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Chapter 1The GameThe notion of an Ehrenfeu
ht-Fra��ss�e game provides a simple 
hara
terizationof elementary equivalen
e with straightforward generalizations to several lan-guages other than �rst-order, whi
h, for simple models (su
h as linear order-ings, trees), is easy to apply. Besides, it is almost the only te
hnique availablein �nite-model theory (where Compa
tness and L�owenheim-Skolem are of nouse).The following introdu
tion to the subje
t is mainly fo
ussed on the generaltheory. There are some 30 exer
ises, marked with |.1.1 Basi
s1.1 Models. For the time being, a model is a 
ouple A = (A;RA) where A isa (usually, non-empty) set and RA � A�A is a binary relation on A.Examples we'll often 
ome a
ross:� ! = (IN; <),� � = (ZZ; <),� � = (Q; <),� � = (IR; <).� Ln = (f0; : : : ; n� 1g; <).1.2 Isomorphism and Lo
al Isomorphism. An isomorphism between mod-els A = (A;R) and B = (B;S) is a bije
tion h : A ! B su
h that for alla; a0 2 A: aRa0 , h(a)Sh(a0).A lo
al or partial isomorphism between A and B is a �nite relation h withDom(h) � A, Ran(h) � B, that preserves equality and relation; i.e., su
h thatfor all a; a0 2 A and b; b0 2 B with (a; b); (a0; b0) 2 h:� a = a0 , b = b0,� aRa0 , bSb0. 1



(Equivalently: h is a �nite inje
tion h with Dom(h) � A, Ran(h) � B, and forall a; a0 2 Dom(h): aRa0 , h(a)Sh(a0).)1.3 Examples.1. The empty relation ; is a lo
al isomorphism between every two models.2. Every (�nite) part of a (lo
al) isomorphism is a lo
al isomorphism.3. A 
omposition of lo
al isomorphisms is a lo
al isomorphism. I.e.: if g :A! B is a lo
al isomorphism between A and B, and h : B ! C is a lo
alisomorphism between B and C, then h Æ g (the map a 7! h(g(a)), wherea 2 Dom(g) and g(a) 2 Dom(h)) is a lo
al isomorphism between A andC.4. The relation f(0; 0); (2; e); (5; �)g is a lo
al isomorphism between (ZZ; <)and (IR; <).The last example illustrates that a lo
al isomorphism doesn't need to be partof an isomorphism.1.4 Lemma. A lo
al isomorphism is the same as an isomorphism betweensubmodels.I.e.: h is a lo
al isomorphism between (A;R) and (B;S) i� it is an isomorphismbetween (Dom(h); RjDom(h)) and (Ran(h); SjRan(h)).1.5 Ehrenfeu
ht game. Any two models A, B, together with an integern 2 IN, determine an Ehrenfeu
ht Game of length n.It is played by two players: Spoiler and Dupli
ator. In a play of the game,Spoiler and Dupli
ator move alternatingly, until n moves have been made byea
h player.One pair of moves 
onsists of �rst Spoiler 
hoosing an element from one ofthe models, and next Dupli
ator 
hoosing an element from the other model.At the end of su
h a play, the n pairs of moves build a �nite relation be-tween A and B. Dupli
ator wins i� this �nite relation happens to be a lo
alisomorphism. (In the opposite 
ase, Spoiler wins; every play of the game is wonby one of the players: a draw is not possible.)Remarks.1. Repeating previous moves is not ex
luded |and even ne
essary if thereare few elements. But to repeat moves unne
essarily is not a smartthing to do for Spoiler, and if Spoiler doesn't repeat a move, it is bestfor Dupli
ator not to repeat moves either.2. It may be
ome evident that Spoiler wins before all 2n moves have beenplayed. But for Dupli
ator to win, all 2n moves have to be exe
uted.2



3. The intuition behind the game is, that Dupli
ator aims at showing thatthe models in some way look alike; it is Spoiler's goal to spot di�eren
es.The longer the game, the easier it 
an be for Spoiler and the harder forDupli
ator to win.4. Dupli
ator wins a game of length 0 immediately: there are no moves, therelation built up is empty, and the empty relation is a lo
al isomorphismbetween any two models.5. In some 
ases below, the game is played in a situation with an emptymodel. In that 
ase we agree that a player who 
annot move loses. Thus,if A is empty and B isn't, then Spoiler wins a game of positive length byplaying an element of B. However, if A = B = ;, Dupli
ator wins.Example. The length 3 game on � := (ZZ; <) and � := (IR; <). SupposeSpoiler and Dupli
ator play as follows:S D S D S DZZ 2 0 5IR e 0 �The end result is f(0; 0); (2; e); (5; �)g, whi
h happens to be a lo
al isomorphism.Dupli
ator has won.The obvious question in this example is: did Dupli
ator won by lu
k, or ishe 
lever?1.6 Winning Strategies. A strategy for a player is a rule that tells him howto play in every position of the game in whi
h he has to move.For instan
e, a strategy for Spoiler in the length n-game on A and B isa fun
tion that assigns, to every relation f(a1; b1); : : : ; (am; bm)g � A � B forwhi
h 0 6 m < n, an element in A [B.A strategy � for Spoiler is winning if Spoiler wins every play in whi
h heuses �, no matter what Dupli
ator does.The notion of a winning strategy for Dupli
ator is de�ned analogously.Example, 
ontinued. So the question is: has Dupli
ator a winning strategy inthe length-3 game on � and �?Try to answer this, and the same question for the games of lengths 2 and 4on these stru
tures.A Few Games. An intuition for the game 
an be developed by just playing it.Figure out whom of the players has a winning strategy in the length-3 gameson the following models, and try to des
ribe it.1. ! and �;! and �;! and ! + ! (the ordered sum of two 
opies of !).3



2. L6 and L7;L7 and L8.3. ! + L1 + !? (where ? inverts the ordering) and ! + L2 + !?;! + L2 + !? and ! + L3 + !?.4. L7 and ! + !?.5. ! and ! + �.1.2 Elementary Properties1.7 Notation. D(A;B; n) expresses that Dupli
ator has a winning strategy inthe length-n game on A and B.One glan
e a Theorem 2.4 (p. 12) explains that this is the notion we'll beinterested in.1.8 Lemma.1. D(A;B; n) ^ m 6 n ) D(A;B;m),2. D(A;B; n) ) D(B;A; n),3. A �= B ) 8nD(A;B; n),4. D(A;B; n) ^ D(B; C; n) ) D(A; C; n).1.9 Determina
y. In every Ehrenfeu
ht game exa
tly one of the players hasa winning strategy.Proof. Of 
ourse, both players 
an't have winning strategies for the same game.A game in whi
h one of the players has a winning strategy is 
alled de-termined. We prove the stronger result that every 2-person game that has nodraws and in whi
h all plays are �nite is determined. (Thus, it is neither ne
-essary that all plays have the same �nite length, nor that players have to movealternatingly.)Suppose given su
h a game with players I and II.Let T be the set of all positions that 
an o

ur while playing it. In parti
ular,there is an initial position t0 2 T . For t 2 T , there are 3 possibilities: it is I'sturn to move at t, it is II's, or t is terminal : game over, in whi
h 
ase the rulesof the game determine whi
h of the two players has won.For s; t 2 T , write s� t if the position t 
an be rea
hed from s by one moveof the player whose turn it is to move in s. Thus, a play of the game has theform t0 � t1 � � � �� tnwhere tn is terminal.Let us 
all a position t 2 T determined if one of the players has a winningstrategy for the subgame that starts at t. Trivially, terminal positions aredetermined (the winning strategy of the player who has won is doing nothing.)The theorem states that the initial position t0 is determined.4



Claim. If s 2 T is not determined, then some t� s is not determined.From this, the theorem follows: if the initial position t0 isn't determined,there is some t1 � t0 that isn't, hen
e some t2 � t1 is not determined, et
 et
;and we end up with an in�nite sequen
e t0 � t1 � t2 � � � � , 
ontradi
ting the�niteness assumption on plays.To prove the Claim, assume s 2 T is not determined. As hypothesis for aproof by 
ontradi
tion, suppose that every t� s is determined.First, note that s 
an't be terminal, sin
e terminal positions are triviallydetermined. Thus, one of the players has to move in position s; and we may aswell assume that this is player I.(a) There exists t� s su
h that I has a winning strategy � = �t in t.Then I has a winning strategy in s as well: it 
onsists of exe
uting the moves� t, followed by the winning strategy �t. Contradi
tion.(b) There doesn't exist t� s su
h that I has a winning strategy in t.Then, by assumption (every t � s is determined), II must have a winningstrategy �t in every position t � s. It follows that II has a winning strategyin s: it 
onsists of �rst waiting what I's move s � t will be (s is not terminaland it's I's turn to move), followed by the winning strategy �t. Contradi
tionagain. a1.10 Corollary. (Zermelo, Euwe) In the game of 
hess, either White has awinning strategy, or Bla
k has a strategy with whi
h he 
annot lose.This appli
ation 
learly shows the purely theoreti
al nature of the determi-na
y proof.1|Winning strategies for Dupli
ator and transfer. The existen
e of awinning strategy for Dupli
ator 
an be used to transfer truth from one modelto the other. (The explanation of this phenomenon follows in Chapter 2.)1. Assume that D((A;R); (B;S); 2), and that the relation R is symmetri
(8a1; a22A(a1Ra2 ) a2Ra1). Then S is symmetri
 as well.2. Assume that D((A;R); (B;S); 3), and that the relation R is dense. (R isdense if 8a; b2A(aRb ) 9
2A(aR
 ^ 
Rb).) Then S is dense too.3. Assume that D((A;R); (B;S); 3), and that R is 
on
uent. (R is 
on
uentif 8a; b1; b22A(aRb1 ^ aRb2 ) 9
2A(b1R
 ^ b2R
)).) Then also S is
on
uent.Conversely, every spe
i�
 �rst-order senten
e that holds in A and is falsein B 
an be transformed into a winning strategy for Spoiler for an Ehrenfeu
htgame of suitable length. (Of 
ourse, this follows from the above statement usingdetermina
y. But the dire
t argument is illuminating.)2|1. Suppose that R is symmetri
, but S isn't. Des
ribe a winning strategyfor Spoiler in the length-2 game on A = (A;R) and B = (B;S).5



2. Suppose that R is dense but S isn't. Des
ribe a winning strategy forSpoiler in the length-3 game.3. What about the 
ase for 
on
uen
y?1.11 Proposition Suppose that A has n elements.1. If D(A;B; n), then there exists an embedding of A into B.2. If D(A;B; n+ 1), then A �= B.Proof. 1: Let Spoiler enumerate the elements of A and Dupli
ator use hiswinning strategy. 2: An isomorphism is the same as a surje
tive embedding.a3| Find a simple 
ondition on n and the number of elements of A and B thatis both ne
essary and suÆ
ient in order that D((A; ;); (B; ;); n) (both relationsempty) holds.1.3 A Few ExamplesIn the 
ase that A and B are linear orderings, a statement that D(A;B; n) 
anoften be shown using indu
tion on n.1.12 Notation. If < linearly orders A, and a 2 A, then the notation a " isused for the submodel of (A;<) with universe fx2A j a < xg.Similarly, a# is the submodel of (A;<) that has universe fx2A j x < ag.E.g., �1" may denote the submodel (IN; <) of (ZZ; <).Remarks.� Thus, if a 2 A, then (A;<) = a# +fag+ a".� If a is the greatest (resp., the least) element of A, then a" (a#) is empty.1.13 Splitting Lemma. For linear orderings A and B, D(A;B; n + 1) holdsi�, both(\forth") 8a2A 9b2B [D(a#; b#; n) ^ D(a"; b"; n)℄, and(\ba
k") 8b2B 9a2A [D(a#; b#; n) ^ D(a"; b"; n)℄.1.14 Example. For every n, we have that D(�; �; n).(In this parti
ular 
ase, Dupli
ator's winning strategy doesn't depend on n.)1.15 Proposition. k;m > 2n � 1 ) D(Lk;Lm; n).
6



Proof. Indu
tion w.r.t. n, using Lemma 1.13.Basis. n = 0.Trivial, sin
e the empty relation always is a lo
al isomorphism, and this is therelation built up after 0 moves. (If you �nd this tri
ky, just 
he
k the 
ase forn = 1.)Indu
tion step.Indu
tion hypothesis: the statement holds for n.Now suppose that k;m > 2n+1 � 1. In order that D(Lk;Lm; n + 1), it suÆ
es(a

ording to Lemma 1.13) to show that (\forth") for every element i of Lk thereis an element j in Lm su
h that D(i #; j #; n) and D(i "; j "; n), and 
onversely(\ba
k": for every j in Lm there should be an i in Lk su
h that D(i #; j #; n)and D(i"; j "; n) | but the situation is symmetri
 in k and m so it suÆ
es toonly 
he
k the \forth"-
laim).Thus, suppose that i is an element of Lk. Distinguish 3 
ases, depending onwhether i is lo
ated \left", \right", or \in the middle" of Lk.(i) i# has < 2n � 1 elements.Pi
k j in Lm su
h, that i#�= j #. (This is possible, sin
e m > 2n+1 � 1.) ThenD(i #; j #; n). Furthermore (sin
e k;m > 2n+1 = (2n � 1) + 1 + (2n � 1)), i "and j " have at least 2n � 1 (in fa
t, at least 2n) elements, and so D(i"; j "; n)follows from indu
tion hypothesis.(ii) i" has < 2n � 1 elements.Pi
k j su
h that i"�= j ", and argue as under (i).(iii) i# and i" both have > 2n � 1 elements.Claim. j 2 Lm exists su
h that both j # and j " have > 2n � 1 elements.Proof. Be
ause of m > 2n+1, and 2n+1 � 1 = (2n � 1) + 1 + (2n � 1). aPi
k su
h a j. By indu
tion hypothesis, D(i#; j #; n) and D(i"; j "; n) hold.a1.16 Proposition. If m > 2n � 1, then D(! + !?;Lm; n);more generally, for every linear ordering �: D(! + (� � �) + !?;Lm; n).Proof. Another indu
tion. a1.17 Lemma.1. D(�1; �1; n) ^ D(�2; �2; n) ) D(�1 + �2; �1 + �2; n).2. More generally: if I is a linearly ordered set and for all i 2 I �i and �iare orderings s.t. D(�i; �i; n), then D(Pi2I �i;Pi2I �i; n).1.18 Proposition. For all n 2 IN:1. D(!; ! + �; n);more generally: for any �, D(!; ! + � � �; n),7



2. D(�; � + �; n);more generally: for any �: D(�; � � �; n).Proof. 1: ! = (2n � 1) + !, ! + � = (! + !?) + !. Use Proposition 1.16 andLemma 1.17.1.2: Similar. aBm is the (unordered, rooted) binary tree all of whose bran
hes have lengthm. This tree 
an be represented as the set of �nite sequen
es of 0's and 1'sof length < m, partially ordered by s � t � s is an initial segment of t. Thelength-0 sequen
e is the root in this tree.The following is reminis
ent of Proposition 1.15 (p. 6), but its proof issomewhat harder.1.19 Proposition. m; k > 2n � 1 ) D(Bm; Bk; n).Proof. Indu
tion w.r.t. n. The 
ase n = 0 (or n = 1) is trivial. For theindu
tion step, suppose that m; k > 2n+1 � 1. The reader is urged to drawpi
tures.Let a 2 Bm be the �rst move of Spoiler.In the linear ordering-
ase, an element indu
es a splitting of the orderingin (that element and) two halves, and we 
an use Lemma 1.13. In the presenttree-
ase, the element a 
an be used to split Bm in three (or four) parts:� the element a,� the two top-subtrees, the roots of whi
h are the two immediate su

essorsof a (these trees are empty if a happens to be maximal),� the poset a .= ft j a 6� tg that 
onsists of the linear ordering a #= ft jt � ag plus the \side-trees" sprouting from a # (a . being empty if ahappens to be the root of Bm).Notation: for i � a, Ti = ft j i � t ^ (t 6� a ^ a 6� t)g denotes the side-treefrom a., the root of whi
h is the immediate su

essor of i that is 6� a.As in the proof of 1.15, distinguish the following 
ases.(i) a# has 6 2n � 1 elements.Dupli
ator 
hooses b 2 Bk su
h that b#�= a#.It now suÆ
es to indi
ate that Dupli
ator wins the n-round games on 
or-responding parts in the de
ompositions of the two trees Bm and Bk that areindu
ed by a and b.Sin
e ja# j = jb# j 6 2n�1, the top-trees above a and b have height > 2n�1;thus, by IH, Dupli
ator has winning strategies for the n-round games on the twopairs of top-trees.On the posets a ., b ., Dupli
ator 
ounters in a # and b # using theisomorphism between these linear orderings, and he 
ounters in side-trees that
orrespond under this isomorphism using winning strategies for the n-roundgames. These strategies exist a

ording to IH (note that all side-trees haveheight > 2n). 8



(ii) The subtree with root a has height 6 2n.It 
learly suÆ
es to de
ompose the two trees as Bm = T1 [ (Bm � T1) resp.,Bk = T2 [ (Bk � T2), in su
h a way that a 2 T1, D(T1; T2; n+ 1), and D(Bm �T1; Bk � T2; n).Choose a � a su
h that the subtree T1 with root a has height exa
tly 2n.De
ompose Bm in T1 and a .= Bm � T1, the latter 
onsisting of the linearordering a # of length > 2n � 1 and the side-trees Ti (i � a), all of them ofheight > 2n.Similarly de
ompose Bk into some subtree T2 of height exa
tly 2n with rootb and the rest b.= Bk�T2, whi
h 
onsists of, again, the linear ordering b# oflength > 2n � 1 with side-trees Tj (j � b) of height > 2n.We now have that T1 �= T2, and hen
e, D(T1; T2; n+ 1).Now D(a.; b.; n) follows from Proposition 1.15 and IH, as follows. Fix:� a winning strategy � for Dupli
ator for the n-round game between a# andb# (using 1.15),� a winning strategy �ij (for ea
h i � a, j � b) for Dupli
ator for the n-roundgame between the side-trees Ti and Tj (using IH).Moves by Spoiler in a#, b# are now 
ountered by Dupli
ator using �. A move i+of Spoiler in, say, Ti, i � a, is 
ountered as follows. First, � produ
es an answerj � b to i (and possibly earlier moves or elements 
onsidered in a#, b#). Next,�ij produ
es an answer j+ to i+ (and possibly earlier moves in Ti, Tj).(iii) a# has > 2n� 1 elements and the subtree with root a has height > 2n.Dupli
ator sele
ts an element b 2 Bk with the same properties.De
ompose Bm and Bk as under (i) using a resp., b. It suÆ
es to see thatDupli
ator has winning strategies for the n-round games on 
orresponding partsin the de
ompositions.Use IH for the top-trees above a and b (whi
h have height > 2n � 1). Tosee that D(a.; b.; n), again, �x:� a winning strategy � for Dupli
ator for the n-round game between a# andb# (using 1.15),� for every i � a, j � b, a winning strategy �ij for Dupli
ator for the n-roundgame between the side-trees Ti and Tj (using IH).The strategy followed by Dupli
ator is the same as under (ii). aThe (�nite) binary tree C = C(Lm; Bl0 ; : : : ; Blm) is the disjoint union ofthe linear ordering Lm = (f0; : : : ;m � 1g; <) and the m + 1 �nite binarytrees Bl0 ; : : : ; Blm by letting ea
h i 2 Lm (i = 0; : : : ;m � 2) be the immedi-ate prede
essor of the root of Bli and, moreover, by letting the greatest elementm� 1 2 Lm be the immediate prede
essor of the roots of both Blm�1 and Blm .Similarly, the (in�nite) binary treeD = D(!;Bj0 ; Bj1 ; Bj2 ; : : :) is the disjointunion of the linear ordering ! and Bj0 ; Bj1 ; Bj2 ; : : : by letting ea
h i 2 ! be theimmediate prede
essor of the root of Bji .1.20 Proposition. m; l0; : : : ; lm; j0; j1; j2; : : : > 2n � 1 ) D(C;D; n).9



Proof. Indu
tion w.r.t. n.For the indu
tion step, assume that m; l0; : : : ; lm; j0; j1; j2; : : : > 2n+1 � 1.In the following we show that (\forth"), for every a 2 C, we 
an de
omposeC = C1[C2 and D = D1[D2 su
h that a 2 C1, D(C1;D1; n+1), and D(C2;D2; n),and (\ba
k") a similar 
laim holds for every b 2 D. Draw pi
tures illustratingthese de
ompositons!If a 2 C is the �rst move of Spoiler, we may, by swapping Blm�1 and Blm ,wlog assume that a 2 C1 = C � Blm = Lm [ Bl0 [ � � �Blm�1 . C is de
omposedinto C1 and C2 = Blm .Choose k > 2n+1 � 1 in ! so large that, if b 2 D happened to be the �rstmove of Spoiler, then k 6� b. D is de
omposed into into D1[D2, where D1 = k .is the initial segment Lk = f0; : : : ; k� 1g of ! plus the side-trees Bj0 ; : : : ; Bjk�1(thus, k has been 
hosen su
h that a possibly �rst move of Spoiler in D happenedin D1), and D2 is the rest: the subtree with root k, whi
h 
onsists of the partfk; k + 1; k + 2; : : :g of !, plus side-trees Bjk ; Bjk+1 ; Bjk+2 ; : : :We now have that D(C1;D1; n+ 1), as in parts (ii) and (iii) of the proof ofProposition 1.19, using the result of this proposition.What we need, furthermore, is that D(Blm ;D2; n). To see this, simplyrewrite Blm , in the notation for C that is explained immediately above 1.20, asBlm = C(L2n�1; Bl0 ; : : : ; Bl2n�1), where l0; : : : ; l2n�1 > 2n. From this, it is 
learthat D(Blm ;D2; n) follows by IH. a4| (P(A);�) is the model in whi
h P(A) is the set of all subsets of A. Show:1. If A and B are in�nite, then for all n 2 IN: D((P(A);�); (P(B);�); n).2. If jAj; jBj > 2n, then D((P(A);�); (P(B);�); n).
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Chapter 2Logi
2.1 Main TheoremModels, Formulas. There is no reason to sti
k to just one relation; modelsare allowed to have the form A = (A;R; S; : : :) with �nitely many relations (ofany arity) R;S; : : : over the universe A. Consequently, atomi
 formulas have theform: x=y, R(x1; : : : ; xn), S(x1; : : : ; xm),. . . From these, (�rst-order) formulasare built using 
onne
tives and quanti�ers.2.1 Quanti�er Rank. The quanti�er rank qr(') of a (�rst-order) formula 'is the maximum number of nested quanti�ers in '. I.e.:1. for atomi
 ', qr(') = 0,2. qr(:') = qr('),3. qr('!  ) = qr(' ^  ) = qr(' _  ) = qr('$  ) = max(qr('); qr( )),4. qr(8x') = qr(9x') = qr(') + 1.Examples. The quanti�er rank of 8x(9yxRy ^ 9y:xRy) is 2. The 
on
uen
ysenten
e (Exer
ise 1 p. 5) 8x; y1; y2(xRy1 ^ xRy2 ! 9z(y1Rz ^ y2Rz)) hasrank 4. Its logi
al equivalent 8y1; y2(9x(xRy1 ^ xRy2) ! 9z(y1Rz ^ y2Rz))has rank 3.2.2 Equivalen
e and n-Equivalen
e. Models A and B are (elementary, �rst-order) equivalent if they have the same true �rst-order senten
es. Notation:A � B.They are n-equivalent if they have the same true senten
es of rank 6 n.Notation: A �n B.Thus: A � B holds i�, for all n 2 IN, we have that A �n B.Example. L2 and L3 are not 2-equivalent: a distinguishing rank-2 senten
e is9y(9x(x < y) ^ 9z(y < z)). These models are equivalent w.r.t. senten
es withtwo quanti�ers only. 11



2.3 Lemma. For every k and n there are, up to logi
al equivalen
e, only �nitelymany formulas with at most x1; : : : ; xk free and quanti�er rank 6 n.Proof. This is due to the fa
t that a vo
abulary 
onsists of �nitely manyrelation symbols. The proof uses indu
tion w.r.t. n, using disjun
tive normalforms. In the indu
tion step for n + 1, use that the quanti�er rank 6 n + 1formulas with at most x1; : : : xk free are, up to logi
al equivalen
e, generatedusing the booleans from (i) the quanti�er rank 6 n formulas with at mostx1; : : : xk free, and (ii) the formulas 9xk+1' with ' of quanti�er rank 6 n andat most x1; : : : xk; xk+1 free. (Thus, the IH is used for k + 1 instead of k.) a2.4 Main Theorem. D(A;B; n) , A �n B.In Ehrenfeu
ht's game, it is 
lear from the proof below that the movesare \meant" as values for bound variables. But formulas are built, next toquanti�ers, from 
onne
tives as well. So: what is left of the 
onne
tives in theEhrenfeu
ht game?2.5 Corollary. 8nD(A;B; n) , A � B.2.6 Examples. (Q; <) � (IR; <) (By Example 1.14 p. 6, for all n, D(�; �; n));(IN; <) � (IN + ZZ; <) (By Proposition 1.18.1 p. 7, for all n, D(!; ! + �; n)).Proof. (Of 2.4.) The following generalisation 
an be handled using indu
tion.N.B.: as in the proof of Lemma 2.3, k needs to be kept variable: in the indu
tionstep for k and n+ 1, IH is applied for n and k + 1.2.7 Lemma. For all n and every �nite relation h = f(a1; b1); : : : ; (ak; bk)g �A�B, the following 
onditions are equivalent:1(n) Dupli
ator has a winning strategy in position h in the length-(k+n) gameon the models with n more rounds to go,2(n) for all formulas ' = '(x1; : : : ; xk) with qr(') 6 n, we have thatA j= '[a1; : : : ; ak℄ i� B j= '[b1; : : : ; bk℄:Basis: n = 0.In fa
t, the following are equivalent:1(0) h is a lo
al isomorphism (= Dupli
ator has a win with 0 rounds to go),20(0) for all atomi
 formulas ' with Var(') � fx1; : : : ; xkg we have thatA j= '[a1; : : : ; ak℄ i� B j= '[b1; : : : ; bk℄;2(0) for all formulas ' with Var(') � fx1; : : : ; xkg and qr(') = 0 we have thatA j= '[a1; : : : ; ak℄ i� B j= '[b1; : : : ; bk℄:12



N.B.: For h = ; all three 
onditions hold: 1(0), sin
e ; is a lo
al isomorphismbetween every two models, and 20(0) and 2(0) sin
e there are no atomi
 orrank-0 formulas without free variables.Indu
tion step.Indu
tion hypothesis: the equivalen
e 1(n) , 2(n) holds.1(n + 1) ) 2(n + 1). Suppose that Dupli
ator has a win in position h in thelength-(k+n+1) game with n+1 more rounds to go. Here follows proof that, forall ' = '(x1; : : : ; xk) with qr(') 6 n+1, A j= '[a1; : : : ; ak℄ i� B j= '[b1; : : : ; bk℄.Indu
tion w.r.t. '.Sin
e h is also a win for Dupli
ator in the length-(k + n) game, by indu
-tion hypothesis we get the required equivalen
e for formulas of rank 6 n, inparti
ular, for atomi
 ones. Indu
tion steps for the 
onne
tives are e�ortless.Quanti�er 
ase:Assume A j= 9xk+1 [a1; : : : ; ak℄, where qr( ) 6 n. Thus, let ak+1 2 A besu
h that A j=  [a1; : : : ; ak; ak+1℄.Consider ak+1 as a move of Spoiler in position h in the length-(k+n+1) game.Sin
e h is a win for Dupli
ator, there is a move bk+1 2 B bringing Dupli
ator toa position h0 := h [ f(ak+1; bk+1)g that, again, is a win for Dupli
ator.By indu
tion hypothesis applied to h0, we have that for all formulas ' ='(x1; : : : ; xk; xk+1) with qr(') 6 n: A j= '[a1; : : : ; ak; ak+1℄ is true i� B j='[b1; : : : ; bk; bk+1℄. In parti
ular, B j=  [b1; : : : ; bk; bk+1℄, and hen
e B j= 9xk+1 [b1; : : : ; bk℄.2(n+1) ) 1(n+1). Suppose Spoiler 
hooses ak+1 2 A. We show that Dupli
atorhas an answer bk+1 2 B bringing him into a position h0 := h[f(ak+1; bk+1)g inthe length-(k + n + 1) game that is won for him. (The 
on
lusion being, thatDupli
ator had a win already in position h.)Consider the set� := f'(x1; : : : ; xk; xk+1) j qr(') 6 n ^ A j= '[a1; : : : ; ak; ak+1℄g:By Lemma 2.3 there is a �nite subset �0 � � su
h that every element of � hasan equivalent in �0.Clearly, we have that A j= 9xk+1V�0[a1; : : : ; ak℄. By 
ondition 2 and sin
eqr(9xk+1V�0) 6 n + 1, it follows that B j= 9xk+1V�0[b1; : : : ; bk℄. Say, B j=V�0[b1; : : : ; bk; bk+1℄.Claim. If qr(') 6 n, then: A j= '[a1; : : : ; ak+1℄ i� B j= '[b1; : : : ; bk+1℄.This follows from the 
hoi
e of �0 and bk+1. The required 
on
lusion followsusing the indu
tion hypothesis. aConstants. The Ehrenfeu
ht game for models with 
onstants is played exa
tlyas before, but now, a �nite relation h is 
alled a lo
al isomorphism between(A; a1; : : : ; ak) and (B; b1; : : : ; bk) |where A and B are purely relational| ifh [ f(a1; b1); : : : ; (ak; bk)g is a lo
al isomorphism between A and B in the oldsense. Equivalently (as above, 20(0)): a lo
al isomorphism is a 
orresponden
ethat preserves satisfa
tion of atomi
 formulas.13



2.8 Corollary. The Main Theorem 2.4 is valid for languages with �nitely many
onstant symbols.Proof. Immediate from Lemma 2.7. Suppose that the modelsA0 = (A; a1; : : : ; ak)and B0 = (B; b1; : : : ; bk) expand the purely relational models A and B with k
onstants ea
h. Put h = f(a1; b1); : : : ; (ak; bk)g. Then the following 
onditionsare equivalent:1. Dupli
ator has a winning strategy in the length-n game on the models A0and B0,2. Dupli
ator has a winning strategy in position h in the length-(k+n) gameon the models A and B with n more rounds to go,3. for all formulas ' = '(x1; : : : ; xk) with qr(') 6 n, we have thatA j= '[a1; : : : ; ak℄ i� B j= '[b1; : : : ; bk℄;4. for all senten
es ' = '(
1; : : : ; 
k) with qr(') 6 n, we have thatA0 j= ' i� B0 j= ': aRemark. You 
an now see what �niteness of the vo
abulary is good for. Forinstan
e, let B be a proper elementary extension of (IN; 0; 1; 2; : : :). (Everyproper extension of this model happens to be an elementary one.) Spoiler 
analready win the length 1 game on these models by 
hoosing an element of Boutside IN. A similar example with (IN; 0; S) (where S(n) := n+ 1) illustrateswhy you have to ex
lude fun
tion symbols.Thus, from now on we 
an allow �nitely many 
onstant symbols.5| Show: if A is �nite and A � B, then A �= B.6| Show: every two dense linear orderings without endpoints are equivalent.7| Suppose that the linear ordering � 
an be embedded into the linear ordering�. Show that � � � 
an be elementarily embedded in � � �. (An embedding iselementary if it preserves all formulas.)8| Cf. Lemma 1.16 (p. 7).1. Produ
e, for every n 2 IN, a senten
e 'n of rank n that is true of a linearordering i� it has at least 2n � 1 elements.2. Give a simple 
ondition on m and n that is both ne
essary and suÆ
ientin order that D(! + !?;Lm; n). 14



Solution. 1. For a formula ' and a variable x not in ', '<x is the formulaobtained from ' by repla
ing quanti�ers 8y � � � and 9y � � � by 8y < x � � � (=8y(y < x! � � � )), resp., 9y < x � � � (= 9y(y < x ^ � � � )).'>x idem.De�ne '1 = 9x1(x1=x1), 'n+1 = 9xn+1('<xn+1n ^ '>xn+1n ).2. D(! + !?;Lm; n) , m > 2n � 1.9| Cf. Lemma 1.15.1. Constru
t, for n > 2 and k < 2n � 1, a senten
e  n;k of rank 6 n that istrue of a linear ordering i� it has exa
tly k elements.2. Give a simple 
ondition on k, m and n that is both ne
essary and suÆ
ientin order that D(Lk;Lm; n).Hint for 1. Start with n = 2 (then 22 � 1 = 3), and k = 1, k = 2.next, suppose  n;k de�ned for n > 2 and k < 2n � 1. To 
onstru
t  n+1;k,distinguish 1 6 k < 2n�1, k = 2n�1, 2n�1 < k < 2n+1�2, and k = 2n+1�2.2.2 Appli
ations2.2.1 De�nability2.9 De�nability. A (�rst-order) formula ' = '(x) in one free variable x (�rst-order-) de�nes the set 'A = fa 2 A j A j= '[a℄g in A; a formula  =  (x; y) intwo free variables x; y de�nes the relation  A = f(a; b) 2 A�A j A j=  [a; b℄gin A.For every n 2 IN one 
an write a formula �n = �n(x) in the language of(IN; <) that expresses that (the value of) x has exa
tly n prede
essors. Thus,(IN; <) j= �n[m℄ is true i� m = n. Consequently, if A � IN is �nite, it 
an bede�ned in (IN; <) by the disjun
tion Wn2A �n; its 
omplement IN�A is de�nedby the negation of this formula.A set X � IN is 
alled 
o-�nite if IN � X is �nite. Thus: all �nite and
o-�nite sets � IN are de�nable in (IN; <).2.10 Proposition. Every set de�nable in (IN; <) is either �nite or 
o-�nite.Proof. Suppose that '(x) de�nes a set that is neither �nite nor 
o-�nite. Thus,! = (IN; <) j= 8x9y(x < y ^ '(y)) ^ 8x9y(x < y ^ :'(y)). But, ! � ! + �;hen
e this senten
e is true in the latter model as well. Therefore, some elementa in the �-part satis�es ', and some element b in the �-part satis�es :'. Applythe automorphism of ! + � that moves a to b; a 
ontradi
tion results. a10| Suppose that X is de�nable in (IN + ZZ; <). Show that ZZ � X orZZ \X = ;. Show that X is �nite or 
o-�nite.2.11 Model-transformations and Translations. Suppose that Æ = Æ(x; y)is a formula with x and y free. 15



1. For A = (A;R), the model AÆ is de�ned as AÆ = (A; ÆA), where ÆA is therelation de�ned by Æ in A.2. The formula 'Æ is obtained from ' by repla
ing atomi
 subformulas uRvby Æ(u; v). (Possibly renaming bound u and v in Æ to avoid 
lashes.)The following equivalen
e holds:AÆ j= '[a1; : : : ; an℄ , A j= 'Æ [a1; : : : ; an℄:(Indu
tion w.r.t. '.)E.g., we may so use the formula su
(x; y) (su
 for (immediate) su

essor):x < y ^ :9z(x < z ^ z < y)and its symmetri
 version nb(x; y) = su
(x; y) _ su
(y; x) (nb for neighbour).For instan
e, the relation of the model (IN; <)su
 is the su

essor relationde�ned by n+ 1 = m.Note:1. If qr(Æ) = k, then A �n+k B ) AÆ �n BÆ; and, hen
e:2. A � B ) AÆ � BÆ.11| Consider the \
ir
le"-model Cm = (f0; : : : ;m�1g; R), where R is de�nedby iRj :� i + 1 = j _ (i = m � 1 ^ j = 0). (Visualize by drawing points0; : : : ;m� 1 on a 
ir
le.) �(x; y) = su
(x; y) _ (:9z(z < y) ^ :9z(x < z)).1. Che
k that Cm = L�m and �su
 = (! + !?)�.2. Give a suÆ
ient 
ondition in order that D(Cm;Ck; n).3. Idem, for D(Cm; �su
; n).2.12 Proposition. The ordering < of IN is not de�nable in !su
.Proof. Suppose '(x; y) de�nes the ordering in !su
. Then the senten
e � =8x8y(x 6=y ! ('(x; y) $ :'(y; x)) holds in !su
. But, ! � ! + � + �; hen
e!su
 � (! + � + �)su
; and so the senten
e holds in the latter model as well.However, (! + � + �)su
 has an automorphism that inter
hanges the two �-
opies. Pi
king (a value for) x in one and (a value for) y in the other results ina 
ontradi
tion. aNote that the ordering < of IN is the transitive 
losure of the su

essorrelation of !su
. Thus: transitive 
losures are not �rst-order de�nable. In fa
t,this is true already on �nite models:2.12' Proposition. There is no uniform �rst-order de�nition of the orderingon the models Lsu
m . 16



Proof. Suppose that ' 
onstitutes su
h a de�nition. Then the above senten
e� holds in every model Lsu
m , and hen
e, �su
 holds in every Lm. It follows that! + � + � + !? j= �su
, and hen
e, (! + � + � + !?)su
 j= �. A 
ontradi
tionarises as in the earlier proof above. aA senten
e de�nes the 
lass of models in whi
h it is true. Relative to thisnotion of de�nability:2.13 Proposition. There is no �rst-order de�nition of �niteness for linearorderings.Proof. By Lemma 1.16 (p. 7). aMore interestingly:2.14 Proposition. There is no �rst-order de�nition of �niteness for binarytrees.Proof. By the result of Proposition 1.20 (p. 9). aNote that 2.13 also has an easy proof using Compa
tness, but 2.14 hasn'tsin
e the 
lass of binary trees isn't elementary. (An in�nite model of the theoryof all binary trees Bm need not be a tree at all; e.g., it might very well benon-wellfounded.) The Ehrenfeu
ht game te
hnique is essential for the proof.Conne
tivity. Suppose that a; b 2 A, where (A;R) is some model (graph).A path 
onne
ting a with b is a �nite sequen
e a1 = a; : : : ; an = b s.t. for alli, 1 6 i < n: aiRai+1.The model is 
onne
ted if for all a; b 2 A, there is a path 
onne
ting a withb.2.15 Proposition. There is no �rst-order de�nition of 
onne
tivity. This istrue even on the 
lass of �nite (graph) models.Proof. For arbitrary models, this 
an be proved using 
ompa
tness. An in�niteexample is �su
 � (� + �)su
 (sin
e � � � + �); the �rst model is 
onne
tedwhereas the se
ond one is not.On �nite models, one needs game theory. Here is an ingenious proof based onthe fa
t that a (rank 2) �rst-order formula �2 = �2(x; y) exists (a modi�
ationof the formula � from Exer
ise 11), satisfyingLn j= �2[i; j℄ , i+ 2 = j _ (i = n� 2 ^ j = 0) _ (i = n� 1 ^ j = 1):�(x; y) says:\x < y and there is exa
tly one element between them,or: x is greatest element and there is exa
tly one element < y,or: there is exa
tly one lement > x and y is least element".Pi
ture some 
ases n = 4; 5; : : : and note: L�2n is 
onne
ted i� n is odd. Infa
t, for n odd: L�2n �= Cn; and for n = 2m even: L�2n �= Cm + Cm (the disjointunion of two 
opies of Cm).Now suppose that a quanti�er rank p senten
e de�nes 
onne
tivity. Forn = 2p+2�1, we have that Ln �p+2 Ln+1. Hen
e, L�2n �p L�2n+1. A 
ontradi
tionfollows. a17



2.2.2 Axiomatizability2.16 Axiomatisation.1. A set � of senten
es axiomatizes (the theory of) a model A if for allsenten
es ': A j= ' i� � j= '.Equivalently: A is a model of �, and every senten
e true of A followsfrom �.2. � axiomatizes (the theory of) a 
lass K of models if for all ': ' is truein every model from K i� � j= '.(Thus, an axiomatization for A is the same as one for fAg.)Remarks. If � de�nes K, then it also axiomatizes K. However, the 
onversedoesn't hold.Example: FLO is the 
lass of �nite linear orderings; ELO 
onsists of the sen-ten
es expressing the properties of linear orderings, existen
e of endpoints, andthe statements that every non-least (-last) element has an immediate prede
es-sor (su

essor).Claim. ELO axiomatizes FLO.Proof. Obviously, every �nite linear ordering satis�es ELO. Thus, if ELOj= ',then ' is true of every �nite linear ordering. Conversely: assume that notELOj= '. Then some A j=ELO exists of whi
h ' is false. From the de�nitionof ELO, it is not hard to see that A must be a linear ordering that is either�nite or has order type ! + � � � + !? for some �. Let n = qr('). Then, byLemma 1.16, A �n L2n�1. Thus, ' is false of the model L2n�1 of FLO. aThus, ELO axiomatizes FLO but it doesn't de�ne it.Using the above basi
 results on orderings, it is not hard to �nd axiomati-sations for �, ! + !?, !, and �.Example: ! is �nitely axiomatized by the senten
es stating: the properties oflinear orderings, existen
e of a least element, every element has an immediatesu

essor, and every non-least element has an immediate prede
essor.Proof. Obviously, ! satis�es these prin
iples; thus every logi
al 
onsequen
eof them is true of !. Conversely, suppose that ' doesn't follow logi
ally fromthese prin
iples. Then a model A of them doesn't satisfy '. It is not hard tosee that A must be a linear ordering of some type !+ � ��. But, !+ � �� � !.Thus, ' is false of !. a12| Show: there is no �nite axiomatisation for ! + !?.13| Assume that, among the models of �, there are arbitrarily big �nite linearorderings. Show that ! + !? is a model of �.18



14| Show: if the lineair orderings � and � are �nitely axiomatizable, then soare �?, 1 + �, � + 1 and � + 1 + �. However, � + � isn't ne
essarily �nitelyaxiomatizable.Su

essor relations. SUC 
onsists of the following senten
es: 8x9y(xRy ^8z(xRz ! z=y)), 8x9y(yRx ^ 8z(zRx ! z=y)), and (1) :9x1(x1Rx1), (2):9x19x2(x1Rx2 ^ x2Rx1), (3) :9x19x29x3(x1Rx2 ^ x2Rx3 ^ x3Rx1), . . .15| Show: every model for SUC is of the form (� � �)su
.16| Show: every senten
e true of �su
 has a �nite model. In parti
ular, �su
isn't �nitely axiomatizable.2.2.3 Partition ArgumentsA 
lass of �nite models (suitably 
oded as sequen
es of symbols) is in NP ifmembership in the 
lass is Non-deterministi
ally Turing ma
hine de
idable inPolynomial time. The following result explains the relationship with se
ond-order de�nability.2.17 Theorem. (Fagin 1974) On the 
lass of �nite models: �11 =NP.This is probably the �rst genuine result in the �eld of des
riptive 
omplexitywhi
h has been quite su

esful in relating 
omputational 
omplexity with logi
alde�nability, and that really got started some ten years ago. (Cf. the books byEbbinghaus/Flum and Immerman.)Any �11-property of �nite models whose 
omplement is not �11 (a 
andidatebeing the NP-
omplete graph property 3-
olorability) would give you that 
o-NP6=NP. From this, you may guess that showing something to be not �11 is atough nut. Restri
ting to monadi
-�11, where the relations quanti�ed over aresets, 
an be more tra
table. For instan
e, we've seen (Theorem 2.15 p. 17) that
onne
tivity on �nite models is not �rst-order; but in fa
t, something strongerholds:2.18 Theorem. Conne
tivity is not monadi
-�11 on the 
lass of �nite graphs.Proof. Suppose that 9X1 � � � 9Xn� de�nes 
onne
tivity, where � = �(R;X1; : : : ;Xn)is �rst-order and has rank n.LetM be a �nite set of models that pi
ks an element from ea
h n-equivalen
e
lass.By the �nite version of Ramsey's Theorem, there exists an m so large thatevery partition h : [m℄2 !M has a homogeneous set of 2n+1 elements (in fa
t,3 elements suÆ
es for the argument below).Choose X1; : : : ;Xk su
h that A = (Lsu
m ;X1; : : : ;Xk) j= �.For 0 6 i < j < m, h(fi; jg) 2 M is the model that is �n [i; j); here andbelow, the interval notation [i; j) is used for the 
orresponding submodel.Let Q � f0; : : : ;m� 1g be an 2n+1-element set homogeneous for h. Say, fori < j in Q, h(fi; jg) = �. 19



We now have, using a more or less self-explanatory notation (for su

essor-stru
tures � and �, � + � is their disjoint union where, moreover, max� is
onne
ted to min� |insofar as these elements exist):A = ( ;minQ) + [minQ;maxQ) + [maxQ;!)�n ( ;minQ) + � � (2n+1 � 1)su
 + [maxQ;!)�n ( ;minQ) + � � (! + !?)su
 + [maxQ;!)�n ( ;minQ) + � � (! + � + !?)su
 + [maxQ;!)= ( ;minQ) + � � (! + !?)su
 + [maxQ;!) + � � �su
�n A+ � � �su
�n A+ � � C2n+2�1:2nd line: Q has 2n+1 elements.Last line: L2n+2�1 �n+2 !+!?; thus Lsu
2n+2�1 �n+1 (!+!?)su
; 
onne
ting the(rank-1 de�nable) endpoints, we obtain C2n+2�1 �n �su
.That A �n A + � � C2n+3�1 is a 
ontradi
tion, sin
e A is 
onne
ted, butA+� �C2n+3�1 (the disjoint union of the line model A and a 
ir
le model) isn't.Note that the model des
ribed on the third line of the above 
al
ulation isalready dis
onne
ted; however, it is in�nite too, and the purpose of the rest ofthe 
al
ulation is to produ
e a �nite n-equivalent. aThe notion of 
onne
tivity is monadi
-�11: G is 
onne
ted i� for all U � G:if U 6= ; and U is 
losed under the relation of G, then U = G. And if weallow an existential quanti�
ation over a binary relation, a de�nition 
an be
on
o
ted: G is 
onne
ted if it has a linear ordering < with the property thatevery non-least element y is 
onne
ted with some x < y. Thus, 
onne
tivity is�11.There is some subtlety involved here. Consider the 
losely related notion ofrea
hability : in a graph (A;R), b is rea
hable from a if there is a path 
onne
tinga with b. It turns out that (for �nite models) undire
ted rea
hability (the notionfor undire
ted graphs, that is: models (A;R) where R is symmetri
; edgesidenti�ed with pairs (x; y); (y; x) 2 R) is simpler than the general (dire
ted)notion. Undire
ted rea
hability is monadi
-�11 (Kanellakis 1986):Proposition. In a �nite. undire
ted graph, b is rea
hable from a i� for someX � A: a; b 2 X, a and b both have exa
tly one edge 
onne
ting them with (anelement of) X, and every other 
 2 X has exa
tly two su
h edges.Proof. ) : Suppose that a = a0; : : : ; an = b is a shortest path 
onne
ting awith b. Then X = fa0; : : : ; ang satis�es the 
onditions stated.( : If X satis�es these 
onditions, follow the path starting at a, using edges
onne
ting elements of X. This path 
an't loop, and so it must end somewhere;the only possible endpoint being b. aHowever, Ajtai and Fagin showed in 1990 (using Ehrenfeu
ht's game 
oupledwith probabilisti
 arguments) that dire
ted rea
hability is not monadi
ally �11.20



This suggests looking at the 
losure of monadi
 �11 and �11 under �rst-orderquanti�
ation.A

ording to Proposition 2.14 (p. 17), �niteness is not a �rst-order propertyof binary trees. By K�onig's Lemma, a �nitely bran
hing tree is �nite i� all ofits bran
hes are �nite. Thus, �niteness is monadi
-�11 on the 
lass of �nitelybran
hing trees. However:2.19 Theorem. Finiteness is not monadi
-�11 on the 
lass of binary trees.Finally, here is another example of a partition argument.2.20 Theorem. Every monadi
-�11-senten
e � = �(<) with a well-orderedmodel has a well-ordered model of type < !!.Proof. Suppose that � = (A;<;X1; : : : ;Xk) is a well-ordered model. It suÆ
esto show that for every n, � has a well-ordered n-equivalent of type < !!. Inthe following, we 
an forget about the sets X1; : : : ;Xk sin
e they won't spoilthe argument.Fix n. By the Downward L�owenheim-Skolem Theorem, there is no loss ofgenerality in assuming that A is 
ountable. Apply indu
tion with respe
t tothe order type of �.If � has only one element, then � itself is the required n-equivalent. (For,1 < !!.)Next, suppose that � = � + 1. Then by indu
tion hypothesis, � has su
han n equivalent �0, and �0 + 1 �n � + 1 = � is the required equivalent. (Notethat if � < !!, then � + 1 < !!.)Finally, assume that � has a limit type. Let a0 2 � be the least element of�. Sin
e � is 
ountable, there is a 
ountable sequen
e a0 < a1 < a2 < � � � thatis unbounded in �. For i < j, let h(i; j) be the set of rank-n senten
es true inthe submodel [ai; aj). We may think of h as taking �nitely many values only.By the in�nite version of Ramsey's Theorem there exist k0 < k1 < k2 < � � �su
h that all h(ki; kj) are the same. By indu
tion hypothesis, there is a well-ordering 
 < !! that is an n-equivalent of every [aki ; akj ). Again by indu
tionhypothesis, let � be a well-ordering of type < !! that is n-equivalent with[a0; ak0). Then (by Lemma 1.17.2) � + 
 � ! �n [a0; ak0) +Pi[aki ; aki+1) = �,hen
e � + 
 � ! is the required n-equivalent of �. (Note that if �; 
 < !!, then� + 
 � ! < !!.) aLet 
 be the well-ordering of all ordinals.2.21 Corollary. 
 � !!.Proof. Show that 
 �n !! by indu
tion on n. Use Lemma 1.13 and the fa
tthat �nal segments of 
 (resp., !!) have type 
 (resp., !!). a17| Show that every monadi
-�11 senten
e true of ! is also true of ! + �.Nevertheless: produ
e a set X of natural numbers su
h that no expansion of! + � is elementarily equivalent to (!;X).21



18| Is every monadi
-�11 senten
e true of � true of � as well?19| Show: if � < � � !!, then � 6� �.20| A linear ordering is s
attered if it does not embed �. Let � be the leastset of order types su
h that (i) 0; 1 2 �, (ii) �; � 2 � ) � + � 2 �, (iii)� 2 � ) � � !; � � !? 2 �. Show: every ordering in � is s
attered, and everysenten
e with a s
attered model has a model in �.Hint. Use the te
hnique of the proof of Proposition 2.20. Suppose that a 
ertain�rst-order senten
e of quanti�er rank q is true in the s
attered model (A;<).Without loss of generality, assume that A is 
ountable. Identify every submodelof (A;<) with its universe. For a; 
 2 A, write a � 
 in 
ase that (i) a < 
and for all a0; 
0 s.t. a � a0 < 
0 � 
, (a0; 
0) := fb 2 A j a0 < b < 
0g has aq-equivalent in �, or (ii) 
 < a and a similar statement holds, or (iii) a = 
.Then � is an equivalen
e. Clearly, if a � 
 and a < b < 
, then a � b. Thus,A is an ordered sum of equivalen
e 
lasses Pi2I Ci, where I is a 
ertain linearordering.Show that the order type of I is dense.Sin
e (A;<) is s
attered, 
on
lude that I is a singleton; i.e.: A is the onlyequivalen
e 
lass.Finally, show that A itself has a q-equivalent in �. If A has no greatest element,
hoose a0 < a1 < a2 < � � � 
o�nal in A and apply Ramsey's theorem to see thatf
 2 A j a0 < 
g has a q-equivalent in �. Do this also for f
 2 A j 
 < a0g, by
hosing, if ne
essary, b0 = a0 > b1 > b2 > � � � 
oinitial in A.
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Chapter 3Wider Theory3.1 Other Chara
terisations3.1.1 Chara
teristi
sFor every n 2 IN, the \game-theoreti
 behaviour" of a model A in length-ngames 
an be 
oded into one senten
e "nA, the n-
hara
teristi
 of A.3.1 Chara
teristi
s. For a model A, a �nite sequen
e ~a = (a1; : : : ; ak) fromA and an integer n 2 IN, the formula "n~a = "nA;~a(x1; : : : ; xk) with x1; : : : ; xk freeand xk+1; : : : ; xk+n bound is de�ned as follows:1. "0~a is the 
onjun
tion of all atoms and negations of atoms ' = '(x1; : : : ; xk)with at most x1; : : : ; xk free su
h that A j= '[a1; : : : ; ak℄;2. "n+1~a is 8xk+1Wa2A "n(a1;:::;ak;a) ^ Va2A 9xk+1"n(a1;:::;ak;a).3. "nA is "nA;;, where ; is the empty sequen
e (of length 0).Remarks.In a given �nite vo
abulary there are, for any k, only �nitely many atoms in thevariables x1; : : : ; xk. Thus, the formulas "0A;(a1;:::;ak) are genuine (�nite) �rst-order formulas. If the number of atoms in these variables is A, there are 2Aatoms and negations of atoms, and so there are at most 22A many formulasof the form "0A;(a1;:::;ak) (where A is any model and (a1; : : : ; ak) is any length-ksequen
e from A).The same works for k + 1, hen
e it follows that the 
onjun
tion and dis-jun
tion in forming "1A;(a1;:::;ak;a) are over an at most �nite number of formulas.Thus, the rank-1 
hara
teristi
s are �rst-order formulas.Let Pk;n be the number of n-
hara
teristi
s for length-k sequen
es (withx1; : : : ; xk free, in any model). Clearly, every formula "1A;(a1;:::;ak) 
an be iden-ti�ed with the set f"0A;(a1 ;:::;ak;a) j a 2 Ag. It follows that Pk;1 6 2Pk+1;0 .These arguments 
ontinue throughout the hierar
hy: in (the de�nition of)any "n+1A;~a , disjun
tion and 
onjun
tion are over �nitely many formulas, andPk;n+1 is at most 2Pk+1;n .Note furthermore that 23



"n~a has quanti�er rank n, andA j= "n~a [~a℄.3.2 Theorem. The following 
onditions are equivalent:1. D(A;B; n),2. B j= "nA,3. "nB = "nA.(For the last equivalent to make sense, 
onjun
tions and disjun
tions must be
onsidered as taken over sets: order and repetitions don't 
ount.)21| Show this.Hint. Show using indu
tion w.r.t. n that, more generally: a position f(a1; b1); : : : ; (ak; bk)gis a win for Dupli
ator , i� B j= "nA;(a1 ;:::;ak)[b1; : : : ; bk℄, i� "nB;(b1;:::;bk) = "nA;(a1;:::;ak).22| Show: every quanti�er-n senten
e ' is logi
ally equivalent with a �nitedisjun
tion of senten
es of the form "nA.In fa
t: ' � Wf"nA j A j= 'g.3.1.2 Fra��ss�eHere follows the Fra��ss�e-
hara
terisation of n-equivalen
e (that pre
eded Ehren-feu
ht's).3.3 Fra��ss�e sequen
e. A Fra��ss�e sequen
e of length n+1 for A, B is a sequen
eI0; : : : ; In of sets of lo
al isomorphisms between A and B su
h that ; 2 In andfor all i, 0 6 i < n: if h 2 Ii+1, then(\forth") 8a 2 A9b 2 B (h [ f(a; b)g 2 Ii),and(\ba
k") 8b 2 B9a 2 A (h [ f(a; b)g 2 Ii).3.4 Theorem. The following are equivalent:1. D(A;B; n),2. there is a Fra��ss�e sequen
e of length n+ 1 for A and B.Proof. 1) 2. Assume D(A;B; n). For 0 6 i 6 n, let Ii be the set of positionsh in whi
h Dupli
ator has a winning strategy for i more rounds. (N.B.: by 1,; 2 In.)2 ) 1. Dupli
ator takes 
are that, after i rounds (0 6 i 6 n), a lo
alisomorphism h has been built that is an element of Ii. a
24



3.5 Remark. In De�nition 3.3, we 
ould equivalently require that the lo
alisomorphisms in Ii (0 6 i 6 n) 
onsist of exa
tly n � i ordered pairs (inparti
ular, that In = f;g). This will be essential in Chapter 4, when 
odingsu
h sets I as relations R by means ofR = f(a1; : : : ; ai; b1; : : : ; bi) j f(a1; b1); : : : ; (ai; bi)g 2 Ig;thereby transforming the notion of a Fra��ss�e sequen
e into the following modi�edversion (simultaneously renumbering i 7! n� i):2'. There is a sequen
e R0; : : : ; Rn of relations Ri � Ai �Bi su
h that R0 is> (for \true"), and(a) for 0 6 i 6 n: if Ri(a1; : : : ; ai; b1; : : : ; bi), then f(a1; b1); : : : ; (ai; bi)gis a lo
al isomorphism,and(b) for 0 6 i < n: if Ri(a1; : : : ; ai; b1; : : : ; bi), then(\forth") 8a 2 A 9b 2 B Ri+1(a1; : : : ; ai; a; b1; : : : ; bi; b),and(\ba
k") 8b 2 B 9a 2 A Ri+1(a1; : : : ; ai; a; b1; : : : ; bi; b).3.1.3 Co-indu
tive De�nabilityBefore giving the �nal 
hara
terisation, a (short) introdu
tion into (
o-) indu
-tive de�nability is needed.Suppose that � is a monotone operator over I, that is: � maps subsets of Ito subsets of I su
h thatX � Y � I ) �(X) � �(Y ):3.6 Prime Example. Our one and only example is this: I is the set of lo
alisomorphisms between two models A and B, and � = �A;B is de�ned by�(X) = fh j 8a2A9b2B(h [ f(a; b)g 2 X) ^ 8b2B9a2A(h [ f(a; b)g 2 X)g:Note that this operator is monotone.3.7 Post-�xed point, Co-indu
tion. Y � I is 
alled1. post-�xed point of � if Y � �(Y ),2. 
o-indu
tive if for all X � I: X � �(X) ) X � Y .3.8 Lemma.1. There is at most one 
o-indu
tive post-�xed point.2. A 
o-indu
tive post-�xed point is the same as a greatest �xed point.25



Proof. 1. Trivial.2. Suppose that Y is a 
o-indu
tive post-�xed point. Thus, Y � �(Y ).By monotoni
ity, �(Y ) � �(�(Y )); i.e.: �(Y ) is a post-�xed point as well. By
o-indu
tion, �(Y ) � Y . Thus, �(Y ) = Y . aAs to existen
e:3.9 Theorem. The set �#=[fX � I j X � �(X)gis the greatest �xed point of �.Proof. Suppose that X is an arbitrary post-�xed point. Then, X � � #. Bymonotoni
ity, X � �(X) � �(� #). Sin
e X was arbitrary, it follows that�#� �(�#): �# is a post-�xed point. It is 
o-indu
tive by de�nition. a3.10 Fixed point hierar
hy. For all ordinals �, de�ne �# � � I by thefollowing re
ursion:1. �# 0 = I2. �# (�+ 1) = �(�# �)3. �# 
 = T�<
 �# � (for limits 
).An alternative re
ursion would use the single equation�# � = \�<��(�# �)where it is understood that the empty interse
tion denotes I.3.11 Theorem. �#= T� �# �.Proof. That T� � # � is 
o-indu
tive is easy: if X � �(X), it follows byindu
tion that, for all �, X � �# �. Thus, X � T� �# �.To show that T� � # � is a post-�xed point, �rst note that the hierar
hyis de
reasing: � < � ) � # � � � # � (indu
tion w.r.t. �; a preliminaryindu
tion shows that � # (� + 1) � � # �). There is an ordinal � where thehierar
hy be
omes stationary: T� � # � = � # � (the argument needs (i) thatI is a set, and hen
e (ii) by the Powerset Axiom, its powerset is a set as well,and (iii) by the Substitution Axiom, the map � 7! � # � from ordinals intothis powerset 
annot be inje
tive). In parti
ular, � # � is a �xed point, and�(T� �# �) = �(�# �) = �# � = T� �# �. aRemark. The above treatment of greatest �xed points 
an be dualized forleast �xed points (whi
h are mu
h more 
ommon). Just revert in
lusions andinter
hange interse
tions and unions. A di�erent way: the least �xed point of� is the greatest one of the dualized operator X 7! I � �(I �X).26



3.1.4 Fixed Point Chara
terisation3.12 Theorem. The following are equivalent:1. D(A;B; n),2. ; 2 �A;B # n.Proof. More generally, Dupli
ator has a winning strategy in position h with nmore rounds to go i� h 2 �# n.Note also that if ; 2 �# n (equivalently, if �# n 6= ;), then �# 0; : : : ;�# nis a Fra��ss�e sequen
e. a3.13 Corollary. The following are equivalent:1. A � B,2. ; 2 �A;B # !.As to the relevan
e of the greatest �xed point �#: see Se
tion 3.3 (p. 29).3.2 VariationsThere are variations on the Ehrenfeu
ht game that are adequate with respe
tto languages other than �rst-order. For instan
e, to get the version for (say:monadi
) se
ond-order logi
, Spoiler is allowed to also pi
k a subset of one ofthe models; Dupli
ator then is obliged to 
ounter with a subset from the otherone.A ni
e variation with appli
ations to intensional logi
s is the one to formulaswith a bounded number of variables. (The relation with intensional logi
s 
omesfrom the fa
t that standard translations into �rst-order logi
 
an be 
arried outwith �nitely many variables, depending on the type of logi
 
onsidered.) Fromthe proof of Theorem 2.4 it 
an be seen that the moves of the players are meantas assignments of elements to variables. Now, modify the game as follows. Letk 2 IN be a natural number. Spoiler and Dupli
ator are given k pebbles ea
h,marked 1; : : : ; k. A move of Spoiler now 
onsists of pla
ing one of her pebbleson an element of one of the two models; Dupli
ator 
ounters by pla
ing his
orresponding pebble on an element of the other model. If the length of thegame ex
eeds k, Spoiler runs out of pebbles after her k-th move. She is allowednow to re-use one of her pebbles by simply moving it to some other element (ofeither model). Dupli
ator then 
ounters by re-using his 
orresponding pebble.At every stage of the play, the positions of the 2k pebbles determine an (atmost) k-element relation between the models; and Dupli
ator wins if all of themare lo
al isomorphisms. For the k-pebble game, there is the following3.14 Proposition. Dupli
ator has a winning strategy for the k-pebble game oflength n on A and B i� A and B satisfy the same rank � n-senten
es with atmost k variables.In the 
ontext of linear orderings, 3 variables suÆ
e.27



3.15 Proposition. If A and B are linear orderings with the same valid 3-variable senten
es of rank � n, then A �n B.Proof. Using indu
tion, it is shown that for every n: if g and h are the lo
ationsof at most 3�2 pebbles on A resp. B su
h that Dupli
ator has a winning strategyin the 3-pebble game of length n at position (g; h), then Dupli
ator has a winningstrategy in the ordinary game of length n at position (g; h).Basis: n = 0. Trivial.Indu
tion step. Assume the result for n. Suppose that Dupli
ator has a winningstrategy in the 3-pebble game of length n + 1 at position (g; h). Distinguishtwo 
ases.(i) At position (g; h), only 2 � 2 or less pebbles have been pla
ed. Then ea
hplayer has at least one free pebble. Thus: for every a 2 A there exists b 2 Band for every b 2 B there exists a 2 A su
h that Dupli
ator has a winningstrategy in the 3-pebble game of length n at position (g [ fag; h [ fbg). Byindu
tion hypothesis: for every a 2 A there exists b 2 B and for every b 2 Bthere exists a 2 A su
h that Dupli
ator has a winning strategy in the ordinarygame of length n at position (g [ fag; h[ fbg). But that means that Dupli
atorhas a winning strategy in the ordinary game of length n+ 1 at (h; g).(ii) At position (g; h), all 3 � 2 pebbles have been used. Suppose that g 
on-sists of a0 < a1 < a2 and h is b0 < b1 < b2. A fortiori, Dupli
ator haswinning strategies for the two 3-pebble games of length n + 1 at the two-pebble positions ((a0; a1); (b0; b1)) and ((a1; a2); (b1; b2)). The argument under(i) shows that Dupli
ator has winning strategies � resp. � in the ordinary gamesof length n+ 1 at positions ((a0; a1); (b0; b1)) resp. ((a1; a2); (b1; b2)). But then,Dupli
ator has a winning strategy in the ordinary game of length n+ 1 at po-sition ((a0; a1; a2); (b0; b1; b2)) as well: moves < a1 or < b1 are 
ountered using�, whereas moves > a1 or > b1 are 
ountered using � . a3.16 Corollary. On the 
lass of linear orderings, every senten
e is equivalentwith a three-variable senten
e.Another modi�
ation of the game is obtained by stipulating that Dupli
atorwins a play in 
ase the relation built is not a lo
al isomorphism but a lo
alhomomorphism, whi
h is a relation f(a1; b1); : : : ; (an; bn)g � A � B su
h thatevery atomi
 senten
e true in (A; a1; : : : ; an) is satis�ed by (B; b1; : : : ; bn) aswell (but not ne
essarily 
onversely). Every lo
al homomorphism is a fun
tion(if ai = aj , then we must also have that bi = bj), but it is not ne
essarily aninje
tive one.The resulting homomorphism-game relates to positive formulas, whi
h aregenerated from the atomi
 ones using the logi
al symbols ^ , _ , 8 and 9 only(thus, :, ! and $ are not allowed).Theorem 2.4 now modi�es to the following, the proof of whi
h 
an be ob-tained by straightforward adaptation of the former one.3.17 Theorem. Dupli
ator has a winning strategy for the length-n homomor-phism game i� B satis�es every positive quanti�er rank � n senten
e true inA. 28



For another variaton in this vein, 
f. the proof of Theorem 4.4 (p. 39).Finally, you 
an mix requirements. Assume that L0 = L [ fRg, where R issome n-ary relation symbol. Stipulate that Dupli
ator wins i� the end-produ
tof the play is a lo
al isomorphism with respe
t to L-stru
ture, and a lo
alhomomorphism with respe
t to R. This determines the R-positive game. Thegame is related to so-
alled R-positive senten
es, whi
h only use ^ , _ , :, 8 and9 and in whi
h R o

urs in the s
ope of an even number of negation symbols.(The restri
tion that ! and $ do not o

ur is needed to keep the 
ounting ofnegations straight: ! and $ 
ontain \hidden" negations.)These variations on the basi
 Ehrenfeu
ht game have their own 
hara
teri-sations in terms of 
hara
teristi
s, Fra��ss�e sequen
es and �xed point hierar
hies.E.g., as to the homomorphism game, 
hara
teristi
s �nA;~a for n > 0 are built asbefore, but now �0A;~a is the 
onjun
tion of all (negationless) atoms satis�ed by~a in A. Thus, the �nA;~a are positive formulas. A theorem similar to Theorem 3.2(p. 24) holds.23| Formulate and prove a theorem that relates the appropriate version ofthe Ehrenfeu
ht game to R-positive senten
es.24| Modify the Ehrenfeu
ht game of length n on models A and B by re-quiring that Spoiler always pi
ks her moves from A. Formulate and prove the
orresponding modi�
ation of Theorem 2.4.3.3 In�nite Game3.18 De�nition. In the in�nite Ehrenfeu
ht game on A and B, there is nobound on the number of moves; Spoiler and Dupli
ator alternate in makingan !-sequen
e of moves ea
h, and win and loss are determined (almost) asbefore: Dupli
ator wins if at ea
h �nite stage of the play, the moves made sofar 
onstitute a lo
al isomorphism between the models.A and B are partially isomorphi
 if Dupli
ator has a winning strategy for thein�nite game on A and B.3.19 Examples.1. � and � are partially isomorphi
. Better still:2. Every two dense linear orderings without endpoints are partially isomor-phi
.3. No well-ordering is partially isomorphi
 with a non-well-ordering.(Let Spoiler play an in�nite des
ending sequen
e in the non-well-ordering.Note that this argument also works for the 2-pebble game.)4. Well-Orderings of di�erent type are not partially isomorphi
.(To begin with, Spoiler plays the element a of the larger one su
h that a#has the type of the smaller one. Subsequently, Spoiler 
an always 
ountera move b of Dupli
ator with a move 
 su
h that 
# and b# have the sametype. Eventually, she must out-play Dupli
ator. For this argument, again2 pebbles suÆ
e.) 29



3.20 Determina
y. In every in�nite Ehrenfeu
ht game, exa
tly one of theplayers has a winning strategy.Proof. Note that if Spoiler wins a play, this has be
ome apparent after �nitelymany moves already: the game is open, and the result is an instan
e of theGale-Stewart Theorem. The argument pro
eeds as follows.Suppose that Spoiler doesn't have a winning strategy, i.e.: that the initialposition is no win for Spoiler. The result follows from theClaim. Avoiding positions that are wins for Spoiler makes Dupli
ator win.To begin with, the initial position satis�es this 
ondition by assumption. Also,this happens to be a 
ondition that Dupli
ator is able to preserve (i.e., thisis a strategy for Dupli
ator): suppose that h is no win for Spoiler, and Spoilerplays, say, an element a in the �rst model. If, for every b in the other model,h [ f(a; b)g is a win for Spoiler, then a was a winning move for Spoiler and hwould've been a win for Spoiler to begin with, 
ontrary to assumption. Thus,Dupli
ator has a move b that brings him to a position that, again, is no win forSpoiler.Finally: this strategy for Dupli
ator is winning. For, suppose it isn't. Thensome play in whi
h Dupli
ator uses this strategy is won by Spoiler. But thatSpoiler wins will show after �nitely many rounds. The 
orresponding positionis trivially a win for Spoiler, 
ontradi
ting the fa
t that the strategy avoids su
hpositions. aThe following important theorem has an extremely simple proof.3.21 Theorem. Countable partially isomorphi
 models are isomorphi
.Proof. If Spoiler enumerates all elements of the two models and Dupli
ator useshis winning strategy, the relation that is built up during the play 
onstitutesan isomorphism as required. aCantor's 
hara
terization of the ordering � of the rationals is an immediate
orollary. The proof of Theorem 3.21 is an abstra
t version of the usual ba
k-and-forth proof for the Cantor result.3.22 Corollary. The linear ordering � is (up to isomorphism) the only 
ount-able dense linear ordering without endpoints.Of 
ourse, the homomorphism game has an in�nite version as well, with its
orresponding notion of partial homomorphi
. Theorem 3.21 now modi�es to:3.23 Theorem. If the 
ountable models A and B are partially homomorphi
,then there is a (surje
tive) homomorphism from A onto B.Similarly: 30



3.24 Theorem. If Dupli
ator has a winning strategy in the in�nite R-positivegame on the 
ountable L [ fRg-models A and B, then AjL �= BjL and theisomorphism is an R-homomorphism.Explaining the logi
al meaning of the in�nite game needs the notion of anin�nitary formula. This is obtained by modifying the de�nition of �rst-orderformula, admitting 
onjun
tions and disjun
tions of arbitrarily many formulas.I.e., if L is a vo
abulary, the 
lass L1! of in�nitary L-formulas is obtained byallowing (next to the usual rules) the following rule of formula-formation:if � � L1! is a set, then V�;W� 2 L1!.(In this notation, the 1 signi�es that arbitrary 
onjun
tions and disjun
tionsare admitted; the ! indi
ates that quanti�
ation still is restri
ted to �nitelymany variables at the same time.)The semanti
s of su
h in�nitary formulas is obvious: the formulaV� (resp.,W�) is satis�ed by the assignment � in the model A i� every (resp., some)' 2 � is. (This implies that V ; is always satis�ed whereas W ; never is, andthat Vf'g and Wf'g are logi
ally equivalent with '.) Equivalen
e with respe
tto in�nitary senten
es is denoted by �1!.The following proposition explains that the in�nite game is not just thelimit of the �nite games.Re
all the monotone operator � = �A;B from 3.6 (p. 25):�(X) = fh j 8a2A9b2B (h[f(a; b)g 2 X) ^ 8b2B 9a2A (h[f(a; b)g 2 X)g;of whi
h the �nite stages �# n in its downward hierar
hy were relevant to the �-nite game (Theorem 3.12 p. 27). LetW be the set of relations f(a1; b1); : : : ; (an; bn)gsu
h that Dupli
ator has a winning strategy for the in�nite game on (A; a1; : : : ; an)and (B; b1; : : : ; bn). Let EQ be the set of relations f(a1; b1); : : : ; (an; bn)g su
hthat (A; a1; : : : ; an) �1! (B; b1; : : : ; bn).The se
ond equality of the following result generalizes the fa
t that Dupli
atorhas a winning strategy for the in�nite game between two models i� they 
annotbe distinguished using in�nitary senten
es.3.25 Proposition. �#= W = EQ.Proof. By Lemma 3.8 (p. 25), it suÆ
es to show that both W and EQ are
o-indu
tive post-�xed points.W is a post-�xed point : trivial.W is 
o-indu
tive: Assume that X is a set of lo
al isomorphisms su
h thatX � �(X). Suppose that h 2 X. To see that h 2 W , 
onsider the strategyof Dupli
ator to satisfy, for every position f(a1; b1); : : : ; (an; bn)g visited in theplaying of the game, that h[f(a1; b1); : : : ; (an; bn)g 2 X. If Dupli
ator su

eedsin preserving this 
ondition, he wins. That he 
an su

eed follows from X beinga post-�xed point.EQ is 
o-indu
tive: Assume that X � �(X). It follows that every h :=f(a1; b1); : : : ; (an; bn)g 2 X satis�es (A; a1; : : : ; an) �1! (B; b1; : : : ; bn) usingindu
tion on senten
es (keeping h variable).31



EQ is a post-�xed point : Assume that h := f(a1; b1); : : : ; (an; bn)g 2 EQ.To see that h 2 �(EQ), suppose a 2 A; we need to �nd b 2 B su
h thath [ f(a; b)g 2 EQ. If su
h a b doesn't exist, this means that for every b 2B there is an in�nitary formula 'b(x) su
h that (A; a1; : : : ; an) j= 'b[a℄ and(B; b1; : : : ; bn) j= :'b[b℄. Thus, we have that (A; a1; : : : ; an) j= 9xVb2B 'b and(B; b1; : : : ; bn) j= :9xVb2B 'b, 
ontradi
ting h 2 EQ. a25| Let C be a (
ountably) in�nite set of 
onstant symbols. Show that thein�nitary senten
e 8xW
2C x = 
 doesn't have a �rst-order equivalent.26| Suppose that A = (A;<) is a well-ordering. Re
ursively de�ne, fora 2 A, the in�nitary formula 'a as 8y(y < x$ Wb<a 'b(y)). (If you en
ounterproblems with substituting into an in�nitary formula, you might use 8y(y <x$ 9x(y = x ^ Wb<a 'b)). Thus, every 'a uses two variables x and y; exa
tlyone o

urren
e of x is free.) Let �A be the in�nitary senten
e 8xWa2A 'a ^Va2A 9x'a.Show:1. (A;<) j= 'a[b℄ i� b = a,2. a linear ordering satis�es �A i� it is an isomorph of A.Note the straightforward generalization for models A = (A;2) with A a tran-sitive set.Bisimulations. Suppose that the vo
abulary L 
onsists of some unary relationsymbols plus one binary relation symbol R. Modify the formula formation rulesfor L1! by allowing only non-R-atoms in the one variable x and R-boundedquanti�
ation; that is: repla
e the quanti�
ation rules by:If ' = '(x) 2 L1!,then 8y(R(x; y)! '(y));9y(R(x; y) ^ '(y)) 2 L1!.3.26 Theorem. For any two L-models A and B and elements a 2 A andb 2 B, the following are equivalent:1. Dupli
ator has a winning strategy for the in�nite pebble game on A and Bwith just one pair of pebbles, starting at the initial position (a; b), wherethe moves are \R-restri
ted",2. there is a bisimilation between A and B 
ontaining (a; b),3. a and b satisfy the same (modi�ed) L1!-formulas in A, resp., B.Proof. A bisimulation is the same as a non-empty post-�xed point for theoperator asso
iated with the in�nite pebble game. aFinitizing. The quanti�er rank of an in�nitary formula is de�ned by stipulat-ing that, for the in�nitary 
onne
tives:qr(^�) = qr(_�) = supfqr(') + 1 j ' 2 �g:32



The �-game is the modi�
ation of the in�nite game in whi
h Spoiler is requiredto 
hoose, together with her moves, a des
ending sequen
e of ordinals < �. Aplay of the game ends as soon as Dupli
ator has 
ountered the move of Spoilerthat goes with the ordinal 0. Thus, every play has �nite length. For � = n < !,the �-game is the same as the ordinary length-n Ehrenfeu
ht game. For � > !,Spoiler 
an make a play of the �-game last as long as she wishes (in order tohave better 
han
es to win). E.g., if Spoiler 
hooses a �nite ordinal n 2 ! tobegin with, the remaining game has 6 n rounds. If � > ! and Spoiler starts by
hosing !, she postpones the de
ision how long the play will be for her se
ondmove. Chosing ! + ! + 1 is a promise to tell, ultimately at the 3rd move, howlong she will keep postponing the de
ision about the length, et
.3.27 Theorem. The following 
onditions are equivalent:1. Dupli
ator has a winning strategy for the �-game,2. ; 2 �# �,3. A and B have the same true rank < �-senten
es.The 
losure ordinal of �A;A is 
alled the S
ott rank of A.27| Show that the S
ott rank of the linear ordering ! equals !.Give an example of a model with S
ott rank > !.3.28 Chara
teristi
s. Re
all De�nition 3.1 (p. 23). Let A be a model. Forevery �nite sequen
e ~a = (a1; : : : ; an) from A and every ordinal �, the in�nitaryquanti�er rank-� formula "�A;~a(x0; : : : ; xk�1) is de�ned, using re
ursion w.r.t. �,essentially as before, using in�nite 
onjun
tions to get a
ross limit ordinals 
:"
A;~a(x0; : : : ; xk�1) = �̂<
 "�A;~a(x0; : : : ; xk�1):3.29 Theorem. Again we have:1. for all �, A j= "�A;~a[~a℄,2. B j= "�A;~a[~b℄i� (A;~a) and (B;~b) satisfy the same quanti�er rank � � formulas,i� "�B;~b = "�A;~a.If � is the S
ott rank of A, then "�A;; ^ V~a 8~x("�A;~a ! "�+1A;~a ) is the S
ottsenten
e of A.The language L!1! is the restri
tion of L1! that allows 
onjun
tions anddisjun
tions over 
ountable sets of formulas only.Note that the S
ott senten
e of a 
ountable model belongs to this language.28| Show that the S
ott senten
e of a model axiomatizes its in�nitary theory.33



Summing Up. The di�erent 
hara
terisations pertaining to the �nite, in�nite,and �nitized game are 
olle
ted.For the �nite game, the following are equivalent:1. A �n B,2. D(A;B; n),3. B j= "nA,4. there is a length-(n+ 1) Fra��ss�e-sequen
e,5. ; 2 �A;B # n.For the in�nite game, this list be
omes:1. A �1! B,2. D(A;B;1),3. for all �, B j= "�A,equivalently: B satis�es the S
ott senten
e of A,4. there is a Fra��ss�e-sequen
e of type !? (
f. Exer
ise 29);equivalently: there is a partial isomorphism between A and B, i.e., a non-empty set I of lo
al isomorphisms satisfying the ba
k-and-forth 
ondition(in other words: I is a non-empty post-�xedpoint of �A;B),5. ; 2 �A;B #.Finally, for the �nitized version using ordinals, we have the following pairwiseequivalent statements:1. A ��1! B,2. D(A;B; �),3. B j= "�A,4. there is a length-(� + 1) (Fra��ss�e-) Karp sequen
e,5. ; 2 �A;B # �.29| A Fra��ss�e-sequen
e of type !? for A and B is a sequen
e : : : ; I2; I1; I0 ofnon-empty sets of lo
al isomorphisms su
h that for all n and h 2 In:8a 2 A9b 2 B(h [ f(a; b)g 2 In+1) and 8b 2 B9a 2 A(h [ f(a; b)g 2 In+1).A partial isomorphism between A and B is a non-empty set I of lo
al iso-morphisms su
h that for all h 2 I:8a 2 A9b 2 B(h [ f(a; b)g 2 I) and 8b 2 B9a 2 A(h [ f(a; b)g 2 I).Show:1. If I is a partial isomorphism, then : : : ; I; I; I is a Fra��ss�e-sequen
e of type!?,2. If : : : ; I2; I1; I0 is a Fra��ss�e-sequen
e of type !?, then Sn In is a partialisomorphism. 34



3.4 Fixed Points and GamesLet � : }(I)! }(I) be a monotone operator over a set I, and h 2 I. Considerthe following 2-person game. Players are Challenger ( C ) and Defender ( D ).D starts by pi
king some H0 � I su
h that h 2 �(H0).C 
hooses h0 2 H0.D 
hooses H1 � I su
h that h0 2 �(H1).C 
hooses h1 2 H1.et
.If one of the players 
annot move, the other one wins. I.e., if D is able tosele
t ;, he wins (C is unable to pi
k an element in ;); if C is able to sele
tsome hi 62 �(I), she wins (if X � I, then �(X) � �(I); hen
e, hi 62 �(X)). Anever-ending play of the game is won by noone.3.30 Theorem.1. D has a winning strategy i� h 2 �",2. C has a winning strategy i� h 62 �#.Proof. 1. De�neW := fh 2 I j D has a winning strategy for the game that starts at hg:To see that W = �", we 
he
k the two 
ru
ial properties.(a) (Pre-�xedpoint property.) �(W ) � W : Assume h 2 �(W ). In positionh, D plays W , and 
learly wins (C must pi
k an element in W whi
h representspositions won by D).(b) (Indu
tion.) Assume that �(Y ) � Y . Want: W � Y . Thus, supposeh 62 Y . Claim: C has a strategy by whi
h he 
annot lose, nl.: always playingelements 62 Y . (And, hen
e, h 62W .) For: if h 2 �(X), then X � Y 6= ;. (ElseX � Y , �(X) � �(Y ), h 2 �(Y ) � Y .)[[Alternatively: Assume that h 2 W . Fix a winning strategy for D inposition h. When D uses this strategy, all plays of the game are �nite and wonby D. Thus, the tree of these plays is well-founded, and we 
an indu
t on it.Suppose that H0 is the answer to h as given by this strategy. I.e., h 2 �(H0) andH0 � W . By indu
tion hypothesis, H0 � Y . Thus, h 2 �(H0) � �(Y ) � Y ,and h 2 Y .℄℄2. De�neL := fh 2 I j C does not have a winning strategy for the game that starts at hg:To show that �#= L, again the two 
ru
ial properties are veri�ed.(a) (Post-�xedpoint property.) L � �(L): Assume that h 2 L, i.e., C hasno winning strategy in h. Thus, D has a move H0 su
h that h 2 �(H0) andH0 � L. Then �(H0) � �(L) and h 2 �(L).(b) (Co-indu
tion.) Assume that Y � �(Y ). Want: Y � L. Let h 2 Y .Obviously, D 
an repeat playing Y ad in�nitum and, in doing so, demonstratesthat C 
annot have a winning strategy. Thus, h 2 L. a35



If I is the set of lo
al isomorphisms between two models A and B and� = �A;B is the Ehrenfeu
ht operator, the game des
ribed above is reminis
entof the ordinary Ehrenfeu
ht game, with C playing the role of Spoiler and D thatof Dupli
ator. The di�eren
e is, that here, in position h 2 I, a move H by Dsu
h that h 2 �(H) 
omprises in a sense all answers of Dupli
ator on moves ofSpoiler, and a next 
hoi
e by C of h0 = h [ f(a; b)g 2 H 
ompares to 
hoosingby Spoiler one of the possibilities that Dupli
ator (D) is o�ering with H.Note that, in this parti
ular 
ase, no move of D 
an be empty. Thus, a play
an be �nite only if some position g 2 I is rea
hed in whi
h D 
annot move,i.e., for whi
h no H exists su
h that g 2 �(H).Taking this parallel seriously, it is better to rede�ne winning so that D winsthe in�nite plays of the game, and C the �nite ones. For that 
ase, the aboveTheorem modi�es to the simpler:3.31 Theorem. D has a winning strategy in h i� h 2 �#.This shows that, indeed, the parallel is 
orre
t, sin
e also Dupli
ator has awin in h i� h 2 �#.Proof. ( If h 2 �# (= �(�#)), D persists in repeating �# and wins.) The set W = fh j h is a win for D g is a post-�xed point of � (and,hen
e, in
luded in �#): Suppose that h is a win for D. Then D has a winningmove, that is: there is some H su
h that h 2 �(H) and H � W . But then�(H) � �(W ), and h 2 �(W ). a
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Chapter 4Appli
ations involvingCompa
tnessThis part exploits 
hara
teristi
s together with 
ompa
tness to prove several
lassi
s of �rst-order logi
. It is inspired by Barwise and van Benthem: Inter-polation, preservation and pebble games, JSL 64 (1999) 881{903 (modi�ed forthe �rst-order setting); it shows that 
hara
teristi
s provide a tool with whi
hall these results 
an be obtained in a uniform way.4.1 Interpolation & Co.The following Lemma 
onstitutes the basi
 tri
k involving Compa
tness that isused below.The proof uses (expansions of) model pairs, a 
onstru
t that 
an be imple-mented in several ways.Model Pairs. Suppose that Ai is an Li-model (i = 1; 2) and L is the disjointunion of L1 and L2 together with two new unary relation symbols S1;S2. Themodel pair A = (A1;A2) is the L-model with universe A1 [ A2, with SAi = Ai(i = 1; 2), and where the symbols of the Li retain their old meanings.4.1 Lemma. Suppose that L = L1 \L2, and that A1 and A2 are L1, resp., L2-models su
h that A1jL � A2jL. Then 
ountable models Bi � Ai exist (i = 1; 2)su
h that B1jL �= B2jL.Proof. Assume that A1jL � A2jL. By Remark 3.5 (p. 25), for every n 2 INthere is a sequen
e R0 = >; : : : ; Rn of relations Ri � Ai1 �Ai2, satisfying1. for 0 6 i 6 n, if Ri(a1; : : : ; ai; b1; : : : ; bi), then f(a1; b1); : : : ; (ai; bi)g is alo
al isomorphism between A1jL and A2jL, and2. for 0 6 i < n, if Ri(a1; : : : ; ai; b1; : : : ; bi), then both� 8a 2 A1 9b 2 A2 Ri+1(a1; : : : ; ai; a; b1; : : : ; bi; b), and� 8b 2 A2 9a 2 A1 Ri+1(a1; : : : ; ai; a; b1; : : : ; bi; b).37



These 
onditions on 
omplex models of the form (A1;A2; R0; R1; R2; : : :) (ex-pansions of model pairs) 
an be formulated in �rst-order terms, using new rela-tion symbols R0;R1;R2; : : :. Thus, by Compa
tness and Downward L�owenheim-Skolem, there is a 
ountable model (B1;B2; S0; S1; S2; : : :) satisfying Bi � Ai(i = 1; 2) and su
h that the sequen
e S0; S1; S2; : : : obeys the above 
onditionsw.r.t. B1;B2 for all i.It follows that the asso
iated set[i ff(a1; b1); : : : ; (ai; bi)g j Si(a1; : : : ; ai; b1; : : : ; bi)gof lo
al isomorphisms between B1jL and B2jL is a non-empty post-�xed pointfor the relevant game operator � = �B1jL;B2jL. Thus, � # is non-empty, themodels B1jL and B2jL are partially isomorphi
, and hen
e (by Theorem 3.21p. 30), isomorphi
. a4.2 Consisten
y Theorem (Robinson). Suppose that Ti is a set of Li-senten
es (i = 1; 2) su
h that T1[T2 has no model. Then there is an L-senten
e' (where L = L1 \ L2) su
h that T1 j= ' and T2 j= :'.Proof. Suppose that no su
h ' exists. The following 
onstru
ts a model forT1 [ T2.Claim. For all n, there exist A j= T1 and B j= T2 su
h that B j= "nAjL.Proof. Suppose this fails for the integer n. Consider the �nite set of L-senten
es� = f"nAjL j A j= T1g. Put ' = W�. It suÆ
es to show that both T1 j= ' andT2 j= :'.As to the �rst statement, assume that A j= T1. Then A j= "nAjL 2 �, andhen
e T1 j= W�.As to the se
ond one, assume that B j= T2 and B j= W�. Then for someA j= T1 we have that B j= "nAjL, 
ontradi
ting the assumption on n. aApplying Compa
tness to this Claim, we obtain A j= T1 and B j= T2 su
hthat AjL � BjL. Applying Lemma 4.1, we obtain (
ountable) A j= T1 andB j= T2 su
h that AjL �= BjL. Identifying AjL and BjL results in a model forT1 [ T2. a4.3 Interpolation Theorem (Craig). Suppose that L = L1 \ L2, and thesenten
es 'i 2 Li (i = 1; 2) are su
h that '1 j= '2. Then a senten
e ' 2 L (aninterpolant) exists su
h that both '1 j= ' and ' j= '2.Proof. There is a standard easy argument using the Consisten
y Theorem(taking T1 = f'1g and T2 = f:'2g). However, sin
e we also want to deal withLyndon's re�nement below, here follows the straightforward proof in the styleof the above one.Suppose there is no interpolant.Claim. For every n 2 IN there exist A j= '1 and B j= :'2 su
h that B j= "nAjL.38



Proof. If this happens to be false for n, 
onsider the set � = f"nAjL j A j= '1g.Note that � is a �nite set of L-senten
es. We 
laim that W� is an interpolant.Indeed: if A j= '1, then A j= "nAjL 2 �, and, hen
e, A j= W�. And if B j= W�,say, B j= "nAjL, where A j= '1, then, by assumption on n, B j= '2. aAs in the proof of the Consisten
y Theorem, Lemma 4.1 
an now be appliedto yield a 
ounter-model to '1 j= '2. a30| Cf. Theorem 4.3. Suppose that 'i 2 Li (i = 1; 2) and L = L1 \L2. Showthat the following are equivalent:1. 8A;B(A j= '1 ^ AjL = BjL ) B j= '2),2. 8A;B(A j= '1 ^ AjL �1! BjL ) B j= '2),3. 8A;B(A j= '1 ^ AjL � BjL ) B j= '2),4. 9n8A;B(A j= '1 ^ AjL �n BjL ) B j= '2).4.4 Re�nement of the Interpolation Theorem (Lyndon). Same as 4.3,but the interpolant for '1 j= '2 has to satisfy additional polarity requirements:relation symbols (di�erent from =) o

urring positively (resp., negatively) inthe interpolant should o

ur positively (resp., negatively) in both '1 and '2.Proof. Modify the argument for 4.3 as follows.First, let Pi be the set of relation symbols R 2 L = L1 \ L2 that o

urpositively in 'i (i = 1; 2) and let Ni be the set of R 2 L that o

ur negativelyin 'i.De�ne the "nA;~a for n > 0 as before, but, this time, let "0A;~a be the 
onjun
tionof (i) all atoms satis�ed by ~a in A that 
arry a relation symbol in P1\P2, (ii) allnegated atoms satis�ed by ~a in A that 
arry a relation symbol in N1 \N2, (iii)all =-atoms and negated =-atoms satis�ed by ~a in A. These are the obviousmodi�
ations to make if one wants to preserve the (proof for the) Claim in theproof of 4.3, sin
e now, the interpolant W� has to satify the additional polarityrequirements.Note that these modi�ed 
hara
teristi
s are adequate w.r.t. the (asymmet-ri
) Ehrenfeu
ht game on A and B in whi
h the winning 
ondition is 
hangedto: Dupli
ator has won in the terminal position f(a1; b1); : : : ; (an; bn)g i� (i)RA(~a) ) RB(~b) for R 2 P1\P2, (ii) RB(~b) ) RA(~a) for R 2 N1\N2, (iii) the
orresponden
e ai $ bi is one-one. That is, Theorem 3.2 (p. 24) (: Dupli
atorhas a winning strategy for the length-n game i� B j= "nA) is literally true underthese modi�
ations.The 
ondition B j= "nAjL means that a sequen
e R0 = >; : : : ; Rn of relationsRi � Ai � Bi exists satisfying the usual ba
k-and-forth-
onditions; however,the modi�
ations (i) and (ii) above entail that they do not need to 
ode setsof lo
al isomorphisms between AjL and BjL. What does hold is indi
ated in(i){(iii) above.After applying Compa
tness and L�owenheim-Skolem, we obtain a relationh � A�B, generated by the (proof of) Theorem 3.21. From the way in whi
h39



h is 
onstru
ted, we'll have that h is a bije
tion between A and B. But again,for R 2 L, we'll only have that RA(a) ) RB(h(a)) when R 2 P1 \ P2, and:RA(a) ) :RB(h(a)), i.e.: RB(h(a)) ) RA(a), when R 2 N1 \ N2. Forsymbols in P1 \ P2 \N1 \N2, h preserves in both dire
tions (this is item 7 inthe list below). However, for the remaining symbols, there is no preservationby h in any dire
tion (items 5 and 6).For the rest of the argument to make sense, however, we need not only thatA j= '1 and B j= :'2, but also that AjL �= BjL, for we have to form one modelfor '1 ^ :'2 out of A and B by identifying AjL and BjL.The solution is to modify, in all 
ases but one, either the interpretation RAor RB of a symbol R 2 L, for
ing h to be an isomorphism for the modi�
ations,but preserving '1 in the modi�ed A and :'2 in the modi�ed B.Note: w.r.t. '1, a relation symbol R 2 L 
an o

ur either in P1 � N1, inN1 � P1, or in P1 \N1; and the same goes for '2. Hen
e, all in all, there are3 � 3 = 9 
ases to be looked into. In the following list, both 1 and 2 
onsidertwo 
ases ea
h, 3{7 
onsider one 
ase ea
h.1. Repla
e RA by R(a) :� RB(h(a)) if R o

urs in P1 �N1 and P2.Note: sin
e, in this 
ase, RA(a) ) RB(h(a)) holds, we have that RA � R;and sin
e R 2 P1 �N1, '1 will still hold in the modi�ed A.2. Repla
e RA by R(a) :� RB(h(a)) if R o

urs in N1 � P1 and N2.Note: this time, R � RA, and sin
e R 2 N1 � P1, this preserves '1.3. Enlarge RB to R(b) :� RA(h�1(b)) if R o

urs in P1 \N1 and N2 � P2.Note that :'2 still will hold in the modi�ed B.4. Repla
e RB by the smaller R(b) :� RA(h�1(b)) if R o

urs in P1\N1 andP2 �N2.5. Repla
e both RA and RB by ? (\false") if R o

urs in N1�P1 and P2�N2.6. Repla
e both RA and RB by > (\true") if R o

urs in P1�N1 and N2�P2.7. In the remaining 
ase, where R o

urs in both P1 \N1 and P2 \ N2, norelation has to be 
hanged as preservation by h is already guaranteed. a4.5 De�nability Theorem (Beth). Suppose that L+ = L [ fRg and that Tis an L+-theory su
h that for every two models A and B of T , if AjL = BjL,then RA = RB. Then an L-formula ' = '(x) (a de�nition of R w.r.t. T ) existssu
h that T j= 8x(R(x)$ '):Proof. Again, there is a standard argument using Interpolation. However, herefollows a dire
t one using 
hara
teristi
s.Suppose no de�nition exists. We shall 
onstru
t A;B j= T su
h that AjL =BjL but RA 6= RB. 40



Claim. For all n there exist A j= T and a 2 A with RA(a), and B j= T andb 2 B with :RB(b), su
h that B j= "nAjL;a[b℄.Proof. Suppose this fails for n. Consider � = f"nAjL;a j A j= T ^ RA(a)g. ThenW� is a de�nition for R: First, if A j= T and RA(a), then (sin
e A j= "nAjL;a[a℄),we have that A j= W�[a℄. Se
ond, if B j= T and B j= W�[b℄; say, B j= "nAjL;a[b℄,where A j= T and RA(a), then RB(b) holds by assumption on n. aThe rest of the proof is as usual, using Lemma 4.1. Note that we 
an take
are that, for the resulting (
ountable) models A and B and the isomorphismh between AjL and BjL, there is a 2 A su
h that RA(a) but :RB(h(a)). a4.2 Preservation under HomomorphismA senten
e is preserved under homomorphisms if it is true of every homomorphi
image of one of its models.4.6 Lyndon's Theorem. A senten
e is preserved under homomorphisms i� ithas a positive logi
al equivalent.Proof. For one dire
tion, positive senten
es are easily seen to be preserved.For the other, more diÆ
ult one, we use the familiar argument, this time usingthe 
hara
teristi
s �nA relative to the homomorphism game (see p. 29).Suppose that � has no positive equivalent.Claim. For every n 2 IN there exist A j= � and B j= :� su
h that B j= �nA.Proof. If this happens to be false for n, 
onsider the set � = f�nA j A j= �g.Note that � is a �nite set of positive senten
es. We 
laim that W� is a �rst-order equivalent of �. Indeed: if A j= �, then A j= �nA 2 �, and, hen
e,A j= W�. Conversely, if B j= W�, say, B j= �nA, where A j= �, then, byassumption on n, B j= �. aThe rest of the proof follows the by now familiar pattern. The 
onditionthat B j= �nA 
an be rewritten (In a way similar to Remark 3.5 p. 25) as theexisten
e of a �nite sequen
e of relations R0 = >; : : : ; Rn 
oding sets of lo
alhomomorphisms that satisfy the usual ba
k-and-forth properties.By Downward L�owenheim-Skolem and Compa
tness, we obtain a 
ountable
omplex (A;B; R0; R1; R2; : : :) with A j= �, B j= :�, and su
h that[i ff(a1; b1); : : : ; (ai; bi)g j Ri(a1; : : : ; ai; b1; : : : ; bi)gis a post-�xed point for the relevant game operator. Thus, A and B are partiallyhomomorphi
; and it follows that B is a homomorphi
 image of A. Thus, �isn't homomorphism-preserved. a41



31| ( Lo�s-Tarski) Show that a senten
e is preserved under model-extensionsi� it has an existential equivalent.Hint. Modify the 
hara
teristi
s appropriately: "0A;~a is as before, but, this time,"n+1A;(a1;:::;ak) isVa2A 9xk+1"nA;(a1;:::;ak;a). Note: this modi�
ation yields existentialformulas.32| An L [ fRg-senten
e � is preserved under R-extensions if for every twomodels A and B, if A j= �, AjL = BjL and RA � RB, then B j= �.Show: a senten
e is preserved under R-extensions i� it has an R-positiveequivalent.4.3 Modal Logi
4.7 Theorem. (van Benthem) If a �rst-order formula in one free variableis preserved under bisimulation, then it has a modal equivalent (that is: anequivalent that is the standard translation of some modal formula).Proof. The \modal" vo
abulary has a binary \a

essibility" relation symbolR plus unary relation symbols Uj (j 2 J). (Kripke) models are of the formA = (A;RA;UAj )j2J . If ' = '(x) is a formula with one free variable, byA; a j= ' we mean that A j= '[a℄. For a model A and an element a 2 A, de�nethe formulas �na = �nA;a in one free variable as follows:1. �0a(x) is the 
onjun
tion of all Uj-literals Uj(x) and :Uj(x) that are sat-is�ed by a in A.2. �n+1a (x) = VRA(a;b) 9y(R(x; y) ^ �nb (y)) ^ 8y(R(x; y)! WRA(a;b) �nb (y)).Note that these are all (standard translations of) modal formulas. Obvi-ously, we have that A; a j= �na .Suppose that the �rst-order formula �(x) is preserved under bisimulation,but has no modal equivalent.Claim. For all n there are A; a j= � and B; b j= :� su
h that B; b j= �nA;a.Proof. If this is false for n, 
onsider � = f�nA;a(x) j A; a j= �g; now W� wouldbe a modal equivalent for �:If A; a j= �, then �A;a 2 �, and hen
e A; a j= W� holds.Conversely, if B; b j= W�, say, B; b j= �nA;a where A; a j= �, then B; b j= �by assumption on n. aClaim. Suppose that B; b j= �nA;a holds. Then relations R0; : : : ; Rn � A � Bexist su
h that1. if Ri(u; v), then UAj (u) , UBj (v) (j 2 J),2. R0(a; b),3. (forth) i < n, Ri(u; v) and RA(u; u0) imply 9v0 2 B[RB(v; v0)^Ri+1(u0; v0)℄,(ba
k) similar. 42



Proof. De�ne Ri(u; v) :� B; v j= �n�iA;u . aBy Compa
tness we �nd A; a; B; b; and R0; R1; R2; : : : � A � B su
h thatA; a j= �; B; b j= :�; and su
h that the 
onditions of the se
ond 
laim aresatis�ed for all i. It follows that A; a and B; b are bisimilar, 
ontradi
ting theassumption on �. a4.8 Interpolation. If '1 and '2 are modal formulas su
h that '1 j= '2, thena modal formula ' (an interpolant) exists su
h that '1 j= ', ' j= '2, and everyrelation symbol Uj in ' o

urs in both '1 and '2.Proof. Suppose that '1 j= '2, but an interpolant doesn't exist.Modify the de�nition of the �nA;a by allowing, in �0a, only Uj-literals whereUj o

urs in both '1 and '2.Claim. For all n there are A; a j= '1 and B; b j= :'2 su
h that B; b j= �nA;a.By Compa
tness, obtain A; a j= '1, and B; b j= :'2, su
h that A; a and B; bare bisimilar w.r.t. relations 
ommon to the two formulas.Needed: amalgamation into one model. . . a4.9  Lo�s-Tarski Theorem. If a modal formula is preserved under modelextensions, it has an existential modal equivalent.Proof. Modify the above de�nition of the �n by putting�n+1a (x) = ^RA(a;b) 9y(R(x; y) ^ �nb (y)):Suppose that �(x) is modal and preserved under model extensions, but has noexistential modal equivalent.Claim. For all n there are A; a j= � and B; b j= :� su
h that B; b j= �nA;a.By Compa
tness, obtain A; a j= �, B; b j= :� and R0; R1; R2; : : : � A�B,where now only the \forth" 
ondition is satis�ed.It suÆ
es to �nd a submodel B0 � B su
h that B0; b bisimulates A; a. PutR = SnRn. De�ne B0 = SnBn, where B0 = fbg, and Bn+1 is the least set� Bn su
h thatR(u; v), v 2 Bn and RA(u; u0) imply 9v0 2 Bn+1 R(u0; v0). a4.4 Lindstr�om's TheoremThe same argument is used on
e more to prove Lindstr�om's Theorem, whi
hsays that L�owenheim-Skolem and Compa
tness 
hara
terize �rst-order logi
 inthe following sense: 43



4.10 Lindstr�om's Theorem. There is no logi
 that properly extends �rst-order logi
 and still satis�es the Downward L�owenheim-Skolem and Compa
t-ness Theorems.Before proving this, you should get explained what is meant here by \alogi
" that \properly extends �rst-order logi
".4.11 Logi
. A logi
 is a s
hema Z that asso
iates to any vo
abulary L a setZ(L) of senten
es together with a truth-relation j= (better: j=Z(L)) betweenL-models and senten
es from Z(L) su
h that the following 
onditions hold:1. Isomorphi
 models have the same true Z-senten
es.2. Suppose that L extends the vo
abulary (L1; L2) that goes with modelpairs (A1;A2) built from an L1-model A1 and an L2-model A2. Thenfor every � 2 Z(Li) (i = 1; 2) there must be a senten
e �i 2 Z(L) su
hthat for all Li-models Ai (i = 1; 2), if (A1;A2; : : :) is an L-expansion of(A1;A2), then: (A1;A2; : : :) j= �i , Ai j= � (i = 1; 2):I.e.: in the logi
 Z we 
an express, relative to (A1;A2; : : :), that � holdsin one of the 
omponent-models.Remark. First-order logi
 is, indeed, a logi
 in the sense of 4.11.What it means for a logi
 to (properly) extend �rst-order logi
, we leavemostly to the reader's imagination. One example is the logi
 obtained from �rst-order logi
 by adding a quanti�er symbol F with the meaning that A j= Fx'(x)holds i� fa 2 A j A j= '[a℄g is �nite. Note that, e.g., Fx(x=x) and 8yFx(x < y)have no �rst-order equivalent.What we need for the proof is: 
losure under negation (with the usualmeaning) and in
lusion of all �rst-order senten
es in the given vo
abulary. Weneed the Downward L�owenheim-Skolem Theorem in the following form: everysatis�able set of senten
es in a 
ountable vo
abulary has a 
ountable model.Proof of Lindstr�om's Theorem. Let Z be a logi
 satisfying the 
onditions,L a �nite vo
abulary, and � an arbitrary senten
e in Z(L). We are going toshow that � is �rst-order, that is: has a �rst-order equivalent.The proof is by 
ontradi
tion. Thus, suppose that � is not �rst-order.Claim. For every n 2 IN there exist A j= � and B j= :� su
h that B j= "nA.Proof. If this happens to be false for n, 
onsider the set � = f"nA j A j= �g.Note that � is �nite. We 
laim that W� is a �rst-order equivalent of �. Indeed:if A j= �, then A j= "nA 2 �, and, hen
e, A j= W�. Conversely, if B j= W�,say, B j= "nA, A j= �, then, by assumption on n, B j= �. aThe proof is �nished in the usual way, using Lemma 4.1, by 
onstru
ting(
ountable) A j= � and B j= :� su
h that A �= B, 
ontradi
ting stipula-tion 4.11.1. a44


