174 3 Verification by model checking

By contrast, Chapter 4 describes a very different verification technique
which in terms of the above classification is a proof-based, computer-assisted,
property-verification approach. It is intended to be used for programs which
we expect to terminate and produce a result.

Model checking is based on temporal logic. The idea of temporal logic is
that a formula is not statically true or false in a model, as it is in propo-
sitional and predicate logic. Instead, the models of temporal logic contain
several states and a formula can be true in some states and false in others.
Thus, the static notion of truth is replaced by a dynamic one, in which the
formulas may change their truth values as the system evolves from state
to state. In model checking, the models M are transition systems and the
properties ¢ are formulas in temporal logic. To verify that a system satisfies
a property, we must do three things:

o model the system using the description language of a model checker, arriving at

a model M; -
e code the property using the specification language of the model checker, resulting

in a temporal logic formula ¢;
e Run the model checker with inputs M and ¢.

The model checker outputs the answer ‘yes’ if M F ¢ and ‘no’ otherwise; in
the latter case, most model checkers also produce a trace of system behaviour
which causes this failure. This automatic generation of such ‘counter traces’
is an important tool in the design and debugging of systems.

Since model checking is a model-based approach, in terms of the classifica-
tion given earlier, it follows that in this chapter, unlike in the previous two,
we will not be concerned with semantic entailment (I' F ¢), or with proof
theory (I' F ¢), such as the development of a natural deduction calculus for
temporal logic. We will work solely with the notion of satisfaction, i.e. the
satisfaction relation between a model and a formula (M E ¢).

There is a whole zoo of temporal logics that people have proposed and
used for various things. The abundance of such formalisms may be organised
by classifying them according to their particular view of ‘time.” Linear-
time logics think of time as a set of paths, where a path is a sequence of
time instances. Branching-time logics represent time as a tree, rooted at the
present moment and branching out into the future. Branching time appears
to make the non-deterministic nature of the future more explicit. Another
quality of time is whether we think of it as being continuous or discrete.
The former would be suggested if we study an analogue computer, the latter
might be preferred for a synchronous network.

3.2 Linear-time temporal logic 175

Temporal logics have a dynamic aspect to them, since the truth of a
formula is not fixed in a model, as it is in predicate or propositional logic,
but depends on the time-point inside the model. In this chapter, we study
a logic where time is linear, called Linear-time Tt emporal Logic (LTL), and
another where time is branching, namely Computation Tree Logic (CTL).
These logics have proven to be extremely fruitful in verifying hardware and
communication protocols; and people are beginning to apply them to the
verification of software. Model checking is the process of computing an answer
to the question of whether M, s ¢ holds, where ¢ is a formula of one of
these logics, M is an appropriate model of the system under consideration,
s is a state of that model and F is the underlying satisfaction relation. /

Models like M should not be confused with an actual physical system.
Models are abstractions that omit lots of real features of a physical system,
which are irrelevant to the checking of ¢. This is similar to the abstractions
that one does in calculus or mechanics. There we talk about straight lines,
perfect circles, or an experiment without friction. These abstractions are

very powerful, for they allow us to focus on the essentials of our particular
concern.

3.2 Linear-time temporal logic

Linear-time temporal logic, or LTL for short, is a temporal logic, with con-
nectives that allow us to refer to the future. It models time as a sequence of
states, extending infinitely into the future. This sequence of states is some-
times called a computation path, or simply a path. In general, the future is
not determined, so we consider several paths, representing different possible
futures, any one of which might be the ‘actual’ path that is realised.

We work with a fixed set Atoms of atomic formulas (such as p,q,7,..., or
P1,D2,. ..). These atoms stand for atomic facts which may hold of a system,
like ‘Printer Q5 is busy,” or ‘Process 3259 is suspended,’ or ‘The content of
register R1 is the integer value 6.’ The choice of atomic descriptions obvi-
ously depends on our particular interest in a system at hand.

3.2.1 Syntax of LTL

Definition 3.1 Linear-time temporal logic (LTL) has the following syntax
given in Backus Naur form:

¢u=T[LIp| (=) [(9AQ)|(PV)] (¢ — o)
| XO) [(FO)[(G)[(0U) | (3 W) | (¢R¢) (3.1)

where p is any propositional atom from some set Atoms.

3 Verification by model checking

Figure 3.1. The parse tree of (F(p — Gr) V ((—¢) U p)).

Thus, the symbols T and L are LTL formulas, as are all atoms from At oms;
and —¢ is an LTL formula if ¢ is one, etc. The connectives X, F, G, U, R,
and W are called temporal connectives. X means ‘neXt state,” F' means ‘some
Future state,” and G means ‘all future states (Globally).’ The next three, U,
R and W are called ‘Until,” ‘Release’ and ‘Weak-until’ respectively. We will
look at the precise meaning of all these connectives in the next section; for
now, we concentrate on their syntax.

Here are some examples of LTL formulas:

(Fp)A(Gq) = (pWr))

(F(p— (Gr)) V((—q) Up)), the parse tree of this formula is illustrated in
Figure 3.1.

* @W(gWr))

(G(Fp) = (F(gV).

It’s boring to write all those brackets, and makes the formulas hard to read.
Many of them can be omitted without introducing ambiguities; for example,
(p — (Fq)) could be written p — F ¢ without ambiguity. Others, however,
are required to resolve ambiguities. In order to omit some of those, we assume
similar binding priorities for the LTL connectives to those we assumed for
propositional and predicate logic.

3.2 Linear-time temporal logic 177

Figure 3.2. The parse tree of Fp — Gr vV =g U p, assuming binding pri-
orities of Convention 3.2.

Convention 3.2 The unary connectives (consisting of - and the temporal
connectives X, F and G) bind most tightly. Next in the order come U, R
and W; then come A and V; and after that comes —.

These binding priorities allow us to drop some brackets without introduc-
ing ambiguity. The examples above can be written:

*c FpAGg—pWr
* Flp—Gr)v—-qUp
* pW(gWr)

e GFp—F(gVs).

The brackets we retained were in order to override the priorities of Conven-
tion 3.2, or to disambiguate cases which the convention does not resolve.
For example, with no brackets at all, the second formula would become
Fp— GrV—qU p, corresponding to the parse tree of Figure 3.2, which is
quite different.

The following are not well-formed formulas:

¢ Ur -~ since U is binary, not unary
° p G ¢ —since G is unary, not binary.

178 3 Verification by model checking

Definition 3.3 A subformula of an LTL formula ¢ is any formula ¢ whose
parse tree is a subtree of ¢’s parse tree.

The subformulas of p W (¢ U r), e.g., are p, g, 7, ¢ U r and p W (¢ U r).

3.2.2 Semantics of LTL
The kinds of systems we are interested in verifying using LTL may be
modelled as transition systems. A transition system models a system by
means of states (static structure) and transitions (dynamic structure). More
formally:

Definition 3.4 A transition system M = (S, —,L) is a set of states §
endowed with a tramsition relation — (a binary relation on §), such
that every s € S has ‘some s’ € § with s — ¢/, and a labelling function
L: S — P(Atoms).

Transition systems are also simply called models in this chapter. So a model
has a collection of states .S, a relation —, saying how the system can move
from state to state, and, associated with each state s, one has the set of
atomic propositions L(s) which are true at that particular state. We write
P(Atoms) for the power set of Atoms, a collection of atomic descriptions.
For example, the power set of {p,q} is {0, {p}, {¢},{p,q}}. A good way of
thinking about L is that it is just an assignment of truth values to all the
propositional atoms, as it was the case for propositional logic (we called
that a valuation). The difference now is that we have more than one state,
so this assignment depends on which state s the system is in: L(s) contains
all atoms which are true in state s.

We may conveniently express all the information about a (finite) tran-
sition system M using directed graphs whose nodes (which we call states)
contain all propositional atoms that are true in that state. For example, if
our system has only three states sg, sy and sa; if the only possible transi-
tions between states are sg — 81, Sg — S2, 81 — Sg, S1 — S2 and s9 — $9;
and if L(so) = {p,q}, L(s1) = {q,r} and L(s2) = {r}, then we can condense
all this information into Figure 3.3. We prefer to present models by means
of such pictures whenever that is feasible.

The requirement in Definition 3.4 that for every s € § there is at least
one s’ € S such that s — s’ means that no state of the system can ‘dead-
lock.” This is a technical convenience, and in fact it does not represent any
real restriction on the systems we can model. If a system did deadlock, we
could always add an extra state sg representing deadlock, together with new

3.2 Linear-time temporal logic 179

S0

Figure 3.3. A concise representation of a transition system M =
(S, ,L) as a directed graph. We label state s with [iff [€ L(s).

So 51 So S1

So $2

\ 83 \

S4 5S4

Sd

Figure 3.4. On the left, we have a system with a state s, that does not
have any further transitions. On the right, we expand that system with a
‘deadlock’ state sy such that no state can deadlock; of course, it is then
our understanding that reaching the 'deadlock’ state s; corresponds to
deadlock in the original system.

transitions s — s4 for each s which was a deadlock in the old system, as well
as sq — 8q. See Figure 3.4 for such an example.

Definition 3.5 A path in a model M = (5, —, L) is an infinite sequence of
states s1,82,83,... in S such that, for each i > 1, s; — s;.1. We write the
path as s1 — s9 — ...

Consider the path m =s; — sy — It represents a possible future of
our system: first it is in state s1, then it is in state s9, and so on. We write
7 for the suffix starting at s;, e.g., 7° is s3 — s4 —

S3

