẋ = f(. . . , xi, . . . ) → ẋ = f(. . . , νκ,ε(xi), . . . ).

This operation:

a) does not alter the equilibrium x̄i = 0;
b) does not alter the sign of the Jacobian entries, i.e., the structure Σ of the

system;
c) changes the partial derivatives in xi = 0 as:

∂f(. . . , νκ,ε(xi), . . . )

∂xi

∣∣∣∣
xi=0

=
∂f(. . . , νκ,ε(xi), . . . )

∂νκ,ε

∂νκ,ε(xi)

∂xi

∣∣∣∣
xi=0

= κ
∂f(. . . , xi, . . . )

∂xi

∣∣∣∣
xi=0

;

d) does not alter ẋ = f(x) outside the ε-ball, hence preserves boundedness of the
system solution.
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If this alteration is applied to a vector field f(x) in a neighbourhood of the
origin as an equilibrium point, the elements of the Jacobian of f at x = 0 can
be arbitrarily scaled without changing the value of the equilibrium. Hence, νκ,ε
alterations can be used to independently scale the magnitude of desired cycles and
find, given a structure, a realisation that satisfies a property of interest. Even if
different parameters κi are used to scale different arcs, it may be always assumed
that κi(µ) are functions of a single parameter µ, consistently with (8.5).

The main results in [BFG14] can then be presented. The following proposition
provides a characterisation of weak candidate oscillators, exemplified in the literature
by the amplified negative feedback oscillators and incoherent oscillators described in
[NT08] and by the toggle-switch/oscillator circuit in [ASMN03].

Proposition 8.1. A non-critical system is a candidate oscillator in the weak sense
if and only if its structure has at least one negative cycle (necessarily of order greater
than two).

Proof. Necessity can be proved by showing that, if there are no negative cycles, OTIs
cannot occur.

First, consider structures corresponding to strongly connected graphs (namely,
graphs where each node is connected to any other by an oriented path). In this case,
as pointed out in [Son07], p. 68, the absence of directed negative cycles is equivalent
to the absence of undirected negative cycles, which in turn guarantees monotonicity
with respect to some orthant cone. Recall that a system is monotone with respect
to some orthant cone if and only if its Jacobian is a Metzler matrix (namely, has
non-negative off-diagonal entries), or becomes a Metzler matrix after a proper change
in the sign of some variables. [Smi08, Son07] Since any Metzler matrix has a real
dominant eigenvalue, any simple transition to instability is an RTI (therefore, the
system does not admit undamped oscillations).

If instead the graph is not strongly connected, it can be partitioned into strongly-
connected components: a node belongs to one (and only one) strongly-connected
component iff it is connected to all the nodes in that component by an oriented path,
and vice versa. If each strongly-connected component is collapsed into a single hyper-
node, then the arcs connecting hyper-nodes (i.e., connecting two nodes belonging to
two different strongly-connected components) cannot form cycles (see, for instance,
Fig. 8.3). Therefore, the graph composed by the M hyper-nodes corresponds to a
block-triangular matrix

G =


N11 0 . . . 0
L21 N22 . . . 0

...
...

. . .
...

LM1 LM2 . . . NMM

 ,
where Nii is the Jacobian matrix associated with the ith strongly-connected com-
ponent (and is therefore equivalent to a Metzler matrix), while Lij denotes the
interconnection between the ith and the jth strongly-connected components.
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Figure 8.3: Graph formed by the hyper-nodes associated with strongly-connected components,
corresponding to matrix (8.7).

For instance, the matrix corresponding to the graph in Fig. 8.3 is

G =


N11 0 0 0 0
L21 N22 0 0 0
L31 L32 N33 0 0
0 0 L43 N44 0
0 L52 0 0 N55

 (8.7)

Since matrix G is block-triangular, its spectrum is σ(G) =
⋃
i σ(Nii), where σ(Nii) is

the spectrum of Nii. Therefore the overall not-strongly-connected graph corresponds
to a matrix having a real dominant eigenvalue. This implies that any simple transition
to instability is an RTI.

Sufficiency can be proved exploiting νκ,ε differential scaling maps. If there exists
a single negative cycle of order greater than two, then a νκ,ε transformation can be
applied to all remaining cycles, scaling down the κ parameter until all the other
cycles are virtually eliminated: the interconnections are altered so that κij > 1 for
the arcs involved in the negative cycle, while small values κij � 1 are assigned to the
arcs not involved in the cycle. By reordering the nodes, a realisation can be always
found having a Jacobian whose characteristic polynomial is7

p(s) =
∏
i

(s+ βi)−
∏
i

γi,

having all positive coefficients because by assumption βi > 0, γi 6= 0 and
∏

i γi < 0
since the cycle is negative (details are in [BFG14]). Therefore the Jacobian has no
real non-negative eigenvalues, in view of Descartes’ rule of signs.

Then, the proof follows from the fact that any polynomial of order n > 2 of the
form

∏
i(s+ βi) + k has roots with positive real part for k > 0 large.8 (Conversely,

for n = 2 the two roots have negative real part and for n = 1 the root is real negative,
hence the system is always asymptotically stable.) Therefore, for large γi, some of the

7Since the eigenvalues of a matrix are continuous functions of the matrix entries (see for instance
[Wat07]), arbitrarily small entries can be neglected when computing the characteristic polynomial.

8This can be seen by building a Routh-Hurwitz table or by means of standard root locus
techniques (see for instance [GK09]).
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(necessarily complex) eigenvalues have positive real part (while all of the eigenvalues
have negative real part for suitably small γi), hence there is always a realisation
yielding an OTI.

A characterisation of strong candidate oscillators, exemplified by the repressilator
circuit [EL00] and the negative feedback oscillator models in [NT08], is provided in
the following proposition.

Proposition 8.2. A non-critical system is a candidate oscillator in the strong sense
if and only if its structure has only negative cycles.

Proof. Necessity can be proved by assuming that there is a positive cycle in the
structure and applying the νκ,ε differential scaling map, thus enhancing the positive
cycle and scaling down arbitrarily close to zero all the other cycles. Proceeding as in
the sufficiency part of the proof for Proposition 8.1, the characteristic polynomial of
the realisation can be found as

p(s) =
∏
i

(s+ βi)−
∏
i

γi,

where
∏

i γi > 0, since the cycle is positive. Therefore, a realisation can be destabilised
by driving one real root to cross the imaginary axis through the origin, generating
an RTI.

The sufficiency proof employs algebraic tools from [MQ69] to prove that a
structure with only negative cycles can solely present complex unstable eigenvalues.
If the structure (sign pattern matrix associated with the Jacobian) has only negative
cycles, the characteristic polynomial is

p(s) = det(sI − J) =
n∑
i=0

pks
k, (8.8)

where pn = 1, because the characteristic polynomial is always monic, and

pk =
∑
i

∆
(k)
i (−1)k,

where ∆
(k)
i are all the leading minors of order k of the Jacobian. Consider the

following property, from Theorem 3.1 in [MQ69].

Property 8.1. Given a matrix M with negative diagonal entries, such that all the
cycles in it are non-positive, each leading minor of M having order k has sign (−1)k.

This implies that all the coefficients of the characteristic polynomial p(s) are
positive, hence no real positive roots are admitted. Therefore, if the system is
destabilised, then a complex pair of eigenvalues with non-negative real part must
exist, leading to an OTI.
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The following corollary can be proved as a consequence of the topological degree
theory (outlined in Section 4.5 and Appendix D). This is a classical result due to
Thomas [Tho94], proved in [BFG14] for completeness.

Corollary 8.1. A strong candidate oscillator admits a single equilibrium.

Proof. If the system of interest is a strong candidate oscillator, then its structure
has only negative cycles. In view of the result proposed in [MQ69], the determinant
of a realisation matrix J(x) with only negative cycles, at any equilibrium point x̄,
satisfies:

sign[det(J(x̄))] = (−1)n,

where n is the system dimension. Moreover, sign[det(J(x̄))] does not change as a
function of x̄. Now, denoting the equilibria as x̄i, the topological degree theory
provides the equality (4.36), reported below for convenience, which holds for globally
bounded flows (see Theorem 4.7, corresponding to Lemma 2 in [Hof90]):∑

i

sign[det(J(x̄i))] = (−1)n. (8.9)

Since all the terms of the sum have the same sign, in the considered case, there must
be a single equilibrium.

The following proposition provides a characterisation of candidate weak multista-
tionary systems, examples of which include amplified negative feedback oscillators
and incoherent oscillators in [NT08], and again the toggle-switch/oscillator circuit in
[ASMN03].

Proposition 8.3. A non-critical system is a candidate multistationary system in
the weak sense if and only if its structure has at least one positive cycle.

Proof. Necessity (see also [Gou98] and [Sno98]) is immediate because, if there are
no positive cycles, then the system is a candidate oscillator in the strong sense: the
determinant of its Jacobian is never 0, therefore no 0 eigenvalues are admitted and
no simple RTI can occur.

Sufficiency can be proved by exploiting a νκ,ε differential scaling map. If a positive
cycle exists, it can be magnified by independent scaling of the Jacobian entries in a
realisation, so as to prove the existence of a realisation that admits a simple RTI.
Details are in [BFG14].

Strong candidate multistationary systems can be finally characterised. Examples
of these systems include the previously presented two-gene double positive feedback
and the toggle-switch architectures in [AS03, GCC00].

Proposition 8.4. A non-critical system is a candidate multistationary system in
the strong sense if and only if its structure has positive cycles only.
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Proof. Necessity can be proved by contradiction: if not all the cycles are positive,
then there exists a negative cycle. Hence, the system is a candidate oscillator in the
weak sense and a realisation can be found that exhibits an OTI.

Sufficiency can be demonstrated along the lines of the necessity part of the proof
of Proposition 8.1 (see [BFG14]): when all the cycles are positive, if the system
admits a simple transition to instability, it must be an RTI.

The two-gene positive feedback system and the toggle switch are also clear
examples of the next result.

Corollary 8.2. A strong candidate multistationary system, in which a simple RTI
occurs at µ∗, admits additional equilibria in a right (unstable) neighbourhood of µ∗.

If these additional equilibria are non-singular ( i.e., if the determinant of the
Jacobian is non-zero), then there are at least two additional equilibria.

If exactly two additional non-singular equilibria appear, and the Jacobian evalu-
ated at those points, J(x̄), has a single dominant eigenvalue (e.g., if the system is
irreducible), then these equilibria are asymptotically stable.

Proof. If the system is a candidate multistationary system in the strong sense, its
structure has only positive cycles and any simple transition to instability must be an
RTI. This means that, for any realisation, the determinant of the Jacobian changes
sign when the parameter µ crosses the critical value µ∗. For values µ < µ∗, the
characteristic polynomial must have a positive constant term, hence sign[det(J(x̄))] =
(−1)n. For values µ > µ∗, conversely, sign[det(J(x̄))] = −(−1)n. This means that
the equality in (8.9) cannot be true in a right neighbourhood of µ∗, unless additional
equilibrium points appear. If the additional equilibria are non-singular, i.e., they
have a non-singular Jacobian, they must be at least two for equality (8.9) to hold.

Assume now that exactly two additional equilibria appear, xU , xL, introduced
by the transition to instability, and the original equilibrium is x̄ = 0, unstable by
assumption. Then, it can be shown that xU ∈ U and xL ∈ L, where U and L
are positively invariant sets, such that the solutions originated in each of them are
bounded (details are in [BFG14]). The proof is concluded by invoking a known result
in the context of monotone systems (see, for instance [Jia91], page 458, Theorem
D): since the two equilibria are unique in the bounded sets U and L, they must be
stable.

8.2.1 Critical Systems

Non-critical systems have been considered so far in order to provide unified results.
Here the validity of the characterisation is examined for possibly critical systems.
Propositions 8.3 and 8.4, concerning candidate multistationary systems, hold for
critical systems as well. The assumption comes into play when the characterisation
of candidate oscillatory systems is considered.
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For critical networks, the sufficiency part of Proposition 8.1 does not hold: the
existence of negative cycles of order two does not assure that the system can oscillate.
Consider, for instance, the system{

ẋ1 = −b1x1 +H12(x2),

ẋ2 = −b2x2 +H21(x1),
(8.10)

where b1 and b2 are positive constants, while Hij are positive, bounded, monotonic
functions: H12 is non-increasing and H21 is non-decreasing, which ensures the
existence of a negative cycle. Then the system always admits a single, asymptotically
stable equilibrium point. Oscillations would be possible if b1 = b2 = 0, in contrast
with the assumption that negative self-loops must exist at each node. The necessity
part of Proposition 8.1 still holds: if there are no negative cycles, the system cannot
have equilibria with oscillatory instability.

In the presence of negative cycles only, instability must be oscillatory, hence
Proposition 8.2 still holds. However, some critical systems cannot be destabilised at
all, as is the case of (8.10).

If a critical system with only negative cycles (all of order two) were necessarily
stable, Proposition 8.1 could be extended as follows.

Conjecture: A system is a candidate oscillator in the weak sense if and only if it has
at least a negative cycle of order greater than two.

However, although the sufficiency part of this conjecture is true, the necessity
part is unfortunately false, as shown by a counterexample in [BFG14] (a system with
a positive cycle and a negative cycle of order two, which admits OTIs).

Finally, concerning critical systems, the following well-known result (see for
instance [EK05], Chapter 6.5) is worth recalling.

Proposition 8.5. If all the self-loops are negative, and all the other cycles are
negative and of order two, then any equilibrium of the system is stable.

8.2.2 Systems with Delays

Delay differential equations are often adopted to model molecular systems (e.g.,
transcription, processing and transport of mRNA in genetic networks and transport
of proteins across cellular membranes have been successfully captured by models
with explicit delays [HH11, Lew03]). Local, cycle-based sufficient conditions for OTIs
and RTIs can be stated in a wide class of systems affected by delays. Consider the
delay differential equation model

ẋ(t) = f(x(t), x(t− τ1), x(t− τ2), . . . , x(t− τM)). (8.11)
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Under standard differentiability assumptions, the corresponding linearised system
around an equilibrium point is

ξ̇(t) = A0ξ(t) +
M∑
k=1

Akξ(t− τk). (8.12)

Assume for simplicity that there are no delayed self-loops (i.e., matrices Ak have
zero diagonal entries for k ≥ 1). Then, stability is ensured if the roots of

det

[
A0 +

M∑
k=1

Ake
−τks − sI

]
= 0 (8.13)

have negative real part. Consider the auxiliary system with all delays set to 0:

ζ̇(t) =

[
A0 +

M∑
k=1

Ak

]
ζ(t) = Āζ(t). (8.14)

Matrix Ā is equal to the Jacobian that would be obtained by setting the delays
τi = 0 in system (8.11): ẋ(t) = f(x(t), x(t), x(t), . . . , x(t)). Since equilibria are
delay-independent, the delay-free system has the same equilibria as the delayed
system.

Graphs can be associated with systems (8.12) and (8.14), where nodes correspond
to species concentrations and signed, directed arcs correspond to the dynamic
interactions among species (delayed or not), defined by matrices Ak, k = 0, ...,M .
Any positive/negative cycle of (8.12) corresponds to a positive/negative cycle of
(8.14), because delays do not change the sign of the cycles.

Proposition 8.6. If the graph associated with system (8.12) has negative cycles
only, the system exclusively admits OTIs.

Proof. Assume by contradiction that the system admits a real transition to instability.
Hence, one root of equation (8.13) crosses the imaginary axis with value s = 0. Yet,
this turns out to be impossible if the system has only negative cycles (see [BFG14]
for details).

Proposition 8.7. If the graph associated with system (8.12) has positive cycles only,
the system exclusively admits RTIs.

Proof. In the absence of negative cycles (possibly with the exception of self-loops),
system (8.12) is a linear positive system with delay, hence matrix Ā in system
(8.14) is a Metzler matrix. A positive linear system with delays (with no delayed
self-loops) is stable if and only if its delay-free, auxiliary counterpart (8.14) is stable
[HC04, LYW10] (see also [WLCA10], Theorem 6.5). Then, if all its cycles are positive,
the auxiliary system (8.14) can transition to instability due to a pole in s = 0 only.
Details are in [BFG14].
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Since equilibria are delay-independent, if the auxiliary system presents multiple
equilibria, so does the delayed system. It is worth pointing out that Proposition 8.5
is not valid in the presence of delays: indeed, the presence of a delay in a second
order negative cycle may compromise stability.

8.3 Remarks

The presented theory can be easily extended to the case of systems restricted to
specific regions of the state space (such as the positive orthant, where biological
systems are typically confined), up to technical details; for instance, the possible
presence of equilibria on the boundary needs to be carefully handled (cf. Section 4.5).

Concerning the applicability of the presented results, it must be underlined that
they hold for systems in which interactions between nodes are independent. Hence,
they are not applicable to models with structural cross-constraints among functions
(for instance, models built using mass action kinetics). For instance, take the reaction

A
g−⇀ B. The dynamics of a will include a term −g(a), representing consumption of

A; the same term will appear, with opposite sign, in the dynamics of b. Constraints
are therefore present, which do not allow to independently scale the magnitude of
the Jacobian entries.

Example 8.3. [BFG14] Consider the reactions

X0
1−⇀ X, X

gX−⇀ Y, Y
gY−⇀ Z, pX + Z

gXZ−−⇀ ∅,

where all the reaction rates are increasing functions, corresponding to the differential
equation model 

ẋ = x0 − gX(x)− pgXZ(x, z)

ẏ = gX(x)− gY (y)

ż = gY (y)− gXZ(x, z).

The Jacobian

J =

 −(α + pµ) 0 −pν
α −β 0
−µ β −ν

 ,
where, for a fixed equilibrium, all Greek letters represent positive constants, has
dependent entries. Although it presents both negative and positive cycles, this structure
may only undergo oscillatory transitions to instability (hence, it is a candidate
oscillator in the strong sense). In fact, the characteristic polynomial has only positive
coefficients and cannot admit real positive roots. This is not in contradiction with
the presence of the positive cycle 1 → 3 → 1 and does not invalidate the results
in this chapter. Simply, the proposed classification does not apply to systems with
cross-constraints among Jacobian entries (such as the fact that J22 = −J32).
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Figure 8.4: Sketch of a portion of an aggregate monotone system: the interconnection of monotone
subsystems (8.15)-(8.16) (left) and the corresponding graph, where each monotone subsystem is
collapsed in a single node (right).

For systems with cross-constrained dynamics, algorithmic and numerical methods
(as those based on the BDC-decomposition, presented in Chapters 6 and 7) can
be a much preferable approach to discriminate admissible transitions to instability.
Sufficient conditions for potential oscillations (and perfect adaptation) in systems
with cross-constrained Jacobian entries based on the system BDC-decomposition
have been proposed in [BFG12], see Section 5.4.

8.4 Oscillations and Multistationarity
in Monotone Aggregates

Following [BFG15b], the structural results in [BFG14] can be extended to aggregate
systems that are composed of stable monotone components.

Precisely, an aggregate system is the interconnection of N subsystems

żi(t) = Fii(zi(t)) +
∑
j∈Ji

Gij(wij(t)), (8.15)

wki(t) = Hki(zi(t)), k ∈ Ki, (8.16)

where i = 1, ..., N , zi(t) is the state vector associated with subsystem i, wij ∈ R are
the subsystem inputs and wki ∈ R are its outputs. Subsystem i receives inputs from
subsystems j ∈ Ji, and sends an output to subsystems k ∈ Ki, where Ji and Ki are
the sets that index all the subsystems having respectively an upstream or downstream
connection with subsystem i (see Fig. 8.4). Assume that Fii(·), Gij(·) and Hki(·) are
sufficiently smooth functions. Function Gij(wij(t)) models the influence of subsystem
j on subsystem i through wij(t), output of subsystem j.

Assumption 8.4. The input-to-state mappings Gij are either non-decreasing or
non-increasing: wij ≥ ŵij implies either Gij(wij) ≥ Gij(ŵij), or Gij(wij) ≤ Gij(ŵij).

Assumption 8.5. Functions Hij(zj) are non-decreasing.
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Assumption 8.5 enables a simplified analysis without being restrictive: negative
interconnection trends among subsystems can be captured by the input functions
Gij(wij). For example, consider a generic subsystem 1 and the influence of subsystem
2 on 1 given by w12:

ż1 = F11(z1) +G12(w12), w12 = H12(z2),

with H12 decreasing. The overall interaction depends on the monotonic compound
function G12 ◦H12, and the decreasing trend can be accounted for with a simple sign
change: ŵ12 = −w12. The net effect remains unchanged:

ż1 = F11(z1) +G12(ŵ12), ŵ12 = H−12(z2),

where H−12(ω)
.
= −H12(ω) is now increasing.

Definition 8.10. Subsystem (8.15)-(8.16) is unconditionally stable iff, for constant
input values w̄ij, it admits a single equilibrium z̄i, which is the solution of

0 = Fii(z̄i) +
∑
j∈Ji

Gij(w̄ij), w̄ki = Hki(z̄i), (8.17)

and such an equilibrium is asymptotically stable (all of the eigenvalues of the Jacobian

Ji = ∂Fii
∂zi

∣∣∣
z̄i

have a negative real part).

With a slight abuse of notation, a system that is either monotone, or anti-
monotone is called simply monotone. The definition already given in Chapter 2
(where, however, the distinction between monotone and anti-monotone systems is
made) is here reminded.

Definition 8.11. Subsystem (8.15)-(8.16), with inputs wij, is input-to-state mono-
tone iff, for wij(t) ≥ w̃ij(t) ∀ j ∈ Ji, either zi(0) ≥ z̃i(0) =⇒ zi(t) ≥ z̃i(t), t ≥ 0,
or zi(0) ≤ z̃i(0) =⇒ zi(t) ≤ z̃i(t), t ≥ 0.

Assumption 8.6. The considered aggregate systems are composed of subsystems
(8.15)-(8.16), each unconditionally stable as in Definition 8.10 and input-to-state
monotone as in Definition 8.11.

Given an input-output monotonicity characterisation for all the subsystems, each
subsystem can be collapsed into an equivalent aggregate node. Then an aggregate
graph can be defined (cf. Fig. 8.4, right), whose nodes correspond to the aggregate
nodes, and whose signed arcs represent the influence of subsystem j on subsystem i.
The sign of each arc depends on the trend of the associated input-to-state mapping
Gij(wij): positive (resp. negative) arcs are associated with non-decreasing (resp.
non-increasing) mappings.

Based on the cycles formed by the arcs connecting aggregate nodes in the aggregate
graph, structural oscillatory and multistationary behaviours can still be classified,
by providing necessary and sufficient conditions for an aggregate monotone system
to be a strong candidate oscillator (every transition to instability is an OTI) or a
strong multistationary system (every transition to instability is an RTI).



8.4. Oscillations and Multistationarity in Monotone Aggregates 185

Theorem 8.1. Consider an aggregate system, formed by the interconnection of
strongly connected9 subsystems of the form (8.15)-(8.16), satisfying Assumptions 8.4,
8.5 and 8.6. The aggregate system is structurally a candidate

i) oscillator in the strong sense iff all the cycles in the aggregate graph are negative;
ii) multistationary system in the strong sense iff all the cycles in the aggregate

graph are positive.

Remark 8.2. Positive cycles are generally present within the monotone subsystems.
However, if all the cycles in the aggregate graph are negative, the aggregate system is
not a weak candidate multistationary system, due to the assumption of unconditional
stability for each subsystem.

In order to prove Theorem 8.1, a preliminary lemma is needed.

Given an aggregate system, under the assumptions of Theorem 8.1, for constant
input values w̄ij, each subsystem admits a single equilibrium z̄i, which is implicitly
defined by the steady-state condition (8.17) and is globally asymptotically stable.
Define

Aii =
∂Fii
∂zi

∣∣∣∣
z̄i

, Bij =
∂Gij

∂wij

∣∣∣∣
w̄ij

, Cki =
∂Hki

∂zi

∣∣∣∣
z̄i

.

In the corresponding aggregate graph, whose nodes are associated with the monotone
subsystems, the sign of the directed arc connecting subsystems j and i depends on
the trend of function Gij(wij), i.e., on the sign of Bij.

Lemma 8.1. If the steady-state input-to-output mapping in system (8.15)-(8.16) is
monotone, then the input-to-output mapping between each pair (wij, wki) is implicitly
defined by (8.17), and

∂wki
∂wij

= −CkiA−1
ii Bij

is either a positive or a negative scalar, depending on the sign of the elements of Bij.

Proof. As a consequence of monotonicity and unconditional stability, Aii is an
asymptotically stable Metzler matrix. Therefore, all the entries of its inverse A−1

ii

are non-positive. Due to Assumption 8.5, Cki has non-negative elements, while
Assumption 8.4 ensures that Bij has all non-negative elements or all non-positive
elements, depending on the type of interaction. Hence, the sign of ∂wki/∂wij depends
on the sign of Bij only.

9Recall that a graph is strongly connected if an oriented path exists connecting each pair of
nodes.
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Proof of Theorem 8.1

i): Sufficiency requires showing that, if exclusively negative cycles are present in
the aggregate graph, then the Jacobian of the system cannot have real non-negative
eigenvalues (hence, only oscillatory destabilisation is possible); i.e., denoting by A
the Jacobian of the aggregate system,

det(λI − A) 6= 0 ∀ λ ∈ R, λ ≥ 0.

By contradiction, assume that A admits a real non-negative eigenvalue λ. Denot-
ing the ith linearised subsystem by

ζ̇i(t) = Aiiζi(t) +
∑

j∈Ji Bijωij(t), ωki(t) = Ckiζi(t),

any eigenvalue λ must satisfy the equation

λζi = Aiiζi +
∑
j∈Ji

Bijωij,

where ζ = [ζ1 · · · ζi · · · ζN ]> is the associated eigenvector. Hence,

ζi = −(Aii − λI)−1
∑
j∈Ji

Bij ωij,

where all the elements of (Aii − λI)−1 are non-positive because of monotonicity. In
fact, Aii is a stable Metzler matrix; (Aii−λI) is still a stable Metzler matrix, because
λ ≥ 0; thus all the elements of (Aii − λI)−1 are non-positive.

Then, for all k ∈ Ki,

ωki =
∑
j∈Ji

−Cki(Aii − λI)−1Bij ωij =
∑
j∈Ji

πikj ωij, (8.18)

where πikj
.
= −Cki(Aii − λI)−1Bij are scalars. Equations (8.18) are linear in ωij and

can be compactly rewritten as
ω = Πω, (8.19)

where ω is a vector including all the arc variables ωij , which define the interconnections
in the aggregate system. In the aggregate graph, the sign of the arc from node i to
node k depends on the sign of πikj = −Cki(Aii − λI)−1Bij. Therefore, matrix Π in
(8.19) has the same cycles as the Jacobian A of the aggregate system. Let ΣΠ be the
sign matrix corresponding to Π. Every cycle in the aggregate graph corresponds to a
cycle in matrix ΣΠ. For example, the sign matrix ΣΠ associated with the aggregate
graph in Fig. 8.5, left, is a 5× 5 matrix, since there are 5 arcs. If the arc variables
are ordered as ω = [ω21 ω32 ω43 ω14 ω24]>, then

ΣΠ =


0 0 0 − 0
+ 0 0 0 −
0 + 0 0 0
0 0 + 0 0
0 0 + 0 0

 . (8.20)
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Figure 8.5: Left: aggregate graph corresponding to the sign matrix (8.20). Right: aggregate graph
with emphasis on the selected positive cycle (solid); excluded arcs are dashed, light gray.
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Figure 8.6: Rules for determining the sign of interactions in matrix ΣΠ.

The sign of the interaction depends on that of the incoming arc, related to Bij, as
shown in Fig. 8.6. Therefore, if all the cycles in the aggregate graph are negative, then
all the cycles in matrix ΣΠ are negative as well. Then Property 8.1, from Theorem
3.1 in [MQ69], can be exploited. Since all the cycles in Π, hence in (Π − I), are
negative, then sign [det(Π− I)] = ±1. Relation (8.19) is equivalent to (Π− I)ω = 0
and thus implies det(Π− I) = 0. Yet, if all the cycles are negative, det(Π− I) 6= 0,
hence (8.19) cannot be true for ω 6= 0. Therefore, the system cannot admit real
non-negative eigenvalues λ ≥ 0 and is a candidate oscillator in the strong sense.

i): Necessity can be proved by contradiction. Suppose that a positive cycle of
order m exists in the aggregate graph. Then, by means of νε,κ differential scaling
maps, the arcs connecting the aggregate nodes can be modified without compromising
stability of the monotone subsystems,10 scaling the κ parameter so as to enhance
the considered positive cycle only (κij = 1) and virtually exclude all the other arcs
(κij � 1). For instance, in the structure in Fig. 8.5, right, the cycle formed by
subsystems 1-2-3 can be selected and all the other arcs in the aggregate graph can
be neglected. By suitably reordering the nodes, a realisation can be found which
corresponds to a monotone system (see [BFG15b] for details). Hence, it has a real
dominant eigenvalue and can be destabilised only due to a real root which crosses the
imaginary axis through the origin, yielding an RTI. This contradicts the assumption;
therefore, only negative cycles can be present in the aggregate graph.

ii). Sufficiency: if positive cycles only are present in the aggregate graph, then

10It is not possible to scale up a single positive cycle inside a monotone subsystem in order to
induce an RTI, because parameter variations are assumed to preserve stability of each monotone
subsystem. Hence, only arcs connecting different subsystems can be scaled.
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the overall system is monotone (hence it has a dominant real eigenvalue and only
real destabilisation is possible). Necessity: if a negative cycle exists, then it can be
enhanced through a differential scaling map νκ,ε, as in the necessity proof of i), and
thus a realisation can be found that admits an OTI, contradicting the assumption.

8.5 Examples of Oscillatory and Bistable
Biomolecular Systems

Nature provides many excellent examples of aggregate monotone systems. For in-
stance, in the MAPK pathway, each stage of the phosphorylation cascade can be
regarded as an unconditionally stable monotone module [AFS04, FB13] and, depend-
ing on the active feedback loops, the network can generate bistable or oscillatory
behaviours [AFS04, SVB07, QNKS07, FB13].

Also, several artificial biochemical networks can be viewed as aggregate monotone
systems: monotonicity is often embedded by design in such networks, indeed, in view
of its structural nature [KWW06, KW11, BCFG14, MTF14]. Hence, the proposed
classification can be applied to structurally evaluate the behaviour of biomolecular
networks expressly engineered to exhibit either periodic or bistable dynamics. When
these artificial systems turn out to be candidate oscillators or multistationary systems
in the strong sense, this indicates that their bottom-up design is fundamentally sound.
Structural analysis, thus, reveals to be a powerful aid for streamlining the synthesis
of robust biochemical networks.

Oscillators

Example 8.4. Consider a model for an artificial oscillating system built with minimal
transcriptional modules, adapted from [KW11, FB12]. Genes X1 and Z1 produce
RNA species X3 and Z3, respectively; X1 is activated by species X2, while Z1 is
inhibited by species Z2. RNA Z3 inhibits active X1, while X3 activates inhibited Z1.
The system can be described by the following chemical reactions (species marked by a
∗ are inactive compounds).

X3 + Z∗1
αz−⇀ Z1 X2 +X∗1

αx−⇀ X1

Z1
βz−⇀ Z3 + Z1 X1

βx−⇀ X3 +X1

Z2 + Z1
δz−⇀ Z∗1 Z3 +X1

δx−⇀ X∗1

∅ z20−⇀ Z2
ρz−⇀ ∅ ∅ x20−−⇀ X2

ρx−⇀ ∅
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with mass conservation constraints xtot1 = x1 +x∗1, ztot1 = z1 +z∗1. The system obtained
by using the law of mass action is

ż1 = αz(z
tot
1 − z1)x3 − δzz1z2,

ż2 = z20 − ρzz2 − δzz1z2,

ẋ3 = βxx1 − αz(ztot1 − z1)x3,

ż3 = βzz1 − δxx1z3,

ẋ1 = αx(x
tot
1 − x1)x2 − δxx1z3,

ẋ2 = x20 − ρxx2 − αx(xtot1 − x1)x2.

The Jacobian of this system is sign-definite and, after the change of variables ẑ2 :=
−z2, ẑ3 := −z3, has the following structure:

−αzx̄3 − δz z̄2 δz z̄1 αz(z
tot
1 − z̄1) 0 0 0

δz z̄2 −δz z̄1 − ρz 0 0 0 0

αzx̄3 0 −αz(ztot1 − z̄1) 0 βx 0

−βz 0 0 −δxx̄1 δxz̄3 0

0 0 0 δxx̄1 −αxx̄2 − δxz̄3 αx(xtot1 − x̄1)

0 0 0 0 αxx̄2 −αx(xtot1 − x̄1)− ρx





This corresponds to the negative feedback of two monotone subsystems (z1-z2-
x3 and z3-x1-x2) which are unconditionally stable (the corresponding matrices are
irreducibly diagonally dominant with negative diagonal entries). Hence, the system
is a candidate oscillator in the strong sense. It is indeed the simplified model of a
biochemical circuit that, if driven to instability, exhibits sustained oscillations, as
shown in [KW11, FB12].

Example 8.5. A simplified model is proposed in [BCFG14] for an artificial oscillator
where transcriptional regulation is achieved with RNA aptamers (namely, RNA
molecules whose sequence is synthetically evolved to bind and modify the properties
of a desired target). In this system, two aptamers X1 and X3 are transcribed by RNA
polymerases X2 and X4 respectively. Aptamer X1 inactivates polymerase X4, while
aptamer X3 activates polymerase X2. The overall list of reactions is

X2 +G1
k1−⇀ X2 +X1 +G1 X4 +G2

k2−⇀ X4 +X3 +G2

X1
δ1−⇀ ∅ X3

δ2−⇀ ∅
X∗2 +X3

γ1−⇀ X2 X4 +X1
γ2−⇀ X∗4

X2
β1−⇀ X∗2 X∗4

β2−⇀ X4
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where G1 and G2 are genes, whose concentration is constant; defining the new
constants κi = kigi, i = 1, 2, the resulting system is

ẋ1 = κ1x2 − δ1x1 − γ2x4x1

ẋ2 = −β1x2 + γ1(xtot2 − x2)x3

ẋ3 = κ2x4 − δ2x3 − γ1(xtot2 − x2)x3

ẋ4 = β2(xtot4 − x4)− γ2x4x1

(8.21)

In [BCFG14], it is shown that the solutions of system (8.21) are bounded for
any nonnegative initial condition such that x2(0) ≤ xtot2 and x4(0) ≤ xtot4 . In fact,
0 ≤ x2(t) ≤ xtot2 and 0 ≤ x4(t) ≤ xtot4 , from the second and fourth equations in (8.21).
Moreover, by applying the comparison principle [Kha02], it can be seen that x1(t)
is upper bounded by the solution of ẋ1 = κ1x

tot
2 − δ1x1, since ẋ1 ≤ κ1x2 − δ1x1 ≤

κ1x
tot
2 − δ1x1. Hence x1(t) ≤ x+

1 + [x1(0)− x+
1 ]e−δ1t, where x+

1 = κ1
δ1
xtot2 . Analogously,

x3(t) ≤ x+
3 +[x3(0)−x+

3 ]e−δ2t, where x+
3 = κ2

δ2
xtot4 . Therefore, as long as the conditions

0 ≤ x1(t) ≤ x+
1 and 0 ≤ x3(t) ≤ x+

3 are satisfied for t = 0, they will be fulfilled for
each time t > 0; furthermore, they are asymptotically satisfied for any initial state.

Boundedness implies the existence of an equilibrium point inside the nonnegative
box delimited by the quantities x+

1 , xtot2 , x+
3 , xtot4 ([Srz85], see also [RW02, RW04]).

Equilibrium conditions for the model are shown to be given by the intersection of two
nullclines having a monotonic trend (one increasing and the other decreasing), hence
system (8.21) admits a unique equilibrium.

The Jacobian matrix

J =


−γ2x̄4 − δ1 κ1 0 −γ2x̄1

0 −β1 − γ1x̄3 γ1(xtot2 − x̄2) 0
0 γ1x̄3 −γ1(xtot2 − x̄2)− δ2 κ2

−γ2x̄4 0 0 −β2 − γ2x̄1


is sign definite and, through a state transformation

T =


0 0 0 −1
0 1 0 0
1 0 0 0
0 0 1 0

 ,
it is similar to a matrix J̃ = T−1JT :

−γ1(xtot2 − x̄2)− δ2 γ1x̄3 κ2 0

γ1(xtot2 − x̄2) −β1 − γ1x̄3 0 0

0 0 −β2 − γ2x̄1 γ2x̄4

0 −κ1 γ2x̄1 −γ2x̄4 − δ1







8.5. Examples of Oscillatory and Bistable Biomolecular Systems 191

The overall system, formed by the negative feedback interconnection of two uncon-
ditionally stable aggregate monotone subsystems, is thus a strong candidate oscillator:
instability can only occur due to an OTI. It can be checked, actually, that the coeffi-
cients of the characteristic polynomial are all positive: therefore, the characteristic
polynomial does not have positive real solutions and instability can just be due to a
complex pair of unstable eigenvalues. The system is indeed the simplified model of
a biochemical circuit that, if driven to instability, exhibits sustained oscillations, as
shown by simulation results in [BCFG14] for some choice of the parameters.

Switches

Example 8.6. Consider a model adapted from [KWW06], which proposes the ex-
perimental realisation of a minimal, artificial transcriptional network exhibiting
bistability. Genes X1 and Z1 produce RNA species X3 and Z3 and are respectively
activated by species X2 and Z2, inhibited by RNA species Z3 and X3. A simplified
description of the system is provided by the following chemical reactions.

Z2 + Z∗1
αz−⇀ Z1 X2 +X∗1

αx−⇀ X1

Z1
βz−⇀ Z3 + Z1 X1

βx−⇀ X3 +X1

X3 + Z1
δz−⇀ Z∗1 Z3 +X1

δx−⇀ X∗1

∅ z20−⇀ Z2
ρz−⇀ ∅ ∅ x20−−⇀ X2

ρx−⇀ ∅
Under mass action kinetics assumptions, the chemical reactions, along with mass
conservation constraints xtot1 = x1 + x∗1, ztot1 = z1 + z∗1, correspond to the system

ż1 = αz(z
tot
1 − z1)z2 − δzz1x3

ż2 = z20 − ρzz2 − αz(ztot1 − z1)z2

ẋ3 = βxx1 − δzz1x3

ẋ1 = αx(x
tot
1 − x1)x2 − δxx1z3

ẋ2 = x20 − ρxx2 − αx(xtot1 − x1)x2

ż3 = βzz1 − δxx1z3.

After the change of variables x̂3 := −x3, ẑ3 := −z3, the system Jacobian, which is
sign-definite, becomes

−αz z̄2 − δzx̄3 αz(z
tot
1 − z̄1) δz z̄1 0 0 0

αz z̄2 −αz(ztot1 − z̄1)− ρz 0 0 0 0

δzx̄3 0 −δz z̄1 −βx 0 0

0 0 0 −αxx̄2 − δxz̄3 αx(xtot1 − x̄1) δxx̄1

0 0 0 αxx̄2 −αx(xtot1 − x̄1)− ρx 0

−βz 0 0 δxz̄3 0 −δxx̄1




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The system is composed of two unconditionally stable monotone subsystems (z1-z2-
x3 and x1-x2-z3), which form a positive cycle. Hence, it is a candidate multistationary
system in the strong sense: instability can only occur due to an RTI.

Example 8.7. A simplified model is proposed in [MTF14] for an artificial bistable
network where transcriptional regulation is achieved with RNA aptamers. Aptamers
X1 and X3 are transcribed by polymerases X2 and X4 respectively; X1 represses
polymerase X4 and X3 represses polymerase X2. The corresponding system is

ẋ1 = κ1x2 − δx1 − γx4x1

ẋ2 = βxtot2 − βx2 − γx2x3

ẋ3 = κ2x4 − δx3 − γx2x3

ẋ4 = βxtot4 − βx4 − γx4x1

A state transformation yields the Jacobian

−β − γx̄3 γx̄2 0 0

γx̄3 −γx̄2 − δ κ2 0

0 0 −β − γx̄1 γx̄4

κ1 0 γx̄1 −γx̄4 − δ




The overall system, formed by the positive feedback interconnection of two uncon-

ditionally stable monotone subsystems, is thus a strong candidate bistable network.
Actual bistability of the system is shown by simulation results in [MTF14] for some
choice of the parameters.

Based on the results presented in this chapter, many other examples of synthetic
transcriptional circuits can be analysed to show that, by design, they are structurally
capable of oscillations or multistationarity [CGK+16, CGBF16].
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9
Network-Decentralised Control

Strategies for Stabilisation

Most often, as seen in the previous chapters, huge and complex natural networks
coordinate their global behaviour thanks to local interactions, based on local dynam-
ics. This is exactly the concept of network-decentralised control, introduced earlier in
Chapter 3. Having understood that nature efficiently exploits a decentralised “con-
trol”, for instance in biological and biochemical networks, it is now worth wondering
how a network-decentralised control can be synthesised in artificial networks.

This part of the thesis is therefore dedicated to the control of network systems:
the viewpoint switches from a system-theoretic perspective (analysing a given system
to assess its properties and its natural behaviour) to a control-theoretic perspective
(given a system, synthesising a proper controller in order to achieve the desired
behaviour). In particular, the considered controllers must satisfy specific constraints
depending on the structure of the network system, i.e., on its interconnection topology.

A class of linear systems composed of a set of dynamically decoupled subsystems,
interconnected through a set of control agents, is considered in this chapter, based on
[BFG13, BFG15a]. In this case, subsystems that are naturally independent become
interconnected when a control is applied. The novel contribution with respect to
previous literature is that, in the proposed framework, subsystems having their own
arbitrary dynamics are considered. The architecture of any system in this class can
be visualised as a graph, whose nodes are associated with subsystems and whose arcs
are associated with control agents. Hence, the interconnection between subsystems
is determined by the structure of the overall input matrix of the system, and the
decisions of each control agent can directly affect exclusively the subsystems-nodes
connected by the corresponding arc.

The goal is to stabilise the system by means of a control that satisfies the
following constraint: each control agent can use information exclusively about the
state components of the subsystems-nodes that the corresponding arc interconnects
(i.e., the subsystems that the control agent directly influences). Controllers satisfying
this constraint are said to be network-decentralised, or decentralised in the sense of
networks. This problem setup involves block-structured matrices, with structural
zero blocks: the rule of the game for network-decentralised stabilisation (each control
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agent must make its decisions based on the information about the nodes it affects,
only) imposes that the feedback matrix has structural zero blocks, depending on
the graph topology. As shown in the following, the design of a suitable network-
decentralised controller requires a block-structured feedback matrix with the same
structure as the transpose of the overall input matrix of the system.

It is shown that a stabilisable network system can be always stabilised by means of
a network-decentralised state-feedback control law, provided that the subsystems do
not have common unstable eigenvalues. The general case is still open, but sufficient
conditions for solvability can be provided.

Moreover, when the system is formed by identical subsystems and each input
agent controls a pair of subsystems with input sub-matrices having opposite sign
(as typically happens in the case of flow networks), stabilisation is shown to be
possible if and only if at least one of the agents affects one subsystem only (in this
case, the system is said to be externally connected, or connected with the external
environment).

The proposed results are based on constructive proofs that lead to structured
Linear Matrix Inequalities (LMIs). The advantages of LMIs are worth underlining:

• they can express a variety of classical control constraints (including Lyapunov
and Riccati inequalities) for general dynamical systems;

• they are readily solvable with commonly available software; hence, the sought
network-decentralised controller can be found efficiently.

9.1 Background

In a wide range of applications, complex systems consisting of independent subunits,
which become interactive once a control action is applied, must be controlled or
coordinated.

A typical example is provided by water distribution systems [BBGP13, LK69].
The water level in each reservoir has its own dynamics; yet, for a proper management
of the system, incoming or outgoing water fluxes need to be regulated. In this case,
the reservoirs are pairwise connected by pipes in which the fluxes are controlled to
achieve an efficient distribution service. Electrical power distribution networks can
also be considered [DPB13].

Platoons of autonomous vehicles [RI96, D’A98, RBA07] and distributed traffic
control [Ift96, Ift99] are another significant example. In large platoons, equipping
each vehicle with a control that includes information from neighbouring vehicles can
assure optimal speed and safety distance: this increases the overall throughput and,
at the same time, avoids collisions and congestions [Ift96, D’A98, Ift99]. If a control
acting pairwise (e.g., each vehicle must keep a certain distance from the one in front
and from the one behind) is added, subsystem that are, by their nature, completely
independent (individual vehicles) become globally interacting. Also in the case of
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formation flight of aircrafts [WCS96, D’A98], independently piloted aircrafts can be
cooperatively controlled, for instance, in order to keep a common height; the case of
satellite formations [SMH99] has been investigated as well.

Additional examples include transportation networks [AI98, MOnL08], routing
in large telecommunication and data communication networks [MS82, MP95, EV89,
ID90, ID02], inventory management and production-distribution systems [SP85,
BYZ95, BRU97, BMU00, BT06, SPTK08, BBP10] and network flows in general
[AZ07, OnZ07, BBP10, WvdS13a, WvdS13b, DBO+13]. All of these systems can
be seen as naturally independent units that interact through the designed control
action.

In these large-scale networked control systems, it is often inefficient, too expensive
or physically impossible (also due to limitations on energy resources and commu-
nication bandwidth, to computation constraints, and to delays) to implement a
centralised controller deciding an optimal strategy based on information about all of
the subsystems. This is the case, for example, of a very large number of subsystems
that are geographically sparse. Therefore, control tasks have to be performed col-
lectively, by a network of independent agents, each autonomously deciding a local
control law relying on local information and making localised computations (however,
autonomous agents are allowed to communicate, according to the given network
topology). This type of control, in which the controller acting on a certain subset of
subsystems decides its strategy based on information about that subset of subsystems
only, is called network-decentralised. In the past decades, literature on decentralised
networked control has flourished [Bak08, CYRC13], yielding a variety of approaches
to the stabilisation [ID90, D’A98], the coordination [JML03, CMKB04, Cor09], and
the synchronisation [OSM04, RBA07] of large sets of systems, resorting to locally
computed controllers only. Distributed control and optimisation of large-scale multi-
agent systems have been motivated by several applications, including smart grids
and sensor networks able to collect and process information in a distributed fashion,
formations of vehicles and networks of robots, spread in a wide region, designed
to autonomously perform a global task. It has been shown that system positivity
and monotonicity can be exploited, when dealing with large scale control systems,
to synthesise distributed controllers [Ran15]. Consensus problems have become
increasingly popular for distributed computation (see [OSM04, RBA07] and the
references therein); however, in the present chapter the focus is on stabilisability
and control of the overall system, rather than agreement among the nodes seen as
autonomous agents.

In a wide class of applications, the same controller may affect simultaneously
several subsystems in the network. For instance, in water distribution networks
[LK69, BBGP13] the flow controlled in a pipe affects the upstream and the down-
stream reservoirs simultaneously; in transportation networks, traffic control in a
communication route affects at once the density of vehicles at both extremities
of the route [AI98, MOnL08]. If a graph is associated with this kind of network
systems, dynamically independent subunits are associated with the nodes, while
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controllers are associated with the arcs connecting them. The design and synthesis
of this type of controllers has been pioneered in [ID90, Ift99, ID02]; more recent
contributions are [BMU00, BBGP13], although essentially limited to the case in
which the subsystems are first-order integrators. The network-decentralised control
is intrinsically different from decentralised control frameworks proposed in the past,
where several naturally interacting subsystems are equipped with their own local
controller [WD73]: the subsystems considered here are naturally decoupled and the
control agents are associated with flow arcs (and not with subsystems).

In this chapter, the case is considered in which the nodes are arbitrary lin-
ear subsystems with their own, possibly unstable, dynamics. Under stabilisability
assumptions, a linear network-decentralised [ID90, Ift99, ID02, BMU00, BBGP13]
state-feedback controller is sought in which each control agent (arc) can use infor-
mation exclusively from the subsystems (nodes) it connects. As will be seen in
Section 9.2, this is equivalent to imposing that the feedback matrix has the same
structure as the transpose of the overall input matrix of the system.

The main result in this chapter shows that, if the subsystems do not have
common unstable eigenvalues, the problem is solvable; in the case of possibly shared
unstable eigenvalues, general structural sufficient conditions, including a constrained
LMI, can be provided for the solvability of the problem. In general, the obtained
LMI-based condition is sufficient only, because there are systems that admit a
network-decentralised stabilising state-feedback control, even though the constrained
LMI is not feasible. In the case of a single shared eigenvalue (which is typical in
distribution systems), it is shown that the problem is solvable if and only if the
LMI is feasible. Finally, in the special case in which all subsystems are equal, each
control agent regulates at most two nodes, and the input matrices in these nodes
have opposite sign (typical in flow and platoon problems), a necessary and sufficient
condition for solvability is the presence of a connection with the external environment.

9.1.1 Arbitrary Node Dynamics

In the literature on network-decentralised dynamic flow, nodes are usually buffers
modelled by simple integrators [Ift99, ID02, ID90]. Remarkable exceptions are repre-
sented by first-order node dynamics [ID90, BMU00] and systems with a Laplacian
state matrix [BBGP13]. The general equation for the class of buffer systems is

ẋ(t) = Bu(t) +Dd(t) (9.1)

where x ∈ Rn is the state vector, u ∈ Rm is the controlled flow vector, d ∈ Rq is an
external signal (accounting for a disturbance, or an unknown demand), B ∈ Rn×m is
the flow matrix and D ∈ Rn×q is a suitable disturbance/demand matrix.

However, the nodes often have more complex local processing dynamics, which
have to be taken into account. This happens, for instance, in the following examples.
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Figure 9.1: The water distribution network in Example 9.1 and in Section 9.5.2. [BFG15a]

Example 9.1. Fig. 9.1 shows the model of a water distribution system: each node
(circled) represents a subsystem with its internal dynamics and includes two reservoirs,
where water exchange is spontaneous and depends on their relative levels. Different
subsystems are connected by pipes whose flow u can be controlled and the network
has a constant demand vector d. Furthermore, supplementary integrators are added
to some reservoirs, so that they can asymptotically achieve the exact desired levels.
Indeed, as shown in previous work [BMU00, BBGP13], for buffer systems of the form
(9.1), zero steady-state error cannot be assured using static continuous controllers; yet,
discontinuous controllers may not be applicable in flow networks. In this example, zero
steady-state error can be guaranteed, for any demand vector d, for all the reservoirs
equipped with a supplementary integrator. This example will be reconsidered in
Section 9.5.2.

Example 9.2. In large traffic networks, such as data networks [MS82, EV89, ID90,
ID02], the traffic arriving at one node is naturally split in several streams with
different destinations (as in Fig. 9.2, where α, β and γ are the splitting rates).
Traffic splitting at each node can be represented by a continuous-time stochastic
matrix, namely, a Metzler matrix with zero sum columns. This example will be
reconsidered in Section 9.5.3.

γα
β

Figure 9.2: The traffic splitting model in Example 9.2 and in Section 9.5.3.



200 9. Network-Decentralised Control Strategies for Stabilisation

The above examples motivate the study of complex systems composed of subsys-
tems characterised by arbitrary dynamics, for which it is interesting to seek stabilising
network-decentralised control strategies.

9.2 Network-Decentralised Control

Consider a class of linear, interconnected systems consisting of N subsystems, each
having its own dynamics:

ẋi(t) = Aixi(t) +
∑
j∈Ci

Bijuj(t) +Did(t),

where xi(t) ∈ Rni , i = 1, . . . , N , is the state of the ith subsystem; uj ∈ Rmj ,
j = 1, . . . ,M , are the control subvectors, named agents ; Ci is the set that indexes the
agents affecting the ith subsystem; Bij ∈ Rni×mi represents the effect of the control
agent uj on the ith subsystem; d is an external, non-controllable signal that affects
the ith subsystem through matrix Di. The overall system can be written as

ẋ(t) = Ax(t) +Bu(t) +Dd(t), (9.2)

where x(t) ∈ Rn includes the state variables associated with each subsystem, u(t) ∈
Rm is the control vector, d(t) ∈ Rn is the vector representing the external, non-
controllable signal affecting the system, D ∈ Rn×n is a generic square matrix, while
A and B are block-structured: A ∈ Rn×n is a block-diagonal matrix

A = blockdiag{A1, A2, . . . , AN} =


A1 0 . . . 0
0 A2 . . . 0
...

...
. . .

...
0 0 . . . AN

 , (9.3)

while matrix B ∈ Rn×m is a suitably structured matrix. For instance, B may have
the structure

B =


B∗∗ B∗∗ 0 0 . . . 0
B∗∗ 0 B∗∗ 0 . . . 0
0 0 B∗∗ 0 . . . B∗∗
...

...
...

...
. . .

...
0 0 0 B∗∗ . . . B∗∗

 ,
where 0 are structural zero blocks, while B∗∗ are arbitrary blocks.

All the block dimensions must be compatible with the block structure of A:

N∑
i=1

ni = n and
M∑
i=1

mi = m.

The following standing assumption is made.
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Assumption 9.1. (A,B) is stabilisable.

System (9.2) can be naturally represented by means of a hypergraph having
N nodes, associated with the N subsystems (corresponding to the diagonal blocks
of matrix A), where control agents are associated with hyperarcs. For the sake of
simplicity, in the following hypergraphs and hyperarcs will be referred as graphs and
arcs. Each control component uj, j = 1, . . . ,M is a vector in Rmj associated with a
block column of B. Such a block column has zero blocks Bij ∈ Rni×mj corresponding
to all the nodes not directly affected by agent uj: formally, Bij = 0 if and only if
j 6∈ Ci. Denoting by Nj the set that indexes the nodes affected by agent j, it can
also be written that Bij = 0 if and only if i 6∈ Nj.

Example 9.3. To illustrate the system framework and its graph representation,
consider a system with four subsystems (nodes) and six control agents (arcs), where

A = blockdiag{A1, A2, A3, A4},

B =


B11 B12 0 0 B15 0
0 B22 B23 B24 0 0
0 0 0 B34 0 B36

0 0 B43 B44 B45 B46

 ,
D = blockdiag{0, 0,−I,−I}.

C1 = {1, 2, 5}, C2 = {2, 3, 4}, C3 = {4, 6} and C4 = {3, 4, 5, 6}. The agents control the
following nodes: N1 = {1}, N2 = {1, 2}, N3 = {2, 4}, N4 = {2, 3, 4}, N5 = {1, 4},
N6 = {3, 4}. The graph corresponding to B (and D) is shown in Fig. 9.3.

Figure 9.3: The graph corresponding to Example 9.3: circles are the nodes associated with
subsystems, solid arcs represent controlled signals, while dashed arcs represent external, non-
controllable signals.

In the considered network-decentralised control problem, each control component,
affecting a certain subset of nodes, has information about the state components
associated with those nodes only. Therefore state-feedback controls restricted to the
class

uj = φ (xi, i ∈ Nj)
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are considered, where each control agent uj can have information on the state of
nodes in Nj only. In the case of a linear state feedback, the network-decentralised
constraint forces the feedback matrix K to have the same structure as B> (this can
be written as K ∈ S(B>)), and the following equivalent definition can be provided.

Definition 9.1. A control u = −Kx is network-decentralised, or decentralised in
the sense of networks, if K has the same structural zero blocks as B>.

Example 9.4. For the system in Example 9.3, a state-feedback controller is network-
decentralised provided that K has the following structure:

K =


K>11 K>12 0 0 K>15 0
0 K>22 K>23 K>24 0 0
0 0 0 K>34 0 K>36

0 0 K>43 K>44 K>45 K>46


>

.

This constraint on K reflects the restricted information condition that is implicit
in the network-decentralised framework. For instance, the second component of the
control is the sub-vector

u2(t) = K12x1(t) +K22x2(t),

so that the control component u2(t), which affects x1(t) and x2(t), has to be decided
without any information about x3(t) and x4(t).

Remark 9.1. As a special case, when A = 0, the class of buffer systems (9.1) is
recovered. For these systems, the control u = −γB>x, with γ > 0, is actually a
network-decentralised solution: if B has full row rank, then the closed-loop system is
asymptotically stable. In the case of a constant d(t) = d,

ẋ(t) = Bu(t) +Dd,

optimality of the control u = −γB>x has been proved even under saturation [BBGP13].

9.3 Distinct Unstable Eigenvalues

In this section it is shown that system (9.2) can be always stabilised by means of a
network-decentralised controller under the following assumption.

Assumption 9.2. Two different subsystems do not share unstable eigenvalues.1

This is a generic property2: it holds almost surely, practically “with probability
1”, for any randomly generated instance of the problem.

Before stating the main result of the section, a definition and some preliminary
findings need to be provided.

1All the eigenvalues whose real part is not strictly negative are denoted as unstable eigenvalues.
2Formally, a property is generic for a set if the subset for which the property holds is dense in

the initial set.
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Definition 9.2. The system is node-stabilisable if any subsystem i can be stabilised
using the control inputs in Ci: (Ai, [Bi1 Bi2 . . . BiM ]) are stabilisable for all i.

Example 9.5. For the system in Example 9.3, node-stabilisability means that
all of the four state-input matrix pairs (A1, [B11 B12 B15]), (A2, [B22 B23 B24]),
(A3, [B34 B36]) and (A4, [B43 B44 B45 B46]) are stabilisable.

Claim 9.1. Given any state-input matrix pair (F,G), there exists a Kalman-like
transformation such that

T−1FT =

[
S R
0 U

]
, T−1G =

[
V
0

]
,

where (S, V ) is a stabilisable pair and U contains unreachable unstable eigenvalues
only.

Claim 9.2. Consider any system of the form

F = blockdiag{F1, . . . , Fr}, G = [G>1 . . . G
>
r ]>,

where Gi have the same number of columns and Fi, Fj do not share unstable eigen-
values for i 6= j. Then, if (Fi, Gi) are stabilisable pairs, the system is stabilisable. In
particular, node-stabilisability and stabilisability are equivalent.

The detailed proof, based on the Popov criterion, can be found in [BFG15a].

Theorem 9.1. Under Assumption 9.2, the following conditions are equivalent:

i) the system is stabilisable;
ii) the system is node-stabilisable;

iii) the system can be stabilised by means of a network-decentralised control.

Proof. Since the subsystems do not share unstable eigenvalues, i)⇔ ii) immediately
follows in view of Claim 9.2. Obviously, iii)⇒ i). The fact that (node) stabilisability
implies decentralised stabilisability can be proved by means of the iterative procedure
adopted in [BFG15a]: the inputs ui are considered one at a time, starting from u1,
and at each time the system is rewritten by applying a Kalman-like transformation to
the subsystems that can be stabilised by ui and grouping them in the first columns of
matrices A and B; then, the states associated with these subsystems are fed back in
order to stabilise the corresponding portion of the system. By rearranging the blocks,
a block-triangular form is obtained at each step and the procedure is iterated by
considering the remaining (not yet stabilised) part of the system. The procedure is
guaranteed to terminate successfully in view of the assumed node-stabilisability.

The constructive procedure employed in the proof provides a control which might
take advantage of only a subset of the control agents. If this is an issue, it is possible
to fully exploit the available arcs according to this algorithm: i) find a structured
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feedback u = −K̄x, ii) solve the Lyapunov equation to find a P for the closed-loop
system, and finally iii) derive a more suitable K with this P by solving the convex
optimisation problem

min ‖K‖2 : (A−BK)>P + P (A−BK) ≺ 0, K ∈ S(B>). (9.4)

Theorem 9.1 guarantees that the convex optimisation problem (9.4) is always feasible.
Now, the obtained control exploits all available control agents.

9.4 Shared Unstable Eigenvalues

In the case of common unstable eigenvalues, first a general sufficient condition is
provided in terms of a structured LMI. This condition, if satisfied, guarantees that
the system (9.2) can be stabilised through a decentralised state-feedback control and
also provides the expression of the controller. Unfortunately, in general this condition
is merely sufficient and not necessary. It will be shown that such a condition becomes
necessary and sufficient under additional assumptions.

9.4.1 Sufficient LMI Condition

Consider a system of the form (9.2), with A block-diagonal and B block-structured:
the following result holds in the general case in which the system can be marginally
stable or unstable (i.e., at least one of the subsystems Ai is marginally stable or
unstable).

Proposition 9.1. Given system (9.2), with A block-diagonal and B block-structured,
if the following LMI

SA> + AS − 2γBB> ≺ 0, γ > 0 (9.5)

has a solution S � 0 with the same block-diagonal structure as A, in the form

S = P−1 = blockdiag{P−1
1 , P−1

2 , . . . , P−1
N }, (9.6)

with Pk of the same dimensions of Ak, then the system admits a network-decentralised
stabilising feedback control.

Proof. The LMI is solvable if and only if

(A− γBB>P )>P + P (A− γBB>P ) ≺ 0 (9.7)

with P = S−1, [BEGFB94], which is assured by the choice of the network-decentralised
control K = γB>P .

Then, a decentralised control u = −γB>S−1x = −γB>Px exists if (9.5) holds
for a block-diagonal S � 0, or, equivalently, if A>P + PA− 2γPBB>P ≺ 0 holds
for a block-diagonal P = S−1 � 0.
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Why the Condition Is Not Necessary

The LMI condition is sufficient, but not necessary, for network-decentralised sta-
bilisability. In fact, an example is provided in [BFG13] of a system which can be
stabilised by means of a proper network-decentralised control, even though it is im-
possible to find a block-diagonal P satisfying the inequality. This example, reported
below, shows that the existence of a block-diagonal matrix P � 0, having the same
structure as A, such that the inequality A>P + PA− 2γPBB>P ≺ 0 holds is just a
sufficient, but not a necessary condition for guaranteeing the existence of a stabilising
network-decentralised control.

Consider the system

ẋ(t) = Ax(t) +Bu(t),

where

A =

 0 0 0
0 ψ 0
0 0 0

 and B =

 1 0
−1 −1

0 1

 ,
with ψ > 0 (therefore the system is unstable).

In order to find a state-feedback control u = −Kx, it is necessary to look for a
matrix K ∈ S(B>):

K =

[
a −b 0
0 −c d

]
.

Therefore

A−BK =

 −a b 0
a ψ − (b+ c) d
0 c −d


and it is possible to freely assign the eigenvalues of A − BK in order to obtain
an asymptotically stable system. For instance, when taking a = b = c = 10ψ and
d = −ψ, a stable matrix is obtained.

Hence, the system can be stabilised by means of a suitable network-decentralised
state-feedback control. However, there is no stabilising network-decentralised con-
trol of the form u = −γB>Px, where P � 0 satisfies the Lyapunov condition
(A−BK)>P + P (A−BK) ≺ 0, i.e., A>P + PA − 2γPBB>P ≺ 0. In fact, by
choosing

P = diag{p1, p2, p3} � 0,

then

−(A>P + PA) + 2γPBB>P =

 0 0 0
0 −2p2ψ 0
0 0 0

+

 2γp2
1 −2γp1p2 0

−2γp1p2 4γp2
2 −2γp2p3

0 −2γp2p3 2γp2
3


=

 2γp2
1 −2γp1p2 0

−2γp1p2 4γp2
2 − 2p2ψ −2γp2p3

0 −2γp2p3 2γp2
3


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should be positive definite, so all the leading principal minors should be positive.
This can be true for the first two, yet it is impossible for the matrix determinant
(which is equal to −8γ2p2

1p2p
2
3ψ) to be positive, since ψ > 0.

9.4.2 Solvability Conditions in Particular Cases

Necessary and sufficient conditions for solvability can be provided under additional
assumptions.

A Single Shared Unstable Eigenvalue

In Example 9.1, the subsystems share a single unstable eigenvalue (λ = 0), as is
common in distribution systems. In this case, if the system is stabilisable, then
the LMI is feasible (hence, the system admits a network-decentralised stabilising
control).

Proposition 9.2. Assume that all the matrices Ai have a single unstable eigenvalue
λ ≥ 0 of ascent 1 ( i.e., the largest Jordan block associated with λ has dimension 1).
Then the following conditions are equivalent:

i) the system is stabilisable;
ii) the system can be stabilised by means of a network-decentralised control;

iii) the LMI (9.5) has a structured solution (9.6).

Proof. It is just necessary to show that i)⇒ iii) (the remaining implications iii)⇒ ii)
and ii)⇒ i) are trivial). This can be proved by applying to each block Ak a different
transformation Tk, in order to separate the unstable and the stable parts of the
system: T−1

k AkTk = blockdiag{λIk, ÂSk}, where the stable part admits the identity
as a Lyapunov matrix. By rearranging all the blocks and joining all λIk, the system
matrices can be then decomposed as

Â =

[
λI 0

0 Λ̂S

]
, B̂ =

[
B̂λ

B̂S

]
,

where Λ̂S = blockdiag{ÂS1 , ÂS2 , . . . , ÂSN} is stable. Being the system stabilisable,
B̂λ must have full row rank and a proper network-decentralised stabilising control
can be found: given u = −γ[B̂>λ 0]x = −K̂x, with γ large enough, the candidate
block-diagonal matrix

Ŝ =

[
I 0
0 µI

]
ensures that

Ŝ(Â− B̂K̂)> + (Â− B̂K̂)Ŝ ≺ 0 (9.8)

for µ large enough. Then, by restoring all the blocks to the original position with
the backward transformations, a structured S � 0 can be found that satisfies (9.5).
Details are in [BFG15a].
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Further examples of this kind of systems will be given in Section 11.1.

Triangularisable and Locally Stabilisable Systems:
the Case of Flow Networks

Stronger solvability conditions can be provided in another particular case (for systems
with possibly repeated unstable eigenvalues). To this aim, first some preliminary
definitions are introduced.

Definition 9.3. The network is locally stabilisable if each agent ui can (separately)
stabilise each of the subsystems in Ni.

Local stabilisability by no means implies that the control agent can stabilise
simultaneously more than one subsystem in Ni. For instance, the non-stabilisable
system {

ẋ1 = x1 + u,

ẋ2 = x2 + u,

is locally stabilisable.

Definition 9.4. The system is structurally triangularisable if there exist a) an
ordering of the nodes and b) a selection and ordering of the agents such that the
resulting B has a block triangular structure.

For instance, the system in Example 9.3 is structurally triangularisable by ordering
the nodes as 1, 2, 4, 3 and disregarding the last two agents (i.e., selecting the first
four).

In the following an extended system is defined, to consider the case in which
some of the subsystems are open-loop stable.

Definition 9.5. Given the structured system (A,B), the extended system (A,Bext)
can be defined as follows. For each asymptotically stable node i, B is extended by
adding a fictitious block with ni columns, which has an identity matrix corresponding
to Ai and zero blocks elsewhere.

For instance, if in the system of Example 9.3 the second subsystem is asymptoti-
cally stable, B must be extended as

Bext :=
[
B | [ 0 I 0 0 ]>

]
The following theorem holds.

Theorem 9.2. If the extended system is triangularisable and locally stabilisable, then
(9.5)-(9.6) are feasible.
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Proof. In view of the triangularisability and local stabilisability assumptions, B
has a suitable “block-triangular” structure and, by properly reorganising the blocks
and individually stabilising all of the unstable subsystems, a closed-loop matrix
is achieved that is block-triangular and asymptotically stable. Hence, it admits a
block-diagonal Lyapunov matrix such that (9.5)-(9.6) are feasible. Details can be
found in [BFG15a].

Theorem 9.2 has demanding assumptions. However, there are interesting struc-
tural assumptions under which LMI solvability is guaranteed, such as when each
control agent is associated with an arc (not a hyperarc) of a proper graph (not a
hypergraph), thus affects at most two subsystems.

The definition of externally connected graph (a concept already discussed in
Chapters 3 and 4) is reported here for convenience.

Definition 9.6. A network is connected if the corresponding graph is connected
(namely, each of its nodes can be reached starting from any other, by following the
existing arcs); it is connected with the external environment if, in addition, the input
matrix B has at least one block-column with a single non-zero block.3

Corollary 9.1. Assume that the system is locally stabilisable and that each agent
controls at most two subsystems. If the system is connected with the external en-
vironment, then (9.5)-(9.6) are feasible, hence a decentralised stabilising control
exists.

The proof is immediately based on Theorem 9.2: in view of the external connection
assumption, it is always possible to find a spanning tree and form the triangular
structure of B starting from a node connected with the external environment.

An interesting case is that of flow networks, composed of a family of identical
subsystems, in which each network arc connects a pair of nodes so that its action
has opposite effects (inflow and outflow).

Proposition 9.3. Given a connected network, assume that all the diagonal blocks
of matrix A are equal, Ai = Abl, for i = 1, . . . , N , and that all non-zero blocks of B
are ±Bbl. Assume that there are at most two non-zero blocks in each block column
of matrix B and that, if they are two, they have opposite sign. Then the following
conditions are equivalent:

i) the system is stabilisable;
ii) the system is locally stabilisable;

iii) the structured LMI is solvable;
iv) either Abl is stable or the network is connected with the external environment.

3As discussed in Chapter 3, this can be seen as a connection of the system with an additional
node, implicitly present in each graph, that stands for the “external environment”.
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Proof. Ignoring the trivial case of Abl stable, based on the Popov criterion it is
possible to show that both i)⇒ iv) and i)⇒ ii) (see [BFG15a] for details); the rest
of the proof follows from Corollary 9.1.

Remark 9.2. It is apparent from Proposition 9.3 that requiring connection with the
external environment is a crucial assumption: in fact, the presence of a connection
with the external environment, in the case of a flow system, is indeed equivalent
to stabilisability. Interestingly, external connections are absent in the example in
Section 9.4.1, highlighting how the LMI-based conditions are, in general, sufficient
but not necessary.

9.5 Numerical Examples

9.5.1 Double Integrator

  

1 2

34

u1

u2

u3

u6

u4 u5

d

d d

d

Figure 9.4: Network graph corresponding to the example in Section 9.5.1.

Consider the flow network represented by the graph in Fig. 9.4. Each node
corresponds to a buffer (or a reservoir), while the arcs are associated with controlled
flows. All the nodes are equipped with a supplementary integrator, to ensure that,
at steady state, they all reach the exact prescribed level, fixed as 0 without loss
of generality (any given point can be shifted to zero after a suitable change of
coordinates). This system can be represented by the eight-state model

ẋ = Ax+Bu+Dd,

with

A =


A2 0 0 0
0 A2 0 0
0 0 A2 0
0 0 0 A2

 , A2 =

[
0 1
0 0

]
,
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B =


B2 −B2 0 −B2 0 0
0 B2 −B2 0 −B2 0
0 0 0 B2 B2 −B2

0 0 B2 0 0 B2

 , B2 =

[
0
1

]
, D = −


B2

B2

B2

B2

 .
Even states are the effective buffer levels, while odd states are the integral

variables, whose derivatives are equal to even states. Vector d represents a constant
demand, uniformly affecting each node. This system can be stabilised by the network-
decentralised state-feedback controller u = −Kx = −γB>Px, where γ is a constant
scalar and P � 0 is a Lyapunov block-diagonal matrix. P and γ can be found
by numerically solving an LMI, as previously shown in this chapter. However, an
analytical solution can be found as well; in fact, it suffices to notice that

P =


P2 0 0 0
0 P2 0 0
0 0 P2 0
0 0 0 P2

 , P2 =

[
1 1
1 2

]
and γ = 2

render the closed-loop system stable.
When starting from any initial condition, the presence of the integral control

guarantees the exact recovery of the equilibrium values of even states, as expected
(see Fig. 9.5), while odd states are asymptotically constant (Fig. 9.6). In the proposed
simulations, x(0) = [0.71 1.03 0.97 − 0.43 0.62 − 1.32 0.82 − 1.87]>. In order to
achieve the zero-steady-state-error goal, the integral variables are communicated by
each node to the control agents that are connected to it, in a network-decentralised
fashion. Although the numerical and the analytical solution differ for the equi-
librium values obtained, they both lead to the same steady-state control vector
u = [4 1.5 0.5 1.5 0 0.5]>. In both cases, any deviation from the equilibrium
values at the nodes is completely eliminated by the integral control.

9.5.2 Water Distribution System

Reconsider the water distribution system presented in Example 9.1 and assume that
the nodes in Fig. 9.1 have the following dynamics:

Ai =

−αi βi 0
αi −βi 0
0 1 0

 , where βi = 0 for i ∈ {1, 2, 4}.

In each node, the first two states are the reservoirs volumes, while the third represents
the local integrator. Constants αi [min−1] and βi [min−1] depend on the size of the
reservoirs and the diameter of the connecting pipes; in the proposed simulation,
α1 = 15, α2 = 20, α3 = 16, α4 = 16.7, α5 = 14, β3 = 12 and β5 = 22.
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(a) Numerical solution
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(b) Analytical solution

Figure 9.5: System trajectories for the double integrator in Section 9.5.1: even states (at steady
state, x4 = x6).

The overall system has the same structure as model (9.2), where

A = blockdiag{A1, A2, A3, A4, A5},

B =


Bu −Bd 0 0 0 0
0 Bu −Bd 0 0 −Bd

0 0 Bd −Bu 0 0
0 0 0 Bd Bu 0
0 0 0 0 −Bu Bd

 ,
Bd =

[
0 1 0

]>
, Bu =

[
1 0 0

]>
,

d = −[0 1 0 0 1 0 0 1 0 0 1 0 0 1 0]> and D = I. The only unstable eigenvalue is
λ = 0, which has ascent one and is common to all the subsystems. Therefore, the
results of Proposition 9.2 can be applied; matrix K of the network-decentralised
state-feedback controller is obtained through the direct solution of the LMI (9.5)-
(9.6), numerically solved using the MATLAB LMI toolbox [GNLC94]. To enforce
a certain speed of convergence, when solving the LMI, A can be replaced with
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(a) Numerical solution
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(b) Analytical solution

Figure 9.6: System trajectories for the double integrator in Section 9.5.1: odd states (at steady
state, x3 = x5).

A+ σI, σ > 0, so that the closed-loop eigenvalues have real part less than −σ. The
value used in the simulation is σ = 0.15. In Figs. 9.7 and 9.8, the decentralised
control is compared with a centralised LQ control, with state weighting matrix I
and input weighting matrix I/2; the system is started from the initial condition
x(0) = [2.926 4.187 5.094 −4.480 3.594 3.102 −6.748 −7.620 −0.033 9.195 −3.192 1.705 −5.524 5.025 −4.898]>.

The equilibrium values of the states equipped with integral control are smoothly
recovered, as expected.

9.5.3 Stochastic Traffic Splitting Dynamics

To control traffic networks with natural splitting dynamics at the nodes, as in
Example 9.2, a decentralised approach can be adopted. To study this case via
simulation, five interconnected subsystems have been considered with the same
network topology as in Fig. 9.1. Instances of the system have been randomly generated
in which Ai are continuous-time stochastic matrices, with 0 ≤ Aij ≤ 1, i 6= j and
Ajj = −

∑
i 6=j Aij, and the entries of the non-zero blocks in B have been randomly
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Figure 9.7: Reservoir volumes evolution for the system in Section 9.5.2: decentralised (top) and
optimal (bottom) control.

generated as well. In several experiments, the LMI has always been feasible, as
expected; the average time Tni required for its solution, depending on the subsystems
dimension ni, is shown in Table 9.1.

ni 2 3 4 5 6 7 9 10

Tni [ms] 4 9 13.3 24.7 44.2 73.4 182.7 296.7

Table 9.1: Average time required for LMI solution in Example 9.5.3.
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Figure 9.8: Detailed simulation for reservoir volumes x2, x10 and x13 (zoomed from Fig. 9.7).

9.6 Remarks

The problem of network-decentralised stabilisation has been shown to be solvable
when the subsystems do not have common unstable eigenvalues. In the general
case, a structured LMI condition has been provided, which is sufficient only (an
example has shown that, in general, satisfaction of the LMI condition is not neces-
sary for decentralised stabilisability); such an LMI is always feasible in particular
cases of practical interest, e.g., that of flow networks and that of subsystems with
a single common unstable eigenvalue of ascent 1. However, unfortunately, the gen-
eral question whether, under possibly common eigenvalues, stabilisability implies
network-decentralised stabilisability is still unsolved and is left as a subject of future
investigation.

It is worth pointing out that, in the considered setup, a robust version of the
considered LMI can be found when A is a polytopic matrix of the form

Ai =
K∑
k=1

αkAik,

K∑
k=1

αk = 1, αk ≥ 0.

In this case, determining a diagonal P valid for all possible dynamics simply requires
the solution of a set of LMIs (one for each vertex of the polytope).

It is also well known that, once the LMI has a solution, the system enjoys the
property of infinite gain margin: each agent can increase its gain, independently
of the others, without causing instability. This cannot be guaranteed in general,
without making use of LMIs.

In Chapter 10, the concept of network-decentralised control will be further
developed, considering general nonlinear compartmental systems with uncertain node
dynamics and with possibly switching topologies.

The network-decentralised control problem considered in this chapter admits
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a dual version; the dual of the assumptions previously introduced for the pair
(A,B) should now be considered for (A,C) (namely, the same assumptions are
applied to (A>, C>)). Each agent must have access to the information concerning
the nodes it connects, so that the output vector can be partitioned into subvectors
y = [y1 y2 · · · ym] and y = Cx, C ∈ S(B>). For instance, in Example 9.3, the output
y5 of agent 5 would be a linear combination of the states x1 and x4. Moreover, local
observers are implemented by estimation node agents that are informed about the
decision of all the control agents uj : j ∈ Ci, and two adjacent node estimation agents
can exchange the estimated local state. This can be a natural requirement since,
by definition, adjacent nodes have common control agents. Then a decentralised
observer can be constructed

ż(t) = Az(t)− LC[z(t)− x(t)] +Bu(t),

where now L is subject to the dual constraint L ∈ S(C>). The theory then develops
without essential changes. Along these lines, in Chapter 12 network-decentralised
estimation will be considered.





10
Compartmental Flow Control:

Decentralisation, Robustness and
Optimality

The control of large-scale flow networks is relevant in many applications, as discussed
in Chapter 9, and often, being global communication impossible, control agents must
act based on locally available information. In an important case, the involved models
can be cast in a compartmental framework, where the compartments (subsystems)
frequently exhibit nonlinear dynamics. In this chapter, following [BFG+16], the
flow control problem is considered for a general class of nonlinear compartmental
systems, in the presence of an external uncontrolled flow, and a stabilising network-
decentralised control is sought, such that

• each agent governs a network flow channel (corresponding to an arc of the
associated graph) that affects at most two subsystems (nodes of the graph);

• each agent decides its actions based exclusively on the states of the subsystems
associated with the nodes to which the corresponding arc is directly connected,
in the absence of communication with other agents.

As mentioned before, this type of control was considered in [ID90, ID02, Ift99,
BMU00] for buffer systems, where the subsystems are first-order integrators; in
[BBGP13], a constrained decentralised control law that assures asymptotic optimality
in the minimum-norm sense is proposed. A network-decentralised control for linear
systems, where nodes represent non-interacting subsystems coupled by the control
action, is proposed in [BFG13, BFG15a], see Chapter 9. The novelties in this
chapter are the following: proper graphs (and not hypergraphs) are considered (since
compartmental systems are associated with graphs where each arc, representing a
flow link, connects at most two nodes) and also nonlinearities in the system dynamics
are dealt with.

General necessary and sufficient stabilisability conditions are provided, taking
into account decentralisation, control constraints and robustness (i.e., effectiveness
of the control regardless of the system parameters). The approach proposed in
[BFG+16] is therefore suitable for generic nonlinear and uncertain compartmental
systems.
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Under flow constraints, the saturated control proposed in [BBGP13] is adopted,
providing necessary and sufficient structural conditions for closed-loop asymptotic
stability in terms of connectivity of the network graph. However this control, applied
tout court, may not be stabilising if the steady state corresponding to the current
demand is not exactly known.

A modification of the strategy in [BBGP13] is then proposed: the devised control
strategy is still network-decentralised and can stabilise the system robustly (without
any knowledge about the system functions, apart from smoothness and monotonicity
requirements), under proper assumptions on the network topology.

Moreover, when the overall system is composed of independent, marginally stable
compartmental subsystems, a particular network-decentralised saturated control
strategy (which can be seen as based on the feedback of the total amounts of resource
in the subsystems) is shown to be asymptotically optimal in terms of minimum
Euclidean norm: the controlled flow converges to the optimum without requiring
communication among agents.

The performances of different network-decentralised strategies, including those
proposed in this chapter, are compared by means of simulations in Section 11.1.6.

10.1 Nonlinear Compartmental Models

Consider a class of models of the form

ẋ(t) = Sg∗(x(t)) +Rh∗(x(t)) +Bu(t) + d(t), (10.1)

where x(t) ∈ Rn is the state, u(t) ∈ Rm is the control input, d(t) ∈ Rn is an exogenous
signal. Vectors uj(t) ∈ R are referred as control agents and vector d(t) as demand.

A graph N with n nodes can be associated with the system. It is assumed that S,
R and B are incidence matrices for N : each of their columns has either two non-zero
entries, equal to 1 and −1, or a single non-zero entry, equal either to 1 or to −1.

  h(x )1g(x -x )2

x1
x1x2

x2

1

Figure 10.1: g-type (left) and h-type (right) flows in a fluid system.

Vector functions g∗ and h∗ represent flows between two nodes within the system;
application examples include flowing of data, fluids, or currents. Functions g∗ and h∗

have a different physical meaning: g-type flows, associated with g∗, depend on the
difference between the corresponding states, while h-type flows, associated with h∗,
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Figure 10.2: Graph of the network in Example 10.1. [BFG+16]

depend on the state of the starting node only. The concept can be better illustrated
with the support of Fig. 10.1, representing a fluid system: in this case, g-type flows
between tanks depend on the fluid level in both tanks, while h-type flows depend on
the fluid level in the upper tank only. Formally:

• g∗j = g∗j (xk − xl), where Skj = −1 and Slj = 1;

• h∗j = h∗j(xk), where Rkj = −1.

Denoting by Mj the jth column of a matrix M , it can be written:

• g∗j = g∗j (−S>j x);

• h∗j = h∗j(−R̃>j x), where [R̃]ij = min{Rij, 0}.

Matrix [S R B] is the overall incidence matrix of the graph representing the
network. In the network graph, different types of arcs are present: g-type, h-type,
u-type and d-type arcs are associated respectively with the components of vector g∗

(i.e., with the columns of S), of vector h∗ (with the columns of R), of the control
vector u (with the columns of B) and of the demand vector d.

Recall that, if in a column of matrix R or of matrix B there is a single non-zero
entry, then the corresponding arc connects the network with the external environment,
associated with the external node (node 0). In general, any arc connected with a
single node of the graph (for instance, all arcs associated with vector d) represents a
connection with the external environment.

Example 10.1. The network graph in Fig. 10.2 includes

• g-type flows: g∗(x) = [g1(x1 − x3) g2(x1 − x2) g3(x2 − x4)]>;
• h-type flows: h∗(x) = [h1(x3) h2(x3)]>;
• controlled flows: u = [u1 u2]>;
• exogenous flows: d = [d1 d2]>.
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The corresponding system has matrices

S =


−1 −1 0

0 1 −1
1 0 0
0 0 1

 , R =


0 0
1 0
−1 −1

0 0

 , B =


1 0
0 0
0 −1
0 1

 .
The following standing assumptions are made.

Assumption 10.1. The control is componentwise bounded as u−j ≤ uj ≤ u+
j ; with a

more compact notation:
u− ≤ u ≤ u+. (10.2)

Assumption 10.2. Functions g∗j and h∗j are smooth and have positive derivative.

Assumption 10.3. There are no g-type flows from/to node 0.

Actually, there would be no point in considering g-type flows from/to node 0,
since there are no state variables associated with it.

Definition 10.1. A path on the graph is an oriented sequence of distinct arcs,
connecting two distinct nodes (and not including node 0 as an intermediate node).
Oriented means that the two paths from node i to node j and from node j to node i
are different. A path is admissible if: 1) it does not include d-type arcs; 2) whenever it
includes h-type arcs, they have path-consistent orientation; other arcs can be included
with arbitrary orientation.1

For example, in the graph in Fig. 10.2, the path 4-3-2-1 is admissible, while the
path 2-3-4 is not admissible (because it includes h-type arc h1, whose orientation is
opposite to that of the path).

Consistently with the definitions adopted in the previous chapters, the following
is introduced.

Definition 10.2. The graph is connected if an oriented path exists connecting each
pair of nodes (excluding node 0). The graph is strongly connected if an oriented
admissible path exists connecting each pair of nodes (excluding node 0). The graph
is externally connected if, for each node, an oriented admissible path exists leading
to node 0.

For instance, the graph in Fig. 10.2 is both strongly connected and externally
connected. Conversely, if g-type and h-type arcs are swapped, the resulting graph
is no longer strongly connected (because node 1 cannot be reached from the other
nodes), but is still externally connected (in fact, from each node, an admissible path
leads to node 0). If, instead, in Fig. 10.2 the arcs u1 and h2 are removed, then the
graph is still strongly connected, but no longer externally connected.

1This corresponds to replacing each g-type and u-type arc in the graph by two arcs in opposite
directions, and considering directed paths only.
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10.2 Stabilisability Conditions

Given a set-point, the goal here is to stabilise the system by means of a network-
decentralised control.2

Recall that a feedback control is network-decentralised if any agent uj decides its
strategy based just on the state variables associated with the nodes to which it is
directly connected. In the case of a compartmental system structure, then either
uj = Φj(xq, xp), where p and q index the two non-zero elements of column Bj, or
uj = Φj(xp), where p indexes the unique non-zero element of column Bj. In the
example in Fig. 10.2, a control can be denoted as network-decentralised provided
that

• u1 depends on x1 only;
• u2 depends on x3 and x4 only.

It is fundamental to require that the external demand (assumed to be constant,
for the moment being) is compatible with the flow constraints.

Assumption 10.4. The demand is constant, d(t) = d, and an equilibrium vector x̄
exists corresponding to a control ū that strictly satisfies (10.2): u− < ū < u+ and

0 = Sg∗(x̄) +Rh∗(x̄) +Bū+ d.

Denoting by v = u − ū and z = x − x̄, without restrictions the stabilisation
problem can be reformulated for the shifted nonlinear system

ż = Sg(z) +Rh(z) +Bv, (10.3)

where g, h are the shifted functions g(z) = g∗(z+ x̄)−g∗(x̄), h(z) = h∗(z+ x̄)−h∗(x̄),
such that g(0) = 0, h(0) = 0. The constraints in the shifted framework are

v− ≤ v ≤ v+, (10.4)

where v− = u− − ū < 0 and v+ = u+ − ū > 0. Note that stability is now referred to
the nominal equilibrium z̄ = v̄ = 0.

Assuming that ū satisfies the constraints is crucial [BMU00]. Conversely, the
requirement that d is constant can be removed. Moreover if, due to parameter
uncertainties, the equilibrium condition is not exactly satisfied, so that Sg∗(x̄) +
Rh∗(x̄)+Bū+d = ∆ 6= 0, then equation (10.3) becomes ż = Sg(z)+Rh(z)+Bv−∆.
This is not an issue, because, as shown in the following, the proposed approach
relies on Lyapunov functions and is therefore suitable for handling both uncertainties
and a time-varying demand. Robustness aspects will be thoroughly discussed in
Section 10.4.

2A stabilisability problem is dealt with and the equilibrium (x̄, ū) is assumed to be given. The
problem of regulating the steady-state value is tackled, for instance, in [HHB06, LA15] (see also
the references therein).
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Definition 10.3. Given the vector bound v− ≤ v ≤ v+, the saturation function is
componentwise defined as

[sat(v)]j =


v+
j if vj > v+

j

vj if v−j ≤ vj ≤ v+
j

v−j if vj < v−j

(10.5)

The following saturated network-decentralised control [BBGP13] is considered:

v = sat(−γB>z), (10.6)

where γ > 0.
As will be shown, such a control can globally uniformly stabilise the considered

class of systems, according to the following definition.

Definition 10.4. System ż(t) = f(z(t), v(t)), admitting the equilibrium z̄ = v̄ = 0,
such that f(0, 0) = 0, is globally uniformly asymptotically stabilisable (to z = 0) if a
control law v(z) can be chosen so that:

• for all ε, a value δ exists such that ‖z(0)‖ ≤ δ implies ‖z(t)‖ ≤ ε for all t ≥ 0;
• for all µ > ε > 0, a value Tµ,ε exists such that ‖z(0)‖ ≤ µ implies ‖z(t)‖ ≤ ε

for all t ≥ Tµ,ε.

Then, the next theorem can be proved.

Theorem 10.1. Under Assumptions 10.1-10.4, if the system graph is strongly
connected, the following statements are equivalent.

i) System (10.3) can be globally uniformly stabilised.
ii) Matrix [S R B] has row rank n.

iii) The system graph is externally connected.
iv) System (10.3) can be globally uniformly stabilised by the network-decentralised

control (10.6).

Proof. iv) ⇒ i) is obvious.
i) ⇒ ii): rank[S R B] < n implies the existence of a left kernel. Then, by

considering the vector ζ ∈ Rn, ζ 6= 0, such that ζ>[S R B] = 0, it follows that

d

dt
ζ>z = ζ>[Sg(z) +Rh(z) +Bv] = 0.

Hence, ζ>z(t) = ζ>z(0) is constant and, if ζ>z(0) 6= 0, z(t) cannot converge to 0.
ii) ⇒ iii): since the graph is strongly connected by assumption, rank[S R B] = n

implies connection with the external node 0, i.e., the existence of at least one column
having a single non-zero element (see [BFG+16] for more details).

Proving iii) ⇒ iv) requires a lemma.
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Lemma 10.1. Given functions g(z) and h(z) satisfying the stated assumptions, and
matrices B, S and R, there exist positive definite diagonal matrix functions Dv(z),
Dh(z) and Dg(z) such that

Bsat(−γB>z) = −γBDv(z)B>z, (10.7)

Sg(z) = −SDg(z)S>z, (10.8)

Rh(z) = −RDh(z)R̃>z, (10.9)

where R̃ = min{R, 0}, componentwise. Moreover, in any bounded neighbourhood of
z = 0, ‖z‖ ≤ µ, there exist two numbers 0 < δ− < δ+ such that

δ− ≤ [Dg(z)]ii, [Dh(z)]ii, [Dv(z)]ii ≤ δ+, ∀ i. (10.10)

Equation (10.7) immediately follows from a standard property of the saturation
function: sat(vi) = [Dv]iivi componentwise, where [Dv]ii is a suitable number (see for
instance [BM15]). The proof of (10.8) (and of (10.9), which is analogous) is based
on the integral formula (4.29). In fact, considering the generic column Sj of S and
the corresponding gj = gj(−S>j z),

Sjgj(−S>j z) = −Sj
[∫ 1

0

g′j(−λS>j z)dλ

]
︸ ︷︷ ︸

.
=Djj(z)

S>j z.

Djj(z) is strictly positive, lower and upper bounded in any bounded domain, since it
is the integral of a positive continuous function on a non-zero interval.

In view of Lemma 10.1, system (10.3) with the control (10.6) can be written as

ż = −[SDg(z)S> +RDh(z)R̃> + γBDv(z)B>]z =

[
S R B

]  −Dg(z) 0 0
0 −Dh(z) 0
0 0 −γDv(z)

 S>

R̃>

B>

 z .
= A(D)z.

Matrix A(D) can be non-symmetric due to h-type arcs. For instance, in Example 10.1,
with D = −diag(D1, D2, . . . , D7), the closed-loop matrix becomes

A(D) =

−(D1 +D2 + γD6) D2 D1 0
D2 −(D2 +D3) D4 D3

D1 0 −(D1 +D4 +D5 + γD7) γD7

0 D3 γD7 −(D3 + γD7)

.
The implication iii) ⇒ iv) can now be proved. Matrix A(D), which has strictly

negative diagonal entries and non-negative off-diagonal entries, is column diagonally-
dominant:

−[A(D)]jj ≥
n∑

i=1, i6=j

[A(D)]ij.
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Indeed, A(D) is the sum of rank-one matrices of the form −Sj [Dg]jjS
>
j , −Rj [Dh]jjR̃

>
j

or −γBj[Dv]jjB
>
j . Each of these matrices has at most four non-zero elements, all

of equal magnitude ([Dg]jj, [Dh]jj or γ[Dv]jj), and is (at least weakly) diagonally
dominant. Indeed, matrices of the form −γBj[Dv]jjB

>
j (or −Sj[Dg]jjS

>
j ), where Bj

(or Sj) connects two nodes, have four non-zero entries, two negative ones on the
diagonal and two positive ones on the corresponding two columns and rows; matrices
of the form −Rj[Dh]jjR̃

>
j , where Rj connects two nodes, have two non-zero entries,

a negative one on the diagonal and a positive one on the same column; matrices of
the form −γBj[Dv]jjB

>
j (or −Rj[Dh]jjR̃

>
j ), where Bj (or Rj) connects with node 0,

have a single non-zero entry, negative, on the diagonal.
Note that, since it can be written as ż = A(D(z))z, where A(D(z)) is the sum

of rank-one matrices, the system admits a BDC-decomposition and its stability
can thus be tested by means of the numerical procedure proposed in [BG14] and in
Chapter 6. The procedure would actually converge at the first iteration, providing
the diamond (the unit ball of the 1-norm) as the unit ball of a polyhedral Lyapunov
function for the system. In fact, it can be immediately seen that, since A(D(z)) is
diagonally dominant and has negative diagonal entries, the function V (z) = ‖z‖1

(the 1-norm), is a (weak) Lyapunov function [Wil76, MKO78, BM15]. This proves
Lyapunov stability, but unfortunately it does not prove asymptotic stability.

Since the graph is strongly connected, matrix A(D(z)) is irreducible, i.e., no
ordering of the variables exists such that it assumes a block-triangular form

A(D(z)) =

[
A11(D(z)) 0
A21(D(z)) A22(D(z))

]
.

Moreover, in view of the assumption of external connection, matrix [S R B] has at
least one column with a single non-zero element; hence, at least one of the terms in
the sum of rank-one matrices has a single (negative) diagonal entry. See [BFG+16]
for details.

Since A(D(z)) is irreducible, has negative diagonal entries and is column diago-
nally dominant with at least one strictly dominant diagonal entry, the 1-norm is a
strong Lyapunov function and z̄ = 0 is a globally asymptotically stable equilibrium
([Wil76, MKO78]; further details are in Theorems 1 and 2 and the following remarks
in [Wil76] and in Theorem 4.60 in [BM15], where a thorough proof is provided).

More flexibility in the control design can be ensured by choosing different gains
for different control components:

v = sat(−ΓB>z), (10.11)

where Γ = diag(γ1, . . . , γm) is a positive definite diagonal matrix. It can be shown
indeed that Theorem 10.1 equivalently holds if the control (10.6) is replaced by
the control (10.11). In fact, from Lemma 10.1, Bsat(−ΓB>z) = −(BDvΓB

>z) =
−(BD̃vB

>z), where D̃v is still a positive definite diagonal matrix. Hence, all of the
derivations can be carried out as in the case of a scalar γ.
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In general, if the graph is not strongly connected, then stabilisability and network-
decentralised stabilisability are not equivalent, as clarified by the following example.

1
1u

3 1d2
1g1h

0

Figure 10.3: The graph in Example 10.2. [BFG+16]

Example 10.2. The graph in Fig. 10.3 is connected (because [S R B] has rank
n = 3), but not strongly connected (because there is no admissible path leading from
nodes 2 and 3 to node 1). Hence, the assumptions of Theorem 10.1 are not satisfied
and the results in the theorem cannot be applied to this case. Assuming a linear
model ż = Fz +Bv, it can be written

F (D) =

 −D2 0 0
D2 −D1 D1

0 D1 −D1

 , B =

 1
0
0

 .
Although the graph is not externally connected, the system is stabilisable (it is
reachable), but not in a decentralised way: in a decentralised framework, v1 should be
a function of z1 only, but in this case no stabilisation would be possible, since the
system is not detectable from output y = z1. Hence, agent v1 needs information also
from z2 and z3, and no network-decentralised control can stabilise the system.

The assumption of strong connectivity is now relaxed to provide a weaker result.

Theorem 10.2. Under Assumptions 10.1-10.4, consider a system of the form (10.3),
whose graph is not strongly connected. Then the system can be globally uniformly
stabilised by the network-decentralised control (10.6) if and only if the graph is
externally connected.

Proof. Sufficiency. If the system is not strongly connected, then maximal strongly
connected components C1, C2, . . . , CN can be considered (such that, for each pair of
nodes i, j ∈ Ck, admissible paths exist in both directions, while for each pair of nodes
with i ∈ Ck and j 6∈ Ck, an admissible path in at least one direction is missing).
The partition in maximal strongly connected components is illustrated in Fig. 10.4.
The aggregate oriented graph formed by the strongly connected components, where
a directed arc connects component l to component k if an admissible path leads
from a node in l to a node in k, is acyclic. Indeed, the presence of a directed cycle,
such as C1, C2, . . . , CN , C1, would imply that C1, C2, . . . , CN form a strongly connected
component, in contradiction with the fact that Ci are maximal.

The components can be associated with diagonal blocks of the closed-loop matrix
A(D). Since the aggregate graph is acyclic, considering the control (10.6) as before,
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Figure 10.4: A graph where maximal strongly-connected components are encircled (left) and the
corresponding aggregate graph (right). [BFG+16]

these blocks can be arranged so that A(D) has a lower triangular form. In the case
of Fig. 10.4, for instance,

A(D(z)) =


A11(D) 0 0 0
A21(D) A22(D) 0 0
A31(D) 0 A33(D) 0

0 0 A43(D) A44(D)

 .
All the diagonal blocks Aii(D) are irreducible matrices, because they correspond

to strongly connected components, and are weakly diagonally dominant. Moreover,
Aii(D), i = 1, 2, . . . N − 1, must have a diagonal entry that is strictly diagonally
dominant, referred to Aii(D) (due to a connection either with another block, or
with the external node; otherwise there would not be external connection) and
ANN(D) must have a strictly dominant diagonal entry (again, due to the assumed
external connection). See [BFG+16] for details. Then, since all the Aii(D) are
irreducibly diagonally dominant with negative diagonal entries, all the corresponding
subsystems are asymptotically stable; in view of the block-triangular form, this
implies asymptotic stability of the overall system [BM15].

Necessity. If the system is not externally connected, then it can be partitioned
into the subset C of nodes connected to node 0 and the subset D of nodes not
connected to 0. Then [S R B] can be partitioned accordingly as

[S | R | B] =

[
S1 0 R11 0 B1 0
0 S2 R21 R22 0 B2

]
,

where R21 is non-negative and all the columns of the sub-matrices S2, R22 and B2

have two non-zero elements, equal to −1 and 1, hence the sum of the entries in each
column is 0 (see [BFG+16] for details).

Let the control be partitioned into two vectors, v1 and v2, corresponding to B1

and B2. For the control to be decentralised, v1 must be a function of z1 only and v2
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of z2 only: v1 = v1(z1), v2 = v2(z2). The overall system can be written as{
ż1 = S1g1(z1) +R11h1(z1) +B1v1(z1)

ż2 = S2g2(z2) +R21h1(z1) +R22h2(z2) +B2v2(z2)

Assume by contradiction that the closed-loop system is stable; if z1(0) = 0, then
z1(t) = 0 and v1(t) = 0 ∀ t ≥ 0, while

ż2 = S2g2(z2) +R22h2(z2) +B2v2(z2).

Then, consider the function sum(z2) = 1̄>z2. Its derivative is 1̄>ż2 = 1̄>[S2g2 +
R22h2 + B2v2] = 0, because S2, R22 and B2 have zero-sum columns. Therefore, if
sum(z2(0)) = κ 6= 0, then sum(z2(t)) = κ 6= 0 ∀ t ≥ 0. Hence, z2(t) does not
converge to 0 and there is no asymptotic stability.

Remark 10.1. The control in the original variables has the form

u = ū+ sat[−γB>(x− x̄)].

Therefore, the control agents must know the local equilibrium values of ū and x̄
associated with the arcs they control and with the nodes to which they are directly
connected. This means that the control u = sat(−γB>x) considered in [BBGP13],
applied tout court, may not be stabilising. This issue is further discussed in [BFG+16]
by means of an example.

It is worth stressing that, in the absence of a control action, the stability result
provided in [MKO78, JS93] for compartmental systems of the form ż = Sg(z)+Rh(z)
are recovered. In fact, if B = 0, then the system (10.3) is asymptotically stable if
and only if rank[S R] = n. Actually, for systems of the form ż = Sg(z) + Rh(z),
the condition rank[S R] = n is equivalent to the existence of a “path to the outside
world” according to Theorem 7 in [MKO78].

10.2.1 A Slightly Different Control Strategy

A control similar to (10.6) can be considered:

v = sat(−γB̃>z), (10.12)

where B̃ = min{B, 0}, componentwise. This control is suitable for applications in
which the controlled flow in each link is decided based on the departure node only
(this typically happens, for instance, in data communication networks). The theory is
essentially unchanged, apart from Definition 10.1 that must be revised: a path can be
considered admissible only if both u-type and h-type arcs, whenever included, have
path-consistent orientation. Then, along the same lines of the previous theorems, it
can be proved that the control (10.12) is stabilising if and only if the overall system
is externally connected.
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10.3 Decentralised Asymptotic Optimality

Inspired by (10.6), a different network-decentralised strategy is proposed that consid-
ers just the marginally stable part of the system and achieves optimality at steady
state for any d compatible with the flow constraints (as in Assumption 10.4).

Given a system of the form (10.1), assume that the nodes are grouped into
macro-nodes. Each macro-node is a subsystem with compartmental dynamics:

ẋi = Sig
∗
i (xi) +Rih

∗
i (xi) +

∑
j∈Ci

Bijuj + di, (10.13)

i = 1, 2, . . . , N , where xi(t) ∈ Rni and Ci is the set that indexes control agents

uj ∈ Rmi affecting macro-node i. Let [S R] =
[
[S1 R1]> [S2 R2]> . . . [SN RN ]>

]>
.

This model accounts for the case in which there is no shared dynamics between the
macro-nodes, except that pairs of them can be influenced by the same control agent
ui. This is relevant, for instance, when modelling traffic between nodes, where at
each node the traffic splits in several direction according to some dynamic model
(examples of such models will be considered in Chapter 11, Section 11.1).

According to [BFG+16], the following assumption is required.

Assumption 10.5. The uncontrolled system (10.1), composed of subsystems of the
form (10.13) with uj = 0, is input-to-state stable within the left kernel of [S R]: for
each perturbation d̄ that is orthogonal to the left kernel of [S R] (i.e., E>[S R] = 0
implies E>d̄ = 0), there exist a unique steady state x̄ such that 0 = Sg∗(x̄)+Rh∗(x̄)+d̄.
Moreover, for all δ ∈ ker[S R]>, ‖δ‖ ≤ δ̄, such that d(t) = d̄ + δ, and all initial
conditions x(0) = x̄+ z, with z ∈ ker[S R]>, it can be written that

‖x(t)− x̄‖ ≤ C1δ̄ + C2φ(t)‖x(0)− x̄‖,

where C1 and C2 are positive constants, while φ(t) is a continuous positive function,
strictly decreasing and converging to 0 as t→∞.

Linear marginally stable systems with an eigenvalue at λ = 0 satisfy Assump-
tion 10.5 (see Proposition 11.3, Section 11.1.3, and the examples in Section 11.1).

The original variable x is now reconsidered and it is assumed that 0 is the reference
level (which is not necessarily the steady state x̄). Being the demand d unknown to
the controller, exact convergence to the desired value cannot be assured and just
convergence to a finite ball can be guaranteed, according to the following result.

Lemma 10.2. Under Assumptions 10.1-10.5, denote by E> a basis of the left kernel
of [S R]: E>[S R] = 0. Then the control

u = sat(−γB>EE>x) (10.14)

assures that, from any initial condition, the system converges to a finite ball ‖x‖ ≤ µ,
for some µ > 0, if and only if

u− < −E>d < u+. (10.15)
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Proof. By applying the transformation e = E>x and f = F>x, with [E F ] invertible,
the system can be represented as{

ė = E>Bu+ E>d

ḟ = F>Sĝ(e, f) + F>Rĥ(e, f) + F>Bu+ F>d
(10.16)

where the e-subsystem can be stabilised if and only if u− < −E>d < u+ [BMU00];
provided that the demand is compatible with the constraints, the control u =
sat(−γB>Ee) assures convergence of e to some ē. Hence, considering the f -subsystem,
in view of Assumption 10.5, it can be shown that also f(t) converges to a bounded
equilibrium (see [BFG+16] for details).

The set of all equilibrium conditions x̄ and ū is parameterised by the equation
Sg(x̄) +Rh(x̄) +Bū+ d = 0; equivalently,

Sigi(x̄i) +Rihi(x̄i) +
∑
j∈Ci

Bijūj + di = 0, ∀ i. (10.17)

Lemma 10.3. Let d and x̄ be as in Assumption 10.5. Then, ū is an admissible
steady-state control input if and only if

ū ∈ Ω(d) = {u ∈ U : E>Bu+ E>d = 0}. (10.18)

The proof is based on Lemma 10.2 and on the transformation (10.16). The next
property from [BBGP13] is valid for pure buffer systems (namely, systems of the
form ẋ = Bu+ d).

Theorem 10.3. [BBGP13] Assume E = I (the identity), S = 0, R = 0 and the set
Ω(d) in (10.18) has a non-empty interior. Then the (network-decentralised) control
(10.14) assures convergence to some equilibrium x̄ and the corresponding control value
at steady state has minimum Euclidean norm:

lim
t→∞

u(t) = ū = arg min
u∈Ω(d)

‖u‖. (10.19)

The asymptotic minimum-norm property holds as well in the case of compart-
mental systems.

Theorem 10.4. If condition (10.15) of Lemma 10.2 is satisfied and Assump-
tions 10.1-10.5 hold, then the control (10.14) is asymptotically optimal, i.e., converges
to the vector in Ω(d) having minimum Euclidean norm in the sense of (10.19).

Proof. Since the control is stabilising and continuous, u(t)→ ū, where ū is a finite
value; from (10.16), the variable e(t) converges to some finite ē and, by assumption,
the variable f(t) converges to some finite f̄ .
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The control u = sat(−γB>EE>x) = sat(−γB>Ee) is a function of e = E>x
only and Theorem 10.3 can be applied to the e-subsystem

ė = E>Bsat(−γB>Ee) + E>d,

considering B̃ = E>B and d̃ = E>d. Hence, the control u converges to the minimum
norm control ū inside Ω(d).

A suitable choice of matrix E can guarantee asymptotic optimality in a network-
decentralised way. To this aim, the concept of network-decentralised control must be
extended to the macro-node case.

Denoting by Sj the set that indexes macro-nodes directly affected by agent
uj, i.e., subsystems associated with the non-zero components of the block-column
Bj, the control is network-decentralised if any agent uj ∈ Rmi decides its action
based on the state variables in Sj only: uj = Φj(xk, k ∈ Sj). For instance, if
Bj = [ 0 B>2j 0 B>4j B>5j ]>, then uj is a function of vectors x2, x4, and x5.

The control (10.14) is network-decentralised if matrix E is chosen of a proper
block-diagonal form.

Proposition 10.1. Given the system composed by decoupled subsystems of the form
(10.13), take matrix E as

E> = blockdiag{E>1 , E>2 , . . . , E>N}, (10.20)

where E>i is a basis of the left kernel of Si: E
>
i Si = 0. Then the control (10.14) is

network-decentralised.

The proof follows immediately from the fact that EE> is block-diagonal.

Remark 10.2. The control u = sat(−γB>x) in [BBGP13] is asymptotically optimal
if A = 0. However, unlike (10.6) (u = ū + sat[−γB>(x− x̄)]) and (10.14), such a
control is not optimal when A 6= 0. In this case, it might even lead to instability,
even if the demand flow is compatible with the constraints, as already mentioned in
Remark 10.1 and as more thoroughly discussed in [BFG+16].

Remark 10.3. The proposed control choice minimises the controlled flow (not the
overall flow). Optimality with respect to the weighted norm u>Σ2u, with diagonal
Σ, can be easily achieved by scaling the columns of matrix B as BΣ−1. It must be
stressed that achieving a minimum overall flow is not a simple task in this structural
setup, since the functions g and h are unknown.

10.4 Robustness

Since functions g∗ and h∗ are not known, the proposed control is intrinsically robust.
As mentioned earlier, thanks to the fact that the achieved results are based on
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Lyapunov functions, the control is robust even under switching topologies and when
the unknown exogenous demand d is time-varying.

Robustness under switching topologies comes from the fact that the closed-
loop system has been absorbed in a linear differential inclusion ż = A(D)z. If
the matrices S, R, B are switching inside a set {Sk, Rk, Bk}, and the conditions
of Theorems 10.1 or 10.2 are satisfied for each k, the resulting switching system
corresponds to a set of linear differential inclusions ż = Ak(D)z, all sharing the
1-norm as a Lyapunov function. Therefore, asymptotic stability of the closed-loop
system is preserved [BM15].

Dealing with an unknown exogenous demand d that is time-varying,
possibly due to uncertainties on the equilibrium condition, is not an issue in the
proposed setup. In fact, if a perturbation is present, then

ż(t) = A(D(t))z(t) + ∆(t).

Clearly, exact convergence to 0 cannot be assured. However, if ‖∆(t)‖ ≤ ∆max, a
robust asymptotic bound of the form

lim sup
t→∞
‖z(t)‖ ≤ Z

can be guaranteed if the linear differential inclusion is stable. The size of Z depends
on ∆max and on the specific parameters; hence, stability/boundedness can be assured
only if the value of ∆max is compatible with the control constraints.

10.5 Positivity Constraints

Compartmental systems are positive (i.e., the positive orthant is positively invariant)
and positivity of the variables naturally follows from physical considerations on the
real systems modelled by the equations; hence, in some applications, positivity (or
at least non-negativity) of the variables is necessary, because negative values of
the variables would not be reasonable. A control action might thus be required to
preserve the system positivity.

For the sake of simplicity, the linear case is considered, in which Ai are Metzler
matrices. When the control u = sat(−γB>x) is applied, since the term Bsat(−γB>x)
can be written as [−γBDv(x)B>]x, for some state-dependent positive diagonal matrix
Dv(x) (see Lemma 10.1), the system can be rewritten as

ẋ = Ax− γBDv(x)B>x+ d.

If B is an incidence matrix, [−γBDv(x)B>] is a Metzler matrix. Hence, provided
that d is a positive vector, the overall system is positive.

Conversely, the control (10.14), u = sat(−γB>EE>x), does not preserve the
positivity of the system. In practical applications such as flow systems, where



232 10. Decentralised, Robust and Optimal Compartmental Flow Control

non-negativity of the variables is required, whenever a buffer becomes empty and a
control agent tries to force an outgoing flow, that control must be inhibited. This
might introduce chattering. An alternative solution might consist in imposing a
non-zero reference level, greater than the physical zero level.

10.6 Buffer Systems with Integral Control

To ensure that the proposed control quickly drives the state variables sufficiently
close to the desired set-point, it may be necessary to resort to a very large γ > 0.
However, a too large γ results in an over-exploitation of the actuators, making the
control infeasible in practice. Moreover, the control sat(−kx) for large k becomes
close to the discontinuous control sat(−x), hence it becomes “almost chattering”.
To exactly reach the desired set-point, at least for some of the variables, with a
value of γ that is not too large, it is possible to suitably equip the control arcs with
integrators. A similar strategy, adopting a saturated proportional-integral control
for port-Hamiltonian systems, has been proposed in [WvdS13a, WvdS13b, Wei16].

Given ẋ = Bu + d, where x ∈ Rn, B corresponds to a strongly connected and
externally connected graph, and d is a constant demand, assume that there is the
need to drive the state x to its exact set-point value, regardless of the unknown
demand. To this aim, consider the augmented system{

ẋ = Bu+ d

ξ̇ = x
(10.21)

along with the saturated control strategy

u = sat[−γB>(x+ αξ)], where γ, α > 0. (10.22)

Let the system state be vo = [x ξ]> and the overall demand do = [d 0]>; denoting
by In the identity matrix of dimension n, the system can be written as

v̇o = Aovo +Bou+ do, where Ao =

[
0 0
In 0

]
and Bo =

[
B
0

]
.

The equilibrium, corresponding to the desired set-point, is given by{
Bū+ d = 0

x̄ = 0

hence
Bsat[−αγB>ξ̄] + d = 0.

This saturated control has exactly the same asymptotic expression of that previously
discussed; therefore, it is still asymptotically optimal in terms of minimum Euclidean
norm: u = sat(−αγB>ξ) = arg minu ‖u‖ s.t. Bu+ d = 0.
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The new variable z
.
= x

α
+ ξ can be defined, so that the state vector becomes

v = [z ξ]>. The corresponding state transformation leads to the transformed
matrices

Â = T−1AoT =

[
In/α In

0 In

] [
0 0
In 0

] [
αIn −αIn
0 In

]
=

[
αIn −αIn
αIn −αIn

]
,

B̂ = T−1Bo =

[
In/α In

0 In

] [
B
0

]
=

[
B/α

0

]
.

The transformed system is then v̇ = Âv + B̂u + d̂, where d̂ = do/α. Since
sat[−αγB>z] = −αγDu(z)B>z, for a suitable Du(z), the closed-loop matrix is

Âcl =

[
αIn − γBDuB

> −αIn
αIn −αIn

]
.

Adopting P = I as a Lyapunov matrix, it can be seen that

v>(Âcl + Â>cl)v =
[
z> ξ>

] [2(αIn − γBDuB
>) 0

0 −2αIn

] [
z
ξ

]
= 2z>(αIn − γBDuB

>)z − 2α‖ξ‖2 < 0 (10.23)

for any v 6= 0, provided that α is small enough and γ large enough. Hence, given
γ, for a suitable choice of α, the system admits a quadratic Lyapunov function
V (v) = ‖v‖2 that guarantees asymptotic stability. This ensures that the desired
set-point x̄ = 0 is exactly reached at steady state. Note that, given a domain Bµ (a
ball of radius µ), we have a positive lower bound on the components of Du. Hence,
the following result can be stated.

Theorem 10.5. An extended system of the form (10.21), where B is a full rank
matrix, can be uniformly stabilised by the control (10.22), with a given domain of
attraction Bµ, provided that α > 0 is small enough and γ > 0 large enough. This
control assures exact convergence of x to x̄ = 0 and is asymptotically optimal in
norm.

The ratio γ/α, according to (10.23), depends on µ: a larger µ requires a larger
γ/α. Fig. 10.5 shows the simulations corresponding to system (10.21) with n = 5,

B =


1 −1 0 0 0 0
0 1 −1 0 0 0
0 0 1 −1 0 0
0 0 0 1 −1 0
0 0 0 0 1 1

 , d =


1
−2

3
−4

5

 ,
with the application of a control of the form (10.22), componentwise bounded in
the interval [−8 8], with α = 0.2 and γ = 10, starting from initial conditions with
components randomly generated in [−5 5]: x(0) = [−4.07 0.37 − 4.91 4.15 − 1.43],
ξ(0) = [4.99 − 4.70 2.92 − 0.45 3.73]. As expected, the desired set-point value x = 0 is
exactly achieved at steady-state. The steady-state value of ξ is ξ̄ = [0.25 0 0.75 0 1.25],
while the steady-state control value is ū = [−0.5 0.5 − 1.5 1.5 − 2.5 − 2.5].
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(a) Time evolution of x.
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(b) Time evolution of ξ.
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(c) Time evolution of u.

Figure 10.5: Simulation of the system in Section 10.6.



11
Network-Decentralised Control:

Applications

In this chapter, various system are considered, pertaining to heterogeneous appli-
cation domains ranging from computer and data-communication networks to clock
synchronisation and vehicle platooning. They do not have much in common, apart
from the fact that, in all of the proposed application examples, the overall system
can be visualised as a graph (see Fig. 11.1), where the nodes correspond to individual
subsystems with their own dynamics, while the arcs represent connections between
the subsystems and are each associated with a control agent uij ; also arcs associated
with external, uncontrollable signals dk may be present.

A control implementing a network-decentralised strategy will be applied to each
example and its effectiveness will be shown via simulations.

11.1 Network-Decentralised Traffic Control

The relevance of flow control has been thoroughly discussed in Chapter 9; in particular,
traffic and congestion control is crucial in several applications, ranging from packet
forwarding and node-to-node data transfer in telecommunication networks to vehicle
traffic regulation in transportation networks.

Any flow control problem is typically defined on a network that can always be
associated with a graph, whose nodes represent buffers (subsystems) and whose
arcs represent flow channels; the flow through an arc can be either spontaneous or
controlled, according to a given strategy or protocol. Yet, traffic control problems
have a peculiarity: the flow is formed by individual units, namely, by distinct
elements (packets, vehicles, components to be assembled or delivered) each having
an “identifier” and a precise destination node; hence, when arriving at each node,
units must be redirected towards different directions (i.e., different adjacent nodes),
according to their destination node. This is evident in the case of computer networks,
where the routers receive packets that must be forwarded towards different other
routers, and in the case of vehicles, which at each intersection, crossroad or fork must
take a different road; in both situations, the decision depends on the final destination,
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Figure 11.1: Example of a network graph.

routing criteria and available information about the traffic situation in the network.
This feature of traffic systems highlights a remarkable difference with respect to
other distribution systems; for instance, in the case of a water distribution system,
molecules of water are not labelled with a precise destination and the demand can be
satisfied by simply providing the required amount of water, regardless of its source.
In traffic systems, conversely, traffic at each node (buffer) is naturally split in several
queues (associated with flow streams having different forwarding directions), which
can be characterised based on statistics and on a priori historical data about the
flow splitting at the nodes.

This must be taken into account in an appropriate modelling framework. [BGM14]
Therefore, assuming that a statistical distribution is available about the exit directions
of the units composing the traffic stream, each node can be associated with a
continuous-time stochastic matrix (a Metzler matrix with zero-sum columns), whose
dynamics represent the internal traffic splitting; some of the states are associated
with the different queues, hence with the arcs leaving the node (state j represents
the amount of traffic waiting to be directed through arc j). A traffic-splitting model
has been already discussed in Example 9.2 (Section 9.1.1) and in Section 9.5.3 of
Chapter 9.

Given a network graph associated with a system having these peculiar prop-
erties, a solution is sought for the traffic control problem by means of a linear
network-decentralised strategy [BFG13, BFG15a]: hence, the flow through each arc is
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controlled by an agent having exclusively information about the congestion situation
at the nodes it directly connects/affects (as illustrated in Chapter 9, this is equivalent
to imposing that the state-feedback matrix has the same structure as the transpose of
the overall input matrix of the system). At each node, the traffic partition in queues
associated with different directions is not a controlled variable: in itself, this would
not be an issue. The strategy in Chapter 9 can be applied, indeed, when the nodes
are arbitrary subsystems, having their own, possibly unstable, dynamics; yet, it
requires the knowledge of the node dynamics, while the stochastic matrices in traffic
systems are typically uncertain and can even depend on external factors. In fact,
they are likely to be time-varying (for instance, traffic of both packets in computer
networks and vehicles in the streets completely changes, in terms of intensity and of
distribution, at different times of the day) and completely unknown to the controller
(estimates based on historical data would be definitely unreliable for control purposes).
To face this major challenge, a “robust” version of the network-decentralised strategy
must be devised to assure stability regardless of the stochastic parameters (which
are not known to the control agents).

Indeed in this section, following [BGM14], a robust network-decentralised control
strategy is proposed under the assumption that zero is a simple eigenvalue for all of
the stochastic matrices associated with the nodes (which is always true in the case
of irreducible matrices). With this strategy, each control agent needs just to have
cumulative information about the total amount of traffic (congestion) at each of the
nodes it affects, and can ignore the actual traffic splitting distribution at the nodes.

Remarkably, the control proposed in [BGM14] can stabilise the system without
requiring any knowledge of both: (a) the internal traffic splitting statistics at the
nodes (namely, the entries of the stochastic matrices); (b) the actual distribution
of the traffic among the different queues at the nodes (namely, the internal state
variables of the subsystems).

This network-decentralised strategy is shown to be

• robust (since stability is ensured independent of the particular values of the
stochastic matrix entries),

• effective even in the presence of flow capacity constraints (which extends the
results in [BBGP13]),

• asymptotically optimal in terms of minimum Euclidean-norm (as follows from
the results in Chapter 10); this is an important feature in a traffic control
framework, since it assures fairness, i.e., an equally distributed traffic load
among the controlled flow arcs.

Also the case in which zero is a multiple eigenvalue for at least one stochastic
matrix is briefly discussed. [BGM14]

Further developments may consider constraints on both state and flow control
variables. In particular, dealing with positivity constraints and with upper bounds
due to the buffer size is important, as mentioned in Chapter 10.
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11.1.1 Networks with Node Traffic Splitting

A portion of a typical network, whose nodes represent buffers and are connected by
arcs representing flow channels, is sketched in Fig. 11.2. Each connection between
two nodes includes one or two directed arcs, denoted as uk, and is controlled by an
agent, denoted as vh: the presence of a pair of directed arcs, in opposite directions,
indicates that the same agent can control the flow in both directions. Conversely,
arcs denoted as dj represent an exogenously determined flow. At each of the nodes

Figure 11.2: An example of network with traffic splitting dynamics inside each node.

Figure 11.3: At each node, the traffic is split into queues having different destinations.

in Fig. 11.2, denoted by A, B and C, the traffic is split in queues with different
destinations. In node A, the different queues are associated with subnodes 1 (traffic
directed to the north), 2 (traffic directed to south-east) and 3 (traffic directed to the
west); the partition into queues is illustrated in Fig. 11.3. In node B, the different
queues are associated with subnodes 4 (traffic directed to the north) and 6 (traffic
directed to south-west), while subnode 5 is associated with uncontrolled incoming
traffic from the east. In node C, the queues are associated with subnodes 7 (traffic
directed to north-west) and 8 (traffic directed to north-east), while subnode 9 is
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associated with controlled incoming traffic from south-west and subnode 10 with
uncontrolled incoming traffic from south-east.

Traffic splitting among different directions can be modelled as a dynamic process,
represented by a stochastic matrix: for instance, the traffic splitting dynamics of
node A in Fig. 11.2, whose internal queues are visualised in Fig. 11.3, could be
represented by the matrix

MA =

 −(α + β) ζ ε
α −(ζ + δ) ϕ
β δ −(ε+ ϕ)

 ,
where Greek letters denote splitting rates. Hence, each traffic unit reaching subnode 1
is directed either towards subnode 2 or towards subnode 3, with splitting rates α > 0
and β > 0 respectively; each traffic unit reaching subnode 2 is directed either towards
subnode 1 or towards subnode 3, with splitting rates ζ > 0 and δ > 0 respectively;
each traffic unit reaching subnode 3 is directed either towards subnode 1 or towards
subnode 2, with splitting rates ε > 0 and ϕ > 0 respectively. Assume, for the moment
being, that ζ = δ = ε = ϕ = 0; then, all the units at subnode 1 are transferred
either to subnode 2 or to subnode 3, with a proportion given by the values α and
β. Starting from initial conditions of the form x1(0) = ξ, x2(0) = x3(0) = 0, in the
absence of external arc flows (namely, ui = 0 and di = 0 for all i), the corresponding
asymptotic value of the state is

[x1(∞) x2(∞) x2(∞)] =
ξ

α + β
[0 α β].

The arc flows u1, u9 and u3 redirect to other nodes the units in subnodes 1, 2 and 3
(respectively) of node A. The transfer process can be seen as exponential, associated
with mode e−(α+β)t (an instantaneous transfer process would be unrealistic). Then,
the magnitude of α+β is associated with the speed of the transfer process, while the
relative magnitudes α/(α+ β) and β/(α+ β) are associated with the traffic splitting
distribution. The overall traffic distribution at node A can be modelled, of course,
by considering positive α, β, ζ, δ, ε and ϕ.

More in general, a class of linear, interconnected subsystems is considered
[BGM14]

ẋi(t) = A(i)xi(t) +
∑
j∈Ci

Bijvj(t) +Did(t),

where xi(t) ∈ Rni , i = 1, . . . , N , is the state of the ith buffer; vj(t) ∈ Rmj , j =
1, . . . ,M , are the control agents; Ci is the set that indexes the agents affecting the ith
buffer; Bij represents the effect of the control agent vj on the ith buffer; d(t) is an
external, non-controllable signal, bounded in a compact and convex set D, affecting
the ith buffer through matrix Di. Matrices A(i) are continuous-time stochastic
matrices.
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Assumption 11.1. For all i, matrix A(i) is a Metzler matrix with zero sum columns:

[A(i)]kj ≥ 0, k 6= j,

ni∑
k=1

[A(i)]kj = 0.

Equivalently, it can be written that

1̄>niA
(i) = 0,

where 1̄ni is the ones vector having size ni. The symbol en = 1̄ni/
√
ni is introduced

to denote the averaged unit vector with ni components:

eni =

[
1
√
ni

1
√
ni
. . .

1
√
ni

]>
.

The overall system can be written in the same form considered in (9.2) (and in
[BFG13, BFG15a]):

ẋ(t) = Ax(t) +Bu(t) +Dd(t), (11.1)

where x(t) ∈ Rn includes the state variables associated with each buffer, u(t) ∈ Rm is
the control vector including all the agents vj(t), d(t) ∈ Rn is the vector representing
an external, non-controllable signal affecting the system through the generic matrix
D, while A and B are block-structured; in particular, A ∈ Rn×n is the block-diagonal
matrix

A = blockdiag{A(1), . . . , A(N)}. (11.2)

All the considerations in Section 9.2 hold, concerning the dimension of the blocks,
the special structure of matrix B and the associated hypergraph representation.

The system equilibrium, which can be the desired set-point in the case of buffers,
is set to 0 without loss of generality (it is always possible to reduce the problem to
this case by means of a variable translation).

Assumption 11.2. (A,B) is stabilisable.

Under stabilisability assumption, a network-decentralised control is sought. Hence,
each agent vj can have information from nodes in Nj only, vj = ϕ(xi, i ∈ Nj) and,
in the case of a linear state-feedback control u = −Kx, K must have the same
structural zero blocks as B> (cf. Chapter 9 and [BFG13, BFG15a]).

Example 11.1. In the case of Fig. 11.2, there are 3 nodes (A is labelled as node 1,
B as node 2 and C as node 3) and 6 agents: v1 = [u>1 u>2 ]>, v2 = [u>3 u>4 ]>, v3 =
[u>5 u>6 ]>, v4 = [u>7 u>8 ]>, v5 = u9, v6 = u10. The sets of agents affecting each
of the nodes are: C1 = {1, 2, 5}, C2 = {3, 4}, C3 = {2, 3, 6}. The agents control
the following nodes: N1 = {1}, N2 = {1, 3}, N3 = {2, 3}, N4 = {2}, N5 = {1},
N6 = {3}. Matrices B and D are

B =

 B11 B12 0 0 B15 0
0 0 B23 B24 0 0
0 B32 B33 0 0 B36

 , D =

 0 0
D21 0
0 D32

 .
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In this case, K should have the structure

K =

 K>11 K>12 0 0 K>15 0
0 0 K>23 K>24 0 0
0 K>32 K>33 0 0 K>36

> .
11.1.2 A Robust Network-Decentralised Solution

A robust solution can be achieved under the following assumption.

Assumption 11.3. The eigenvalue λ = 0 of A(i) is simple for all i and all other
eigenvalues have a strictly negative real part.

The assumption holds if each A(i) is irreducible (namely, it cannot be recast in
a block-triangular form by means of a variable permutation). However, this is a
sufficient, but not a necessary condition; in fact, there are reducible matrices for
which zero is a simple eigenvalue, as in the following example.

Example 11.2. The matrix

A(i) =

 −(α + β) 0 0
α −ζ δ
β ζ −δ

 , with α, β > 0 and ζ, δ ≥ 0,

is reducible and its spectrum is σ(A(i)) = {−(α+β),−(ζ+δ), 0}. Hence the eigenvalue
0 has multiplicity 2 if ζ = δ = 0, but is simple otherwise.

In view of Assumption 11.3, the following proposition is immediate.1

Proposition 11.1. (A,B) is stabilisable iff rank[A B] = n.

To robustly solve the stabilisation problem for the considered class of systems, a
control can be sought of the form [BGM14]

u(t) = −γB>Hx(t), (11.3)

where γ > 0 and

H = blockdiag{en1e
>
n1
, . . . , enie

>
ni
, . . . , enN e

>
nN
}. (11.4)

The candidate control (11.3)-(11.4) enjoys some relevant properties:

(a) it is network-decentralised (since matrix H is block-diagonal);

1Actually, it holds for generic extended buffer systems, see Definition 11.1, following as a special
case of Theorem 10.1.
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(b) it is robust (in fact, its expression does not depend on the parameters of the
stochastic matrices);

(c) each control agent needs to know the cumulative buffer content only, and not
its internal distribution. In fact, notice that

enie
>
ni

= (1̄ni/
√
ni) (1̄>ni/

√
ni) = 1̄ni

/ni,

where 1̄ni
is an ni × ni matrix of ones. Then

u(t) = −γB>


1̄n1
n1

0 . . . 0

0
1̄n2
n2

. . . 0
...

...
. . .

...

0 0 . . .
1̄nN
nN



y1(t)
y2(t)

...
yN(t)

 , yi(t) = 1̄>nixi(t), (11.5)

where yi(t) is the cumulative stock of buffer i, namely, the sum of all the state
variables of the ith subsystem (node).

In principle, to check whether the stabilisability Assumption 11.2 is satisfied,
according to Proposition 11.1 the matrices A(i) should be known (in order to compute
rank[A B]). Yet, interestingly, this is not necessary if Assumption 11.3 holds.

Corollary 11.1. Under Assumption 11.3, stabilisability is equivalent to

rank




1̄>n1
0 . . . 0

0 1̄>n2
. . . 0

...
...

. . .
...

0 0 . . . 1̄>nN

B
 = N.

The proof of Corollary 11.1 is provided within the proof of the following theorem,
which is the main result of this section.

Theorem 11.1. Under Assumptions 11.2 and 11.3, the network-decentralised control
(11.3)-(11.4) robustly stabilises the system.

Proof. Let En denote the orthonormal complement of vector en:

[
e>n
E>n

] [
en En

]
= In.

Since all of the matrices A(i) have zero sum columns,[
e>ni
E>ni

]
A(i)

[
eni Eni

]
=

[
0 0

E>niA
(i)eni E>niA

(i)Eni

]
,

where E>niA
(i)Eni has only negative real part eigenvalues (0 is a simple eigenvalue).

Consider the orthonormal transformation given by the square matrix

T = [blockdiag{enk} blockdiag{Enk}] , k = 1, . . . , N,
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with T>T = In. Hence T>AT =

[
0 0
G F

]
, where both G = blockdiag{E>nkA

(k)enk},

F = blockdiag{E>nkA
(k)Enk}, k = 1, . . . , N , are block-diagonal and F is stable. The

transformed input matrix is then T>B =

[
B0

BS

]
. Since

HT = [blockdiag{enk} blockdiag{0}] , k = 1, . . . , N,

the transformed control (11.3) can be expressed as

û = −γB>HTx̂ = −γ
[
B>0 0

]
x̂ (11.6)

and the closed-loop matrix is

T>AT − γT>BB>HT =

[
−γB0B

>
0 0

G− γBSB
>
0 F

]
. (11.7)

In view of the Popov criterion, since 0 is the only unstable eigenvalue, stabilisability
is equivalent to

rank[A|B] =

[
0 0 B0

G F BS

]
= n,

hence B0 has rank N (the last claim proves Corollary 11.1). Then, the N ×N matrix
−γB0B

>
0 is negative definite. Since F is stable, this in turn implies stability of the

overall system.

11.1.3 Robust Solution Under Saturation

Addressing Flow Constraints

Along the lines in [BBGP13], it can be shown that, in the presence of flow constraints,
the proposed network-decentralised stabilising control is effective as well.

Suppose that control flows are subject to capacity constraints in a box, u(t) ∈
U .

= {u ∈ Rm : u−i ≤ ui ≤ u+
i , ∀i}; then, a saturated network-decentralised control

can be considered:
u(t) = sat[−γB>Hx(t)], (11.8)

with γ > 0 and H as in (11.4), such that u(t) ∈ U .

Proposition 11.2. Under the assumptions of Theorem 11.1, the network-decentralised
saturated control (11.8) robustly stabilises system (11.1) in the presence of a constant
vector d ∈ D, provided that DD ⊂ −int(BU).

Proof. In the presence of a saturated control and a suitable disturbance vector, the
closed-loop system becomes[

ẋ0

ẋS

]
=

[
B0sat(−γB>0 x0)

Gx0 +BSsat(−γB>0 x0) + FxS

]
+

[
d̂0

d̂S

]
.
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Since matrix B0 has full row rank and matrix F is stable, stability of the overall
system, regardless of the stochastic parameters, follows from [BBGP13] (see [BGM14]
for details).

Asymptotic Optimality

Asymptotic optimality of the saturated robust control follows from the results of
Section 10.3, Chapter 10, which clearly hold as well when the functions g and h are
linear: (10.13) becomes

ẋi = A(i)xi +
∑
j∈Ci

Bijuj + di, (11.9)

where A(i) are Metzler matrices (namely, [A(i)]pq ≥ 0 for p 6= q).

Definition 11.1. System (11.9) is a buffer system if A(i) = 0. It is an extended
buffer system if A(i) is either asymptotically stable or marginally stable with marginally
stable eigenvalue λ = 0 (of any multiplicity).

For the systems considered here, Assumption 10.5 in Chapter 10 is equivalent to
requiring that A is either asymptotically stable, or marginally stable without purely
imaginary eigenvalues.

Proposition 11.3. An extended buffer system of the form (11.9) is stable in the left
kernel, i.e., satisfies Assumption 10.5.

Proof. By means of a suitable transformation, the overall system matrix can be
recast in a block-diagonal form, where each diagonal block has the form[

0 0
Pk Qk

]
,

with zero sub-blocks of the same dimension of the left kernel of A(i) (since the
system is stable by assumption, the eigenvalue 0 does not have Jordan blocks of
dimension greater that 1), while matrices Qk have no zero eigenvalues, hence are
asymptotically stable. If d is orthogonal to the left kernel of A, then the transformed
d̂ has zero components corresponding to the zero blocks of Â(i) and the system
d
dt
x̂(t) = Âx̂(t) + d̂ is the parallel of systems of the form

d

dt
x̂i(t) =

[
0 0
Pi Qi

]
x̂i(t) +

[
0

d̂i

]
,

which satisfy Assumption 10.5, because their state is bounded. Hence the overall
system satisfies the assumption. Details are provided in [BFG+16].
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Based on these results, it can be shown that, in the special case in which A(i)

are continuous-time stochastic matrices, the robust network-decentralised strategy is
also asymptotically optimal.

Theorem 11.2. If the dominant eigenvalue λ = 0 is simple for all matrices A(i),
the network-decentralised control (11.3)-(11.4) robustly stabilises the system and is
asymptotically optimal in norm.

11.1.4 A Non-Robust Network-Decentralised Solution

In general, when λ = 0 cannot be assumed to be a simple eigenvalue for all A(i), it
might not be possible to find a robust network-decentralised control. Only a control
depending on the A(i) can be found:

u(t) = −γB>Wx(t), (11.10)

with γ > 0 and

W = blockdiag{Vn1V
>
n1
, . . . , VniV

>
ni
, . . . , VnNV

>
nN
}, (11.11)

where Vni denotes any orthonormal basis of the left kernel (namely, the left eigenspace
of the 0 eigenvalue) of matrix A(i): V >niA

(i) = 0.

Theorem 11.3. Under Assumption 11.2, the network-decentralised control (11.10)-
(11.11) stabilises the system.

The proof is analogous to that of Theorem 11.1. However, Vni are functions of
the parameters. The exact knowledge of the parameters is not a realistic assumption
in most cases and resorting to approximated values can lead to a non robust solution.
In short: the control (11.10)-(11.11) is not robust, while the robust control (11.3)-
(11.4) is no longer suitable when λ = 0 is a multiple eigenvalue. This can be better
understood by considering the simple example provided in [BGM14].

Example 11.3. Consider a system composed of a single subsystem-node with a single
control agent, whose state matrix A is identical to the reducible matrix considered
in Example 11.2 (for which λ = 0 is a multiple eigenvalue if ζ = δ = 0, a simple

eigenvalue otherwise) and whose input matrix is B =
[
1 0 0

]>
. The system is

stabilisable if and only if either ζ or δ (or both) are strictly positive. Conversely, if
ζ = δ = 0, independently of u the distribution of the queued traffic between nodes
x2 and x3 is an invariant (uncontrollable) variable. In fact, since βẋ2 − αẋ3 =
β(αx1)− α(βx1) = 0, the quantity βx2 − αx3 is constant. Also, if the total stock at
the node, y = 1̄>3 x = x1 + x2 + x3, is taken as output variable, then stabilisability
by means of an output-feedback control is impossible (independently of the chosen
output-feedback control).
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Indeed, it can be shown that the condition in Assumption 11.3 (λ = 0 being a
simple eigenvalue) is not only sufficient, but also necessary.

Theorem 11.4. Under Assumption 11.2, the control (11.5) is stabilising if and only
if Assumption 11.3 holds.

Proof. Sufficiency has been proved in Theorem 11.1. Since stabilisability implies
detectability (i.e., observability of all the unstable eigenvalues), necessity follows from
the application of the Popov observability criterion (for the unstable eigenvalue 0) to
the system with output y, in view of the block-diagonal structure of the corresponding
matrices C and A. The proof also exploits the fact that, in a Metzler matrix with
zero sum columns, the ascent of the eigenvalue 0 is necessarily 1 (i.e., the largest
Jordan block associated with 0 has dimension 1), because the system is marginally
stable. Details are provided in [BGM14].

11.1.5 A Traffic Control Problem

A traffic-splitting model has been already proposed in Example 9.2 (Section 9.1.1) and
the effectiveness of the network-decentralised stabilising control u = −γB>Px (where
γ > 0 and P � 0 is a block-diagonal solution of the LMI A>P+PA−2γPBB>P ≺ 0)
has been tested based on the generation of random instances in Section 9.5.3.

Also the network-decentralised control scheme proposed in this section for network
systems with stochastic traffic splitting at the nodes can be tested by generating
random instances of large networks. There is a remarkable progress with respect to
the example in Chapter 9, where the control was found by solving a suitable LMI
depending on the state matrix. Here, a robust solution is proposed, based on the
control (11.5), which does not depend on the stochastic parameters (hence, it is
independent of the state matrix of the system).

Systems of the form (11.1), with D = I, have been considered so as to carry out
numerical experiments according to the following procedure.

1) Fix a number of nodes N and a maximum node size n̄.
2) Randomly generate a graph based on the probabilities Pc and Pe: each pair of

nodes i-j is connected with probability Pc, while each node i is connected with
the external environment with probability Pe.

3) For each pair of connected nodes i-j, generate a control associated with the
corresponding arc by adding to matrix B a column k whose elements are all null
except for Bik and Bjk, which are non-negative and non-positive respectively.

4) Apply the proposed control to the randomly generated network and simulate
the behaviour of the closed-loop system.

Since the matrices A(i) are randomly generated, they have distinct eigenvalues with
probability 1 (in fact, as remarked in Section 9.3, this is a generic property); therefore,
0 is a simple eigenvalue. Hence, the control (11.5) can be applied. It is worth pointing
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Figure 11.4: A traffic control problem where the incoming traffic at each node is split in different
buffers, according to the forwarding direction. [BGM14]

out that, in general, a random instance might not be stabilisable (i.e., it might be that
rank[A B] < n), due to a lack of connectivity. Whenever the system is stabilisable,
however, the robust control (11.5) turns out to be stabilising, as expected.

The congestion control problem is illustrated in Fig. 11.4: each traffic unit, having
its own destination, enters the network at some node, through an inflow arc, and
leaves the network through an outflow arc. At each node, the traffic is logically
(but not necessarily physically) split in queues of units having different directions.
For instance, as shown in Fig. 11.4, at node D there are three queues, composed
of units directed to nodes C (black buffer), E (yellow buffer) and F (green buffer).
If Assumption 11.3 is satisfied, any control agent can perform its action based
exclusively on the knowledge of the total congestion at the nodes connected by the
corresponding arc. For instance, the controller that governs the flow along the arc
connecting node D to node F does not need any knowledge of the internal splitting
at node D; yet, the actual controlled flow transfers elements of node D exclusively
from the queue directed to F (the green buffer inside node D, in Fig. 11.4).

The results of a numerical random experiment are presented in Fig. 11.5. The
fixed number of nodes is N = 10, the maximum node size is n̄ = 5, while the
probabilities are Pc = 0.25 and Pe = 0.2. Based on these values, matrices A and B
are randomly generated. The resulting overall system has dimension n = 38, with
n1 = 2, n2 = 5, n3 = 4, n4 = 4, n5 = 5, n6 = 3, n7 = 4, n8 = 3, n9 = 5, n10 = 3;
the number of controlled arcs is m = 29 and the graph results to be connected,
and connected with the external environment. The external disturbance vector d,
randomly generated as well, with elementwise maximum size 0.1, is held constant.
The control (11.5) is applied, with γ = 2, after checking that the generated system
is both controllable and observable. The simulation results, in Fig. 11.5 (a), show
the evolution of the buffer levels for the controlled system starting from random
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initial conditions in the range [0 10]. The reference level for the buffers is set to zero;
however, due to the presence of the persistent disturbance d, the desired set-point
is not exactly reached. Convergence to the steady state is smooth and fast, and is
assured without requiring any knowledge of the internal dynamics of the nodes and
of the internal traffic distribution at the nodes, since the stochastic parameters are
unknown to the controller and only information about the cumulative buffer content
is used for control purposes. The proposed robust control can be compared with
a different strategy, which however needs the knowledge of the subsystem states
and not just of the cumulative stock: u = −γBB>, with again γ = 2. This is the
network-decentralised control proposed in Chapter 10; such a choice is suitable, since
the closed-loop system with Acl = A − γBB> admits the 1-norm as a Lyapunov
function. The corresponding evolution of the buffer levels is shown in Fig. 11.5 (b),
and is very similar to that of Fig. 11.5 (a), even though convergence is slightly faster
and the state variables reach smaller values during their transient.

11.1.6 A Data Transmission System

A problem of data flow control in computer networks [BFG+16] is here proposed
as a benchmark to compare the performance of the different network-decentralised
control strategies devised in this part of the thesis.

Consider a data transmission system (as in Fig. 11.6), in which the macro-nodes
are routers, internally modelled as a network with a central node, providing switching
capabilities, and border nodes, representing the queues and the interfaces towards
physical links. In the communication network, data packets can be transmitted from
a router (macro-node) to another (see Fig. 11.7), making the buffer levels in each
router vary, due to three types of flows:

• the uncontrolled flow coming from the internal network and directed elsewhere;
• the controlled flow coming from other routers and directed to the internal

network;
• the controlled transiting flow, coming from and directed to other routers.

In the figures, plain arrows represent controlled flows, while dashed arrows
represent uncontrolled flows. The internal traffic in each macro-node splits in buffers
with different destinations according to some probability distribution (see Fig. 11.8):
traffic splitting in each macro-node is modelled as a continuous-time Markov chain.
Disk-headed arrows represent stochastic splitting.

Consider for instance the macro-node A in Fig. 11.8. All the traffic arriving at
the central node, denoted by IA, splits in several directions, namely, from IA to
AB, AC, AD, and to AA, the buffer for the data directed into the local network A.
However, in case of congestion of some link, the traffic directed to some node can be
reconsidered, with a probability originated by an unknown re-routing criterion. This
is represented by the arrows from AB, AC, AD to IA. The internal dynamics of
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(a) Buffer level evolution with the robust control (11.5), γ = 2.

(b) Buffer level evolution with the control u = −γBB>, γ = 2.

Figure 11.5: Simulations for the example in Section 11.1.5, comparing two different control strategies.
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Figure 11.6: A communication network: packets flow among five routers (macro-nodes). [BFG+16]
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Figure 11.7: Data flows among routers (macro-nodes). [BFG+16]
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Figure 11.8: Router A seen as a macro-node with splitting dynamics. [BFG+16]
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each macro-node is modelled by a continuous-time Markov matrix:

AA =


−(αAA + αAB + αAC + αAD) αBA αCA αDA αAA′

αAB −αBA 0 0 0
αAC 0 −αCA 0 0
αAD 0 0 −αDA 0
αAA 0 0 0 −αAA′

 .
The first variable represents the arrival node; αAA, αAB, αAC , αAD are the probabili-
ties that, in time dt, a packet is transferred to AA, AB, AC, AD. Conversely, αBA,
αCA, αDA, αAA′ are the probabilities that, in time dt, a packet is sent back to IA,
from AB, AC, AD or AA, for re-routing. The matrices for the other macro-nodes
can be determined likewise.

Matrix B is an incidence matrix: each column Bj corresponds to a controlled arc
connecting two macro-nodes, or leaving a macro-node. The columns are determined
as follows.

• If an arc connects a macro-node to the local network, there is a −1 in the row
corresponding to the exit node of the macro-node, directing the traffic to the
local network (node AA in Fig. 11.8).

• If an arc connects two macro-nodes, for instance A to B , there is a −1 in the
row corresponding to the node AB of macro-node A (directing the traffic to
B) and a 1 in the arrival node IB of macro-node B.

At each node, the probability distribution is assumed to be unknown, hence it cannot
be used for control purposes. Given the transmission network in Fig. 11.6, it is
interesting to compare the behaviour of the network when three different control
strategies are applied:

• the saturated control u = sat(−γB>x) in (10.6);
• the H-saturated control u = sat(−γB>Hx) in (11.3)-(11.4);
• the control u = sat(−γB̃>x) in (10.12).

In all of the reported simulations (performed with MATLAB), showing for each
strategy the evolution of the buffer levels x (starting from random initial conditions)
along with the evolution of the control u, the control components are bounded in
the interval [0 1] Mpackets/s.

In the simulations shown in Fig. 11.9, the component of d affecting node D is sud-
denly increased to three times its initial value, to represent the case in which node D
suddenly increases its traffic in all directions. Parameter values for macro-node A are
αAA = αAB = αAC = αAD = 1, αBA = αCA = αDA = 0.25, αAA′ = 0.05, and analo-
gously for the other macro-nodes. The value of d is initially [0.2 0.6 0.8 0.4 1.2]>,
then at t = 500 ms it is switched to d = [0.2 0.6 0.8 1.2 1.2]>. It can be seen that,
with a suitable choice of γ (it is chosen γ = 0.1 for all of the control strategies), the
H-saturated control guarantees the fastest convergence and the shortest queues in the
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buffers. Buffer queues are an important merit figure, since they are related to delays
in the network. The asymptotic value of the control is optimal, as expected: u =
[0.658 0.742 0.800 0.892 0.908 0 0.083 0 0.141 0 0.233 0 0.058 0 0.167 0 0.092
0 0.108 0 0.017]> is the minimum norm control, as it has been independently
checked via CVX, by solving the corresponding optimisation problem in a “centralised
way”.

If γ is taken too large, as in Fig. 11.10, where γ = 0.4, the H-saturated control
may no longer ensure positivity of the state variables. However, a negative value
of the buffer levels is not reasonable. Hence, to ensure non-negativity of the buffer
levels, it is mandatory to stop the flow (forcing u = 0) associated with all of the
arcs coming out from empty buffers. This discontinuity in the control may cause
chattering, as shown in Fig. 11.10 (b), but guarantees that the buffer levels have
non-negative values, as in Fig. 11.10 (c). Interestingly, from several tests it has been
noticed that, even in the presence of chattering, the average value of u in the last
part of the simulation is very close to the asymptotically optimal value: in the case
of Fig. 11.10 (where the value of d is initially [0.6 0.2 0.7 0.5 1.2]> and is then
switched to d = [0.6 0.2 0.7 1.5 1.2]> at t = 150, while macronode parameters are
as in Fig. 11.9), the norm of the difference is 0.040.

The simulation in Fig. 11.11 shows the case in which, instead, the internal
parameters of the Markov chains are suddenly changed: αDE, αEB, αBB are switched
from 0.05 to 1. This models the case in which node D increases the traffic to
node E and node E the traffic to node B, resulting in a large traffic through
nodes D-E-B. The disturbance is fixed: d = [0.2 0.6 0.8 1.2 1.2]>. For all
the macro-nodes k ∈ M = {A,B,C,D,E}, αkk′ = 0.05 and α∗k = 0.25 (where ∗
denotes any macro-node in M suitably connected to k). For macro-nodes A and
C, αA∗ = αC∗ = 1. For macro-nodes B, D and E, αB∗ = αD∗ = αE∗ = 0.05;
then, at t = 500, αBB = αDE = αEB = 1. For all of the controls, it is chosen
γ = 0.04. Again, the H-saturated control ensures a much faster convergence,
lower buffer levels and smoother transitions (conversely, the other controls are
discontinuous when the network changes its behaviour). The resulting asymptotic
value u = [0.675 0.758 0.833 0.908 0.925 0 0.083 0 0.158 0 0.233 0 0.075 0 0.167
0 0.075 0 0.092 0 0.017]> is optimal (CVX-tested).

11.2 Channel Sharing Communication

Communication protocols able to adapt to sudden changes in the network topology
are crucial in highly dynamic mobile scenarios (e.g., vehicle-to-vehicle communication
[Eic07], swarm robot systems [Sah05], and many others [MPD05, EP05]); yet, often
no fraction of the overall available bandwidth can be used for network discovery,
coordination and connection setup, hence any coordination and control strategy
needs to be decentralised (and also simple, since it must be implemented on low-
computation-power devices with limited energy consumption and it must not suffer
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(d) x with u = sat(−γB>Hx)
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(e) u = sat(−γB̃>x)
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(f) x with u = sat(−γB̃>x)

Figure 11.9: Simulations of the network in Fig. 11.6 when d is suddenly changed (at time t = 500
ms). Given γ = 0.1 and common random initial conditions, the three considered control strategies
are compared: for each strategy, both the evolution of the control action u and of the buffer levels
x are shown.
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Figure 11.10: Simulations of the network in Fig. 11.6, with u = sat(−γB>Hx) and γ = 0.4. To
ensure positivity of the state variables, the control actually applied is forced to zero for all the arcs
which are leaving a node i with xi = 0.
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(d) x with u = sat(−γB>Hx)
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(e) u = sat(−γB̃>x)
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(f) x with u = sat(−γB̃>x)

Figure 11.11: Simulations of the network in Fig. 11.6 when there is a sudden traffic increase through
nodes D-E-B at time t = 500 ms. Given common random initial conditions, the three considered
control strategies with γ = 0.04 are compared: the evolution of u and of x is shown.
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of fragility phenomena in the presence of network variations [BLT02]).
Decentralised algorithms have been proposed for power control in wireless com-

munication networks, such as the Foschini-Miljanic algorithm [FM93, DL14, FCJ14].
Concerning instead bandwidth allocation, the Carrier Sense Multiple Access

(CSMA) p-persistent protocol family represents an interesting solution for coordinator-
free ad hoc networks [Abr70, BCG03, Eic07, Mís07, WAKP08]. In wireless commu-
nication networks, fairness is not less important than the maximisation of channel
utilisation [LL07, MLAM10, LPRK13]; concurrently fulfilling both design goals is
challenging and crucial.

An improvement of the p-persistent protocol, based on a decentralised and
distributed control paradigm [Tsi84], has been proposed and analysed in [BCM11,
BDMP12, BCGM16]; this channel sharing communication protocol is here presented
and it is shown that it actually implements a network-decentralised strategy.

Consider the problem of n transmitters (associated with the nodes of a graph),
sharing a common communication channel having a known bandwidth (assumed to
be unitary, without loss of generality). Each transmitting node has to autonomously
decide its transmission rate, based on the knowledge of its own rate and of the
aggregate transmission rate of the other nodes (which is related to bandwidth
occupancy). The following variables need to be defined:

• xi(t) ∈ R: transmission rate of the ith node, i = 1, . . . , n;
• y(t) =

∑n
i=1 xi(t) ∈ R: total message rate;

• ui(t): control signal at the ith node;
• zi(t) =

∑
j 6=i xj(t) = y(t)− xi(t): aggregate message rate of the nodes comple-

mentary to the ith node.

Each node autonomously controls its own transmission rate, according to the following
equation:

ẋi(t) = ui(t). (11.12)

The overall control goal is the ideal steady-state condition

lim
t→∞

xi(t) =
1

n
, ∀i, (11.13)

which implies fairness and full exploitation of the overall available bandwidth (since
limt→∞ y(t) = 1).

A centralised control law of the form ui = ui(x) would require either full connection
(i.e., each node should be connected to all the others, so as to receive information
about their state) or the presence of a centralised supervisor that has information
about the state of the whole system. Yet this is not always possible and decentralised
algorithms need to be devised.

Definition 11.2. Let Ci, for i = 1, . . . , n, index the set of nodes connected to node
i. The connectivity degree is ci = |Ci|.
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Then
∑

j∈Ci xj(t) denotes the aggregate transmission rate of the nodes in Ci.
The algorithm works as follow. Any node increases/decreases its transmission

rate with speed ui, according to

ui(t) = −α(1 + µ)xi(t)− α
∑
j∈Ci

xj(t) + α, (11.14)

where α and µ are positive parameters.
In the absence of communication among nodes, the control would be ui(t) =

−α(1 + µi)xi(t) + α, which means that asymptotically

x(t)→ 1

(1 + µ)
,

which is close to 1 for µ small. Note that µ > 0 is necessary for stability.
In the presence of connections among nodes, the transmission control ui is

decreased of a quantity
∑

j∈Ci xj(t), due to the presence of other nodes that are
sharing the same channel.

In [BDMP12] it is shown that in the case of full connection, i.e., when∑
j∈Ci

xj(t) =
∑
j 6=i

xj(t) = zi(t),

the control law (11.14) renders system (11.12) asymptotically stable and that

lim
t→∞

xi(t) =
1

n+ µ
. (11.15)

Therefore, in the case of full connection, (11.13) can be satisfied up to an arbitrarily
small tolerance. The case in which there is no full connection deserves some attention.
A connection from j to i is present if

j ∈ Ci;

the connection is said to be symmetric if

j ∈ Ci ⇐⇒ i ∈ Cj,

non-symmetric otherwise.
The system described by (11.12) and (11.14) can be represented as

ẋ(t) = Ax(t) + α1̄ (11.16)

where 1̄
.
= [ 1 1 . . . 1 ]> and

A = α


−(1+µ) −δ12 −δ13 · · · −δ1n

−δ21 −(1+µ) −δ23 · · · −δ2n

−δ31 −δ32 −(1+µ) · · · −δ3n
...

...
...

. . .
...

−δn1 −δn2 −δn3 · · · −(1+µ)

 , (11.17)
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with δij = 1 if node j is linked to node i, δij = 0 if it is not. Compactly, it can be
written

A = −α[(µ+ 1)I + ∆],

where ∆ is the adjacency matrix associated with the system graph. This matrix is
symmetric iff all connections are symmetric.

The control (11.14) can be thus seen as a special case of network-decentralised
control. In fact, any connection from node j to node i is associated with a control
signal αxj, acting on node i, that depends on xj only.

In general it can be shown that, in the absence of full connection, stability
cannot be ensured for any µ > 0. It turns out, however, that stability can be
ensured provided that µ > 0 is taken large enough. The following result is proved in
[BCGM16].

Proposition 11.4. Stability of system (11.16) with matrix A as in (11.17) is ensured
for any matrix ∆, possibly non-symmetric, if

µ >
n

2
− 1. (11.18)

In [BCGM16] it is also shown that the bound in (11.18) cannot be improved,
in general, since it is tight in the symmetric-connection case. Robustness of the
proposed control with respect to time-varying network topologies and delays is also
discussed.
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Figure 11.12: Channel sharing protocol: time evolution of the transmission rates, expressed in
terms of percentage of the overall bandwidth.

The effectiveness of the proposed control is here shown by the simulations in
Fig. 11.12, obtained starting from zero initial conditions in the case of n = 500
transmitters, with α = 1, µ = 250 and a randomly generated symmetric matrix
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∆ (nodes are connected with probability p = 0.8). It can be seen that the control
naturally achieves not only stability, but also a good compromise between fairness
and maximal bandwidth exploitation. In fact, the channel exploitation is “almost
equal” for all transmitters (at steady state, all xi are in the range 0.15% − 0.19%
of the total bandwidth) and the overall bandwidth is “almost fully” exploited (y is
almost 85% of the total bandwidth at steady state).

11.3 Clock Synchronisation

Clock synchronisation is a particular case of the general and well studied class of con-
sensus problems [OSM04, OSFFS06, BGP06, OSFM07, RBA07, CFSZ08, CMA08,
GG08, KWLB08, TKY08], where the goal is to drive the state variables to a com-
mon value. The clock synchronisation problem has been widely investigated: the
interested reader is referred to [SS07, CCSZ08, SWX08, SAS10, CCSZ11, CZ14] and
the references therein for a deep inquire into the subject, and also to [LL88, SBK05,
PB09, HLST11, SF11, HSV12], which deal in particular with synchronisation pro-
tocols and algorithms. Here, a particular discrete-time formulation of the problem
(a similar problem, in a continuous-time setting, has been considered in [BM15],
Chapter 12.6.3) is considered as a benchmark to show how synchronisation can be
achieved by means of a network-decentralised strategy. The obtained results are
comparable to the state of the art.

  

Figure 11.13: The clock synchronisation network.

Consider N clocks, each having its own inner period, whose time indications need
to be synchronised. The clocks are not directly connected: they communicate with
one another by periodically emitting a beep (according to their inner period), which
is sensed by a subset of the other clocks only (in real applications this may be due,
for instance, to the fact that the sound intensity fades beyond a certain physical
distance). This situation can be represented by a graph, as in Fig. 11.13, where the
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presence of an arc connecting two clocks (nodes) means that each of the two clocks
can sense the beep emitted by the other.

A particular interpretation of the connection graph is the following. Each clock
senses the beeps emitted by the other clocks within a time window (a listening
window), symmetrically centered in its own beep instant. This concept is illustrated
in Fig. 11.14. It is assumed that the listening window has the same length for all
of the clocks. This implies symmetry: if clock i is in the window of clock j, then
also clock j is in the window of clock i. In the graph modelling the interactions
among clocks, the ith clock is then connected only to the clocks that beep within its
listening window Wi and the connection between clocks i and j means that each is
in the time window of the other.

τ τi i(k) (k+1)

W W
i i

not connected

Figure 11.14: The time windows.

Assume that the resulting graph is always fully connected and denote by

• τi(k) the beep time of the ith clock, expressed according to the universal time;
• τ̂i(k) the beep time of the ith clock, expressed according to the inner time of

the ith clock itself;
• di the conversion factor between universal and internal time, such that τi(k) =
diτ̂i(k);

• Ti(k) the (internal) time period of the ith clock.

Hence, each clock emits a beep in the time instants τi(k) and has an adjustable period
whose length, expressed in universal time, is diTi(k).

A general formulation of the problem can be provided as follows. Given N clocks,
the spontaneous (uncontrolled) evolution of the system would be:{

τi(k + 1) = τi(k) + diTi(k),

Ti(k + 1) = Ti(k),

for i = 1, . . . , N . The aim is to synchronise the N clocks, i.e., to achieve for all of
them the same time indication and the same period: asymptotically, τi = τ̄ ∀i and
Ti = T̄ ∀i. To achieve synchronisation, each clock, which perceives the beeps emitted
by some of the other clocks, can modify its behaviour accordingly. As previously



11.3. Clock Synchronisation 261

seen, for each clock the following beep emission instant and the following period
will depend only on the beeps sensed inside a certain time window centered at the
present beep emission instant. To synchronise the clocks, correction factors of the
form

ci(k) =
∑
j∈Wi

(τi(k)− τj(k)) (11.19)

can be considered, depending on the beep emissions of all the other clocks indexed
in the set Wi associated with the time window of the ith clock. The correction
factor for the ith clock depends exclusively on information coming from a subset
of the other clocks, those which are beeping in the time window Wi and are hence
connected with the ith clock in the associated graph. Therefore, this can be seen
as a network-decentralised control strategy, implemented by the combined action of
several local agents uij = τi(k)− τj(k).

The system equations become then{
τi(k + 1) = τi(k) + diTi(k)− γ

∑
j∈Wi

(τi(k)− τj(k)),

Ti(k + 1) = Ti(k)− αd−1
i

∑
j∈Wi

(τi(k)− τj(k)),

for i = 1, . . . , N , where γ and α are positive correction coefficients that will be
analysed later.

If the clock inner implementation is considered, the system evolution is{
τ̂i(k + 1) = τ̂i(k) + Ti(k)− γ

∑
j∈Wi

(τ̂i(k)− τ̂i,j(k)),

Ti(k + 1) = Ti(k)− α
∑

j∈Wi
(τ̂i(k)− τ̂i,j(k)),

for i = 1, . . . , N , where τ̂i,j(k) is the beep time of the jth clock expressed according
to the inner time of the ith clock. From the above equations, it is apparent that
the knowledge of the conversion factor di is not necessary at all for the practical
implementation of the algorithm in the logic of each clock.

The following convergence analysis proves that the proposed network-decentralised
algorithm assures synchronisation with a period T that is

• asymptotically constant;
• equal to the average of the initial period values of all the clocks.

Define

τ(k) =

 τ1(k)
...

τN(k)

 and T (k) =

 T1(k)
...

TN(k)

 ,
to compactly write the discrete-time system as[

τ(k + 1)
T (k + 1)

]
=

[
IN − γL D
−αD−1L IN

] [
τ(k)
T (k)

]
, (11.20)
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where D = diag{d1, . . . , dN} is the time conversion matrix, while L ∈ RN×N is
the Laplacian matrix of the graph. Among the several interesting properties of the
Laplacian matrix, remind that L is positive semidefinite and the algebraic multiplicity
of its zero eigenvalue is equal to the number of connected subgraphs. Hence, if the
whole graph is connected (as in the present case), zero has multiplicity equal to one
and the corresponding eigenvector is the vector of ones: L1̄ = 0.

If the state transformation[
τ(k + 1)
T (k + 1)

]
=

[
IN 0
0 D−1

] [
τ̃(k + 1)

T̃ (k + 1)

]
is applied, the dynamic matrix of system (11.20) becomes

A =

[
IN 0
0 D

] [
IN − γL D
−αD−1L IN

] [
IN 0
0 D−1

]
=

[
IN − γL IN
−αL IN

]
,

resulting in the transformed system[
τ̃(k + 1)

T̃ (k + 1)

]
=

[
IN − γL IN
−αL IN

] [
τ̃(k)

T̃ (k)

]
. (11.21)

Consider the orthonormal matrix Q which diagonalises L: Q>LQ = Λ, where Λ is a
diagonal matrix with the same eigenvalues of L, hence Λi ∈ R may be either zero or
positive. Matrix Q defines a transformation that changes matrix A as follows:

Q>AQ =

[
IN − γΛ IN
−αΛ IN

]
.

Suitably changing the order of rows and columns, a block diagonal matrix is obtained
having diagonal blocks [

1− γΛi 1
−αΛi 1

]
.

The characteristic polynomial of the ith block is

pi(z) = z2 + (γΛi − 2)z + 1 + (α− γ)Λi, (11.22)

whose stability properties can be easily studied by applying the transformation
that maps the open unit disk to the real negative half-plane (thus transforming
stable eigenvalues of the discrete-time system into stable eigenvalues of a fictitious
continuous-time system):

z =
s+ 1

s− 1
.

The transformed characteristic polynomial is

pi(s) = [αΛi]s
2 + [2Λi(γ − α)]s+ [4 + Λi(α− 2γ)], (11.23)
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whose roots can have negative real part if and only if all the coefficients are positive.
Thus, assuming that Λi 6= 0, the following inequalities must be satisfied:

α > 0,

γ > α,

(2γ − α) < 4
Λi

∀i.

By considering the largest eigenvalue of matrix L, ΛM = maxi(Λi), the following
bound is obtained: 

α > 0,

γ > α,

(2γ − α) < 4
ΛM
.

(11.24)

Remark 11.1. By exploiting the fact that the largest eigenvalue of a Laplacian matrix
L can never be greater than N , another bound could be obtained by considering
ΛM = N . The control parameters could then be chosen without computing the
eigenvalues of L (and without even knowing the Laplacian matrix itself, provided that
the corresponding graph is connected).

Since both α and γ must be positive, the system of inequalities in (11.24) plus
γ > 0 identifies a stabilising set which is a triangle in the plane (α, γ), represented
in Fig. 11.15. The triangle barycenter has coordinates (αB, γB) = ( 4

3ΛM
, 2

ΛM
): this

can be considered as the optimal value of the pair of parameters.

If the system parameters are chosen inside the triangle, stability is guaranteed
for all the eigenvalues different from the two on the unitary circumference: in fact,
for Λi = 0, p(z) = z2 − 2z + 1 = (z − 1)2, hence there is the eigenvalue λ = 1, with
algebraic multiplicity ma = 2. Since the geometric multiplicity of the eigenvalue
λ = 1 is mg = 1, denoting by e the normalised unit vector, e = 1̄√

N
, the associated

eigenspace is generated by the eigenvector[
e
0

]
and the generalised eigenvector [

0
e

]
,

and the discrete-time modes associated with the eigenvalue λ = 1 are 1 and k. All
the other modes are asymptotically stable, hence the solution of the system converges
to the eigenspace associated with λ = 1:[

τ
T

]
∞

= (µ+ νk)

[
e
0

]
+ (ρ+ σk)

[
0
e

]
,
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Figure 11.15: The triangle in the upper half-plane, formed by the black, red and green sides, is the
set of the stabilising pairs (α, γ) for a clock interconnection graph with ΛM = 5. The blue line is
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= 0, the black line is γ = 0 and the

black star inside the triangle denotes its barycenter.

for some constants µ, ν, ρ, σ. Since the solution must satisfy system (11.21), it must
be that σ = 0 and ρ = ν. Therefore, the generic asymptotic solution is[

τ
T

]
∞

=

[
(µ+ νk)e

νe

]
and the synchronisation goal is fully achieved:

• the clocks are synchronised;
• the period is the same for all of them (and is equal to the average of the initial

periods).

In fact, it can be shown that the average of the periods is invariant: since e>L = 0,

m̄ = e>T (k) = e>T (k + 1).

Fig. 11.16 reports the simulation results of a clock synchronisation process based
on the proposed network-decentralised strategy. N = 10 clocks are considered and a
connection graph is randomly generated with connectivity (connection probability)
c = 0.7. The initial conditions are randomly chosen in the interval [0 10], and for α
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and γ the optimal value is picked, corresponding to the barycenter of the triangular
shape seen above. Matrix D = I + ∆, where ∆ is a diagonal matrix whose diagonal
entries are randomly generated in the interval (−1 1). The time indication quickly
becomes the same for all of the clocks, and is asymptotically linear, while the period
indication is asymptotically constant and reaches, for all of the clocks, a common
value (5.53 time units) expressed according to the universal time, which is equal to
the average of the random initial values. Interestingly, time synchronisation occurs
much faster than period synchronisation.
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Figure 11.16: The clock synchronisation transient: evolution of the time indication (top) and of the
period (bottom), both expressed according to the universal time.

11.4 Vehicle Platooning

In this section, a wireless-communication-based network-decentralised control for
platoons of vehicles is considered.

In the proposed framework, all the vehicles in the platoon are enabled to share
information about one another by wireless communication in order to automatically
follow the reference vehicle, called the leader (whose dynamics is decided, e.g., by a
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human driver). This evolution of the standard Adaptive Cruise Control (ACC) is
named CACC (Cooperative ACC), because wireless communication among vehicles
allows them to share information so as to efficiently cooperate. The aim is often to
minimise inter-vehicle spacing (thus reducing fuel consumption by better exploiting
the aerodynamic effects due to platooning) and to prevent extraneous vehicles from
inserting between two vehicles of the platoon. For controlling the longitudinal
dynamics of N vehicles in a platoon, many different schemes have been proposed.
Two are analysed here: the former ensures constant spacing among vehicles; the latter,
based on an analogy with impedance matching in transmission lines, is designed for
reducing oscillations along the platoon.

In the following, all the physical quantities will be referred to a reference frame
that moves with a constant speed, considered as the nominal one. Denoting by yi,
ẏi and ÿi (i = 0, 1, . . . , N) the position, speed and acceleration of the ith vehicle,
respectively, the dynamics of the leader can be described by

ẏ0 = β(u0 − y0),

where u0 is the position control input (provided, for instance, by a human driver). In
general, y0 and ẏ0 are assigned inputs for the system. The acceleration control input
for each vehicle of the platoon is ui and the equation representing the dynamics of
the ith vehicle is then

ÿi = ai,

where two cases can be considered:

• if the effect of vehicle dynamics is neglected (thus assuming infinite bandwidth
associated with the lower level controller), ai = ui;

• if the finite bandwidth associated with the lower level controller is considered
and its effect is expressed by a lowpass filter, ai is derived by the equation

ȧi =
1

τF
(ui − ai), τF > 0.

Constant spacing control. If the control is designed for obtaining constant
spacing among the vehicles in the platoon, the acceleration control input is [Raj12]

ui = α1ÿi−1 + α2ÿ0 − α3(ẏi − ẏi−1)− α4(ẏi − ẏ0)− α5(yi − yi−1 + li−1 + gd),

for i = 1, . . . , N , where αj are positive design parameters, li is the length of the ith
vehicle and gd is the desired inter-vehicle spacing.

A faster alternative is achieved by considering for control purposes, instead of
the actual acceleration of other vehicles, their desired acceleration:

ui = α1ui−1 + α2u0 − α3(ẏi − ẏi−1)− α4(ẏi − ẏ0)− α5(yi − yi−1 + li−1 + gd),

for i = 1, . . . , N .



11.4. Vehicle Platooning 267

In both cases, only “local” information regarding the vehicle in front and the
leader is required: this is therefore an example of network-decentralised control, where
each vehicle-node is connected with the leader-node and, moreover, with the node
corresponding to the vehicle in front.

Consider the whole platoon and the state variable x = [x0 x1 . . . xN ]>, where
x0 = [y0 ẏ0]>, while xi = [yi ẏi ÿi]

>, i = 1, . . . , N . Assuming for simplicity li = l for
all i, this leads to the continuous-time system

ẋ =



A0 0 0 0 · · · 0
A4 Dc 0 0 · · · 0
A4 X Dc 0 · · · 0
A4 X X Dc · · · 0
...

...
...

...
. . .

...
A4 X X X · · · Dc


x+



B0

B2

B2

B2
...
B2


 u0

l
gd

 ,

where 0 are zero-blocks,

A0 =

[
0 1
0 0

]
, A4 =

 0 0
0 0
0 α4

 , B0 =

[
0 0 0
1 0 0

]
, B2 =

 0 0 0
0 0 0
α2 −α5 −α5

 ,
X are matrices whose entries depend on the influence of the dynamics of the vehicles
in front and the diagonal blocks are

Dc =

 0 1 0
0 0 1
−α5 −(α3 + α4) −1/τF

 .
Since the dynamics of the leader is to be considered as an assigned and non-

controllable input, the stability of the system can be studied by considering just the
subsystem formed by the followers, having dynamic matrix

Dp =


Dc 0 0 · · · 0
X Dc 0 · · · 0
X X Dc · · · 0
...

...
...

. . .
...

X X X · · · Dc

 .
Since Dp is block-triangular, its eigenvalues correspond to those of the diagonal block
Dc (each with multiplicity N). Denoting k = α5 and h = α3 + α4, the stability of
Dc can be studied by means of the Routh-Hurwitz table:

1 h
1
τF

k

h− kτF 0
k 0
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Figure 11.17: A transmission line: impedance matching is achieved for Z =
√

L
C .

Therefore, the system is asymptotically stable (all of the eigenvalues have negative
real part) provided that k > 0 and h > τFk.

When the leader has a constant speed ẏ0 = v̄ (hence u0 = 0), being matrix Dp

non-singular, the unique solution is ẏi = v̄ and yi−1−yi = li−1+gd for all i = 1, . . . , N ,
corresponding to the case in which all of the vehicles have the same speed (imposed
by the leader) and keep a constant spacing.

Impedance-matched control. An analogy with impedance matching for trans-
mission lines can inspire an acceleration control input having the form

ui = −k(yi−yi−1)−k(yi−yi+1)−h(ẏi−ẏi−1)−h(ẏi−ẏi+1), i = 1, . . . , N−1 (11.25)

for the intermediate vehicles and

uN = −k(yN − yN−1)− h(ẏN − ẏN−1)− αẏN (11.26)

for the last vehicle of the platoon (which is in charge of implementing “impedance
matching”). This can be seen a network-decentralised control, associated with a
given “interconnection topology” (corresponding to a path) among the vehicles: each
vehicle needs information exclusively about the vehicle in front and the vehicle behind
(apart from the last vehicle, which of course needs just information about the vehicle
in front). In fact, if a control agent is associated with each arc of the interconnection
graph, it can be written that

ui = ui,i−1 + ui,i+1 where ui,j = −k(yi − yj)− h(ẏi − ẏj).

The constants k, h and α are design parameters and their value can be chosen,
as mentioned, based on an impedance-matching-like criterion. In fact, consider the
ideal case of the transmission line in Fig. 11.17. Then, for all i = 1, . . . , N − 1,
LCv̈i = Lİi − Lİi+1 = vi−1 − vi − vi + vi+1, hence

v̈i = k(vi−1 − 2vi + vi+1), where k =
1

LC
,

which does not depend on the voltage derivatives v̇i if an ideal lossless line is
considered. However, adding an analogous term depending on v̇i leads to the strategy
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in equation (11.25). Moreover, LCv̈N = LİN − L
Z
v̇N = vN−1 − vN − L

Z
v̇N , hence

v̈N = k(vN−1 − vN)− 1

CZ
v̇N ,

where, as is well-known, the choice Z =
√

L
C

corresponds to the matched impedance.

With this choice, v̈N = k(vN−1 − vN)− 1√
LC
v̇N .

The impedance-matching analogy then leads to the choice α =
√
k in (11.26)

(and then also in (11.25)). For the sake of symmetry, it may be chosen h =
√
k as

well. Since
√
k corresponds to the propagation speed along the platoon, it can be

expected that the higher is k, the more “reactive” is the system. By simulation, it
can be seen that the proposed network-decentralised control, along with the matched-
impedance parameter choice, is effective: the vehicles smoothly follow the leader,
without oscillations due to “reflections” (see Fig. 11.18).

The proposed control protocol has two fundamental aspects:

• it works in the absence of communication with the leader;
• vehicle N , the matching vehicle, must automatically recognise to be the last

and apply the matching impedance control.

It should be noticed that, with this control strategy, the inter-vehicle spacing

yi − yi−1 =
v̄√
k

in no longer constant, since it depends on both k and the cruising speed v̄.
Since the considered system is based on a finite number of vehicles, the trans-

mission line analogy provides just a physical intuition. A numerical criterion can be
proposed, however, to show that, indeed, the system behaves like an “impedance
matched” line, without reflections. Denoting by u0 the reference input for the leader,
with respect to a frame moving at the desired speed, consider a bounded input

|u0(t)| ≤ umax

representing the maximum allowable deviation from the current position in the
moving frame. If the infinity norm of a scalar signal f is introduced as

‖f(t)‖∞
.
= sup

t≥0
|f(t)|,

then the maximum relative deviation of each follower yi(t) can be assessed by
introducing the functional (norm)

Ji = sup
‖u0‖∞ 6=0

‖yi‖∞
‖u0‖∞

,
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which can be computed as

Ji =

∫ ∞
0

|Fi(t)|dt,

where Fi(t) is the impulse response of the ith follower due to an impulse applied to
the leader reference.

The example of a platoon composed of a leader and 10 followers has been
simulated with the choice τF = 0.5, k = h = 0.5 and α =

√
k. The integrals have

been numerically evaluated as

1.01 1.0097 1.0179 1.0228 1.0227 1.0169 1.0133 1.0131 1.0128 1.0125 1.0122

and the corresponding step response is reported in Fig. 11.18.
In the case of an ideal transmission line, the signal propagates as a wave (an

electromagnetic wave, indeed) and, if impedance matching is implemented, there
are no reflected waves coming backwards.2 Hence, the wave simply propagates the
signal of the leader, unchanged, but delayed. In the case of a step response, the ideal
behaviour is that in which there is no reflection and all of the quantities become equal
to 1 after a certain delay. Fig. 11.18 shows a behaviour that is very close to the ideal
case: the step response presents almost no oscillations. Instead, oscillations (due to
reflections in the transmission line analogy) are present whenever α is different from

the matching value. For instance, if α = 1
2

√
k,

1.01 1.1544 1.2993 1.4269 1.5324 1.6141 1.6734 1.7136 1.7385 1.7521 1.7571

and, if α = 2
√
k,

1.01 1.1466 1.2802 1.3881 1.4573 1.4728 1.4193 1.2879 1.0962 0.9205 0.8930.

Note that a generic formation of vehicles (not necessarily aligned in a longitudi-
nal platoon) can be controlled by decomposing the problem in the two directions
associated with the x-axis and the y-axis, and independently controlling the spacing
in each direction (see Fig. 11.19).

As a future direction, it would be interesting to investigate a saturated type of
control for vehicle platoons, and to assess its advantages and disadvantages with
respect to the impedance-matched control.

2In fact, a signal travelling along an ideal transmission line can be partly or fully reflected back
in the opposite direction only if there is a discontinuity in the characteristic impedance of the
line, or if the far end of the line is not terminated in its own characteristic impedance. Impedance
matching ensures that the line is terminated in its own characteristic impedance, thus preventing
reflections: the signal propagates as if the line were infinitely long.
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Figure 11.18: The step response for a platoon with 10 cars following a leader. The same “good”
behaviour has been verified for quite larger numbers of vehicles, e.g., N = 30.

  

communication

communication

Figure 11.19: The vehicle formation problem in two dimensions.





12
Network-Decentralised Estimation

The dual problem of network-decentralised control is network decentralised-estimation,
which consists in designing an observer for a network of several agents, where each
agent (associated with a node of the network) asymptotically estimates its own state
based on information exchanges with the neighbouring agents only. [GBF+15]

In the network-decentralised control case, agents are associated with control
components, hence with the arcs of the network. In the case of network-decentralised
estimation, agents implement local state observers and are associated with the
nodes. The decentralised control of naturally decoupled subsystems is performed
by independent agents that decide their strategy relying on restricted information
[BMU00, BFG13, BGM14, BFG15a]; analogously, the need of synthesising decen-
tralised observers arises whenever several subsystems, corresponding to the nodes
of a network, aim at asymptotically estimating their own state by exchanging local
measurements, without having access to the whole network information (e.g., due to
security issues [FG14] or operational limitations [KFRC13]).

Distributed estimation and observer design [SH07, SSS09, ISKI11, BDvdWH13,
DPB13, LZ15] is a challenging problem, especially for large-scale systems. However,
it is crucial for tackling, for instance, formation problems in the absence of a global
coordinate system [Cor09, SS09, Zho13, ALNSZ15], when the control can benefit
from estimating the states of neighbouring agents, as well as for common reference
frame estimation [FG14] and localisation [GJWL05, ABGS08].

It is worth stressing that the network-decentralised estimation problem proposed
in [GBF+15] is different from the network-distributed (global) estimation problem:
in the latter case, in fact, each agent aims at determining the overall system state
(see [Ugr13] and the references therein), while in the former case a local estimation
problem is formulated, in which each agent aims at estimating its own state only
and it has not even the knowledge about the existence of the agents with which it
cannot directly communicate. In a network-decentralised estimation framework, it is
therefore assumed that the network topology is unknown to the nodes, which can
rely on information about their neighbouring nodes only.

In the case of identical agents, along the lines of the previous chapters, it is
shown that a basic necessary and sufficient condition for global convergence is that
the network is connected to the external environment: necessity is intuitive (for
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instance, to achieve localisation, at least one of the communicating agents must have
information on its absolute position), while sufficiency can be proved constructively.

Following [GBF+15], a network-decentralised estimation scheme can be designed
by starting from local observers (typically chosen as optimal filters) and then adapting
the gain so as to globally ensure stability and global robustness. In this second phase,
the network connectivity must be taken into account and the smallest eigenvalue of
the generalised Laplacian matrix plays a key role. In fact, to ensure robust stability
of the system, the gain has to be greater than a threshold value depending on this
eigenvalue (which is strictly positive as long as the graph includes a connection with
the external environment, in contrast to the smallest eigenvalue of the standard
Laplacian matrix, which is zero; in fact, the generalised Laplacian matrix is positive
definite, while the standard Laplacian is positive semi-definite).

In this chapter, the results in [GBF+15] about the smallest eigenvalue of the
generalised Laplacian matrix are presented, along with an application to estimation
for a network of agents.

Along with a result on the worst-case smallest eigenvalue of the generalised
Laplacian matrix for connected graphs with an external connection, it is also shown
that the worst-case graph is a path graph. This result suggests that poorly connected
networks are more fragile than highly connected networks. The characterisation of
the worst-case is fundamental to face uncertain network topologies and situations in
which only the maximum number of nodes is known.

Applied to the network-decentralised estimation problem, the results on the
smallest eigenvalue of the generalised Laplacian matrix provide therefore a non-
conservative bound that ensures robustness under arbitrary, unknown and possibly
time-varying (switching) network topologies.

Finally, some application examples are proposed, which show interesting properties
in themselves; for instance, when the node dynamics are integrators, the proposed
scheme achieves the optimal (least-square) solution.

12.1 Generalised Laplacian:
Smallest Eigenvalue

The second smallest eigenvalue of the standard Laplacian matrix (i.e., the first
positive one, since the smallest is zero) has been widely investigated as a measure of
connectivity [Fie73, Mer94, RBA07, BGP09]. In the case of an externally connected
graph, the smallest eigenvalue of the generalised Laplacian, which is positive, may
be considered as a connectivity measure.

In [GBF+15] it is shown that, for all the N -node networks connected with
the external environment, the smallest possible eigenvalue is lower bounded as
λ∗min(N) ≥ 1/σmax(ΦN), where σmax(ΦN) is the largest eigenvalue of the symmetric
matrix ΦN , with entries [ΦN ]ij = N + 1−max{i, j}; it is also shown that the worst-
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case topology, which reaches the bound (hence, the bound is tight), corresponds
to a path graph, namely, to a tree with a single leaf (in [WRL14] it was suggested,
although not proved, that a “chain” topology is the worst-case scenario).

Consider a directed graph with N nodes and arcs that can either connect two
nodes (internal arcs) or connect one of the nodes with the external environment
(external arcs). In the generalised incidence matrix G that characterises the graph
(previously introduced in Chapter 4, where it was called B), the jth column is zero,
apart from

• a −1 in the kth position and a 1 in the hth position, if arc j connects node k
to node h;

• a 1 in the kth position, if arc j connects node k with the external environment.

To characterise the smallest eigenvalue of the generalised Laplacian L = GG>,
some preliminary results are needed.

Lemma 12.1. Matrix G is totally unimodular.1

Proof. The incidence matrix of a directed graph is always totally unimodular [VF21,
Sch86]. The generalised incidence matrix G is totally unimodular as well, being a
sub-matrix of an incidence matrix G0 (which can be obtained by explicitly considering
the external node 0 as a node of the graph).

Definition 12.1. A graph is internally connected if each pair of nodes are the
extrema of a path. A graph is externally connected if, for each node, there exists
a path connecting it to a node adjacent to node 0 (namely, a path leading to the
external environment). A graph is connected if it is both internally and externally
connected.

Although the incidence matrix G characterises a directed graph, the direction of
the arcs is no longer relevant when the Laplacian matrix is considered. In fact, if the
sign of any column of G is changed, the Laplacian L = GG> is the same. For this
reason, in the previous definitions, the direction of the arcs is neglected.

Denote by λmin the smallest eigenvalue of the generalised Laplacian matrix
L = GG> and by λ∗min(N) the smallest generalised Laplacian eigenvalue of all
connected graphs with N nodes.

Note that the generalised Laplacian matrix L = GG> is non-singular (equivalently,
λmin > 0) if and only if the graph is externally connected [BBGP13].

Proposition 12.1. Consider two graphs represented by the generalised incidence
matrices G and G′. If the arcs of G are a proper subset of those of G′, then

λmin[GG>] ≤ λmin[G′G′>].

1Namely, the determinant of each square sub-matrix achieved by selecting k rows and k columns
of G is either 0, −1 or 1.
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Proof. The columns of G′ can be ordered so that G′ = [G ∆], where ∆ includes all
column vectors associated with the arcs in G′ that are not in G. Then

G′G′> = GG> + ∆∆>.

Weil’s inequality [Fra93] can be exploited, which states that, if a positive definite
matrix GG> is perturbed by adding a semi-definite matrix ∆∆>, then the new ordered
eigenvalues λ′k are not smaller than the original ordered ones λk: λ

′
k ≥ λk.

If a graph is not internally connected, it can be partitioned into internally
connected components, each formed by a subset of nodes, such that:

• each component is internally connected;
• if two nodes i and j belong to two distinct components, there is no internal

path2 connecting them.

Remark 12.1. Two internally connected components can be both connected to the
external environment. Hence, a graph which is not internally connected is externally
connected iff each of its internally connected components is externally connected.

If the graph can be partitioned into C internally connected components, then,
by suitably reordering the nodes, the generalised Laplacian can be written in the
block-diagonal form

GG> = blockdiag{G1G
>
1 , G2G

>
2 , . . . , GCG

>
C},

where GjG
>
j is the generalised Laplacian matricx associated with the jth internally

connected component. Since the spectrum of GG> is the union of the spectra of
GjG

>
j , j = 1, . . . , C, to characterise the smallest eigenvalue, the case of a connected

graph (composed of a single internally connected component) can be analysed without
restriction.

In standard graph theory, a tree defined on N nodes is an internally connected
graph having the smallest number (N −1) of internal arcs (equivalently, an internally
connected graph without cycles); a generalised tree can be defined as a tree with a
single additional external arc, connecting one of the nodes to node 0. A generalised
tree is a path graph if it has a single branch (namely, each node is connected with at
most two other nodes, including node 0).

Recall that a connected graph is internally connected and has at least one external
connection.

Proposition 12.2. Among all connected graphs with N nodes, the graph correspond-
ing to λ∗min(N) is a generalised tree.

Proof. Any connected graph can be achieved by adding arcs to a tree and, in view of
Proposition 12.1, adding connections does not decrease the smallest eigenvalue.

2An internal path is a path not including node 0 (the external environment).



12.1. Generalised Laplacian: Smallest Eigenvalue 277

Therefore, the graph providing λ∗min(N) is to be sought among all generalised
trees. This is expected, since trees have the minimal connectivity. Precisely, λ∗min(N)
is achieved when the tree is a path graph.

Theorem 12.1. Consider all possible generalised trees with N nodes. Then,

λ∗min(N) =
1

σmax(ΦN)
,

where σmax(ΦN) denotes the largest eigenvalue of matrix

ΦN =


N N − 1 . . . 1

N − 1 N − 1 . . . 1
...

...
. . .

...
1 1 . . . 1

 .
Moreover, the tree corresponding to λ∗min(N) is a path graph.

Proof. A sketch of the complete proof is here reported.

• Since a generalised tree with N nodes has N arcs, the generalised incidence
matrix G is square. By suitably ordering the nodes of the tree, so that node 1 is
connected with the external environment, matrix G> becomes lower triangular,
with unitary diagonal entries and just one other non-zero entry, equal to −1,
in each row.

• Then −G> is a Metzler matrix with negative-real-part eigenvalues, hence
(G>)−1 is non-negative [BP94] and lower triangular with unitary diagonal
entries.

• Due to Lemma 12.1, G> is totally unimodular, along with its inverse. Therefore,
any entry in the lower triangular part of (G>)−1 is either 0 or 1.

• Among all possible matrices (G>)−1 corresponding to generalised trees, that
corresponding to the path graph is the most populated by ones. In fact, in the
case of a path graph, [(Ḡ>)−1]ij = 1 for all i ≥ j.

• Let G> correspond to any generalised tree. Denoting by y = G>x, in view of
the invertibility of G> (due to the external connection), x = (G>)−1y. The
value λmin solves the following optimisation problem:

λ
1/2
min = inf

x 6=0

‖G>x‖
‖x‖

= inf
y 6=0

‖y‖
‖(G>)−1y‖

=

[
sup
y 6=0

‖(G>)−1y‖
‖y‖

]−1

.

Namely, λ
1/2
min is the inverse of the induced norm of (G>)−1, which is the square

root of the maximum eigenvalue of (G)−1(G>)−1.
• Due to the structure of matrix (G>)−1, the largest norm is achieved for (Ḡ>)−1,

where Ḡ is the incidence matrix of the path graph.
• ΦN = (Ḡ)−1(Ḡ>)−1.
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The detailed proof is provided in [GBF+15].

Corollary 12.1. σmax(ΦN) is a non-decreasing function of N .

Proof. The result follows since matrix ΦN+1 is achieved by adding a non-negative

matrix to Φ̃N =

[
0 0
0 ΦN

]
, whose eigenvalues are those of ΦN and the zero

eigenvalue (hence, σmax(Φ̃N) = σmax(ΦN)). See [GBF+15] for details.

The non-connected case. Consider an externally connected graph with N
nodes, which is not internally connected and is composed of C internally con-
nected components (necessarily, each externally connected). By suitably reorder-
ing the nodes, its Laplacian matrix can be written as a block-diagonal matrix
L = blockdiag{L1, . . . , LC}, where each of the diagonal blocks corresponds to
the Laplacian matrix of an internally connected component. Hence, denoting
by λ

(i)
min the smallest eigenvalue of matrix Li, the smallest eigenvalue of L is

λmin = min{λ(1)
min, . . . , λ

(C)
min}. The next corollary then immediately follows from

Theorem 12.1 and Corollary 12.1.

Corollary 12.2. Consider all possible externally connected graphs with N nodes
and C ≤ N internally connected components. Then,

λ∗min(N) =
1

σmax(ΦK)
,

where K ≤ N is the number of nodes in the largest internally connected component
and σmax(ΦK) is defined as in Theorem 12.1. Moreover, the subgraph corresponding
to the largest internally connected component is a path graph.

It follows that, in general, the worst case is given by a fully connected graph
whose unique internally connected component is a path graph.

12.2 Network-Decentralised Detectability

To formulate the network-decentralised estimation problem, N agents are considered,
with dynamics

ẋi = Aixi +Biui, i = 1, ..., N,

where xi ∈ Rni , ui ∈ Rmi . Each agent has a (non-empty) set of neighbours Oi.
Measurements are associated with arcs in the network of agents; for example the
jth arc, connecting two agents i and k, is associated with a relative measurement
yj = (Cjixi + Cjkxk). Each agent runs a local estimator defined as:

żi = Aizi +Biui +
∑
j∈Oi

Lij(ŷj − yj). (12.1)
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Figure 12.1: Graph corresponding to the four-agent model in Example 12.1; external connections
are indicated by crosses.

The estimated measurement ŷj of each arc is:

ŷj =
∑
k∈Nj

Cjkzk,

where Nj is the set that indexes the nodes connected by arc j.
It is worth underlining that this expression is valid in general, even in the presence

of hyperarcs connecting more than two nodes.

Example 12.1. Consider the communication topology among four agents shown in
Fig. 12.1. The agents, associated with the nodes of the graph, exchange information
about their state; measurement signals yi are associated with the arcs. Crosses indicate
connections with the external environment: since nodes 1 and 4 are adjacent to node
0, y1 depends exclusively on the state of agent 1, y7 depends exclusively on the state
of agent 4. Consider for instance agent 1, with dynamics ẋ1 = A1x1 +B1u1. Since it
has knowledge about y1, y2 and y3, its local observer will be:

ż1 = A1z1 +B1u1 +L11(C11z1−y1)+L12(C21z1 +C22z2−y2)+L13(C31z1 +C33z3−y3).

Agent 1 measures the common inputs y2 and y3, receives the estimated outputs
C22z2 from agent 2 and C33z3 from agent 3, respectively, and computes its estimated
outputs C21z1, which it transmits to agent 2, and C31z1, which it transmits to agent
3. Besides, since node 1 is externally connected, agent 1 receives the actual output y1

from the anchor (the cross) and compares it with the estimated output C11z1.

The dynamics of the overall system of agents, along with their observer, is:
ẋ = Ax+Bu

y = Cx

ż = Az +Bu− Ly + LCz

(12.2)

where matrix A ∈ Rn×n is a block-diagonal matrix, whose blocks are the individual
agent matrices Ai, B is a generic input matrix and matrix C ∈ Rp×n has a block
structure that depends on the agents communication topology. The dynamics of the
estimation error e = x− z are:

ė = Ae+ L(y − Cz) = (A+ LC)e. (12.3)
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Definition 12.2. The observer defined by matrix L is a network-decentralised
observer if L has the same block structure as C>.

Definition 12.3. System (12.2) is network-decentralised detectable if the error
dynamics (12.3) are asymptotically stable.

Remark 12.2. The structure of L corresponds to that of the incidence matrix G of
the interconnection graph. System (12.2) is externally connected iff the corresponding
block-row in matrix C has a single non-zero block.

Example 12.2. In Example 12.1 (Fig. 12.1), the output matrix and the overall
estimator matrix are, respectively,

C =



C11 0 0 0
C21 C22 0 0
C31 0 C33 0
0 C42 C43 0
0 C52 0 C54

0 0 C63 C64

0 0 0 C74


and L =


L11 L12 L13 0 0 0 0
0 L22 0 L24 L25 0 0
0 0 L33 L34 0 L36 0
0 0 0 0 L45 L46 L47

 .

Nodes 1 and 4 are connected with the external environment; consistently, the first
and last row of matrix C have a single non-zero block.

Denote as unstable an eigenvalue having a non-negative real part and recall that a
system is detectable if all of its unstable eigenvalues are observable. Then, based on
the stabilisability results in [BFG15a], the detectability result immediately follows
from duality.

Theorem 12.2. If Ai do not share unstable eigenvalues, then system (12.2) is
network-decentralised detectable if and only if it is detectable.

It is unclear, at this moment, whether the property holds or not, in general, in
the case of common unstable eigenvalues. However, there are special cases in which
interesting results can be found.

12.2.1 Identical Agents

Systems associated with proper graphs (where, therefore, matrix C has at most two
non-zero blocks for each row, since each arc connects at most two nodes, and its
non-zero blocks, if they are two, are opposite), where matrices Ai are equal for all
the agents arise, for instance, in distributed localisation problems.

Assumption 12.1. Ai = A1 and Cij = ±C1, for all non-zero blocks. Moreover there
are at most two non-zero blocks C1 for each block-row of C; if the non-zero blocks
are two, they are opposite.
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In the case of Example 12.1, it would be C11 = C1, C21 = −C1, C22 = C1,
C31 = −C1, C33 = C1, and so on.

Assumption 12.2. (A1, C1) is detectable.

This assumption is not restrictive, since it can be immediately seen that the
problem cannot be solved if this assumption is not verified.

As previously seen, the information exchange can be represented by a directed
graph with incidence matrix G. In particular,

C = G> ⊗ C1,

where ⊗ denotes the Kronecker product (hence, C is the expansion of G> achieved
by replacing {−1, 0, 1} entries respectively by {−C1, 0× C1, C1}). Note also that

A = I ⊗ A1.

Example 12.3. Consider a system with the structure described in Example 12.1,
in which each agent aims at reconstructing its position in the plane by exchanging
information with its neighbours. Denoting by ri ∈ R2 the position of agent i (unknown
to the agent itself), each agent exchanges information about its own estimated position
with all of its neighbours. If all the agents are standing still, the equations are ṙi(t) = 0,
hence A1 = 02, the 2 × 2 zero matrix. Each agent can update its own estimated
position, zi(t), by communicating with the others. In this case, all the non-zero blocks
in C are either I2 or −I2, where I2 is the 2× 2 identity matrix. Then the updating
equation for agent 1 is

ż1 = B1u1 + L11(z1 − r1︸︷︷︸
y1

) + L12(z1 − z2 − (r1 − r2)︸ ︷︷ ︸
y2

) + L13(z1 − z3 − (r1 − r3)︸ ︷︷ ︸
y3

).

Denoting by e = z − r the estimated error, ė(t) = LCe(t), where L must have the
same block structure as C>.

Remark 12.3. It is not necessary for the graph to be connected. It is just required
that each internally connected component is externally connected: among the columns
of the incidence matrix associated with an internally connected component, at least
one must have a single non-zero entry (corresponding to a single non-zero block in at
least one row of C). Hence, a path exists that connects each node of the graph to the
external environment.

Lemma 12.2. System (12.2) is network-decentralised detectable if and only if there
exists γ ≥ 0 such that the following Lyapunov inequality is satisfied:

A>P + PA− 2γC>C < 0. (12.4)

A stable observer is L = −γP−1C>.
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Proof. If the system is network-decentralised detectable, then the observer matrix
(A+ LC) is stable and satisfies the Lyapunov equation:

(A+ LC)>P + P (A+ LC) < 0. (12.5)

If L = −γP−1C>, equation (12.4) is recovered. Conversely, if (12.4) is satisfied and
C is block-structured, the choice L = −γP−1C> allows to convert equation (12.4)
to equation (12.5).

Theorem 12.3. Under Assumptions 12.1 and 12.2, system (12.2) is network-
decentralised detectable if and only if at least one of these conditions holds:

(a) A1 is asymptotically stable;
(b) the system is externally connected.

Proof. Sufficiency. (a) If A1 is asymptotically stable, then equation (12.4) holds for
any γ > 0: P = blockdiag{P1, P1, . . . , P1}, for any P1 such that A>1 P1 + P1A1 < 0,
provides A>P + PA < 0, hence the system is network-decentralised detectable.

(b) Without loss of generality, consider a connected graph (should the graph be
composed of many internally connected components, each externally connected, the
same reasoning could be applied to each internally connected component). Even
if A1 is not asymptotically stable, γ > 0 may be chosen sufficiently large to satisfy
(12.4) for the single subsystem, so that A>1 P1 +P1A1− 2γC>C < 0. Then, replacing
without restriction P1 with P̃1

.
= P1/γ, and keeping on writing P1 for simplicity, it

can be assumed z>i [A>1 P1 + P1A1 − 2C>1 C1]zi < 0 ∀ i.
Being z>[C>C]z ≥ 0, the inequality (12.4), with P = blockdiag{P1, P1, . . . , P1},

holds for γ > 0 large enough if, for any non-zero z ∈ ker(C), z>[A>P + PA]z < 0.

[BEGFB94] Partitioning the state as z =
[
z>1 z>2 . . . z>N

]>
, in view of Assump-

tion 12.1, for each block-row of C with two non-zero blocks, say h and k, it must be
C1zh = C1zk. Since the graph is connected, C1z1 = C1z2 = · · · = C1zN . Moreover,
since the graph is externally connected, it must be C1zl = 0 for some l (in fact, for one
row the block l only is different from zero). Hence, C1zk = 0 for all k. In conclusion,
z ∈ ker(C) iff zi ∈ ker(C1). Then z>[A>P + PA]z =

∑N
i=1 z

>
i [A>1 P1 + P1A1]zi < 0,

in view of the detectability assumption on (A1, C1). See [GBF+15] for details.
Necessity Assume by contradiction that neither condition (a) nor condition (b)

holds. Let λ be an unstable eigenvalue of A1 and z1 the corresponding eigenvector of
A1; then z = [z>1 z>1 . . . z

>
1 ]> is an eigenvector of A. If the graph is not externally

connected, then Cz = 0 (in each block-row there are two opposite blocks). Then[
λI − A
C

]
z = 0.

Based on the Popov criterion, this means that λ is an unobservable eigenvalue with
non-negative real part, hence the system is not detectable.
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12.3 Gain Computation

In the case of unknown topology, a design approach inspired by the proof of Theo-
rem 12.3 can be adopted, which requires solving the following two steps.

• For the single subsystems (A1, C1), design a gain L1 = −P−1
1 C>1 , by means of

some optimality criterion (i.e., Kalman gain), where P1 satisfies

A>1 P1 + P1A1 − 2C>1 C1 < 0. (12.6)

In this way the system works even for isolated nodes.
• Given a known matrix P1 satisfying (12.6), to achieve global stability under

connections, apply the network-decentralised filter gain

L = −γP−1C>, (12.7)

for some γ > 0, with

P = blockdiag{P1, P1 . . . P1}. (12.8)

Theorem 12.3 does not provide any information on how large γ > 0 should be
chosen. If A1 is asymptotically stable, then any γ > 0 is suitable. In the interesting
unstable case, a lower bound for γ is given by the following theorem, in which the
assumption of external connection is crucial.

Theorem 12.4. Under Assumptions 12.1 and 12.2, let G be the incidence matrix
of the graph. If the graph is externally connected, then the overall filter is stable
provided that

γ > γ∗
.
=

1

λmin[GG>]
, (12.9)

where λmin[GG>] is the smallest eigenvalue of matrix GG> ∈ RN×N .

Proof. Denoting by C̃>C̃ = blockdiag{C>1 C1, C
>
1 C1, . . . , C

>
1 C1}, the inequality (12.4)

becomes (A>P + PA− 2C̃>C̃) + (2C̃>C̃ − 2γC>C) < 0. The first addend in paren-
theses is negative definite, in view of its diagonal structure and of (12.6). To assess

the remaining part (2C̃>C̃ − 2γC>C), take z =
[
z>1 z>2 . . . z>N

]>
, ỹk = C1zk and

ỹ =
[
ỹ>1 ỹ>2 . . . ỹ>N

]>
. The sought condition is

z>[2C̃>C̃ − 2γC>C]z = y>2Iy − y>2γΓΓ>y = y>2[I − γΓΓ>]y < 0, (12.10)

where Γ = G⊗ Ip has the same structure as matrix G (Ip is the identity of dimension
p). Hence, ΓΓ> ∈ RpN×pN has the same eigenvalues of GG> ∈ RN×N , repeated p
times. This means that (12.10) is true if (12.9) holds, and the proof is over.

Remark 12.4. The requirement (12.9) is consistent with the necessity of assuming
connection with the external environment. In the absence of external connection,
indeed, λmin[GG>] = 0.
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12.4 Unknown and Switching Topologies

A robust bound on γ∗ must be determined to assure stability when the network
topology is unknown and potentially switching. Assume that the network incidence
matrix Gt depends on time (in fact, the network topology is fully characterised by
the incidence matrix G).

Assumption 12.3. The incidence matrix Gt ∈ RN×mt, where N is the number of
agents (nodes) and mt is the number of links, belongs to some given family G(N, nA),
where nA is the number of anchors (i.e., of connections with the external environment).
Moreover, the current topology Gt is unknown to the agents.

Given the number N of agents and the number nA of anchors, a robust bound
on γ∗ ≥ 0 must be found such that, if γ > γ∗, the network-decentralised observer
remains stable under arbitrary switching Gt ∈ G(N, nA).

Before proceeding further, the assumption of full row rank of G needs to be
introduced and discussed. Any graph G, not necessarily connected, can be uniquely
partitioned into internally connected components G1,G2, . . . ,Gk that are connected
graphs, each defined on a subset of nodes of G and such that there is no arc connecting
nodes of different components. By means of a proper node and link ordering, the
corresponding matrix G can be arranged in a block-diagonal form:

G = blockdiag{G1, . . . , Gk}. (12.11)

Proposition 12.3. Matrix G has full row rank if and only if each internally connected
component of the graph is connected with the external environment, namely, if each
block-matrix in (12.11) has at least one column with a single non-zero entry.

Proof. Matrix G has full row rank if and only if there is no row vector z =
[z1 z2 . . . zk] 6= 0 such that zG = 0 (namely, zG = 0 implies zi = 0 for all i).
If each internally connected component is connected with the external environment,
then, for all i, Gi has full row rank, hence zi = 0. Conversely, if one internally
connected component is not externally connected, then 1̄>Gi = 0 because each
column of Gi has two non-zero entries equal to 1 and −1 respectively.

Indeed, if the graph has several internally connected components, then each of
them must have an anchor (cf. Fig. 12.2).

Theorem 12.5. Assume that A1 is not asymptotically stable. Then the two following
statements are equivalent.

i) All of the matrices G ∈ G(N, nA) have full row rank N .
ii) There exists γ∗ ≥ 0 such that the network-decentralised observer is stable for

γ > γ∗ under arbitrary switching Gt ∈ G(N, nA).
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Figure 12.2: Left: each internally connected component has an anchor. Right: there is an isolated
component, which may be subject to a “drift”.

Proof. i) ⇒ ii): if all the matrices G in G(N, nA) (which are in finite number) have
full row rank, then all the matrices GG> have full row rank as well; hence, for any

γ∗
.
= min

G∈G(N,nA)

1

λmin[GG>]
, (12.12)

P as in (12.8) gives a common quadratic Lyapunov function in view of Theorem 12.4.
ii)⇒ i): by contradiction, assume that some G̃ ∈ G(N, nA) does not have full row

rank. Then, if Gt = G̃, there is no asymptotic stability. Hence, there exists at least
one internally connected component of the graph that is not connected to the external
environment. Since by assumption A1 is not asymptotically stable, take a (column)
eigenvector z1 associated with an eigenvalue which is not asymptotically stable:
A1z1 = λz1. Then, by partitioning A in two diagonal blocks, the first associated
with the internally connected component that is not externally connected and the
second with the internally connected component that is externally connected, the
non-zero vector z> = [z>1 z>1 . . . z

>
1 0 0 . . . 0] = [z̄>1 0̄>] can be considered that selects

the first subsystem. Therefore, proceeding exactly as in Theorem 12.3, the system
has an unobservable eigenvalue that is not asymptotically stable. Details are in
[GBF+15].

It is not necessary to identify the set of all possible topologies G ∈ G(N, nA): a
robust bound can be provided based on N (the number of nodes) only, according to
the next result, whose proof follows directly from Theorems 12.5 and 12.1.

Theorem 12.6. Let Gt be the incidence matrix of any connected3 graph with N
nodes. Then, stability is assured if

γ > γ∗
.
=

1

λ∗min(N)
= σmax(ΦN). (12.13)

Moreover, being σmax(ΦN) an increasing function of N , according to Corol-
lary 12.1, the following result holds.

Corollary 12.3. Let Gt be the incidence matrix of any connected graph with N ≤ N̄
nodes. Then, stability is assured if γ > 1/λ∗min(N̄) = σmax(ΦN̄).

Finally, in an interesting case, it can be shown that any γ > 0 is suitable.

3It is worth reminding that a connected graph is both internally and externally connected.
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Proposition 12.4. Assume that A = 0 and C1 has full column rank.4 Then, if
the necessary and sufficient condition i) of Theorem 12.5 is satisfied, the proposed
network-decentralised observer with P = I is stable for any γ > 0.

Proof. Being externally connected, Gt has full row rank. Hence, C = G>t ⊗ C1

has full column rank. The observer error equation is ė = −γC>t Cte, with C>t Ct
positive definite for all t, therefore all matrices −γC>t Ct share the common quadratic
Lyapunov function V (e) = e>e.

12.5 Application Examples

Example 12.4. Node localisation. Consider a set of given points ri, each associ-
ated with an agent willing to establish its own position based on absolute information,
if available, and by exchanging information with the neighbouring agents only, as
in Example 12.3. For instance, some agents in an unknown region could exchange
information to construct a topographic map.

Two communicating agents have to measure their distance and the angle formed
by the segment between them and an absolute reference direction. Of course, some
of the agents must be externally connected, so that they have information on their
absolute position (and any other agent connected with one of these is externally
connected as well).

The theory applies quite straightforwardly by taking P = I, so that the observer
gain matrix is L = −γC> and the observer matrix (affecting the dynamics of the
error equation) is −γC>C, which is stable as long as the graph is connected.

An interesting feature of the proposed network-decentralised estimation strategy
can be noticed if the effect of additive noise is considered:

y = Cx− δ.

The error equation associated with the resulting network-decentralised observer is

ė = −γC>Ce+ γC>δ

and, asymptotically, the error becomes

e(∞) = (C>C)−1C>δ,

which is the least-square solution of the minimisation problem min ‖Ce − δ‖ =
min ‖y − Cz‖.

To quantify the error filtering property, N–node networks with a varying con-
nectivity degree can be randomly generated: the number of arcs is m = N(N−1)

2
p

100
,

4If C1 did not have full column rank, then (A1, C1) would not be detectable, against the stated
assumptions.
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where 0 < p ≤ 100 is the connectivity degree and mmax = N(N−1)
2

is the maximum
number of internal connections (non-oriented arcs) for a network with N nodes. To
assure connectivity, at each random experiment N arcs have been initially placed,
corresponding to a path including an external connection; the remaining arcs have
been added by randomly selecting the departure and arrival node and when, by chance,
the two coincide, an external connection has been added. A noise δ has been then
added (so that y = Cx− δ) with components δk uniformly generated in [−1 1].

The index

J =
var(e)

var(δ)

has been computed at steady state, considering ns = 1000 samples. The results for
γ = 1 (which is suitable, in view of Proposition 12.4) are reported in Table 12.1.
As expected, noise rejection increases (hence, J decreases) with connectivity. Less
expectedly, noise rejection increases with N , the number of nodes.

Table 12.1: The index J as a function of the number of nodes N and of the connectivity p.

N \ p 10 20 30 40 50 60 70 80 90 100
30 0.754 0.246 0.14 0.10 0.078 0.063 0.053 0.047 0.041 0.036
40 0.446 0.162 0.101 0.072 0.056 0.046 0.039 0.034 0.029 0.027
50 0.310 0.124 0.077 0.055 0.044 0.036 0.030 0.026 0.023 0.021
60 0.238 0.100 0.062 0.046 0.036 0.029 0.025 0.022 0.019 0.017
70 0.193 0.083 0.053 0.039 0.030 0.025 0.021 0.018 0.016 0.014
80 0.163 0.071 0.045 0.033 0.026 0.023 0.019 0.016 0.014 0.013

Example 12.5. Local altitude detection. Consider a number of agents that lie
on a surface and exchange information with their neighbours to determine their
own altitudes. The agents that lie in two points having altitudes qi and qj exchange
information about:

• their estimated altitude zi and zj;
• the difference yij = qi − qj.

The agents are still, hence q̇i = 0. Also in this case, as in the previous example, the
proposed estimation scheme provides the least-square solution.

To simulate this situation, consider a regular setup with 16 agents (nodes) that
communicate according to the topology shown in Fig. 12.3, where communication
channels among nodes are represented by arcs. The first agent is the only one that
can communicate with the external environment. It could therefore, in principle,
determine its own position; however, it is not aware of receiving an absolute altitude
by the external connection and processes the information about the difference between
its own altitude and the external reference (which can assumed to be 0) as all the
other data, ignoring that this information corresponds exactly to its own altitude.
Hence, the local observer of agent 1 will have a transient as that of all other agents.
Matrix C has 25 columns, corresponding to the arcs of the graph in Fig. 12.3.
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Figure 12.3: The altitude setup problem.

Fig. 12.4 shows the evolution of the decentralised altitude estimation, when the
initial value of the observer state is chosen, for all agents, equal to altitude 1/2. The
first frame shows the actual altitude of the points, randomly generated between 0
and 1. Frames 2 to 6 show the evolution of the estimation, with γ = 5 and a time
horizon of T = 2 seconds. The snapshots are taken at non-equidistant time instants,
to evidence the initial part of the transient.

Example 12.6. A network of moving agents. Consider the planar motion of
nodes (agents) representing vehicles, or crafts, confined in a square. Whenever an
agent reaches the boundary of the square, it bounces back. The bounces are assumed
to be elastic (energy-preserving); hence, whenever a bounce occurs, the component of
the agent speed that is orthogonal to the hit surface instantaneously changes its sign.
As is known, this represents a discontinuity, equivalent to introducing disturbance
impulses ui = δi(t − tk) in the systems; due to these persistent disturbances, the
observer error cannot exactly converge to zero. Uniform linear motion is assumed
(the acceleration is zero, hence the speed is constant), apart from bounces instants,
and other forces (such as friction) are neglected.

The agents wish to reconstruct their absolute positions and speeds, under the
following rules.

• If two agents i and j can communicate, they measure the relative position ri−rj
and they communicate to each other their own estimated positions r̂i and r̂j.

• If an agent can communicate with an anchor rA, it measures the relative position
ri − rA and receives the anchor position r̂A = rA.

• No additional information is available from other agents not connected.

• The network topology is unknown and can vary; indeed, communication is
possible only if two nodes are within a maximum distance ρmax, the effective
radius.

This results in a family of graphs with incidence matrix Gσ and a set of overall output
matrices Cσ, such that:

y = Cσx = [G>σ ⊗ C1]x.
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Figure 12.4: The true altitude (first frame) and the altitude detection evolution at times t =
0, 0.01, 0.07, 0.48, 2.00 seconds. [GBF+15]

The estimator (12.1) can be applied:

żi = A1zi +B1ui +
∑
j∈Oi

L1[(r̂i − r̂j)− (ri − rj)]

= A1zi + L1r̂i +B1ui︸ ︷︷ ︸
internal dynamics

+
∑
j∈Oi

L1

 (rj − ri)︸ ︷︷ ︸
measured

− r̂j︸︷︷︸
received


 . (12.14)

If a node i communicates with an anchor, since the anchor position is known exactly
(r̂A = rA), then (rA − ri) − r̂A = ri: the node receives precisely its position. Node
i does not necessarily know to be communicating with an anchor: it will use the
information exactly as if it were communicating with any other node.

The model for each moving agent is:

A1 =

[
02 I2

02 02

]
, B1 =

[
02

I2

]
, C1 =

[
I2 02

]
.

The Kalman gain L1 = −Q1C
>
1 can be chosen for each agent, where Q1 is the solution

of the Riccati equation for the single subsystem:

A1Q1 +Q1A
>
1 −Q1C

>
1 C1Q1 +M = 0,
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for a suitable M > 0; note that Q1 = P−1
1 . Applying the network-decentralised

estimator leads to the overall filter:

ż(t) = (A− γQC>C)z +Bu+ γQC>y,

with Q = P−1.
Solving the Riccati equation with M = I4, for each subsystem, provides

Q1 =


1.41 0 1 0

0 1.41 0 1
1 0 1.41 0
0 1 0 1.41


In [GBF+15], a set of 8 agents moving in the (x, y) plane has been considered (see
Fig. 12.5, left) and their behaviour has been simulated, with γ = 15, in the three cases
with 1, 2 and 3 anchors respectively. A novel simulation example for this system,
with 2 anchors and effective radius ρmax = 1.5, is shown in Fig. 12.5, right.
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Figure 12.5: The network of eight moving agents confined in a square: setting in the (x, y) plane at
time t = 2 (left); system evolution over time: solid lines represent the x and y coordinates of the
agents, and dotted lines their estimates (right).

As shown in [GBF+15], the values of the smallest eigenvalue of the generalised
Laplacian matrix G(t), corresponding to the interconnection configuration at time t,
are greater when more anchors are present. It is also shown that the estimation error
is very small (albeit not converging to zero because of the persistent disturbances due
to bounces), provided that 1/λmin does not become greater than γ during the whole
simulation. According to the provided theoretical results, stability (hence, a negligible
error estimation) would be ensured, no matter how the interconnection topology
changes during the system evolution, by choosing γ > σmax(Φ8) ≈ 29.37.
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The analysis and the control of dynamical networks pose a lot of interesting challenges.

Dynamical networks can model any system in which the quantities evolve in time
(leading to a dynamical system) and are related by a web of interconnections with a
certain topology (namely, a network). Since both dynamics and interconnections are
widespread both in natural and in artificial systems, dynamical networks are capable
of modelling systems in the most diverse contexts, ranging from ecology, biology and
chemistry to physics and engineering.

For instance, dynamical networks in nature can be found at all spacial scales: a
set of chemical reactions can be seen as a network of interactions between molecules,
leading to the dynamic evolution that transforms the reaction environment; the overall
functioning of living organisms is determined by networks of dynamical interactions
among proteins, between DNA and proteins (the so-called gene regulatory networks,
where gene activity is regulated by proteins called transcription factors), between
different RNAs, resulting in very complex networks such as metabolic pathways
(which are in charge of converting a substance into another, often thanks to the
presence of enzymes that catalyse reactions), signalling pathways (which allow for
transducing signals that carry valuable information within or between cells), neuronal
networks (the complex and deeply connected networks ruling the functioning of the
brain thanks to interactions among neurons). But also organisms and species are
related to one another by intricate interactions between prey and predators, since
each species can eat or be eaten by another (the so-called food webs, or feeding
interactions). Dynamical networks arise as well when social interactions and relations
are considered, both between and within species, and when opinion dynamics are
studied. Studying these systems in terms of dynamical networks can provide a
powerful insight into the mechanisms that regulate nature at all levels.

Also man-made systems are most often comprised of the complex interconnec-
tion of several, simpler components: circuits of integrated electronic devices are a
small-scale example (in terms of the nanometric dimension, of course, not of the
number of components, which is huge and always growing due to the increasing
miniaturisation), but also electrical circuits, computer networks, data communication
and telecommunication systems all rely on the interconnection of units having their
own dynamics. In this context, often the problem of achieving consensus or syn-
chronisation in a dynamical network arises. Optimisation problems need often to be
solved in the context of inventory management and production-distribution systems;
also in this case, a dynamical network model can be beneficial to study and solve the
problem. Flow networks in general can be modelled in the same framework: water
distribution networks, transportation networks, traffic and congestion management
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systems, formation and coordination of robots, vehicles and aircrafts are all examples
of dynamical networks.

The presence of dynamical networks in the natural world and in artificial systems
not only motivates their study, but suggests that a virtuous cycle can be triggered,
so that analysing nature and its mechanism can help develop bio-inspired control
and coordination strategies that mimic those of natural systems, which exhibit an
astounding efficiency and robustness to changes in parameters and environmental
conditions (thus improving the efficiency and the resilience of artificial systems), while
the techniques employed to build from the bottom up artificial systems composed
of simple units, which implement a specific functionality, can be adopted also when
engineering biomolecular systems to devise innovative biotechnologies and drugs
(thus improving human health and quality of life).

In this thesis, some of the problems concerning both analysis and control synthesis
have been faced from a structural point of view, providing parameter-free criteria
for assessing properties and strategies for control and coordination that rely on the
structure of a dynamical network, corresponding to the interconnection topology of
an associated graph.

This approach is challenging and powerful: demanding conditions are looked for,
therefore they are often difficult to prove, but provide strong indications in case of
success.

As a common denominator, all the proposed results rely on a peculiar aspect of
dynamical networks: local interactions have consequences on the global behaviour of
the system. Hence, structural analysis can examine what characteristic behaviour can
be produced by local interactions having a given structure, or how local interactions
with a given structure can result in a given behaviour. The so-called network-
decentralised control synthesis aims at obtaining the desired global behaviour by
deciding the local interactions with local information only: a global thought and
goal is implemented through a set of local actions.

In this respect, the BDC-decomposition of a matrix (which can be the Jacobian
matrix of a nonlinear system) can capture the fact that the global behaviour is due
to the combination of several local interactions, representing a meaningful picture of
the “local interactions, global behaviour” effect.

Based on the BDC-decomposition, it has been shown how structural, parameter-
free criteria can be devised to assess fundamental properties of the system, such as
boundedness, stability, capacity of exhibiting oscillations and perfect adaptation,
steady-state input-output behaviour (including the steady-state effect of alterations
in parameters).

Boundedness and stability analysis provide structural criteria relying on the
computation of a polyhedral Lyapunov function for a linear differential inclusion
absorbing the dynamics of the nonlinear system; the vertices and the facets of the unit
ball of the polyhedral norm are computed based on a numerical iterative procedure
that propagates each of the components associated with the BDC-decomposition.
For significant systems, it can be shown that stability can be structurally proved
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exclusively by means of polyhedral Lyapunov function.
By exploiting the multi-affinity properties of the BDC-decomposition, numerical

procedures can be devised to provide guarantees on the sign of suitable functions in a
whole hypercube, based on the computation of the function on its vertices only. This
allows the efficient computation of the steady-state influence matrix, representing
the steady-state effect on each of the variables of a persistent input applied to each
of the system equations, but the same procedure can be applied to assess the effect
of variations in significant parameters.

Further results have been presented that lead to a structural classification of
candidate oscillatory and multistationary systems, which are applicable to systems
with a sign definite Jacobian matrix and to interconnections of unconditionally stable
monotone subsystems. These results are useful when analysing models corresponding
to artificial biochemical networks and can aid and streamline their synthesis.

As for the control of dynamical networks, network-decentralised state-feedback
strategies have been presented, where each control agent is associated with a link
of a given interconnection topology and can decide its strategy exclusively based
on the state variables associated with the subsystems connected by the link itself.
To enforce these restricted information constraints, the feedback matrix must be
block-structured: structural zero-blocks are present whenever the information relative
to a subsystem is not available to the controller. Interestingly, such a feedback matrix
turns out to have the same block structure as the transpose of the overall input
matrix of the system.

It has been shown that systems composed of several dynamically decoupled
subsystems, interconnected by the control action, can be always stabilised by a
network-decentralised controller, provided that the subsystems do not share unstable
eigenvalues. For identical subsystems where each input affects a pair of subsystems
with input sub-matrices that differ for the sign only (which is typically the case for
flow networks), network-decentralised stabilisability is possible if and only if at least
an agent is affecting a single subsystem.

Also nonlinear compartmental systems have been analysed. Two different types
of flows connecting pairs of compartments have been considered: in the first type,
the flow between two compartments depends on the difference between the state of
the two compartments; in the second type, it depends on the state of the starting
compartment only. A saturated network-decentralised strategy can be considered and
necessary and sufficient structural conditions for stabilisability can be achieved. The
control has interesting properties in terms of robustness and asymptotic optimality
(minimal Euclidean norm of the asymptotic controlled flow). Often, in compartmental
systems, positivity of the state must be preserved during the system evolution: this
can be guaranteed by a particular network-decentralised control. To ensure exact
convergence to the desired set-point, it has been shown that integrators can be
suitably adopted in a decentralised framework, and asymptotic optimality is still
guaranteed.

Network-decentralised control strategies can be applied in several contexts. The
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particular case of traffic control problems has been dealt with, where the traffic
inside the nodes splits in queues of units, each associated with a different outgoing
arc, and a network-decentralised control can be found that is robust, asymptotically
optimal and independent of the traffic splitting rates, relying just on information
about the cumulative node content. Besides traffic systems and data transmission
systems, an application to a network-decentralised channel sharing communication
protocol has been proposed, along with the network-decentralised solutions of a clock
synchronisation and of a vehicle platooning problem.

Network-decentralised estimation, the dual of network-decentralised control, has
been considered as well, formulating a local estimation problem where each node-
agent of the network aims at reconstructing its own state based on information
exchanges with the neighbouring agents only. A network-decentralised solution has
been provided, which is robust when the topology is unknown and even switching.

However, there are still several open problems that are worth analysing. For
instance, methods for assessing global stability of (bio)chemical reaction networks in
the absence of the ε-dissipativity and conditions for network-decentralised stabilisa-
tion in the case of possibly common unstable eigenvalues are still to be provided. The
BDC-decomposition might be further exploited, to consider control problems for
linear systems whose state matrix (or for nonlinear systems whose Jacobian matrix)
admits a BDC-decomposition, or control problems in which the input matrix or
the state-feedback matrix can be expressed in a BDC-form. Moreover, it might be
interesting to study a network-decentralised control problem for subsystems that are
not decoupled, so that the resulting state matrix is no longer block-diagonal. Several
problems in a biochemical and biomolecular context can be recast in a structural
formulation, so as to assess properties that are practically independent of parameter
values. But also in other traditional domains of engineering, structural, parameter-
free properties are often sought (for instance, [BFGP15] investigates model-free plant
tuning with a robust Lyapunov approach). Hence, many challenges concerning both
analysis and control synthesis are still worth being faced with a structural approach.



A
Catalogue of Tested

Biochemical Networks

Madamina, il catalogo è questo

delle belle che amò il padron mio

un catalogo egli è che ho fatt’io:

osservate, leggete con me.

— W. A. Mozart and L. Da Ponte, Don Giovanni

This appendix presents a collection of biochemical/chemical reaction networks
(most of which already examined in [BG14]), each named after a musician and
labelled with a number corresponding to the order of the system. For each network,
the following information is reported:

• the graph, where the nodes represent species and the arcs represent reactions
according to the legend in Fig. 6.1;

• the system of ordinary differential equations, in the form ẋ = Sg(x) + g0;
• the Jacobian matrix J = BDC;
• the sign of det(−J) = det(−BDC) and, whenever it is suitable, the influence

matrix M ;
• the number of vertices nv and of facets nf of the unit ball of the polyhedral

Lyapunov function obtained by means of the stability procedure (whenever it
converges; otherwise, the number is replaced by an asterisk).

The exact correspondence between the Greek letters and the partial derivatives in
the Jacobian matrix is explicitly indicated in the first example, but is omitted later,
since it can be immediately deduced from the context. The influence matrix M is
not reported for systems with det(−J) structurally negative, since it would not be
meaningful; for systems with det(−J) structurally zero, the influence matrix Mscc

(associated with the impulse response) is reported, if zero is a simple eigenvalue.

Section A.7 provides a synoptic overview of the considered biochemical networks.
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A.1 Three Nodes Networks

Albinoni3.

ȧ = gac(a
tot − a, c)− gab(a, b)

ḃ = gb(b
tot − b− atot + a)− gab(a, b)

ċ = c0 − gac(atot − a, c)

Figure A.1: Graph of Albinoni3.

J =

 −(α + β) −γ δ
ε− β −(ε+ γ) 0
α 0 −δ

 , M =

 + − +
? + ?
+ − +


The partial derivatives are denoted as α = ∂gac/∂a, β = ∂gab/∂a, γ = ∂gab/∂b,
δ = ∂gac/∂c, ε = ∂gb/∂a = −∂gb/∂b.
det(−J) > 0, nv = 14, nf = 12

Buxtehude3.

ȧ = a0 + gb(b) + gc(c)− ga(a)

ḃ = ga(a)− gb(b)
ċ = ga(a)− gc(c)

Figure A.2: Graph of Buxtehude3.

J =

 −α β γ
α −β 0
α 0 −γ


det(−J) < 0, nv = ∗, nf = ∗

Corelli3.

ȧ = a0 − ga(a)− gac(a, c)
ḃ = ga(a)− gb(b)
ċ = gb(b)− gac(a, c) Figure A.3: Graph of Corelli3.

J =

 −(α + δ) 0 −γ
α −β 0
−δ β −γ

 , M =

 + − −
+ + −
? + +


det(−J) > 0, nv = 6, nf = 6
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Frescobaldi3.

ȧ = a0 − ga(a)− gac(a, c)
ḃ = ga(a)− gbc(b, c)
ċ = ga(a)− gac(a, c)− gbc(b, c)

Figure A.4: Graph of Frescobaldi3.

J =

 −(α + δ) 0 −ϕ
α −β −γ

α− δ −β −(γ + ϕ)

 , M =

 + + −
+ + −
− − +


det(−J) > 0, nv = ∗, nf = ∗

Pachelbel3.

ȧ = gac(a
tot − a, c)− gab(a, b)

ḃ = gb(b
tot − b− atot + a)− gab(a, b)− gbc(b, c)

ċ = c0 − gac(atot − a, c)− gbc(b, c)

Figure A.5: Graph of Pachelbel3.

J =

 −(α + γ) −δ β
ε− γ −(δ + ε+ ϕ) −η
α −ϕ −(β + η)

 , M =

 + − +
? + ?
? − +


det(−J) > 0, nv = ∗, nf = ∗

Telemann3.

ȧ = a0 − ga(a)− gac(a, c)
ḃ = ga(a)− gb(b)
ċ = ga(a)− gac(a, c)

Figure A.6: Graph of Telemann3.

J =

 −(α + δ) 0 −γ
α −β 0

α− δ 0 −γ

 , M =

 + 0 −
+ + −
? 0 +


det(−J) > 0, nv = 10, nf = 12
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A.2 Four Nodes Networks

Bach4.

ȧ = a0 − ga(a) + gd(d)

ḃ = ga(a)− gbc(b, c)
ċ = c0 − gbc(b, c)
ḋ = gbc(b, c)− gd(d)

Figure A.7: Graph of Bach4.

J =


−α 0 0 δ
α −β −γ 0
0 −β −γ 0
0 β γ −δ

 , Mscc =


0 0 0 0
+ + 0 +
− − 0 −
0 0 0 0


det(−J) = 0, nv = ∗, nf = ∗

Beethoven4.

ȧ = a0 − ga(a)− gab(a, b)− gad(a, d)

ḃ = b0 − gb(b)− gab(a, b)
ċ = gab(a, b)− gc(c)
ḋ = gc(c)− gad(a, d)

Figure A.8: Graph of Beethoven4.

J =


−(α + γ + ε) −β 0 −ϕ

−α −(β + ζ) 0 0
α β −δ 0
−ε 0 δ −ϕ

 , M =


+ − − −
− + + +
+ + + −
? + + +


det(−J) > 0, nv = ∗, nf = ∗

Boccherini4.

ȧ = a0 − gab(a, b)− gac(a, c)− gad(a, d)

ḃ = b0 − gab(a, b)
ċ = gab(a, b)− gac(a, c)
ḋ = gac(a, c)− gad(a, d)− gd(d)

Figure A.9: Graph of Boccherini4.

J =


−(α + δ + ζ) −β −γ −η

−α −β 0 0
α− δ β −γ 0
δ − ζ 0 γ −(η + ε)

 , M =


+ − − −
− + + +
− + + +
− + + +


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det(−J) > 0, nv = ∗, nf = ∗

Čajkovskij4.

ȧ = a0 − ga(a)− gab(a, b) + gd(d)

ḃ = b0 − gab(a, b)− gbc(b, c)
ċ = ga(a)− gbc(b, c)
ḋ = gbc(b, c)− gd(d)

Figure A.10: Graph of Čajkovskij4.

J =


−(α + β) −γ 0 ϕ
−α −(γ + δ) −ε 0
β −δ −ε 0
0 δ ε −ϕ


det(−J) < 0, nv = ∗, nf = ∗

Chopin4.

ȧ = −ga(a) + gd(d)

ḃ = ga(a)− gb(b)− gbd(b, d)

ċ = gb(b)− gc(c)
ḋ = gc(c)− gd(d)− gbd(b, d)

Figure A.11: Graph of Chopin4.

J =


−α 0 0 δ
α −(β + ε) 0 −ϕ
0 β −γ 0
0 −ε γ −(δ + ϕ)

 , M =


+ ? + +
+ + ? ?
+ + + ?
? ? + +


det(−J) > 0, nv = 8, nf = 14

Clementi4.

ȧ = a0 − gab(a, b)− gac(a, c) + gd(d)

ḃ = b0 − gab(a, b)
ċ = gab(a, b)− gac(a, c)
ḋ = gac(a, c)− gd(d)− g∗d(d)

Figure A.12: Graph of Clementi4.

J =


−(α + γ) −β −δ ϕ
−α −β 0 0
α− γ β −δ 0
γ 0 δ −(ϕ+ ε)

 , Mscc =


+ − − +
− + + −
− + + −
0 0 0 0

 .
det(−J) = 0, nv = ∗, nf = ∗
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Dvořák4.

ȧ = a0 − gab(a, b)
ḃ = b0 − gab(a, b) + gd(d)

ċ = gab(a, b)− gc(c)
ḋ = gab(a, b)− gd(d) Figure A.13: Graph of Dvořák4.

J =


−α −β 0 0
−α −β 0 ε
α β −γ 0
α β 0 −ε

 , Mscc =


0 − 0 −
0 + 0 +
0 0 0 0
0 0 0 0


det(−J) = 0, nv = ∗, nf = ∗

Fauré4.

ȧ = a0 − gab(a, b)− ga(a) + gd(d)

ḃ = b0 − gab(a, b) + gc(c)

ċ = gab(a, b)− gc(c)− g∗c (c)
ḋ = g∗c (c)− gd(d) + ga(a)

Figure A.14: Graph of Fauré4.

J =


−(α + ζ) −β 0 ε
−α −β γ 0
α β −(γ + δ) 0
ζ 0 δ −ε

 , Mscc =


+ − ? +
− + ? −
0 0 0 0
+ − ? +


det(−J) = 0, nv = ∗, nf = ∗

Gershwin4.

ȧ = a0 − ga(a)− g∗a(a) + gb(b) + gd(d)

ḃ = −gb(b)− g∗b (b) + ga(a)

ċ = −gc(c)− gcd(c, d) + ga(a)

ḋ = g∗a(a)− gd(d)− gcd(c, d)
Figure A.15: Graph of Gershwin4.

J =


−(α + ρ) µ 0 ν

α −(β + µ) 0 0
α 0 −(γ + ϕ) −δ
ρ 0 −ϕ −(δ + ν)

 , M =


+ + − +
+ + − +
? ? + ?
? ? − +


det(−J) > 0, nv = ∗, nf = ∗
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Gluck4.

ȧ = a0 − ga(a) + gbc(b, c)− gad(a, d)

ḃ = ga(a)− gbc(b, c)− gb(b)
ċ = ga(a)− gbc(b, c)− gc(c)
ḋ = gc(c)− gad(a, d) Figure A.16: Graph of Gluck4.

J =


−(α + ϕ) β γ −ζ

α −(β + δ) −γ 0
α −β −(γ + ε) 0
−ϕ 0 ε −ζ

 , M =


+ + ? −
+ + − −
+ 0 + −
? − ? +


det(−J) > 0, nv = 14, nf = 8

Gounod4.

ȧ = a0 − gab(a, b)
ḃ = b0 − gab(a, b)− gbd(b, d)

ċ = gab(a, b)− gc(c)
ḋ = gc(c)− gd(d)− gbd(b, d) Figure A.17: Graph of Gounod4.

J =


−α −β 0 0
−α −(β + ε) 0 −δ
α β −γ 0
0 −ε γ −(δ + ϕ)

 , M =


+ − + +
− + − −
+ 0 + 0
+ − + +


det(−J) > 0, nv = ∗, nf = ∗

Händel4.

ȧ = a0 − ga(a)− gab(a, b)
ḃ = ga(a)− gab(a, b)− gbd(b, d)

ċ = c0 − gc(c)− gcd(c, d)

ḋ = gc(c)− gcd(c, d)− gbd(b, d)

Figure A.18: Graph of Händel4.

J =


−(α + ε) −ϕ 0 0
α− ε −(γ + ϕ) 0 −δ

0 0 −(β + ζ) −η
0 −γ β − ζ −(δ + η)

 , M =


+ − ? +
? + ? −
? + + −
? − ? +


det(−J) > 0, nv = 8, nf = 16
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Haydn4.

ȧ = a0 − gab(a, b)− gac(a, c)
ḃ = b0 − gab(a, b)
ċ = gab(a, b)− gac(a, c)
ḋ = gac(a, c)− gd(d)

Figure A.19: Graph of Haydn4.

J =


−(α + γ) −β −δ 0
−α −β 0 0
α− γ β −δ 0
γ 0 δ −ε

 , Mscc =


+ − − 0
− + + 0
− + + 0
0 0 0 0


det(−J) = 0, nv = 16, nf = 18

Mozart4.

ȧ = a0 − gab(a, b)− gad(a, d)

ḃ = b0 − gab(a, b)
ċ = gab(a, b)− gc(c)
ḋ = gc(c)− gad(a, d)

Figure A.20: Graph of Mozart4.

J =


−(α + δ) −β 0 −ε
−α −β 0 0
α β −γ 0
−δ 0 γ −ε

 , Mscc =


+ − − −
− + + +
0 0 0 0
− + + +


det(−J) = 0, nv = 14, nf = 8

Offenbach4.

ȧ = a0 − gab(a, b)− gad(a, d)− ga(a)

ḃ = b0 − gab(a, b)
ċ = gab(a, b)− gc(c)
ḋ = gc(c)− gad(a, d)

Figure A.21: Graph of Offenbach4.

J =


−(α + γ + ε) −β 0 −ϕ

−α −β 0 0
α β −δ 0
−ε 0 δ −ϕ

 , M =


+ − − −
− + + +
0 + + 0
− + + +


det(−J) > 0, nv = ∗, nf = ∗
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Paganini4.

ȧ = a0 − ga(a) + gd(d)

ḃ = ga(a)− gbc(b, c)
ċ = c0 − gc(c)− gbc(b, c)
ḋ = gbc(b, c)− gd(d) Figure A.22: Graph of Paganini4.

J =


−α 0 δ 0
α −β −γ 0
0 −β −(γ + δ) 0
0 β γ −ε

 , M =


+ − + 0
+ + ? 0
− − + 0
+ + + +


det(−J) > 0, nv = 14, nf = 18

Pergolesi4.

ȧ = a0 − gab(a, b)− gac(a, c)
ḃ = b0 − gab(a, b)− gbd(b, d)

ċ = gab(a, b)− gac(a, c)
ḋ = gac(a, c)− gbd(b, d)− gd(d)

Figure A.23: Graph of Pergolesi4.

J =


−(α + γ) −β −δ 0
−α −(β + ζ) 0 −ε
α− γ β −δ 0
γ −ζ δ −(ε+ ϑ)

 , M =


+ − − +
− + + −
? + + −
+ − 0 +


det(−J) > 0, nv = ∗, nf = ∗

Purcell4.

ȧ = a0 − gab(a, b)− gac(a, c)
ḃ = b0 − gab(a, b)
ċ = gab(a, b)− gac(a, c)
ḋ = gab(a, b)− gd(d) Figure A.24: Graph of Purcell4.

J =


−(α + γ) −β −δ 0
−α −β 0 0
α− γ β −δ 0
α β 0 −ε

 , Mscc =


+ − − 0
− + + 0
− + + 0
0 0 0 0


det(−J) = 0, nv = 16, nf = 18
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Salieri4.

ȧ = a0 − ga(a)− g∗a(a) + gd(d)

ḃ = ga(a)− gbc(b, c)
ċ = g∗a(a)− gbc(b, c)
ḋ = gbc(b, c)− gd(d) Figure A.25: Graph of Salieri4.

J =


−(α + β) 0 0 ε

α −γ −δ 0
β −γ −δ 0
0 γ δ −ε

 , Mscc =


0 0 0 0
? + − ?
? − + ?
0 0 0 0


det(−J) = 0, nv = ∗, nf = ∗

Scarlatti4.

ȧ = a0 − gab(a, b)− gac(a, c)
ḃ = b0 − gab(a, b)
ċ = gab(a, b)− gac(a, c) + gd(d)

ḋ = gac(a, c)− gd(d)− g∗d(d)
Figure A.26: Graph of Scarlatti4.

J =


−(α + γ) −β −δ 0
−α −β 0 0
α− γ β −δ ϕ
γ 0 δ −(ϕ+ ε)

 , Mscc =


+ − − −
− + + +
− + + +
0 0 0 0


det(−J) = 0, nv = ∗, nf = ∗

Schubert4.

ȧ = a0 − ga(a)− gad(a, d) + gbc(b, c)

ḃ = ga(a)− gbc(b, c)− gbd(b, d)

ċ = ga(a)− gbc(b, c)− gc(c)
ḋ = gc(c)− gad(a, d)− gbd(b, d)

Figure A.27: Graph of Schubert4.

J =


−(α + ζ) β γ −η

α −(β + δ) −γ −ε
α −β −(γ + ϕ) 0
−ζ −δ ϕ −(ε+ η)

 , M =


+ + − −
+ + − −
? ? 0 ?
− − + +


det(−J) =?, nv = ∗, nf = ∗
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Schumann4.

ȧ = a0 − gab(a, b)− gac(a, c)
ḃ = b0 − gab(a, b) + gd(d)

ċ = gab(a, b)− gac(a, c)
ḋ = gac(a, c)− gd(d)− g∗d(d)

Figure A.28: Graph of Schumann4.

J =


−(α + γ) −β −δ 0
−α −β 0 ϕ
α− γ β −δ 0
γ 0 δ −(ϕ+ ε)

 , Mscc =


+ − − −
− + + +
− + + +
0 0 0 0


det(−J) = 0, nv = ∗, nf = ∗

Vivaldi4.

ȧ = a0 − gab(a, b)− gac(a, c)
ḃ = b0 − gab(a, b) + gd(d)

ċ = gab(a, b)− gac(a, c)
ḋ = gab(a, b)− gd(d)

Figure A.29: Graph of Vivaldi4.

J =


−(α + γ) −β −δ 0
−α −β 0 ε
α− γ β −δ 0
α β 0 −ε

 , Mscc =


0 − 0 −
0 + 0 +
0 + 0 +
0 0 0 0


det(−J) = 0, nv = ∗, nf = ∗

A.3 Five Nodes Networks

Berg5.

ȧ = a0 + ge(e)− gab(a, b)
ḃ = b0 − gab(a, b)− gbc(b, c)
ċ = c0 − gbc(b, c)
ḋ = gbc(b, c)− gd(d)

ė = gd(d)− ge(e)
Figure A.30: Graph of Berg5.
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J =


−α −γ 0 0 ϕ
−α −(β + γ) −δ 0 0
0 −β −δ 0 0
0 β δ −ε 0
0 0 0 ε −ϕ

 , Mscc =


+ − + + +
− + − − −
+ − + + +
0 0 0 0 0
0 0 0 0 0


det(−J) = 0, nv = 32, nf = 10

Berlioz5.

ȧ = a0 − gab(a, b)− gae(a, e)
ḃ = b0 − gab(a, b)
ċ = gab(a, b)− gcd(c, d)

ḋ = d0 − gcd(c, d)

ė = gcd(c, d)− gae(a, e) Figure A.31: Graph of Berlioz5.

J =


−(α + ε) −β 0 0 −ϕ
−α −β 0 0 0
α β −γ −δ 0
0 0 −γ −δ 0
−ε 0 γ δ −ϕ


det(−J) = 0 (and the eigenvalue zero has multiplicity 2), nv = 32, nf = 10

Brahms5.

ȧ = a0 − gab(a, b)− gae(a, e) + gc(c)

ḃ = b0 − gab(a, b) + gc(c)

ċ = gab(a, b)− gc(c)− g∗c (c)
ḋ = g∗c (c)− gd(d)

ė = gd(d)− gae(a, e)
Figure A.32: Graph of Brahms5.

J =


−(α + ϕ) −β γ 0 −ζ
−α −β γ 0 0
α β −(γ + δ) 0 0
0 0 δ −ε 0
−ϕ 0 0 ε −ζ

 , Mscc =


+ − − − −
− + + + +
0 0 0 0 0
0 0 0 0 0
− + + + +


det(−J) = 0, nv = 32, nf = 10



A.3. Five Nodes Networks 307

Elgar5.

ȧ = a0 − ga(a) + ge(e)

ḃ = ga(a)− gbc(b, c)
ċ = c0 − gbc(b, c)
ḋ = gbc(b, c)− gd(d)

ė = gd(d)− ge(e) Figure A.33: Graph of Elgar5.

J =


−α 0 0 0 ε
α −β −γ 0 0
0 −β −γ 0 0
0 β γ −δ 0
0 0 0 δ −ε

 , Mscc =


0 0 0 0 0
+ + 0 + +
− − 0 − −
0 0 0 0 0
0 0 0 0 0


det(−J) = 0, nv = ∗, nf = ∗

Grieg5.

ȧ = a0 − ga(a)

ḃ = ga(a)− gbc(b, c)
ċ = c0 − gbc(b, c)− gc(c)
ḋ = gbc(b, c)− gd(d)

ė = gd(d)− ge(e) + gc(c)
Figure A.34: Graph of Grieg5.

J =


−α 0 0 0 0
α −β −γ 0 0
0 −β −(γ + ε) 0 0
0 β γ −δ 0
0 0 ε δ −ϕ

 , M =


+ 0 0 0 0
+ + − 0 0
− − + 0 0
+ + 0 + 0
0 0 + + +


det(−J) > 0, nv = 22, nf = 68

Liszt5.

ȧ = a0 − gab(a, b)
ḃ = b0 − gab(a, b)− gbc(b, c)
ċ = c0 − gbc(b, c)− gc(c)
ḋ = gbc(b, c)− gd(d)

ė = gd(d) + gc(c)− ge(e) Figure A.35: Graph of Liszt5.
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J =


−α −γ 0 0 0
−α −(β + γ) −δ 0 0
0 −β −(δ + ϕ) 0 0
0 β δ −ε 0
0 0 ϕ ε −ζ

 , M =


+ − + 0 0
− + − 0 0
+ − + 0 0
− + 0 + 0
0 0 + + +


det(−J) > 0, nv = 28, nf = 66

Martucci5.

ȧ = a0 − ga(a)− gac(a, c)
ḃ = ga(a)− gbd(b, d)− gbe(b, e)
ċ = gd(d)− gac(a, c)
ḋ = ga(a)− gd(d)− gbd(b, d)

ė = gbd(b, d)− gbe(b, e) Figure A.36: Graph of Martucci5.

J =


−(α + β) 0 −γ 0 0

α −(δ + µ) 0 −ε −ν
−β 0 −γ ϕ 0
α −δ 0 −(ε+ ϕ) 0
0 δ − µ 0 ε −ν

 , M =


+ + − − −
? + ? − −
? − + + +
+ − − + +
? ? ? ? +


det(−J) > 0, nv = ∗, nf = ∗

Mendelssohn5.

ȧ = a0 − gab(a, b) + gc(c)

ḃ = b0 − gab(a, b)− gbd(b, d)

ċ = gab(a, b)− gc(c)− g∗c (c)
ḋ = gab(a, b)− gbd(b, d)− gde(d, e)
ė = g∗c (c)− gde(d, e)

Figure A.37: Graph of Mendelssohn5.

J =


−α −β γ 0 0
−α −(β + ε) 0 −ϕ 0
α β −(γ + δ) 0 0
α β − ε 0 −(ϕ+ ν) −µ
0 0 δ −ν −µ

 , Mscc =


+ − ? + −
− + ? − +
0 0 0 0 0
+ − ? + −
− + ? − +


det(−J) = 0, nv = ∗, nf = ∗
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Rachmaninov5.

ȧ = a0 − gab(a, b)
ḃ = b0 − gab(a, b)− gbc(b, c)
ċ = c0 − gbc(b, c) + ge(e)

ḋ = gbc(b, c)− gd(d)

ė = gd(d)− ge(e) Figure A.38: Graph of Rachmaninov5.

J =


−α −γ 0 0 0
−α −(β + γ) −δ 0 0
0 −β −δ 0 ϕ
0 β δ −ε 0
0 0 0 ε −ϕ

 , Mscc =


0 0 + + +
0 0 − − −
0 0 + + +
0 0 0 0 0
0 0 0 0 0


det(−J) = 0, nv = ∗, nf = ∗

Ravel5.

ȧ = a0 − gab(a, b)− gac(a, c)
ḃ = b0 − gab(a, b) + ge(e)

ċ = gab(a, b)− gac(a, c)
ḋ = gab(a, b)− gd(d)

ė = gd(d)− ge(e)
Figure A.39: Graph of Ravel5.

J =


−(α + γ) −β −δ 0 0
−α −β 0 0 ϕ
α− γ β −δ 0 0
α β 0 −ε 0
0 0 0 ε −ϕ

 , Mscc =


0 − 0 − −
0 + 0 + +
0 + 0 + +
0 0 0 0 0
0 0 0 0 0


det(−J) = 0, nv = ∗, nf = ∗

Respighi5.

ȧ = a0 − gab(a, b)− gac(a, c)
ḃ = b0 − gab(a, b)
ċ = gab(a, b)− gac(a, c)
ḋ = gab(a, b)− gd(d)

ė = gd(d)− ge(e)
Figure A.40: Graph of Respighi5.
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J =


−(α + γ) −β −δ 0 0
−α −β 0 0 0
α− γ β −δ 0 0
α β 0 −ε 0
0 0 0 ε −ϕ

 , Mscc =


+ − − 0 0
− + + 0 0
− + + 0 0
0 0 0 0 0
0 0 0 0 0


det(−J) = 0, nv = 32, nf = 32

RimskijKorsakov5.

ȧ = a0 − ga(a)− gac(a, c) + ge(e)

ḃ = ga(a)− ḡb(b) + gd(d)− gb(b)
ċ = ga(a)− gac(a, c)
ḋ = gac(a, c)− gd(d)− g∗d(d)

ė = ḡb(b)− ge(e) Figure A.41: Graph of RimskijKorsakov5.

J =


−(α + µ) 0 −ν 0 ε

α −(β + ρ) 0 δ 0
α− µ 0 −ν 0 0
µ 0 ν −(δ + ϕ) 0
0 β 0 0 −ε

 , M =


+ + − + +
+ + − + +
? ? + ? ?
+ + + + +
+ + − + +


det(−J) > 0, nv = ∗, nf = ∗

Šostakovič5.

ȧ = −ga(a)− gab(a, b) + gc(c)

ḃ = ga(a)− gb(b)− gab(a, b)− gbd(b, d)

ċ = gb(b)− gc(c) + ge(e)

ḋ = gab(a, b)− gbd(b, d)

ė = gbd(b, d)− ge(e) Figure A.42: Graph of Šostakovič5.

J =


−(α + γ) −β ϕ 0 0
γ − α −(β + δ + µ) 0 −ν 0

0 δ −ϕ 0 ε
α β − µ 0 −ν 0
0 µ 0 ν −ε

 , M =


+ + + + +
? + ? − ?
? + + + +
? ? ? + ?
+ + + + +


det(−J) > 0, nv = ∗, nf = ∗
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Strauss5.

ȧ = a0 − ga(a)− gac(a, c)
ḃ = ga(a)− gbd(b, d)− gbe(b, e)
ċ = c0 − gac(a, c)
ḋ = ga(a)− gbd(b, d)

ė = gbd(b, d)− gbe(b, e) Figure A.43: Graph of Strauss5.

J =


−(α + β) 0 −γ 0 0

α −(δ + µ) 0 −ε −ν
−β 0 −γ 0 0
α −δ 0 −ε 0
0 δ − µ 0 ε −ν

 , Mscc =


0 0 0 0 0
− + + − −
0 0 0 0 0
+ − − + +
+ − − + +


det(−J) = 0, nv = 12, nf = 24

A.4 Six Nodes Networks

Debussy6.

ȧ = a0 − gab(a, b)− gae(a, e)
ḃ = b0 − gab(a, b)
ċ = gab(a, b)− gcd(c, d)

ḋ = d0 − gcd(c, d)

ė = gcd(c, d)− gae(a, e)
ḟ = gae(a, e)− gf (f) Figure A.44: Graph of Debussy6.

J =


−(α + ε) −β 0 0 −ϕ 0
−α −β 0 0 0 0
α β −γ −δ 0 0
0 0 −γ −δ 0 0
−ε 0 γ δ −ϕ 0
ε 0 0 0 ϕ −ζ


det(−J) = 0 (the eigenvalue zero has multiplicity 2), nv = 64, nf = 30
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Dukas6.

ȧ = a0 − gab(a, b) + gc(c) + gd(d)

ḃ = b0 − gab(a, b)− gbc(b, c) + gf (f)

ċ = gab(a, b)− gc(c)− gbc(b, c)− ḡc(c)
ḋ = ḡc(c)− gd(d)

ė = ḡc(c)− gef (e, f)− ge(e)
ḟ = gbc(b, c)− gef (e, f)− gf (f)

Figure A.45: Graph of Dukas6.

J =


−α −β η δ 0 0
−α −(β + µ) −ν 0 0 ρ
α β − µ −(η + ν + γ) 0 0 0
0 0 γ −δ 0 0
0 0 γ 0 −(ε+ ζ) −ϕ
0 µ ν 0 −ε −(ϕ+ ρ)


det(−J) < 0, nv = ∗, nf = ∗

Henze6.

ȧ = a0 − gab(a, b)− gae(a, e)
ḃ = b0 − gab(a, b)− gb(b) + gc(c)

ċ = gab(a, b)− gc(c)− gcd(c, d)

ḋ = gb(b)− gcd(c, d)− gdf (d, f)

ė = gcd(c, d)− gae(a, e)
ḟ = gcd(c, d)− gdf (d, f)− gf (f)

Figure A.46: Graph of Henze6.

J =


−(α + γ) −β 0 0 −δ 0
−α −(β + ε) ζ 0 0 0
α β −(ζ + η) −ϑ 0 0
0 ε −η −(ϑ+ κ) 0 −λ
−γ 0 η ϑ −δ 0
0 0 η ϑ− κ 0 −(λ+ ϕ)


det(−J) > 0, nv = ∗, nf = ∗

M =


+ − − ? − ?
− + + − + +
+ − + − − +
− + ? + + −
? + + ? + ?
+ ? ? ? − +


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Hindemith6.

ȧ = a0 − gab(a, b) + gc(c) + gd(d) + ge(e)

ḃ = b0 − gab(a, b)− gbc(b, c)
ċ = gab(a, b)− gc(c)− gbc(b, c)− ḡc(c)
ḋ = ḡc(c)− gd(d)

ė = ḡc(c)− gef (e, f)− ge(e)
ḟ = gbc(b, c)− gef (e, f)

Figure A.47: Graph of Hindemith6.

J =


−α −β η δ ρ 0
−α −(β + µ) −ν 0 0 0
α β − µ −(η + ν + γ) 0 0 0
0 0 γ −δ 0 0
0 0 γ 0 −(ε+ ρ) −ϕ
0 µ ν 0 −ε −ϕ



det(−J) < 0, nv = ∗, nf = ∗

Mahler6.

ȧ = a0 − ga(a)− gae(a, e)
ḃ = ga(a)− gb(b)− gbd(b, d)

ċ = c0 − gc(c)− gcf (c, f)

ḋ = gc(c)− gd(d)− gbd(b, d)

ė = gb(b)− gae(a, e)
ḟ = gd(d)− gcf (c, f)

Figure A.48: Graph of Mahler6.

J =


−(α + ζ) 0 0 0 −η 0

α −(γ + ε) 0 −δ 0 0
0 0 −(β + ι) 0 0 −λ
0 −γ β −(δ + ϕ) 0 0
−ζ ε 0 0 −η 0
0 0 −ι ϕ 0 −λ


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det(−J) > 0, nv = 12, nf = 62

M =


+ − + + − −
+ + − − − +
+ + + − − −
− − + + + −
? + − − + +
− − ? + + +



A.5 Seven Nodes Networks

Schönberg7.

ȧ = a0 − ga(a)− gae(a, e)
ḃ = ga(a)− gb(b)− gbd(b, d)

ċ = c0 − gc(c)− gcf (c, f)

ḋ = gc(c)− gd(d)− gbd(b, d)

ė = gb(b)− gae(a, e)
ḟ = gd(d)− gcf (c, f)

ġ = gbd(b, d)− gg(g) Figure A.49: Graph of Schönberg7.

J =



−(α + ζ) 0 0 0 −η 0 0
α −(γ + ε) 0 −δ 0 0 0
0 0 −(β + ι) 0 0 −λ 0
0 −γ β −(δ + ϕ) 0 0 0
−ζ ε 0 0 −η 0 0
0 0 −ι ϕ 0 −λ 0
0 γ 0 δ 0 0 −µ


det(−J) > 0, nv = ∗, nf = ∗

M =



+ − + + − − 0
+ + − − − + 0
+ + + − − − 0
− − + + + − 0
? + − − + + 0
− − ? + + + 0
+ + + + − − +


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A.6 Eight Nodes Networks

Massenet8.

ȧ = a0 − gab(a, b)− gac(a, c)− gae(a, e)
ḃ = b0 − gab(a, b)− gb(b)
ċ = gab(a, b)− gac(a, c)− gcd(c, d)− gc(c) + gg(g)

ḋ = gac(a, c)− gcd(c, d)

ė = gb(b)− gae(a, e)− ge(e)
ḟ = gc(c) + ge(e)− gfh(f, h)

ġ = gfh(f, h)− gg(g)− g∗g(g)

ḣ = ge(e)− gfh(f, h)− gh(h)
Figure A.50: Graph of Massenet8.

J =



−(α+ ν + ψ) −β −ξ 0 −µ 0 0 0
−α −(β + λ) 0 0 0 0 0 0
α− ψ β −(ξ + γ + ϑ) −δ 0 0 ω 0
ψ 0 ξ − γ −δ 0 0 0 0
−ν λ 0 0 −(µ+ ε) 0 0 0
0 0 ϑ 0 ε −ϕ 0 −η
0 0 0 0 0 ϕ −(ζ + ω) η
0 0 0 0 ε −ϕ 0 −(η + ρ)


det(−J) > 0, nv = ∗, nf = ∗

M =



+ − − + − − − 0
− + + − + + + 0
? ? + − ? + + 0
? ? ? + ? ? ? 0
− + + − + + + 0
? ? + − ? + + −
? ? + − ? + + 0
? ? − + ? − − +


Stravinskij8.

ȧ = a0 − gab(a, b)− gac(a, c)− gae(a, e) + g∗g(g)

ḃ = b0 − gab(a, b)− gb(b)
ċ = gab(a, b)− gac(a, c)− gcd(c, d)− gc(c) + gg(g)

ḋ = gac(a, c)− gcd(c, d)

ė = gb(b)− gae(a, e)− ge(e)
ḟ = gc(c) + ge(e)− gfh(f, h)

ġ = gfh(f, h)− gg(g)− g∗g(g)

ḣ = ge(e)− gfh(f, h)− gh(h)

Figure A.51: Graph of Stravin-
skij8.
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J =



−(α+ ν + ψ) −β −ξ 0 −µ 0 ζ 0
−α −(β + λ) 0 0 0 0 0 0
α− ψ β −(ξ + γ + ϑ) −δ 0 0 ω 0
ψ 0 ξ − γ −δ 0 0 0 0
−ν λ 0 0 −(µ+ ε) 0 0 0
0 0 ϑ 0 ε −ϕ 0 −η
0 0 0 0 0 ϕ −(ζ + ω) η
0 0 0 0 ε −ϕ 0 −(η + ρ)


det(−J) =?, nv = ∗, nf = ∗

M =



+ ? ? ? ? ? ? 0
− + ? ? ? ? ? 0
? ? + − ? ? ? 0
? ? ? ? ? ? ? 0
− + ? ? + ? ? 0
? ? + − ? + ? ?
? ? + − ? + + 0
? ? − + ? − ? ?



A.7 Synoptic Overview

An overview of the considered biochemical networks is presented in Table A.1, which
summarises the following results.

CV = Convergence of the Stability procedure (Yes/No);
nV = number of vertices (primal procedure);
nF = number of facets (dual procedure);

r(S) = rank(S);
NCC = Non-Singularity in the Stoich. Compatibility Class (Yes/No);
MR = Maximum Randomly generated eigenvalue real part;
BO = Boundedness test (Yes/No);

det−J = Sign of det(−J).
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Table A.1: Summary of the results of the numerical tests

Network CV nv nf r(S) NCC MR BO det−J
Albinoni3 Yes 14 12 3 Yes < 0 Yes +
Buxtehude3 No - - 3 No > 0 No -
Corelli3 Yes 6 6 3 Yes < 0 Yes +
Frescobaldi3 No - - 3 Yes < 0 Yes +
Pachelbel3 No - - 3 Yes < 0 Yes +
Telemann3 Yes 10 12 3 Yes < 0 Yes +
Bach4 No - - 3 Yes 0 Yes 0
Beethoven4 No - - 4 Yes < 0 Yes +
Boccherini4 No - - 4 Yes < 0 Yes +
Čajkovskij4 No - - 4 No > 0 Yes -
Chopin4 Yes 8 14 4 Yes < 0 Yes +
Clementi4 No - - 4 No 0 Yes 0
Dvořák4 No - - 3 Yes 0 Yes 0
Fauré4 No - - 4 No 0 Yes 0
Gershwin4 No - - 4 Yes < 0 No +
Gluck4 Yes 14 8 4 Yes < 0 Yes +
Gounod4 No - - 4 Yes < 0 Yes +
Händel4 Yes 8 16 4 Yes < 0 Yes +
Haydn4 Yes 16 18 3 Yes 0 Yes 0
Mozart4 Yes 14 8 3 Yes 0 Yes 0
Offenbach4 No - - 4 Yes < 0 Yes +
Paganini4 Yes 14 18 4 Yes < 0 Yes +
Pergolesi4 No - - 4 Yes < 0 Yes +
Purcell4 Yes 16 18 3 Yes 0 Yes 0
Salieri4 No - - 4 No 0 Yes 0
Scarlatti4 No - - 4 No 0 Yes 0
Schubert4 No - - 4 No > 0 Yes ?
Schumann4 No - - 4 No 0 Yes 0
Vivaldi4 No - - 3 Yes 0 Yes 0
Berg5 Yes 32 10 4 Yes 0 Yes 0
Berlioz5 Yes 32 10 3 Yes 0 Yes 0
Brahms5 Yes 32 10 4 Yes 0 Yes 0
Elgar5 No - - 4 Yes 0 Yes 0
Grieg5 Yes 22 68 5 Yes < 0 Yes +
Liszt5 Yes 28 66 5 Yes < 0 Yes +
Martucci5 No - - 5 Yes < 0 Yes +
Mendelssohn5 No - - 5 No 0 Yes 0
Rachmaninov5 No - - 4 Yes 0 Yes 0
Ravel5 No - - 4 Yes 0 Yes 0
Respighi5 Yes 32 32 4 Yes 0 Yes 0
RimskijKorsakov5 No - - 5 Yes < 0 No +
Šostakovič5 No - - 5 Yes < 0 Yes +
Strauss5 Yes 12 24 4 Yes 0 Yes 0
Debussy6 Yes 64 30 4 Yes 0 Yes 0
Dukas6 No - - 6 No > 0 No -
Henze6 No - - 6 Yes < 0 Yes +
Hindemith6 No - - 6 No > 0 Yes -
Mahler6 Yes 12 62 6 Yes < 0 Yes +
Schönberg7 No - - 7 Yes < 0 Yes +
Massenet8 No - - 8 Yes < 0 Yes +
Stravinskij8 No - - 8 No > 0 Yes ?





B
Code for Testing

Biochemical Networks

B.1 Polychem: Polyhedral Functions for Bio-
chemical Systems

MATLAB code has been written to implement the numerical procedure proposed in
Chapter 6 and in [BG14], to assess stability and boundedness of biochemical reaction
network. The procedure is thoroughly described in Section 6.3.1. The code is
available at https://users.dimi.uniud.it/~franco.blanchini/polychem.zip,
along with the data files for assessing stability and boundedness of most of the
networks examined in Appendix A.

In fact, as discussed in Chapter 6, the procedure is the same for testing both
boundedness and stability; just the data that need to be provided to the procedure
are different. The MATLAB function requires as input: matrices B and C of the
BDC-decomposition, the maximum allowed number of iterations, and a flag that
is 0 for using the primal procedure, 1 for using the dual. The generated output is
a warning that tells whether a fixed point has been reached (the matrix has not
changed, successful stop) or the maximum number of iteration has been reached with
the matrix still changing (unsuccessful stop). In the former case, the output matrix
X is the vertex matrix of the polyhedral Lyapunov function, if the primal procedure
is used (the facet matrix if the dual procedure is used). The syntax is

X = polychemtest(B,C,max_itera,dual_procedure)

A function that provides matrices B and C of the BDC-decomposition based on
the system ẋ = Sg(x) + g0, requiring matrix S and qualitative information about
g(x), is also available online and is presented in Section B.2.

https://users.dimi.uniud.it/~franco.blanchini/polychem.zip
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B.2 Computing the Steady-State Influence
Matrix

In this section, MATLAB functions are presented that implement the efficient
algorithm described in Chapter 7 and in [GCFB15] for computing the Structural
Steady-State Influence Matrix (SSIM). These functions constitute the fundamental
part of the software package SSIM toolbox (SSIM-Functions) and are the core
computational engine for the graphical user interface tackling chemical reaction
networks (SSIM-GUI); the whole toolbox, including both general functions and GUI,
is online: https://users.dimi.uniud.it/~franco.blanchini/influence.zip.

Given a system

ẋ = f(x) + Eu, y = Hx, x ∈ Rn, u ∈ R, y ∈ R,

entry (i, j) of the n× n SSIM shows the structural influence on the ith state variable
(seen as an output y) of a constant additive input u applied to the jth state variable:
this corresponds to the choice

E = Ej = [0 . . . 0 1︸︷︷︸
position j

0 . . . 0]>, H = Hi = [0 . . . 0 1︸︷︷︸
position i

0 . . . 0].

A structural influence is identified if the steady-state variation has the same sign for
any choice of the parameters. Hence, the entry (i, j) of the SSIM is:

• “+” (“+1” in the MATLAB environment) if a positive input applied to the
jth variable always causes an increase in the steady state of the ith variable;

• “-” (“-1” in the MATLAB environment) if a positive input applied to the jth
variable always causes a decrease in the steady state of the ith variable;

• “0” if any input applied to the jth variable always causes no change in the
steady state of the ith variable;

• “?” (“2” in the MATLAB environment) if an input applied to the jth variable
can cause an increase or a decrease or no change in the steady state of the ith
variable, depending on the choice of parameter values.

The algorithm requires that the Jacobian of the system admits the BDC-
decomposition described in Section 4.3: J = BDC, where D � 0 is a diagonal
matrix. Chemical reaction networks and all the systems that can be written as

ẋ = Sf(x) + f0, (B.1)

where x ∈ Rn, S ∈ Rn×m is the stoichiometric matrix, f(x) ∈ Rm is a vector of (pos-
itive) reaction rates and f0 ∈ Rn is a constant vector, admit a BDC-decomposition
under suitable assumptions on f(x) (see Section 4.3).

For computing the SSIM, two MATLAB functions have been written that handle a
general class of models described either by a system of ordinary differential equations
of the form (B.1), or by matrices B and C of the BDC-decomposition:

https://users.dimi.uniud.it/~franco.blanchini/influence.zip
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• function SSIM general.m can handle any system that can be written in the
form (B.1), since it requires as inputs S and qualitative information about
f(x);

• function SignMatrixGeneration.m can handle any system that admits a BDC-
decomposition, since it requires as inputs matrices B and C.

Computing the SSIM

Function SSIM general.m can be used to compute the structural steady-state influ-
ence matrix for any system that can be written in the form (B.1), since it requires
only the knowledge of the stoichiometric matrix S and of qualitative information
about f(x). The function yields as an output the SSIM and requires either two or
three inputs that will be specified below. By typing in the MATLAB command line
either

M = SSIM general(S,g);

or
M = SSIM general(S,g,comb);

the SSIM is both stored in the variable M and visualised on the screen, together
with information on the structural sign of the opposite of the Jacobian matrix (if this
is positive, under boundedness assumptions, uniqueness of the equilibrium can be
inferred). The function can also be used inside other MATLAB functions or scripts.

Input Specification. Inputs provided to the function SSIM general must be
specified as follows.

• S: the stoichiometric matrix S in (B.1).
• g: the reaction rate vector f(x), written in a qualitative format. The input g is

actually a matrix with m rows, each corresponding to an element of vector f(x)
in (B.1), and Nmax columns if the rate function with more arguments depends
on Nmax variables. The elements of its ith row are the indices of the variables
on which the ith rate function depends (with a minus sign if the corresponding
derivative is negative); if a rate function has less than Nmax arguments, the
corresponding row is completed with zeros.

• comb: a column vector with m elements, each associated with an entry of vector
f(x) in (B.1). Its ith element is 1 if the corresponding rate function depends
on a linear combination of variables, 0 otherwise. This is an optional argument
and can be omitted when all of the elements are 0.

To better illustrate how to specify the inputs for the function, examples are
provided below.

Example 1: a metabolic network. Consider Example 4.10, Chapter 4, which
can be written as in model (B.1) with

x =

[
a
b
c

]
, S =

[
−1 0 0
−1 1 0

1 0 −1

]
, f(x) =

[
fab(a, b)
fd(K − b)
fc(c)

]
, f0 =

[
a0
0
0

]
.



322 B. Code for Testing Biochemical Networks

For this example, the input data are:

• S = S, • g =

[
1 2
−2 0

3 0

]
, • vector comb can be omitted.

The obtained SSIM is consistent with that reported in Example 7.4, Chapter 7.
Example 2: a six-node network. Consider the chemical reaction network

named Mahler6 in Appendix A (see also [BG14]), represented by the graph in
Fig. A.48; the corresponding ODE system can be recast into the form (B.1). Then
the inputs to be provided are:

• S =


−1 0 0 0 0 −1 0

1 0 −1 −1 0 0 0
0 −1 0 0 0 0 −1
0 1 −1 0 −1 0 0
0 0 0 1 0 −1 0
0 0 0 0 1 0 −1

, • g =


1 0
3 0
2 4
2 0
4 0
1 5
3 6


• vector comb can be omitted.
The resulting SSIM is that reported in Appendix A.
Example 3: a three-node network. Consider the chemical reaction network

named Albinoni3 in Appendix A (see also [BG14]), represented by the graph in
Fig. A.1. The corresponding ODE system can be recast into the form (B.1). Then
the input data are:

• S =

[
1 −1 0
0 −1 1
−1 0 0

]
, • g =

[
−1 3

1 2
1 −2

]
, • comb =

[
0
0
1

]
.

The resulting SSIM is that reported in Appendix A.

Function Structure and Intermediate Outputs

Function SSIM general.m is obtained as the cascade of two functions (see Fig. B.1).
The first function is generateBCmatrices.m, which receives as inputs S, g and

possibly comb, specified as above, and provides as outputs matrices B and C of the
BDC-decomposition. As stressed in Remark 4.3, the BDC-decomposition is not
unique and different choices can be made to compute it: e.g., columns of B and rows
of C can be arbitrarily permuted, provided that the same permutation is applied
on both sides, and also the sign of any column of B can be changed, provided that
the sign of the corresponding row of C is changed too (and vice versa). Matrices
B and C provided by the function are such that B contains columns of S, possibly
with changed sign, and an element of C is positive whenever it is the unique nonzero
element in the row.

Remark B.1. This function can also be used as a standalone function to system-
atically compute the BDC-decomposition for a given system of the form (B.1) (see
Chapter 4, Section 4.3).

The second function is SignMatrixGeneration.m, which receives as inputs matri-
ces B and C of the BDC decomposition and actually computes the SSIM using the
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efficient algorithm described in [GCFB15], Procedure 1, and reported in Chapter 7.

  

( )

Figure B.1: Function SSIM general as the cascade of functions generateBCmatrices and
SignMatrixGeneration.

Computing the SSIM directly, based on the BDC-decomposition.
The function SignMatrixGeneration.m can be used to systematically compute

the SSIM for any system that admits a BDC-decomposition, even though the system
cannot be written in the form (B.1). In this case, it is enough to provide as inputs
the matrices B and C of the BDC decomposition.





C
Stability: a Brief Overview

Stability of equilibria is a fundamental issue in dynamical system theory, which has
been intensively considered in this thesis. A brief survey about stability and the
related results is provided here; the presentation is largely inspired by [BV13, BM15].

Consider the nonlinear autonomous system

ẋ(t) = f(x(t)), (C.1)

where f : D ⊆ Rn → Rn is assumed to be smooth enough: a minimal requirement is
that f is a locally Lipschitz vector field.

Definition C.1. Given two metric spaces X , with metric dX , and Y, with metric
dY , a function f : X → Y is Lipschitz continuous if there exists a real constant
K ≥ 0 such that, for all x1, x2 ∈ X , dY(f(x1), f(x2)) ≤ K dX (x1, x2). The function
is locally Lipschitz continuous if, for any ball B, there exists a real constant L ≥ 0
such that dY(f(x1), f(x2)) ≤ LdX (x1, x2) for all x1, x2 ∈ B.

In the theory of differential equations, Lipschitz continuity is the central condition
of the Picard-Lindelöf theorem that guarantees the existence and uniqueness of the
solution to a Cauchy problem (initial value problem). In general, local Lipschitz
continuity assures local existence and uniqueness of the solution, but it does not
ensure the existence of a solution that is globally defined. However, in the following,
the global existence of the solution will be always assumed.

Denoting by ϕ(t, x0) the solution at time t of the initial value problem associated
with (C.1), with the initial condition x(0) = x0 ∈ D, the following general definition
can be provided.

Definition C.2. The solution ϕ(t, x0) is stable (or Lyapunov stable) if, for any
ε > 0, there exists δ > 0 such that ‖ϕ(t, y0)− ϕ(t, x0)‖ < ε for all t ≥ 0 and for all
y0 ∈ D such that ‖y0 − x0‖ < δ. The solution is unstable if it is not stable, while it
is asymptotically stable if it is stable and, in addition, a constant ζ > 0 exists such
that limt→∞ ‖ϕ(t, y0) − ϕ(t, x0)‖ = 0 for all y0 ∈ D such that ‖y0 − x0‖ < ζ. The
solution is marginally stable if it is stable, but not asymptotically.

Typically, the main object of the investigation is the stability of equilibria,
namely, of solutions that are constant in time (points x̄ ∈ D such that f(x̄) = 0). In
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Definition C.2, this amounts to considering ϕ(t, x0) ≡ x0
.
= x̄. Note that the above

definition concerns local behaviours, in the proximity of the equilibrium point. If the
basin of attraction1 is the whole state space, stability is global.

In the case of linear systems of the form

ẋ(t) = Ax(t), (C.2)

where A ∈ Rn×n, stability is an inherent property of the system (the system is stable
if and only if its zero solution is stable), and useful and simple stability criteria can
be derived.

Theorem C.1. System (C.2) is stable if and only if for all λi ∈ σ(A), <(λi) ≤ 0
and, whenever <(λi) = 0, the ascent of λi is 1 (namely, there must not be Jordan
blocks with dimension greater than one associated with eigenvalues whose real part is
zero). It is unstable if and only if there exists λi ∈ σ(A) with either <(λi) > 0, or
<(λi) = 0 and ascent greater than 1. It is asymptotically stable if and only if for all
λi ∈ σ(A), <(λi) < 0. The system is marginally stable if and only if it is stable and
there exists λi ∈ σ(A) such that <(λi) = 0, with ascent 1.

Theorem C.2. [Bre15] Given matrix A ∈ Rn×n, the following statements are
equivalent.

• A norm ‖ · ‖a on Rn and a real α > 0 exist such that, for all x ∈ Rn and for
all t ≥ 0, ‖eAtx‖a ≤ e−αt‖x‖a.

• For any norm ‖ · ‖c on Rn, two reals γ > 0 and C > 1 exist such that, for all
x ∈ Rn and for all t ≥ 0, ‖eAtx‖c ≤ Ce−γt‖x‖c.

• <(λi) < 0 for all λi ∈ σ(A).
• System (C.2) is asymptotically stable.

The above results hold for continuous-time systems; for discrete-time systems,
analogous results can be provided, based on the modulus of the eigenvalues.

The stability properties of the zero solution of linear hyperbolic systems (namely,
systems whose state matrix has no eigenvalues with zero real part) are global : indeed,
it can be shown that, if the system is hyperbolic, there are two invariant subspaces S
(stable subspace, such that ‖eAtx‖c ≤ Ce−γt‖x‖c, for positive constants C, γ, for all
t ≥ 0 and for all x ∈ S) and U (unstable subspace, such that ‖eAtx‖c ≤Meµt‖x‖c,
for positive constants M , µ, for all t ≤ 0 and for all x ∈ U), with Rn = S ⊕ U .
Conversely, in the non-hyperbolic case, there exists a third invariant subspace C
(center subspace), in which the behaviour is not exponential.

Based on the criteria for the stability of linear systems, it is possible to study local
stability of the equilibria of nonlinear systems: the principle of linearised stability
(introduced by Lyapunov) allows to determine the stability of an equilibrium point

1The basin (or domain) of attraction of an equilibrium x̄ is the set A ⊆ Rn such that
limt→∞ ‖ϕ(t, x0)− x̄‖ = 0 for all x0 ∈ A.
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of a nonlinear system by linearising the system around the equilibrium and then
studying the stability property of the zero solution of the linearised system. The
Jacobian of f(·) at the point x̄ is denoted as Jf (x̄).

Theorem C.3. Let x̄ ∈ D be an equilibrium of (C.1) and f be smooth enough. Then

• if <(λi) < 0 for all λi ∈ σ(Jf (x̄)), the equilibrium x̄ is asymptotically stable;

• if <(λi) > 0 for some λi ∈ σ(Jf (x̄)), the equilibrium x̄ is unstable.

The principle of linearised stability does no longer hold when the Jacobian matrix
at the equilibrium is not hyperbolic (in this case, considering the linear term is not
enough to assess stability of the equilibrium and higher order terms need to be taken
into account).

Remark C.1. In view of the “fragility” of the non-hyperbolic case, usually an
eigenvalue is said to be stable if it has a strictly negative real part, unstable otherwise.
This denomination is often used in the thesis.

Of course, since the linearisation (or linear variational equation) of (C.1) around
different equilibrium points has a different state matrix (the Jacobian matrix com-
puted at the equilibrium point, indeed), the stability properties may change when a
different equilibrium is considered.

Lyapunov functions provide a powerful alternative to linearisation for assessing
the stability properties of equilibria of nonlinear system. Moreover, they allow to
study global stability of equilibria. Intuitively, Lyapunov functions are chosen as
energy functions and the related method is based on the physical consideration that
stable equilibria are minima of the energy of the system.

More formally, consider a (possibly uncertain) system

ẋ(t) = f(x(t), w(t)), w(t) ∈ W , (C.3)

such that f(0, w) = 0 for all w ∈ W (hence, x(t) ≡ 0 is a trajectory of the system),
and denote by x(t) any solution of (C.3) corresponding to x(0) ∈ Rn and w(t) ∈ W .
A Lyapunov function Ψ : Rn → R for the system is a positive definite function that
is decreasing along the system trajectories; this property can be checked without any
knowledge of the system trajectories thanks to the Lyapunov derivative.

If Ψ(x(t)) is continuously differentiable, and under regularity assumptions for x,
the Lyapunov derivative is

Ψ̇(x(t))
∣∣∣
x(t)=x,w(t)=w

= ∇Ψ(x)>f(x,w) = ∇Ψ(x)>ẋ,

where ∇Ψ(x) = [∂Ψ(x)/∂x1 ∂Ψ(x)/∂x2 . . . ∂Ψ(x)/∂xn]>. Otherwise, the upper-
right Dini derivative can be used: for a function ψ(t), the upper-right Dini derivative

computed at t is D+ψ(t) = lim suph→0+
ψ(t+h)−ψ(t)

h
. Hence, it can be shown that
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the Lyapunov derivative (the upper directional derivative of Ψ with respect to the
system trajectories) becomes

D+Ψ(x,w)
.
= D+Ψ(x, f(x,w)) = lim sup

h→0+

Ψ(x+ hf(x,w))− ψ(x)

h

and, if ψ(t) = Ψ(x(t)), D+ψ(t) = D+Ψ(x,w) for almost all t [RHL77, BM15].
When considering piecewise-linear functions, the directional derivative has a

special form: for instance, for any maximum-type convex Lyapunov function Ψ(x) =
max1≤i≤m Ψi(x), with Ψi(x) continuously differentiable convex functions for i =
1, . . . ,m, defining as I(x) = {i : Ψi(x) = Ψ(x)} the set of indices where the
maximum is achieved, the Lyapunov derivative can be computed as

D+Ψ(x,w) = max
i∈I(x)

∇Ψi(x)>f(x,w).

Remark C.2. The strong relation between Lyapunov (and Lyapunov-like) functions
and invariant sets is deeply investigated in the book [BM15]. For instance, if a
function Ψ of the state variables is non-increasing along the system trajectories, then
the level set

N [Ψ, ν] = {x : Ψ(x) ≤ ν}
is positively invariant for the system (namely, if x(t0) ∈ N [Ψ, ν], then x(t) ∈ N [Ψ, ν]
for all t ≥ t0); if the function is strictly decreasing and the derivative is bounded
away from zero ( i.e., D+Ψ(x) < −κ, with κ > 0) in a set of the form

N [Ψ, α, β] = {x : α ≤ Ψ(x) ≤ β},

then x(t0) ∈ N [Ψ, α, β] implies that x(t) ∈ N [Ψ, β] for all t ≥ t0 and that x(t)
reaches the set N [Ψ, α] in finite time.

Under the assumption that the system admits a solution for every initial condition
and each piecewise continuous input w, and that any solution is globally defined on
Rn, the following definitions and results are provided in [BM15].

Definition C.3. A locally Lipschitz function Ψ : Rn → R is radially unbounded if

lim
‖x‖→∞

|Ψ(x)| =∞.

Definition C.4. A continuous function φ : R+ → R+ is a κ–function if it is
continuous and strictly increasing, with φ(0) = 0.

Definition C.5. The origin as an equilibrium of system (C.3) is (robustly) globally
uniformly asymptotically stable if it is locally stable (for all ε > 0 there exists δ > 0
such that, if ‖x(0)‖ ≤ δ, then ‖x(t)‖ ≤ ε for all t ≥ 0) for all functions w(t) ∈ W
and globally attractive (for all µ > 0 and ν > 0, there exists T (µ, ν) > 0 such that
if ‖x(0)‖ ≤ µ then ‖x(t)‖ ≤ ν for all t ≥ T (µ, ν)) for all functions w(t) ∈ W.
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In the absence of uncertainties w, the property is simply denoted as global uniform
asymptotic stability. In [BM15], a particular definition of positive definiteness is
considered.

Definition C.6. A function Ψ : Rn → R is positive definite if Ψ(0) = 0 and there
exists a κ–function φ0 such that

Ψ(x) ≥ φ0(‖x‖).

Definition C.7. A locally Lipschitz function Ψ : Rn → R is a global Lyapunov
function for the system if it is positive definite, radially unbounded and there exists a
κ–function φ such that

D+Ψ(x,w) ≤ −φ(‖x(t)‖). (C.4)

Theorem C.4. [Lya66] Assume that system (C.3) admits a global Lyapunov function
Ψ. Then the origin is a globally uniformly asymptotically stable equilibrium.

For differential equations ẋ = f(x), with a continuous f and such that f(0) = 0,
the positive definiteness requirement is simply Ψ(x) > 0 for all x 6= 0, Ψ(0) = 0, and
condition (C.4) in Definition C.7 becomes D+Ψ(x) < 0 for x ∈ Rn, x 6= 0; conversely,
if D+Ψ(x) ≤ 0 for all x ∈ Rn, Ψ is a weak Lyapunov function, and guarantees
Lyapunov stability (but not asymptotic stability). A positive definite function for
which the condition on the Lyapunov derivative holds in a neighbourhood B of the
origin, and not in the whole space, is a local Lyapunov function and can ensure local
stability (Lyapunov stability if D+Ψ(x) ≤ 0 for all x ∈ B, asymptotic stability if
D+Ψ(x) < 0 for all x ∈ B, x 6= 0) of the equilibrium at the origin.

A stronger notion of stability is exponential stability.

Definition C.8. The origin as an equilibrium of system (C.3) is globally exponen-
tially stable if there exist µ > 0 (transient estimate) and γ > 0 (convergence speed)
such that for all ‖x(0)‖ the condition

‖x(t)‖ ≤ µ‖x(0)‖e−γt, (C.5)

holds for every t ≥ 0 and every function w(t) ∈ W.

Theorem C.5. Assume that system (C.3) admits a positive definite locally Lipschitz
function Ψ(x), upper and lower polynomially bounded (namely, such that, for some
positive reals α and β and some positive integer p,

α‖x‖p ≤ Ψ(x) ≤ β‖x‖p, for all x ∈ Rn) (C.6)

and such that
D+Ψ(x,w) ≤ −γΨ(x) (C.7)

for some positive γ. Then the origin is a globally exponentially stable equilibrium.
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Global exponential stability implies global uniform asymptotic stability.
Sometimes, global stability can be a too strong requirement, because it can

be impossible to require convergence starting from arbitrary initial conditions, or
because, due to persistent disturbances, the system trajectories converge to a set
that includes the equilibrium, but cannot asymptotically approach the equilibrium.
In these cases, Lyapunov functions are a powerful tool to prove local stability and
uniform ultimate boundedness. [BM15]

Lyapunov methods and criteria can be provided for discrete-time systems as well.
For a wider classification of stability concepts and for a deep study of stability

theory via Lyapunov methods, the reader is referred for instance to [RHL77].
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Topological Degree Theory

As discussed in Section 4.5, the topological degree theory (see [Sch69, Llo78, Dei85,
FG95, OJCC06, Feč08, Ams14] and the references therein) provides powerful tools
for the study of dynamical systems and of the stability of their equilibrium points.
[Hof90, Zan96, OC95] This fundamental theory is explained more in detail, but still
briefly, in this appendix, providing the axiomatic definition of the degree in the finite
dimensional case and some essential results that facilitate the understanding of those
reported in Section 4.5. The presented material is largely derived from [Zan96] and
from the notes of a doctoral course held by Fabio Zanolin.

Let f : S̄ → X be a continuous function, where S ⊆ X is an open and bounded
set, and let p ∈ X be a point such that p /∈ f(∂S). Then, (f,S, p) is an admissible
triple and can be associated with an integer d(f,S, p), the topological degree. The
topological degree can be defined axiomatically as the unique function d : A→ Z,
with

A ⊂ {(f,S, p) : f : S → X is continuous, p /∈ f(∂S)},
which satisfies the following properties:

1 given two open and disjoint subsets of S, S1, S2 ⊆ S with S1

⋂
S2 = ∅, such

that f(x) 6= p ∀ x ∈ S̄ \ (S1

⋃
S2), then d(f,S1, p) + d(f,S2, p) = d(f,S, p);

2 d(IS ,S, p) = 1 if p ∈ S (while d(IS ,S, p) = 0 if p /∈ S̄), where IS denotes the
identity mapping of X;

3 if h : S̄ × [0 1] → X is a continuous homotopy1 and p : [0 1] → X is a
continuous function, with h(x, λ) 6= p(λ) ∀ x ∈ ∂S and ∀ λ ∈ [0 1], then
(with the notation h(x, λ) = hλ(x) and p(λ) = pλ) d(hλ,S, pλ) is constant with
respect to λ.

From axiom 3 it immediately follows that d(hλ,S, p) = d(h0,S, p) for all λ ∈ [0 1]
(it suffices to choose p(λ) ≡ p) and that d(f,S, p) = d(f − p,S, 0) (based on the
homotopy h(x, λ) = f(x) − λp and p(λ) = (1 − λ)p). Furthermore, for ε > 0
sufficiently small, d(f1,S, p) = d(f2,S, p) if ‖f1−f2‖ < ε on ∂S; in particular, this is
true when f1 = f2 on ∂S. This means that the degree only depends on the behaviour
of the function on the boundary of S.

1A homotopy is a continuous function h(x, λ), with λ ∈ [0 1] that describes a continuous
deformation of a function f(x) into a function g(x): h(x, 0) = f(x) and h(x, 1) = g(x).
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Moreover, from axiom 1 it immediately follows that d(f, ∅, p) = 0; also, given
an open and bounded set S0 ⊆ S such that f(x) 6= p for all x ∈ S̄ \ S0, then
d(f,S0, p) = d(f,S, p). As a corollary, it follows that, if f(x) 6= p for all x ∈ S̄, then
d(f,S, p) = 0. The following theorem holds, ensuring that the equation f(x) = p
has at least one solution in S if d(f,S, p) 6= 0.

Theorem D.1. (Kronecker) If (f,S, p) ∈ A (an admissible triple) and d(f,S, p) 6= 0,
then there exists at least one x̃ ∈ S such that f(x̃) = p.

It is then apparent that the topological degree theory is very useful for finding
both fixed points and zeros of functions (in fact, a fixed point x̃ of ψ(·), ψ(x̃) = x̃,
corresponds to a zero of f(x) = x− ψ(x), f(x̃) = 0).

That provided above is the axiomatic definition of the topological degree; in
Section 4.5 a constructive definition (4.35) is provided. Based on (4.35), properties
1, 2, 3 can be derived as theorems. Conversely, if 1, 2, 3 are assumed as axioms,
(4.35) can be derived as a formula to compute the degree (as will be shown in the
following).

In finite dimensions (X = Rn), the topological degree is designated as Brouwer
degree and it is useful for proving the renowned Brouwer fixed point theorem.

Theorem D.2. (Brouwer) Let B ⊂ Rn be an open, bounded set such that B̄ is
homeomorphic to the closed unit ball {x ∈ Rn : ‖x− x0‖ ≤ 1} and let ψ : B̄ → B̄ be
a continuous function. Then ψ has a fixed point in B̄: ∃ x̃ ∈ B̄ such that ψ(x̃) = x̃.

The topological degree for infinite dimensional spaces (such as metric spaces
and normed spaces) has been extended by Schauder and Leray: it takes the name
of Leray-Schauder degree and can be defined based on analogous axioms; in this
case, an analogous fixed point theorem has been proved by Schauder (see [Maw99]
for a thorough survey, and the references therein). Here, however, the focus is on
applications to differential equations in finite dimensional spaces, hence Brouwer
degree is considered.

In particular, consider f ∈ C(S̄)
⋂
C1(S) and denote by B(c, r) the open ball

of centre c and radius r. For z ∈ S, the function can be linearised as f(x) =
f(z) + Jf(z)(x− z) + R, where R is an infinitesimal rest. Then, if f(x) = p has a
finite number of solutions x̄1, . . . , x̄k ∈ S, the degree can be studied just locally, in a
neighbourhood of each of these isolated points: by taking ε > 0 such that B(x̄i, ε),
i = 1, . . . , k, are pairwise disjoint, it follows from axiom 1 that

d(f,S, p) =
k∑
i=1

d(f,B(x̄i, ε), p).

Definition D.1. Given f ∈ C(S̄)
⋂
C1(S), a point x̄ ∈ S is a critical point of f

if the determinant of the Jacobian matrix evaluated at x̄ is zero: det(Jf(x̄)) = 0.
Moreover, let Zf = {x ∈ S : det(Jf (x)) = 0}; if p /∈ f(Zf ), then p is a regular value
of f .
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Then, the following results hold, where the case p = 0 is considered for the sake
of simplicity.

Theorem D.3. Consider f ∈ C(S̄)
⋂
C1(S) and z ∈ S such that f(z) = 0 and

det(Jf(z)) 6= 0, and denote by g(x) = Jf(z)(x − z). Then, d(f,B(z, r), 0) =
d(g,B(z, r), 0) for some r > 0.

Corollary D.1. Let f ∈ C(S̄)
⋂
C1(S) and let 0 be a regular value of f . Then,

f−1(0) is finite and

d(f,S, 0) =
∑

z∈f−1(0)

d(Jf (z),B(0, 1), 0). (D.1)

The fact that f−1(0) is finite can be shown based on a compactness argument
and on the local inversion theorem.

It can also be shown that, if M ∈ Rn×n is a non-singular square matrix,
d(M,B(0, 1), 0) = sign(det(M)), where sign(t) = 1 for t > 0 and sign(t) = −1
for t < 0 (more in general, d(M,S, 0) = sign(det(M)) holds for any S such that
0 ∈ S). Then, (D.1) is modified as follows:

d(f,S, 0) =
∑

z∈f−1(0)

sign(det(Jf (z))). (D.2)

Note that the formula can be applied even though f(x) = 0 has no solutions; in
this case, d(f,S, 0) = 0. The following theorem corresponds to Lemma 2 in [Hof90].

Theorem D.4. Assume that the system ẋ = f(x), with f : Rn → Rn, has solutions
that are globally uniformly asymptotically bounded in an open ball S. Then the
corresponding degree is d(f,S, 0) = (−1)n for any bounded open set S containing all
of the system equilibrium points.

Based on (D.2), the following corollary is immediate.

Corollary D.2. Consider the system ẋ = f(x), under the assumptions of Theo-
rem D.4. Let it admit N <∞ equilibria x̄i, i = 1, . . . , N , each contained in S, none
of which is a critical point. Then

N∑
i=1

sign [det(J(x̄i))] = (−1)n,

or, equivalently,
N∑
i=1

sign [det(−J(x̄i))] = 1.

Theorem 4.7 in Section 4.5 has thus been contextualised and justified.
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Steady-state robustness of qualitative gene regulation networks. International
Journal of Robust and Nonlinear Control, 21(15):1742–1758, 2011.

[BYWB07] G. Batt, B. Yordanov, R. Weiss, and C. Belta. Robustness analysis and
tuning of synthetic gene networks. Bioinformatics, 23(18):2415–2422, 2007.

[BYZ95] E. K. Boukas, H. Yang, and Q. Zhang. Minimax production planning in failure-
prone manufacturing systems. Journal of Optimization Theory and Applications,
87(2):269–286, 1995.

[CA12] D. Chen and A. P. Arkin. Sequestration-based bistability enables tuning of the
switching boundaries and design of a latch. Molecular systems biology, 8:620, 2012.

[CB11] C. Cosentino and D. Bates. Feedback Control in Systems Biology. Taylor &
Francis, 2011.

[CBD11] F. A. Chandra, G. Buzi, and J. C. Doyle. Glycolytic oscillations and limits
on robust efficiency. Science, 333(6039):187–192, 2011.

[CBHB09] V. Chellaboina, S. P. Bhat, W. M. Haddad, and D. S. Bernstein. Modeling
and analysis of mass–action kinetics: nonnegativity, realizability, reducibility, and
semistability. IEEE Control Systems Magazine, pages 60–78, August 2009.

[CCSZ08] R. Carli, A. Chiuso, L. Schenato, and S. Zampieri. A PI consensus controller
for networked clocks synchronization. In IFAC World Congress on Automatic
Control, pages 10289–10294, 2008.

[CCSZ11] R. Carli, A. Chiuso, L. Schenato, and S. Zampieri. Optimal synchronization
for networks of noisy double integrators. IEEE Transactions on Automat Control,
56(5):1146–1152, 2011.

[CD02a] J. M. Carlson and J. Doyle. Complexity and robustness. Proceedings of the
National Academy of Sciences of the USA, 99:2538–2545, 2002.

[CD02b] M. E. Csete and J. C. Doyle. Reverse engineering of biological complexity.
Science, 295(5560):1664–1669, 2002.

[CDT11] G. C. Calafiore, F. Dabbene, and R. Tempo. Research on probabilistic
methods for control system design. Automatica, 47(7):1279–1293, 2011.

[CEA08] M. Chaves, T. Eissing, and F. Allgöwer. Bistable biological systems: a
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[WAJS12] S. Waldherr, F. Allgöwer, E. W. Jacobsen, and S. Streif. Robustness
and adaptation of biological networks under kinetic perturbations. In F. Allgöwer,
V. Blondel, and U. Helmke, editors, Control Theory: Mathematical Perspectives on
Complex Networked Systems, pages 663–664. Mathematisches Forschungsinstitut
Oberwolfach, 2012.

[WAKP08] Y. Wang, A. Ahmed, B. Krishnamachari, and K. Psounis. IEEE 802.11p
performance evaluation and protocol enhancement. In Proceedings of the IEEE In-
ternational Conference on Vehicular Electronics and Safety, pages 22–24, Columbus,
OH, USA, 2008.

[Wat07] D. S. Watkins. The Matrix Eigenvalue Problem: GR and Krylov Subspace Methods.
Society for Industrial and Applied Mathematics, 2007.

[WB05] W. C. Winkler and R. R. Breaker. Regulation of bacterial gene expression by
riboswitches. Annual Review of Microbiology, 59(1):487–517, 2005.

[WCA06] R. Wanga, L. Chenc, and K. Aiharaa. Construction of genetic oscillators with
interlocked feedback networks. Journal of Theoretical Biology, 242:454–463, 2006.



Bibliography 361

[WCS96] J. Wolfe, D. Chichka, and J. Speyer. Decentralized controllers for unmanned
aerial vehicle formation flight. AIAA, 96–3833, 1996.

[WD73] S. H. Wang and E. J. Davison. On the stabilization of decentralized control
systems. IEEE Transactions on Automatic Control, 18(5):473–478, 1973.

[Wei16] J. Wei. Consensus Dynamics in Distribution Networks and Nonlinear Multi-Agent
Systems. PhD thesis, University of Groningen, 2016.

[WGC04] O. Wolkenhauer, B. K. Ghosh, and K. H. Cho. Biochemical networks and
cell regulation. Special section on systems biology. IEEE Control Systems Magazine,
24(4):30–102, 2004.

[WH95] T. Wilhelm and R. Heinrich. Smallest chemical reaction system with Hopf
bifurcation. Journal of Mathematical Chemistry, 17(1):1–14, 1995.

[WH96] T. Wilhelm and R. Heinrich. Mathematical analysis of the smallest chemi-
cal reaction system with Hopf bifurcation. Journal of Mathematical Chemistry,
19(2):111–130, 1996.

[WHO+15] P. Weber, M. Hornjik, M. Olayioye, A. Hausser, and N. Radde. A
computational model of PKD and CERT interactions at the trans–Golgi network of
mammalian cells. BMC Systems Biology, 9(1):9, 2015.

[Wie48] N. Wiener. Cybernetics or Control and Communication in the Animal and the
Machine. MIT Press, Cambridge, MA, 1948.

[Wil76] J. C. Willems. Lyapunov functions for diagonally dominant systems. Automatica,
12(5):519–523, 1976.

[Wil09] T. Wilhelm. The smallest chemical reaction system with bistability. BMC Systems
Biology, 3(1):90, 2009.

[Win80] A. T. Winfree. The Geometry of Biological Time. Springer-Verlag, New York,
NY, 1980.

[WLCA10] R. Wang, C. Li, L. Chen, and K. Aihara. Modeling and analyzing biological
oscillations in molecular networks. Proceedings of the IEEE, 96(8):1361–1385, 2010.

[WLD10] R. W. Whittlesey, S. Liska, and J. O. Dabiri. Fish schooling as a basis for
vertical axis wind turbine farm design. Bioinspiration and Biomimetics, 5(3):035005,
2010.

[WRL14] S. Wang, W. Ren, and Z. Li. Information-driven fully distributed Kalman filter
for sensor networks in presence of naive nodes. arXiv:1410.0411, 2014.

[WS08] L. Wang and E. D. Sontag. Singularly perturbed monotone systems and an
application to double phosphorylation cycles. J. Nonlinear Sciences, 18(5):527–550,
2008.

[WSA12] S. Waldherr, S. Streif, and F. Allgöwer. Design of biomolecular network
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