Esercizi sui gruppi

- (1) Sia (G, \cdot) un gruppo finito e $g \in G$. L'ordine di g in G (denotato con ord(g)) è il più piccolo numero naturale n tale che $g^n = 1_G$, dove 1_G è l'identità del gruppo (oppure, in versione additiva (G, +), ord(g) ì il più piccolo numero n per cui $ng = 0_G$, dove 0_G è l'identità del gruppo. Ricorda che l'ordine di g è anche la cardinalità del sottogruppo ciclio < g > generato da g in G. Trovare l'ordine degli elementi sottoelencati nei relativi gruppi.
 - (a) $2 \in (\mathbb{Z}_5, +), 2 \in (\mathbb{Z}_5^*, \cdot);$
 - (b) $(1,2,3)(3,2) \in S_3$;
 - (c) l'ordine di un ciclo qualsisai di lunghezza k in S_n ;
 - (d) $7 \in (U(10), \cdot)$ dove U(10) sono gli elementi invertibili in \mathbb{Z}_{10} ;
 - (e) i nel gruppo \mathbb{C}_8 delle radici ottave dell'uniutà;
 - (f) $z = cos(2\pi/7) + isen(2\pi/7)$ nel gruppo delle radici settime dell'unità;
 - (g) $f \circ g$ dove f, g sono cicli disgiunti di lunghezza h, k rispettivamente.
- (2) Dimostrare che in un gruppo G non ciclico di ordine 4 vale $a \cdot a = id$, per ogni $a \in G$. (suggerimento: considerare l'ordine del sottogruppo < a > di G generato da a e usare il Teorema di Lagrange).
- (3) Dimostrare che in un gruppo G che ha un numero primo di elementi gli unici sottogruppi sono $H = \{1_G\}$ (dove 1_G è l'identità del gruppo) e H = G. (suggerimento: usare il Teorema di Lagrange)
- (4) Trovare tutti i sottogruppi di S_3 . Dire quali sono ciclici e quali no.
- (5) Considera i gruppi (\mathbb{R}^* , ·) e (\mathbb{C}^* , ·) dove \mathbb{R}^* , \mathbb{C}^* sono i numeri reali e i numeri complessi non nulli, rispettivamente. Tali gruppi sono isomorfi?
- (6) Determinare se il gruppo (A_4, \circ) è isomorfo o meno al gruppo $(\mathbb{Z}_6, +)$.
- (7) Dimostrare che (\mathbb{Z}_5^*,\cdot) è isomorfo a $(\mathbb{Z}_4,+)$.