3 Verification by model checking

q1)

qs g4

Figure 3.36. Automaton accepting precisely traces satisfying ¢ & (pU
q) vV (=p U gq). The transitions with no arrows can be taken in either direc-
tion. The acceptance condition asserts that every run must pass infinitely
often through the set {41, g3, 94,95, ¢s}, and also the set {q1, g2, 3, ¢5, g6 }.

and checking whether there is a path of the resulting system which satisfies
the acceptance condition of A_g.

It is possible to implement the check for such a path in terms of CTL
model checking, and this is in fact what NuSMV does. The combined system
M x A_y is represented as the system to be model checked in NuSMV, -
and the formula to be checked is simply EG T. Thus, we ask the question:
does the combined system have a path. The acceptance conditions of Ay
are represented as implicit fairness conditions for the CTL model-checking
procedure. Explicitly, this amounts to asserting ‘FAIRNESS —(y U ¢) V ¢’
for each formula x U 4 occurring in C(¢).

3.7 The fixed-point characterisation of CTL

On page 227, we presented an algorithm which, given a CTL formula ¢ and
a model M = (S5, —, L), computes the set of states s € S satisfying ¢. We
write this set as [¢]. The algorithm works recursively on the structure of
¢. For formulas ¢ of height 1 (1, T or p), [¢] is computed directly. Other

3.7 The fixed-point characterisation of CTL 239

formulas are composed of smaller subformulas combined by a connective of
CTL. For example, if ¢ is 11 V 1), then the algorithm computes the sets
[1] and [¢2] and combines them in a certain way (in this case, by taking
the union) in order to obtain [V ¥].

The more interesting cases arise when we deal with a formula such as
EX 1, involving a temporal operator. The algorithm computes the set [/]
and then computes the set of all states which have a transition to a state in
[#]. This is in accord with the semantics of EX: M, s E EX ¢ iff there is
a state s’ with s — " and M, s' E 1.

For most of these logical operators, we may easily continue this discussion
to see that the algorithms work just as expected. However, the cases EU,
AF and EG (where we needed to iterate a certain labelling policy until it
stabilised) are not so obvious to reason about. The topic of this section is to
develop the semantic insights into these operators that allow us to provide a
complete proof for their termination and correctness. Inspecting the pseudo-
code in Figure 3.28, we see that most of these clauses just do the obvious
and correct thing according to the semantics of CTL. For example, try out
what SAT does when you call it with ¢; — ¢s.

Our aim in this section is to prove the termination and correctness
of SATyr and SATgy. In fact, we will also write a procedure SATge and
prove its termination and correctness'. The procedure SATge is given in
Figure 3.37 and is based on the intuitions given in Section 3.6.1: note how
deleting the label if none of the successor states is labelled is coded as
intersecting the labelled set with the set of states which have a labelled
successor.

The semantics of EG ¢ says that sg = EG ¢ holds iff there exists a com-
putation path sg — s1 — sp — ... such that s; & ¢ holds for all i > 0. We
could instead express it as follows: EG ¢ holds if ¢ holds and EG ¢ holds
in one of the successor states to the current state. This suggests the equiv-
alence EG ¢ = ¢ A EXEG ¢ which can easily be proved from the semantic
definitions of the connectives.

Observing that [EX] = preg([¢]) we see that the equivalence above
can be written as [EG ¢] = [¢] N pre3([EG ¢]). This does not look like a
very promising way of calculating EG ¢, because we need to know EG ¢ in
order to work out the right-hand side. Fortunately, there is a way around
this apparent circularity, known as computing fixed points, and that is the
subject of this section.

! Section 3.6.1 handles EG ¢ by translating it into —AF —¢, but we already noted in Section 3.6.1
that EG could be handled directly.

240 3 Verification by model checking

function SATgG (@)
/* determines the set of states satisfying EG ¢ */
local var XY

begin
Y := SAT (¢);
X =0
repeat until X =Y
begin
X:=Y;
Y =Y Nnpreg(Y)
end
return Y
end

Figure 3.37. The pseudo-code for SATgg.

3.7.1 Monotone functions
Definition 3.22 Let S be a set of states and F': P(S) — P(S) a function
on the power set of S.

L. We say that F' is monotone iff X CY implies F(X) C F(Y) for all subsets X
and Y of 5.

2. A subset X of S is called a fixed point of F iff F(X) = X.

def

For an example, let S = {sg, s} and F(Y) =Y U{so} for all subsets Y
of 5. Since Y C V' implies Y U {sg} C Y’ U {50}, we see that F is monotone.
The fixed points of F' are all subsets of S containing sg. Thus, F has two
fixed points, the sets {so} and {so, s1}. Notice that F' has a least (= {s0})
and a greatest (= {so, s1}) fixed point.

An example of a function G: P(S) — P(S), which is not monotone, is
given by

GY)¥ iry = {s0} then {s1} else {sg}.

S0 G maps {so} to {s1} and all other sets to {sq}. The function G is
not monotone since {so} C {s0,s1} but G({so}) = {s1} is not a subset of
G({s0,51}) = {so}. Note that G has no fixed points whatsoever.

The reasons for exploring monotone functions on P(S) in the context of
proving the correctness of SAT are:

1. that monotone functions always have a least and a greatest fixed point;
2. that the meanings of EG, AF and EU can be expressed via greatest, respectively
least, fixed points. of monotone functions on P(S);

3.7 The fixed-point characterisation of CTL 241

w

. that these fixed-points can be easily computed, and;

. that the procedures SATgy and SATr code up such fixed-point computations,
and are correct by item 2.

I

Notation 3.23 F*(X) means

7 times
Thus, the function F* is just ‘F applied 4 many times.’

For example, for the function F(Y) %Y U{sg}, we obtain F2(Y) =
F(F(Y))= (Y U{so}) U{so} =Y U{so} = F(Y). In this case, F2 = F and
therefore F' = F for all i > 1. It is not always the case that the sequence of
functions (F*, F2, F3, ...) stabilises in such a way. For example, this won’t
happen for the function G defined above (see Exercise 1(d) on page 253).
The following fact is a special case of a fundamental insight, often referred
to as the Knaster—Tarski Theorem.

Theorem 3.24 Let S be a set {sg,s1,...,5,} with n+ 1 elements. If
F:P(S) — P(S) is a monotone function, then F"*1(() is the least fixed
point of F" and F™"t1(S) is the greatest fixed point of F.

PrOOF: Since () C F(0), we get F(0) C F(F (D)), i.e., FY(0) C F2(0), for F
is monotone. We can now use mathematical induction to show that

Fi) € F*(0) € F@) < ... C F'(0)

for all 4 > 1. In particular, taking 4 L 1, we claim that one of the expres-
sions F¥(() above is already a fixed point of F. Otherwise, (0) needs to
contain at least one element (for then () F'(()). By the same token, F2((})
needs to have at least two elements since it must be bigger than F'! (0). Con-
tinuing this argument, we see that F™"*2(()) would have to contain at least
"+ 2 many elements. The latter is impossible since S has only n + 1 ele-
ments. Therefore, F(F*(0)) = F*(0) for some 0 < k < n + 1, which readily
implies that F™F(() is a fixed point of F as well.

Now suppose that X is another fixed point of F. We need to show that
F"1(0) is a subset of X; but, since § C X, we conclude F) CF(X)=
X, for F is monotone and X a fixed point of F. By induction, we obtain
FY(() C X for all i > 0. So, for i £ n + 1, we get F*1(f) C X.

The proof of the statements about the greatest fixed point is dual to the
one above. Simply replace € by 2,) by S and ‘bigger’ by ‘smaller.’ O

242 3 Verification by model checking

This theorem about the existence of least and greatest fixed points of
monotone functions F': P(S) — P(S) not only asserted the existence of
such fixed points; it also provided a recipe for computing them, and cor-
rectly so. For example, in computing the least fixed point of F, all we have
to do is apply [’ to the empty set () and keep applying F' to the result un-
til the latter becomes invariant under the application of . The theorem
above further ensures that this process is guaranteed to terminate. More-
over, we can specify an upper bound n + 1 to the worst-case number of
iterations necessary for reaching this fixed point, assuming that S has n + 1
elements.

3.7.2 The correctness of SATg
We saw at the end of the last section that [EG ¢] = [¢] N pres([EG ¢]). This
implies that EG ¢ is a fixed point of the function F'(X) = [¢] N preg(X). In
fact, F' is monotone, EG ¢ is its greatest fixed point and therefore EG ¢ can
be computed using Theorem 3.24.

Theorem 3.25 Let F be as defined above and let S have n 4 1 elements.

Then F' is monotone, [EG ¢] is the greatest fixed point of F, and [EG ¢] =
Frtl (S)

Proor:

1. In order to show that F' is monotone, we take any two subsets X and Y of §
such that X C Y and we need to show that F'(X) is a subset of F(Y). Given sg
such that there is some s1 € X with sg — s1, we certainly have sy — s;, where
s1 €Y, for X is a subset of Y. Thus, we showed pre;(X) C pre5(Y) from which
we readily conclude that FI(X) = [¢] Npres(X) C [¢] Npres(Y) = F(Y).

2. We have already seen that [EG ¢] is a fixed point of F. To show that it is the
greatest fixed point, it suffices to show here that any set X with F(X) = X has
to be contained in [EG ¢]. So let sg be an element of such a fixed point X. We
need to show that s is in [EG ¢] as well. For that we use the fact that

s0 € X = F(X) = [¢] N preg(X)

to infer that so € [¢] and sq — s; for some s; € X; but, since s; is in X,
we may apply that same argument to s; € X = F(X) = [¢] N preg(X) and we
get 51 € [¢] and s; — s, for some sy € X. By mathematical induction, we can
therefore construct an infinite path sy — s1 — - -+ — s, — 8,41 — ...such that
s; € [¢] for all ¢ > 0. By the definition of [EG ¢], this entails s, € [EG ¢].

The last item is now immediately accessible from the previous one and Theo-
rem 3.24. O

3.7 The fixed-point characterisation of CTL 243

Now we can see that the procedure SATgg is correctly coded and termi-
nates. First, note that the line Y := Y Npreg(Y) in the procedure SATgg
(Figure 3.37) could be changed to Y := SAT(¢) N pres(Y) without changing
the effect of the procedure. To see this, note that the first time round the
loop, Y is SAT(¢); and in subsequent loops, Y C SAT(¢), so it doesn’t matter
whether we intersect with ¥ or SAT(¢)2. With the change, it is clear that

SATgc is calculating the greatest fixed point of F'; therefore its correctness
follows from Theorem 3.25.

3.7.3 The correctness of SATgy
Proving the correctness of SATgy is similar. We start by noting the equiv-
alence Elp Uy] =9 v (¢ ANEXE[¢ U ¢]) and we write it as [E[¢ U] =
[41U ([¢] Nnpres[E[¢ U ¢]]). That tells us that [E[¢ U +]] is a fixed point
of the function G(X) = [¢] U ([¢] N pre5(X)). As before, we can prove that
this function is monotone. It turns out that [E[¢ U «]] is its least fixed

point and that the function SATgy is actually computing it in the manner of
Theorem 3.24.

Theorem 3.26 Let G be defined as above and let S have n + 1 elements.
Then G is monotone, [E(¢ U)] is the least fixed point of G, and we have
[E(¢ U ¥)] = G ().

2 If you are sceptical, try computing the values Yp, Y1, Y2,. .., where Y; represents the value of Y
after 7 iterations round the loop. The program before the change computes as follows:

Yy = SAT(¢)

Y1 = Yy Npre3(Ys)

Yy = Y1 Npreg(Y7)
= Yp N preg(Yo) N preg (Yo M pres(Ys))
= Yy N preg(Yp N pre5(Yo)).

The last of these equalities follows from the monotonicity of preg.

Y3 = Ya Nprez(Ys)
= Yo N preg(Yp N preg(Yo)) N pres(Yp N preg (Yo Npreg(Ys)))
= Yp N pre3(¥o N preg(Yp N preg(Yo))).

Again the last one follows by monotonicity. Now look at what the program does after the change:

Yo = SAT(¢)
Y = ST(4) 1 prea(¥o)
= Yp N preg(Yo)
Yo=Yy preE(Yl)
Y3 = Yp N preg (Y1)
= Yp N pres(Yp Npreg(Yo)).

A formal proof would follow by induction on i.

