A,

250

of two syntactic categories (

*(a) AG(pAt) = AG 7 AC Y
(b) EF~¢ = —7%%

12. State explicitly the meaning of the temporal connectives AR, etc., as defined on

page 217.

13. Prove the equivalences (3.6) on page 216.

* 14. Write pseudo-code for a recursive function TRANSLATE which takes as input
an arbitrary CTL formula ¢ and returns as output an equivalent CTL formula
¥ whose only operators are among the set {L,-,A,AF ,EU,EX }.

Exercises 3.5

7 1. Express the following properties in OTL and LTL whenever possible. If neither

is possible, try to express the property in CTL*:

* a) Whenever P is fOHOWGd by q after ﬁmtely many steps , then the system
D
enters an ‘interval’ in which no r occurs until ¢.

(b) Event p precedes s and ¢ on all computation paths. (You may find it easier
to code the negation of that specification first.)

(c) After p, ¢ is never true. (Where this constraint is meant to apply on all

computation paths.)

(d) Between the events g and 7, event p is never true.

(e) Transitions to states satisfying p occur at most twice.

(f) Property p is true for every second state along a path.

2. Explain in detail why the LTL and CTL formulas for the practical specification
patterns of pages 183 and 215 capture the stated ‘informal’ properties expressed

in plain English.

= 3. Consider the set of LTL/CTL formulas F — {Fp—FqAF p — AF ¢, AG (p—

AF q)}.

(a) Is there a model such that all formulas hold in it?
(b) For each ¢ € F, is there a model such that ¢ is the only formula in F satisfied

in that model?
(¢) Find a model in which no formula of F holds.

= 4. Consider the CTL formula AG (p — AF (s NAX (AF?))). Explain what exactly
it expresses in terms of the order of occurrence of events p, s and ¢.

5. Extend the algorithm NNF from page 62 which computes the negation normal

form of propositional logic formulas to CTL*. Since CTL* is defined in terms

state formulas and path formulas), this requires two

separate versions of NNF which call each other in a way that is reflected by the
syntax of CTL* given on page 218.

* 6. Find a transition system which distinguishes the following pairs of CTL* formu-
las, i.e., show that they are not equivalent:

(a) AFGpand AFAGp

*(b) AGFp and AGEFyp

() AllpUr) V(¢ Ur)] and Al(pV q) U r)]

3 Verification by model checking

(i) ¢ U (=pA—g) — —~Gp
(ii) G=gAF=p— —qU (=pA—q).
(b) Expand —((p U q) vV Gp) using de Morgan rules and the LTL equivalence
~(6UY) = (U (=g A=) v -F .
(c) Using your expansion and the facts (i) and (ii) above, show ~((pUgq)Vv
=g U =(p A g) and hence show that the desired expansion of AW
above is correct.

Exercises 3.6
* 1. Verify ¢; to ¢4 for the transition system given in Figure 3.11 on page 198. Which
of them require the fairness constraints of the SMV program in Figure 3.107
2. Try to write a CTL formula that enforces non-blocking and no-strict-sequencing
at the same time, for the SMV program in Figure 3.10 (page 196).
3. Apply the labelling algorithm to check the formulas 1, ¢2, ¢3 and ¢4 of the
mutual exclusion model in Figure 3.7 (page 188).
4. Apply the labelling algorithm to check the formulas o1, 2, &3 and ¢, of the
mutual exclusion model in Figure 3.8 (page 191).
5. Prove that (3.8) on page 228 holds in all models. Does your proof require that
for every state s there is some state s’ with s — s'?
6. Inspecting the definition of the labelling algorithm, explain what happens if you
perform it on the formula p A —p (in any state, in any model).
7. Modify the pseudo-code for SAT on page 227 by writing a special procedure for
AG 1y, without rewriting it in terms of other formulas®.

5 Question: will

3.8 Exercises 251

*(d) A[XpVvXXp|and AXpVAXAXp
(e) E[GFp| and EGEF p.
7. The translation from CTL with boolean combinations of path formulas to plain
CTL introduced in Section 3.5.1 is not complete. Invent CTL equivalents for:
(a) E[FpA(qUr)]
(b) E[Fp A Ggql.
In this way, we have dealt with all formulas of the form E[¢ A 1]. Formulas of the
form E[¢ V 4] can be rewritten as E[¢] V E[)] and A[¢] can be written -E[-¢].
Use this translation to write the following in CTL:
(c) El(p U ¢) ANFp]
(d) Al(p U g) AGp]
(e) A[Fp — Fgql.
8. The aim of this exercise is to demonstrate the expansion given for AW at the
end of the last section, i.e., Ap W q] = —E[~q U -(pV q)].
(a) Show that the following LTL formulas are valid (i.e., true in any state of any

your routine be more like the routine for AF, or more like that for EG on page 2247




252

3 Verification by model checking

*

8. Write the pseudo-code for SATgq, based on the deser

iption in terms of deleting
labels given in Section 3.6.1.

* 9.

For mutual exclusion, draw a transition system which forces the two processes

to enter their critical section in strict sequence and show that ¢, is false of its
initial state.

10. Use the definition of £ between states and CTL formulas to explain why s E
AG AF ¢ means that ¢ is true infinitel

y often along every path starting at s.
*11. Show that a CTL formula ¢ is true on infinitely many states of a computa-
tion path sy — 57 — g5 —

... iff for all n > 0 there is some m 2> n such that
Sm F ¢.

12. Run the NuSMV system on some examples. Try commenting out, or deleting,
some of the fairness constraints, if applicable, and see the counter examples
NuSMYV generates. NuSMV is very easy to run. -

13. In the one-bit channel, there are two fairness constraints. We could have written
this as a single one, inserting ‘&’ between running and the long formula, or we
could have separated the long formula into two and made it into a total of three
fairness constraints.

In general, what is the difference between the single fairness constraint D1 A o A
-+ A én, and the n fairness constraints ¢i, ¢o,. .., ¢,? Write an SMV program
with a fairness constraint a & b which is not equivalent to the two fairness
constraints a and b. (You can actually do it in four lines of SMV.)

14. Explain the construction of formula ¢4, used to express that the processes need
not enter their critical section in strict sequence. Does it rely on the fact that
the safety property ¢; holds?

* 15. Compute the EcG T labels for Figure 3.11, given the fairness constraints of the
code in Figure 3.10 on page 196.

ES

Exercises 3.7
1. Consider the functions

Hy, Hy, H3: P({1,2,3,4, 5,6,7,8,9,10}) — 73({1,2,3,4,5,6,7,8,9, 10})
defined by

H(Y)EY - {1,4,7)
Hy(Y)={2,59} - v
Hs(Y) = {1,2,3,4,5} N ({2, 4, 8}UY)
forall Y C {1,2,3,4,5,6,7,8,9,10}.

* (a) Which of these functions are monotone; which ones aren’t?
swer in each case.

* (b) Compute the least and greatest fixed
with ¢ = 1,2,... and Theorem 3.24.

Justify your an-

points of Hy using the iterations H

3.8 Exércises 253

-

Figure 3.42. Another system for which we compute invariants.

(c) Does H, have any fixed points?
(d) Recall G: P({sg,s1}) — P({s0,51}) with

G(Y)= if Y = {so} then {s1} else {sp}.

Use mathematical induction to show that G¢ equals G for all odd numbers
¢ > 1. What does G* look like for even numbers 7
2. Let A and B be two subsets of S and let F': P(S) — P(S) be a monotone
function. Show that:
(a) Fy: P(S) — P(S) with F1(Y) = An F(Y) is monotone;
(b) F2: P(S) — P(S) with F3(Y) = AU (BN F(Y)) is monotone.
3. Use Theorems 3.25 and 3.26 to compute the following sets (the underlying model
is in Figure 3.42):
(a) [EF p]
(b) [EGq].
4. Using the function F(X) = [¢] Upre,(X) prove that [AF ¢] is the least fixed
point of F'. Hence argue that the procedure SAT,r is correct and terminates.
5. One may also compute AG ¢ directly as a fixed point. Consider the function
H: P(S) — P(S) with H(X) = [¢] Nprey(X). Show that H is monotone and

that [AG ¢] is the greatest fixed point of H. Use that insight to write a procedure

SATy¢.

6. Similarly, one may compute Alp1 U ¢y directly as a fixed point, using
K: P(S) — P(S), where K(X)=[¢s]U ([¢1] Nprey(X)). Show that K is
monotone and that [A[¢; U ¢;]] is the least fixed point of K. Use that insight
to write a procedure SAT,y. Can you use that routine to handle all calls of the
form AF ¢ as well?

7. Prove that HA[¢1 U (252}]] = [[(]52 \Y (¢1 AAX (A[Qf)l U ¢2]))]}

8. Prove that [AG ¢] = [¢ A AX (AG ¢)].

9. Show that the repeat-statements in the code for SATey and SATgs always termi-
nate. Use this fact to reason informally that the main program SAT terminates
for all valid CTL formulas ¢. Note that some subclauses, like the one for AU,

call SAT recursively and with a more complex formula. Why does this not affect
termination?

S




3 Verification

by model checking 3.9 Bibliographic notes 255

3.9 Bibliographic notes

Temporal logic was invented by the philosopher A. Prior in the 1960s; his
logic was similar to what we now call LTL. The first use of temporal logic for
reasoning about concurrent programs was by A. Pnueli [Pnu81]. The logic
CTL was invented by E. Clarke and E. A. Emerson (during the early 1980s);
and CTL* was invented by E. A. Emerson and J. Halpern (in 1986) to unify
CTL and LTL.

CTL model checking was invented by E. Clarke and E. A. Emerson [CES81]
and by J. Quielle and J. Sifakis [QS81]. The technique we described for LTL
model checking was invented by M. Vardi and P. Wolper [VW84]. Surveys
of some of these ideas can be found in [CGL93] and [CGPY9]. The theorem
about adequate sets of CTL connectives is proved in [Mar01].

The original SMV system was written by K. McMillan [McM93] and is
available with source code from Carnegie Mellon University®. NuSMV7 is a
reimplementation, developed in Trento by A. Cimatti, and M. Rover
aimed at beinig customisable and extensible. Extensive documentation about
NuSMV can be found at that site. NuSMV supports essentially the same
system description language as CMU SMV, but it has an improved user in-
terface and a greater variety of algorithms. For example, whereas CMU SMV

checks only CTL specification, NuSMV supports LTL and CTL. NuSMV im-
plements bounded model checking [BCCZ99]. Cadence SMV?
new model checker focused on compositional systems and a
ways of addressing the state explosion problem. It was also developed by
K. McMillan and its description language resembles but much extends the
original SMV.

A website which gathers frequently used specification patterns in various
frameworks (such as CTL, LTL and regular expressions)
M. Dwyer, G. Avrunin, J. Corbett and L. Dillon?.

Current research in model checking includes attempts to exploit abstrac-
tions, symmetries and compositionality [CGL94, Lon8&3, Dam96] in order to
reduce the impact of the state explosion problem.

The model checker Spin, which is geared towards asynchronous systems
and is based on the temporal logic LTL, can be found at the Spin websitel?. A
model checker called FDR2 based on the process algebra CSP is available!!.

The Edinburgh Concurrency Workbench!? and the Concurrency Workbench
of North Carolina!® are similar software tools for the design and analysis of
concurrent systems. An example of a customisable and extensible modular
model checking frameworks for the verification of concurrent software is
Bogor'4.

There are many textbooks about verification of reactive systems; we men-
tion [MP91, MP95, Ros97, Hol90]. The SMV code contained in this chapter
can be downloaded from www.cs.bham.ac.uk/research/lics/.

12
i3

www.dcs.ed.ac.uk/home/cwb
wWW.cs.sunysb.edu/ " cwb
™4 pttp://bogor.projects.cis.ksu.edu/

iand is

is an entirely
bstraction as

is maintained by

WWW.Cs.cmu. edu/ "modelcheck/

nusmv.irst.itc.it
www-cad.eecs.berkeley.edu/ kenmcmil/
patterns.projects.cis.ksu.edu/
netlib.bell—labs.com/netlib/spin/whatispin.html
www.fsel.com.fdr2 download.html

LIRS BN

=)

0
1




