3 Verification by model checking

Figure 3.18. The parse tree of a CTL formula without infix notation.

Notice that we use square brackets after the A or E, when the paired
operator is a U. There is no strong reason for this; you could use ordinary
round brackets instead. However, it often helps one to read the formula
(because we can more easily spot where the corresponding close bracket is).
Another reason for using the square brackets is that SMYV insists on it.

The reason Al(r Ug) A (p U r)] is not a well-formed formula is that the
syntax does not allow us to put a boolean connective (like A) directly inside
A[] or E[]. Occurrences of A or E must be followed by one of G, F, X or U-
when they are followed by U, it must be in the form Afg U 4. ,NO’W the (ﬁ’
and the ¢ may contain A, since they are arbitrary formulas: so Al(p 7/\ q) U
(=r — q)] is a well-formed formula, ’

Observe that AU and EU are binary connectives which mix infix and
prefix notation. In pure infix, we would write P1
prefix we would write AU(¢1, ¢2).

. As with any formal language, and as we did in the previous two chapters,
it is useful to draw parse trees for well-formed formulas. The parse tree for
A[AX-p UE[EX (pAq) U —p]] is shown in Figure 3.18.

AU ¢y, whereas in pure

Definition 3.14 A subformula of a CTL, formula

: ¢ is any formula ¢ whose
parse tree is a subtree of ¢’s parse tree.

3.4 Branching-time logic 211

3.4.2 Semantics of computation tree logic
CTL formulas are interpreted over transition systems (Definition 3.4). Let
M = (S,—,L) be such a model, s € S and ¢ a CTL formula. The definition
of whether M, s F ¢ holds is recursive on the structure of ¢, and can be
roughly understood as follows:

s If ¢ is atomic, satisfaction is determined by L.

e If the top-level connective of ¢ (i.e., the connective occurring top-most in the
parse tree of ¢) is a boolean connective (A, V, =, T etc.) then the satisfaction
question is answered by the usual truth-table definition and further recursion
down ¢.

e If the top level connective is an operator beginning A, then satisfaction holds if
all paths from s satisfy the ‘LTL formula’ resulting from removing the A symbol.

e Similarly, if the top level connective begins with E, then satisfaction holds if
some path from s satisfy the ‘LTL formula’ resulting from removing the E.

In the last two cases, the result of removing A or E is not strictly an LTL
formula, for it may contain further As or Es below. However, these will be
dealt with by the recursion.

The formal definition of M, s F ¢ is a bit more verbose:

Definition 3.15 Let M = (S, —, L) be a model for CTL, s in S, ¢ a CTL
formula. The relation M, s F ¢ is defined by structural induction on ¢:

M,sET and M, s L

M,sEpiff pe L(s)

M,sE-¢iff M,sH ¢

M,skE @1 Agg iff M sE ¢ and M, s E ¢y
M,sE @1 Vo ff M, sE ¢y or M,sE ¢
M,sE @1 — ¢ it M, s ¢y or M, s E ¢s.
M, s B AX ¢ iff for all s; such that s — s; we have M, 51 F ¢. Thus, AX says:
‘in every next state.’

8. M,skF EX¢ iff for some s; such that s — s; we have M, s; E ¢. Thus, EX
says: ‘in some next state.” E is dual to A - in exactly the same way that 3 is
dual to V in predicate logic.

9. M, sF AG ¢ holds iff for all paths s; — s — s3 — ..., where s; equals s, and
all s; along the path, we have M, s; F ¢. Mnemonically: for All computation
paths beginning in s the property ¢ holds Globally. Note that ‘along the path’
includes the path’s initial state s.

10. M, s F EG ¢ holds iff there is a path s; — s3 — 53 — ..., where s; equals s,
and for all s; along the path, we have M, s; F ¢. Mnemonically: there Exists
a path beginning in s such that ¢ holds Globally along the path.

IO O W

3 Verification by model checking

F'igu:re 3.19. A system whose starting state satisfies EF ¢.

11. M, sF AF ¢ holds iff for all paths s; — s5 — ... where s; equals s, there is
some s; such that M, s; F ¢. Mnemonically: for All computation paths begin-
ning in s there will be some Future state where ¢ holds.

12. M, s E EF ¢ holds iff there is a path s1 — s — s3 — ..., where 81 equals s,
and for some s; along the path, we have M, s; E ¢. Mnemonically: there Exists
a computation path beginning in s such that ¢ holds in some Future state;

13. M, sF Alg; U ¢y] holds iff for all paths s1 — 55 — s5 — ... where s equals
s, that path satisfies ¢y U ¢y, Le., there is some s; along the path, such that
M, s; E ¢o, and, for each J < i, we have M, 8; F ¢1. Mnemonically: All com-
putation paths beginning in s satisfy that ¢; Until ¢ holds on it.

4. M, s F E[¢1 U ¢9] holds iff there is apath s; — 85 — s3 — ..., where s; equals
s, and that path satisfies ¢; U ¢5 as specified in 13. Mnemonically: there Exists

a computation path beginning in s such that @1 Until ¢ holds on it.

Clauses 9-14 above refer to computation paths in models. It is there-
fore useful to visualise all possible computation paths from a given state
s by unwinding the transition system to obtain an infinite computation
tree, whence ‘computation tree logic.” The diagrams in Figures 3.19-3.22
show schematically systems whose starting states satisfy the formulas EF o,
EG ¢, AG¢ and AF ¢, respectively. Of course, we could add more @ to any
of these diagrams and still preserve the satisfaction — although there is noth-

ing to add for AG. The diagrams illustrate a ‘least’ way of satisfying the
formulas.

Figure 3.20. A system whose starting state satisfies EG ¢.

Figure 3.21. A system whose starting state satisfies AG ¢.

Recall the transition system of Figure 3.3 for the designated starting state
S0, and the infinite tree illustrated in Figure 3.5. Let us now look at some
example checks for this system.

[—y

. M, 50 F p A gqholds since the atomic symbols p and ¢ are contained in the node

M, 59 & —=r holds since the atomic symbol r is not contained in node sq.

3 Verification by model checking

Figure 3.22. A system whose starting state satisfies AF Q.

3. M, s0 E T holds by definition.

4. M,;soFEX (gAr)
S§1— 8 — 81 — ...

5. M,soF-AX (gAr)
S92 — 83 — §9 — .
not q.

6. M,sq E-EF (p A r) holds since there is no computation path beginning in s
such that we could reach a state where » Ar would hold. This is so because

there is simply no state whatsoever in this system where p and r hold at the
same time.

holds since we have the leftmost computation path sg —
in Figure 3.5, whose second node §1 contains ¢ and r.

holds since we have the rightmost computation path S —
in Figure 3.5, whose second node s2 only contains r, but

7. M,s3 EEGr holds since there is a computation path sy — 59 — g9 — ...
beginning in sy such that 7 holds in all future states of that path; this is
the only computation path beginning at s, and so M ,S2 E AGr holds/as well.

8. M, s9 = AF r holds since, for all computation paths beginning in s,

— reaches a state (s7 or sa) such that r holds.
Q/.i M, s0 EE[(pAq) U r] holds since we have the rightmost computation path
$0 = 82 = S > s — ... in Figure 3.5, whose second node so (i = 1) satisfies

~ 7, but all previous nodes (only j =0, i.e., node sg) satisfy p A q.

\1/.; M, 80 = Alp U r] holds since p holds at sq and r holds in any possible successor
state of sg, so p U r is true for all computation paths beginning in sq (so we
may choose ¢ = | independently of the path).

M, s0FAG (pVgVr — EF EG r) holds since in all states reachable from So
and satisfying p VvV q Vv r (all states in this case) the system can reach a state
satisfying EG r (in this case state 52)

the system

3.4 Branching-time logic 215

3.4.3 Practical patterns of specifications
It’s useful to look at some typical examples of formulas, and compare the sit-
uation with LTL (Section 3.2.3). Suppose atomic descriptions include some
words such as busy and requested.

¢ It is possible to get to a state where started holds, but ready doesn’t:

EF (started A —ready). To express impossibility, we simply negate the formula.

e For any state, if a request (of some resource) occurs, then it will eventually be
acknowledged: .
AG (requested — AF acknowledged). e

e The property that if the process is enabled infinitely often, then it runs in-
finitely "often, is not expressible in CTL. In particular, it is not expressed by
AG AF enabled — AG AF running, or indeed any other insertion of A or E into
the corresponding LTL formula. The CTL formula just given expresses that if
every path has infinitely often enabled, then every path is infinitely often taken;
this is much weaker than asserting that every path which has infinitely often
enabled is infinitely often taken.

¢ A certain process is enabled infinitely often on every computation path:

AG (AF enabled).

* Whatever happens, a certain process will eventually be permanently deadlocked:
AF (AG deadlock).

¢ From any state it is possible to get to a restart state:

AG (EF restart).

° An upwards travelling lift at the second floor does not change its direction when

it has passengers wishing to go to the fifth floor:

AG (floor2 A directionup A ButtonPressedb — A[directionup U floor5])

Here, our atomic descriptions are boolean expressions built from system vari-
ables, e.g., floor2.

e The lift can remain idle on the third floor with its doors closed:

AG (floor3 Aidle A doorclosed — EG (floor3 A idle A doorclosed)).

* A process can always request to enter its critical section. Recall that this was
not expressible in LTL. Using the propositions of Figure 3.8, this may be written
AG (ny — EXt;) in CTL.

® Processes need not enter their critical section in strict sequence. This was also
not expressible in LTL, though we expressed its negation. CTL allows us to
express it directly: EF (¢; AE[c; U (=¢1 A E[=ca U ¢1])]).

3.4.4 Important equivalences between CTL formulas
Definition 3.16 Two CTL formulas ¢ and 1 are said to be semantically
equivalent if any state in any model which satisfies one of them also satisfies
the other; we denote this by ¢ = 1.

)

/

