186 3 Verification by model checking

To prove equivalence (3.2), suppose first that & path satisfies ¢ U . Then,

from clause 11, we have ; 2> 1 such that 7t & ¢ and for all j
we have 77 E ¢. From clause 12, this proves ¢ W WU,

exercise, the reader can prove it the other way around.

Writing W in terms of U is also possible: W is like U but also allows the

possibility of the eventuality never occurring:

SWY=¢UpvGe. (3.3)

Inspection of clauses 12 and 13 reveals that R and W are rather similar. The
differences are that they swap the roles of their arguments ¢ and v; and the
clause for W has an i — 1 where R has 3. Therefore, it is not surprisi
they are expressible in terms of each other, as follows:

SWY=4R(pVy) (3.4)
SRY =W (4 A4).

ng that

3.2.56 Adequate sets of connectives for LTL

Recall that ¢ = holds iff any path in any transition System which sat-
isfies ¢ also satisfies ¥, and vice versa. As in propositional logic, there is
some redundancy among the connectives. For example, in Chapter 1 we saw
that the set {1 A, -} forms an adequate set of connectives, since the other
connectives V, —, T, etc., can be written in terms of those three.

Small adequate sets of connectives also exist in LTL. Here ig a summary
of the situation.

* X is completely orthogonal to the other connectives. That is to say,

doesn’t help in defining any of the other ones in terms of each othe
X cannot be derived from any combination of the others,
* Each of the sets {U, X} AR, X}, {W, X} is adequate. To see this, we note that

— R and W may be defined from U, by the duality PRY==(=¢pU —1) and
equivalence (3.4) followed by the duality, respectively.

— U and W may be defined from R, by the duality dUY==(=¢pR -)) and
equivalence (3.4), respectively.

— R and U may be defined from W, by equivalence (3.5) and the duality ¢ U
¥ = =(=¢ R) followed by equivalence (3.5)

its presence
r. Moreover,

Sometimes it is useful to look at adequate sets of connectives which do not
rely on the availability of negation. That’s because it is often convenient to
assume formulas are written in negation-

normal form, where all the negation
symbols are applied to propositional at

oms (i.e., they are near the leaves

=1,...,i~1
and from clause 10 it
proves F 1. Thus for all paths T, if 7 E ¢ U then 7 = dWYAFY. As an

3.3 Model checking: systems, tools, properties 187

kof the parse tree). In this case, these sets are adequate for the fragment
~without X, and no strict subset is: {U,R}, {U, W}, {U,G}, {R,F}, {W,F}.

But {R,G} and {W, G} are not adequate. Note that one cannot define G
with {U,F}, and one cannot define F with {R,G} or {W,G}.
We finally state and prove a useful equivalence about U.

Theorem 3.10 The equivalence ¢ U ¢ = —(—¢0 U (=¢ A —1))) A F e holds
for all LTL formulas ¢ and .

ProoF: Take any path sg — s; — $2 — ... in any model.

First, suppose sg F ¢ U % holds. Let n be the smallest number such that
sp, F 4b; such a number has to exist since sg F ¢ U ¢; then, for each k < n,
n 3 :)

si F ¢. We immediately have sg F F 1), so it remains to show sg E =(—1 U
—¢ A —p)), which, if we expand, means: ' -

((*) for each 7 > 0, if s; F =¢ A =, then there is some 7 < ¢ V\;’l’?h s F .
Take any ¢ > 0 with s; F 7¢p A —9); i > n, so we can take 7 = n and have
85 F w '

Conversely, suppose sg F =(—=1) U (=¢ A —1))) A F 9 holds; we prove sg F ¢ U
t. Since sg F F 1), we have a minimal n as before. We show that, for any
1< n, 8$; F¢. Suppose s; F ¢; since n is minimal, we know s; F: .ﬁ?,b, .so
by (x) there is some j < i < n with s; F ¢, contradicting the minimality

O

of n.

3.3 Model checking: systems, tools, properties

3.3.1 Example: mutual exclusion
Let us now look at a larger example of verification using LTL, having to do
with mutual exclusion. When concurrent processes share a resource (such as
a file on a disk or a database entry), it may be necessary to en§ure that they
do not have access to it at the same time. Several processes simultaneously
editing the same file would not be desirable. ’

We therefore identify certain critical sections of each. process fzode and
arrange that only one process can be in its critical section at a time. T}%e
critical section should include all the access to the shared resource (though it
should be as small as possible so that no unnecessary exclusion t.ak.es plac'e).
The problem we are faced with is to find a pmtocol. for ‘determlmng which
process is allowed to enter its critical section at which time. On(fe we ha\{e
found one which we think works, we verify our solution by checking that it
has some expected properties, such as the following ones:

Safety: Only one process is in its critical section at any time.

3 Verification byrnodelchechng

MODULE one-bit-chan(input)
VAR
output : boolean;
forget : boolean;

ASSIGN
next (output) := case
forget : output;
1: input;
esac;

FAIRNESS running
FAIRNESS input & lforget
FAIRNESS !input & !forget

MODULE two-bit-chan(inputl,input?2)
VAR)
forget : boolean;
outputl : boolean:

3

output2 : boolean;

ASSIGN
next (outputl) := case
forget : outputi;
1: inputl;
esac;
next (output2) := case
forget : output2;
1: input2;
esac;

FATRNESS running

FAIRNESS inputi & Iforget

FAIRNESS !inputl & Iforget
FAIRNESS input?2 & 'forget

FAIRNESS !input2 & !forget

Figure 3.16. The two modules for the two ABP channels in SMV.

contraints of the form ‘infinitely often

would be more satisfactory here, but is
Finally,

p implies infinitely often q’, which
not allowed by SMV.

. we tie it all together with the module main (Figure 3.17).
1stoconnecttogetherthe(xnnponentsofthesystengeuuighdngth
values of their parameters. Since the first control bit is 0, we also
the receiver to expect a 0. The receiver should start off b7y sendin

Its role
em initial

initialise
g 1 as its

3.4 Branching-time logic 207

MODULE main

VAR
s : process sender (ack_chan.output);
r : process receiver(msg_chan.outputl,msg_chan.output2);
msg_chan : process two-bit-chan(s.messagel,s.message?2);
ack_chan : process one-bit-chan(r.ack);

ASSIGN
init(s.message2) := 0;
init(r.expected) := 0;
init(r.ack) = 1;

init (msg_chan.output2)

I
[

init(ack_chan.output) := 1

“e

LTLSPEC G (s.st=sent & s.messagei=1 -> msg_chan.outputi=1)
Figure 3.17. The main ABP module.

acknowledgement, so that sender does not think that its very first message
is being acknowledged before anything has happened. For the same reason,
the output of the channels is initialised to 1.

The specifications for ABP. Our SMV program satisfies the following spec-
ifications:

Safety: If the message bit 1 has been sent and the correct acknowledge-
ment has been returned, then a 1 was indeed received by the receiver
G (S.st=sent & S.messagel=1 -> msg chan.outputi=1)

Liveness: Messages get through eventually. Thus, for any state there is
inevitably a future state in which the current message has got through. In
the module sender, we specified G F st=sent. (This specification could
equivalently have been written in the main module, as G F S.st=sent.)
Similarly, acknowledgements get through eventually. In the module
receiver, we write G F st=received.

3.4 Branching-time logic

In our analysis of LTL (linear-time temporal logic) in the preceding sections,
we noted that LTL formulas are evaluated on paths. We defined that a state
of a system satisfies an LTL formula if all paths from the given state satisfy
it. Thus, LTL implicitly quantifies universally over paths. Therefore, prop-
erties which assert the existence of a path cannot be expressed in LTL. This
problem can partly be alleviated by considering the negation of the property
in question, and interpreting the result accordingly. To check whether there

208

3 Verification by model checking

exists a path from s satisfying the LTL formula P,

we check whether all paths
satisfy —¢;

a positive answer to this is a negative answer to our original ques-
tion, and vice versa. We used this approach when analysing the ferryman
puzzle in the previous section. However, as already noted, properties which
mix universal and existential path quantifiers cannot in general be model
checked using this approach, because the complement formula still has a mix.

Branching-time logics solve this problem by allowing us to quantify ex-
plicitly over paths. We will examine a logic known as Computation Tree
Logic, or CTL. In CTL, as well as the temporal operators U, F, G and X of
LTL we also have quantifiers A and E which ex

press ‘all paths’ and ‘exists
a path’, respectively. For example, we can write

There is a reachable state satisfying ¢: this is written EF q.
From all reachable states satisfying p,

it is possible to maintain p continuously
until reaching a state satisfying ¢: this is written AG (r—E[pUyq)
Whenever.a state satisfying p is reached, the s
forevermore: AG (p — EG q).

There is a reachable state from which all reachable states satisfy p: EF AG p.

ystem can exhibit ¢ continuously

3.4.1 Syntax of CTL
Computation Tree Logic, or CTL for short, is a branching-time logic, mean-
ing that its model of time is a tree-like structure in which the future is not
determined; there are different paths in the fut

ure, any one of which might
be the ‘actual’ path that is realised.

As before, we work with a fixed set of atomic formulas/descriptions (such
as P, q;7y..., O p1,pa,...).

Definition 3.12 We define CTL formulas in

ductively via a Backus Naur
form as done for LTL:

¢r=-L!Tlplﬁﬁ)H¢A¢)H¢V¢)H¢—NMIAX¢IEX¢I
AFQ[EF¢ | AGo |EG¢ | Al Ug] | Blg U ¢]

where p ranges over a set of atomic formulas.

Notice that each of the CTL temporal connectives is & pair of symbols.
The first of the pair is one of A and E. A ricans ‘alonig All paths
and E means ‘along at least (there Exists)
one of the pair is X, F, G, or U, meaning ‘neXt state,” ‘some Future state,’
‘all future states (Globally)’ and Until, respectively. The pair of symbols
in B¢ U ¢y, for example, is EU. In CTL, pairs of symbols like EU are

’ (inevitably)
one path’ (possibly). The second

3.4 Branching-time logic 209

indivisible. Notice that AU and EU are binary. The symb'olé X, F, G and
U cannot occur without being preceded by an A or an E; similarly, every A
or E must have one of X, F, G and U to accompany it. ‘

Usually weak-until (W) and release (R) are not included in CTL, but they
are derivable (see Section 3.4.5).

Convention 3.13 We assume similar binding priorities for the CTL con-
nectives to what we did for propositional and predicate logic. The unary
connectives (consisting of - and the temporal connectives AG, EG, AF, EF,
AX and EX) bind most tightly. Next in the order come A and V; and after
that come —, AU and EU.

Naturally, we can use brackets in order to override these priorities. Let
us see some examples of well-formed CTL formulas and some examples
which are not well-formed, in order to understand the syntax. Suppose
that p, ¢ and r are atomic formulas. The following are well-formed CTL
formulas:

* AG (¢ — EGr), note that this is not the same as AG ¢ — EGr, for according to
Convention 3.13, the latter formula means (AGgq) — (EG7)

» EFE[r Ug]

: g}[}?E?GE;JF—i] AFr, again, note that this binds as (EFEGp) — AFr, not
EF (EGp — AFr) or EFEG (p — AF)

e Alp:1 U Alps U ps]|

e E[Alp; U pa] U ps]

e AG(p—ApU(—pA Al-pU Q])])

It is worth spending some time seeing how the syntax rules allow us to
construct each of these. The following are not well-formed formulas:

e BEFGr

e A-G-p

* FlrUgq]

* EF(rUgq)

e AEFr

* Al[rUg)A(pUr).

It is especially worth understanding why the syntax rules don.’t all(?w us‘ to
construct these. For example, take EF (r U ¢). The problem with this strm.g
is that U can occur only when paired with an A or an E. The E we have is
paired with the F. To make this into a well-formed CTL formula, we would
have to write EFE[r U ¢] or EF A[r U q|.

