180 3 Verification by model checking

S0

S9 52

TEN

S1

Figure 3.5. Unwinding the system of Figure 3.3 as an infinite tree of
all computation paths beginning in a particular state.

It is useful to visualise all possible computation paths from a given state
s by unwinding the transition system to obtain an infinite computation tree.
For example, if we unwind the state graph of Figure 3.3 for the designated
starting state sg, then we get the infinite tree in Figure 3.5. The execu-
tion paths of a model M are explicitly represented in the tree obtained by
unwinding the model.

Definition 3.6 Let M = (S, —, L) be a model and 7 = 57 — ... be a path
in M. Whether 7 satisfies an LTL formula is defined by the satisfaction
relation F as follows:

TET

L

mEpiff pe L(s;)

TE-¢ il mH ¢

TEPL Ay if mE ¢y and 7 F ¢y
TEOG Vo iff TE @1 or mE ¢
TE ¢1 — ¢ iff 7 E ¢ whenever m F ¢y
TEXgpiffr2 E ¢
TEG¢iff, foralli > 1, 7 E ¢

© 0N e otk W =

3.2 Linear-time temporal logic

50 81 S2 S3 S4 S5 Sg ST S3 S9 810

D q

Figure 3.6. An illustration of the meaning of Until in the semantics of
LTL. Suppose p is satisfied at (and only at) s3, s4, 85, 56, 57, 55 and ¢ is
satisfied at (and only at) sq. Only the states s3 to sy each satisfy p U ¢
along the path shown.

10. 7w F F ¢ iff there is some 7 > 1 such that 7% E ¢

11. 7w F ¢ U iff there is some 7 > 1 such that 7' F+ and for all j=1,...,i—1
we have 7/ E ¢ :

12. 7FE ¢ W9 iff either there is some 7> 1 such that 7% F ¢ and for all j=
1,...,4—1 we have 7/ E ¢; or for all k > 1 we have 7% E ¢

13. mF ¢ R ¢ iff either there is some ¢ > 1 such that 7' F ¢ and for all j =1,...,4
we have 77 E 1, or for all £ > 1 we have 7% & .

Clauses 1 and 2 reflect the facts that T is always true, and L is always false.
Clauses 3-7 are similar to the corresponding clauses we saw in propositional
logic. Clause 8 removes the first state from the path, in order to create a
path starting at the ‘next’ (second) state.

Notice that clause 3 means that atoms are evaluated in the first state along
the path in consideration. However, that doesn’t mean that all the atoms
occuring in an LTL formula refer to the first state of the path; if they are in
the scope of a temporal connective, e.g., in G (p — X ¢), then the calculation
of satisfaction involves taking suffices of the path in consideration, and the
atoms refer to the first state of those suffices.

Let’s now look at clauses 11-13, which deal with the binary temporal
connectives. U, which stands for ‘Until,’ is the most commonly encountered
one of these. The formula ¢ U ¢ holds on a path if it is the case that ¢
holds continuously until ¢; holds. Moreover, ¢; U ¢g actually demands that
@2 does hold in some future state. See Figure 3.6 for illustration: each of the
states s3 to sg satisfies p U ¢ along the path shown, but sy to s9 don’t.

The other binary connectives are W, standing for ‘Weak-until,” and R,
standing for ‘Release.” Weak-until is just like U, except that ¢ W ¢ does not
require that ¢ is eventually satisfied along the path in question, which is
required by ¢ U 7. Release R is the dual of U; that is, ¢ R 1 is equivalent to
—(=¢ U ). Tt is called ‘Release’ because clause 11 determines that 1 must
remain true up to and including the moment when ¢ becomes true (if there
is one); ¢ ‘releases’ . R and W are actually quite similar; the differences
are that they swap the roles of ¢ and 7, and the clause for W has an i — 1




182 3 Verification by model checking

where R has 7. Since they are similar, why do we need both? We don’t; they
are interdefinable, as we will see later. However, it’s useful to have both. R
is useful because it is the dual of U, while W is useful because it is a weak
form of U.

Note that neither the strong version (U) or the weak version (W) of until
says anything about what happens after the until has been realised. This
is in contrast with some of the readings of ‘until’ in natural language. For
example, in the sentence ‘I smoked until I was 22’ it is not only expressed
that the person referred to continually smoked up until he or she was 22
years old, but we also would interpret such a sentence as saying that this
person gave up smoking from that point onwards. This is different from the
semantics of until in temporal logic. We could express the sentence about
smoking by combining U with other connectives; for example, by asserting
that it was once true that s U (t A G=s), where s represents ‘I smoke’ and
t represents ‘I am 22.°

Remark 3.7 Notice that, in clauses 9-13 above, the future includes the
present. This means that, when we say ‘in all future states,” we are including
the present state as a future state. It is a matter of convention whether we
do this, or not. As an exercise, you may consider developing a version of
LTL in which the future excludes the present. A consequence of adopting
the convention that the future shall include the present is that the formulas
Gp—p,p—qUpand p— Fp are true in every state of every model.

So far we have defined a satisfaction relation between paths and LTL for-
mulas. However, to verify systems, we would like to say that a model as
a whole satisfies an LTL formula. This is defined to hold whenever every
possible execution path of the model satisfies the formula.

Definition 3.8 Suppose M = (S, —, L) is a model; s € S, and ¢ an LTL
formula. We write M, s F ¢ if, for every execution path = of M starting at
5, we have 7 F ¢.

If M is clear from the context, we may abbreviate M,sE ¢ by sk ¢.
It should be clear that we have outlined the formal foundations of a pro-
cedure that, given ¢, M and s, can check whether M, s & ¢ holds. Later
in this chapter, we will examine algorithms which implement this calcula-
tion. Let us now look at some example checks for the system in Figures 3.3
and 3.5.

1. M, sq E p A g holds since the atomic symbols p and q are contained in the node
of sg: m E p A g for every path w beginning in sq.

3.2 Linear-time temporal logic 183

2. M, sg E —r holds since the atomic symbol r is not contained in node sq.

M, 55 E T holds by definition.

4. M, sy E Xr holds since all paths from sg have either s; or sy as their next
state, and each of those states satisfies r.

5. M, sg F X (g Ar) does not hold since we have the rightmost computation path
50 — 89 — §9 — 89 — ... in Figure 3.5, whose second node s5 contains r, but

w

not gq.

6. M,sqE G-(pAr) holds since all computation paths beginning in sg satisfy
G —(p A1), 1.e. they satisfy =(p A r) in each state along the path. Notice that
G ¢ holds in a state if, and only if, ¢ holds in all states reachable from the
given state.

7. For similar reasons, M, s; E Gr holds (note the s; instead of sg).

8. For any state s of M, we have M,sE F{—=gAr) — FGr. This says that if
any path 7 beginning in s gets to a state satisfying (—¢ A r), then the path
7 satisfies F G r. Indeed this is true, since if the path has a state satisfying
(=g A7) then (since that state must be s9) the path does satisfy F G r. Notice
what F Gr says about a path: eventually, you have continuously r.

9. The formula G F p expresses that p occurs along the path in question infinitely
often. Intuitively, it’s saying: no matter how far along the path you go (that’s
the G part) you will find you still have a p in front of you (that’s the F part).
For example, the path sg — 81 — sg — 81 — ... satisfies GF p. But the path
8o — 83 — 89 — §3 — ... doesn’t.

10. In our model, if a path from sg has infinitely many ps on it then it must be the
path sg — 51 — sg — 81 — ..., and in that case it also has infinitely many rs
on it. So, M, sg = GFp — GFr. But it is not the case the other way around!
It is not the case that M, s E GFr — GF p, because we can find a path from
so which has infinitely many rs but only one p.

3.2.3 Practical patterns of specifications
What kind of practically relevant properties can we check with formulas of
LTL? We list a few of the common patterns. Suppose atomic descriptions
include some words such as busy and requested. We may require some of
the following properties of real systems:

e It is impossible to get to a state where started holds, but ready does not hold:
(G—(started A —ready)
The negation of this formula expresses that it s possible to get to such a state,
but this is only so if interpreted on paths (7 F ¢). We cannot assert such a
possibility if interpreted on states (s F ¢) since we cannot express the existence
of paths; for that interpretation, the negation of the formula above asserts that
all paths will eventually get to such a state.




184 3 Verification by model checking

* For any state, if a request (of some resource) occurs, then it will eventually be
acknowledged:

G (requested — F acknowledged).

* A certain process is enabled infinitely often on every computation path:
G F enabled.

° Whatever happens, a certain process will eventually be permanently deadlocked:
F G deadlock.

e If the process is enabled infinitely often, then it runs infinitely often.
G Fenabled — G F running.

° An upwards travelling lift at the second floor does not change its direction when
it has passengers wishing to go to the fifth floor:
G (floor2 A directionup A ButtonPressed5 — (directionup U floor5))
Here, our atomic descriptions are boolean expressions built from system vari-
ables, e.g., floor2.

There are some things which are not possible to say in LTL, however. One
big class of such things are statements which assert the existence of a path,
such as these ones: -

e From any state it is possible to get to a restart state (i.e., there is a path from
all states to a state satisfying restart).

* The lift can remain idle on the third floor with its doors closed (i.e., from the
state in which it is on the third floor, there is a path along which it stays there).

LTL can’t express these because it cannot directly assert the existence of
paths. In Section 3.4, we look at Computation Tree Logic (CTL) which has
operators for quantifying over paths, and can express these properties.

3.2.4 Important equivalences between LTL formulas
Definition 3.9 We say that two LTL formulas ¢ and Y are semantically

equivalent, or simply equivalent, writing ¢ = ¢, if for all models M and all
paths min M: w E ¢ iff 7 F 9.

The equivalence of ¢ and ¢ means that ¢ and ¢ are semantically inter-
changeable. If ¢ is a subformula of some bigger formula X, and ¢ = ¢, then
we can make the substitution of ¢ for ¢ in y without changing the meaning
of x. In propositional logic, we saw that A and V are duals of each other,
meaning that if you push a — past a A, it becomes a V, and vice versa:

(PAY)=—dV Y S(dVY) =g A

(Because A and V are binary, pushing a negation downwards in the parse
tree past one of them also has the effect of duplicating that negation.)

3.2 Linear-time Eéfnporal logic 185
Similarly, F and G are duals of each other, and X is dual with itself:
-Gop=F~¢ -Fo=G-¢ X ¢ =X ¢
Also U and R are duals of each other: ;
GUW=-6R~ (pRY)=-pU-p.

We should give formal proofs of these equivalences. But they are easy, so we
leave them as an exercise to the reader. ‘Morally’ there ought to be a dual
for W, and you can invent one if you like. Work out what it might mean,
and then pick a symbol based on the first letter of the meaning. However, it
might not be very useful.

It’s also the case that F distributes over V and G over A, i.e.,

F(pVy)=FeVFy
G(dAY)=CodAGH

Compare this with the quantifier equivalences in Section 2.3.2. But F does
not distribute over A. What this means is that there is a model with a
path which distinguishes F (¢ A ¢) and F ¢ A F, for some ¢,1). Take the
path sg — 81 — sg — s; — ... from the system of Figure 3.3, for example;
it satisfies F p A Fr but it doesn’t satisfy F (p A 1).

Here are two more equivalences in LTL:

Fo=TU¢ Goé=L1Re

S

The first one exploits the fact that the clause for Until states two things:
the second formula ¢ must become true; and until then, the first formula T
must hold. So, if we put ‘no constraint’ for the first formula, it boils down
to asking that the second formula holds, which is what F asks. (The formula
T represent ‘no constraint.” If you ask me to bring it about that T holds,
I need do nothing, it enforces no constraint. In the same sense, L is ‘every
constraint.” If you ask me to bring it about that L holds, I'll have to meet
every constraint there is, which is impossible.)

The second formula, that G ¢ = L R ¢, can be obtained from the first by
putting a — in front of each side, and applying the duality rules. Another
more intuitive way of seeing this is to recall the meaning of ‘release:’ L
releases ¢, but L will never be true, so ¢ doesn’t get released.

Another pair of equivalences relates the strong and weak versions of Until,
U and W. Strong until may be seen as weak until plus the constraint that
the eventuality must actually occur: ‘

dUP=¢p Wy AF. (3.2)




