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Chapter 1

The Game

The notion of an Ehrenfeucht-Fraissé game provides a simple characterization
of elementary equivalence with straightforward generalizations to several lan-
guages other than first-order, which, for simple models (such as linear order-
ings, trees), is easy to apply. Besides, it is almost the only technique available
in finite-model theory (where Compactness and Lowenheim-Skolem are of no
use).

The following introduction to the subject is mainly focussed on the general
theory. There are some 30 exercises, marked with é.

1.1 Basics

1.1 Models. For the time being, a model is a couple A = (A, R4) where A is
a (usually, non-empty) set and R4 C A x A is a binary relation on A.

Examples we’ll often come across:

e w=(IN,<),

L C = (Zv <)7
n=(Q,<),
A= (IR, <).

e L,=({0,...,n—1},<).

1.2 Isomorphism and Local Isomorphism. An isomorphism between mod-
els A = (A,R) and B = (B, S) is a bijection h : A — B such that for all
a,a’ € A: aRa' < h(a)Sh(d).

A local or partial isomorphism between A and B is a finite relation h with
Dom(h) C A, Ran(h) C B, that preserves equality and relation; i.e., such that
for all a,a’ € A and b, b’ € B with (a,b),(a’, V') € h:

° a:al<:>b:bl,

e aRd < bSV.



(Equivalently: h is a finite injection A with Dom(h) C A, Ran(h) C B, and for
all a,a’ € Dom(h): aRa’ < h(a)Sh(ad').)

1.3 Examples.
1. The empty relation () is a local isomorphism between every two models.
2. Every (finite) part of a (local) isomorphism is a local isomorphism.

3. A composition of local isomorphisms is a local isomorphism. l.e.: if ¢ :
A — B is a local isomorphism between A and B, and h : B — C'is a local
isomorphism between B and C, then ho g (the map a — h(g(a)), where
a € Dom(g) and g(a) € Dom(h)) is a local isomorphism between .4 and
C.

4. The relation {(0,0),(2,e),(5,7)} is a local isomorphism between (7, <)
and (IR, <).

The last example illustrates that a local isomorphism doesn’t need to be part
of an isomorphism.

1.4 Lemma. A local isomorphism is the same as an isomorphism between
submodels.

L.e.: his alocal isomorphism between (A, R) and (B, S) iff it is an isomorphism

between (Dom(h), R/ Dom(h)) and (Ran(h), S|Ran(h)).

1.5 Ehrenfeucht game. Any two models A, B, together with an integer
n € IN, determine an Ehrenfeucht Game of length n.

It is played by two players: Spoiler and Duplicator. In a play of the game,
Spoiler and Duplicator move alternatingly, until n moves have been made by
each player.

One pair of moves consists of first Spoiler choosing an element from one of
the models, and next Duplicator choosing an element from the other model.

At the end of such a play, the n pairs of moves build a finite relation be-
tween A and B. Duplicator wins iff this finite relation happens to be a local
isomorphism. (In the opposite case, Spoiler wins; every play of the game is won
by one of the players: a draw is not possible.)

Remarks.

1. Repeating previous moves is not excluded and even necessary if there
are few elements. But to repeat moves unnecessarily is not a smart
thing to do for Spoiler, and if Spoiler doesn’t repeat a move, it is best
for Duplicator not to repeat moves either.

2. Tt may become evident that Spoiler wins before all 2n moves have been
played. But for Duplicator to win, all 2n. moves have to be executed.



3. The intuition behind the game is, that Duplicator aims at showing that
the models in some way look alike; it is Spoiler’s goal to spot differences.
The longer the game, the easier it can be for Spoiler and the harder for
Duplicator to win.

4. Duplicator wins a game of length 0 immediately: there are no moves, the
relation built up is empty, and the empty relation is a local isomorphism
between any two models.

5. In some cases below, the game is played in a situation with an empty
model. In that case we agree that a player who cannot move loses. Thus,
if A is empty and B isn’t, then Spoiler wins a game of positive length by
playing an element of B. However, if A = B = (3§, Duplicator wins.

Example. The length 3 game on ( := (Z,<) and X := (IR,<). Suppose
Spoiler and Duplicator play as follows:

|S D|S D|S D
Z 20 5
R

€ s

The end result is {(0,0), (2, e), (5, 7)}, which happens to be a local isomorphism.
Duplicator has won.

The obvious question in this example is: did Duplicator won by luck, or is
he clever?

1.6 Winning Strategies. A strategy for a player is a rule that tells him how

to play in every position of the game in which he has to move.

For instance, a strategy for Spoiler in the length n-game on A and B is
a function that assigns, to every relation {(a1,b1),..., (am,bn)} € A x B for
which 0 < m < n, an element in AU B.

A strategy o for Spoiler is winning if Spoiler wins every play in which he
uses o, no matter what Duplicator does.

The notion of a winning strategy for Duplicator is defined analogously.

Example, continued. So the question is: has Duplicator a winning strategy in
the length-3 game on ¢ and A?

Try to answer this, and the same question for the games of lengths 2 and 4
on these structures.

A Few Games. An intuition for the game can be developed by just playing it.
Figure out whom of the players has a winning strategy in the length-3 games
on the following models, and try to describe it.
1. wand n;
w and (;

w and w 4 w (the ordered sum of two copies of w).



2. Lg and Ly;
L7 and Lg.

3. w+ L; +w* (where * inverts the ordering) and w + Ly + w*;
w~+ Lo + w* and w + L3 + w*.

4. L7 and w + w*.

5. wand w+ (.

1.2 Elementary Properties

1.7 Notation. D(A, B,n) expresses that Duplicator has a winning strategy in
the length-n game on A and B.

One glance a Theorem 2.4 (p. 12) explains that this is the notion we’ll be
interested in.

1.8 Lemma.
1. D(A.B,n) A m<n = D(A B,m),
2. D(A,B,n) = D(B,A,n),
3. A~ B = VnD(A, B,n),
4. D(A,B,n) A D(B,C,n) = D(A,C,n).

1.9 Determinacy. In every Ehrenfeucht game exactly one of the players has
a winning strateqy.

Proof. Of course, both players can’t have winning strategies for the same game.

A game in which one of the players has a winning strategy is called de-
termined. We prove the stronger result that every 2-person game that has no
draws and in which all plays are finite is determined. (Thus, it is neither nec-
essary that all plays have the same finite length, nor that players have to move
alternatingly.)

Suppose given such a game with players I and II.

Let T be the set of all positions that can occur while playing it. In particular,
there is an initial position ty € T. For t € T, there are 3 possibilities: it is I's
turn to move at ¢, it is II's, or ¢ is terminal: game over, in which case the rules
of the game determine which of the two players has won.

For s,t € T, write s — t if the position ¢ can be reached from s by one move
of the player whose turn it is to move in s. Thus, a play of the game has the
form

to >t — >,

where t,, is terminal.

Let us call a position t € T' determined if one of the players has a winning
strategy for the subgame that starts at ¢. Trivially, terminal positions are
determined (the winning strategy of the player who has won is doing nothing.)
The theorem states that the initial position ¢y is determined.



Claim. Ifs € T is not determined, then some t « s is not determined.

From this, the theorem follows: if the initial position #y isn’t determined,
there is some t; « tg that isn’t, hence some ty « t; is not determined, etc etc;
and we end up with an infinite sequence tqg — t; — to — ---, contradicting the
finiteness assumption on plays.

To prove the Claim, assume s € T is not determined. As hypothesis for a
proof by contradiction, suppose that every ¢ « s is determined.

First, note that s can’t be terminal, since terminal positions are trivially
determined. Thus, one of the players has to move in position s; and we may as
well assume that this is player I.

(a) There exists t «- s such that I has a winning strategy o = oy in t.
Then I has a winning strategy in s as well: it consists of executing the move
s — t, followed by the winning strategy o;. Contradiction.

(b) There doesn’t exist t « s such that T has a winning strategy in t.
Then, by assumption (every ¢ « s is determined), IT must have a winning
strategy 7; in every position t « s. It follows that Il has a winning strategy
in s: it consists of first waiting what I's move s — t will be (s is not terminal
and it’s I's turn to move), followed by the winning strategy 7;. Contradiction
again. o

1.10 Corollary. (Zermelo, Euwe) In the game of chess, either White has a
winning strateqy, or Black has a strategy with which he cannot lose.

This application clearly shows the purely theoretical nature of the determi-
nacy proof.

1& Winning strategies for Duplicator and transfer. The existence of a
winning strategy for Duplicator can be used to transfer truth from one model
to the other. (The explanation of this phenomenon follows in Chapter 2.)

1. Assume that D((4, R), (B, S5),2), and that the relation R is symmetric
(Yay,as € A(aRay = asRaq). Then S is symmetric as well.

2. Assume that D((A, R), (B, S),3), and that the relation R is dense. (R is
dense if Ya,be A(aRb = Jc€ A(aRc N c¢Rb).) Then S is dense too.

3. Assume that D((A, R), (B, S),3), and that R is confluent. (R is confluent
if Va,by,b € A(aRby AN aRby = Jc€ A(byRc N baRc)).) Then also S is
confluent.

Conversely, every specific first-order sentence that holds in A and is false
in B can be transformed into a winning strategy for Spoiler for an Ehrenfeucht
game of suitable length. (Of course, this follows from the above statement using
determinacy. But the direct argument is illuminating.)

2%

1. Suppose that R is symmetric, but S isn’t. Describe a winning strategy
for Spoiler in the length-2 game on A = (A, R) and B = (B, 5).



2. Suppose that R is dense but S isn’t. Describe a winning strategy for
Spoiler in the length-3 game.

3. What about the case for confluency?

1.11 Proposition Suppose that A has n elements.
1. If D(A, B,n), then there exists an embedding of A into 5.
2. If D(A,B,n+1), then A= B.

Proof. 1: Let Spoiler enumerate the elements of A and Duplicator use his
winning strategy. 2: An isomorphism is the same as a surjective embedding.

_|

3& Find a simple condition on n and the number of elements of A and B that
is both necessary and sufficient in order that D((A,0), (B,0),n) (both relations
empty) holds.

1.3 A Few Examples

In the case that A and B are linear orderings, a statement that D(A, B,n) can
often be shown using induction on n.

1.12 Notation. If < linearly orders A, and a € A, then the notation a1 is
used for the submodel of (A, <) with universe {re A | a < z}.
Similarly, a| is the submodel of (A, <) that has universe {r€ A | x < a}.

E.g., =11 may denote the submodel (IN, <) of (%, <).
Remarks.
e Thus, if a € A, then (A4,<) =al +{a} +a7.
e If a is the greatest (resp., the least) element of A, then a? (al) is empty.

1.13 Splitting Lemma. For linear orderings A and B, D(A,B,n + 1) holds
iff, both

(“forth”) Ya€e AIbe B [D(al,bl,n) A D(at,bT,n)], and
(“back”) Ybe B3a€ A [D(al,bl,n) A D(at,bT,n)].

1.14 Example. For every n, we have that D(\,n,n).
(In this particular case, Duplicator’s winning strategy doesn’t depend on n.)

1.15 Proposition. k,m >2" —1 = D(Li, Ly, n).



Proof. Induction w.r.t. n, using Lemma 1.13.
Basis. n = 0.
Trivial, since the empty relation always is a local isomorphism, and this is the
relation built up after 0 moves. (If you find this tricky, just check the case for
n=1.)
Induction step.
Induction hypothesis: the statement holds for n.
Now suppose that k,m > 2"+! — 1. In order that D(Lj, L,,,n + 1), it suffices
(according to Lemma 1.13) to show that (“forth”) for every element i of Ly, there
is an element j in L,, such that D(iJ,7|,n) and D(i 1,7 1,n), and conversely
(“back”: for every j in L, there should be an 7 in Ly such that D(i ], j |, n)
and D(i71,71,n) — but the situation is symmetric in & and m so it suffices to
only check the “forth”-claim).

Thus, suppose that i is an element of L. Distinguish 3 cases, depending on
whether ¢ is located “left”, “right”, or “in the middle” of Ly.
(i) i} has < 2" — 1 elements.
Pick j in L,, such, that i [ j|. (This is possible, since m > 2"*! —1.) Then
D(i |, },n). Furthermore (since k,m > 2"T! = (2" — 1)+ 1+ (2" — 1)), i1
and j 1T have at least 2" — 1 (in fact, at least 2") elements, and so D(i 1,71, n)
follows from induction hypothesis.
(i) i1 has < 2" — 1 elements.
Pick j such that i1 j 7, and argue as under (i).
(iii) 7] and i1 both have > 2" — 1 elements.

Claim. j € L, exists such that both j| and jT have > 2™ — 1 elements.
Proof. Because of m > 2"t and 27! — 1 = (2" — 1) + 1 + (2" - 1). =

Pick such a j. By induction hypothesis, D(il,jl,n) and D(it,j1,n) hold.
_|

1.16 Proposition. Ifm > 2" — 1, then D(w + w*, Ly, n);
more generally, for every linear ordering a: D(w + (¢ - ) + w*, Ly, n).

Proof. Another induction. =

1.17 Lemma.

1. D(ay,B1,n) A D(az, B2,n) = D(ar + az,B1 + B2,n).

2. More generally: if I is a linearly ordered set and for all i € I o; and j3;
are orderings s.t. D(o, Bi,n), then D(D ;o i Y icp Binn).

1.18 Proposition. For all n € IN:

1. D(w,w +¢,n);

more generally: for any o, D(w,w+ ¢ - a,n),



2. D(C. ¢+ ¢, n);

more generally: for any a: D(¢, ¢ - a,n).

Proof. I: w= (2" -1)+w, w+ ( = (w+ w*) + w. Use Proposition 1.16 and
Lemma 1.17.1.
2: Similar. o

B, is the (unordered, rooted) binary tree all of whose branches have length
m. This tree can be represented as the set of finite sequences of 0’s and 1’s
of length < m, partially ordered by s < ¢ = s is an initial segment of . The
length-0 sequence is the root in this tree.

The following is reminiscent of Proposition 1.15 (p. 6), but its proof is
somewhat harder.

1.19 Proposition. m.k > 2" -1 = D(B,,, Bg,n).

Proof. Induction w.r.t. n. The case n = 0 (or n = 1) is trivial. For the
induction step, suppose that m,k > 2"t! — 1. The reader is urged to draw
pictures.

Let a € B,;, be the first move of Spoiler.

In the linear ordering-case, an element induces a splitting of the ordering
in (that element and) two halves, and we can use Lemma 1.13. In the present
tree-case, the element a can be used to split By, in three (or four) parts:

e the element a,

e the two top-subirees, the roots of which are the two immediate successors
of a (these trees are empty if a happens to be maximal),

e the poset a /= {t | a A t} that consists of the linear ordering a |= {t |
t < a} plus the “side-trees” sprouting from a | (a  being empty if a
happens to be the root of B,,).

Notation: fori <a, T; ={t|i <t A(t ZaNa A t)} denotes the side-tree
from a /, the root of which is the immediate successor of ¢ that is £ a.

As in the proof of 1.15, distinguish the following cases.

(i) al has < 2" — 1 elements.

Duplicator chooses b € By such that b|= a].

It now suffices to indicate that Duplicator wins the n-round games on cor-
responding parts in the decompositions of the two trees B, and Bj that are
induced by a and b.

Since |al | = |b) | < 2" —1, the top-trees above a and b have height > 2" —1;
thus, by IH, Duplicator has winning strategies for the n-round games on the two
pairs of top-trees.

On the posets a /, b /, Duplicator counters in a | and b | using the
isomorphism between these linear orderings, and he counters in side-trees that
correspond under this isomorphism using winning strategies for the n-round
games. These strategies exist according to TH (note that all side-trees have
height > 2™).



(ii) The subtree with root a has height < 2".

It clearly suffices to decompose the two trees as B, = T} U (B,, — T1) resp.,
By =T, U (By — Tb), in such a way that a € Ty, D(T1,T>,n + 1), and D(B,,, —
Ty, By, — Ty, n).

Choose @ < a such that the subtree T} with root @ has height exactly 2".
Decompose By, in Ty and a /= B,, — T}, the latter consisting of the linear
ordering @ | of length > 2" — 1 and the side-trees T; (i < @), all of them of
height > 2".

Similarly decompose By into some subtree T5 of height ezactly 2" with root
b and the rest b /= By, — Ty, which consists of, again, the linear ordering b of
length > 2" — 1 with side-trees T (j < b) of height > 2".

We now have that T} = Ty, and hence, D(Ty, T, n + 1).

Now D(@ /,b ./, n) follows from Proposition 1.15 and IH, as follows. Fix:

e a winning strategy o for Duplicator for the n-round game between @] and
bl (using 1.15),

e a winning strategy o;; (for each i < @, j < b) for Duplicator for the n-round
game between the side-trees T; and T} (using IH).

Moves by Spoiler in @/, b| are now countered by Duplicator using 0. A move it
of Spoiler in, say, T;, ¢ < @, is countered as follows. First, o produces an answer
j < b to i (and possibly earlier moves or elements considered in @/, b|). Next,
o;j produces an answer j* to it (and possibly earlier moves in T;, T}).

(iii) @) has > 2™ — 1 elements and the subtree with root a has height > 2".
Duplicator selects an element b € B, with the same properties.

Decompose B, and By as under (i) using a resp., b. It suffices to see that
Duplicator has winning strategies for the n-round games on corresponding parts
in the decompositions.

Use TH for the top-trees above a and b (which have height > 2" — 1). To
see that D(a /,b /,n), again, fix:

e a winning strategy o for Duplicator for the n-round game between a] and
bl (using 1.15),

e for every i < a, j < b, a winning strategy o;; for Duplicator for the n-round
game between the side-trees T; and T} (using IH).

The strategy followed by Duplicator is the same as under (ii). -

The (finite) binary tree C = C(L,,, By,,-.., By, ) is the disjoint union of
the linear ordering L,, = ({0,...,m — 1},<) and the m + 1 finite binary
trees By,,..., By, by letting each ¢ € Ly, (i = 0,...,m — 2) be the immedi-
ate predecessor of the root of B;, and, moreover, by letting the greatest element
m — 1 € L, be the immediate predecessor of the roots of both B; , and By, .

Similarly, the (infinite) binary tree D = D(w, Bj,, Bj,, Bj,, . . .) is the disjoint
union of the linear ordering w and Bj,, Bj,, Bj,, ... by letting each i € w be the
immediate predecessor of the root of Bj,.

1.20 Proposition. m.ly, ..., Iy, jo,j1,72,-.. =2 2" —1 = D(C,D,n).



Proof. Induction w.r.t. n.

For the induction step, assume that m, g, ..., Ly, jo.j1.jo, ... = 2" T — 1.

In the following we show that (“forth”), for every a € C, we can decompose
C = C1UCy and D = D1UDs such that a € C1, D(Cy, Dy, n+1), and D(Ca, Do, n),
and (“back”) a similar claim holds for every b € D. Draw pictures illustrating
these decompositons!

If a € C is the first move of Spoiler, we may, by swapping B;, |, and B,
wlog assume that a € ¢y =C - B, = L,, UB), U---B;, ,. Cis decomposed
into C; and C2 = By, .

Choose k > 2"T! — 1 in w so large that, if b € D happened to be the first
move of Spoiler, then k& £ b. D is decomposed into into DyUDs, where D1 = k /
is the initial segment Ly = {0,....k — 1} of w plus the side-trees Bj,,...,Bj, |
(thus, k£ has been chosen such that a possibly first move of Spoiler in D happened
in Dy), and Dy is the rest: the subtree with root &, which consists of the part
{k.k+1,k+2,...} of w, plus side-trees Bj,, Bj, ., Bj, ;- -

We now have that D(Cy, D1,n + 1), as in parts (ii) and (iii) of the proof of
Proposition 1.19, using the result of this proposition.

What we need, furthermore, is that D(B;, ,D2,n). To see this, simply
rewrite B; , in the notation for C that is explained immediately above 1.20, as
By, =C(Lon_1,Byy, ..., Bi,,_,). where lg, ... lon_1 > 2". From this, it is clear
that D(By,,, D2, n) follows by IH. -

4% (P(A),C) is the model in which P(A) is the set of all subsets of A. Show:
1. If A and B are infinite, then for all n € IN: D((P(A),C),(P(B),C),n).

2. 1f |A,|B| > 2", then D((P(A), <), (P(B), C).n).

10



Chapter 2

Logic

2.1 Main Theorem

Models, Formulas. There is no reason to stick to just one relation; models
are allowed to have the form A = (A, R, S,...) with finitely many relations (of
any arity) R, S, ... over the universe A. Consequently, atomic formulas have the
form: x=y, R(x1,...,2n), S(x1,...,2m), .. From these, (first-order) formulas
are built using connectives and quantifiers.

2.1 Quantifier Rank. The quantifier rank qr(yp) of a (first-order) formula ¢
is the maximum number of nested quantifiers in ¢. Le.:

1. for atomic ¢, qr(p) = 0,

2. qr(=p) = ar(p),

3. qr(p = ¥) =ar(p A Y) =ar(p V ) = qr(p < ¥) = max(qr(y), qr(¢)),
4. qr(Vep) = qr(Jre) = ar(e) + 1.

Examples. The quantifier rank of Va(JyzRy A Jy—xRy) is 2. The confluency
sentence (Exercise 1 p. 5) Va,y1,y2(xRy1 A 2Rys — Jz(y1Rz A y2R2)) has
rank 4. Tts logical equivalent Yy, yo(Fz(zRy1 A 2Ry2) — Fz(y1Rz A y2R2))
has rank 3.

2.2 Equivalence and n-Equivalence. Models A and B are (elementary, first-
order) equivalent if they have the same true first-order sentences. Notation:
A=EB.

They are n-equivalent if they have the same true sentences of rank < n.
Notation: A =" B.

Thus: A = B holds iff, for all n € IN, we have that A =" B.

Example. Ly and L3 are not 2-equivalent: a distinguishing rank-2 sentence is
Jy(Fx(z < y) A Fz(y < 2)). These models are equivalent w.r.t. sentences with
two quantifiers only.

11



2.3 Lemma. For every k and n there are, up to logical equivalence, only finitely
many formulas with at most x1, ...,z free and quantifier rank < n.

Proof. This is due to the fact that a vocabulary consists of finitely many
relation symbols. The proof uses induction w.r.t. n, using disjunctive normal
forms. In the induction step for n + 1, use that the quantifier rank < n + 1
formulas with at most z1,...z; free are, up to logical equivalence, generated
using the booleans from (i) the quantifier rank < n formulas with at most
x1,...xk free; and (ii) the formulas Jag 1 with ¢ of quantifier rank < n and
at most a1, ...z, xxy1 free. (Thus, the TH is used for k + 1 instead of k.)

2.4 Main Theorem. D(A,B,n) & A="B.

In Ehrenfeucht’s game, it is clear from the proof below that the moves
are “meant” as values for bound variables. But formulas are built, next to
quantifiers, from connectives as well. So: what is left of the connectives in the
Ehrenfeucht game?

2.5 Corollary. VnD(A,B,n) & A=B.

2.6 Examples. (Q,<) = (IR, <) (By Example 1.14 p. 6, for all n, D(n, \,n));
(N, <) = (N + Z, <) (By Proposition 1.18.1 p. 7, for all n, D(w,w + {,n)).

Proof. (Of 2.4.) The following generalisation can be handled using induction.
N.B.: asin the proof of Lemma 2.3, k needs to be kept variable: in the induction
step for k and n + 1, TH is applied for n and k + 1.

2.7 Lemma. For all n and every finite relation h = {(a1,b1),..., (ag,bg)} C
A x B, the following conditions are equivalent:

1(n) Duplicator has a winning strategy in position h in the length-(k +n) game
on the models with n more rounds to go,

2(n) for all formulas ¢ = (a1, ..., x1) with qr(¢) < n, we have that

.A|: ga[a],...,ak] ZﬁB‘: Sﬁ[bh---,bk]-

Basis: n = 0.
In fact, the following are equivalent:

1(0) h is a local isomorphism (= Duplicator has a win with 0 rounds to go),

2'(0) for all atomic formulas ¢ with Var(y) C {x1,...,x} we have that

.A\:go[a],...,ak] lﬁB|: (p[bh...,bk],

2(0) for all formulas ¢ with Var(¢) C {z1,..., 2} and qr(p) = 0 we have that

.A\:go[a],...,ak] lﬁB|: (p[bh...,bk].

12



N.B.: For h = () all three conditions hold: 1(0), since ) is a local isomorphism
between every two models, and 2'(0) and 2(0) since there are no atomic or
rank-0 formulas without free variables.

Induction step.

Induction hypothesis: the equivalence 1(n) < 2(n) holds.

I(n+1) = 2(n+1). Suppose that Duplicator has a win in position h in the
length-(k4+n+1) game with n+1 more rounds to go. Here follows proof that, for
all o = p(1,...,7x) with qr(¢) < n+1, A = ¢lar, ..., ax] iff B = @[by,... bk

Induction w.r.t. ¢.

Since h is also a win for Duplicator in the length-(k + n) game, by induc-
tion hypothesis we get the required equivalence for formulas of rank < n, in
particular, for atomic ones. Induction steps for the connectives are effortless.
Quantifier case:

Assume A | g v]ar, ..., ag], where qr(¢)) < n. Thus, let ag1 € A be
such that A = ¢[ay, ..., ak, ags1].

Consider a1 as a move of Spoiler in position h in the length-(k4+n-+1) game.
Since h is a win for Duplicator, there is a move by;1 € B bringing Duplicator to
a position ' := h U {(ags1,br+1)} that, again, is a win for Duplicator.

By induction hypothesis applied to h’, we have that for all formulas ¢ =
o(xy, ...,z xppq) with qr(e) < n: A = ¢lar, ..., ax, agyq] is true iff B =
@[b1, ... b, bgy1]. Inparticular, B = ¢[by, ..., b, bry1], and hence B |= Jwp190[b1, . .., byl

2(n+1) = 1(n+1). Suppose Spoiler chooses a1 € A. We show that Duplicator
has an answer b1 € B bringing him into a position ' := hU{(agy1,bk11)} in
the length-(k + n + 1) game that is won for him. (The conclusion being, that
Duplicator had a win already in position h.)

Consider the set

O = {p(x1,..., 2k 2k41) | ar(e) <n A A Eplar, ..., ap, ap11]}-

By Lemma 2.3 there is a finite subset ® C ® such that every element of ® has
an equivalent in @'

Clearly, we have that A = Jx441 A\ ®'[a1, ..., a;]. By condition 2 and since
qr(Frg1 A D) < n+ 1, it follows that B = Jagq A ®'[b1,...,b]. Say, B =
NP [b1,. .., bg, by1].

Claim. If qr(p) < n, then: A= glay, ... app] iff BE= olbr, ..o byga].

This follows from the choice of ® and by 1. The required conclusion follows
using the induction hypothesis. o

Constants. The Ehrenfeucht game for models with constants is played exactly
as before, but now, a finite relation h is called a local isomorphism between
(A,aq,...,a) and (B,by,...,bx) where A and B are purely relational  if
hU{(a1,b1),...,(ag,b;)} is a local isomorphism between A and B in the old
sense. Equivalently (as above, 2/(0)): a local isomorphism is a correspondence
that preserves satisfaction of atomic formulas.

13



2.8 Corollary. The Main Theorem 2.4 is valid for languages with finitely many
constant symbols.

Proof. Immediate from Lemma 2.7. Suppose that the models A" = (A, ay, ..., a)
and B’ = (B,by,...,b;) expand the purely relational models A and B with &
constants each. Put h = {(aq,b1),...,(ag,b;)}. Then the following conditions
are equivalent:

1. Duplicator has a winning strategy in the length-n game on the models A’
and B,

2. Duplicator has a winning strategy in position h in the length-(k+n) game
on the models A and B with n more rounds to go,

3. for all formulas ¢ = @(x1,...,2%) with qr(p) < n, we have that
A= play,...,a] it BE @[by,..., b,
4. for all sentences ¢ = p(cq,...,c;) with qr(yp) < n, we have that
A Epiff B =
4

Remark. You can now see what finiteness of the vocabulary is good for. For
instance, let B be a proper elementary extension of (IN,0,1,2,...). (Every
proper extension of this model happens to be an elementary one.) Spoiler can
already win the length 1 game on these models by choosing an element of B
outside IN. A similar example with (IN,0,S) (where S(n) := n + 1) illustrates
why you have to exclude function symbols.

Thus, from now on we can allow finitely many constant symbols.
5& Show: if A is finite and A = B, then A4 = B.
6& Show: every two dense linear orderings without endpoints are equivalent.

7 Suppose that the linear ordering a can be embedded into the linear ordering
f. Show that ¢ - @ can be elementarily embedded in ¢ - 3. (An embedding is
elementary if it preserves all formulas.)

8% Cf. Lemma 1.16 (p. 7).

1. Produce, for every n € IN, a sentence ¢, of rank n that is true of a linear
ordering iff it has at least 2" — 1 elements.

2. Give a simple condition on m and n that is both necessary and sufficient
in order that D(w + w*, Ly, n).

14



Solution. 1. For a formula ¢ and a variable x not in ¢, <" is the formula

obtained from ¢ by replacing quantifiers Vy--- and Jy--- by Vy < x--- (=
Vyly <ax— ), resp.,, Iy <z--- (=Tyly<axz A ).
0~ idem.

Define p1 = Jrq1(x1=21), Pnt1 = Elggnﬂ(%fwnﬂ A (pimnﬂ).

2. D(w+ w*,Lyp,n) & m>=2"—1.
9& Cf. Lemma 1.15.

1. Construct, for n > 2 and k¥ < 2" — 1, a sentence 1, ;, of rank < n that is
true of a linear ordering iff it has exactly k elements.

2. Give a simple condition on k, m and n that is both necessary and sufficient
in order that D(Ly, Ly, n).

Hint for 1. Start with n =2 (then 22 —1=3), and k=1, k = 2.
next, suppose ¢, ; defined for n > 2 and k < 2" — 1. To construct ¥, .
distinguish 1 <k <2"—1, k=2"-1,2"-1< k< 2" -2 and k = 2"+ -2,

2.2 Applications

2.2.1 Definability

2.9 Definability. A (first-order) formula ¢ = () in one free variable x (first-
order-) defines the set o4 = {a € A | A= ¢la]} in A; a formula ¢ = 9 (x,y) in
two free variables z,y defines the relation A = {(a,b) € A x A| A = [a,b]}
in A.

For every n € IN one can write a formula m, = m,(z) in the language of
(IN, <) that expresses that (the value of) x has exactly n predecessors. Thus,
(N, <) | mp|m] is true iff m = n. Consequently, if A C IN is finite, it can be
defined in (IN, <) by the disjunction \/ . 4 7s; its complement IN — A is defined
by the negation of this formula.

A set X C IN is called co-finite if IN — X is finite. Thus: all finite and
co-finite sets C IN are definable in (IN, <).

2.10 Proposition. FEvery set definable in (IN, <) is either finite or co-finite.

Proof. Suppose that ¢(r) defines a set that is neither finite nor co-finite. Thus,
w=(IN,<) =EVadylx <y A o(y)) A VaTy(z <y A —=p(y)). But, w=w+(;
hence this sentence is true in the latter model as well. Therefore, some element
a in the (-part satisfies ¢, and some element b in the {-part satisfies —¢. Apply
the automorphism of w + ¢ that moves a to b; a contradiction results. —

10&% Suppose that X is definable in (N + 7, <). Show that Z C X or
ZNX ={. Show that X is finite or co-finite.

2.11 Model-transformations and Translations. Suppose that § = §(x,y)
is a formula with x and y free.
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1. For A = (A, R), the model A° is defined as A% = (A4, §4), where 4 is the
relation defined by ¢ in A.

2. The formula ¢° is obtained from ¢ by replacing atomic subformulas uRv
by d(u,v). (Possibly renaming bound « and v in § to avoid clashes.)

The following equivalence holds:
A Eglay,.. . an] & AECar,. .. a).
(Induction w.r.t. ¢.)
E.g., we may so use the formula suc(x,y) (suc for (immediate) successor):
r<y AN -Fz(x<z A z<y)

and its symmetric version nb(x,y) = suc(x,y) V suc(y, z) (nb for neighbour).
For instance, the relation of the model (IN, <)*"¢ is the successor relation
defined by n 4+ 1 = m.
Note:

1. If qr(6) = k, then A =" B = A% =" B% and, hence:
2. A=B = A'=B.

11& Consider the “circle”-model Cp, = ({0,...,m —1}, R), where R is defined
by iRj :=i+1=5V (i=m—1 A j=0). (Visualize by drawing points
0,....,m —1on acircle.) p(x,y) =suc(z,y) V (=32(z <y) A =Fz(z < 2)).

1. Check that C,,, = L}, and (59¢ = (w + w*)’.
2. Give a sufficient condition in order that D(C,,, Cg,n).

3. Idem, for D(C,,, ("¢, n).
2.12 Proposition. The ordering < of IN is not definable in wS"¢.

Proof. Suppose p(x,y) defines the ordering in w3"¢. Then the sentence ® =
VaVy(x #y — (p(z,y) < —o(y,z)) holds in ws"¢. But, w = w + ¢ + (; hence
w1 = (w4 ¢ + ¢)%"¢; and so the sentence holds in the latter model as well.
However, (w + ¢ + ¢)®"° has an automorphism that interchanges the two (-
copies. Picking (a value for) x in one and (a value for) y in the other results in
a contradiction. o

Note that the ordering < of IN is the transitive closure of the successor
relation of wS"¢. Thus: transitive closures are not first-order definable. In fact,
this is true already on finite models:

2.12’ Proposition. There is no uniform first-order definition of the ordering
on the models L3¢.
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Proof. Suppose that ¢ constitutes such a definition. Then the above sentence
® holds in every model L3¢, and hence, ®3"¢ holds in every L,,. It follows that
w4+ ¢+ w* | P and hence, (w+ ( + ( 4+ w*)" = &. A contradiction
arises as in the earlier proof above. .

A sentence defines the class of models in which it is true. Relative to this
notion of definability:

2.13 Proposition.  There is no first-order definition of finiteness for linear
orderings.
Proof. By Lemma 1.16 (p. 7). -

More interestingly:

2.14 Proposition. There is no first-order definition of finiteness for binary
trees.

Proof. By the result of Proposition 1.20 (p. 9). -

Note that 2.13 also has an easy proof using Compactness, but 2.14 hasn’t
since the class of binary trees isn’t elementary. (An infinite model of the theory
of all binary trees B,, need not be a tree at all; e.g., it might very well be
non-wellfounded.) The Ehrenfeucht game technique is essential for the proof.

Connectivity. Suppose that a,b € A, where (A, R) is some model (graph).
A path connecting a with b is a finite sequence a; = a,...,a, = b s.t. for all
1, 1 <1< n q;Ra;41.
The model is connected if for all a,b € A, there is a path connecting a with

b.

2.15 Proposition. There is no first-order definition of connectivity. This is
true even on the class of finite (graph) models.

Proof. For arbitrary models, this can be proved using compactness. An infinite
example is (3" = (¢ + ()¢ (since ( = ( + (); the first model is connected
whereas the second one is not.

On finite models, one needs game theory. Here is an ingenious proof based on
the fact that a (rank 2) first-order formula p? = p?(z,y) exists (a modification
of the formula p from Exercise 11), satisfying

L, =p’li,j] @ i+2=jV (i=n-2Aj=0)V (i=n—-1A7j=1).

p(x,y) says:
“r < y and there is exactly one element between them,

or: x is greatest element and there is exactly one element < y,

or: there is exactly one lement > x and y is leaqt element”.

Picture some cases n = 4,5, ... and note: Lp is connected iff n is odd. In
fact, for n odd: Lf,,z >~ C,; and for n = 2m even: Ln2 = Cp + C,y, (the disjoint
union of two copies of C,,,).

Now suppose that a quantifier rank p qen‘rence deﬁne@ connectivity. For
n = 2P*2 1, we have that L, =P*? L, 1. Hence, Lﬁ =p Lp . A contradiction
follows. -
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2.2.2 Axiomatizability

2.16 Axiomatisation.

1. A set ¥ of sentences azriomatizes (the theory of) a model A if for all
sentences ¢: A = ¢ iff ¥ = .
Equivalently: A is a model of ¥, and every sentence true of A follows
from X.

2. X axiomatizes (the theory of) a class K of models if for all ¢: ¢ is true
in every model from K iff ¥ = ¢.
(Thus, an axiomatization for 4 is the same as one for {4}.)

Remarks. If ¥ defines K, then it also axiomatizes K. However, the converse
doesn’t hold.

Ezxample: FLO is the class of finite linear orderings; ELO consists of the sen-
tences expressing the properties of linear orderings, existence of endpoints, and
the statements that every non-least (-last) element has an immediate predeces-
sor (successor).

Claim. ELO azxiomatizes FLO.

Proof. Obviously, every finite linear ordering satisfies ELO. Thus, if ELO[ ¢,
then ¢ is true of every finite linear ordering. Conversely: assume that not
ELOJ= ¢. Then some A =ELO exists of which ¢ is false. From the definition
of ELO, it is not hard to see that A must be a linear ordering that is either
finite or has order type w + ¢ - a + w* for some a. Let n = qr(y). Then, by
Lemma 1.16, A =" Lgn 1. Thus, ¢ is false of the model Lyn 1 of FLO. -

Thus, ELO axiomatizes FLO but it doesn’t define it.

Using the above basic results on orderings, it is not hard to find axiomati-
sations for 7, w + w*, w, and (.

Example: w is finitely axiomatized by the sentences stating: the properties of
linear orderings, existence of a least element, every element has an immediate
successor, and every non-least element has an immediate predecessor.

Proof. Obviously, w satisfies these principles; thus every logical consequence
of them is true of w. Conversely, suppose that ¢ doesn’t follow logically from
these principles. Then a model A of them doesn’t satisfy . It is not hard to
see that 4 must be a linear ordering of some type w+ (- a. But, w+ (- a = w.
Thus, ¢ is false of w. -

12& Show: there is no finite axiomatisation for w + w*.

13&% Assume that, among the models of ¥, there are arbitrarily big finite linear
orderings. Show that w + w* is a model of X..
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14&% Show: if the lineair orderings o and 3 are finitely axiomatizable, then so
are o, 1 +a, a+ 1 and a+ 1+ 5. However, a + [ isn’t necessarily finitely
axiomatizable.

Successor relations. SUC consists of the following sentences: Vx3y(xRy A
Vz(xRz — z=y)), Vedy(yRx A Vz(zRzx — z=y)), and (1) =3z1(x1Rx1), (2)
ﬁﬂxﬂxg(m]RxQ A JJQRJJ]), (3) ﬂﬂxﬂmgﬂmg(m]RxQ A JJQRJJg A CCgRJCC]),

15& Show: every model for SUC is of the form (¢ - «)5"°.

16& Show: every sentence true of ("¢ has a finite model. In particular, (S"¢
isn’t finitely axiomatizable.

2.2.3 Partition Arguments

A class of finite models (suitably coded as sequences of symbols) is in NP if
membership in the class is Non-deterministically Turing machine decidable in
Polynomial time. The following result explains the relationship with second-
order definability.

2.17 Theorem. (Fagin 1974) On the class of finite models: ¥ =NP.

This is probably the first genuine result in the field of descriptive complexity
which has been quite succesful in relating computational complexity with logical
definability, and that really got started some ten years ago. (Cf. the books by
Ebbinghaus/Flum and Immerman.)

Any Yi-property of finite models whose complement is not 3} (a candidate
being the NP-complete graph property 3-colorability) would give you that co-
NP#NP. From this, you may guess that showing something to be not Y1 is a
tough nut. Restricting to monadic-X], where the relations quantified over are
sets, can be more tractable. For instance, we've seen (Theorem 2.15 p. 17) that

connectivity on finite models is not first-order; but in fact, something stronger
holds:

2.18 Theorem. Connectivity is not monadic-X} on the class of finite graphs.

Proof. Suppose that 3X - - - 3X,0 defines connectivity, where o = o(R, X1,.... X,,)
is first-order and has rank n.

Let M be a finite set of models that picks an element from each n-equivalence
class.

By the finite version of Ramsey’s Theorem, there exists an m so large that
every partition h : [m]? — M has a homogeneous set of 27! elements (in fact,
3 elements suffices for the argument below).

Choose X7,..., X such that A = (L3¢, X;,..., X) = o.

For 0 < i < j <m, h({i,j}) € M is the model that is =" [i,7); here and
below, the interval notation [i,j) is used for the corresponding submodel.

Let Q C {0,...,m — 1} be an 2"T!-element set homogeneous for h. Say, for

i <jinQ, h({ij}) = o
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We now have, using a more or less self-explanatory notation (for successor-
structures a and 3, « + [ is their disjoint union where, moreover, maxa is
connected to min3  insofar as these elements exist):

(<=, min@) + [min@, maxQ) + [maxQ, —)
(<, minQ) + o - (2" — 1)5"¢ 4 [maxQ, —)
=" (+,minQ) + a - (w+ w*)"° + [maxQ, —)
=" (+,minQ) + a - (w+ ¢ + w*)*"° + [maxQ, —)
= (+,minQ) + o (w+ w*)*™ + [maxQ, —) + « - °¢
=" A+ a- Y€
=" A4+ a-Coynr2_q.

(6]
(6]

2nd line: Q has 2"*! elements.
Last line: Lont> | =" w4 w*; thus L§YS, | =" (w+ w*)"¢; connecting the
(rank-1 definable) endpoints, we obtain Con+2_ =" (S"C.
That A =" A+ a - Cynts_y is a contradiction, since A is connected, but
A+ a-Conts_; (the disjoint union of the line model A and a circle model) isn’t.
Note that the model described on the third line of the above calculation is
already disconnected; however, it is infinite too, and the purpose of the rest of
the calculation is to produce a finite n-equivalent. —

The notion of connectivity is monadic-IT}: G is connected iff for all U C G-
if U # () and U is closed under the relation of G, then U = G. And if we
allow an existential quantification over a binary relation, a definition can be
concocted: G is connected if it has a linear ordering < with the property that
every non-least element g is connected with some x < y. Thus, connectivity is
i

There is some subtlety involved here. Consider the closely related notion of
reachability: in a graph (A, R), bis reachable from a if there is a path connecting
a with b. Tt turns out that (for finite models) undirected reachability (the notion
for undirected graphs, that is: models (A, R) where R is symmetric; edges
identified with pairs (z,y), (y,x) € R) is simpler than the general (directed)
notion. Undirected reachability is monadic-X1 (Kanellakis 1986):

Proposition. In a finite. undirected graph, b is reachable from a iff for some
X CA:a,be X, aandb both have exactly one edge connecting them with (an
element of ) X, and every other ¢ € X has exactly two such edges.

Proof. = : Suppose that a = ag,...,a, = b is a shortest path connecting a
with b. Then X = {aq, ..., a,} satisfies the conditions stated.

< If X satisfies these conditions, follow the path starting at a, using edges
connecting elements of X. This path can’t loop, and so it must end somewhere;
the only possible endpoint being b. o

However, Ajtai and Fagin showed in 1990 (using Ehrenfeucht’s game coupled
with probabilistic arguments) that directed reachability is not monadically 1.
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This suggests looking at the closure of monadic ¥} and I} under first-order
quantification.

According to Proposition 2.14 (p. 17), finiteness is not a first-order property
of binary trees. By Konig’s Lemma, a finitely branching tree is finite iff all of
its branches are finite. Thus, finiteness is monadic-II] on the class of finitely
branching trees. However:

2.19 Theorem. Finiteness is not monadic-X] on the class of binary trees.
Finally, here is another example of a partition argument.

2.20 Theorem.  Every monadic-}-sentence o = o(<) with a well-ordered
model has a well-ordered model of type < w®.

Proof. Suppose that o = (A, <, X1,..., X}) is a well-ordered model. Tt suffices
to show that for every n, a has a well-ordered n-equivalent of type < w®. In
the following, we can forget about the sets Xy,..., X since they won’t spoil
the argument.

Fix n. By the Downward Lowenheim-Skolem Theorem, there is no loss of
generality in assuming that A is countable. Apply induction with respect to
the order type of a.

If @ has only one element, then « itself is the required n-equivalent. (For,
I <w?)

Next, suppose that « = 5+ 1. Then by induction hypothesis, S has such
an n equivalent 3, and 8/ +1 =" 8+ 1 = «a is the required equivalent. (Note
that if 5 < w“, then S+ 1 < w®.)

Finally, assume that o has a limit type. Let ag € a be the least element of
a. Since « is countable, there is a countable sequence ay < a; < as < --- that
is unbounded in a. For i < j, let h(i,j) be the set of rank-n sentences true in
the submodel [a;,a;). We may think of h as taking finitely many values only.
By the infinite version of Ramsey’s Theorem there exist kg < k1 < ko < ---
such that all h(k;, k;) are the same. By induction hypothesis, there is a well-
ordering 7 < w* that is an n-equivalent of every [ay,, ak].). Again by induction
hypothesis, let 5 be a well-ordering of type < w® that is n-equivalent with
[ag, ag,). Then (by Lemma 1.17.2) B+ v -w =" [ag, ax,) + > _;lag,, ax,,) = a,
hence 3 + v - w is the required n-equivalent of «. (Note that if 5,7 < w®, then
B4+ -w<wv) =

Let © be the well-ordering of all ordinals.
2.21 Corollary. Q= w“.

Proof. Show that 2 =" w* by induction on n. Use Lemma 1.13 and the fact
that final segments of  (resp., w*) have type Q (resp., w*). -

17& Show that every monadic-X] sentence true of w is also true of w + (.
Nevertheless: produce a set X of natural numbers such that no expansion of
w + ( is elementarily equivalent to (w, X).
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18& Is every monadic-X! sentence true of A true of 7 as well?
19& Show: if a < 8 < w¥, then o Z .

20& A linear ordering is scattered if it does not embed 7. Let ¥ be the least
set of order types such that (i) 0,1 € ¥, (ii) o, 8 € ¥ = a+ 3 € X, (iii)
a €Y = a-w,a-w* e X Show: every ordering in 3 is scattered, and every
sentence with a scattered model has a model in X.

Hint. Use the technique of the proof of Proposition 2.20. Suppose that a certain
first-order sentence of quantifier rank ¢ is true in the scattered model (A, <).
Without loss of generality, assume that A is countable. Identify every submodel
of (A, <) with its universe. For a,c € A, write a ~ ¢ in case that (i) a < ¢
and for all «’,¢ st.a <d < <e¢ (d,¢d)={beA|d <b<} hasa
g-equivalent in ¥, or (ii) ¢ < @ and a similar statement holds, or (iii) a = c.
Then ~ is an equivalence. Clearly, if a ~ ¢ and a < b < ¢, then a ~ b. Thus,
A is an ordered sum of equivalence classes ), ; Cj. where I is a certain linear
ordering.

Show that the order type of I is dense.

Since (A, <) is scattered, conclude that I is a singleton; i.e.. A is the only
equivalence class.

Finally, show that A itself has a g-equivalent in ¥. If A has no greatest element,

choose ag < a1 < as < --- cofinal in A and apply Ramsey’s theorem to see that
{c € A | ay < ¢} has a g-equivalent in . Do this also for {¢ € A| ¢ < ag}, by
chosing, if necessary, by = ag > by > by > -+ coinitial in A.
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Chapter 3

Wider Theory

3.1 Other Characterisations

3.1.1 Characteristics

For every n € IN, the “game-theoretic behaviour” of a model A in length-n
games can be coded into one sentence £y, the n-characteristic of A.

3.1 Characteristics. For a model A, a finite sequence @ = (ay,...,a;) from
A and an integer n € IN, the formula e} = €7 ~(21,..., %) with zq,..., 2 free
and Tgy1,...,2Tken bound is defined as follows:

1. 597 is the conjunction of all atoms and negations of atoms ¢ = p(x1,...,xg)
with at most a1, ...,z free such that A = play, ..., agl;

n+1 . n n
2. ¥ 18 vxk‘l‘l v(IEA E(m,...,ak,a) A /\(IEA axk‘l‘lg(a],...,ak,a)‘

3. €y is €7y y, where () is the empty sequence (of length 0).

Remarks.
In a given finite vocabulary there are, for any k, only finitely many atoms in the
variables x1,...,x;. Thus, the formulas EOA (a1,..ap) A€ genuine (finite) first-

order formulas. If the number of atoms in these variables is A, there are 2A
atoms and negations of atoms, and so there are at most 224 many formulas

of the form 5?4( ) (where A is any model and (ay,...,ay) is any length-£

A1,y Af
sequence from A).
The same works for k + 1, hence it follows that the conjunction and dis-
junction in forming 5147((“ - ag.a) ATE Over an at most finite number of formulas.
Thus, the rank-1 characteristics are first-order formulas.
Let Py, be the number of n-characteristics for length-k sequences (with

Z1,...,x free, in any model). Clearly, every formula 5}4 (ar....a) CAN be iden-
tified with the set {5?4,(111,...,1116@) 'a € A}. It follows that Py, < 9Pkt1.0

These arguments continue throughout the hierarchy: in (the definition of)
any ETFHJ, disjunction and conjunction are over finitely many formulas, and

Py py1 is at most 2Pk+1,m
Note furthermore that
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ey has quantifier rank n, and

A = enal.

3.2 Theorem. The following conditions are equivalent:

1. D(A,B,n),
2. B=¢Yy,
3. eg =¢€y.

(For the last equivalent to make sense, conjunctions and disjunctions must be
considered as taken over sets: order and repetitions don’t count.)

21& Show this.
Hint. Show using induction w.r.t. n that, more generally: a position {(a1,b1), ..., (ar,br)}
is a win for Duplicator , iff B = E”A’(m ,___,,,,k)[b1 soees bg), iff 5%,(1)1 nby) T 52\,((11 o)

22& Show: every quantifier-n sentence p is logically equivalent with a finite
disjunction of sentences of the form ¢'}.

In fact: ¢ ~ \V/{e" | A = ¢}.

3.1.2 Fraissé

Here follows the Fraissé-characterisation of n-equivalence (that preceded Ehren-
feucht’s).

3.3 Fraissé sequence. A Fraissé sequence of length n+1 for A, B is a sequence
Iy, ..., I, of sets of local isomorphisms between A and B such that (§ € I, and
forall ¢, 0 < i <mn: if h € I; 14, then

(“forth”) Ya € A3b e B (hU {(a,b)} € I;),

and
(“back”) Vb e B3a e A(hU{(a,b)} € I;).
3.4 Theorem. The following are equivalent:
1. D(A, B,n),
2. there is a Fraissé sequence of length n + 1 for A and B.

Proof. 1 = 2. Assume D(A, B,n). For 0 < i < n, let I; be the set of positions
h in which Duplicator has a winning strategy for ¢ more rounds. (N.B.: by 1,

0el,.)
2 = 1. Duplicator takes care that, after i rounds (0 < i < n), a local
isomorphism h has been built that is an element of I;. -
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3.5 Remark. In Definition 3.3, we could equivalently require that the local
isomorphisms in I; (0 < ¢ < n) consist of exactly n — ¢ ordered pairs (in
particular, that I, = {0}). This will be essential in Chapter 4, when coding
such sets I as relations R by means of

R:{(CL],...,ai,b],...,bZ’) ‘ {(CL],b]),...,(ai,bi)} GI},

thereby transforming the notion of a Fraissé sequence into the following modified
version (simultaneously renumbering i — n —i):

2’. There is a sequence Ry, ..., R, of relations R; C A' x B such that Ry is
T (for “true”), and

(a) for 0 < i < n: if Ri(ay, ..., ai, by, ..., b;), then {(a1,b1),...,(a;,b;)}
is a local isomorphism,

and
(b) for 0 < i < n: if Ri(ar,...,a;,b1,...,b;), then
(“forth”) Ya € A3b € B Riy1(ay,...,ai,a,by, ... b;b),
and

(“back”) Vb € B da € ARH_l((],l,...,(],f,j,(],,bl,...,bf,j,b).

3.1.3 Co-inductive Definability

Before giving the final characterisation, a (short) introduction into (co-) induc-
tive definability is needed.

Suppose that I' is a monotone operator over I, that is: I' maps subsets of
to subsets of I such that

XCYCI = I(X)CT(Y).

3.6 Prime Example. Our one and only example is this: [ is the set of local
isomorphisms between two models A and B, and I' = I 4 5 is defined by

I'(X)={h|Vac AFbe B(hU{(a,b)} € X) A YVbe BIac A(hU{(a,b)} € X)}.
Note that this operator is monotone.
3.7 Post-fixed point, Co-induction. Y C I is called

1. post-fized point of T if Y CT(Y),

2. co-inductive if foral X CI: X CT'(X) = X CY.

3.8 Lemma.
1. There is at most one co-inductive post-fized point.

2. A co-inductive post-fized point is the same as a greatest fixed point.
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Proof. 1. Trivial.

2. Suppose that Y is a co-inductive post-fixed point. Thus, YV C T'(Y).
By monotonicity, I'(Y) C T'(['(Y)); i.e.: I'(Y) is a post-fixed point as well. By
co-induction, I'(Y) C Y. Thus, I'(Y) =Y. =

As to existence:
3.9 Theorem. The set
P=|J{xcr|xcrx)}
1s the greatest fized point of T.

Proof. Suppose that X is an arbitrary post-fixed point. Then, X C I'|. By
monotonicity, X C T'(X) C I'(I' ]). Since X was arbitrary, it follows that
'JCr(Try): I'lis a post-fixed point. It is co-inductive by definition. -

3.10 Fixed point hierarchy. For all ordinals «a, define I'| o« C I by the
following recursion:

1L.TL0=1
2. T} (a+1) =TT a)
3. Ty =, T € (for limits 7).

An alternative recursion would use the single equation

Tla=()T(T]¢

E<a

where it is understood that the empty intersection denotes I.
3.11 Theorem. I'|=(,T'] a.

Proof. That (), I' | « is co-inductive is easy: if X C I'(X), it follows by
induction that, for all o, X CT'| a. Thus, X C,I'{ a.

To show that [, T'] « is a post-fixed point, first note that the hierarchy
is decreasing: o < f = I'| 8 C I'| «a (induction w.r.t. 3; a preliminary
induction shows that I'| (8 + 1) C I'| 3). There is an ordinal 3 where the
hierarchy becomes stationary: (), '} a = T'| § (the argument needs (i) that
I is a set, and hence (ii) by the Powerset Axiom, its powerset is a set as well,
and (iii) by the Substitution Axiom, the map o — T | a from ordinals into
this powerset cannot be injective). In particular, I' | 3 is a fixed point, and

[(N,Tla)=T(TL8) =TLs=N,T1a |

Remark. The above treatment of greatest fixed points can be dualized for
least fixed points (which are much more common). Just revert inclusions and
interchange intersections and unions. A different way: the least fixed point of
[ is the greatest one of the dualized operator X — [ —T'(I — X).
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3.1.4 Fixed Point Characterisation
3.12 Theorem. The following are equivalent:
1. D(A,B,n),
2. 0eTapln.

Proof. More generally, Duplicator has a winning strategy in position h with n
more rounds to go iff h € I' | n.

Note also that if @ € T'| n (equivalently, if T{ n # ), then T [ 0,....,T'| n
is a Fraissé sequence. .

3.13 Corollary. The following are equivalent:
1. A=5,
2. 0 el 4Bl w.

As to the relevance of the greatest fixed point I']: see Section 3.3 (p. 29).

3.2 Variations

There are variations on the Ehrenfeucht game that are adequate with respect
to languages other than first-order. For instance, to get the version for (say:
monadic) second-order logic, Spoiler is allowed to also pick a subset of one of
the models; Duplicator then is obliged to counter with a subset from the other
one.

A nice variation with applications to intensional logics is the one to formulas
with a bounded number of variables. (The relation with intensional logics comes
from the fact that standard translations into first-order logic can be carried out
with finitely many variables, depending on the type of logic considered.) From
the proof of Theorem 2.4 it can be seen that the moves of the players are meant
as assignments of elements to variables. Now, modify the game as follows. Let
k € IN be a natural number. Spoiler and Duplicator are given k pebbles each,
marked 1,...,k. A move of Spoiler now consists of placing one of her pebbles
on an element of one of the two models; Duplicator counters by placing his
corresponding pebble on an element of the other model. If the length of the
game exceeds k, Spoiler runs out of pebbles after her k-th move. She is allowed
now to re-use one of her pebbles by simply moving it to some other element (of
either model). Duplicator then counters by re-using his corresponding pebble.
At every stage of the play, the positions of the 2k pebbles determine an (at
most) k-element relation between the models; and Duplicator wins if all of them
are local isomorphisms. For the k-pebble game, there is the following

3.14 Proposition. Duplicator has a winning strategy for the k-pebble game of
length n on A and B iff A and B satisfy the same rank < n-sentences with at
most k variables.

In the context of linear orderings, 3 variables suffice.
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3.15 Proposition. If A and B are linear orderings with the same valid 3-
vartable sentences of rank < n, then A =" B.

Proof. Using induction, it is shown that for every n: if g and h are the locations
of at most 3 x 2 pebbles on A resp. B such that Duplicator has a winning strategy
in the 3-pebble game of length n at position (g, k), then Duplicator has a winning
strategy in the ordinary game of length n at position (g, h).

Basis: n = 0. Trivial.

Induction step. Assume the result for n. Suppose that Duplicator has a winning
strategy in the 3-pebble game of length n 4+ 1 at position (g,h). Distinguish
two cases.

(i) At position (g,h), only 2 x 2 or less pebbles have been placed. Then each
player has at least one free pebble. Thus: for every a € A there exists b € B
and for every b € B there exists a € A such that Duplicator has a winning
strategy in the 3-pebble game of length n at position (g U {a},h U {b}). By
induction hypothesis: for every a € A there exists b € B and for every b € B
there exists a € A such that Duplicator has a winning strategy in the ordinary
game of length n at position (g U {a}, hU{b}). But that means that Duplicator
has a winning strategy in the ordinary game of length n + 1 at (h, g).

(ii) At position (g,h), all 3 x 2 pebbles have been used. Suppose that g con-
sists of ag < a1 < a9 and h is by < by < bo. A fortiori, Duplicator has
winning strategies for the two 3-pebble games of length n + 1 at the two-
pebble positions ((ag,a1), (bo,b1)) and ((ay,az), (b1,b2)). The argument under
(i) shows that Duplicator has winning strategies o resp. 7 in the ordinary games
of length n + 1 at positions ((ag, a1), (bo, b1)) resp. ((a1,az), (b1, b2)). But then,
Duplicator has a winning strategy in the ordinary game of length n 4+ 1 at po-
sition ((ag, a1, a2), (bo,b1,b2)) as well: moves < aq or < by are countered using
o, whereas moves > a; or > by are countered using 7. -

3.16 Corollary. On the class of linear orderings, every sentence is equivalent
with a three-variable sentence.

Another modification of the game is obtained by stipulating that Duplicator
wins a play in case the relation built is not a local isomorphism but a local
homomorphism, which is a relation {(a1,b1),...,(an,by)} € A x B such that
every atomic sentence true in (A, ay,...,ay,) is satisfied by (B,by,...,b,) as
well (but not necessarily conversely). Every local homomorphism is a function
(if a; = aj, then we must also have that b; = b;), but it is not necessarily an
injective one.

The resulting homomorphism-game relates to positive formulas, which are
generated from the atomic ones using the logical symbols A, V,V and 3 only
(thus, =, — and <> are not allowed).

Theorem 2.4 now modifies to the following, the proof of which can be ob-
tained by straightforward adaptation of the former one.

3.17 Theorem. Duplicator has a winning strategy for the length-n homomor-
phism game iff B satisfies every positive quantifier rank < n sentence true in

A.
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For another variaton in this vein, cf. the proof of Theorem 4.4 (p. 39).

Finally, you can mix requirements. Assume that L' = L U {R}, where R is
some n-ary relation symbol. Stipulate that Duplicator wins iff the end-product
of the play is a local isomorphism with respect to L-structure, and a local
homomorphism with respect to R. This determines the R-positive game. The
game is related to so-called R-positive sentences, which only use A, V, —, V and
3 and in which R occurs in the scope of an even number of negation symbols.
(The restriction that — and <> do not occur is needed to keep the counting of
negations straight: — and < contain “hidden” negations.)

These variations on the basic Ehrenfeucht game have their own characteri-
sations in terms of characteristics, Fraissé sequences and fixed point hierarchies.
E.g.. as to the homomorphism game, characteristics 7’} ; for n > 0 are built as
before, but now 77947(7 is the conjunction of all (negationless) atoms satisfied by
din A. Thus, the Wﬁﬁ are positive formulas. A theorem similar to Theorem 3.2
(p. 24) holds.

23& Formulate and prove a theorem that relates the appropriate version of
the Ehrenfeucht game to R-positive sentences.

24& Modify the Ehrenfeucht game of length n on models A and B by re-
quiring that Spoiler always picks her moves from A. Formulate and prove the
corresponding modification of Theorem 2.4.

3.3 Infinite Game

3.18 Definition. In the infinite Ehrenfeucht game on A and B, there is no
bound on the number of moves; Spoiler and Duplicator alternate in making
an w-sequence of moves each, and win and loss are determined (almost) as
before: Duplicator wins if at each finite stage of the play, the moves made so
far constitute a local isomorphism between the models.

A and B are partially isomorphic if Duplicator has a winning strategy for the
infinite game on A and B.

3.19 Examples.
1. n and A are partially isomorphic. Better still:

2. Every two dense linear orderings without endpoints are partially isomor-
phic.

3. No well-ordering is partially isomorphic with a non-well-ordering.
(Let Spoiler play an infinite descending sequence in the non-well-ordering.
Note that this argument also works for the 2-pebble game.)

4. Well-Orderings of different type are not partially isomorphic.
(To begin with, Spoiler plays the element a of the larger one such that a ]
has the type of the smaller one. Subsequently, Spoiler can always counter
a move b of Duplicator with a move ¢ such that ¢| and b have the same
type. Eventually, she must out-play Duplicator. For this argument, again
2 pebbles suffice.)
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3.20 Determinacy. In every infinite Ehrenfeucht game, exactly one of the
players has a winning strategy.

Proof. Note that if Spoiler wins a play, this has become apparent after finitely
many moves already: the game is open, and the result is an instance of the
Gale-Stewart Theorem. The argument proceeds as follows.

Suppose that Spoiler doesn’t have a winning strategy, i.e.: that the initial
position is no win for Spoiler. The result follows from the

Claim. Avoiding positions that are wins for Spoiler makes Duplicator win.

To begin with, the initial position satisfies this condition by assumption. Also,
this happens to be a condition that Duplicator is able to preserve (i.e., this
is a strategy for Duplicator): suppose that h is no win for Spoiler, and Spoiler
plays, say, an element « in the first model. If, for every b in the other model,
h U{(a,b)} is a win for Spoiler, then @ was a winning move for Spoiler and h
would’ve been a win for Spoiler to begin with, contrary to assumption. Thus,
Duplicator has a move b that brings him to a position that, again, is no win for
Spoiler.

Finally: this strategy for Duplicator is winning. For, suppose it isn’t. Then
some play in which Duplicator uses this strategy is won by Spoiler. But that
Spoiler wins will show after finitely many rounds. The corresponding position
is trivially a win for Spoiler, contradicting the fact that the strategy avoids such
positions. —

The following important theorem has an extremely simple proof.
3.21 Theorem. Countable partially isomorphic models are isomorphic.

Proof. If Spoiler enumerates all elements of the two models and Duplicator uses
his winning strategy, the relation that is built up during the play constitutes
an isomorphism as required. o

Cantor’s characterization of the ordering n of the rationals is an immediate
corollary. The proof of Theorem 3.21 is an abstract version of the usual back-
and-forth proof for the Cantor result.

3.22 Corollary. The linear ordering n is (up to isomorphism) the only count-
able dense linear ordering without endpoints.

Of course, the homomorphism game has an infinite version as well, with its
corresponding notion of partial homomorphic. Theorem 3.21 now modifies to:

3.23 Theorem. If the countable models A and B are partially homomorphic,
then there is a (surjective) homomorphism from A onto B.

Similarly:
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3.24 Theorem. If Duplicator has a winning strategy in the infinite R-positive
game on the countable L U {R}-models A and B, then A|L = B|L and the
1somorphism is an R-homomorphism.

Explaining the logical meaning of the infinite game needs the notion of an
infinitary formula. This is obtained by modifying the definition of first-order
formula, admitting conjunctions and disjunctions of arbitrarily many formulas.
Le., if L is a vocabulary, the class Lo, of infinitary L-formulas is obtained by
allowing (next to the usual rules) the following rule of formula-formation:

if ® C Loy, is a set, then A ®,\/ ® € Log,.

(In this notation, the oc signifies that arbitrary conjunctions and disjunctions
are admitted; the w indicates that quantification still is restricted to finitely
many variables at the same time.)

The semantics of such infinitary formulas is obvious: the formula A ® (resp.,
\/ @) is satisfied by the assignment « in the model A iff every (resp., some)
¢ € ® is. (This implies that A () is always satisfied whereas \/ 0 never is, and
that A{¢} and \/{¢} are logically equivalent with ¢.) Equivalence with respect
to infinitary sentences is denoted by =4..

The following proposition explains that the infinite game is not just the
limit of the finite games.

Recall the monotone operator I' = I' 4 5 from 3.6 (p. 25):

[(X) = {h|YacATbeB(hU{(a,b)} € X) A Vbe BIac A(hU{(a,b)} € X)},

of which the finite stages I'| n in its downward hierarchy were relevant to the fi-
nite game (Theorem 3.12 p. 27). Let W be the set of relations { (a1, b1), ..., (an,by)}
such that Duplicator has a winning strategy for the infinite game on (A, aq, ..., ay,)
and (B,by,...,b,). Let EQ be the set of relations {(a1,b1),..., (ay,b,)} such
that (A, a1,...,an) =ccw (B, b1,...,by).

The second equality of the following result generalizes the fact that Duplicator
has a winning strategy for the infinite game between two models iff they cannot
be distinguished using infinitary sentences.

3.25 Proposition. T'|=W = EQ.

Proof. By Lemma 3.8 (p. 25), it suffices to show that both W and EQ are
co-inductive post-fixed points.

W is a post-fized point: trivial.

W is co-inductive: Assume that X is a set of local isomorphisms such that
X C I'(X). Suppose that h € X. To see that h € W, consider the strategy
of Duplicator to satisfy, for every position {(a1,b1),..., (ay,b,)} visited in the
playing of the game, that hU{(ay,b1),..., (an,b,)} € X. If Duplicator succeeds
in preserving this condition, he wins. That he can succeed follows from X being
a post-fixed point.

EQ is co-inductive: Assume that X C I'(X). It follows that every h :=
{(a1,b1),...,(an,by)} € X satisfies (A, a1,...,ap) =ccw (B,b1,...,b,) using
induction on sentences (keeping h variable).
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EQ is a post-fized point: Assume that h = {(a1,b1),...,(an,by)} € EQ.
To see that h € T'(EQ), suppose a € A; we need to find b € B such that
huU{(a,b)} € EQ. If such a b doesn’t exist, this means that for every b €
B there is an infinitary formula ¢p(z) such that (A, ai,...,a,) = ppla] and
(B,b1,...,bn) = —py[b]. Thus, we have that (A, a1,...,a,) F 3v A\ @y and
(B,bi1,...,b,) = =3z N\yc g @b, contradicting h € FQ. o

25& Let C be a (countably) infinite set of constant symbols. Show that the
infinitary sentence Vo \/ ..~ = ¢ doesn’t have a first-order equivalent.

26& Suppose that A = (A, <) is a well-ordering. Recursively define, for
a € A, the infinitary formula ¢, as Vy(y < x < \/,_, vs(y)). (If you encounter
problems with substituting into an infinitary formula, you might use Vy(y <
< Jx(y =2 Ay, b)) Thus, every o, uses two variables x and y; exactly
one occurrence of x is free.) Let ®4 be the infinitary sentence Va\/ ., ¢a A

/\aEA Arp,.
Show:

1. (A, <) = @q[b] iff b= a,
2. a linear ordering satisfies ® 4 iff it is an isomorph of A.

Note the straightforward generalization for models A = (A, €) with A a tran-
sitive set.

Bisimulations. Suppose that the vocabulary L consists of some unary relation
symbols plus one binary relation symbol R. Modify the formula formation rules
for Loo, by allowing only non-R-atoms in the one variable x and R-bounded
quantification; that is: replace the quantification rules by:

If o =p(r) € Loow,
then Yy(R(xz,y) — ©(y)), Jy(R(z,y) A ¢(y)) € Locw-

3.26 Theorem.  For any two L-models A and B and elements a € A and
b € B, the following are equivalent:

1. Duplicator has a winning strateqy for the infinite pebble game on A and B
with just one pair of pebbles, starting at the initial position (a,b), where
the moves are “R-restricted”,

2. there is a bisimilation between A and B containing (a,b),

3. a and b satisfy the same (modified) Looy,-formulas in A, resp., 5.

Proof. A bisimulation is the same as a non-empty post-fixed point for the
operator associated with the infinite pebble game. o

Finitizing. The quantifier rank of an infinitary formula is defined by stipulat-
ing that, for the infinitary connectives:

ar(\ @) = ar(\/ @) = supfar(e) + 1] ¢ € D).
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The a-game is the modification of the infinite game in which Spoiler is required
to choose, together with her moves, a descending sequence of ordinals < a. A
play of the game ends as soon as Duplicator has countered the move of Spoiler
that goes with the ordinal 0. Thus, every play has finite length. For a = n < w,
the a-game is the same as the ordinary length-n Ehrenfeucht game. For a > w,
Spoiler can make a play of the a-game last as long as she wishes (in order to
have better chances to win). E.g., if Spoiler chooses a finite ordinal n € w to
begin with, the remaining game has < n rounds. If @ > w and Spoiler starts by
chosing w, she postpones the decision how long the play will be for her second
move. Chosing w + w + 1 is a promise to tell, ultimately at the 3rd move, how
long she will keep postponing the decision about the length, etc.

3.27 Theorem. The following conditions are equivalent:

1. Duplicator has a winning strategy for the a-game,
2. el a,

3. A and B have the same true rank < a-sentences.
The closure ordinal of I' 4 4 is called the Scott rank of A.

27& Show that the Scott rank of the linear ordering w equals w.
Give an example of a model with Scott rank > w.

3.28 Characteristics. Recall Definition 3.1 (p. 23). Let A be a model. For
every finite sequence @ = (ay,...,a,) from A and every ordinal «, the infinitary
quantifier rank-a formula 5?4’5(1:0, ..., k1) is defined, using recursion w.r.t. a,
essentially as before, using infinite conjunctions to get across limit ordinals ~:

E’A’{-’:(IO, . 7:5]671) = /\ 5?475;(-1‘07 s 7:516*1)‘
£<y

3.29 Theorem. Again we have:

1. for all o, A = &9 ;ld],

-

iff (A,d) and (B, b) satisfy the same quantifier rank < « formulas,
iff 5%)5 =c%a
If o is the Scott rank of A, then 9y A \;VZ(eG ; — 5?4}1) is the Scott
sentence of A.
The language L, is the restriction of Ly, that allows conjunctions and
disjunctions over countable sets of formulas only.
Note that the Scott sentence of a countable model belongs to this language.

28& Show that the Scott sentence of a model axiomatizes its infinitary theory.
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Summing Up. The different characterisations pertaining to the finite, infinite,
and finitized game are collected.
For the finite game, the following are equivalent:

1. A=" B,
2. D(A, B,n),
B ‘: EnAv

there is a length-(n + 1) Fraissé-sequence,

AR

0 el anln.
For the infinite game, this list becomes:
1. A= B.
2. D(A, B, ),
3. for all a, B |= <9,
equivalently: B satisfies the Scott sentence of A,

4. there is a Fralssé-sequence of type w* (cf. Exercise 29);

equivalently: there is a partial isomorphism between A and B, i.e., a non-
empty set I of local isomorphisms satisfying the back-and-forth condition

(in other words: I is a non-empty post-fixedpoint of ' 4 ),

5.0 € FA,B\I/-

Finally, for the finitized version using ordinals, we have the following pairwise
equivalent statements:

1. A=%, B,
2. D(A, B, «a),
B = ek,

there is a length-(av + 1) (Fraissé-) Karp sequence,

AR

0e F.A,BJ/ «.

29& A Fraissé-sequence of type w* for A and B is a sequence ..., I, I, Iy of
non-empty sets of local isomorphisms such that for all n and h € I,,:

Va € A3b € B(hU{(a,b)} € I,,41) and Vb € B3a € A(h U {(a,b)} € I,11).

A partial isomorphism between A and B is a non-empty set I of local iso-
morphisms such that for all h € I:

Va € A3b € B(hU{(a,b)} € I) and Vb € B3a € A(hU{(a,b)} € I).

Show:

1. If I is a partial isomorphism, then ..., I, I, I is a Fraissé-sequence of type

w*,

2. If ..., I, I, Iy is a Fraissé-sequence of type w*, then (J,, I;, is a partial
isomorphism.
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3.4 Fixed Points and Games

Let ' : p(I) = o(I) be a monotone operator over a set I, and h € I. Consider
the following 2-person game. Players are Challenger ( C ) and Defender ( D).

D starts by picking some Hy C I such that h € T'(Hy).

C chooses hg € Hy.

D chooses Hy C I such that hy € T'(Hy).

C chooses hy € Hy.

etc.
If one of the players cannot move, the other one wins. Il.e., if D is able to
select (), he wins (C is unable to pick an element in @); if C is able to select
some h; € T'(I), she wins (if X C I, then I'(X) C T'(I); hence, h; ¢ T'(X)). A
never-ending play of the game is won by noone.

3.30 Theorem.
1. D has a winning strateqy iff h € I'T,

2. C has a winning strateqy iff h ¢ '|.
Proof. 1. Define
W :={h € I| D has a winning strategy for the game that starts at h}.

To see that W = I'1, we check the two crucial properties.

(a) (Pre-fixedpoint property.) I'(W) C W: Assume h € I'(W). In position
h, D plays W, and clearly wins (C must pick an element in W which represents
positions won hy D).

(b) (Induction.) Assume that T'(Y) C Y. Want: W C Y. Thus, suppose
h € Y. Claim: C has a strategy by which he cannot lose, nl.: always playing
elements ¢ Y. (And, hence, h ¢ W.) For: if h € T'(X), then X —Y # (. (Else
XCY. I'(X)CI(Y),heT(Y)CY.)

[[Alternatively: Assume that h € W. Fix a winning strategy for D in
position h. When D uses this strategy, all plays of the game are finite and won
by D. Thus, the tree of these plays is well-founded, and we can induct on it.
Suppose that Hy is the answer to h as given by this strategy. I.e., h € I'(Hy) and
Hy C W. By induction hypothesis, Hy C Y. Thus, h € I'(Hy) CT(Y) C Y,
and h € Y.]]

2. Define
L:={h e I| C does not have a winning strategy for the game that starts at h}.

To show that I'|= L, again the two crucial properties are verified.

(a) (Post-fixedpoint property.) L C I'(L): Assume that h € L, i.e., C has
no winning strategy in h. Thus, D has a move Hy such that h € T'(Hp) and
HyC L. Then I'(Hy) CT(L) and h € T'(L).

(b) (Co-induction.) Assume that Y C T'(Y). Want: Y C L. Let h € Y.
Obviously, D can repeat playing Y ad infinitum and, in doing so, demonstrates
that C cannot have a winning strategy. Thus, h € L. o
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If I is the set of local isomorphisms between two models A and B and
I' = T" 4 g is the Ehrenfeucht operator, the game described above is reminiscent
of the ordinary Ehrenfeucht game, with C playing the role of Spoiler and D that
of Duplicator. The difference is, that here, in position h € I, a move H by D
such that h € T'(H) comprises in a sense all answers of Duplicator on moves of
Spoiler, and a next choice by C of h' = h U {(a,b)} € H compares to choosing
by Spoiler one of the possibilities that Duplicator (D) is offering with H.

Note that, in this particular case, no move of D can be empty. Thus, a play
can be finite only if some position g € I is reached in which D cannot move,
i.e., for which no H exists such that g € T'(H).

Taking this parallel seriously, it is better to redefine winning so that D wins
the infinite plays of the game, and C the finite ones. For that case, the above
Theorem modifies to the simpler:

3.31 Theorem. D has a winning strateqy in h iff h € T'].

This shows that, indeed, the parallel is correct, since also Duplicator has a
win in h iff h € T'J.

Proof. « If heT'| (=T(T'])), D persists in repeating I | and wins.

= The set W = {h | his a win for D } is a post-fixed point of I' (and,
hence, included in I']): Suppose that h is a win for D. Then D has a winning
move, that is: there is some H such that h € I'(H) and H C W. But then
['(H) CT(W), and h € T(W). 4
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Chapter 4

Applications involving
Compactness

This part exploits characteristics together with compactness to prove several
classics of first-order logic. It is inspired by Barwise and van Benthem: Inter-
polation, preservation and pebble games, JSL 64 (1999) 881 903 (modified for
the first-order setting); it shows that characteristics provide a tool with which
all these results can be obtained in a uniform way.

4.1 Interpolation & Co.

The following Lemma constitutes the basic trick involving Compactness that is
used below.

The proof uses (expansions of) model pairs, a construct that can be imple-
mented in several ways.

Model Pairs. Suppose that A; is an L;-model (i = 1,2) and L is the disjoint
union of Ly and Ls together with two new unary relation symbols S1,Ss. The
model pair A = (A1, As) is the L-model with universe A; U A, with Sf = A;
(1 = 1,2), and where the symbols of the L; retain their old meanings.

4.1 Lemma. Suppose that L = L1 N Lo, and that Ay and Ay are Ly, resp., La-
models such that A;|L = As|L. Then countable models B; = A; exist (i =1,2)
such that Bi|L = Bsy|L.

Proof. Assume that A;|L = As|L. By Remark 3.5 (p. 25), for every n € IN
there is a sequence Ry = T,..., R, of relations R; C Ai1 X Ag, satisfying

1. for 0 < i < n, if Ri(ar,...,a;,b1,...,b;), then {(a1,b1),...,(a;,b;)} is a
local isomorphism between A;|L and As|L, and

2. for 0 < i < n,if R;j(ay,...,a;,by,...,b;), then both

e Va € Ay 366AQRH](a],...,ai,a,b],...,b,’,b), and
e Vbe AyJa € Ay R (aq, ... a5, a,by,...,D;,0).
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These conditions on complex models of the form (A;, As, Ry, R1, Ro,...) (ex-
pansions of model pairs) can be formulated in first-order terms, using new rela-
tion symbols Rg, Ry, Ro, .... Thus, by Compactness and Downward Lowenheim-
Skolem, there is a countable model (B, By, Sy, S1,52,...) satisfying B; = A;
(i = 1,2) and such that the sequence Sy, S1, S, ... obeys the above conditions
w.r.t. By, By for all 1.

It follows that the associated set

U{{(al,bl),...,(ai,bi)} | Si(ar, ..., a;. by, ..., b))}

of local isomorphisms between Bi|L and Bs|L is a non-empty post-fixed point
for the relevant game operator I' = I'p, |1, 5,z Thus, I | is non-empty, the
models Bi|L and Bs|L are partially isomorphic, and hence (by Theorem 3.21
p. 30), isomorphic. =

4.2 Consistency Theorem (Robinson). Suppose that T; is a set of L;-
sentences (i = 1,2) such that TyUT5 has no model. Then there is an L-sentence
¢ (where L = Ly N Ly) such that Ty = ¢ and Ty = —p.

Proof. Suppose that no such ¢ exists. The following constructs a model for
T UTs.

Claim. For all n, there exist A =T and B |= Ty such that B |= x

Proof. Suppose this fails for the integer n. Consider the finite set of L-sentences
Y= {EHA‘L | A =T} Put ¢ =\/X. It suffices to show that both T |= ¢ and
TQ |: Q.

As to the first statement, assume that A = Ty. Then A = el €5, and
hence T =V X.

As to the second one, assume that B = T and B = \/X. Then for some
A |= T, we have that B = ETIA‘L, contradicting the assumption on n. .

Applying Compactness to this Claim, we obtain A = T} and B |= T, such
that A|/L = B|L. Applying Lemma 4.1, we obtain (countable) A = T and
B |= Ty such that A|L = B|L. Identifying A|L and B|L results in a model for
T UTs. -

4.3 Interpolation Theorem (Craig). Suppose that L = Ly N Ly, and the
sentences p; € L; (i =1,2) are such that 1 = po. Then a sentence ¢ € L (an
interpolant) exists such that both v = ¢ and ¢ |= ps.

Proof. There is a standard easy argument using the Consistency Theorem
(taking Ty = {1} and Ty = {—p2}). However, since we also want to deal with
Lyndon’s refinement below, here follows the straightforward proof in the style
of the above one.

Suppose there is no interpolant.

Claim. For everyn € IN there exist A |= p1 and B |= =9 such that B = EZWI'
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Proof. If this happens to be false for n, consider the set ¥ = {7y, | A= ¢1}.
Note that ¥ is a finite set of L-sentences. We claim that \/ ¥ is an interpolant.
Indeed: if A |= ¢, then A = €lyr, € ¥, and, hence, A EVE Andif BEVE,
say, B |= EZ‘L, where A = ¢1, then, by assumption on n, B = ¢s. 4

As in the proof of the Consistency Theorem, Lemma 4.1 can now be applied
to yield a counter-model to @1 |= 9. -

30& Cf. Theorem 4.3. Suppose that ¢; € L; (i =1,2) and L = Ly N Ly. Show
that the following are equivalent:

1. VA, B(AE ¢1 N AIL=B|L = B= ),
2. VA, B(AE o1 N AL =y, BIL = B ),
3. VA B(A= 1 N AIL=B|L = BE ¢9),
InVA, B(AE o1 AN AIL="B|L = Bl ).

=

4.4 Refinement of the Interpolation Theorem (Lyndon). Same as 4.3,
but the interpolant for ¢1 = w2 has to satisfy additional polarity requirements:
relation symbols (different from =) occurring positively (resp., negatively) in
the interpolant should occur positively (resp., negatively) in both ¢ and ps.

Proof. Modify the argument for 4.3 as follows.

First, let P; be the set of relation symbols R € L = L; N Ly that occur
positively in ¢; (i = 1,2) and let N; be the set of R € L that occur negatively
n @;.

Define the EA - for n > 0 as before, but, this time, let 5,4 - be the conjunction
of (i) all atoms satisfied by @ in A that carry a relation symbol in Py N P, (ii) all
negated atoms satisfied by @ in A that carry a relation symbol in Ny N Ny, (iii)
all =-atoms and negated =-atoms satisfied by @ in 4. These are the obvious
modifications to make if one wants to preserve the (proof for the) Claim in the
proof of 4.3, since now, the interpolant \/ ¥ has to satify the additional polarity
requirements.

Note that these modified characteristics are adequate w.r.t. the (asymmet-
ric) Ehrenfeucht game on A and B in which the winning condition is changed
to: Duplicator has won in the terminal position {(a1,b1),..., (an,by)} iff (i)
RA(@) = RB(b) for R € P NPy, (ii) RB(b) = RA(@) for R € N N Ny, (iii) the
correspondence a; » b; is one-one. That is, Theorem 3.2 (p. 24) (: Duplicator
has a winning strategy for the length-n game iff B |= ¢7) is literally true under
these modifications.

The condition B |= EZ‘UL means that a sequence Ry = T,..., R, of relations
R; C A; x B; exists satisfying the usual back-and-forth-conditions; however,
the modifications (i) and (ii) above entail that they do not need to code sets
of local isomorphisms between A|L and B|L. What does hold is indicated in
(i)—(iii) above.

After applying Compactness and Lowenheim-Skolem, we obtain a relation
h C A x B, generated by the (proof of) Theorem 3.21. From the way in which
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h is constructed, we’ll have that h is a bijection between A and B. But again,
for R € L, well only have that R“(a) = RZ(h(a)) when R € P, N Py, and
-R4(a) = -RB(h(a)), i.e.: RB(h(a)) = RA(a), when R € N; N Ny. For
symbols in P, N P, N Ny N No, h preserves in both directions (this is item 7 in
the list below). However, for the remaining symbols, there is no preservation
by h in any direction (items 5 and 6).

For the rest of the argument to make sense, however, we need not only that
A = ¢1 and B = =9, but also that A|L = B|L, for we have to form one model
for ¢1 A =9 out of A and B by identifying A|L and B|L.

The solution is to modify, in all cases but one, either the interpretation R
or R of a symbol R € L, forcing h to be an isomorphism for the modifications,
but preserving ¢; in the modified A and —p5 in the modified B.

Note: w.r.t. @1, a relation symbol R € L can occur either in P; — Ny, in
Ni — Pp, or in P N Ny; and the same goes for ¢s. Hence, all in all, there are
3 x 3 =9 cases to be looked into. In the following list, both 1 and 2 consider
two cases each, 3 7 consider one case each.

1. Replace R4 by R(a) := RB(h(a)) if R occurs in P; — Ny and P.
Note: since, in this case, R*4(a) = RB(h(a)) holds, we have that R* C R;
and since R € P; — Ny, @1 will still hold in the modified A.

2. Replace R by R(a) := RB(h(a)) if R occurs in Ny — P; and Nb.
Note: this time, R C R4, and since R € N; — P, this preserves ;.

3. Enlarge R to R(b) := RA(h (b)) if R occurs in P, N Ny and Ny — P.
Note that —9 still will hold in the modified B.

4. Replace R® by the smaller R(b) := R“4(h~'(b)) if R occurs in Py N Ny and
P, — Ns.

5. Replace both R and RB by L (“false”) if R occurs in Ny — P, and Py — Ny.
6. Replace both R4 and R® by T (“true”) if R occurs in P, — Ny and Ny — Ps.

7. In the remaining case, where R occurs in both P N Ny and P, N Na, no
relation has to be changed as preservation by h is already guaranteed.

_|

4.5 Definability Theorem (Beth). Suppose that LT = L U {R} and that T
is an LT -theory such that for every two models A and B of T, if A|L = B|L,
then RA = RB. Then an L-formula ¢ = ¢(x) (a definition of R w.r.t. T) exists
such that

T EVe(R(z) < ¢).

Proof. Again, there is a standard argument using Interpolation. However, here
follows a direct one using characteristics.

Suppose no definition exists. We shall construct A, B |= T such that A|L =
B|L but R4 # R5.
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Claim. For all n there exist A = T and a € A with R*4(a), and B = T and
b € B with -RB(b), such that B |= e, 410l

Proof. Suppose this fails for n. Consider ¥ = {5%,1 .| AET ARA(a)}. Then
\/ ¥ is a definition for R: First, if A = T'and R*(a), then (since A = €L Jlal),
we have that A |=\/ X[a]. Second, if B =T and B = \/ X[b]; say, B |= EZ\L,a[bL
where A |= T and R*(a), then RB(b) holds by assumption on n. o

The rest of the proof is as usual, using Lemma 4.1. Note that we can take
care that, for the resulting (countable) models A and B and the isomorphism
h between A|L and B|L, there is a € A such that R“4(a) but =R5(h(a)). -

4.2 Preservation under Homomorphism

A sentence is preserved under homomorphisms if it is true of every homomorphic
image of one of its models.

4.6 Lyndon’s Theorem. A sentence is preserved under homomorphisms iff it
has a positive logical equivalent.

Proof. For one direction, positive sentences are easily seen to be preserved.

For the other, more difficult one, we use the familiar argument, this time using

the characteristics 7'} relative to the homomorphism game (see p. 29).
Suppose that ® has no positive equivalent.

Claim. For every n € IN there exist A= ® and B = —® such that B = 7).

Proof. If this happens to be false for n, consider the set Il = {7} | A |= ®}.
Note that II is a finite set of positive sentences. We claim that \/II is a first-
order equivalent of ®. Indeed: if A = @, then A |= 7"} € II, and, hence,
A = VIL. Conversely, if B = \/II, say, B |= 7’4, where A = ®, then, by
assumption on n, B = &. -

The rest of the proof follows the by now familiar pattern. The condition
that B |= 7y can be rewritten (In a way similar to Remark 3.5 p. 25) as the
existence of a finite sequence of relations Ry = T,..., R,, coding sets of local
homomorphisms that satisfy the usual back-and-forth properties.

By Downward Lowenheim-Skolem and Compactness, we obtain a countable
complex (A, B, Ry, Ry, Ry, ...) with A = ®, B |= =®, and such that

U{{(al,bl),...,(ai,bi)} | Ri(ay,....a;,b1,....b)}

is a post-fixed point for the relevant game operator. Thus, A and B are partially
homomorphic; and it follows that B is a homomorphic image of A. Thus, ®
isn’t homomorphism-preserved. —
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31d (Los-Tarski) Show that a sentence is preserved under model-extensions
iff it has an existential equivalent.

Hint. Modify the characteristics appropriately: 594 z 1s as before, but, this time,

n+1 : n . . . . . . .
€A (a1, ax) 1B Naca 3xk+]g¢4,(a1,...,ak,a)' Note: this modification yields existential

formulas.

32& An L U{R}-sentence ® is preserved under R-extensions if for every two
models A and B, if A = ®, A|L = B|L and R4 C R5, then B |= ®.

Show: a sentence is preserved under R-extensions iff it has an R-positive
equivalent.

4.3 Modal Logic

4.7 Theorem. (van Benthem) If a first-order formula in one free variable
is preserved under bisimulation, then it has a modal equivalent (that is: an
equivalent that is the standard translation of some modal formula).

Proof. The “modal” vocabulary has a binary “accessibility” relation symbol
R plus unary relation symbols U; (j € J). (Kripke) models are of the form
A = (A,RA,U;A)jeJ. If ¢ = ¢(x) is a formula with one free variable, by
A, a |= ¢ we mean that A |= ¢[a]. For a model A and an element a € A, define
the formulas o = 07 , in one free variable as follows:

1. ol(z) is the conjunction of all U;-literals U;(z) and —=U;(z) that are sat-
isfied by a in A.

2. 03 (@) = Apagp) FYR(@, ) Aoy (y) AVy(R(z,y) = Viagp o5 ().

Note that these are all (standard translations of) modal formulas. Obvi-
ously, we have that A, a |= o] .

Suppose that the first-order formula ®(x) is preserved under bisimulation,
but has no modal equivalent.

Claim. For all n there are A, a |= ® and B,b |= =® such that B,b |= o7} .

Proof. If this is false for n, consider ¥ = {07} ,(7) | A,a |E ®}; now \/ ¥ would
be a modal equivalent for ®:

If Aa =@, then 0.4, € 3, and hence A, a = \/ ¥ holds.

Conversely, if B,b =\ %, say, B,b = 07y , where A,a = @, then B,b |= ®
by assumption on n. -

Claim. Suppose that B,b = 0% , holds. Then relations Ry,..., R, C Ax B
exist such that

i . A B ;
L. if Ri(u,v), then Ui (u) & U7 (v) (j € J),
2. Rﬂ(au b)u
3. (forth) i < n, R;(u,v) and RA(u, u') imply 30’ € B[RE(v,v')AR; 11 (v, ")),

(back) similar.
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Proof. Define R;(u,v) := B,v = 017471; .

By Compactness we find A, a; B,b; and Ry, Ry, Ra,... C A x B such that
A.a = ®; B,b = —®; and such that the conditions of the second claim are
satisfied for all 7. It follows that A, a and B,b are bisimilar, contradicting the
assumption on P. —

4.8 Interpolation. If o1 and @s are modal formulas such that @1 |= ¢o, then
a modal formula ¢ (an interpolant) exists such that 1 = ¢, ¢ = @2, and every
relation symbol U in ¢ occurs in both o1 and ps.

Proof. Suppose that ¢1 |= @9, but an interpolant doesn’t exist.
Modify the definition of the o'} . by allowing, in oY, only Uj-literals where
U; occurs in both 1 and ¢o.

Claim. For all n there are A, a |= ¢1 and B, b [= —p2 such that B,b |= o) .

By Compactness, obtain A, a = 1, and B, b |= =9, such that A, a and B, b
are bisimilar w.r.t. relations common to the two formulas.
Needed: amalgamation into one model. .. -

4.9 Los-Tarski Theorem. If a modal formula is preserved under model
extensions, it has an existential modal equivalent.

Proof. Modify the above definition of the ¢” by putting

oit (@) = N FwR(z.y) A of(y))-
RA(a,b)

Suppose that ®(x) is modal and preserved under model extensions, but has no
existential modal equivalent.
Claim. For all n there are A, a = ® and B,b |= =® such that B,b |= o'} ,.

By Compactness, obtain A,a = ®, B,b = —® and Ry, Ry, Rs,... C A x B,
where now only the “forth” condition is satisfied.

It suffices to find a submodel B’ C B such that B’,b bisimulates A, a. Put
R =\, Rn. Define B' =, By, where By = {b}, and B, is the least set
D B, such that

R(u,v), v € B, and RA(u, ') imply 3 € By, R(u',v').

4.4 Lindstrom’s Theorem

The same argument is used once more to prove Lindstrom’s Theorem, which
says that Lowenheim-Skolem and Compactness characterize first-order logic in
the following sense:
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4.10 Lindstrom’s Theorem. There is no logic that properly extends first-
order logic and still satisfies the Downward Lowenheim-Skolem and Compact-
ness Theorems.

Before proving this, you should get explained what is meant here by “a
logic” that “properly extends first-order logic”.

4.11 Logic. A logic is a schema Z that associates to any vocabulary L a set
Z(L) of sentences together with a truth-relation [= (better: =z)) between
L-models and sentences from Z(L) such that the following conditions hold:

1. Isomorphic models have the same true Z-sentences.

2. Suppose that L extends the vocabulary (L;,Ls) that goes with model
pairs (Ap,.As) built from an Li-model A; and an Lo-model Ay. Then
for every ® € Z(L;) (i = 1,2) there must be a sentence ® € Z(L) such
that for all L;-models A; (1 = 1,2), if (A1, Ag,...) is an L-expansion of
(Aj, Ag), then:

(A1, Ay, )= & A =0 (i=1,2).

Le.: in the logic Z we can express, relative to (A, As,...), that ® holds
in one of the component-models.

Remark. First-order logic is, indeed, a logic in the sense of 4.11.

What it means for a logic to (properly) extend first-order logic, we leave
mostly to the reader’s imagination. One example is the logic obtained from first-
order logic by adding a quantifier symbol F with the meaning that A = Fryp(x)
holds iff {a € A | A |= ¢[a]} is finite. Note that, e.g., Fa(x=x) and VyFz(x < y)
have no first-order equivalent.

What we need for the proof is: closure under negation (with the usual
meaning) and inclusion of all first-order sentences in the given vocabulary. We
need the Downward Lowenheim-Skolem Theorem in the following form: every
satisfiable set of sentences in a countable vocabulary has a countable model.

Proof of Lindstrom’s Theorem. Let Z be a logic satisfying the conditions,
L a finite vocabulary, and ® an arbitrary sentence in Z(L). We are going to
show that ® is first-order, that is: has a first-order equivalent.

The proof is by contradiction. Thus, suppose that ® is not first-order.

Claim. For every n € IN there exist A= ® and B = —~® such that B |= €").

Proof. If this happens to be false for n, consider the set ¥ = {&7y | A = ®}.
Note that ¥ is finite. We claim that \/ ¥ is a first-order equivalent of ®. Indeed:
if A= @, then A |= ¢ € ¥, and, hence, A = \/X. Conversely, if B = \/ X,
say, B |= €y, A = @, then, by assumption on n, B = . o

The proof is finished in the usual way, using Lemma 4.1, by constructing
(countable) A4 = ® and B = —® such that 4 = B, contradicting stipula-
tion 4.11.1. o
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