G.Gorni 1993/94

Punti limite

1. Il caso di successioni reali o complesse.

Definizione. Sia $n \mapsto a_n$ una successione complessa ed $\ell \in \mathbb{C} \cup \{\infty\}$, oppure la successione sia reale ed $\ell \in \mathbb{R} \cup \{-\infty, +\infty\}$. Si dice allora che ℓ è un punto limite della successione se esiste una sottosuccessione a_{n_k} che tende a ℓ .

Usando il concetto di punto limite si possono riscrivere nel modo seguente dei risultati già noti.

Teorema di Bolzano-Weierstrass. Ogni successione reale o complessa ha almeno un punto limite, finito o infinito.

Proposizione. (Vedi Gilardi, VI-10.10). Una successione reale o complessa ha per limite un punto ℓ di $\mathbb{C} \cup \{\infty\}$ oppure di $\mathbb{R} \cup \{-\infty, +\infty\}$ se e solo se ha ℓ come unico punto limite.

Per la proposizione precedente bisogna che l' ∞ senza segno non viva sotto lo stesso tetto dei due infiniti con segno. Altrimenti avremmo per esempio la successione $n \mapsto (-1)^n n$, che vista in un modo tende a ∞ , ma nell'altro ha due punti limite distinti $-\infty$ e $+\infty$.

Esempi di successioni con più di un punto limite sono tutte le successioni non convergenti. La $n \mapsto (-1)^n$ ha $\{-1, +1\}$ come insieme dei punti limite. La $n \mapsto i^n$ ha $\{1, i, -1, -i\}$. La $n \mapsto e^{in}$ ha tutto il cerchio unitario $\{z \in \mathbb{C} : |z| = 1\}$. La $n \mapsto \operatorname{sen} n$ ha l'intervallo [-1, 1].

Esercizio. Sia $n \mapsto a_n$ una successione reale e complessa e supponiamo che $a_{2k} \to \ell_1$ e $a_{2k+1} \to \ell_2$. Dimostrare che l'insieme dei punti limite di a_n è $\{\ell_1, \ell_2\}$.

Esercizio. Dimostrare che $-\infty$ e $+\infty$ sono punti limite di $n\mapsto n \operatorname{sen} n$.

Esercizio. Trovare successioni per le quali l'insieme dei punti limite sia \mathbb{N} , \mathbb{Z} , \mathbb{R} , \mathbb{C} .

*Esercizio. Può esistere una successione che abbia $\mathbb{R} \setminus \{0\}$ come insieme dei punti limite? (Avvio: considerare una sottosuccessione che tenda a 1, una che tenda a 1/2, una che tenda a 1/3 &c; scegliere poi un elemento opportuno da ciascuna di tali sottosuccessioni in modo da formare una nuova sottosuccessione che tenda a 0).

*Esercizio. Sia $n \mapsto a_n$ una successione e sia $n \mapsto x_n$ un'altra successione, formata tutta da punti limite di $n \mapsto a_n$. Supponiamo che $x_n \to \ell$. Dimostrare che allora pure ℓ è punto limite di $n \mapsto a_n$.

Esercizio. Se una successione prende solo valori interi, allora anche tutti i suoi punti limite finiti sono interi.

2. Successioni reali: massimo e minimo limite col metodo della bisezione.

Riprendiamo in esame la dimostrazione del teorema di Bolzano–Weierstrass nel caso di una successione reale limitata $n\mapsto x_n$ dimostrato col metodo di bisezione (vedi Gilardi VI-10.9). Questa consiste di una procedimento induttivo in cui a ogni passo k si costruiscono i seguenti oggetti a partire da quelli corrispondenti nel passo precedente k-1:

$$n_k$$
, I_k , $[a_k, b_k]$, $c_k = \frac{a_k + b_k}{2}$, $[a'_{k+1}, b'_{n+1}]$, $[a''_{k+1}, b''_{n+1}]$, I'_{k+1} , I''_{k+1} .

Si era detto che almeno uno dei due fra I'_{k+1} e I''_{k+1} è necessariamente infinito, e che si poneva che I_{k+1} fosse uno qualsiasi fra i due che fosse, appunto, infinito. Quando entrambi sono infiniti, la scelta fra l'uno e l'altro è indifferente ai fini del teorema di Bolzano-Weierstrass. Che cosa succede però se si decide di prendere sistematicamente quello corrispondente all'intervallo a sinistra, quando ci sia dato di scegliere? O sempre l'intervallo a destra?

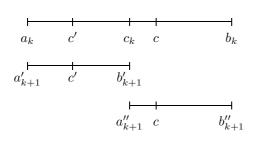
Proposizione. Se nella dimostrazione del teorema di Bolzano-Weierstrass (caso di una successione reale limitata $n \mapsto x_n$) si prende sistematicamente l'intervallo di sinistra ogni volta che sia possibile, si ottiene un punto limite c che ha la seguente proprietà: ogni altro punto limite c' è maggiore o uguale a c, cioè c è il minimo fra i punti limite della successione x_n .

Dimostrazione. Supponiamo per assurdo che c' sia un punto limite e che c' < c. Poiché $x_n \in [a_0, b_0]$ $\forall n \in \mathbb{N}$, deve essere $c' \in [a_0, b_0]$ e $\forall n$ $a_n < b_n$. D'altra parte non può succedere che $\forall n \in \mathbb{N}$ $c' \in [a_n, b_n]$, perché a_n e b_n tendono entrambe a c, che è diverso da c'. Deve pertanto esistere un indice k tale che

$$c' \in [a_k, b_k]$$
 ma $c' \notin [a_{k+1}, b_{k+1}].$

Essendo $c \in [a_n, b_n] \ \forall n \in \mathbb{N}$, in particolare

$$c \in [a_k, b_k]$$
 e $c \in [a_{k+1}, b_{k+1}].$



Dunque c e c' non stanno nella stessa metà in cui c_k divide l'intervallo $[a_k,b_k]$. Essendo c'< c deve risultare

$$a_k \le c' < c_k = b'_{k+1} = a''_{k+1} \le c$$

Fra le due metà, l'intervallo $[a_{k+1}'',b_{k+1}'']$ è l'unico a cui appartenga ce non appartenga c', per cui deve essere

$$[a_{k+1}, b_{k+1}] = [a''_{k+1}, b''_{k+1}].$$

Ricordiamo ora che c' è un punto limite della successione x_n , cioè esiste una sottosuccessione x_{n_i} che tende a c'. Essendo $[a_k, c_k] = [a'_{k+1}, b'_{k+1}]$ un intorno di c', bisogna che $x_{n_i} \in [a'_{k+1}, b'_{k+1}]$ per ogni $i \in \mathbb{N}$ sufficientemente grande. Ora, l'insieme di indici I'_{k+1} raccoglie tutti gli indici $j \in \mathbb{N}$ maggiori di n_k tali che $x_j \in [a'_{k+1}, b'_{k+1}]$. Quindi

 $n_i \in I'_{k+1}$ per tutti gli *i* abbastanza grandi.

In particolare, essendo $i\mapsto n_i$ crescente, e quindi iniettiva, risulta che

$$I'_{k+1}$$
 è infinito.

Ma questo contraddice il criterio secondo cui $[a_{k+1},b_{k+1}]$ deve coincidere con $[a'_{k+1},b'_{k+1}]$ qualora I'_{k+1} sia infinito (abbiamo visto sopra che risultava $[a_{k+1},b_{k+1}]=[a''_{k+1},b''_{k+1}]$). \square

Quando una successione è illimitata inferiormente sappiamo che fra i punti limite c'è $-\infty$. Se invece la successione tende a $+\infty$ l'insieme dei punti limite è $\{+\infty\}$. In entrambi i casi l'insieme dei punti limite ha minimo (nell'ordinamento di $\mathbb{R} \cup \{-\infty, +\infty\}$).

Ripetendo i ragionamenti della bisezione con il criterio di scegliere la metà destra dell'intervallo ogni volta che si può, oppure applicando il risultato alla successione $n \mapsto -x_n$ e poi cambiando di segno, si giustifica la seguente definizione:

Definizione. Data una successione reale $n \mapsto x_n$, l'insieme dei suoi punti limite in $\mathbb{R} \cup \{-\infty, +\infty\}$ ha massimo e minimo, che sono detti rispettivamente "massimo limite" e "minimo limite", e che sono indicati rispettivamente con i simboli

$$\max_{n \to +\infty} \lim x_n \quad e \quad \min_{n \to +\infty} \lim x_n .$$

Una successione reale ha un solo punto limite se e solo se il minimo limite coincide col massimo limite. Quindi una successione reale ha limite $\ell \in \mathbb{R} \cup \{-\infty, +\infty\}$ se e solo se il suo massimo limite e il suo minimo limite coincidono con ℓ .

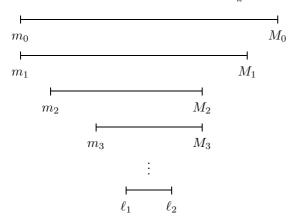
Esercizio. Trovare massimo e minimo limite delle successioni $(-1)^n$, $(-n)^n$, $\cos n$, $\Re \exp(in\pi/4)$.

3. Altri modi di introdurre massimo e minimo limite.

Oltre che con la bisezione, il massimo e il minimo limite possono essere introdotti in diversi altri modi. Consideriamo l'insieme A_0 dei punti della successione, e poi gli insiemi $A_k := \{x_n : n \geq k\}$, ottenuti omettendo dall'elenco i primi k termini:

(Attenzione: non si intende che $A_{k+1} = A_k \setminus \{x_k\}$. Farebbe lo stesso se $n \mapsto x_n$ fosse iniettiva, ma non altrimenti. Pensate per esempio quando la successione è costante). Poniamo

$$m_k := \inf A_k$$
, $M_k := \sup A_k$



(questi estremi possono tranquillamente essere infiniti). L'intervallo $[m_k, M_k]$ è il più piccolo intervallo chiuso contenente A_k . Poiché gli insiemi A_k sono inscatolati $(A_0 \supseteq A_1 \supseteq A_2 \supseteq A_3 \cdots)$, gli estremi inferiori sono debolmente crescenti e gli estremi superiori sono debolmente decrescenti:

$$m_0 \le m_1 \le m_2 \le m_3 \le \ldots \le M_3 \le M_2 \le M_1 \le M_0$$
.

Dunque le successioni $k \mapsto m_k$ e $k \mapsto M_k$ convergono rispettivamente a ℓ_1 e a ℓ_2 , con $\ell_1 \leq \ell_2$, e l'intervallo $[\ell_1, \ell_2]$ è l'intersezione degli intervalli $[m_k, M_k]$ al variare di $k \in \mathbb{N}$ (l'intervallo può benissimo essere ridotto a un solo punto, oppure essere semirette, o tutta quanta la retta estesa). Ebbene, ℓ_1 ed ℓ_2 sono precisamente il

minimo e il massimo limite di x_n , come siete invitati a dimostrare col prossimo esercizio.

Esercizio. Dimostrare che valgono le seguenti identità, qualunque sia la successione reale $n \mapsto x_n$:

$$\min_{\substack{n \to +\infty}} \lim x_n = \lim_{\substack{k \to +\infty}} m_k = \sup_{\substack{k \in \mathbb{N}}} m_k = \sup_{\substack{k \in \mathbb{N}}} m_k = \sup_{\substack{k \in \mathbb{N}}} \inf \{x_n : n \ge k\} = \lim_{\substack{k \to +\infty}} \inf \{x_n : n \ge k\},$$

$$\max_{\substack{n \to +\infty}} \lim x_n = \lim_{\substack{k \to +\infty}} M_k = \inf_{\substack{k \in \mathbb{N}}} M_k = \inf_{\substack{k \in \mathbb{N}}} \sup \{x_n : n \ge k\} = \lim_{\substack{k \to +\infty}} \sup \{x_n : n \ge k\}.$$

Le combinazioni $\lim_{k\to+\infty}$ inf e $\lim_{k\to+\infty}$ sup che si vedono negli ultimi membri delle uguaglianze qui sopra giustificano una nomenclatura alternativa, largamente usata, in cui massimo e minimo limite vengono detti rispettivamente limite superiore e limite inferiore e le seguenti notazioni:

$$\max_{n \to +\infty} \lim = \limsup_{n \to +\infty}, \qquad \min_{n \to +\infty} \lim = \liminf_{n \to +\infty}.$$

Talvolta si trovano anche le notazioni <u>lim</u> o lim' per indicare il min lim, e <u>lim</u> o lim" al posto di max lim. Strano che non si veda mai qualcosa come "sup inf" o "inf sup". Forse perché sarebbe troppo facile confondersi.

Il prossimo esercizio delinea un terzo modo di introdurre massimo e minimo limite.

Esercizio. Sia $n\mapsto x_n$ una successione reale. Diremo che $m\in [-\infty,+\infty]$ è un minorante definitivo della successione se si ha $m\le x_n$ definitivamente, e che $M\in [-\infty,+\infty]$ è un maggiorante definitivo della successione se si ha $m\ge x_n$ definitivamente. Dimostrare che l'insieme dei minoranti definitivi e quello dei maggioranti definitivi sono due sottointervalli non vuoti di $[-\infty,+\infty]$. L'insieme dei minoranti definitivi non è detto che abbia massimo, ma ha estremo superiore, che chiamiamo ℓ_1 . Analogamente, l'insieme dei maggioranti definitivi non è detto che abbia minimo, ma ha estremo inferiore, che chiamiamo ℓ_2 . Dimostrare che ℓ_1 è il minimo limite e ℓ_2 è il massimo limite della successione.

Esercizio. Dimostrare che $\ell_1 \in [-\infty, +\infty]$ è il minimo limite della successione reale $n \mapsto x_n$ se e solo se per ogni $r < \ell_1$ si ha $r < x_n$ definitivamente e per ogni $r > \ell_1$ si ha $r > x_n$ per infiniti indici n. Analogamente, ℓ_2 è il massimo limite se e solo se per ogni $r > \ell_1$ si ha $r > x_n$ definitivamente e per ogni $r < \ell_1$ si ha $r < x_n$ per infiniti indici n.