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Keywords: Consider the generalized Fibonacci sequence {q,},., having initial conditions g, =0,
Fibf)ﬂaCCi sequence q; =1 and recurrence relation q, =aq, ; +q, , (when n is even) or q, =bq, ; +q, ,
k-Fibonacci sequence (when n is odd), where a and b are nonzero real numbers. These sequences arise in a nat-

Generalized Fibonacci sequence

" ' ural way in the study of continued fractions of quadratic irrationals and combinatorics on
Generating functions

words or dynamical system theory. Some well-known sequences are special cases of this
generalization. The Fibonacci sequence is a special case of {q,} with a=b=1. Pell’s
sequence is {q,} with a = b = 2 and the k-Fibonacci sequence is {q, } with a = b = k. In this
article, we study numerous new properties of these sequences and investigate a sequence
closely related to these sequences which can be regarded as a generalization of Lucas
sequence of the first kind.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

The Fibonacci sequence {F,},-, is a sequence of nonnegative integers starting with the integer pair 0 and 1, where
F, =F,_1 +F,_, for all n > 2. The first few Fibonacci numbers are: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144,... The Fibonacci
sequence is perhaps one of the most well-known sequence and it has many interesting properties and important applica-
tions to diverse disciplines such as Mathematics, Statistics, Biology, Physics, Finance, Architecture, Computer Science, etc.
For the history, properties, and rich applications of Fibonacci sequence and some of its variants, see [1-6,10,11,19].

Some authors [7-9,20] have generalized the Fibonacci sequence by preserving the recurrence relation and altering the
first two terms of the sequence, while others [4,12-15,17,21] have generalized the Fibonacci sequence by preserving the first
two terms of the sequence but altering the recurrence relation slightly. In [3], Edson and the author introduced and studied a
new generalized Fibonacci sequence that depends on two real parameters used in a non-linear (piecewise linear) recurrence
relation as defined below.

Definition 1. For any two nonzero real numbers a and b, the generalized Fibonacci sequence {q,},-, is defined recursively
by
aqn_q + q,_,, if nis even,
=0 Gi=1 &= {bqn,l +q,, ifnisodd, 72
It is not hard to see that when a = b = 1, we have the classical Fibonacci sequence and when a = b = 2, we get the Pell
numbers. If we set a = b = k, for some positive integer k, we get the k-Fibonacci numbers. If a = 1 and b = 2, then members
of the sequence {q,} are denominators of continued fraction convergents to v/3 (see A002530 in [18]).

Edson and Yayenie has shown in [3] that the sequence {q,,} is given by the extended Binet’s Formula
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where o = @rV@biaadb g ab-Velbiadh and ¢(n).=n—2[2). Note that o and f are roots of the quadratic equation
x> —abx — ab = 0 and ¢(m) = 0 when m is even and &(m) = 1 when m is odd. The generalized Fibonacci sequences have word
combinatorial interpretation and they are also closely related to continued fraction expansion of quadratic irrationals (see

3D

In this article, we obtain numerous new identities of the generalized Fibonacci sequences and we investigate a much
broader class of sequences which can be regarded as the generalization of many integer sequences, such as Fibonacci, Lucas,

Pell, Pell-Lucas, Jacobsthal, etc. Furthermore, we will demonstrate that many of the properties of the Fibonacci sequence can
be stated and proven for these new sequences.

2. Main results
2.1. New identities of generalized Fibonacci sequences
First we give numerous new identities of the generalized Fibonacci sequences.

Theorem 1. For any nonnegative integer n, we have

qn+6 = (ab + 3)a17§(n)bi<n)qn+3 + qn'

Proof. One can use the extended Binet’s formula to derive the above result. However, we prefer to use the recurrence rela-
tion as follows. For any positive integer m > 2, we have

Q2 = (@b +2)qp — G-
Hence,

o6 = (@b +2)y.s — Gyp = (ab+2) [ Wb g, 5 + Qn+2} ~ Gny2
= (ab+2)a"“™b*"q, 5 + (ab + 1)qy,,
= (ab+3)a'*™b""q, 5 + (ab + 1)qy,,, — a'<®b""q, ;
= (ab+3)a" b g, . + (ab + 1)qy,, — @' OB [ b, + g, ]
= (ab+3)a'™b*"q, 5 + (ab+ 1 —ab)q,., — b "q,,,
= (ab+3)a""b"q,. s +q,. O

When a = b = 1 the above result reduces to a known identity of Fibonacci numbers

Fn+6:4Fn+3 +Fn~

Theorem 2. For any positive integer m, we have

(2]
an=am S (M o Jia) e

k=0

Proof. We will use the principle of mathematical induction to show the validity of the above formula. It is clear that the
result is true when m = 1, since

m-1

2k
G =1= (m lf ]>(ab)V"T”"k.
k=0

Assume that it is true for any n such that 1 < n < m. Then by the induction assumption and a known fact about binomial
coefficients, we get
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m-2

k
. o rm—k-1 i ) fm—k-2 s
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(2] e — =72 _
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{m_lJ L V"—zJ L
g [ 5 <m lk 1 ) ab) 3+ 4 g (m lk 2) (ab)%’”]
k=0 < k=0 K

Thus, the given formula is true for any positive integer m. O

When a = b = 1 the above result reduces to a known identity of Fibonacci numbers

(=5
m—k-—1
ey (")
k=0 k
which shows relationship between Fibonacci numbers and Pascal’s triangle (due to Lucas).
The following properties of ¢ and f are extremely useful to follow the proofs of some of the results presented in the cur-

rent section:

(@+D(p+1)=1, a+p=ab, o-f=—ab, aba+1)=0a? —plo+1)=o0.

Theorem 3. For any two positive integers m and n, we have

& —m)—1p,1-¢(mn+n— —& 4
Anin-1 = g-mmnem-th s m)qmqn +a<"™p (mn)qm—lqn—l‘ (1)

Proof. We will prove the above result using the extended Binet’s formula. First, note that ¢(m + n) = £(m) + &(n)— 2&(m)é(n)
and

—&(m)—¢& 3 _ 1-¢(mn+n—m)
ai(mn+n—m)71bl—i(mn+n—m)q q, = a] Hm)—Cm+e{mn-rn—m b ; o — ﬂm ot — ﬁn
m'n

(ab)' 213 a—p o—p
B ql—émm) pEmENEm+1) ymn + ﬁm+n — "B — mp"
(ab) ¥+ (o= )
B a1+§(m+n)/2b1*é(m+”)/2 o 4 ﬁm+n _ Otnﬁm _ O(mﬂ"
= [= 2
(ab) > (= p)

Similarly, one can show:

¢ 1-¢(m+n)/2 7 -2 _ -1 1 pn-1
—cf(mn)bf(m”) B ql+émen)/2p (m+n)/ om+n-2 +ﬂm+n _ ot 1/3'" _gm 1[)>n
a qm—lqn—l - m+n-2

(ab)"+* (- p)?
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Therefore the right hand side (RHS) of (1) is given by
qlremem2p 2 men-1 (g 4 abg 1) + BN (B + abp ) — [ B + o B")(1 + ab/aip)

RHS = T 2
(ab) 7 (=)
ql+emm)/2 pl=cmen)/2 omtn=1(or — B) + 'Bm+n4 (B— ) ql+emen)2pl=Emm/2 ymin-1 _ ﬁm+"*1
(@) (o~ p)? T (@) o p

B al+(i(m+n)—i(m+n—1)71)/2b1*(i(m+ﬂ)+i(m+n*1)+1)/2 gmn=1 _ /gm+n—1 B ql-émen-1) ymin-1 _ [;mm—l

= (Gb)tmg‘i” o — B - (ab) [m+2n—1J o — ﬁ = qm+n,]. O

When a = b = 1 the above result reduces to a known identity of Fibonacci numbers

Fm+n—1 :Fan +Fm—an—1-

Theorem 4 (Generalized Lucas Identity). For any positive integer m > 2, we have
Ani19m — An-19m-2 = Aqom_1-
Proof. Using Theorem 3, we get
Ay = @™V g gy @M g g = a ™Mb Mg, L+ a ™ D g g
_¢ ¢ _¢ Hm+1 _¢ E(m+1
= Gy (D gy ) @D g = G (G — Ga) + 0 ID g,
_¢ ¢ 1
= qmi19m — qm-2 (qm+1 - (11 ‘(er])bC(er )qm) = Amns19m — Gn—29m-1- u
When a = b = 1 the above result reduces to a known identity of Fibonacci numbers (due to Lucas)

F2m—1 = Fm+lFm *Fm—lFm—Z-

Remark. The above result can be obtained from the following identity, which is much more general and can be proved in a
similar way:

qm+n—2 = aé(mn)ilbié(mn) [qmqn - mez%fz] (m, n= 2)

Theorem 5 (Generalized Catalan’s Identity). For any positive integer m, we have

Gl

acm+1) | m mo1)_g k
qm_2m——]§<2k+l>(ab) 2 (ab+4)

The following lemma will be used to prove the above result.

2 2 . .
Lemma 1. [f o = @V @b 40b g g ab-Vab™r4ab then for any nonnegative integer m, we have

[ngy
m_am_ %P m m—j-1 j
A e St 2. <2j+l>(ab) (ab + 4y

Proof. Note that o and B are roots of the quadratic equation x?> —abx —ab = 0. Since 2« = ab + \/ab(ab +4) and
28 =ab — \/ab(ab + 4), it is clear to see that

m

(Za)m = <ab + \/m)m = Z (TIT:) (ab)m—k/Z(ab +4)k/27

k=0

@h" = (ab - \/M>m - (T) (~1)¥(ab)™ 2 (ab + 4.
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Therefore, we get

22" - (2p)" :i@’)(l (1)) @)™ (@b + 42,

1
)

?

2 m—j—1 j
2m =24/ab(ab + 4) 2 (2]+1> (ab) (ab +4Y,
12
m _ pm __ o — B m—j—1 Jj
o — B =S <2J+1>(ab) (ab + 4Y.

Jj=

Proof of Theorem 5. Using the formula for q,, and Lemma 1, we get

al=<m\ gm _ gm al= 1) ( ) i
= m = = (ab)" 7 (ab + 4
fm ((ab)L2J> o—p ((ab J) Z; 2j+1 y
_aitmen) 12 m qém+1) U2 m
-oomd (21‘ +1 2T 4 (2j+ 1

When a = b = 1 the above result reduces to a known identity established by Catalan

k
Fin 2m gm-1 Z <2k+1>5

The following results are generalizations of the identities for Fibonacci numbers established by Rao (see [16]) except part (d).
We believe that part (d) provides a some what new identity for Fibonacci sequence, due mainly to lack of references.

>(ab)m—t%m4(ab L4y - >(ab) Mg 4y, O

Theorem 6. For any positive integer n, we have

(@) 319,051 = §[@Bna — 1)
(b) 449> = ( VBTG + (1)),
(c) Zj:] (5) qj'qHz =3 H @on 19202 — a)
(d) ijznlqjqjﬁ =+ @21 1920,3 — (@b + 1)),
Proof. We will prove part (a) and (d). To prove (a), first note that

_ a 2441 p2+l _ il _ a 2441 p2i+l _ j
4i9j1 = - ﬁ)z(ab)@ﬂ% [a! + p? ab(acﬁ)] (o p)(aby [oci +pY ab(op)
2 2\/ ,
o l“@ (%) ab(”}-
Therefore,

w2 15 5 6 - goo] - (5[

g [ B @ )] = e ] B2
The right hand side of part (a) is given by
% (ona =11 = W (a2 4 g2 = 2(ap)™ ) ,%
g P o]
B W [+ 4 b(ab2+ 4) % e ﬁ)f(ab)znﬂ [o4m+2 4 2] — bgfbitrzzl).

This completes the proof of (a). Parts (b) and (c) can be shown in the same way. To show part (d), note that

N ) J+1
qiqj.3 = ﬁ [oc(%) + B(&) —ab(ab + 3)( 1)’]



5608 0. Yayenie / Applied Mathematics and Computation 217 (2011) 5603-5611

Hence

2n a 2n /o2y It 2n (2 i+ biab 2n ;
Qi3 =7—"7 — + — —ab(ab +3 -1
> 00 = g a;(ab) ﬁj§;<ab> @33

_a at [\ B Zn
CETS ((ab) Kab) B 1}  (aby’ Kab> o
= _(O( — 'B)f(ab)Z'HZ <a4n+4 + ﬁ4n+4 _ (ab)Zn (064 + ﬁ4)> _

The right hand side of part (d) is given by

_ab(ab+4)+2

a 4n+4 n+4
gz [+ B b(ab + 4)

(ot — B)*(ab)

1 - b+1
E [q2n+1q2n+3 — (ab + 1)} = W |:O(4”+4 + ﬁ4n+4 _ (aﬁ)z 1(a2 + ﬂz)] _ a ;
— a 4n-+4 An+4 (ab + 2) ab +1
- (O( - ﬁ)Z(ab)ZTHZ [a + ﬁ } + b(ab +4) - b
— # 4n+2 4n+27 M
~ @ prar T g

This completes the proof of (d). O

When a = b =1 part (d) of the above result reduces to an identity for Fibonacci numbers given by
2n
ZFij+3 = F2n+1F2n+3 -2
j=1

We do not think that this identity is new, however we could not find a reference for it.
2.2. Modified generalized Fibonacci sequences

In this section we introduce a new sequence that are obtained by modifying the recurrence relation of the generalized
Fibonacci sequence while preserving the initial conditions. Unlike the variation discussed in many articles in the past (see
[3,4,7-9,12-15,17,20,21]), this new generalization depends on four real parameters used in a non-linear recurrence relation
as shown below. These sequences can be viewed as the generalization of many integer sequences, such as Fibonacci, Lucas,
Pell, Pell-Lucas, Jacobsthal, etc. One of the main objective of this paper is to derive Binet’s like formula for the terms of these
sequences and in addition to demonstrate that many of the properties of the Fibonacci sequence can be stated and proven for
these new sequences.

Definition 2. For any four real numbers a, b, c, and d, the generalized Fibonacci sequence {Q,},-, is defined recursively by

aQ,; +cQ,,, if niseven,
= =1 = > 2).
L=0 Q=1 Q {an,l +dQ, , ifnisodd, %2

2.2.1. Special cases

.c=d=1:{Q,} is the generalized Fibonacci sequence {q,}.

.a=b=k, c=d=1:{Q,} is the k-Fibonacci sequence.

.a=d=1, b=c=2:{Q,} is A005824 (see [18]).

a=2, b=c=d=1:{Q,}is A048788. The terms of the sequence {Q,} are numerators of continued fraction convergents

to v3 — 1 (see [18]).

5.a=b=1, c=d=2:{Q,}is A001045 (Jacobsthal sequence). The terms of the sequence {Q,} are the number of ways to
tile a 3 x (n — 1) rectangle with 1 x 1 and 2 x 2 square tiles (see [18]).

6.a=2,b=2¢c=0d=-2:Qy,,;=2"({=0,1)forallm > 1.

e

Theorem 7 (Generating Function of {Q,}). The generating function of the sequence {Q,},-, is given by

e x(1+ ax — cx?)
H(x) = WX = .
® ;Q 1—(ab + ¢ + d)x? + cdx*

Proof. It is not hard to see that the sequence under consideration satisfies the identity:
Q= (ab +C+ d)Qn—Z - CdQn—4 (Tl = 4)
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Note that

(l —(ab+c+d)x* + cdx“)H(x) = f: QX" — (ab+c +d) f: QX2 + cdf: Q,x™4
n=0 n=0 n=0

= i QX" — (ab+c +d) i QX" + cdi Q,_4X"
n=0 n=2 n=4

=Qo+Qix+(Qy — (ab+ c+ d)Qo)x* + (Q3 — (ab+ c + d)Q;)x*
+Z —(ab+c+d)Qu 2 +cdQ, o)X

Since Q, = (ab+ c+d)Q,_; —cdQ,_4(n = 4), Qu =0, Q; =1, Q, =a, and Q; = ab + d, we have
(l —(ab+c+d)x? + cdx4>H(x) =x+ax’ —cx’.
Therefore,

o B x(1+ ax — cx?)
P S 1—(ab+c+d)x2 +cdx*’

When ¢ = d = 1, the above result reduces to the Theorem 4 of [3].

Theorem 8. (Generalized Binet’s Formula). The mth term of the generalized Fibonacci sequence {Q,} is given by

al=<m (od%(ot +d—o)" 1 g (g d—c™ LZJ)

On = an)® x—p

/ ) - 2
where o = ab+c—d+ (ag+c d)”+4abd and ﬂ _ ab+c—d (a;wrc d) +4abd.

When ¢ = d = 1, the above formula reduces to the formula for g,, given in [3].

Proof. First note that o and B are roots of the quadratic equation
x? —(ab+c—d)x —abd = 0.
The following properties of o and g will be used throughout the proof.

(i) x+pB=ab+c—d.
(ii) oo - B = —abd.
(iii) (x+d)(p+d) = cd.
(iv) ab(p+d) = B(p+d—c).
(v) ab(a+d) =a(o+d—c).

Since %d and % are roots of cdx® — (ab + c +d)x + 1 = 0, we can rewrite the generating function H(x) by using the partial
fractions decomposition as

1 a(e+d) —cox a(p+d) —cpx

— 2 o+d p+d
cd(o — p) x2 —ud x2 —bd

H(x) =

If we let

0

Ho(x) = Zanxzn and Hi(x ZQz X

n=0

then H(x) = Ho(x) + Hq(x). Using the Maclaurin’s series expansion

A + BZ - 2n . - BC—n—1ZZn+1
RS

n=0

and the identities mentioned above, we simplify both Hy(x) and H;(x) as follows:
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n=|

> | ]“"(“er—f?)"—ﬁ"(ﬂer—C) n

] x5

) A G e

=0 n=0
-1 > ny2n+
:(aiﬁ)Z[(ﬁ ab)(a+d)" — (o — ab)(p + d)"]x*"*!
n=0
= [ 1 1B-ab)o*(o+d-c)" —(e—ab)f"(B+d—c)" i
o Zo Lab)"} xr=p "
_ > 1 C)C"(O(er*(—')mrl */”n(ﬁ+dfc)n+] 2n+1
-3 Ry o
Therefore
2 fa =] oo+ d— )" — pE(prd— )"
H(x) = "
(%) mZ:O {(ab)@] a—p X
Thus
Cam (B d- o™ Y (pad— o)
Qn = (ab)% < o—p ’ -

In the following theorem, we list a number of mathematical properties including generalizations of Cassini’s, Catalan’s
and d’Ocagne’s identities for the classical Fibonacci numbers. The proof of some of them are provided and the others can
be proved in the same way.

Theorem 9. Suppose that d = c. Then the sequence {Q,,} satisfies the following identities:

(a) Cassini’s Identity:

(g) Lf(mH)Qm—l Qm+1 = (%)i(m)Qﬁq - <%>(_d)m71'
(b) Catalan’s Identity:

<g> é(mmiiQO_erw - <%> i(m)—é(r)Q31 _ Caymrgnge,

(c) Binomial Sum:

m

my . k mm—k
Z ( k >a5(k)(ab)vﬂd IQk = Q2m-

k=0

(d) More General Binomial Sum:
m

Z (7:)‘1 Sk (ab) B+ dn ka+r =a Q2m+r

k=0

(e) d’Ocagne’s Identity:

ag’(mn+m)b§(m"+”)QmQH+l _ a:(mn+n)b (mn-+m) Qm+1Qn — gém-n) (- ) Qpon.

Proof (a). Use the extended Binet's formula (Theorem 8) to see that

— aZii(er])bé(er]) 2m 2m m-1,_2 2\ | a27<(m+1)bé<m+1> aZrn + ﬁZm m-1 m-1
Qn-1Qnir = W {a + B = (o))" (o + B )] = - p? (ab)™ —(=1)""(ab +2d)d
and
) @ m)bé(m) a2m+ﬂ2m mam
Qm*W W*Z(*U d|.
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Therefore,
ay Em+1) B a? oZm +ﬁ2m o1 _
(3) Q1O = s |5 = (1) (ab+ 240
and
a &(m) 2 (12 a2m+ﬁ2m o
G) @ G |y A }
Hence,
ay <m+h) ay <m 2 a? 1 mdm—l b+ 4d) — a? 1 mdm—l b+ 4d _a 1 mdm—l
(B) Qm—lQmH_(B) Qm*m(— ) (ab + )*m(— ) (ab + )*E(— ) .

This finalizes the proof of part (a). To prove (d), note that

a [OCk” _ ﬁkH] .

(ab)¥ (o — p)

k )é
ac(k+r (ab) 5+ S(k)QkJrr —

Hence
= E(k4r) &) +-&(r)E(k) qn—k _ a . m—k|  k+r _ pk+r
kz<k) '(ab) e = Basp ﬁz;< >d -]
a n m k+r gm—k k-+r ym—k a ar(a + d)m — ﬂr(ﬂ + d)m
= o rdT " — d = -
( ) (oc )kZ(;(I(){ b ] (ab)m o—p
2m4r _ p2Mm4r 2m4r _ p2mr
a x ﬁ = a x ﬁ = ai(r)sz”'

T@)FT a—f (qn)®I a—p

This proves (d). The remaining parts can be proved in the same way. O

2.2.2. Open problem

The sequence {Q,} is eventually constant whena=1, b=2, ¢ =0, d = —1. For these choices, Q, =1 foralln > 1. In
addition,ifa=1, c=0,and b +d =1, then Q, = 1 for all n > 1 (this result was pointed to us by one of the referees). A nec-
essary conditions on the parameters for the sequence to be eventually constant is that a+c =1 and b +d = 1. Are there
more general sufficiency conditions?
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