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Chapter 1The GameThe notion of an Ehrenfeuht-Fra��ss�e game provides a simple haraterizationof elementary equivalene with straightforward generalizations to several lan-guages other than �rst-order, whih, for simple models (suh as linear order-ings, trees), is easy to apply. Besides, it is almost the only tehnique availablein �nite-model theory (where Compatness and L�owenheim-Skolem are of nouse).The following introdution to the subjet is mainly foussed on the generaltheory. There are some 30 exerises, marked with |.1.1 Basis1.1 Models. For the time being, a model is a ouple A = (A;RA) where A isa (usually, non-empty) set and RA � A�A is a binary relation on A.Examples we'll often ome aross:� ! = (IN; <),� � = (ZZ; <),� � = (Q; <),� � = (IR; <).� Ln = (f0; : : : ; n� 1g; <).1.2 Isomorphism and Loal Isomorphism. An isomorphism between mod-els A = (A;R) and B = (B;S) is a bijetion h : A ! B suh that for alla; a0 2 A: aRa0 , h(a)Sh(a0).A loal or partial isomorphism between A and B is a �nite relation h withDom(h) � A, Ran(h) � B, that preserves equality and relation; i.e., suh thatfor all a; a0 2 A and b; b0 2 B with (a; b); (a0; b0) 2 h:� a = a0 , b = b0,� aRa0 , bSb0. 1



(Equivalently: h is a �nite injetion h with Dom(h) � A, Ran(h) � B, and forall a; a0 2 Dom(h): aRa0 , h(a)Sh(a0).)1.3 Examples.1. The empty relation ; is a loal isomorphism between every two models.2. Every (�nite) part of a (loal) isomorphism is a loal isomorphism.3. A omposition of loal isomorphisms is a loal isomorphism. I.e.: if g :A! B is a loal isomorphism between A and B, and h : B ! C is a loalisomorphism between B and C, then h Æ g (the map a 7! h(g(a)), wherea 2 Dom(g) and g(a) 2 Dom(h)) is a loal isomorphism between A andC.4. The relation f(0; 0); (2; e); (5; �)g is a loal isomorphism between (ZZ; <)and (IR; <).The last example illustrates that a loal isomorphism doesn't need to be partof an isomorphism.1.4 Lemma. A loal isomorphism is the same as an isomorphism betweensubmodels.I.e.: h is a loal isomorphism between (A;R) and (B;S) i� it is an isomorphismbetween (Dom(h); RjDom(h)) and (Ran(h); SjRan(h)).1.5 Ehrenfeuht game. Any two models A, B, together with an integern 2 IN, determine an Ehrenfeuht Game of length n.It is played by two players: Spoiler and Dupliator. In a play of the game,Spoiler and Dupliator move alternatingly, until n moves have been made byeah player.One pair of moves onsists of �rst Spoiler hoosing an element from one ofthe models, and next Dupliator hoosing an element from the other model.At the end of suh a play, the n pairs of moves build a �nite relation be-tween A and B. Dupliator wins i� this �nite relation happens to be a loalisomorphism. (In the opposite ase, Spoiler wins; every play of the game is wonby one of the players: a draw is not possible.)Remarks.1. Repeating previous moves is not exluded |and even neessary if thereare few elements. But to repeat moves unneessarily is not a smartthing to do for Spoiler, and if Spoiler doesn't repeat a move, it is bestfor Dupliator not to repeat moves either.2. It may beome evident that Spoiler wins before all 2n moves have beenplayed. But for Dupliator to win, all 2n moves have to be exeuted.2



3. The intuition behind the game is, that Dupliator aims at showing thatthe models in some way look alike; it is Spoiler's goal to spot di�erenes.The longer the game, the easier it an be for Spoiler and the harder forDupliator to win.4. Dupliator wins a game of length 0 immediately: there are no moves, therelation built up is empty, and the empty relation is a loal isomorphismbetween any two models.5. In some ases below, the game is played in a situation with an emptymodel. In that ase we agree that a player who annot move loses. Thus,if A is empty and B isn't, then Spoiler wins a game of positive length byplaying an element of B. However, if A = B = ;, Dupliator wins.Example. The length 3 game on � := (ZZ; <) and � := (IR; <). SupposeSpoiler and Dupliator play as follows:S D S D S DZZ 2 0 5IR e 0 �The end result is f(0; 0); (2; e); (5; �)g, whih happens to be a loal isomorphism.Dupliator has won.The obvious question in this example is: did Dupliator won by luk, or ishe lever?1.6 Winning Strategies. A strategy for a player is a rule that tells him howto play in every position of the game in whih he has to move.For instane, a strategy for Spoiler in the length n-game on A and B isa funtion that assigns, to every relation f(a1; b1); : : : ; (am; bm)g � A � B forwhih 0 6 m < n, an element in A [B.A strategy � for Spoiler is winning if Spoiler wins every play in whih heuses �, no matter what Dupliator does.The notion of a winning strategy for Dupliator is de�ned analogously.Example, ontinued. So the question is: has Dupliator a winning strategy inthe length-3 game on � and �?Try to answer this, and the same question for the games of lengths 2 and 4on these strutures.A Few Games. An intuition for the game an be developed by just playing it.Figure out whom of the players has a winning strategy in the length-3 gameson the following models, and try to desribe it.1. ! and �;! and �;! and ! + ! (the ordered sum of two opies of !).3



2. L6 and L7;L7 and L8.3. ! + L1 + !? (where ? inverts the ordering) and ! + L2 + !?;! + L2 + !? and ! + L3 + !?.4. L7 and ! + !?.5. ! and ! + �.1.2 Elementary Properties1.7 Notation. D(A;B; n) expresses that Dupliator has a winning strategy inthe length-n game on A and B.One glane a Theorem 2.4 (p. 12) explains that this is the notion we'll beinterested in.1.8 Lemma.1. D(A;B; n) ^ m 6 n ) D(A;B;m),2. D(A;B; n) ) D(B;A; n),3. A �= B ) 8nD(A;B; n),4. D(A;B; n) ^ D(B; C; n) ) D(A; C; n).1.9 Determinay. In every Ehrenfeuht game exatly one of the players hasa winning strategy.Proof. Of ourse, both players an't have winning strategies for the same game.A game in whih one of the players has a winning strategy is alled de-termined. We prove the stronger result that every 2-person game that has nodraws and in whih all plays are �nite is determined. (Thus, it is neither ne-essary that all plays have the same �nite length, nor that players have to movealternatingly.)Suppose given suh a game with players I and II.Let T be the set of all positions that an our while playing it. In partiular,there is an initial position t0 2 T . For t 2 T , there are 3 possibilities: it is I'sturn to move at t, it is II's, or t is terminal : game over, in whih ase the rulesof the game determine whih of the two players has won.For s; t 2 T , write s� t if the position t an be reahed from s by one moveof the player whose turn it is to move in s. Thus, a play of the game has theform t0 � t1 � � � �� tnwhere tn is terminal.Let us all a position t 2 T determined if one of the players has a winningstrategy for the subgame that starts at t. Trivially, terminal positions aredetermined (the winning strategy of the player who has won is doing nothing.)The theorem states that the initial position t0 is determined.4



Claim. If s 2 T is not determined, then some t� s is not determined.From this, the theorem follows: if the initial position t0 isn't determined,there is some t1 � t0 that isn't, hene some t2 � t1 is not determined, et et;and we end up with an in�nite sequene t0 � t1 � t2 � � � � , ontraditing the�niteness assumption on plays.To prove the Claim, assume s 2 T is not determined. As hypothesis for aproof by ontradition, suppose that every t� s is determined.First, note that s an't be terminal, sine terminal positions are triviallydetermined. Thus, one of the players has to move in position s; and we may aswell assume that this is player I.(a) There exists t� s suh that I has a winning strategy � = �t in t.Then I has a winning strategy in s as well: it onsists of exeuting the moves� t, followed by the winning strategy �t. Contradition.(b) There doesn't exist t� s suh that I has a winning strategy in t.Then, by assumption (every t � s is determined), II must have a winningstrategy �t in every position t � s. It follows that II has a winning strategyin s: it onsists of �rst waiting what I's move s � t will be (s is not terminaland it's I's turn to move), followed by the winning strategy �t. Contraditionagain. a1.10 Corollary. (Zermelo, Euwe) In the game of hess, either White has awinning strategy, or Blak has a strategy with whih he annot lose.This appliation learly shows the purely theoretial nature of the determi-nay proof.1|Winning strategies for Dupliator and transfer. The existene of awinning strategy for Dupliator an be used to transfer truth from one modelto the other. (The explanation of this phenomenon follows in Chapter 2.)1. Assume that D((A;R); (B;S); 2), and that the relation R is symmetri(8a1; a22A(a1Ra2 ) a2Ra1). Then S is symmetri as well.2. Assume that D((A;R); (B;S); 3), and that the relation R is dense. (R isdense if 8a; b2A(aRb ) 92A(aR ^ Rb).) Then S is dense too.3. Assume that D((A;R); (B;S); 3), and that R is onuent. (R is onuentif 8a; b1; b22A(aRb1 ^ aRb2 ) 92A(b1R ^ b2R)).) Then also S isonuent.Conversely, every spei� �rst-order sentene that holds in A and is falsein B an be transformed into a winning strategy for Spoiler for an Ehrenfeuhtgame of suitable length. (Of ourse, this follows from the above statement usingdeterminay. But the diret argument is illuminating.)2|1. Suppose that R is symmetri, but S isn't. Desribe a winning strategyfor Spoiler in the length-2 game on A = (A;R) and B = (B;S).5



2. Suppose that R is dense but S isn't. Desribe a winning strategy forSpoiler in the length-3 game.3. What about the ase for onueny?1.11 Proposition Suppose that A has n elements.1. If D(A;B; n), then there exists an embedding of A into B.2. If D(A;B; n+ 1), then A �= B.Proof. 1: Let Spoiler enumerate the elements of A and Dupliator use hiswinning strategy. 2: An isomorphism is the same as a surjetive embedding.a3| Find a simple ondition on n and the number of elements of A and B thatis both neessary and suÆient in order that D((A; ;); (B; ;); n) (both relationsempty) holds.1.3 A Few ExamplesIn the ase that A and B are linear orderings, a statement that D(A;B; n) anoften be shown using indution on n.1.12 Notation. If < linearly orders A, and a 2 A, then the notation a " isused for the submodel of (A;<) with universe fx2A j a < xg.Similarly, a# is the submodel of (A;<) that has universe fx2A j x < ag.E.g., �1" may denote the submodel (IN; <) of (ZZ; <).Remarks.� Thus, if a 2 A, then (A;<) = a# +fag+ a".� If a is the greatest (resp., the least) element of A, then a" (a#) is empty.1.13 Splitting Lemma. For linear orderings A and B, D(A;B; n + 1) holdsi�, both(\forth") 8a2A 9b2B [D(a#; b#; n) ^ D(a"; b"; n)℄, and(\bak") 8b2B 9a2A [D(a#; b#; n) ^ D(a"; b"; n)℄.1.14 Example. For every n, we have that D(�; �; n).(In this partiular ase, Dupliator's winning strategy doesn't depend on n.)1.15 Proposition. k;m > 2n � 1 ) D(Lk;Lm; n).
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Proof. Indution w.r.t. n, using Lemma 1.13.Basis. n = 0.Trivial, sine the empty relation always is a loal isomorphism, and this is therelation built up after 0 moves. (If you �nd this triky, just hek the ase forn = 1.)Indution step.Indution hypothesis: the statement holds for n.Now suppose that k;m > 2n+1 � 1. In order that D(Lk;Lm; n + 1), it suÆes(aording to Lemma 1.13) to show that (\forth") for every element i of Lk thereis an element j in Lm suh that D(i #; j #; n) and D(i "; j "; n), and onversely(\bak": for every j in Lm there should be an i in Lk suh that D(i #; j #; n)and D(i"; j "; n) | but the situation is symmetri in k and m so it suÆes toonly hek the \forth"-laim).Thus, suppose that i is an element of Lk. Distinguish 3 ases, depending onwhether i is loated \left", \right", or \in the middle" of Lk.(i) i# has < 2n � 1 elements.Pik j in Lm suh, that i#�= j #. (This is possible, sine m > 2n+1 � 1.) ThenD(i #; j #; n). Furthermore (sine k;m > 2n+1 = (2n � 1) + 1 + (2n � 1)), i "and j " have at least 2n � 1 (in fat, at least 2n) elements, and so D(i"; j "; n)follows from indution hypothesis.(ii) i" has < 2n � 1 elements.Pik j suh that i"�= j ", and argue as under (i).(iii) i# and i" both have > 2n � 1 elements.Claim. j 2 Lm exists suh that both j # and j " have > 2n � 1 elements.Proof. Beause of m > 2n+1, and 2n+1 � 1 = (2n � 1) + 1 + (2n � 1). aPik suh a j. By indution hypothesis, D(i#; j #; n) and D(i"; j "; n) hold.a1.16 Proposition. If m > 2n � 1, then D(! + !?;Lm; n);more generally, for every linear ordering �: D(! + (� � �) + !?;Lm; n).Proof. Another indution. a1.17 Lemma.1. D(�1; �1; n) ^ D(�2; �2; n) ) D(�1 + �2; �1 + �2; n).2. More generally: if I is a linearly ordered set and for all i 2 I �i and �iare orderings s.t. D(�i; �i; n), then D(Pi2I �i;Pi2I �i; n).1.18 Proposition. For all n 2 IN:1. D(!; ! + �; n);more generally: for any �, D(!; ! + � � �; n),7



2. D(�; � + �; n);more generally: for any �: D(�; � � �; n).Proof. 1: ! = (2n � 1) + !, ! + � = (! + !?) + !. Use Proposition 1.16 andLemma 1.17.1.2: Similar. aBm is the (unordered, rooted) binary tree all of whose branhes have lengthm. This tree an be represented as the set of �nite sequenes of 0's and 1'sof length < m, partially ordered by s � t � s is an initial segment of t. Thelength-0 sequene is the root in this tree.The following is reminisent of Proposition 1.15 (p. 6), but its proof issomewhat harder.1.19 Proposition. m; k > 2n � 1 ) D(Bm; Bk; n).Proof. Indution w.r.t. n. The ase n = 0 (or n = 1) is trivial. For theindution step, suppose that m; k > 2n+1 � 1. The reader is urged to drawpitures.Let a 2 Bm be the �rst move of Spoiler.In the linear ordering-ase, an element indues a splitting of the orderingin (that element and) two halves, and we an use Lemma 1.13. In the presenttree-ase, the element a an be used to split Bm in three (or four) parts:� the element a,� the two top-subtrees, the roots of whih are the two immediate suessorsof a (these trees are empty if a happens to be maximal),� the poset a .= ft j a 6� tg that onsists of the linear ordering a #= ft jt � ag plus the \side-trees" sprouting from a # (a . being empty if ahappens to be the root of Bm).Notation: for i � a, Ti = ft j i � t ^ (t 6� a ^ a 6� t)g denotes the side-treefrom a., the root of whih is the immediate suessor of i that is 6� a.As in the proof of 1.15, distinguish the following ases.(i) a# has 6 2n � 1 elements.Dupliator hooses b 2 Bk suh that b#�= a#.It now suÆes to indiate that Dupliator wins the n-round games on or-responding parts in the deompositions of the two trees Bm and Bk that areindued by a and b.Sine ja# j = jb# j 6 2n�1, the top-trees above a and b have height > 2n�1;thus, by IH, Dupliator has winning strategies for the n-round games on the twopairs of top-trees.On the posets a ., b ., Dupliator ounters in a # and b # using theisomorphism between these linear orderings, and he ounters in side-trees thatorrespond under this isomorphism using winning strategies for the n-roundgames. These strategies exist aording to IH (note that all side-trees haveheight > 2n). 8



(ii) The subtree with root a has height 6 2n.It learly suÆes to deompose the two trees as Bm = T1 [ (Bm � T1) resp.,Bk = T2 [ (Bk � T2), in suh a way that a 2 T1, D(T1; T2; n+ 1), and D(Bm �T1; Bk � T2; n).Choose a � a suh that the subtree T1 with root a has height exatly 2n.Deompose Bm in T1 and a .= Bm � T1, the latter onsisting of the linearordering a # of length > 2n � 1 and the side-trees Ti (i � a), all of them ofheight > 2n.Similarly deompose Bk into some subtree T2 of height exatly 2n with rootb and the rest b.= Bk�T2, whih onsists of, again, the linear ordering b# oflength > 2n � 1 with side-trees Tj (j � b) of height > 2n.We now have that T1 �= T2, and hene, D(T1; T2; n+ 1).Now D(a.; b.; n) follows from Proposition 1.15 and IH, as follows. Fix:� a winning strategy � for Dupliator for the n-round game between a# andb# (using 1.15),� a winning strategy �ij (for eah i � a, j � b) for Dupliator for the n-roundgame between the side-trees Ti and Tj (using IH).Moves by Spoiler in a#, b# are now ountered by Dupliator using �. A move i+of Spoiler in, say, Ti, i � a, is ountered as follows. First, � produes an answerj � b to i (and possibly earlier moves or elements onsidered in a#, b#). Next,�ij produes an answer j+ to i+ (and possibly earlier moves in Ti, Tj).(iii) a# has > 2n� 1 elements and the subtree with root a has height > 2n.Dupliator selets an element b 2 Bk with the same properties.Deompose Bm and Bk as under (i) using a resp., b. It suÆes to see thatDupliator has winning strategies for the n-round games on orresponding partsin the deompositions.Use IH for the top-trees above a and b (whih have height > 2n � 1). Tosee that D(a.; b.; n), again, �x:� a winning strategy � for Dupliator for the n-round game between a# andb# (using 1.15),� for every i � a, j � b, a winning strategy �ij for Dupliator for the n-roundgame between the side-trees Ti and Tj (using IH).The strategy followed by Dupliator is the same as under (ii). aThe (�nite) binary tree C = C(Lm; Bl0 ; : : : ; Blm) is the disjoint union ofthe linear ordering Lm = (f0; : : : ;m � 1g; <) and the m + 1 �nite binarytrees Bl0 ; : : : ; Blm by letting eah i 2 Lm (i = 0; : : : ;m � 2) be the immedi-ate predeessor of the root of Bli and, moreover, by letting the greatest elementm� 1 2 Lm be the immediate predeessor of the roots of both Blm�1 and Blm .Similarly, the (in�nite) binary treeD = D(!;Bj0 ; Bj1 ; Bj2 ; : : :) is the disjointunion of the linear ordering ! and Bj0 ; Bj1 ; Bj2 ; : : : by letting eah i 2 ! be theimmediate predeessor of the root of Bji .1.20 Proposition. m; l0; : : : ; lm; j0; j1; j2; : : : > 2n � 1 ) D(C;D; n).9



Proof. Indution w.r.t. n.For the indution step, assume that m; l0; : : : ; lm; j0; j1; j2; : : : > 2n+1 � 1.In the following we show that (\forth"), for every a 2 C, we an deomposeC = C1[C2 and D = D1[D2 suh that a 2 C1, D(C1;D1; n+1), and D(C2;D2; n),and (\bak") a similar laim holds for every b 2 D. Draw pitures illustratingthese deompositons!If a 2 C is the �rst move of Spoiler, we may, by swapping Blm�1 and Blm ,wlog assume that a 2 C1 = C � Blm = Lm [ Bl0 [ � � �Blm�1 . C is deomposedinto C1 and C2 = Blm .Choose k > 2n+1 � 1 in ! so large that, if b 2 D happened to be the �rstmove of Spoiler, then k 6� b. D is deomposed into into D1[D2, where D1 = k .is the initial segment Lk = f0; : : : ; k� 1g of ! plus the side-trees Bj0 ; : : : ; Bjk�1(thus, k has been hosen suh that a possibly �rst move of Spoiler in D happenedin D1), and D2 is the rest: the subtree with root k, whih onsists of the partfk; k + 1; k + 2; : : :g of !, plus side-trees Bjk ; Bjk+1 ; Bjk+2 ; : : :We now have that D(C1;D1; n+ 1), as in parts (ii) and (iii) of the proof ofProposition 1.19, using the result of this proposition.What we need, furthermore, is that D(Blm ;D2; n). To see this, simplyrewrite Blm , in the notation for C that is explained immediately above 1.20, asBlm = C(L2n�1; Bl0 ; : : : ; Bl2n�1), where l0; : : : ; l2n�1 > 2n. From this, it is learthat D(Blm ;D2; n) follows by IH. a4| (P(A);�) is the model in whih P(A) is the set of all subsets of A. Show:1. If A and B are in�nite, then for all n 2 IN: D((P(A);�); (P(B);�); n).2. If jAj; jBj > 2n, then D((P(A);�); (P(B);�); n).
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Chapter 2Logi2.1 Main TheoremModels, Formulas. There is no reason to stik to just one relation; modelsare allowed to have the form A = (A;R; S; : : :) with �nitely many relations (ofany arity) R;S; : : : over the universe A. Consequently, atomi formulas have theform: x=y, R(x1; : : : ; xn), S(x1; : : : ; xm),. . . From these, (�rst-order) formulasare built using onnetives and quanti�ers.2.1 Quanti�er Rank. The quanti�er rank qr(') of a (�rst-order) formula 'is the maximum number of nested quanti�ers in '. I.e.:1. for atomi ', qr(') = 0,2. qr(:') = qr('),3. qr('!  ) = qr(' ^  ) = qr(' _  ) = qr('$  ) = max(qr('); qr( )),4. qr(8x') = qr(9x') = qr(') + 1.Examples. The quanti�er rank of 8x(9yxRy ^ 9y:xRy) is 2. The onuenysentene (Exerise 1 p. 5) 8x; y1; y2(xRy1 ^ xRy2 ! 9z(y1Rz ^ y2Rz)) hasrank 4. Its logial equivalent 8y1; y2(9x(xRy1 ^ xRy2) ! 9z(y1Rz ^ y2Rz))has rank 3.2.2 Equivalene and n-Equivalene. Models A and B are (elementary, �rst-order) equivalent if they have the same true �rst-order sentenes. Notation:A � B.They are n-equivalent if they have the same true sentenes of rank 6 n.Notation: A �n B.Thus: A � B holds i�, for all n 2 IN, we have that A �n B.Example. L2 and L3 are not 2-equivalent: a distinguishing rank-2 sentene is9y(9x(x < y) ^ 9z(y < z)). These models are equivalent w.r.t. sentenes withtwo quanti�ers only. 11



2.3 Lemma. For every k and n there are, up to logial equivalene, only �nitelymany formulas with at most x1; : : : ; xk free and quanti�er rank 6 n.Proof. This is due to the fat that a voabulary onsists of �nitely manyrelation symbols. The proof uses indution w.r.t. n, using disjuntive normalforms. In the indution step for n + 1, use that the quanti�er rank 6 n + 1formulas with at most x1; : : : xk free are, up to logial equivalene, generatedusing the booleans from (i) the quanti�er rank 6 n formulas with at mostx1; : : : xk free, and (ii) the formulas 9xk+1' with ' of quanti�er rank 6 n andat most x1; : : : xk; xk+1 free. (Thus, the IH is used for k + 1 instead of k.) a2.4 Main Theorem. D(A;B; n) , A �n B.In Ehrenfeuht's game, it is lear from the proof below that the movesare \meant" as values for bound variables. But formulas are built, next toquanti�ers, from onnetives as well. So: what is left of the onnetives in theEhrenfeuht game?2.5 Corollary. 8nD(A;B; n) , A � B.2.6 Examples. (Q; <) � (IR; <) (By Example 1.14 p. 6, for all n, D(�; �; n));(IN; <) � (IN + ZZ; <) (By Proposition 1.18.1 p. 7, for all n, D(!; ! + �; n)).Proof. (Of 2.4.) The following generalisation an be handled using indution.N.B.: as in the proof of Lemma 2.3, k needs to be kept variable: in the indutionstep for k and n+ 1, IH is applied for n and k + 1.2.7 Lemma. For all n and every �nite relation h = f(a1; b1); : : : ; (ak; bk)g �A�B, the following onditions are equivalent:1(n) Dupliator has a winning strategy in position h in the length-(k+n) gameon the models with n more rounds to go,2(n) for all formulas ' = '(x1; : : : ; xk) with qr(') 6 n, we have thatA j= '[a1; : : : ; ak℄ i� B j= '[b1; : : : ; bk℄:Basis: n = 0.In fat, the following are equivalent:1(0) h is a loal isomorphism (= Dupliator has a win with 0 rounds to go),20(0) for all atomi formulas ' with Var(') � fx1; : : : ; xkg we have thatA j= '[a1; : : : ; ak℄ i� B j= '[b1; : : : ; bk℄;2(0) for all formulas ' with Var(') � fx1; : : : ; xkg and qr(') = 0 we have thatA j= '[a1; : : : ; ak℄ i� B j= '[b1; : : : ; bk℄:12



N.B.: For h = ; all three onditions hold: 1(0), sine ; is a loal isomorphismbetween every two models, and 20(0) and 2(0) sine there are no atomi orrank-0 formulas without free variables.Indution step.Indution hypothesis: the equivalene 1(n) , 2(n) holds.1(n + 1) ) 2(n + 1). Suppose that Dupliator has a win in position h in thelength-(k+n+1) game with n+1 more rounds to go. Here follows proof that, forall ' = '(x1; : : : ; xk) with qr(') 6 n+1, A j= '[a1; : : : ; ak℄ i� B j= '[b1; : : : ; bk℄.Indution w.r.t. '.Sine h is also a win for Dupliator in the length-(k + n) game, by indu-tion hypothesis we get the required equivalene for formulas of rank 6 n, inpartiular, for atomi ones. Indution steps for the onnetives are e�ortless.Quanti�er ase:Assume A j= 9xk+1 [a1; : : : ; ak℄, where qr( ) 6 n. Thus, let ak+1 2 A besuh that A j=  [a1; : : : ; ak; ak+1℄.Consider ak+1 as a move of Spoiler in position h in the length-(k+n+1) game.Sine h is a win for Dupliator, there is a move bk+1 2 B bringing Dupliator toa position h0 := h [ f(ak+1; bk+1)g that, again, is a win for Dupliator.By indution hypothesis applied to h0, we have that for all formulas ' ='(x1; : : : ; xk; xk+1) with qr(') 6 n: A j= '[a1; : : : ; ak; ak+1℄ is true i� B j='[b1; : : : ; bk; bk+1℄. In partiular, B j=  [b1; : : : ; bk; bk+1℄, and hene B j= 9xk+1 [b1; : : : ; bk℄.2(n+1) ) 1(n+1). Suppose Spoiler hooses ak+1 2 A. We show that Dupliatorhas an answer bk+1 2 B bringing him into a position h0 := h[f(ak+1; bk+1)g inthe length-(k + n + 1) game that is won for him. (The onlusion being, thatDupliator had a win already in position h.)Consider the set� := f'(x1; : : : ; xk; xk+1) j qr(') 6 n ^ A j= '[a1; : : : ; ak; ak+1℄g:By Lemma 2.3 there is a �nite subset �0 � � suh that every element of � hasan equivalent in �0.Clearly, we have that A j= 9xk+1V�0[a1; : : : ; ak℄. By ondition 2 and sineqr(9xk+1V�0) 6 n + 1, it follows that B j= 9xk+1V�0[b1; : : : ; bk℄. Say, B j=V�0[b1; : : : ; bk; bk+1℄.Claim. If qr(') 6 n, then: A j= '[a1; : : : ; ak+1℄ i� B j= '[b1; : : : ; bk+1℄.This follows from the hoie of �0 and bk+1. The required onlusion followsusing the indution hypothesis. aConstants. The Ehrenfeuht game for models with onstants is played exatlyas before, but now, a �nite relation h is alled a loal isomorphism between(A; a1; : : : ; ak) and (B; b1; : : : ; bk) |where A and B are purely relational| ifh [ f(a1; b1); : : : ; (ak; bk)g is a loal isomorphism between A and B in the oldsense. Equivalently (as above, 20(0)): a loal isomorphism is a orrespondenethat preserves satisfation of atomi formulas.13



2.8 Corollary. The Main Theorem 2.4 is valid for languages with �nitely manyonstant symbols.Proof. Immediate from Lemma 2.7. Suppose that the modelsA0 = (A; a1; : : : ; ak)and B0 = (B; b1; : : : ; bk) expand the purely relational models A and B with konstants eah. Put h = f(a1; b1); : : : ; (ak; bk)g. Then the following onditionsare equivalent:1. Dupliator has a winning strategy in the length-n game on the models A0and B0,2. Dupliator has a winning strategy in position h in the length-(k+n) gameon the models A and B with n more rounds to go,3. for all formulas ' = '(x1; : : : ; xk) with qr(') 6 n, we have thatA j= '[a1; : : : ; ak℄ i� B j= '[b1; : : : ; bk℄;4. for all sentenes ' = '(1; : : : ; k) with qr(') 6 n, we have thatA0 j= ' i� B0 j= ': aRemark. You an now see what �niteness of the voabulary is good for. Forinstane, let B be a proper elementary extension of (IN; 0; 1; 2; : : :). (Everyproper extension of this model happens to be an elementary one.) Spoiler analready win the length 1 game on these models by hoosing an element of Boutside IN. A similar example with (IN; 0; S) (where S(n) := n+ 1) illustrateswhy you have to exlude funtion symbols.Thus, from now on we an allow �nitely many onstant symbols.5| Show: if A is �nite and A � B, then A �= B.6| Show: every two dense linear orderings without endpoints are equivalent.7| Suppose that the linear ordering � an be embedded into the linear ordering�. Show that � � � an be elementarily embedded in � � �. (An embedding iselementary if it preserves all formulas.)8| Cf. Lemma 1.16 (p. 7).1. Produe, for every n 2 IN, a sentene 'n of rank n that is true of a linearordering i� it has at least 2n � 1 elements.2. Give a simple ondition on m and n that is both neessary and suÆientin order that D(! + !?;Lm; n). 14



Solution. 1. For a formula ' and a variable x not in ', '<x is the formulaobtained from ' by replaing quanti�ers 8y � � � and 9y � � � by 8y < x � � � (=8y(y < x! � � � )), resp., 9y < x � � � (= 9y(y < x ^ � � � )).'>x idem.De�ne '1 = 9x1(x1=x1), 'n+1 = 9xn+1('<xn+1n ^ '>xn+1n ).2. D(! + !?;Lm; n) , m > 2n � 1.9| Cf. Lemma 1.15.1. Construt, for n > 2 and k < 2n � 1, a sentene  n;k of rank 6 n that istrue of a linear ordering i� it has exatly k elements.2. Give a simple ondition on k, m and n that is both neessary and suÆientin order that D(Lk;Lm; n).Hint for 1. Start with n = 2 (then 22 � 1 = 3), and k = 1, k = 2.next, suppose  n;k de�ned for n > 2 and k < 2n � 1. To onstrut  n+1;k,distinguish 1 6 k < 2n�1, k = 2n�1, 2n�1 < k < 2n+1�2, and k = 2n+1�2.2.2 Appliations2.2.1 De�nability2.9 De�nability. A (�rst-order) formula ' = '(x) in one free variable x (�rst-order-) de�nes the set 'A = fa 2 A j A j= '[a℄g in A; a formula  =  (x; y) intwo free variables x; y de�nes the relation  A = f(a; b) 2 A�A j A j=  [a; b℄gin A.For every n 2 IN one an write a formula �n = �n(x) in the language of(IN; <) that expresses that (the value of) x has exatly n predeessors. Thus,(IN; <) j= �n[m℄ is true i� m = n. Consequently, if A � IN is �nite, it an bede�ned in (IN; <) by the disjuntion Wn2A �n; its omplement IN�A is de�nedby the negation of this formula.A set X � IN is alled o-�nite if IN � X is �nite. Thus: all �nite ando-�nite sets � IN are de�nable in (IN; <).2.10 Proposition. Every set de�nable in (IN; <) is either �nite or o-�nite.Proof. Suppose that '(x) de�nes a set that is neither �nite nor o-�nite. Thus,! = (IN; <) j= 8x9y(x < y ^ '(y)) ^ 8x9y(x < y ^ :'(y)). But, ! � ! + �;hene this sentene is true in the latter model as well. Therefore, some elementa in the �-part satis�es ', and some element b in the �-part satis�es :'. Applythe automorphism of ! + � that moves a to b; a ontradition results. a10| Suppose that X is de�nable in (IN + ZZ; <). Show that ZZ � X orZZ \X = ;. Show that X is �nite or o-�nite.2.11 Model-transformations and Translations. Suppose that Æ = Æ(x; y)is a formula with x and y free. 15



1. For A = (A;R), the model AÆ is de�ned as AÆ = (A; ÆA), where ÆA is therelation de�ned by Æ in A.2. The formula 'Æ is obtained from ' by replaing atomi subformulas uRvby Æ(u; v). (Possibly renaming bound u and v in Æ to avoid lashes.)The following equivalene holds:AÆ j= '[a1; : : : ; an℄ , A j= 'Æ [a1; : : : ; an℄:(Indution w.r.t. '.)E.g., we may so use the formula su(x; y) (su for (immediate) suessor):x < y ^ :9z(x < z ^ z < y)and its symmetri version nb(x; y) = su(x; y) _ su(y; x) (nb for neighbour).For instane, the relation of the model (IN; <)su is the suessor relationde�ned by n+ 1 = m.Note:1. If qr(Æ) = k, then A �n+k B ) AÆ �n BÆ; and, hene:2. A � B ) AÆ � BÆ.11| Consider the \irle"-model Cm = (f0; : : : ;m�1g; R), where R is de�nedby iRj :� i + 1 = j _ (i = m � 1 ^ j = 0). (Visualize by drawing points0; : : : ;m� 1 on a irle.) �(x; y) = su(x; y) _ (:9z(z < y) ^ :9z(x < z)).1. Chek that Cm = L�m and �su = (! + !?)�.2. Give a suÆient ondition in order that D(Cm;Ck; n).3. Idem, for D(Cm; �su; n).2.12 Proposition. The ordering < of IN is not de�nable in !su.Proof. Suppose '(x; y) de�nes the ordering in !su. Then the sentene � =8x8y(x 6=y ! ('(x; y) $ :'(y; x)) holds in !su. But, ! � ! + � + �; hene!su � (! + � + �)su; and so the sentene holds in the latter model as well.However, (! + � + �)su has an automorphism that interhanges the two �-opies. Piking (a value for) x in one and (a value for) y in the other results ina ontradition. aNote that the ordering < of IN is the transitive losure of the suessorrelation of !su. Thus: transitive losures are not �rst-order de�nable. In fat,this is true already on �nite models:2.12' Proposition. There is no uniform �rst-order de�nition of the orderingon the models Lsum . 16



Proof. Suppose that ' onstitutes suh a de�nition. Then the above sentene� holds in every model Lsum , and hene, �su holds in every Lm. It follows that! + � + � + !? j= �su, and hene, (! + � + � + !?)su j= �. A ontraditionarises as in the earlier proof above. aA sentene de�nes the lass of models in whih it is true. Relative to thisnotion of de�nability:2.13 Proposition. There is no �rst-order de�nition of �niteness for linearorderings.Proof. By Lemma 1.16 (p. 7). aMore interestingly:2.14 Proposition. There is no �rst-order de�nition of �niteness for binarytrees.Proof. By the result of Proposition 1.20 (p. 9). aNote that 2.13 also has an easy proof using Compatness, but 2.14 hasn'tsine the lass of binary trees isn't elementary. (An in�nite model of the theoryof all binary trees Bm need not be a tree at all; e.g., it might very well benon-wellfounded.) The Ehrenfeuht game tehnique is essential for the proof.Connetivity. Suppose that a; b 2 A, where (A;R) is some model (graph).A path onneting a with b is a �nite sequene a1 = a; : : : ; an = b s.t. for alli, 1 6 i < n: aiRai+1.The model is onneted if for all a; b 2 A, there is a path onneting a withb.2.15 Proposition. There is no �rst-order de�nition of onnetivity. This istrue even on the lass of �nite (graph) models.Proof. For arbitrary models, this an be proved using ompatness. An in�niteexample is �su � (� + �)su (sine � � � + �); the �rst model is onnetedwhereas the seond one is not.On �nite models, one needs game theory. Here is an ingenious proof based onthe fat that a (rank 2) �rst-order formula �2 = �2(x; y) exists (a modi�ationof the formula � from Exerise 11), satisfyingLn j= �2[i; j℄ , i+ 2 = j _ (i = n� 2 ^ j = 0) _ (i = n� 1 ^ j = 1):�(x; y) says:\x < y and there is exatly one element between them,or: x is greatest element and there is exatly one element < y,or: there is exatly one lement > x and y is least element".Piture some ases n = 4; 5; : : : and note: L�2n is onneted i� n is odd. Infat, for n odd: L�2n �= Cn; and for n = 2m even: L�2n �= Cm + Cm (the disjointunion of two opies of Cm).Now suppose that a quanti�er rank p sentene de�nes onnetivity. Forn = 2p+2�1, we have that Ln �p+2 Ln+1. Hene, L�2n �p L�2n+1. A ontraditionfollows. a17



2.2.2 Axiomatizability2.16 Axiomatisation.1. A set � of sentenes axiomatizes (the theory of) a model A if for allsentenes ': A j= ' i� � j= '.Equivalently: A is a model of �, and every sentene true of A followsfrom �.2. � axiomatizes (the theory of) a lass K of models if for all ': ' is truein every model from K i� � j= '.(Thus, an axiomatization for A is the same as one for fAg.)Remarks. If � de�nes K, then it also axiomatizes K. However, the onversedoesn't hold.Example: FLO is the lass of �nite linear orderings; ELO onsists of the sen-tenes expressing the properties of linear orderings, existene of endpoints, andthe statements that every non-least (-last) element has an immediate predees-sor (suessor).Claim. ELO axiomatizes FLO.Proof. Obviously, every �nite linear ordering satis�es ELO. Thus, if ELOj= ',then ' is true of every �nite linear ordering. Conversely: assume that notELOj= '. Then some A j=ELO exists of whih ' is false. From the de�nitionof ELO, it is not hard to see that A must be a linear ordering that is either�nite or has order type ! + � � � + !? for some �. Let n = qr('). Then, byLemma 1.16, A �n L2n�1. Thus, ' is false of the model L2n�1 of FLO. aThus, ELO axiomatizes FLO but it doesn't de�ne it.Using the above basi results on orderings, it is not hard to �nd axiomati-sations for �, ! + !?, !, and �.Example: ! is �nitely axiomatized by the sentenes stating: the properties oflinear orderings, existene of a least element, every element has an immediatesuessor, and every non-least element has an immediate predeessor.Proof. Obviously, ! satis�es these priniples; thus every logial onsequeneof them is true of !. Conversely, suppose that ' doesn't follow logially fromthese priniples. Then a model A of them doesn't satisfy '. It is not hard tosee that A must be a linear ordering of some type !+ � ��. But, !+ � �� � !.Thus, ' is false of !. a12| Show: there is no �nite axiomatisation for ! + !?.13| Assume that, among the models of �, there are arbitrarily big �nite linearorderings. Show that ! + !? is a model of �.18



14| Show: if the lineair orderings � and � are �nitely axiomatizable, then soare �?, 1 + �, � + 1 and � + 1 + �. However, � + � isn't neessarily �nitelyaxiomatizable.Suessor relations. SUC onsists of the following sentenes: 8x9y(xRy ^8z(xRz ! z=y)), 8x9y(yRx ^ 8z(zRx ! z=y)), and (1) :9x1(x1Rx1), (2):9x19x2(x1Rx2 ^ x2Rx1), (3) :9x19x29x3(x1Rx2 ^ x2Rx3 ^ x3Rx1), . . .15| Show: every model for SUC is of the form (� � �)su.16| Show: every sentene true of �su has a �nite model. In partiular, �suisn't �nitely axiomatizable.2.2.3 Partition ArgumentsA lass of �nite models (suitably oded as sequenes of symbols) is in NP ifmembership in the lass is Non-deterministially Turing mahine deidable inPolynomial time. The following result explains the relationship with seond-order de�nability.2.17 Theorem. (Fagin 1974) On the lass of �nite models: �11 =NP.This is probably the �rst genuine result in the �eld of desriptive omplexitywhih has been quite suesful in relating omputational omplexity with logialde�nability, and that really got started some ten years ago. (Cf. the books byEbbinghaus/Flum and Immerman.)Any �11-property of �nite models whose omplement is not �11 (a andidatebeing the NP-omplete graph property 3-olorability) would give you that o-NP6=NP. From this, you may guess that showing something to be not �11 is atough nut. Restriting to monadi-�11, where the relations quanti�ed over aresets, an be more tratable. For instane, we've seen (Theorem 2.15 p. 17) thatonnetivity on �nite models is not �rst-order; but in fat, something strongerholds:2.18 Theorem. Connetivity is not monadi-�11 on the lass of �nite graphs.Proof. Suppose that 9X1 � � � 9Xn� de�nes onnetivity, where � = �(R;X1; : : : ;Xn)is �rst-order and has rank n.LetM be a �nite set of models that piks an element from eah n-equivalenelass.By the �nite version of Ramsey's Theorem, there exists an m so large thatevery partition h : [m℄2 !M has a homogeneous set of 2n+1 elements (in fat,3 elements suÆes for the argument below).Choose X1; : : : ;Xk suh that A = (Lsum ;X1; : : : ;Xk) j= �.For 0 6 i < j < m, h(fi; jg) 2 M is the model that is �n [i; j); here andbelow, the interval notation [i; j) is used for the orresponding submodel.Let Q � f0; : : : ;m� 1g be an 2n+1-element set homogeneous for h. Say, fori < j in Q, h(fi; jg) = �. 19



We now have, using a more or less self-explanatory notation (for suessor-strutures � and �, � + � is their disjoint union where, moreover, max� isonneted to min� |insofar as these elements exist):A = ( ;minQ) + [minQ;maxQ) + [maxQ;!)�n ( ;minQ) + � � (2n+1 � 1)su + [maxQ;!)�n ( ;minQ) + � � (! + !?)su + [maxQ;!)�n ( ;minQ) + � � (! + � + !?)su + [maxQ;!)= ( ;minQ) + � � (! + !?)su + [maxQ;!) + � � �su�n A+ � � �su�n A+ � � C2n+2�1:2nd line: Q has 2n+1 elements.Last line: L2n+2�1 �n+2 !+!?; thus Lsu2n+2�1 �n+1 (!+!?)su; onneting the(rank-1 de�nable) endpoints, we obtain C2n+2�1 �n �su.That A �n A + � � C2n+3�1 is a ontradition, sine A is onneted, butA+� �C2n+3�1 (the disjoint union of the line model A and a irle model) isn't.Note that the model desribed on the third line of the above alulation isalready disonneted; however, it is in�nite too, and the purpose of the rest ofthe alulation is to produe a �nite n-equivalent. aThe notion of onnetivity is monadi-�11: G is onneted i� for all U � G:if U 6= ; and U is losed under the relation of G, then U = G. And if weallow an existential quanti�ation over a binary relation, a de�nition an beonoted: G is onneted if it has a linear ordering < with the property thatevery non-least element y is onneted with some x < y. Thus, onnetivity is�11.There is some subtlety involved here. Consider the losely related notion ofreahability : in a graph (A;R), b is reahable from a if there is a path onnetinga with b. It turns out that (for �nite models) undireted reahability (the notionfor undireted graphs, that is: models (A;R) where R is symmetri; edgesidenti�ed with pairs (x; y); (y; x) 2 R) is simpler than the general (direted)notion. Undireted reahability is monadi-�11 (Kanellakis 1986):Proposition. In a �nite. undireted graph, b is reahable from a i� for someX � A: a; b 2 X, a and b both have exatly one edge onneting them with (anelement of) X, and every other  2 X has exatly two suh edges.Proof. ) : Suppose that a = a0; : : : ; an = b is a shortest path onneting awith b. Then X = fa0; : : : ; ang satis�es the onditions stated.( : If X satis�es these onditions, follow the path starting at a, using edgesonneting elements of X. This path an't loop, and so it must end somewhere;the only possible endpoint being b. aHowever, Ajtai and Fagin showed in 1990 (using Ehrenfeuht's game oupledwith probabilisti arguments) that direted reahability is not monadially �11.20



This suggests looking at the losure of monadi �11 and �11 under �rst-orderquanti�ation.Aording to Proposition 2.14 (p. 17), �niteness is not a �rst-order propertyof binary trees. By K�onig's Lemma, a �nitely branhing tree is �nite i� all ofits branhes are �nite. Thus, �niteness is monadi-�11 on the lass of �nitelybranhing trees. However:2.19 Theorem. Finiteness is not monadi-�11 on the lass of binary trees.Finally, here is another example of a partition argument.2.20 Theorem. Every monadi-�11-sentene � = �(<) with a well-orderedmodel has a well-ordered model of type < !!.Proof. Suppose that � = (A;<;X1; : : : ;Xk) is a well-ordered model. It suÆesto show that for every n, � has a well-ordered n-equivalent of type < !!. Inthe following, we an forget about the sets X1; : : : ;Xk sine they won't spoilthe argument.Fix n. By the Downward L�owenheim-Skolem Theorem, there is no loss ofgenerality in assuming that A is ountable. Apply indution with respet tothe order type of �.If � has only one element, then � itself is the required n-equivalent. (For,1 < !!.)Next, suppose that � = � + 1. Then by indution hypothesis, � has suhan n equivalent �0, and �0 + 1 �n � + 1 = � is the required equivalent. (Notethat if � < !!, then � + 1 < !!.)Finally, assume that � has a limit type. Let a0 2 � be the least element of�. Sine � is ountable, there is a ountable sequene a0 < a1 < a2 < � � � thatis unbounded in �. For i < j, let h(i; j) be the set of rank-n sentenes true inthe submodel [ai; aj). We may think of h as taking �nitely many values only.By the in�nite version of Ramsey's Theorem there exist k0 < k1 < k2 < � � �suh that all h(ki; kj) are the same. By indution hypothesis, there is a well-ordering  < !! that is an n-equivalent of every [aki ; akj ). Again by indutionhypothesis, let � be a well-ordering of type < !! that is n-equivalent with[a0; ak0). Then (by Lemma 1.17.2) � +  � ! �n [a0; ak0) +Pi[aki ; aki+1) = �,hene � +  � ! is the required n-equivalent of �. (Note that if �;  < !!, then� +  � ! < !!.) aLet 
 be the well-ordering of all ordinals.2.21 Corollary. 
 � !!.Proof. Show that 
 �n !! by indution on n. Use Lemma 1.13 and the fatthat �nal segments of 
 (resp., !!) have type 
 (resp., !!). a17| Show that every monadi-�11 sentene true of ! is also true of ! + �.Nevertheless: produe a set X of natural numbers suh that no expansion of! + � is elementarily equivalent to (!;X).21



18| Is every monadi-�11 sentene true of � true of � as well?19| Show: if � < � � !!, then � 6� �.20| A linear ordering is sattered if it does not embed �. Let � be the leastset of order types suh that (i) 0; 1 2 �, (ii) �; � 2 � ) � + � 2 �, (iii)� 2 � ) � � !; � � !? 2 �. Show: every ordering in � is sattered, and everysentene with a sattered model has a model in �.Hint. Use the tehnique of the proof of Proposition 2.20. Suppose that a ertain�rst-order sentene of quanti�er rank q is true in the sattered model (A;<).Without loss of generality, assume that A is ountable. Identify every submodelof (A;<) with its universe. For a;  2 A, write a �  in ase that (i) a < and for all a0; 0 s.t. a � a0 < 0 � , (a0; 0) := fb 2 A j a0 < b < 0g has aq-equivalent in �, or (ii)  < a and a similar statement holds, or (iii) a = .Then � is an equivalene. Clearly, if a �  and a < b < , then a � b. Thus,A is an ordered sum of equivalene lasses Pi2I Ci, where I is a ertain linearordering.Show that the order type of I is dense.Sine (A;<) is sattered, onlude that I is a singleton; i.e.: A is the onlyequivalene lass.Finally, show that A itself has a q-equivalent in �. If A has no greatest element,hoose a0 < a1 < a2 < � � � o�nal in A and apply Ramsey's theorem to see thatf 2 A j a0 < g has a q-equivalent in �. Do this also for f 2 A j  < a0g, byhosing, if neessary, b0 = a0 > b1 > b2 > � � � oinitial in A.
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Chapter 3Wider Theory3.1 Other Charaterisations3.1.1 CharateristisFor every n 2 IN, the \game-theoreti behaviour" of a model A in length-ngames an be oded into one sentene "nA, the n-harateristi of A.3.1 Charateristis. For a model A, a �nite sequene ~a = (a1; : : : ; ak) fromA and an integer n 2 IN, the formula "n~a = "nA;~a(x1; : : : ; xk) with x1; : : : ; xk freeand xk+1; : : : ; xk+n bound is de�ned as follows:1. "0~a is the onjuntion of all atoms and negations of atoms ' = '(x1; : : : ; xk)with at most x1; : : : ; xk free suh that A j= '[a1; : : : ; ak℄;2. "n+1~a is 8xk+1Wa2A "n(a1;:::;ak;a) ^ Va2A 9xk+1"n(a1;:::;ak;a).3. "nA is "nA;;, where ; is the empty sequene (of length 0).Remarks.In a given �nite voabulary there are, for any k, only �nitely many atoms in thevariables x1; : : : ; xk. Thus, the formulas "0A;(a1;:::;ak) are genuine (�nite) �rst-order formulas. If the number of atoms in these variables is A, there are 2Aatoms and negations of atoms, and so there are at most 22A many formulasof the form "0A;(a1;:::;ak) (where A is any model and (a1; : : : ; ak) is any length-ksequene from A).The same works for k + 1, hene it follows that the onjuntion and dis-juntion in forming "1A;(a1;:::;ak;a) are over an at most �nite number of formulas.Thus, the rank-1 harateristis are �rst-order formulas.Let Pk;n be the number of n-harateristis for length-k sequenes (withx1; : : : ; xk free, in any model). Clearly, every formula "1A;(a1;:::;ak) an be iden-ti�ed with the set f"0A;(a1 ;:::;ak;a) j a 2 Ag. It follows that Pk;1 6 2Pk+1;0 .These arguments ontinue throughout the hierarhy: in (the de�nition of)any "n+1A;~a , disjuntion and onjuntion are over �nitely many formulas, andPk;n+1 is at most 2Pk+1;n .Note furthermore that 23



"n~a has quanti�er rank n, andA j= "n~a [~a℄.3.2 Theorem. The following onditions are equivalent:1. D(A;B; n),2. B j= "nA,3. "nB = "nA.(For the last equivalent to make sense, onjuntions and disjuntions must beonsidered as taken over sets: order and repetitions don't ount.)21| Show this.Hint. Show using indution w.r.t. n that, more generally: a position f(a1; b1); : : : ; (ak; bk)gis a win for Dupliator , i� B j= "nA;(a1 ;:::;ak)[b1; : : : ; bk℄, i� "nB;(b1;:::;bk) = "nA;(a1;:::;ak).22| Show: every quanti�er-n sentene ' is logially equivalent with a �nitedisjuntion of sentenes of the form "nA.In fat: ' � Wf"nA j A j= 'g.3.1.2 Fra��ss�eHere follows the Fra��ss�e-haraterisation of n-equivalene (that preeded Ehren-feuht's).3.3 Fra��ss�e sequene. A Fra��ss�e sequene of length n+1 for A, B is a sequeneI0; : : : ; In of sets of loal isomorphisms between A and B suh that ; 2 In andfor all i, 0 6 i < n: if h 2 Ii+1, then(\forth") 8a 2 A9b 2 B (h [ f(a; b)g 2 Ii),and(\bak") 8b 2 B9a 2 A (h [ f(a; b)g 2 Ii).3.4 Theorem. The following are equivalent:1. D(A;B; n),2. there is a Fra��ss�e sequene of length n+ 1 for A and B.Proof. 1) 2. Assume D(A;B; n). For 0 6 i 6 n, let Ii be the set of positionsh in whih Dupliator has a winning strategy for i more rounds. (N.B.: by 1,; 2 In.)2 ) 1. Dupliator takes are that, after i rounds (0 6 i 6 n), a loalisomorphism h has been built that is an element of Ii. a
24



3.5 Remark. In De�nition 3.3, we ould equivalently require that the loalisomorphisms in Ii (0 6 i 6 n) onsist of exatly n � i ordered pairs (inpartiular, that In = f;g). This will be essential in Chapter 4, when odingsuh sets I as relations R by means ofR = f(a1; : : : ; ai; b1; : : : ; bi) j f(a1; b1); : : : ; (ai; bi)g 2 Ig;thereby transforming the notion of a Fra��ss�e sequene into the following modi�edversion (simultaneously renumbering i 7! n� i):2'. There is a sequene R0; : : : ; Rn of relations Ri � Ai �Bi suh that R0 is> (for \true"), and(a) for 0 6 i 6 n: if Ri(a1; : : : ; ai; b1; : : : ; bi), then f(a1; b1); : : : ; (ai; bi)gis a loal isomorphism,and(b) for 0 6 i < n: if Ri(a1; : : : ; ai; b1; : : : ; bi), then(\forth") 8a 2 A 9b 2 B Ri+1(a1; : : : ; ai; a; b1; : : : ; bi; b),and(\bak") 8b 2 B 9a 2 A Ri+1(a1; : : : ; ai; a; b1; : : : ; bi; b).3.1.3 Co-indutive De�nabilityBefore giving the �nal haraterisation, a (short) introdution into (o-) indu-tive de�nability is needed.Suppose that � is a monotone operator over I, that is: � maps subsets of Ito subsets of I suh thatX � Y � I ) �(X) � �(Y ):3.6 Prime Example. Our one and only example is this: I is the set of loalisomorphisms between two models A and B, and � = �A;B is de�ned by�(X) = fh j 8a2A9b2B(h [ f(a; b)g 2 X) ^ 8b2B9a2A(h [ f(a; b)g 2 X)g:Note that this operator is monotone.3.7 Post-�xed point, Co-indution. Y � I is alled1. post-�xed point of � if Y � �(Y ),2. o-indutive if for all X � I: X � �(X) ) X � Y .3.8 Lemma.1. There is at most one o-indutive post-�xed point.2. A o-indutive post-�xed point is the same as a greatest �xed point.25



Proof. 1. Trivial.2. Suppose that Y is a o-indutive post-�xed point. Thus, Y � �(Y ).By monotoniity, �(Y ) � �(�(Y )); i.e.: �(Y ) is a post-�xed point as well. Byo-indution, �(Y ) � Y . Thus, �(Y ) = Y . aAs to existene:3.9 Theorem. The set �#=[fX � I j X � �(X)gis the greatest �xed point of �.Proof. Suppose that X is an arbitrary post-�xed point. Then, X � � #. Bymonotoniity, X � �(X) � �(� #). Sine X was arbitrary, it follows that�#� �(�#): �# is a post-�xed point. It is o-indutive by de�nition. a3.10 Fixed point hierarhy. For all ordinals �, de�ne �# � � I by thefollowing reursion:1. �# 0 = I2. �# (�+ 1) = �(�# �)3. �#  = T�< �# � (for limits ).An alternative reursion would use the single equation�# � = \�<��(�# �)where it is understood that the empty intersetion denotes I.3.11 Theorem. �#= T� �# �.Proof. That T� � # � is o-indutive is easy: if X � �(X), it follows byindution that, for all �, X � �# �. Thus, X � T� �# �.To show that T� � # � is a post-�xed point, �rst note that the hierarhyis dereasing: � < � ) � # � � � # � (indution w.r.t. �; a preliminaryindution shows that � # (� + 1) � � # �). There is an ordinal � where thehierarhy beomes stationary: T� � # � = � # � (the argument needs (i) thatI is a set, and hene (ii) by the Powerset Axiom, its powerset is a set as well,and (iii) by the Substitution Axiom, the map � 7! � # � from ordinals intothis powerset annot be injetive). In partiular, � # � is a �xed point, and�(T� �# �) = �(�# �) = �# � = T� �# �. aRemark. The above treatment of greatest �xed points an be dualized forleast �xed points (whih are muh more ommon). Just revert inlusions andinterhange intersetions and unions. A di�erent way: the least �xed point of� is the greatest one of the dualized operator X 7! I � �(I �X).26



3.1.4 Fixed Point Charaterisation3.12 Theorem. The following are equivalent:1. D(A;B; n),2. ; 2 �A;B # n.Proof. More generally, Dupliator has a winning strategy in position h with nmore rounds to go i� h 2 �# n.Note also that if ; 2 �# n (equivalently, if �# n 6= ;), then �# 0; : : : ;�# nis a Fra��ss�e sequene. a3.13 Corollary. The following are equivalent:1. A � B,2. ; 2 �A;B # !.As to the relevane of the greatest �xed point �#: see Setion 3.3 (p. 29).3.2 VariationsThere are variations on the Ehrenfeuht game that are adequate with respetto languages other than �rst-order. For instane, to get the version for (say:monadi) seond-order logi, Spoiler is allowed to also pik a subset of one ofthe models; Dupliator then is obliged to ounter with a subset from the otherone.A nie variation with appliations to intensional logis is the one to formulaswith a bounded number of variables. (The relation with intensional logis omesfrom the fat that standard translations into �rst-order logi an be arried outwith �nitely many variables, depending on the type of logi onsidered.) Fromthe proof of Theorem 2.4 it an be seen that the moves of the players are meantas assignments of elements to variables. Now, modify the game as follows. Letk 2 IN be a natural number. Spoiler and Dupliator are given k pebbles eah,marked 1; : : : ; k. A move of Spoiler now onsists of plaing one of her pebbleson an element of one of the two models; Dupliator ounters by plaing hisorresponding pebble on an element of the other model. If the length of thegame exeeds k, Spoiler runs out of pebbles after her k-th move. She is allowednow to re-use one of her pebbles by simply moving it to some other element (ofeither model). Dupliator then ounters by re-using his orresponding pebble.At every stage of the play, the positions of the 2k pebbles determine an (atmost) k-element relation between the models; and Dupliator wins if all of themare loal isomorphisms. For the k-pebble game, there is the following3.14 Proposition. Dupliator has a winning strategy for the k-pebble game oflength n on A and B i� A and B satisfy the same rank � n-sentenes with atmost k variables.In the ontext of linear orderings, 3 variables suÆe.27



3.15 Proposition. If A and B are linear orderings with the same valid 3-variable sentenes of rank � n, then A �n B.Proof. Using indution, it is shown that for every n: if g and h are the loationsof at most 3�2 pebbles on A resp. B suh that Dupliator has a winning strategyin the 3-pebble game of length n at position (g; h), then Dupliator has a winningstrategy in the ordinary game of length n at position (g; h).Basis: n = 0. Trivial.Indution step. Assume the result for n. Suppose that Dupliator has a winningstrategy in the 3-pebble game of length n + 1 at position (g; h). Distinguishtwo ases.(i) At position (g; h), only 2 � 2 or less pebbles have been plaed. Then eahplayer has at least one free pebble. Thus: for every a 2 A there exists b 2 Band for every b 2 B there exists a 2 A suh that Dupliator has a winningstrategy in the 3-pebble game of length n at position (g [ fag; h [ fbg). Byindution hypothesis: for every a 2 A there exists b 2 B and for every b 2 Bthere exists a 2 A suh that Dupliator has a winning strategy in the ordinarygame of length n at position (g [ fag; h[ fbg). But that means that Dupliatorhas a winning strategy in the ordinary game of length n+ 1 at (h; g).(ii) At position (g; h), all 3 � 2 pebbles have been used. Suppose that g on-sists of a0 < a1 < a2 and h is b0 < b1 < b2. A fortiori, Dupliator haswinning strategies for the two 3-pebble games of length n + 1 at the two-pebble positions ((a0; a1); (b0; b1)) and ((a1; a2); (b1; b2)). The argument under(i) shows that Dupliator has winning strategies � resp. � in the ordinary gamesof length n+ 1 at positions ((a0; a1); (b0; b1)) resp. ((a1; a2); (b1; b2)). But then,Dupliator has a winning strategy in the ordinary game of length n+ 1 at po-sition ((a0; a1; a2); (b0; b1; b2)) as well: moves < a1 or < b1 are ountered using�, whereas moves > a1 or > b1 are ountered using � . a3.16 Corollary. On the lass of linear orderings, every sentene is equivalentwith a three-variable sentene.Another modi�ation of the game is obtained by stipulating that Dupliatorwins a play in ase the relation built is not a loal isomorphism but a loalhomomorphism, whih is a relation f(a1; b1); : : : ; (an; bn)g � A � B suh thatevery atomi sentene true in (A; a1; : : : ; an) is satis�ed by (B; b1; : : : ; bn) aswell (but not neessarily onversely). Every loal homomorphism is a funtion(if ai = aj , then we must also have that bi = bj), but it is not neessarily aninjetive one.The resulting homomorphism-game relates to positive formulas, whih aregenerated from the atomi ones using the logial symbols ^ , _ , 8 and 9 only(thus, :, ! and $ are not allowed).Theorem 2.4 now modi�es to the following, the proof of whih an be ob-tained by straightforward adaptation of the former one.3.17 Theorem. Dupliator has a winning strategy for the length-n homomor-phism game i� B satis�es every positive quanti�er rank � n sentene true inA. 28



For another variaton in this vein, f. the proof of Theorem 4.4 (p. 39).Finally, you an mix requirements. Assume that L0 = L [ fRg, where R issome n-ary relation symbol. Stipulate that Dupliator wins i� the end-produtof the play is a loal isomorphism with respet to L-struture, and a loalhomomorphism with respet to R. This determines the R-positive game. Thegame is related to so-alled R-positive sentenes, whih only use ^ , _ , :, 8 and9 and in whih R ours in the sope of an even number of negation symbols.(The restrition that ! and $ do not our is needed to keep the ounting ofnegations straight: ! and $ ontain \hidden" negations.)These variations on the basi Ehrenfeuht game have their own harateri-sations in terms of harateristis, Fra��ss�e sequenes and �xed point hierarhies.E.g., as to the homomorphism game, harateristis �nA;~a for n > 0 are built asbefore, but now �0A;~a is the onjuntion of all (negationless) atoms satis�ed by~a in A. Thus, the �nA;~a are positive formulas. A theorem similar to Theorem 3.2(p. 24) holds.23| Formulate and prove a theorem that relates the appropriate version ofthe Ehrenfeuht game to R-positive sentenes.24| Modify the Ehrenfeuht game of length n on models A and B by re-quiring that Spoiler always piks her moves from A. Formulate and prove theorresponding modi�ation of Theorem 2.4.3.3 In�nite Game3.18 De�nition. In the in�nite Ehrenfeuht game on A and B, there is nobound on the number of moves; Spoiler and Dupliator alternate in makingan !-sequene of moves eah, and win and loss are determined (almost) asbefore: Dupliator wins if at eah �nite stage of the play, the moves made sofar onstitute a loal isomorphism between the models.A and B are partially isomorphi if Dupliator has a winning strategy for thein�nite game on A and B.3.19 Examples.1. � and � are partially isomorphi. Better still:2. Every two dense linear orderings without endpoints are partially isomor-phi.3. No well-ordering is partially isomorphi with a non-well-ordering.(Let Spoiler play an in�nite desending sequene in the non-well-ordering.Note that this argument also works for the 2-pebble game.)4. Well-Orderings of di�erent type are not partially isomorphi.(To begin with, Spoiler plays the element a of the larger one suh that a#has the type of the smaller one. Subsequently, Spoiler an always ountera move b of Dupliator with a move  suh that # and b# have the sametype. Eventually, she must out-play Dupliator. For this argument, again2 pebbles suÆe.) 29



3.20 Determinay. In every in�nite Ehrenfeuht game, exatly one of theplayers has a winning strategy.Proof. Note that if Spoiler wins a play, this has beome apparent after �nitelymany moves already: the game is open, and the result is an instane of theGale-Stewart Theorem. The argument proeeds as follows.Suppose that Spoiler doesn't have a winning strategy, i.e.: that the initialposition is no win for Spoiler. The result follows from theClaim. Avoiding positions that are wins for Spoiler makes Dupliator win.To begin with, the initial position satis�es this ondition by assumption. Also,this happens to be a ondition that Dupliator is able to preserve (i.e., thisis a strategy for Dupliator): suppose that h is no win for Spoiler, and Spoilerplays, say, an element a in the �rst model. If, for every b in the other model,h [ f(a; b)g is a win for Spoiler, then a was a winning move for Spoiler and hwould've been a win for Spoiler to begin with, ontrary to assumption. Thus,Dupliator has a move b that brings him to a position that, again, is no win forSpoiler.Finally: this strategy for Dupliator is winning. For, suppose it isn't. Thensome play in whih Dupliator uses this strategy is won by Spoiler. But thatSpoiler wins will show after �nitely many rounds. The orresponding positionis trivially a win for Spoiler, ontraditing the fat that the strategy avoids suhpositions. aThe following important theorem has an extremely simple proof.3.21 Theorem. Countable partially isomorphi models are isomorphi.Proof. If Spoiler enumerates all elements of the two models and Dupliator useshis winning strategy, the relation that is built up during the play onstitutesan isomorphism as required. aCantor's haraterization of the ordering � of the rationals is an immediateorollary. The proof of Theorem 3.21 is an abstrat version of the usual bak-and-forth proof for the Cantor result.3.22 Corollary. The linear ordering � is (up to isomorphism) the only ount-able dense linear ordering without endpoints.Of ourse, the homomorphism game has an in�nite version as well, with itsorresponding notion of partial homomorphi. Theorem 3.21 now modi�es to:3.23 Theorem. If the ountable models A and B are partially homomorphi,then there is a (surjetive) homomorphism from A onto B.Similarly: 30



3.24 Theorem. If Dupliator has a winning strategy in the in�nite R-positivegame on the ountable L [ fRg-models A and B, then AjL �= BjL and theisomorphism is an R-homomorphism.Explaining the logial meaning of the in�nite game needs the notion of anin�nitary formula. This is obtained by modifying the de�nition of �rst-orderformula, admitting onjuntions and disjuntions of arbitrarily many formulas.I.e., if L is a voabulary, the lass L1! of in�nitary L-formulas is obtained byallowing (next to the usual rules) the following rule of formula-formation:if � � L1! is a set, then V�;W� 2 L1!.(In this notation, the 1 signi�es that arbitrary onjuntions and disjuntionsare admitted; the ! indiates that quanti�ation still is restrited to �nitelymany variables at the same time.)The semantis of suh in�nitary formulas is obvious: the formulaV� (resp.,W�) is satis�ed by the assignment � in the model A i� every (resp., some)' 2 � is. (This implies that V ; is always satis�ed whereas W ; never is, andthat Vf'g and Wf'g are logially equivalent with '.) Equivalene with respetto in�nitary sentenes is denoted by �1!.The following proposition explains that the in�nite game is not just thelimit of the �nite games.Reall the monotone operator � = �A;B from 3.6 (p. 25):�(X) = fh j 8a2A9b2B (h[f(a; b)g 2 X) ^ 8b2B 9a2A (h[f(a; b)g 2 X)g;of whih the �nite stages �# n in its downward hierarhy were relevant to the �-nite game (Theorem 3.12 p. 27). LetW be the set of relations f(a1; b1); : : : ; (an; bn)gsuh that Dupliator has a winning strategy for the in�nite game on (A; a1; : : : ; an)and (B; b1; : : : ; bn). Let EQ be the set of relations f(a1; b1); : : : ; (an; bn)g suhthat (A; a1; : : : ; an) �1! (B; b1; : : : ; bn).The seond equality of the following result generalizes the fat that Dupliatorhas a winning strategy for the in�nite game between two models i� they annotbe distinguished using in�nitary sentenes.3.25 Proposition. �#= W = EQ.Proof. By Lemma 3.8 (p. 25), it suÆes to show that both W and EQ areo-indutive post-�xed points.W is a post-�xed point : trivial.W is o-indutive: Assume that X is a set of loal isomorphisms suh thatX � �(X). Suppose that h 2 X. To see that h 2 W , onsider the strategyof Dupliator to satisfy, for every position f(a1; b1); : : : ; (an; bn)g visited in theplaying of the game, that h[f(a1; b1); : : : ; (an; bn)g 2 X. If Dupliator sueedsin preserving this ondition, he wins. That he an sueed follows from X beinga post-�xed point.EQ is o-indutive: Assume that X � �(X). It follows that every h :=f(a1; b1); : : : ; (an; bn)g 2 X satis�es (A; a1; : : : ; an) �1! (B; b1; : : : ; bn) usingindution on sentenes (keeping h variable).31



EQ is a post-�xed point : Assume that h := f(a1; b1); : : : ; (an; bn)g 2 EQ.To see that h 2 �(EQ), suppose a 2 A; we need to �nd b 2 B suh thath [ f(a; b)g 2 EQ. If suh a b doesn't exist, this means that for every b 2B there is an in�nitary formula 'b(x) suh that (A; a1; : : : ; an) j= 'b[a℄ and(B; b1; : : : ; bn) j= :'b[b℄. Thus, we have that (A; a1; : : : ; an) j= 9xVb2B 'b and(B; b1; : : : ; bn) j= :9xVb2B 'b, ontraditing h 2 EQ. a25| Let C be a (ountably) in�nite set of onstant symbols. Show that thein�nitary sentene 8xW2C x =  doesn't have a �rst-order equivalent.26| Suppose that A = (A;<) is a well-ordering. Reursively de�ne, fora 2 A, the in�nitary formula 'a as 8y(y < x$ Wb<a 'b(y)). (If you enounterproblems with substituting into an in�nitary formula, you might use 8y(y <x$ 9x(y = x ^ Wb<a 'b)). Thus, every 'a uses two variables x and y; exatlyone ourrene of x is free.) Let �A be the in�nitary sentene 8xWa2A 'a ^Va2A 9x'a.Show:1. (A;<) j= 'a[b℄ i� b = a,2. a linear ordering satis�es �A i� it is an isomorph of A.Note the straightforward generalization for models A = (A;2) with A a tran-sitive set.Bisimulations. Suppose that the voabulary L onsists of some unary relationsymbols plus one binary relation symbol R. Modify the formula formation rulesfor L1! by allowing only non-R-atoms in the one variable x and R-boundedquanti�ation; that is: replae the quanti�ation rules by:If ' = '(x) 2 L1!,then 8y(R(x; y)! '(y));9y(R(x; y) ^ '(y)) 2 L1!.3.26 Theorem. For any two L-models A and B and elements a 2 A andb 2 B, the following are equivalent:1. Dupliator has a winning strategy for the in�nite pebble game on A and Bwith just one pair of pebbles, starting at the initial position (a; b), wherethe moves are \R-restrited",2. there is a bisimilation between A and B ontaining (a; b),3. a and b satisfy the same (modi�ed) L1!-formulas in A, resp., B.Proof. A bisimulation is the same as a non-empty post-�xed point for theoperator assoiated with the in�nite pebble game. aFinitizing. The quanti�er rank of an in�nitary formula is de�ned by stipulat-ing that, for the in�nitary onnetives:qr(^�) = qr(_�) = supfqr(') + 1 j ' 2 �g:32



The �-game is the modi�ation of the in�nite game in whih Spoiler is requiredto hoose, together with her moves, a desending sequene of ordinals < �. Aplay of the game ends as soon as Dupliator has ountered the move of Spoilerthat goes with the ordinal 0. Thus, every play has �nite length. For � = n < !,the �-game is the same as the ordinary length-n Ehrenfeuht game. For � > !,Spoiler an make a play of the �-game last as long as she wishes (in order tohave better hanes to win). E.g., if Spoiler hooses a �nite ordinal n 2 ! tobegin with, the remaining game has 6 n rounds. If � > ! and Spoiler starts byhosing !, she postpones the deision how long the play will be for her seondmove. Chosing ! + ! + 1 is a promise to tell, ultimately at the 3rd move, howlong she will keep postponing the deision about the length, et.3.27 Theorem. The following onditions are equivalent:1. Dupliator has a winning strategy for the �-game,2. ; 2 �# �,3. A and B have the same true rank < �-sentenes.The losure ordinal of �A;A is alled the Sott rank of A.27| Show that the Sott rank of the linear ordering ! equals !.Give an example of a model with Sott rank > !.3.28 Charateristis. Reall De�nition 3.1 (p. 23). Let A be a model. Forevery �nite sequene ~a = (a1; : : : ; an) from A and every ordinal �, the in�nitaryquanti�er rank-� formula "�A;~a(x0; : : : ; xk�1) is de�ned, using reursion w.r.t. �,essentially as before, using in�nite onjuntions to get aross limit ordinals :"A;~a(x0; : : : ; xk�1) = �̂< "�A;~a(x0; : : : ; xk�1):3.29 Theorem. Again we have:1. for all �, A j= "�A;~a[~a℄,2. B j= "�A;~a[~b℄i� (A;~a) and (B;~b) satisfy the same quanti�er rank � � formulas,i� "�B;~b = "�A;~a.If � is the Sott rank of A, then "�A;; ^ V~a 8~x("�A;~a ! "�+1A;~a ) is the Sottsentene of A.The language L!1! is the restrition of L1! that allows onjuntions anddisjuntions over ountable sets of formulas only.Note that the Sott sentene of a ountable model belongs to this language.28| Show that the Sott sentene of a model axiomatizes its in�nitary theory.33



Summing Up. The di�erent haraterisations pertaining to the �nite, in�nite,and �nitized game are olleted.For the �nite game, the following are equivalent:1. A �n B,2. D(A;B; n),3. B j= "nA,4. there is a length-(n+ 1) Fra��ss�e-sequene,5. ; 2 �A;B # n.For the in�nite game, this list beomes:1. A �1! B,2. D(A;B;1),3. for all �, B j= "�A,equivalently: B satis�es the Sott sentene of A,4. there is a Fra��ss�e-sequene of type !? (f. Exerise 29);equivalently: there is a partial isomorphism between A and B, i.e., a non-empty set I of loal isomorphisms satisfying the bak-and-forth ondition(in other words: I is a non-empty post-�xedpoint of �A;B),5. ; 2 �A;B #.Finally, for the �nitized version using ordinals, we have the following pairwiseequivalent statements:1. A ��1! B,2. D(A;B; �),3. B j= "�A,4. there is a length-(� + 1) (Fra��ss�e-) Karp sequene,5. ; 2 �A;B # �.29| A Fra��ss�e-sequene of type !? for A and B is a sequene : : : ; I2; I1; I0 ofnon-empty sets of loal isomorphisms suh that for all n and h 2 In:8a 2 A9b 2 B(h [ f(a; b)g 2 In+1) and 8b 2 B9a 2 A(h [ f(a; b)g 2 In+1).A partial isomorphism between A and B is a non-empty set I of loal iso-morphisms suh that for all h 2 I:8a 2 A9b 2 B(h [ f(a; b)g 2 I) and 8b 2 B9a 2 A(h [ f(a; b)g 2 I).Show:1. If I is a partial isomorphism, then : : : ; I; I; I is a Fra��ss�e-sequene of type!?,2. If : : : ; I2; I1; I0 is a Fra��ss�e-sequene of type !?, then Sn In is a partialisomorphism. 34



3.4 Fixed Points and GamesLet � : }(I)! }(I) be a monotone operator over a set I, and h 2 I. Considerthe following 2-person game. Players are Challenger ( C ) and Defender ( D ).D starts by piking some H0 � I suh that h 2 �(H0).C hooses h0 2 H0.D hooses H1 � I suh that h0 2 �(H1).C hooses h1 2 H1.et.If one of the players annot move, the other one wins. I.e., if D is able toselet ;, he wins (C is unable to pik an element in ;); if C is able to seletsome hi 62 �(I), she wins (if X � I, then �(X) � �(I); hene, hi 62 �(X)). Anever-ending play of the game is won by noone.3.30 Theorem.1. D has a winning strategy i� h 2 �",2. C has a winning strategy i� h 62 �#.Proof. 1. De�neW := fh 2 I j D has a winning strategy for the game that starts at hg:To see that W = �", we hek the two ruial properties.(a) (Pre-�xedpoint property.) �(W ) � W : Assume h 2 �(W ). In positionh, D plays W , and learly wins (C must pik an element in W whih representspositions won by D).(b) (Indution.) Assume that �(Y ) � Y . Want: W � Y . Thus, supposeh 62 Y . Claim: C has a strategy by whih he annot lose, nl.: always playingelements 62 Y . (And, hene, h 62W .) For: if h 2 �(X), then X � Y 6= ;. (ElseX � Y , �(X) � �(Y ), h 2 �(Y ) � Y .)[[Alternatively: Assume that h 2 W . Fix a winning strategy for D inposition h. When D uses this strategy, all plays of the game are �nite and wonby D. Thus, the tree of these plays is well-founded, and we an indut on it.Suppose that H0 is the answer to h as given by this strategy. I.e., h 2 �(H0) andH0 � W . By indution hypothesis, H0 � Y . Thus, h 2 �(H0) � �(Y ) � Y ,and h 2 Y .℄℄2. De�neL := fh 2 I j C does not have a winning strategy for the game that starts at hg:To show that �#= L, again the two ruial properties are veri�ed.(a) (Post-�xedpoint property.) L � �(L): Assume that h 2 L, i.e., C hasno winning strategy in h. Thus, D has a move H0 suh that h 2 �(H0) andH0 � L. Then �(H0) � �(L) and h 2 �(L).(b) (Co-indution.) Assume that Y � �(Y ). Want: Y � L. Let h 2 Y .Obviously, D an repeat playing Y ad in�nitum and, in doing so, demonstratesthat C annot have a winning strategy. Thus, h 2 L. a35



If I is the set of loal isomorphisms between two models A and B and� = �A;B is the Ehrenfeuht operator, the game desribed above is reminisentof the ordinary Ehrenfeuht game, with C playing the role of Spoiler and D thatof Dupliator. The di�erene is, that here, in position h 2 I, a move H by Dsuh that h 2 �(H) omprises in a sense all answers of Dupliator on moves ofSpoiler, and a next hoie by C of h0 = h [ f(a; b)g 2 H ompares to hoosingby Spoiler one of the possibilities that Dupliator (D) is o�ering with H.Note that, in this partiular ase, no move of D an be empty. Thus, a playan be �nite only if some position g 2 I is reahed in whih D annot move,i.e., for whih no H exists suh that g 2 �(H).Taking this parallel seriously, it is better to rede�ne winning so that D winsthe in�nite plays of the game, and C the �nite ones. For that ase, the aboveTheorem modi�es to the simpler:3.31 Theorem. D has a winning strategy in h i� h 2 �#.This shows that, indeed, the parallel is orret, sine also Dupliator has awin in h i� h 2 �#.Proof. ( If h 2 �# (= �(�#)), D persists in repeating �# and wins.) The set W = fh j h is a win for D g is a post-�xed point of � (and,hene, inluded in �#): Suppose that h is a win for D. Then D has a winningmove, that is: there is some H suh that h 2 �(H) and H � W . But then�(H) � �(W ), and h 2 �(W ). a

36



Chapter 4Appliations involvingCompatnessThis part exploits harateristis together with ompatness to prove severallassis of �rst-order logi. It is inspired by Barwise and van Benthem: Inter-polation, preservation and pebble games, JSL 64 (1999) 881{903 (modi�ed forthe �rst-order setting); it shows that harateristis provide a tool with whihall these results an be obtained in a uniform way.4.1 Interpolation & Co.The following Lemma onstitutes the basi trik involving Compatness that isused below.The proof uses (expansions of) model pairs, a onstrut that an be imple-mented in several ways.Model Pairs. Suppose that Ai is an Li-model (i = 1; 2) and L is the disjointunion of L1 and L2 together with two new unary relation symbols S1;S2. Themodel pair A = (A1;A2) is the L-model with universe A1 [ A2, with SAi = Ai(i = 1; 2), and where the symbols of the Li retain their old meanings.4.1 Lemma. Suppose that L = L1 \L2, and that A1 and A2 are L1, resp., L2-models suh that A1jL � A2jL. Then ountable models Bi � Ai exist (i = 1; 2)suh that B1jL �= B2jL.Proof. Assume that A1jL � A2jL. By Remark 3.5 (p. 25), for every n 2 INthere is a sequene R0 = >; : : : ; Rn of relations Ri � Ai1 �Ai2, satisfying1. for 0 6 i 6 n, if Ri(a1; : : : ; ai; b1; : : : ; bi), then f(a1; b1); : : : ; (ai; bi)g is aloal isomorphism between A1jL and A2jL, and2. for 0 6 i < n, if Ri(a1; : : : ; ai; b1; : : : ; bi), then both� 8a 2 A1 9b 2 A2 Ri+1(a1; : : : ; ai; a; b1; : : : ; bi; b), and� 8b 2 A2 9a 2 A1 Ri+1(a1; : : : ; ai; a; b1; : : : ; bi; b).37



These onditions on omplex models of the form (A1;A2; R0; R1; R2; : : :) (ex-pansions of model pairs) an be formulated in �rst-order terms, using new rela-tion symbols R0;R1;R2; : : :. Thus, by Compatness and Downward L�owenheim-Skolem, there is a ountable model (B1;B2; S0; S1; S2; : : :) satisfying Bi � Ai(i = 1; 2) and suh that the sequene S0; S1; S2; : : : obeys the above onditionsw.r.t. B1;B2 for all i.It follows that the assoiated set[i ff(a1; b1); : : : ; (ai; bi)g j Si(a1; : : : ; ai; b1; : : : ; bi)gof loal isomorphisms between B1jL and B2jL is a non-empty post-�xed pointfor the relevant game operator � = �B1jL;B2jL. Thus, � # is non-empty, themodels B1jL and B2jL are partially isomorphi, and hene (by Theorem 3.21p. 30), isomorphi. a4.2 Consisteny Theorem (Robinson). Suppose that Ti is a set of Li-sentenes (i = 1; 2) suh that T1[T2 has no model. Then there is an L-sentene' (where L = L1 \ L2) suh that T1 j= ' and T2 j= :'.Proof. Suppose that no suh ' exists. The following onstruts a model forT1 [ T2.Claim. For all n, there exist A j= T1 and B j= T2 suh that B j= "nAjL.Proof. Suppose this fails for the integer n. Consider the �nite set of L-sentenes� = f"nAjL j A j= T1g. Put ' = W�. It suÆes to show that both T1 j= ' andT2 j= :'.As to the �rst statement, assume that A j= T1. Then A j= "nAjL 2 �, andhene T1 j= W�.As to the seond one, assume that B j= T2 and B j= W�. Then for someA j= T1 we have that B j= "nAjL, ontraditing the assumption on n. aApplying Compatness to this Claim, we obtain A j= T1 and B j= T2 suhthat AjL � BjL. Applying Lemma 4.1, we obtain (ountable) A j= T1 andB j= T2 suh that AjL �= BjL. Identifying AjL and BjL results in a model forT1 [ T2. a4.3 Interpolation Theorem (Craig). Suppose that L = L1 \ L2, and thesentenes 'i 2 Li (i = 1; 2) are suh that '1 j= '2. Then a sentene ' 2 L (aninterpolant) exists suh that both '1 j= ' and ' j= '2.Proof. There is a standard easy argument using the Consisteny Theorem(taking T1 = f'1g and T2 = f:'2g). However, sine we also want to deal withLyndon's re�nement below, here follows the straightforward proof in the styleof the above one.Suppose there is no interpolant.Claim. For every n 2 IN there exist A j= '1 and B j= :'2 suh that B j= "nAjL.38



Proof. If this happens to be false for n, onsider the set � = f"nAjL j A j= '1g.Note that � is a �nite set of L-sentenes. We laim that W� is an interpolant.Indeed: if A j= '1, then A j= "nAjL 2 �, and, hene, A j= W�. And if B j= W�,say, B j= "nAjL, where A j= '1, then, by assumption on n, B j= '2. aAs in the proof of the Consisteny Theorem, Lemma 4.1 an now be appliedto yield a ounter-model to '1 j= '2. a30| Cf. Theorem 4.3. Suppose that 'i 2 Li (i = 1; 2) and L = L1 \L2. Showthat the following are equivalent:1. 8A;B(A j= '1 ^ AjL = BjL ) B j= '2),2. 8A;B(A j= '1 ^ AjL �1! BjL ) B j= '2),3. 8A;B(A j= '1 ^ AjL � BjL ) B j= '2),4. 9n8A;B(A j= '1 ^ AjL �n BjL ) B j= '2).4.4 Re�nement of the Interpolation Theorem (Lyndon). Same as 4.3,but the interpolant for '1 j= '2 has to satisfy additional polarity requirements:relation symbols (di�erent from =) ourring positively (resp., negatively) inthe interpolant should our positively (resp., negatively) in both '1 and '2.Proof. Modify the argument for 4.3 as follows.First, let Pi be the set of relation symbols R 2 L = L1 \ L2 that ourpositively in 'i (i = 1; 2) and let Ni be the set of R 2 L that our negativelyin 'i.De�ne the "nA;~a for n > 0 as before, but, this time, let "0A;~a be the onjuntionof (i) all atoms satis�ed by ~a in A that arry a relation symbol in P1\P2, (ii) allnegated atoms satis�ed by ~a in A that arry a relation symbol in N1 \N2, (iii)all =-atoms and negated =-atoms satis�ed by ~a in A. These are the obviousmodi�ations to make if one wants to preserve the (proof for the) Claim in theproof of 4.3, sine now, the interpolant W� has to satify the additional polarityrequirements.Note that these modi�ed harateristis are adequate w.r.t. the (asymmet-ri) Ehrenfeuht game on A and B in whih the winning ondition is hangedto: Dupliator has won in the terminal position f(a1; b1); : : : ; (an; bn)g i� (i)RA(~a) ) RB(~b) for R 2 P1\P2, (ii) RB(~b) ) RA(~a) for R 2 N1\N2, (iii) theorrespondene ai $ bi is one-one. That is, Theorem 3.2 (p. 24) (: Dupliatorhas a winning strategy for the length-n game i� B j= "nA) is literally true underthese modi�ations.The ondition B j= "nAjL means that a sequene R0 = >; : : : ; Rn of relationsRi � Ai � Bi exists satisfying the usual bak-and-forth-onditions; however,the modi�ations (i) and (ii) above entail that they do not need to ode setsof loal isomorphisms between AjL and BjL. What does hold is indiated in(i){(iii) above.After applying Compatness and L�owenheim-Skolem, we obtain a relationh � A�B, generated by the (proof of) Theorem 3.21. From the way in whih39



h is onstruted, we'll have that h is a bijetion between A and B. But again,for R 2 L, we'll only have that RA(a) ) RB(h(a)) when R 2 P1 \ P2, and:RA(a) ) :RB(h(a)), i.e.: RB(h(a)) ) RA(a), when R 2 N1 \ N2. Forsymbols in P1 \ P2 \N1 \N2, h preserves in both diretions (this is item 7 inthe list below). However, for the remaining symbols, there is no preservationby h in any diretion (items 5 and 6).For the rest of the argument to make sense, however, we need not only thatA j= '1 and B j= :'2, but also that AjL �= BjL, for we have to form one modelfor '1 ^ :'2 out of A and B by identifying AjL and BjL.The solution is to modify, in all ases but one, either the interpretation RAor RB of a symbol R 2 L, foring h to be an isomorphism for the modi�ations,but preserving '1 in the modi�ed A and :'2 in the modi�ed B.Note: w.r.t. '1, a relation symbol R 2 L an our either in P1 � N1, inN1 � P1, or in P1 \N1; and the same goes for '2. Hene, all in all, there are3 � 3 = 9 ases to be looked into. In the following list, both 1 and 2 onsidertwo ases eah, 3{7 onsider one ase eah.1. Replae RA by R(a) :� RB(h(a)) if R ours in P1 �N1 and P2.Note: sine, in this ase, RA(a) ) RB(h(a)) holds, we have that RA � R;and sine R 2 P1 �N1, '1 will still hold in the modi�ed A.2. Replae RA by R(a) :� RB(h(a)) if R ours in N1 � P1 and N2.Note: this time, R � RA, and sine R 2 N1 � P1, this preserves '1.3. Enlarge RB to R(b) :� RA(h�1(b)) if R ours in P1 \N1 and N2 � P2.Note that :'2 still will hold in the modi�ed B.4. Replae RB by the smaller R(b) :� RA(h�1(b)) if R ours in P1\N1 andP2 �N2.5. Replae both RA and RB by ? (\false") if R ours in N1�P1 and P2�N2.6. Replae both RA and RB by > (\true") if R ours in P1�N1 and N2�P2.7. In the remaining ase, where R ours in both P1 \N1 and P2 \ N2, norelation has to be hanged as preservation by h is already guaranteed. a4.5 De�nability Theorem (Beth). Suppose that L+ = L [ fRg and that Tis an L+-theory suh that for every two models A and B of T , if AjL = BjL,then RA = RB. Then an L-formula ' = '(x) (a de�nition of R w.r.t. T ) existssuh that T j= 8x(R(x)$ '):Proof. Again, there is a standard argument using Interpolation. However, herefollows a diret one using harateristis.Suppose no de�nition exists. We shall onstrut A;B j= T suh that AjL =BjL but RA 6= RB. 40



Claim. For all n there exist A j= T and a 2 A with RA(a), and B j= T andb 2 B with :RB(b), suh that B j= "nAjL;a[b℄.Proof. Suppose this fails for n. Consider � = f"nAjL;a j A j= T ^ RA(a)g. ThenW� is a de�nition for R: First, if A j= T and RA(a), then (sine A j= "nAjL;a[a℄),we have that A j= W�[a℄. Seond, if B j= T and B j= W�[b℄; say, B j= "nAjL;a[b℄,where A j= T and RA(a), then RB(b) holds by assumption on n. aThe rest of the proof is as usual, using Lemma 4.1. Note that we an takeare that, for the resulting (ountable) models A and B and the isomorphismh between AjL and BjL, there is a 2 A suh that RA(a) but :RB(h(a)). a4.2 Preservation under HomomorphismA sentene is preserved under homomorphisms if it is true of every homomorphiimage of one of its models.4.6 Lyndon's Theorem. A sentene is preserved under homomorphisms i� ithas a positive logial equivalent.Proof. For one diretion, positive sentenes are easily seen to be preserved.For the other, more diÆult one, we use the familiar argument, this time usingthe harateristis �nA relative to the homomorphism game (see p. 29).Suppose that � has no positive equivalent.Claim. For every n 2 IN there exist A j= � and B j= :� suh that B j= �nA.Proof. If this happens to be false for n, onsider the set � = f�nA j A j= �g.Note that � is a �nite set of positive sentenes. We laim that W� is a �rst-order equivalent of �. Indeed: if A j= �, then A j= �nA 2 �, and, hene,A j= W�. Conversely, if B j= W�, say, B j= �nA, where A j= �, then, byassumption on n, B j= �. aThe rest of the proof follows the by now familiar pattern. The onditionthat B j= �nA an be rewritten (In a way similar to Remark 3.5 p. 25) as theexistene of a �nite sequene of relations R0 = >; : : : ; Rn oding sets of loalhomomorphisms that satisfy the usual bak-and-forth properties.By Downward L�owenheim-Skolem and Compatness, we obtain a ountableomplex (A;B; R0; R1; R2; : : :) with A j= �, B j= :�, and suh that[i ff(a1; b1); : : : ; (ai; bi)g j Ri(a1; : : : ; ai; b1; : : : ; bi)gis a post-�xed point for the relevant game operator. Thus, A and B are partiallyhomomorphi; and it follows that B is a homomorphi image of A. Thus, �isn't homomorphism-preserved. a41



31| ( Lo�s-Tarski) Show that a sentene is preserved under model-extensionsi� it has an existential equivalent.Hint. Modify the harateristis appropriately: "0A;~a is as before, but, this time,"n+1A;(a1;:::;ak) isVa2A 9xk+1"nA;(a1;:::;ak;a). Note: this modi�ation yields existentialformulas.32| An L [ fRg-sentene � is preserved under R-extensions if for every twomodels A and B, if A j= �, AjL = BjL and RA � RB, then B j= �.Show: a sentene is preserved under R-extensions i� it has an R-positiveequivalent.4.3 Modal Logi4.7 Theorem. (van Benthem) If a �rst-order formula in one free variableis preserved under bisimulation, then it has a modal equivalent (that is: anequivalent that is the standard translation of some modal formula).Proof. The \modal" voabulary has a binary \aessibility" relation symbolR plus unary relation symbols Uj (j 2 J). (Kripke) models are of the formA = (A;RA;UAj )j2J . If ' = '(x) is a formula with one free variable, byA; a j= ' we mean that A j= '[a℄. For a model A and an element a 2 A, de�nethe formulas �na = �nA;a in one free variable as follows:1. �0a(x) is the onjuntion of all Uj-literals Uj(x) and :Uj(x) that are sat-is�ed by a in A.2. �n+1a (x) = VRA(a;b) 9y(R(x; y) ^ �nb (y)) ^ 8y(R(x; y)! WRA(a;b) �nb (y)).Note that these are all (standard translations of) modal formulas. Obvi-ously, we have that A; a j= �na .Suppose that the �rst-order formula �(x) is preserved under bisimulation,but has no modal equivalent.Claim. For all n there are A; a j= � and B; b j= :� suh that B; b j= �nA;a.Proof. If this is false for n, onsider � = f�nA;a(x) j A; a j= �g; now W� wouldbe a modal equivalent for �:If A; a j= �, then �A;a 2 �, and hene A; a j= W� holds.Conversely, if B; b j= W�, say, B; b j= �nA;a where A; a j= �, then B; b j= �by assumption on n. aClaim. Suppose that B; b j= �nA;a holds. Then relations R0; : : : ; Rn � A � Bexist suh that1. if Ri(u; v), then UAj (u) , UBj (v) (j 2 J),2. R0(a; b),3. (forth) i < n, Ri(u; v) and RA(u; u0) imply 9v0 2 B[RB(v; v0)^Ri+1(u0; v0)℄,(bak) similar. 42



Proof. De�ne Ri(u; v) :� B; v j= �n�iA;u . aBy Compatness we �nd A; a; B; b; and R0; R1; R2; : : : � A � B suh thatA; a j= �; B; b j= :�; and suh that the onditions of the seond laim aresatis�ed for all i. It follows that A; a and B; b are bisimilar, ontraditing theassumption on �. a4.8 Interpolation. If '1 and '2 are modal formulas suh that '1 j= '2, thena modal formula ' (an interpolant) exists suh that '1 j= ', ' j= '2, and everyrelation symbol Uj in ' ours in both '1 and '2.Proof. Suppose that '1 j= '2, but an interpolant doesn't exist.Modify the de�nition of the �nA;a by allowing, in �0a, only Uj-literals whereUj ours in both '1 and '2.Claim. For all n there are A; a j= '1 and B; b j= :'2 suh that B; b j= �nA;a.By Compatness, obtain A; a j= '1, and B; b j= :'2, suh that A; a and B; bare bisimilar w.r.t. relations ommon to the two formulas.Needed: amalgamation into one model. . . a4.9  Lo�s-Tarski Theorem. If a modal formula is preserved under modelextensions, it has an existential modal equivalent.Proof. Modify the above de�nition of the �n by putting�n+1a (x) = ^RA(a;b) 9y(R(x; y) ^ �nb (y)):Suppose that �(x) is modal and preserved under model extensions, but has noexistential modal equivalent.Claim. For all n there are A; a j= � and B; b j= :� suh that B; b j= �nA;a.By Compatness, obtain A; a j= �, B; b j= :� and R0; R1; R2; : : : � A�B,where now only the \forth" ondition is satis�ed.It suÆes to �nd a submodel B0 � B suh that B0; b bisimulates A; a. PutR = SnRn. De�ne B0 = SnBn, where B0 = fbg, and Bn+1 is the least set� Bn suh thatR(u; v), v 2 Bn and RA(u; u0) imply 9v0 2 Bn+1 R(u0; v0). a4.4 Lindstr�om's TheoremThe same argument is used one more to prove Lindstr�om's Theorem, whihsays that L�owenheim-Skolem and Compatness haraterize �rst-order logi inthe following sense: 43



4.10 Lindstr�om's Theorem. There is no logi that properly extends �rst-order logi and still satis�es the Downward L�owenheim-Skolem and Compat-ness Theorems.Before proving this, you should get explained what is meant here by \alogi" that \properly extends �rst-order logi".4.11 Logi. A logi is a shema Z that assoiates to any voabulary L a setZ(L) of sentenes together with a truth-relation j= (better: j=Z(L)) betweenL-models and sentenes from Z(L) suh that the following onditions hold:1. Isomorphi models have the same true Z-sentenes.2. Suppose that L extends the voabulary (L1; L2) that goes with modelpairs (A1;A2) built from an L1-model A1 and an L2-model A2. Thenfor every � 2 Z(Li) (i = 1; 2) there must be a sentene �i 2 Z(L) suhthat for all Li-models Ai (i = 1; 2), if (A1;A2; : : :) is an L-expansion of(A1;A2), then: (A1;A2; : : :) j= �i , Ai j= � (i = 1; 2):I.e.: in the logi Z we an express, relative to (A1;A2; : : :), that � holdsin one of the omponent-models.Remark. First-order logi is, indeed, a logi in the sense of 4.11.What it means for a logi to (properly) extend �rst-order logi, we leavemostly to the reader's imagination. One example is the logi obtained from �rst-order logi by adding a quanti�er symbol F with the meaning that A j= Fx'(x)holds i� fa 2 A j A j= '[a℄g is �nite. Note that, e.g., Fx(x=x) and 8yFx(x < y)have no �rst-order equivalent.What we need for the proof is: losure under negation (with the usualmeaning) and inlusion of all �rst-order sentenes in the given voabulary. Weneed the Downward L�owenheim-Skolem Theorem in the following form: everysatis�able set of sentenes in a ountable voabulary has a ountable model.Proof of Lindstr�om's Theorem. Let Z be a logi satisfying the onditions,L a �nite voabulary, and � an arbitrary sentene in Z(L). We are going toshow that � is �rst-order, that is: has a �rst-order equivalent.The proof is by ontradition. Thus, suppose that � is not �rst-order.Claim. For every n 2 IN there exist A j= � and B j= :� suh that B j= "nA.Proof. If this happens to be false for n, onsider the set � = f"nA j A j= �g.Note that � is �nite. We laim that W� is a �rst-order equivalent of �. Indeed:if A j= �, then A j= "nA 2 �, and, hene, A j= W�. Conversely, if B j= W�,say, B j= "nA, A j= �, then, by assumption on n, B j= �. aThe proof is �nished in the usual way, using Lemma 4.1, by onstruting(ountable) A j= � and B j= :� suh that A �= B, ontraditing stipula-tion 4.11.1. a44


