Michel Raynal

Distributed Algorithms for Message-Passing Systems

Distributed Algorithms for Message-Passing Systems Michel Raynal

Distributed Algorithms for Message-Passing Systems

Michel Raynal Institut Universitaire de France IRISA-ISTIC Université de Rennes 1 Rennes Cedex France

ISBN 978-3-642-38122-5 ISBN 978-3-642-38123-2 (eBook) DOI 10.1007/978-3-642-38123-2 Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013942973

ACM Computing Classification (1998): F.1, D.1, B.3

© Springer-Verlag Berlin Heidelberg 2013

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher's location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

La profusion des choses cachait la rareté des idées et l'usure des croyances. [...] Retenir quelque chose du temps où l'on ne sera plus. In Les années (2008), Annie Ernaux

> Nel mezzo del cammin di nostra vita Mi ritrovai per una selva oscura, Ché la diritta via era smarritta. In La divina commedia (1307–1321), Dante Alighieri (1265–1321)

> > Wir müssen nichts sein, sondern alles werden wollen. Johann Wolfgang von Goethe (1749–1832)

Chaque génération, sans doute, se croit vouée à refaire le monde. La mienne sait pourtant qu'elle ne le refera pas. Mais sa tâche est peut-être plus grande. Elle consiste à empêcher que le monde ne se défasse. Speech at the Nobel Banquet, Stockholm, December 10, 1957, Albert Camus (1913–1960)

> Rien n'est précaire comme vivre Rien comme être n'est passager C'est un peu fondre pour le givre Ou pour le vent être léger J'arrive où je suis étranger. In Le voyage de Hollande (1965), Louis Aragon (1897–1982)

What Is Distributed Computing? Distributed computing was born in the late 1970s when researchers and practitioners started taking into account the intrinsic characteristic of physically distributed systems. The field then emerged as a specialized research area distinct from networking, operating systems, and parallel computing.

Distributed computing arises when one has to solve a problem in terms of distributed entities (usually called processors, nodes, processes, actors, agents, sensors, peers, etc.) such that each entity has only a partial knowledge of the many parameters involved in the problem that has to be solved. While parallel computing and real-time computing can be characterized, respectively, by the terms *efficiency* and *on-time computing*, distributed computing can be characterized by the term *uncertainty*. This uncertainty is created by asynchrony, multiplicity of control flows, absence of shared memory and global time, failure, dynamicity, mobility, etc. Mastering one form or another of uncertainty is pervasive in all distributed computing problems. A main difficulty in designing distributed algorithms comes from the fact that each entity cooperating in the achievement of a common goal cannot have instantaneous knowledge of the current state of the other entities; it can only know their past local states.

Although distributed algorithms are often made up of a few lines, their behavior can be difficult to understand and their properties hard to state and prove. Hence, distributed computing is not only a fundamental topic but also a challenging topic where simplicity, elegance, and beauty are first-class citizens.

Why This Book? While there are a lot of books on sequential computing (both on basic data structures, or algorithms), this is not the case in distributed computing. Most books on distributed computing consider advanced topics where the uncertainty inherent to distributed computing is created by the net effect of asynchrony and failures. It follows that these books are more appropriate for graduate students than for undergraduate students.

The aim of this book is to present in a comprehensive way basic notions, concepts and algorithms of distributed computing when the distributed entities cooperate by sending and receiving messages on top of an underlying network. In this case, the main difficulty comes from the physical distribution of the entities and the asynchrony of the environment in which they evolve.

Audience This book has been written primarily for people who are not familiar with the topic and the concepts that are presented. These include mainly:

- Senior-level undergraduate students and graduate students in computer science or computer engineering, who are interested in the principles and foundations of distributed computing.
- Practitioners and engineers who want to be aware of the state-of-the-art concepts, basic principles, mechanisms, and techniques encountered in distributed computing.

Prerequisites for this book include undergraduate courses on algorithms, and basic knowledge on operating systems. Selections of chapters for undergraduate and graduate courses are suggested in the section titled "How to Use This Book" in the Afterword.

Content As already indicated, this book covers algorithms, basic principles, and foundations of message-passing programming, i.e., programs where the entities communicate by sending and receiving messages through a network. The world is distributed, and the algorithmic thinking suited to distributed applications and systems is not reducible to sequential computing. Knowledge of the bases of distributed computing is becoming more important than ever as more and more computer applications are now distributed. The book is composed of six parts.

• The aim of the first part, which is made up of six chapters, is to give a feel for the nature of distributed algorithms, i.e., what makes them different from sequential or parallel algorithms. To that end, it mainly considers distributed graph algorithms. In this context, each node of the graph is a process, which has to compute a result whose meaning depends on the whole graph.

Basic distributed algorithms such as network traversals, shortest-path algorithms, vertex coloring, knot detection, etc., are first presented. Then, a general framework for distributed graph algorithms is introduced. A chapter is devoted to leader election algorithms on a ring network, and another chapter focuses on the navigation of a network by mobile objects.

• The second part is on the nature of distributed executions. It is made up of four chapters. In some sense, this part is the core of the book. It explains what a distributed execution is, the fundamental notion of a consistent global state, and the impossibility—without freezing the computation—of knowing whether a computed consistent global state has been passed through by the execution or not.

Then, this part of the book addresses an important issue of distributed computations, namely the notion of logical time: scalar (linear) time, vector time, and matrix time. Each type of time is analyzed and examples of their uses are given. A chapter, which extends the notion of a global state, is then devoted to asynchronous distributed checkpointing. Finally, the last chapter of this part shows how to simulate a synchronous system on top of an asynchronous system (such simulators are called synchronizers).

- The third part of the book is made up of two chapters devoted to distributed mutual exclusion and distributed resource allocation. Different families of permission-based mutual exclusion algorithms are presented. The notion of an adaptive algorithm is also introduced. The notion of a critical section with multiple entries, and the case of resources with a single or several instances is also presented. Associated deadlock prevention techniques are introduced.
- The fourth part of the book is on the definition and the implementation of communication operations whose abstraction level is higher than the simple send/receive of messages. These communication abstractions impose order constraints on message deliveries. Causal message delivery and total order broadcast are first presented in one chapter. Then, another chapter considers synchronous communication (also called rendezvous or logically instantaneous communication).
- The fifth part of the book, which is made up of two chapters, is on the detection of stable properties encountered in distributed computing. A stable property is a property that, once true, remains true forever. The properties which are studied are the detection of the termination of a distributed computation, and the detection of distributed deadlock. This part of the book is strongly related to the second part (which is devoted to the notion of a global state).
- The sixth and last part of the book, which is also made up of two chapters, is devoted to the notion of a distributed shared memory. The aim is here to provide the entities (processes) with a set of objects that allow them to cooperate at

an abstraction level more appropriate than the use of messages. Two consistency conditions, which can be associated with these objects, are presented and investigated, namely, atomicity (also called linearizability) and sequential consistency. Several algorithms implementing these consistency conditions are described.

To have a more complete feeling of the spirit of this book, the reader is invited to consult the section "The Aim of This Book" in the Afterword, which describes what it is hoped has been learned from this book. Each chapter starts with a short presentation and a list of the main keywords, and terminates with a summary of its content. Each of the six parts of the book is also introduced by a brief description of its aim and its technical content.

Acknowledgments This book originates from lecture notes for undergraduate and graduate courses on distributed computing that I give at the University of Rennes (France) and, as an invited professor, at several universities all over the world. I would like to thank the students for their questions that, in one way or another, have contributed to this book. I want also to thank Ronan Nugent (Springer) for his support and his help in putting it all together.

Last but not least (and maybe most importantly), I also want to thank all the researchers whose results are presented in this book. Without their work, this book would not exist.

Michel Raynal

Professeur des Universités Institut Universitaire de France IRISA-ISTIC, Université de Rennes 1 Campus de Beaulieu, 35042, Rennes, France

March–October 2012 Rennes, Saint-Grégoire, Tokyo, Fukuoka (AINA'12), Arequipa (LATIN'12), Reykjavik (SIROCCO'12), Palermo (CISIS'12), Madeira (PODC'12), Lisbon, Douelle, Saint-Philibert, Rhodes Island (Europar'12), Salvador de Bahia (DISC'12), Mexico City (Turing Year at UNAM)

Contents

Part I Distributed Graph Algorithms

1	Basi	ic Defin	itions and Network Traversal Algorithms	3
	1.1	Distrib	buted Algorithms	3
		1.1.1	Definition	3
		1.1.2	An Introductory Example:	
			Learning the Communication Graph	6
	1.2	Paralle	el Traversal: Broadcast and Convergecast	9
		1.2.1	Broadcast and Convergecast	9
		1.2.2	A Flooding Algorithm	10
		1.2.3	Broadcast/Convergecast Based on a Rooted Spanning Tree	10
		1.2.4	Building a Spanning Tree	12
	1.3	Bread	th-First Spanning Tree	16
		1.3.1	Breadth-First Spanning Tree	
			Built Without Centralized Control	17
		1.3.2	Breadth-First Spanning Tree Built with Centralized Control	20
	1.4	Depth	-First Traversal	24
		1.4.1	A Simple Algorithm	24
		1.4.2	Application: Construction of a Logical Ring	27
	1.5	Summ	nary	32
	1.6	Biblio	graphic Notes	32
	1.7	Exerci	ises and Problems	33
2	Dist	ributed	l Graph Algorithms	35
	2.1	Distrib	buted Shortest Path Algorithms	35
		2.1.1	A Distributed Adaptation	
			of Bellman–Ford's Shortest Path Algorithm	35
		2.1.2	A Distributed Adaptation	
			of Floyd–Warshall's Shortest Paths Algorithm	38
	2.2	Vertex	Coloring and Maximal Independent Set	42
		2.2.1	On Sequential Vertex Coloring	42

		2.2.2 Distributed (Δ + 1)-Coloring of Processes
		2.2.3 Computing a Maximal Independent Set
	2.3	Knot and Cycle Detection
		2.3.1 Directed Graph, Knot, and Cycle
		2.3.2 Communication Graph, Logical Directed Graph,
		and Reachability
		2.3.3 Specification of the Knot Detection Problem
		2.3.4 Principle of the Knot/Cycle Detection Algorithm
		2.3.5 Local Variables
		2.3.6 Behavior of a Process
	2.4	Summary
	2.5	Bibliographic Notes
	2.6	Exercises and Problems
_		
3	An A	Algorithmic Framework
	to C	Compute Global Functions on a Process Graph
	3.1	Distributed Computation of Global Functions
		3.1.1 Type of Global Functions
		3.1.2 Constraints on the Computation
	3.2	An Algorithmic Framework
		3.2.1 A Round-Based Framework 61
		3.2.2 When the Diameter Is Not Known
	3.3	Distributed Determination of Cut Vertices
		3.3.1 Cut Vertices
		3.3.2 An Algorithm Determining Cut Vertices
	3.4	Improving the Framework
		3.4.1 Two Types of Filtering
		3.4.2 An Improved Algorithm
	3.5	The Case of Regular Communication Graphs
		3.5.1 Tradeoff Between Graph Topology and Number of Rounds 72
		3.5.2 De Bruijn Graphs
	3.6	Summary
	3.7	Bibliographic Notes
	3.8	Problem
1	Loo	dor Floation Algorithms 77
4		The Leader Election Droblem 77
	4.1	11 Description
		4.1.1 Floblem Definition
		4.1.2 Anonymous Systems: An impossibility Result
		4.1.5 Dasic Assumptions and Principles
	4.0	of the Election Algorithms $\dots \dots \dots$
	4.2	A Simple $O(n^2)$ Leader Election Algorithm
		for Unidirectional Rings
		4.2.1 Context and Principle
		4.2.2 The Algorithm
		4.2.3 Time Cost of the Algorithm $\ldots \ldots \ldots \ldots \ldots \ldots $

		4.2.4 Message Cost of the Algorithm
		4.2.5 A Simple Variant
	4.3	An $O(n \log n)$ Leader Election Algorithm for Bidirectional Rings . 83
		4.3.1 Context and Principle
		4.3.2 The Algorithm
		4.3.3 Time and Message Complexities
	4.4	An $O(n \log n)$ Election Algorithm for Unidirectional Rings 86
		4.4.1 Context and Principles
		4.4.2 The Algorithm
		4.4.3 Discussion: Message Complexity and FIFO Channels 89
	4.5	Two Particular Cases 89
	4.6	Summary
	4.7	Bibliographic Notes
	4.8	Exercises and Problems
5	Mob	ile Objects Navigating a Network
	5.1	Mobile Object in a Process Graph
		5.1.1 Problem Definition
		5.1.2 Mobile Object Versus Mutual Exclusion
		5.1.3 A Centralized (Home-Based) Algorithm
		5.1.4 The Algorithms Presented in This Chapter 95
	5.2	A Navigation Algorithm for a Complete Network 96
		5.2.1 Underlying Principles
		5.2.2 The Algorithm
	5.3	A Navigation Algorithm Based on a Spanning Tree 100
		5.3.1 Principles of the Algorithm:
		Tree Invariant and Proxy Behavior
		5.3.2 The Algorithm
		5.3.3 Discussion and Properties
		5.3.4 Proof of the Algorithm
	5.4	An Adaptive Navigation Algorithm
		5.4.1 The Adaptivity Property
		5.4.2 Principle of the Implementation
		5.4.3 An Adaptive Algorithm Based on a Distributed Queue III
		5.4.4 Properties
	5 5	5.4.5 Example of an Execution
	5.5 5.6	Summary
	5.0 5.7	Dibiliographic Inoles
	5.1	
Par	t II	Logical Time and Global States in Distributed Systems
6	Natu	re of Distributed Computations

and	l the Co	oncept of a Global State	1
6.1	A Dis	stributed Execution Is a Partial Order on Local Events 122	2
	6.1.1	Basic Definitions	2

	6.1.2	A Distributed Execution Is a Partial Order on Local Events	122
	6.1.3	Causal Past, Causal Future, Concurrency, Cut	123
	6.1.4	Asynchronous Distributed Execution	
		with Respect to Physical Time	125
6.2	A Dist	ributed Execution Is a Partial Order on Local States	127
6.3	Global	State and Lattice of Global States	129
	6.3.1	The Concept of a Global State	129
	6.3.2	Lattice of Global States	129
	6.3.3	Sequential Observations	131
6.4	Global	States Including Process States and Channel States	132
	6.4.1	Global State Including Channel States	132
	6.4.2	Consistent Global State Including Channel States	133
	6.4.3	Consistent Global State Versus Consistent Cut	134
6.5	On-the	-Fly Computation of Global States	135
	6.5.1	Global State Computation Is an Observation Problem	135
	6.5.2	Problem Definition	136
	6.5.3	On the Meaning of the Computed Global State	136
	6.5.4	Principles of Algorithms Computing a Global State	137
6.6	A Gloł	bal State Algorithm Suited to FIFO Channels	138
	6.6.1	Principle of the Algorithm	138
	6.6.2	The Algorithm	140
	6.6.3	Example of an Execution	141
6.7	A Glob	bal State Algorithm Suited to Non-FIFO Channels	143
	6.7.1	The Algorithm and Its Principles	144
	6.7.2	How to Compute the State of the Channels	144
6.8	Summa	ary	146
6.9	Biblio	graphic Notes	146
6.10	Exerci	ses and Problems	147
-			1.40
Log	ical Tim		149
7.1	Linear		149
	7.1.1	Scalar (or Linear) Time	150
	7.1.2	From Partial Order to Total Order:	
	7 1 0	The Notion of a Timestamp	151
	7.1.3	Relating Logical Time and Timestamps with Observations.	152
	7.1.4	Timestamps in Action: Total Order Broadcast	153
7.2	Vector	Time	159
	7.2.1	Vector Time and Vector Clocks	159
	7.2.2	Vector Clock Properties	162
	7.2.3	On the Development of Vector Time	163
	7.2.4	Relating Vector Time and Global States	165
	7.2.5	Vector Clocks in Action:	
		On-the-Fly Determination of a Global State Property	166
	7.2.6	Vector Clocks in Action:	
		On-the-Fly Determination of the Immediate Predecessors .	170
7.3	On the	Size of Vector Clocks	173

7

		7.3.1	A Lower Bound on the Size of Vector Clocks	174
		7.3.2	An Efficient Implementation of Vector Clocks	176
		7.3.3	<i>k</i> -Restricted Vector Clock	181
	7.4	Matrix	Time	182
		7.4.1	Matrix Clock: Definition and Algorithm	182
		7.4.2	A Variant of Matrix Time in Action: Discard Old Data	184
	7.5	Summ	ary	186
	7.6	Bibliog	graphic Notes	186
	7.7	Exerci	ses and Problems	187
8	Asyı	nchrono	ous Distributed Checkpointing	189
	8.1	Definit	tions and Main Theorem	189
		8.1.1	Local and Global Checkpoints	189
		8.1.2	Z-Dependency, Zigzag Paths, and Z-Cycles	190
		8.1.3	The Main Theorem	192
	8.2	Consis	stent Checkpointing Abstractions	196
		8.2.1	Z-Cycle-Freedom	196
		8.2.2	Rollback-Dependency Trackability	197
		8.2.3	On Distributed Checkpointing Algorithms	198
	8.3	Check	pointing Algorithms Ensuring Z-Cycle Prevention	199
		8.3.1	An Operational Characterization of Z-Cycle-Freedom	199
		8.3.2	A Property of a Particular Dating System	199
		8.3.3	Two Simple Algorithms Ensuring Z-Cycle Prevention	201
		8.3.4	On the Notion of an Optimal Algorithm	
			for Z-Cycle Prevention	203
	8.4	Check	pointing Algorithms	
		Ensuri	ng Rollback-Dependency Trackability	203
		8.4.1	Rollback-Dependency Trackability (RDT)	203
		8.4.2	A Simple Brute Force RDT Checkpointing Algorithm	205
		8.4.3	The Fixed Dependency After Send (FDAS)	
			RDT Checkpointing Algorithm	206
		8.4.4	Still Reducing the Number of Forced Local Checkpoints	207
	8.5	Messa	ge Logging for Uncoordinated Checkpointing	211
		8.5.1	Uncoordinated Checkpointing	211
		8.5.2	To Log or Not to Log Messages on Stable Storage	211
		8.5.3	A Recovery Algorithm	214
		8.5.4	A Few Improvements	215
	8.6	Summ	ary	216
	8.7	Biblio	graphic Notes	216
	8.8	Exerci	ses and Problems	217
9	Simu	ulating	Synchrony on Top of Asynchronous Systems	219
	9.1	Synchi	ronous Systems, Asynchronous Systems, and Synchronizers	219
		9.1.1	Synchronous Systems	219
		9.1.2	Asynchronous Systems and Synchronizers	221
		9.1.3	On the Efficiency Side	222

	9.2	Basic Principle for a Synchronizer	223
		9.2.1 The Main Problem to Solve	223
		9.2.2 Principle of the Solutions	224
	9.3	Basic Synchronizers: α and β	224
		9.3.1 Synchronizer α	224
		9.3.2 Synchronizer β	227
	9.4	Advanced Synchronizers: γ and δ	230
		9.4.1 Synchronizer γ	230
		9.4.2 Synchronizer δ	234
	9.5	The Case of Networks with Bounded Delays	236
		9.5.1 Context and Hypotheses	236
		9.5.2 The Problem to Solve	237
		9.5.3 Synchronizer λ	238
		9.5.4 Synchronizer μ	239
		9.5.5 When the Local Physical Clocks Drift	240
	9.6	Summary	242
	9.7	Bibliographic Notes	243
	9.8	Exercises and Problems	244
Par	t III	Mutual Exclusion and Resource Allocation	
10	Donn	niccion Based Mutual Evolucion Algorithms	247
10	10.1	The Mutual Exclusion Problem	247
	10.1	10.1.1. Definition	247
		10.1.2 Classes of Distributed Mutey Algorithms	247
	10.2	A Simple Algorithm Based on Individual Permissions	240
	10.2	10.2.1 Principle of the Algorithm	249
		10.2.2 The Algorithm	251
		10.2.2 Proof of the Algorithm	251
		10.2.4 From Simple Mutex to Mutex on Classes of Operations	255
	10.3	Adaptive Mutex Algorithms Based on Individual Permissions	256
	10.0	10.3.1 The Notion of an Adaptive Algorithm	256
		10.3.2 A Timestamp-Based Adaptive Algorithm	257
		10.3.3 A Bounded Adaptive Algorithm	259
		10.3.4 Proof of the Bounded Adaptive Mutex Algorithm	262
	10.4	An Algorithm Based on Arbiter Permissions	264
		10.4.1 Permissions Managed by Arbiters	264
		10.4.2 Permissions Versus Quorums	265
		10.4.3 Quorum Construction	266
		10.4.4 An Adaptive Mutex Algorithm	
		Based on Arbiter Permissions	268
	10.5	Summary	273
	10.6	Bibliographic Notes	273
	10.7	Exercises and Problems	274

11	Dist	ributed Resource Allocation	7
	11.1	A Single Resource with Several Instances	7
		11.1.1 The <i>k</i> -out-of- <i>M</i> Problem	7
		11.1.2 Mutual Exclusion with Multiple Entries:	
		The 1-out-of- <i>M</i> Mutex Problem	8
		11.1.3 An Algorithm for the k -out-of- M Mutex Problem 28	0
		11.1.4 Proof of the Algorithm	3
		11.1.5 From Mutex Algorithms to <i>k</i> -out-of- <i>M</i> Algorithms 28:	5
	11.2	Several Resources with a Single Instance	5
		11.2.1 Several Resources with a Single Instance	6
		11.2.2 Incremental Requests for Single Instance Resources:	
		Using a Total Order	7
		11.2.3 Incremental Requests for Single Instance Resources:	
		Reducing Process Waiting Chains	0
		11.2.4 Simultaneous Requests for Single Instance Resources	
		and Static Sessions	2
		11.2.5 Simultaneous Requests for Single Instance Resources	
		and Dynamic Sessions	3
	11.3	Several Resources with Multiple Instances	5
	11.4	Summary	7
	11.5	Bibliographic Notes	8
	11.6	Exercises and Problems	9
Part	t IV	High-Level Communication Abstractions	
Part 12	t IV Orde	High-Level Communication Abstractions	3
Part 12	t IV Ord 12.1	High-Level Communication Abstractions er Constraints on Message Delivery The Causal Message Delivery Abstraction	33
Part 12	t IV Orde 12.1	High-Level Communication Abstractions er Constraints on Message Delivery The Causal Message Delivery Abstraction 12.1.1 Definition of Causal Message Delivery	3 3 4
Part 12	t IV Orde 12.1	High-Level Communication Abstractions er Constraints on Message Delivery 300 The Causal Message Delivery Abstraction 300 12.1.1 Definition of Causal Message Delivery 300 12.1.2 A Causality-Based Characterization	3 3 4
Part 12	t IV Orde 12.1	High-Level Communication Abstractions er Constraints on Message Delivery 302 The Causal Message Delivery Abstraction 302 12.1.1 Definition of Causal Message Delivery 304 12.1.2 A Causality-Based Characterization 305 of Causal Message Delivery 304 0.12.1.2 A Causality-Based Characterization 305 0.12.1.2 A Causal Message Delivery 305 0.12.1.1 A Causal Message Delivery 305 0.12.1.1 A Causal Message Delivery 305 0.12.1.1 A Causal Message Delivery 305	3 3 4 5
Part 12	t IV Orde 12.1	High-Level Communication Abstractions er Constraints on Message Delivery	3 3 4 5
Part 12	t IV Orde 12.1	High-Level Communication Abstractions er Constraints on Message Delivery	3 3 4 5 5
Part 12	t IV Orde 12.1	High-Level Communication Abstractions er Constraints on Message Delivery 300 The Causal Message Delivery Abstraction 300 12.1.1 Definition of Causal Message Delivery 300 12.1.2 A Causality-Based Characterization 300 of Causal Message Delivery 300 12.1.3 Causal Order 300 with Respect to Other Message Ordering Constraints 300 A Basic Algorithm for Point-to-Point Causal Message Delivery 300	3 3 4 5 5 5
Part 12	t IV Orde 12.1	High-Level Communication Abstractions er Constraints on Message Delivery 307 The Causal Message Delivery Abstraction 307 12.1.1 Definition of Causal Message Delivery 308 12.1.2 A Causality-Based Characterization 308 of Causal Message Delivery 308 12.1.3 Causal Order 308 with Respect to Other Message Ordering Constraints 308 A Basic Algorithm for Point-to-Point Causal Message Delivery 308 12.2.1 A Simple Algorithm 308	3 3 4 5 5 5 5 5 5
Part 12	t IV Orde 12.1	High-Level Communication Abstractions er Constraints on Message Delivery 301 The Causal Message Delivery Abstraction 302 12.1.1 Definition of Causal Message Delivery 304 12.1.2 A Causality-Based Characterization 302 of Causal Message Delivery 303 12.1.3 Causal Order 304 with Respect to Other Message Ordering Constraints 306 12.2.1 A Simple Algorithm 306 12.2.2 Proof of the Algorithm 306	33455559
Part	t IV Orde 12.1	High-Level Communication Abstractions er Constraints on Message Delivery 302 The Causal Message Delivery Abstraction 302 12.1.1 Definition of Causal Message Delivery 304 12.1.2 A Causality-Based Characterization 302 of Causal Message Delivery 304 12.1.3 Causal Order 304 with Respect to Other Message Ordering Constraints 306 12.2.1 A Simple Algorithm 306 12.2.2 Proof of the Algorithm 306 12.2.3 Reduce the Size of Control Information 305	3 3 4 5 5 5 5 5 5 9
Part	t IV Orde 12.1	High-Level Communication Abstractions er Constraints on Message Delivery 30 The Causal Message Delivery Abstraction 30 12.1.1 Definition of Causal Message Delivery 30 12.1.2 A Causality-Based Characterization 30 12.1.3 Causal Order 30 with Respect to Other Message Ordering Constraints 30 12.2.1 A Simple Algorithm 30 12.2.2 Proof of the Algorithm 30 12.2.3 Reduce the Size of Control Information 30 Carried by Messages 310	334 5 5559 0
Part 12	t IV Orde 12.1 12.2	High-Level Communication Abstractions er Constraints on Message Delivery 307 The Causal Message Delivery Abstraction 307 12.1.1 Definition of Causal Message Delivery 308 12.1.2 A Causality-Based Characterization 308 of Causal Message Delivery 308 12.1.3 Causal Order 308 with Respect to Other Message Ordering Constraints 306 12.2.1 A Simple Algorithm 306 12.2.2 Proof of the Algorithm 306 12.2.3 Reduce the Size of Control Information 308 Causal Broadcast 316	3 3 4 5 5 5 5 5 9 0 3
Part	t IV Orde 12.1 12.2 12.3	High-Level Communication Abstractions er Constraints on Message Delivery 307 The Causal Message Delivery Abstraction 307 12.1.1 Definition of Causal Message Delivery 308 12.1.2 A Causality-Based Characterization 308 of Causal Message Delivery 308 12.1.3 Causal Order 308 with Respect to Other Message Ordering Constraints 308 12.2.1 A Simple Algorithm 309 12.2.2 Proof of the Algorithm 309 12.2.3 Reduce the Size of Control Information 309 12.2.3 Reduce the Size of Control Information 310 Causal Broadcast 311 12.3.1 Definition and a Simple Algorithm 312	3 3 4 5 5 5 5 5 9 0 3 3
Part	t IV Orde 12.1 12.2 12.3	High-Level Communication Abstractions er Constraints on Message Delivery 301 The Causal Message Delivery Abstraction 302 12.1.1 Definition of Causal Message Delivery 304 12.1.2 A Causality-Based Characterization 302 12.1.3 Causal Order 303 with Respect to Other Message Ordering Constraints 306 12.2.1 A Simple Algorithm 306 12.2.2 Proof of the Algorithm 306 12.2.3 Reduce the Size of Control Information 306 Causal Broadcast 311 12.3.1 Definition and a Simple Algorithm 311 12.3.2 The Notion of a Causal Barrier 312	3 3 4 5 5 5 5 5 9 0 3 3 5
Part	t IV Orde 12.1 12.2 12.3	High-Level Communication Abstractions er Constraints on Message Delivery 303 The Causal Message Delivery Abstraction 303 12.1.1 Definition of Causal Message Delivery 304 12.1.2 A Causality-Based Characterization 304 12.1.3 Causal Order 304 with Respect to Other Message Ordering Constraints 306 12.2.1 A Simple Algorithm 306 12.2.2 Proof of the Algorithm 306 12.2.3 Reduce the Size of Control Information 306 Causal Broadcast 317 12.3.1 Definition and a Simple Algorithm 317 12.3.2 The Notion of a Causal Barrier 317 12.3.3 Causal Broadcast with Bounded Lifetime Messages 317	3 3 4 5 6 5 5 9 0 3 3 5 7
Part	t IV Orde 12.1 12.2 12.3 12.4	High-Level Communication Abstractions er Constraints on Message Delivery 30 The Causal Message Delivery Abstraction 30 12.1.1 Definition of Causal Message Delivery 30 12.1.2 A Causality-Based Characterization 30 12.1.3 Causal Order 30 with Respect to Other Message Ordering Constraints 30 12.2.1 A Simple Algorithm 30 12.2.2 Proof of the Algorithm 30 12.2.3 Reduce the Size of Control Information 30 Causal Broadcast 31 12.3.1 Definition and a Simple Algorithm 31 12.3.2 The Notion of a Causal Barrier 31 12.3.3 Causal Broadcast with Bounded Lifetime Messages 31 12.3.3 Causal Broadcast Abstraction 32	3 3 4 5 6 5 7 0
Part 12	t IV Orde 12.1 12.2 12.3 12.4	High-Level Communication Abstractions er Constraints on Message Delivery 307 The Causal Message Delivery Abstraction 307 12.1.1 Definition of Causal Message Delivery 308 12.1.2 A Causality-Based Characterization 308 of Causal Message Delivery 308 12.1.3 Causal Order 308 with Respect to Other Message Ordering Constraints 306 12.2.1 A Simple Algorithm for Point-to-Point Causal Message Delivery 306 12.2.2 Proof of the Algorithm 306 12.2.3 Reduce the Size of Control Information 307 Causal Broadcast 311 12.3.1 Definition and a Simple Algorithm 312 12.3.2 The Notion of a Causal Barrier 313 12.3.3 Causal Broadcast with Bounded Lifetime Messages 317 12.3.4 Strong Total Order Versus Weak Total Order 324	3 3 4 5 6 6 5 9 0 3 3 5 7 0
Part 12	t IV Orde 12.1 12.2 12.3 12.4	High-Level Communication Abstractions er Constraints on Message Delivery 307 The Causal Message Delivery Abstraction 307 12.1.1 Definition of Causal Message Delivery 308 12.1.2 A Causality-Based Characterization 308 of Causal Message Delivery 308 12.1.3 Causal Order 308 with Respect to Other Message Ordering Constraints 308 12.2.1 A Simple Algorithm for Point-to-Point Causal Message Delivery 308 12.2.2 Proof of the Algorithm 309 12.2.3 Reduce the Size of Control Information 308 Causal Broadcast 311 12.3.1 Definition and a Simple Algorithm 312 12.3.3 Causal Broadcast with Bounded Lifetime Messages 317 12.3.4 Krong Total Order Versus Weak Total Order 320 12.4.1 Strong Total Order Versus Weak Total Order 320 12.4.2 An Algorithm Based on a Coordinator Process 320	334 5 6659 03357 0033577 000 000 000

		12.4.3 An Inquiry-Based Algorithm	324
		12.4.4 An Algorithm for Synchronous Systems	326
	12.5	Playing with a Single Channel	328
		12.5.1 Four Order Properties on a Channel	328
		12.5.2 A General Algorithm Implementing These Properties	329
	12.6	Summary	332
	12.7	Bibliographic Notes	332
	12.8	Exercises and Problems	333
13	Rend	dezvous (Synchronous) Communication	335
10	13.1	The Synchronous Communication Abstraction	335
	1011	13.1.1 Definition	335
		13.1.2 An Example of Use	337
		13.1.3 A Message Pattern-Based Characterization	338
		13.1.4 Types of Algorithms	220
		Implementing Synchronous Communications	341
	13.2	Algorithms for Nondeterministic Planned Interactions	341
	10.2	13.2.1 Deterministic and Nondeterministic Communication	0.1
		Contexts	341
		13.2.2 An Asymmetric (Static) Client–Server Implementation	342
		13.2.3 An Asymmetric Token-Based Implementation	345
	13.3	An Algorithm for Nondeterministic Forced Interactions	350
		13.3.1 Nondeterministic Forced Interactions	350
		13.3.2 A Simple Algorithm	350
		13.3.3 Proof of the Algorithm	352
	13.4	Rendezvous with Deadlines in Synchronous Systems	354
		13.4.1 Synchronous Systems and Rendezvous with Deadline	354
		13.4.2 Rendezvous with Deadline Between Two Processes	355
		13.4.3 Introducing Nondeterministic Choice	358
		13.4.4 <i>n</i> -Way Rendezvous with Deadline	360
	13.5	Summary	361
	13.6	Bibliographic Notes	361
	13.7	Exercises and Problems	362
Dort	+ V	Detection of Properties on Distributed Executions	
1 41 1	. •	Detection of 1 toper ites on Distributed Executions	
14	Disti	ributed Termination Detection	367
	14.1	The Distributed Termination Detection Problem	367
		14.1.1 Process and Channel States	367
		14.1.2 Termination Predicate	368
		14.1.3 The Termination Detection Problem	369
		14.1.4 Types and Structure of Termination Detection Algorithms .	369
	14.2	Termination Detection in the Asynchronous Atomic Model	370
		14.2.1 The Atomic Model	370

		14.2.2 The Four-Counter Algorithm	371
		14.2.3 The Counting Vector Algorithm	373
		14.2.4 The Four-Counter Algorithm	
		vs. the Counting Vector Algorithm	376
	14.3	Termination Detection in Diffusing Computations	376
		14.3.1 The Notion of a Diffusing Computation	376
		14.3.2 A Detection Algorithm Suited to Diffusing Computations	377
	14.4	A General Termination Detection Algorithm	378
		14.4.1 Wave and Sequence of Waves	379
		14.4.2 A Reasoned Construction	381
	14.5	Termination Detection in a Very General Distributed Model	385
		14.5.1 Model and Nondeterministic Atomic Receive Statement	385
		14.5.2 The Predicate <i>fulfilled</i> ()	387
		14.5.3 Static vs. Dynamic Termination: Definition	388
		14.5.4 Detection of Static Termination	390
		14.5.5 Detection of Dynamic Termination	393
	14.6	Summary	396
	14.7	Bibliographic Notes	396
	14.8	Exercises and Problems	397
15	Dist	ributed Deadlock Detection	401
	15.1	The Deadlock Detection Problem	401
		15.1.1 Wait-For Graph (WFG)	401
		15.1.2 AND and OR Models Associated with Deadlock	403
		15.1.3 Deadlock in the AND Model	403
		15.1.4 Deadlock in the OR Model	404
		15.1.5 The Deadlock Detection Problem	404
		15.1.6 Structure of Deadlock Detection Algorithms	405
	15.2	Deadlock Detection in the One-at-a-Time Model	405
		15.2.1 Principle and Local Variables	406
		15.2.2 A Detection Algorithm	406
		15.2.3 Proof of the Algorithm	407
	15.3	Deadlock Detection in the AND Communication Model	408
		15.3.1 Model and Principle of the Algorithm	409
		15.3.2 A Detection Algorithm	409
		15.3.3 Proof of the Algorithm	411
	15.4	Deadlock Detection in the OR Communication Model	413
		15.4.1 Principle	413
		15.4.2 A Detection Algorithm	416
		15.4.3 Proof of the Algorithm	419
	15.5	Summary	421
	15.6	Bibliographic Notes	421
	15.7	Exercises and Problems	422

Part VI Distributed Shared Memory

16	Atomic Consistency (Linearizability)
	16.1 The Concept of a Distributed Shared Memory 427
	16.2 The Atomicity Consistency Condition
	16.2.1 What Is the Issue?
	16.2.2 An Execution Is a Partial Order on Operations 429
	16.2.3 Atomicity: Formal Definition
	16.3 Atomic Objects Compose for Free
	16.4 Message-Passing Implementations of Atomicity
	16.4.1 Atomicity Based on
	a Total Order Broadcast Abstraction
	16.4.2 Atomicity of Read/Write Objects Based on
	Server Processes
	16.4.3 Atomicity Based on
	a Server Process and Copy Invalidation
	16.4.4 Introducing the Notion of an Owner Process
	16.4.5 Atomicity Based on a Server Process and Copy Update 443
	16.5 Summary
	16.6 Bibliographic Notes
	16.7 Exercises and Problems
17	Sequential Consistency
	17.1 Sequential Consistency
	17.1.1 Definition
	17.1.2 Sequential Consistency Is Not a Local Property 449
	17.1.3 Partial Order for Sequential Consistency
	17.1.4 Two Theorems
	for Sequentially Consistent Read/Write Registers 451
	17.1.5 From Theorems to Algorithms
	17.2 Sequential Consistency from Total Order Broadcast 453
	17.2.1 A Fast Read Algorithm for Read/Write Objects 453
	17.2.2 A Fast Write Algorithm for Read/Write Objects 455
	17.2.3 A Fast Enqueue Algorithm for Queue Objects 456
	17.3 Sequential Consistency from a Single Server
	17.3.1 The Single Server Is a Process
	17.3.2 The Single Server Is a Navigating Token
	17.4 Sequential Consistency with a Server per Object
	17.4.1 Structural View
	17.4.2 The Object Managers Must Cooperate
	17.4.3 An Algorithm Based on the OO Constraint
	17.5 A Weaker Consistency Condition: Causal Consistency 464
	17.5.1 Definition
	17.5.2 A Simple Algorithm
	17.5.3 The Case of a Single Object
	17.6 A Hierarchy of Consistency Conditions

17.7 Summary
17.8 Bibliographic Notes
17.9 Exercises and Problems 470
Afterword
The Aim of This Book
Most Important Concepts, Notions, and Mechanisms
Presented in This Book
How to Use This Book
From Failure-Free Systems to Failure-Prone Systems
A Series of Books
References
Index

Notation

no-op	no operation
skip	empty statement
process	program in action
n	number of processes
e	number of edges in the process graph
D	diameter of the process graph
p_i	process whose index is <i>i</i>
<i>id</i> _i	identity of process p_i (very often $id_i = i$)
τ	time instant (with respect to an external observer)
$\langle a,b \rangle$	pair with two elements a and b
\xrightarrow{ev}	causal precedence relation on events
$\xrightarrow{\sigma}$	causal precedence relation on local states
\xrightarrow{zz}	z-precedence relation on local checkpoints
$\xrightarrow{\Sigma}$	precedence relation on global states
Mutex	mutual exclusion
ABCD	small capital letters: message type (message tag)
abcd _i	italics lower-case letters: local variable of process p_i
$\langle m_1;\ldots;m_q\rangle$	sequence of messages
$a_i[1s]$	array of size s (local to process p_i)
for each $i \in \{1,, m\}$	order irrelevant
for each i from 1 to m	order relevant
wait (P)	while $\neg P$ do no-op end while
return (v)	returns v and terminates the operation invocation
% blablabla %	comments
;	sequentiality operator between two statements
$\neg(a \ R \ b)$	relation R does not include the pair $\langle a, b \rangle$

List of Figures and Algorithms

Fig. 1.1	Three graph types of particular interest	4
Fig. 1.2	Synchronous execution (left) vs. asynchronous (right) execution	5
Fig. 1.3	Learning the communication graph (code for p_i)	7
Fig. 1.4	A simple flooding algorithm (code for p_i)	10
Fig. 1.5	A rooted spanning tree	11
Fig. 1.6	Tree-based broadcast/convergecast (code for p_i)	11
Fig. 1.7	Construction of a rooted spanning tree (code for p_i)	13
Fig. 1.8	<i>Left</i> : Underlying communication graph; <i>Right</i> : Spanning tree	14
Fig. 1.9	An execution of the algorithm constructing a spanning tree	14
Fig. 1.10	Two different spanning trees built from the same communication	
-	graph	16
Fig. 1.11	Construction of a breadth-first spanning tree without centralized	
-	control (code for p_i)	18
Fig. 1.12	An execution of the algorithm of Fig. 1.11	19
Fig. 1.13	Successive waves launched by the root process p_a	21
Fig. 1.14	Construction of a breadth-first spanning tree with centralized	
	control (starting code)	22
Fig. 1.15	Construction of a breadth-first spanning tree with centralized	
	control (code for a process p_i)	22
Fig. 1.16	Depth-first traversal of a communication graph (code for p_i) .	25
Fig. 1.17	Time and message optimal depth-first traversal (code for p_i)	27
Fig. 1.18	Management of the token at process p_i	29
Fig. 1.19	From a depth-first traversal to a ring (code for p_i)	29
Fig. 1.20	Sense of direction of the ring and computation of routing tables .	30
Fig. 1.21	An example of a logical ring construction	31
Fig. 1.22	An anonymous network	34
Fig. 2.1	Bellman–Ford's dynamic programming principle	36
Fig. 2.2	A distributed adaptation of Bellman-Ford's shortest path	
	algorithm (code for p_i)	37
Fig. 2.3	A distributed synchronous shortest path algorithm (code for p_i).	38
Fig. 2.4	Floyd–Warshall's sequential shortest path algorithm	39

Fig. 2.5	The principle that underlies Floyd–Warshall's shortest paths	
	algorithm	39
Fig. 2.6	Distributed Floyd–Warshall's shortest path algorithm	41
Fig. 2.7	Sequential $(\Delta + 1)$ -coloring of the vertices of a graph	42
Fig. 2.8	Distributed $(\Delta + 1)$ -coloring from an initial <i>m</i> -coloring where	
	$n \ge m \ge \Delta + 2 \dots \dots$	43
Fig. 2.9	One bit of control information when the channels are not FIFO .	45
Fig. 2.10	Examples of maximal independent sets	46
Fig. 2.11	From <i>m</i> -coloring to a maximal independent set (code for p_i) .	47
Fig. 2.12	Luby's synchronous random algorithm for a maximal	
	independent set (code for p_i)	48
Fig. 2.13	Messages exchanged during three consecutive rounds	49
Fig. 2.14	A directed graph with a knot	51
Fig. 2.15	Possible message pattern during a knot detection	53
Fig. 2.16	Asynchronous knot detection (code of p_i)	55
Fig. 2.17	Knot/cycle detection: example	57
Fig. 3.1	Computation of routing tables defined from distances	
	(code for p_i)	63
Fig. 3.2	A diameter-independent generic algorithm (code for p_i)	65
Fig. 3.3	A process graph with three cut vertices	66
Fig. 3.4	Determining cut vertices: principle	67
Fig. 3.5	An algorithm determining the cut vertices (code for p_i)	68
Fig. 3.6	A general algorithm with filtering (code for p_i)	71
Fig. 3.7	The De Bruijn's directed networks $dB(2,1)$, $dB(2,2)$, and $dB(2,3)$	74
Fig. 3.8	A generic algorithm for a De Bruijn's communication graph	
e	(code for p_i)	75
Fig. 4.1	Chang and Robert's election algorithm (code for p_i)	80
Fig. 4.2	Worst identity distribution for message complexity	81
Fig. 4.3	A variant of Chang and Robert's election algorithm (code for p_i)	83
Fig. 4.4	Neighborhood of a process p_i competing during round r	84
Fig. 4.5	Competitors at the end of round r are at distance greater than 2^r .	84
Fig. 4.6	Hirschberg and Sinclair's election algorithm (code for p_i)	85
Fig. 4.7	Neighbor processes on the unidirectional ring	87
Fig. 4.8	From the first to the second round	87
Fig. 4.9	Dolev, Klawe, and Rodeh's election algorithm (code for p_i)	88
Fig. 4.10	Index-based randomized election (code for p_i)	90
Fig. 5.1	Home-based three-way handshake mechanism	95
Fig. 5.2	Structural view of the navigation algorithm	
e	(module at process p_i)	98
Fig. 5.3	A navigation algorithm for a complete network (code for p_i) .	99
Fig. 5.4	Asynchrony involving a mobile object and request messages	100
Fig. 5.5	Navigation tree: initial state	101
Fig. 5.6	Navigation tree: after the object has moved to p_c	102
Fig. 5.7	Navigation tree: proxy role of a process	102

Fig. 5.8	A spanning tree-based navigation algorithm (code for p_i) 104
Fig. 5.9	The case of non-FIFO channels
Fig. 5.10	The meaning of vector
	$R = [d(i_1), d(i_2), \dots, d(i_{x-1}), d(i_x), 0, \dots, 0] \dots $
Fig. 5.11	A dynamically evolving spanning tree
Fig. 5.12	A navigation algorithm based on a distributed queue
	(code for p_i)
Fig. 5.13	From the worst to the best case
Fig. 5.14	Example of an execution
Fig. 5.15	A hybrid navigation algorithm (code for p_i)
Fig. 6.1	A distributed execution as a partial order
Fig. 6.2	Past, future, and concurrency sets associated with an event 125
Fig. 6.3	Cut and consistent cut
Fig. 6.4	Two instances of the same execution
Fig. 6.5	Consecutive local states of a process p_i
Fig. 6.6	From a relation on events to a relation on local states
Fig. 6.7	A two-process distributed execution
Fig. 6.8	Lattice of consistent global states
Fig. 6.9	Sequential observations of a distributed computation
Fig. 6.10	Illustrating the notations " $e \in \sigma_i$ " and " $f \notin \sigma_i$ "
Fig. 6.11	In-transit and orphan messages
Fig. 6.12	Cut versus global state
Fig. 6.13	Global state computation: structural view
Fig. 6.14	Recording of a local state
Fig. 6.15	Reception of a MARKER() message: case 1
Fig. 6.16	Reception of a MARKER() message: case 2
Fig. 6.17	Global state computation (FIFO channels, code for cp_i) 140
Fig. 6.18	A simple automaton for process p_i $(i = 1, 2)$
Fig. 6.19	Prefix of a simple execution
Fig. 6.20	Superimposing a global state computation
-	on a distributed execution
Fig. 6.21	Consistent cut associated with the computed global state 143
Fig. 6.22	A rubber band transformation
Fig. 6.23	Global state computation (non-FIFO channels, code for cp_i) 145
Fig. 6.24	Example of a global state computation (non-FIFO channels) 145
Fig. 6.25	Another global state computation
	(non-FIFO channels, code for cp_i)
Fig. 7.1	Implementation of a linear clock (code for process p_i) 150
Fig. 7.2	A simple example of a linear clock system
Fig. 7.3	A non-sequential observation obtained from linear time 152
Fig. 7.4	A sequential observation obtained from timestamps
Fig. 7.5	Total order broadcast: the problem that has to be solved 155
Fig. 7.6	Structure of the total order broadcast implementation 155
Fig. 7.7	Implementation of total order broadcast (code for process p_i) 157
Fig. 7.8	To_delivery predicate of a message at process p_i

Fig. 7.9	Implementation of a vector clock system (code for process p_i).	160
Fig. 7.10	Time propagation in a vector clock system	161
Fig. 7.11	On the development of time (1)	164
Fig. 7.12	On the development of time (2)	164
Fig. 7.13	Associating vector dates with global states	165
Fig. 7.14	First global state satisfying a global predicate (1)	167
Fig. 7.15	First global state satisfying a global predicate (2)	168
Fig. 7.16	Detection the first global state satisfying $\bigwedge_i LP_i$	
	(code for process p_i)	169
Fig. 7.17	Relevant events in a distributed computation	171
Fig. 7.18	Vector clock system for relevant events (code for process p_i)	171
Fig. 7.19	From relevant events to Hasse diagram	171
Fig. 7.20	Determination of the immediate predecessors	
	(code for process p_i)	172
Fig. 7.21	Four possible cases when updating $imp_i[k]$,	
	while $vc_i[k] = vc[k]$	173
Fig. 7.22	A specific communication pattern	175
Fig. 7.23	Specific communication pattern with $n = 3$ processes	175
Fig. 7.24	Management of $vc_i[1n]$ and $kprime_i[1n, 1n]$	
	(code for process p_i): Algorithm 1 $\ldots \ldots \ldots \ldots \ldots$	178
Fig. 7.25	Management of $vc_i[1n]$ and $kprime_i[1n, 1n]$	
	(code for process p_i): Algorithm 2	179
Fig. 7.26	An adaptive communication layer (code for process p_i)	181
Fig. 7.27	Implementation of a k-restricted vector clock system	
	(code for process p_i)	182
Fig. 7.28	Matrix time: an example	183
Fig. 7.29	Implementation of matrix time (code for process p_i)	184
Fig. 7.30	Discarding obsolete data: structural view (at a process p_i)	185
Fig. 7.31	A buffer management algorithm (code for process p_i)	185
Fig. 7.32	Yet another clock system (code for process p_i)	188
Fig. 8.1	A checkpoint and communication pattern (with intervals)	190
Fig. 8.2	A zigzag pattern	192
Fig. 8.3	Proof of Theorem 9:	
	a zigzag path joining two local checkpoints of <i>LC</i>	194
Fig. 8.4	Proof of Theorem 9:	
	a zigzag path joining two local checkpoints	195
Fig. 8.5	Domino effect (in a system of two processes)	196
Fig. 8.6	Proof by contradiction of Theorem 11	200
Fig. 8.7	A very simple z-cycle-free checkpointing algorithm	
	(code for p_i)	201
Fig. 8.8	To take or not to take a forced local checkpoint	202
Fig. 8.9	An example of z-cycle prevention	202
Fig. 8.10	A vector clock system for rollback-dependency trackability	
	(code for p_i)	204
Fig. 8.11	Intervals and vector clocks for rollback-dependency trackability.	204

Fig. 8.12	Russell's pattern for ensuring the RDT consistency condition .	. 205
Fig. 8.13	Russell's checkpointing algorithm (code for p_i)	. 205
Fig. 8.14	FDAS checkpointing algorithm (code for p_i)	. 207
Fig. 8.15	Matrix $causal_i[1n, 1n]$. 208
Fig. 8.16	Pure (<i>left</i>) vs. impure (<i>right</i>) causal paths from p_i to p_i	. 208
Fig. 8.17	An impure causal path from p_i to itself	. 209
Fig. 8.18	An efficient checkpointing algorithm for RDT (code for p_i).	. 210
Fig. 8.19	Sender-based optimistic message logging	. 212
Fig. 8.20	To log or not to log a message?	. 212
Fig. 8.21	An uncoordinated checkpointing algorithm (code for p_i)	. 214
Fig. 8.22	Retrieving the messages which are in transit	
	with respect to the pair (c_i, c_j)	. 215
Fig. 9.1	A space-time diagram of a synchronous execution	. 220
Fig. 9.2	Synchronous breadth-first traversal algorithm (code for p_i)	. 221
Fig. 9.3	Synchronizer: from asynchrony to logical synchrony	. 222
Fig. 9.4	Synchronizer α (code for p_i)	. 226
Fig. 9.5	Synchronizer α : possible message arrival at process p_i	. 227
Fig. 9.6	Synchronizer β (code for p_i)	. 229
Fig. 9.7	A message pattern which can occur with synchronizer β	
-	(but not with α): Case 1	. 229
Fig. 9.8	A message pattern which can occur with synchronizer β	
-	(but not with α): Case 2	. 229
Fig. 9.9	Synchronizer γ : a communication graph	. 230
Fig. 9.10	Synchronizer γ : a partitioning	. 231
Fig. 9.11	Synchronizer γ (code for p_i)	. 233
Fig. 9.12	Synchronizer δ (code for p_i)	. 235
Fig. 9.13	Initialization of physical clocks (code for p_i)	. 236
Fig. 9.14	The scenario to be prevented	. 237
Fig. 9.15	Interval during which a process can receive pulse <i>r</i> messages .	. 238
Fig. 9.16	Synchronizer λ (code for p_i)	. 239
Fig. 9.17	Synchronizer μ (code for p_i)	. 240
Fig. 9.18	Clock drift with respect to reference time	. 241
Fig. 10.1	A mutex invocation pattern and the three states of a process	. 248
Fig. 10.2	Mutex module at a process p_i : structural view	. 250
Fig. 10.3	A mutex algorithm based on individual permissions	
	(code for p_i)	. 251
Fig. 10.4	Proof of the safety property of the algorithm of Fig. 10.3	. 253
Fig. 10.5	Proof of the liveness property of the algorithm of Fig. 10.3	. 254
Fig. 10.6	Generalized mutex based on individual permissions	
	(code for p_i)	. 256
Fig. 10.7	An adaptive mutex algorithm based on individual permissions	
	(code for p_i)	. 258
Fig. 10.8	Non-FIFO channel in the algorithm of Fig. 10.7	. 259
Fig. 10.9	States of the message PERMISSION($\{i, j\}$)	. 260

	•		•
XXV	1	1	1

Fig. 10.10	A bounded adaptive algorithm based on individual permissions
	(code for p_i)
Fig. 10.11	Arbiter permission-based mechanism
Fig. 10.12	Values of <i>K</i> and <i>D</i> for symmetric optimal quorums
Fig. 10.13	An order two projective plane
Fig. 10.14	A safe (but not live) mutex algorithm
	based on arbiter permissions (code for p_i)
Fig. 10.15	Permission preemption to prevent deadlock
Fig. 10.16	A mutex algorithm based on arbiter permissions (code for p_i) 272
Fig. 11.1	An algorithm for the multiple entries mutex problem
	(code for p_i)
Fig. 11.2	Sending pattern of NOT_USED() messages: Case 1
Fig. 11.3	Sending pattern of NOT_USED() messages: Case 2
Fig. 11.4	An algorithm for the k-out-of-M mutex problem (code for p_i). 282
Fig. 11.5	Examples of conflict graphs
Fig. 11.6	Global conflict graph
Fig. 11.7	A deadlock scenario involving two processes and two resources . 288
Fig. 11.8	No deadlock with ordered resources
Fig. 11.9	A particular pattern in using resources
Fig. 11.10	Conflict graph for six processes, each resource being shared
-	by two processes
Fig. 11.11	Optimal vertex-coloring of a resource graph
Fig. 11.12	Conflict graph for static sessions (SS_CG)
Fig. 11.13	Simultaneous requests in dynamic sessions
	(sketch of code for p_i)
Fig. 11.14	Algorithms for generalized k-out-of-M (code for p_i)
Fig. 11.15	Another algorithm for the k-out-of-M mutex problem
	(code for p_i)
Fig. 12.1	The causal message delivery order property 304
Fig. 12.2	The delivery pattern prevented by the empty interval property $\dots 305$
Fig. 12.3	Structure of a causal message delivery implementation 307
Fig. 12.4	An implementation of causal message delivery (code for p_i) 308
Fig. 12.5	Message pattern for the proof of the causal order delivery 309
Fig. 12.6	An implementation reducing the size of control information
	(code for p_i)
Fig. 12.7	Control information carried by consecutive messages sent by p_j
	to p_i
Fig. 12.8	An adaptive sending procedure for causal message delivery 313
Fig. 12.9	Illustration of causal broadcast
Fig. 12.10	A simple algorithm for causal broadcast (code for p_i) 314
Fig. 12.11	The causal broadcast algorithm in action
Fig. 12.12	The graph of immediate predecessor messages
Fig. 12.13	A causal broadcast algorithm based on causal barriers
	(code for p_i)
Fig. 12.14	Message with bounded lifetime

Fig. 12.15	On-time versus too late
Fig. 12.16	A Δ -causal broadcast algorithm (code for p_i)
Fig. 12.17	Implementation of total order message delivery requires
-	coordination
Fig. 12.18	Total order broadcast based on a coordinator process
Fig. 12.19	Token-based total order broadcast
Fig. 12.20	Clients and servers in total order broadcast
Fig. 12.21	A total order algorithm from clients p_i to servers q_j
Fig. 12.22	A total order algorithm from synchronous systems
Fig. 12.23	Message <i>m</i> with type ct_future (cannot be bypassed) 329
Fig. 12.24	Message <i>m</i> with type ct_past
	(cannot bypass other messages)
Fig. 12.25	Message m with type marker $\ldots \ldots \ldots \ldots \ldots \ldots 329$
Fig. 12.26	Building a <i>first in first out</i> channel
Fig. 12.27	Message delivery according to message types
Fig. 12.28	Delivery of messages typed ordinary and ct_future 332
Fig. 13.1	Synchronous communication:
	messages as "points" instead of "intervals"
Fig. 13.2	When communications are not synchronous
Fig. 13.3	Accessing objects with synchronous communication
Fig. 13.4	A crown of size $k = 2$ (<i>left</i>) and a crown of size $k = 3$ (<i>right</i>) 339
Fig. 13.5	Four message patterns
Fig. 13.6	Implementation of a rendezvous when the client is the sender 344
Fig. 13.7	Implementation of a rendezvous when the client is the receiver . 345
Fig. 13.8	A token-based mechanism to implement an interaction 346
Fig. 13.9	Deadlock and livelock prevention in interaction implementation . 347
Fig. 13.10	A general token-based implementation for planned interactions
	(rendezvous)
Fig. 13.11	An algorithm for forced interactions (rendezvous)
Fig. 13.12	Forced interaction: message pattern when $i > j$
Fig. 13.13	Forced interaction: message pattern when $i < j$
Fig. 13.14	When the rendezvous must be successful
	(two-process symmetric algorithm)
Fig. 13.15	Real-time rendezvous between two processes p and q
Fig. 13.16	When the rendezvous must be successful
	(asymmetric algorithm)
Fig. 13.17	Nondeterministic rendezvous with deadline
Fig. 13.18	Multirendezvous with deadline
Fig. 13.19	Comparing two date patterns for rendezvous with deadline 363
Fig. 14.1	Process states for termination detection
Fig. 14.2	Global structure of the observation modules
Fig. 14.3	An execution in the asynchronous atomic model
Fig. 14.4	One visit is not sufficient
Fig. 14.5	The four-counter algorithm for termination detection
Fig. 14.6	Two consecutive inquiries

Fig. 14.7	The counting vector algorithm for termination detection 37	74
Fig. 14.8	The counting vector algorithm at work	75
Fig. 14.9	Termination detection of a diffusing computation	78
Fig. 14.10	Ring-based implementation of a wave	80
Fig. 14.11	Spanning tree-based implementation of a wave	81
Fig. 14.12	Why $(\bigwedge_{1 \le i \le n} idle_i^x) \Rightarrow TERM(\mathcal{C}, \tau_{\alpha}^x)$ is not true	82
Fig. 14.13	A general algorithm for termination detection $\dots \dots \dots$	84
Fig. 14.14	Atomicity associated with τ_i^x	84
Fig. 14.15	Structure of the channels to p_i	86
Fig. 14.16	An algorithm for static termination detection	91
Fig. 14.17	Definition of time instants for the safety of static termination 39	92
Fig. 14.18	Cooperation between local observers	94
Fig. 14.19	An algorithm for dynamic termination detection	95
Fig. 14.20	Example of a monotonous distributed computation	98
Fig. 15.1	Examples of wait-for graphs)2
Fig. 15.2	An algorithm for deadlock detection	
•	in the AND communication model	10
Fig. 15.3	Determining in-transit messages	11
Fig. 15.4	PROBE () messages sent along a cycle	
•	(with no application messages in transit)	11
Fig. 15.5	Time instants in the proof of the safety property	12
Fig. 15.6	A directed communication graph	14
Fig. 15.7	Network traversal with feedback on a static graph	14
Fig. 15.8	Modification in a wait-for graph	15
Fig. 15.9	Inconsistent observation of a dynamic wait-for graph 4	16
Fig. 15.10	An algorithm for deadlock detection	
-	in the OR communication model	18
Fig. 15.11	Activation pattern for the safety proof	20
Fig. 15.12	Another example of a wait-for graph	23
Fig. 16.1	Structure of a distributed shared memory	28
Fig. 16.2	Register: What values can be returned by read operations? 42	29
Fig. 16.3	The relation \xrightarrow{op} of the computation described in Fig. 16.2 43	30
Fig. 16.4	An execution of an atomic register	32
Fig. 16.5	Another execution of an atomic register	32
Fig. 16.6	Atomicity allows objects to compose for free	35
Fig. 16.7	From total order broadcast to atomicity	36
Fig. 16.8	Why read operations have to be to-broadcast	37
Fig. 16.9	Invalidation-based implementation of atomicity:	
U	message flow	38
Fig. 16.10	Invalidation-based implementation of atomicity: algorithm 44	40
Fig. 16.11	Invalidation and owner-based implementation of atomicity	
C	(code of p_i)	41
Fig. 16.12	Invalidation and owner-based implementation of atomicity	
C	(code of the manager p_X)	42
Fig. 16.13	Update-based implementation of atomicity	43
-		

Fig. 16.14	Update-based algorithm implementing atomicity
Fig. 17.1	A sequentially consistent computation (which is not atomic) 448
Fig. 17.2	A computation which is not sequentially consistent
Fig. 17.3	A sequentially consistent queue
Fig. 17.4	Sequential consistency is not a local property
Fig. 17.5	Part of the graph G used in the proof of Theorem 29 $\ldots \ldots 452$
Fig. 17.6	Fast read algorithm implementing sequential consistency
0	(code for p_i)
Fig. 17.7	Fast write algorithm implementing sequential consistency
e	(code for p_i)
Fig. 17.8	Fast enqueue algorithm implementing a sequentially consistent
e	queue (code for p_i)
Fig. 17.9	Read/write sequentially consistent registers
e	from a central manager
Fig. 17.10	Pattern of read/write accesses used in the proof of Theorem 33 . 459
Fig. 17.11	Token-based sequentially consistent shared memory
U	(code for p_i)
Fig. 17.12	Architectural view associated with the OO constraint
Fig. 17.13	Why the object managers must cooperate
Fig. 17.14	Sequential consistency with a manager per object:
-	process side
Fig. 17.15	Sequential consistency with a manager per object:
-	manager side
Fig. 17.16	Cooperation between managers is required by the OO constraint 464
Fig. 17.17	An example of a causally consistent computation
Fig. 17.18	Another example of a causally consistent computation 466
Fig. 17.19	A simple algorithm implementing causal consistency 467
Fig. 17.20	Causal consistency for a single object
Fig. 17.21	Hierarchy of consistency conditions

Part I Distributed Graph Algorithms

This first part of the book is on distributed graph algorithms. These algorithms consider the distributed system as a connected graph whose vertices are the processes (nodes) and whose edges are the communication channels. It is made up of five chapters.

After having introduced base definitions, Chap. 1 addresses network traversals. It presents distributed algorithms that realize parallel, depth-first, and breadth-first network traversals. Chapter 2 is on distributed algorithms solving classical graph problems such as shortest paths, vertex coloring, maximal independent set, and knot detection. This chapter shows that the distributed techniques to solve graph problems are not obtained by a simple extension of their sequential counterparts.

Chapter 3 presents a general technique to compute a global function on a process graph, each process providing its own input parameter, and obtaining its own output (which depends on the whole set of inputs). Chapter 4 is on the leader election problems with a strong emphasis on uni/bidirectional rings. Finally, the last chapter of this part, Chap. 5, presents several algorithms that allow a mobile object to navigate a network.

In addition to the presentation of distributed graph algorithms, which can be used in distributed applications, an aim of this part of the book is to allow readers to have a better intuition of the term *distributed* when comparing distributed algorithms and sequential algorithms.

Chapter 1 Basic Definitions and Network Traversal Algorithms

This chapter first introduces basic definitions related to distributed algorithms. Then, considering a distributed system as a graph whose vertices are the processes and whose edges are the communication channels, it presents distributed algorithms for graph traversals, namely, parallel traversal, breadth-first traversal, and depth-first traversal. It also shows how spanning trees or rings can be constructed from these distributed graph traversal algorithms. These trees and rings can, in turn, be used to easily implement broadcast and convergecast algorithms.

As the reader will see, the distributed graph traversal techniques are different from their sequential counterparts in their underlying principles, behaviors, and complexities. This come from the fact that, in a distributed context, the same type of traversal can usually be realized in distinct ways, each with its own tradeoff between its time complexity and message complexity.

Keywords Asynchronous/synchronous system · Breadth-first traversal · Broadcast · Convergecast · Depth-first traversal · Distributed algorithm · Forward/discard principle · Initial knowledge · Local algorithm · Parallel traversal · Spanning tree · Unidirectional logical ring

1.1 Distributed Algorithms

1.1.1 Definition

Processes A distributed system is made up of a collection of computing units, each one abstracted through the notion of a *process*. The processes are assumed to cooperate on a common goal, which means that they exchange information in one way or another.

The set of processes is static. It is composed of *n* processes and denoted $\Pi = \{p_1, \ldots, p_n\}$, where each $p_i, 1 \le i \le n$, represents a distinct process. Each process p_i is *sequential*, i.e., it executes one step at a time.

The integer *i* denotes the *index* of process p_i , i.e., the way an external observer can distinguish processes. It is nearly always assumed that each process p_i has its own identity, denoted id_i ; then p_i knows id_i (in a lot of cases—but not always— $id_i = i$).

Communication Medium The processes communicate by sending and receiving *messages* through *channels*. Each channel is assumed to be reliable (it does not create, modify, or duplicate messages).

In some cases, we assume that channels are *first in first out* (FIFO) which means that the messages are received in the order in which they have been sent. Each channel is assumed to be bidirectional (can carry messages in both directions) and to have an infinite capacity (can contain any number of messages, each of any size). In some particular cases, we will consider channels which are unidirectional (such channels carry messages in one direction only).

Each process p_i has a set of neighbors, denoted *neighbors_i*. According to the context, this set contains either the local identities of the channels connecting p_i to its neighbor processes or the identities of these processes.

Structural View It follows from the previous definitions that, from a structural point of view, a distributed system can be represented by a connected undirected graph $G = (\Pi, C)$ (where *C* denotes the set of channels). Three types of graph are of particular interest (Fig. 1.1):

- A *ring* is a graph in which each process has exactly two neighbors with which it can communicate directly, a left neighbor and a right neighbor.
- A *tree* is a graph that has two noteworthy properties: it is acyclic and connected (which means that adding a new channel would create a cycle while suppressing a channel would disconnect it).
- A *fully connected* graph is a graph in which each process is directly connected to every other process. (In graph terminology, such a graph is called a clique.)

Distributed Algorithm A *distributed algorithm* is a collection of n automata, one per process. An automaton describes the sequence of steps executed by the corresponding process.

In addition to the power of a Turing machine, an automaton is enriched with two communication operations which allows it to send a message on a channel or receive a message on any channel. The operations are send() and receive().

Synchronous Algorithm A distributed *synchronous* algorithm is an algorithm designed to be executed on a synchronous distributed system. The progress of such a system is governed by an external global clock, and the processes collectively execute a *sequence of rounds*, each round corresponding to a value of the global clock.

Fig. 1.2 Synchronous execution (*left*) vs. asynchronous (*right*) execution

During a round, a process sends at most one message to each of its neighbors. The fundamental property of a *synchronous* system is that a message sent by a process during a round r is received by its destination process during the very same round r. Hence, when a process proceeds to the round r + 1, it has received (and processed) all the messages which have been sent to it during round r, and it knows that the same is true for any process.

Space/time Diagram A distributed execution can be graphically represented by what is called a *space/time diagram*. Each sequential progress is represented by an arrow from left to right, and a message is represented by an arrow from the sending process to the destination process. These notions will be made more precise in Chap. 6.

The space/time diagram on the left of Fig. 1.2 represents a synchronous execution. The vertical lines are used to separate the successive rounds. During the first round, p_1 sends a message to p_3 , and p_2 sends a message to p_1 , etc.

Asynchronous Algorithm A distributed *asynchronous* algorithm is an algorithm designed to be executed on an asynchronous distributed system. In such a system, there is no notion of an external time. That is why asynchronous systems are sometimes called *time-free* systems.

In an asynchronous algorithm, the progress of a process is ensured by its own computation and the messages it receives. When a process receives a message, it processes the message and, according to its local algorithm, possibly sends messages to its neighbors.

A process processes one message at a time. This means that the processing of a message cannot be interrupted by the arrival of another message. When a message arrives, it is added to the input buffer of the receiving process. It will be processed after all the messages that precede it in this buffer have been processed.

The space/time diagram of a simple asynchronous execution is depicted on the right of Fig. 1.2. One can see that, in this example, the messages from p_1 to p_2 are not received in their sending order. Hence, the channel from p_1 to p_2 is not a FIFO (first in first out) channel. It is easy to see from the figure that a synchronous execution is more structured than an asynchronous execution.

Initial Knowledge of a Process When solving a problem in a synchronous/asynchronous system, a process is characterized by its input parameters (which are related to the problem to solve) and its *initial knowledge* of its environment.

This knowledge concerns its identity, the total number n of processes, the identity of its neighbors, the structure of the communication graph, etc. As an example, a process p_i may only know that

- it is on a unidirectional ring,
- it has a left neighbor from which it can receive messages,
- it has a right neighbor to which it can send messages,
- its identity is *id_i*,
- the fact that no two processes have the same identity, and
- the fact that the set of identities is totally ordered.

As we can see, with such an initial knowledge, no process initially knows the total number of processes n. Learning this number requires the processes to exchange information.

1.1.2 An Introductory Example: Learning the Communication Graph

As a simple example, this section presents an asynchronous algorithm that allows each process to learn the communication graph in which it evolves. It is assumed that the channels are bidirectional and that the communication graph is connected (there is a path from any process to any other process).

Initial Knowledge Each process p_i has identity id_i , and no process knows n (the total number of processes). Initially, a process p_i knows its identity and the identity id_j of each of its neighbors. Hence, each process p_i is initially provided with a set *neighbors_i* and, for each $id_j \in neighbors_i$, the pair $\langle id_i, id_j \rangle$ denotes locally the channel connecting p_i to p_j . Let us observe that, as the channels are bidirectional, both $\langle id_i, id_j \rangle$ and $\langle id_j, id_i \rangle$ denote the same channel and are consequently considered as synonyms.

The Forward/Discard Principle The principle on which the algorithm relies is pretty simple: Each process initially sends its position in the graph to each of its neighbors. This position is represented by the pair $(id_i, neighbors_i)$.

Then, when a process p_i receives a pair $(id_k, neighbors_k)$ for the first time, it updates its local representation of the communication graph and forwards the message it has received to all its neighbors (except the one that sends this message). This is the "when new, forward" principle. On the contrary, if it is not the first time that p_i receives the pair $(id_k, neighbors_k)$, it discards it. This is the "when not new, discard" principle.

When p_i has received a pair $(id_k, neighbors_k)$, we say that it "knows the position" of p_k in the graph. This means that it knows both the identity id_k and the channels connecting p_k to its neighbors.

```
operation start() is
(1)
       for each id_i \in neighbors_i
            do send POSITION(id<sub>i</sub>, neighbors<sub>i</sub>) to the neighbor identified id<sub>i</sub>
(2)
(3) end for:
(4) part_i \leftarrow true
end operation.
when START() is received do
(5) if (\neg part_i) then start() end if.
when POSITION(id, neighbors) is received from neighbor identified id_x do
       if (\neg part_i) then start() end if;
(6)
(7) if (id \notin proc\_known_i) then
(8)
           proc\_known_i \leftarrow proc\_known_i \cup \{id\};
(9)
           channels_known<sub>i</sub> \leftarrow channels_known<sub>i</sub> \cup \{\langle id, id_k \rangle \text{ such that } id_k \in neighbors\};
(10)
           for each id_y \in neighbors_i \setminus \{id_x\}
               do send POSITION(id, neighbors) to the neighbor identified id_v
(11)
(12)
           end for;
           if (\forall \langle id_j, id_k \rangle \in channels\_known_i : \{id_j, id_k\} \subseteq proc\_known_i)
(13)
(14)
               then p_i knows the communication graph; return()
(15)
           end if
(16) end if.
```

Fig. 1.3 Learning the communication graph (code for p_i)

Local Representation of the Communication Graph The graph is locally represented at each process p_i with two local variables.

- The local variable *proc_known_i* is a set that contains all the processes whose position is known by *p_i*. Initially, *proc_known_i* = {*id_i*}.
- The local variable *channels_known_i* is a set that contains all the channels known by p_i . Initially, *channels_known_i* = { $\langle id_i, id_j \rangle$ such that $id_j \in neighbors_i$ }.

Hence, after a process has received a message containing the pair $(id_j, neighbors_j)$, we have $id_j \in proc_known_i$ and $\{\langle id_j, id_k \rangle$ such that $id_k \in neighbors_j\} \subseteq channels_known_i$.

In addition to the local representation of the graph, p_i has a local Boolean variable $part_i$, initialized to *false*, which is set to *true* when p_i starts participating in the algorithm.

Internal Versus External Messages This participation of a process starts when it receives an external message START() or an internal message POSITION().

An *internal* message is a message generated by the algorithm, while an *external* message is a message coming from outside. External messages are used to launch the algorithm. It is assumed that at least one process receives such a message.

Algorithm: Forward/Discard The algorithm is described in Fig. 1.3. As previously indicated, when a process p_i receives a message START() or POSITION(), it starts participating in the algorithm if not yet done (line 5 or 6). To that end it sends

the message POSITION(id_i , neighbors_i) to each of its neighbors (line 2) and sets part_i to true (line 4).

When p_i receives a message POSITION(*id*, *neighbors*) from one of its neighbors p_x for the first time (line 7), it includes the position of the corresponding process p_j in the local data structures *proc_known_i* and *channels_known_i* (lines 8–9) and, as it has learned something new, it forwards this message POSITION() to all its neighbors, but the one that sent it this message (line 10). If it has already received the message POSITION(*id*, *neighbors*) (we have then $j \in proc_known_i$), p_i discards the message.

Algorithm: Termination As the communication graph is connected, it is easy to see that, as soon as a process receives a message START(), each process p_i will send a message POSITION(id_i , $neighbors_i$) which, from neighbor to neighbor, will be received by each process. Consequently, for any pair of processes (p_i , p_j), p_i will receive a message POSITION(id_j , $neighbors_j$), from which it follows that any process p_i eventually learns the communication graph.

Moreover, as (a) there is a bounded number of processes n, (b) each process p_i is the only process to initiate the sending of the message POSITION(id_i , neighbors_i), and (c) any process p_i forwards this message only once, it follows that there is a finite time after which no more message is sent. Consequently, the algorithm terminates at each process. While the algorithm always terminates, the important question is the following: When does a process know that it can stop participating in the algorithm? Trivially, a process can stop when it knows that it has learned the whole communication graph (due to the "forward" strategy, when a process knows the whole graph, it also knows that its neighbors eventually know it). This knowledge can be easily captured by a process p_i with the help of its local data structures proc_known_i and channels_known_i. More precisely, remembering that the pairs (id_i, id_i) and (id_i, id_i) are synonyms and using a classical graph closure property, a process p_i knows the whole graph when $\forall \langle id_i, id_k \rangle \in channels_known_i$: $\{id_i, id_k\} \subseteq proc_known_i$. This *local termination* predicate appears at line 13. When it becomes locally satisfied, a process p_i learns that it knows the whole graph and learns also that its neighbors eventually know it. That process can consequently stop its execution by invoking the statement return() line 14.

It is important to notice that the simplicity of the termination predicate comes from an appropriate choice of the local data structures ($proc_known_i$ and $proc_known_i$) used to represent the communication graph.

Cost Let *e* be the total number of channels and *D* be the diameter of the communication graph. The *diameter* of a graph is the longest among all the shortest distances connecting any pair of processes, where the shortest distance between p_i and p_j is the smallest number of channels to go from p_i to p_j . The diameter notion is a global notion that measures the "breadth" of the communication graph.

For any *i* and any channel, a message POSITION $(id_i, -)$ is sent at least once and at most twice (once in each direction) on that channel. It follows that the message complexity is upper bounded by 2ne.

As far as the time complexity is concerned, let us consider that each message takes one time unit and local processing has zero duration. In the worst case, a
single process p_k receives a message START() and there is a process p_ℓ at distance D from p_k . In this case, it takes D time units for a message POSITION(id_k , -) to arrive at p_ℓ . This message wakes up p_ℓ , and it takes then D time units for a message POSITION(id_ℓ , -) to arrive at p_k . It follows that the time complexity is upper bounded by 2D.

Finally, let *d* be the maximal degree of the communication graph (i.e., $d = \max(\{|neighbors_i|_{1 \le i \le n}\})$, and *b* the number of bits required to encode any identity id_i . The maximal number of bits needed for a message POSITION() is b(d + 1).

When Initially the Channels Have Only Local Names Let us consider a process p_i that has c_i neighbors to which it is point-to-point connected by c_i channels locally denoted *channel*_i[1.. c_i]. When each process p_i is initially given only *channel*_i[1.. c_i], the processes can easily compute their sets *neighbors*_i. To that end, each process executes a preliminary communication phase during which it first sends a message ID(*i*) on each *channel*_i[x], $1 \le x \le c_i$, and then waits until it has received the identities of the processes at the other end of its c_i channels. When p_i has received ID(id_k) on channel *channel*_i[x], it can associate its local address *channel*_i[x] with the identity id_k whose scope is the whole system.

Port Name When each channel *channel*_{*i*}[x] is defined by a local name, the index x is sometimes called a *port*. Hence, a process p_i has c_i communication ports.

1.2 Parallel Traversal: Broadcast and Convergecast

It is assumed that, while the identity of a process p_i is its index *i*, no process knows explicitly the value of *n* (i.e., p_n knows that its identity is *n*, but does not know that its identity is also the number of processes).

1.2.1 Broadcast and Convergecast

Two frequent problems encountered in distributed computing are broadcast and convergecast. These two problems are defined with respect to a distinguished process p_a .

• The *broadcast* problem is a one-to-many communication problem. It consists in designing an algorithm that allows the distinguished process p_a to disseminate information to the whole set of processes.

A variant of the broadcast problem is the *multicast* problem. In that case, the distinguished process p_a has to disseminate information to a subset of the processes. This subset can be statically defined or dynamically defined at the time of the multicast invocation.

when $GO(data)$ is received from p_k do			
(1)	if (first reception of go(<i>data</i>)) then		
(2)	for each $j \in neighbors_i \setminus \{k\}$ do send GO(<i>data</i>) to p_j end for		
(3)	end if.		

Fig. 1.4 A simple flooding algorithm (code for p_i)

• The *convergecast* problem is a many-to-one communication problem. It consists in designing an algorithm that allows each process p_j to send information v_j to a distinguished process p_a for it to compute some function f(), which is on a vector $[v_1, \ldots, v_n]$ containing one value per process.

Broadcast and convergecast can be seen as dual communication operations. They are usually used as a pair: p_a broadcasts a query to obtain values, one from each process, from which it computes the resulting value f(). As a simple example, p_a is a process that queries sensors for temperature values, from which it computes output values (e.g., maximal, minimal and average temperature values).

1.2.2 A Flooding Algorithm

A simple way to implement a broadcast consists of what is called a *flooding* algorithm. Such an algorithm is described in Fig. 1.4. To simplify the description, the distinguished process p_a initially sends to itself a message denoted GO(*data*), which carries the information it wants to disseminate. Then, when a process p_i receives for the first time a copy of this message, it forwards the message to all its neighbors (except to the sender of the message).

Each message GO(*data*) can be identified by a sequence number sn_a . Moreover, the flooding algorithm can be easily adapted to work with any number of distinguished processes by identifying each message broadcast by a distinguished process p_a with an identity pair (a, sn_a) .

As the set of processes is assumed to be connected, it is easy to see that the algorithm described in Fig. 1.4 guarantees that the information sent by a distinguished process is eventually received exactly once by each process.

1.2.3 Broadcast/Convergecast Based on a Rooted Spanning Tree

The previous flooding algorithm may use up to $2e - |neighbors_a|$ messages (where *e* is the number of channels), and is consequently not very efficient. A simple way to improve it consists of using an underlying spanning tree rooted at the distinguished process p_a .

Rooted Spanning Tree A spanning tree rooted at p_a is a tree which contains n processes and whose channels (edges) are channels of the communication graph. Each process p_i has a single parent, locally denoted $parent_i$, and a (possibly empty) set of children, locally denoted $children_i$. To simplify the notation, the parent of the root is the root itself, i.e., the distinguished process p_a is the only process p_i such that $parent_i = i$. Moreover, if $j \neq a$, we have $j \in children_i \Leftrightarrow parent_j = i$, and the channel $\langle i, j \rangle$ belongs to the communication graph.

An example of a rooted spanning tree is described in Fig. 1.5. The arrows (oriented toward the root) describe the channels of the communication graph that belong to the spanning tree. The dotted edges are the channels of the communication graph that do not belong to the spanning tree. This spanning tree rooted at p_a is such that, when considering the position of process p_i where $neighbors_i = \{a, k, j, f\}$, we have $parent_i = a$, $children_i = \{j, k\}$ and consequently $parent_j = parent_k = i$. Moreover, $children_i \cup \{parent_i\} \subseteq neighbors_i = \{a, k, j, f\}$.

Algorithms Given such a rooted spanning tree, the algorithms implementing a broadcast by p_a and the associated convergecast to p_a are described in Fig. 1.6. As far as the broadcast is concerned, p_a first sends the message GO(*data*) to itself, and then this message is forwarded along the channels of the spanning tree, and this restricted flooding stops at the leaves of the tree.

As far as the convergecast is concerned, each leaf p_i sends a message BACK(val_set_i) to its parent (line 4) where $val_set_i = \{(i, v_i)\}$ (line 2), i.e., val_set_i contains a

single pair carrying the value v_i sent by p_i to the root. A non-leaf process p_i waits for the pairs (k, v_k) from all its children, adds its own pair (i, v_i) , and finally sends the resulting set val_set_i to its parent (line 4). When the root has received a set of pairs from each of its children, it has a pair from each process and can compute the function f() (line 5).

1.2.4 Building a Spanning Tree

This section presents a simple algorithm that (a) implements broadcast and convergecast, and (b) builds a spanning tree. This algorithm is sometimes called *propagation of information with feedback*. Once a spanning tree has been constructed, it can be used for future broadcasts and convergecasts involving the same distinguished process p_a .

Local Variables As before, each process p_i is provided with a set *neighbors_i* which defines its position in the communication graph and, at the end of the execution, its local variables *parent_i* and *children_i* will define its position in the spanning tree rooted at p_a .

To compute its position in the spanning tree rooted at p_a , each process p_i uses an auxiliary integer local variable denoted *expected_msg_i*. This variable contains the number of messages that p_i is waiting for from its children before sending a message BACK() to its parent.

Algorithm The broadcast/convergecast algorithm building a spanning tree is described in Fig. 1.7. To simplify the presentation, it is first assumed that the channels are FIFO (first in, first out). The distinguished process p_a is the only process which receives the external message START() (line 1). Upon its reception, p_a initializes $parent_a$, *children_a* and *expected_msg_a* and sends a message GO(*data*) to each of its neighbors (line 2).

When a process p_i receives a message GO(*data*) for the first time, it defines the sender p_j as its parent in the spanning tree, and initializes *children_i* to \emptyset and *expected_msg_i* the number of its neighbors minus p_j (line 4). If its parent is its only neighbor, it sends back the pair (i, v_i) thereby indicating to p_j that it is one of its children (lines 5–6). Otherwise, p_i forwards the message GO(*data*) to all its neighbors but its parent p_i (line 7).

If $parent_i \neq \bot$, when p_i receives GO(*data*), it has already determined its parent in the spanning tree and forwarded the message GO(*data*). It consequently sends by return to p_j the message BACK(\emptyset), where \emptyset is used to indicate to p_j that p_i is not one of its children (line 9).

When a process p_i receives a message BACK(*res*, *val_set*) from a neighbor p_j , it decreases *expected_msg_i* (line 11) and adds p_j to *children_i* if *val_set* $\neq \emptyset$ (line 12). Then, if p_i has received a message BACK() from all its neighbors (but its parent, line 13), it sends to its parent (lines 15–16) the set *val_set* containing its own pair

when START() is received do % only p_a receives this message % (1) $parent_i \leftarrow i$; $children_i \leftarrow \emptyset$; $expected_msg_i \leftarrow |neighbors_i|$; (2) for each $j \in neighbors_i$ do send GO(data) to p_i end for. when GO(data) is received from p_i do (3) if $(parent_i = \bot)$ **then** parent_i \leftarrow j; children_i $\leftarrow \emptyset$; expected_msg_i \leftarrow |neighbors_i| - 1; (4)(5)**if** $(expected_msg_i = 0)$ (6) then send BACK($\{(i, v_i)\}$) to p_i (7)else for each $k \in neighbors_i \setminus \{j\}$ do send GO(*data*) to p_k end for (8)end if else send BACK(\emptyset) to p_j (9)(10) end if. when BACK(val_set) is received from p_i do (11) expected_ $msg_i \leftarrow expected_{msg_i} - 1;$ (12) **if** $(val_set \neq \emptyset)$ **then** $children_i \leftarrow children_i \cup \{j\}$ **end if**; (13) if $(expected_msg_i = 0)$ then % a set val_set_x has been received from each child p_x % let $val_set = (\bigcup_{x \in children_i} val_set_x) \cup \{(i, v_i)\};$ let $pr = parent_i;$ (14)(15)**if** $(pr \neq i)$ (16)**then** send BACK(*val_set*) to p_{pr} % local termination for p_i % (17)else p_i (= p_a) can compute $f(val_set)$ % global termination % (18)end if (19) end if.

Fig. 1.7 Construction of a rooted spanning tree (code for p_i)

 (i, v_i) plus all the pairs (k, v_k) it has received from its children line 14). Then, p_i has terminated its participation in the algorithm (its local variable *expected_msg_i* then becomes useless). If p_i is the distinguished process p_a , the set *val_set* contains a pair (x, v_x) per process p_x , and p_a can accordingly compute $f(val_set)$ (where f() is the function whose result is the output of the computation).

Let us notice that, when the distinguished process p_a discovers that the algorithm has terminated, all the messages sent by the algorithm have been received and processed.

Cost Let us observe that a message BACK() is eventually sent as a response to each message GO(). Moreover, except on the channels of the spanning tree that is built, two messages GO() can be sent (one in each direction).

Let *e* be the number of channels of the underlying communication graph. It follows that the algorithm gives rise to 2(n - 1) messages which travel on the channels of tree and 4(e - (n - 1)) messages which travel on the other channels, i.e., 2(2e - n + 1) messages. Then, once the tree is built, a broadcast/convergecast costs only 2(n - 1) messages.

Assuming all messages take one time unit and local computations have zero duration, it is easy to see that the time complexity is 2D where D is the diameter of the communication graph. Once the tree is built, the time complexity of a broad-

Fig. 1.8 Left: Underlying communication graph; Right: Spanning tree

Fig. 1.9 An execution of the algorithm constructing a spanning tree

cast/convergecast is $2D_a$, where D_a is the longest distance from p_a to any other process.

An Example An execution of the algorithm described in Fig. 1.7 for the communication graph depicted in the left part of Fig. 1.8 is described in Fig. 1.9.

Figure 1.9 is a space-time diagram. The execution of a process p_i , $1 \le i \le 4$, is represented by an axis oriented from left to right. An arrow from one axis to another represents a message transfer. In this picture, an arrow labeled $GO_{x,y}()$ represents a message GO() sent by p_x to p_y . Similarly, an arrow labeled $BACK_{x,y}()$ represents a message BACK() sent by p_x to p_y .

The process p_1 is the distinguished process that receives the external message START() and consequently will be the root of the tree. It sends a message GO() to its neighbors p_2 and p_3 . When p_3 receives this message, it defines its parent as being p_1 and forwards message GO() to its two other neighbors p_2 and p_4 .

Since the first message GO() received by p_2 is the one sent by p_3 , p_2 defines its parent as being p_3 and forwards the message GO() to its other neighbor, namely p_1 . When p_1 receives a message GO() from p_2 , it sends back a message BACK(\emptyset) to p_2 . In contrast, when p_4 receives the message GO() from p_3 , it sends by return to p_3 a message BACK() carrying the pair (4, v_4). Moreover, when p_2 has received a message BACK() from p_1 , it sends to its parent p_3 a message BACK() carrying the pair (2, v_2).

Finally, when p_3 receives the messages BACK() from p_2 and p_4 , it discovers that these processes are its children and sends a message BACK() carrying the set $\{(2, v_2), (3, v_3), (4, v_4)\}$ to its parent p_1 . When p_1 receives this message, it discov-

ers that p_2 is its only child. It can then compute f() on the vector $[v_1, v_2, v_3, v_4]$. The tree that has been built is represented at the right of Fig. 1.8.

On the Parenthesized Structure of the Execution It is important to notice that the spanning tree that has been built depends on the speed of the messages GO(). Another execution of the same algorithm on the same network with the same distinguished process could produce a different tree rooted at p_1 .

It is also interesting to observe that each message GO() can be seen as an opening bracket that can be associated with a message BACK(), which is the corresponding closing bracket. This appears on the figure as follows: $GO_{x,y}()$ is an opening bracket whose associated closing bracket is BACK_{y,x}().

The Case of Non-FIFO Channels Assuming non-FIFO channels and taking into account Fig. 1.9, let us consider that the message $GO_{1,2}()$ arrives at p_2 after the message $BACK_{1,2}()$. It is easy to see that the algorithm remains correct (i.e., a spanning tree is built).

The only thing that changes is the meaning associated with line 16. When a process sends a message BACK() to its parent, it can no longer claim that its local computation is terminated. A process needs now to have received a message on each of its incident channels before claiming local termination.

A Spanning Tree per Process The algorithm of Fig. 1.7 can be easily generalized to build *n* trees, each one associated with a distinct process which is its distinguished process. Then, when any process p_i wants to execute an efficient broadcast/convergecast, it has to use its associated spanning tree.

To build a spanning tree per process, the local variables $parent_i$, $children_i$, and $expected_msg_i$ of each process p_i have to be replaced by the arrays $parent_i[1..n]$, $children_i[1..n]$ and $expected_msg_i[1..n]$ and all messages have to carry the identity of the corresponding distinguished process. More precisely, when a process p_k receives a message START(), it uses its local variables $parent_k[k]$, $children_k[k]$, and $expected_msg_k[k]$. The corresponding messages will carry the identity k, GO(k, -) and BACK(k, -), and, when a process p_i receives such messages, it will uses its local variables $parent_i[k]$, $children_k[k]$.

Concurrent Initiators for a Single Spanning Tree The algorithm of Fig. 1.7 can be easily modified to build a single spanning tree while allowing several processes to independently start the execution of the algorithm, each receiving initially a message START(). To that end, each process manages an additional local variable max_id_i initialized to 0, which contains the highest identity of a process competing to be the root of the spanning tree.

• If a process p_i receives a message START() while $max_id_i \neq 0$, p_i discards this message (in that case, it already participates in the algorithm but does not compete to be the root). Otherwise, p_i starts executing the algorithm and all the corresponding messages GO() or BACK() carry its identity.

Fig. 1.10 Two different spanning trees built from the same communication graph

Then, when a process p_i receives a message GO(j, -), p_i discards the message if j < max_id_i. Otherwise, p_i considers p_j as the process with the highest identity which is competing to be the root. It sets consequently max_id_i to j and continues executing the algorithm by using messages GO() and BACK() carrying the identity j.

It is easy to see that this simple application of the forward/discard strategy ensures that a single spanning tree will be constructed, namely the one rooted at p_j where j is such that, at the end of the execution, we have $max_id_1 = \cdots = max_id_n = j$.

1.3 Breadth-First Spanning Tree

Let us remember that the *distance* between a process p_i and a process p_j is the length of the shortest path connecting these two processes, where the length of a path is measured by the number of channels it is made up of (this distance is also called the *hop distance*).

The spanning tree built by the algorithm of Fig. 1.7 does not necessarily build a *breadth-first tree*, i.e., a tree where the children of the root are its neighbors, and more generally the processes at distance d of the root in the tree are the processes at distance d of the root in the tree are the processes at distance d of the root process in the communication graph. As we have seen in the example described in Fig. 1.8, the tree that is built depends on the speed of messages during the execution of the algorithm, and consequently distinct trees can be built by different executions.

Breadth-first traversal does not imply that the tree that is built is independent of the execution. It only means that two processes at distance d of the root in the communication graph are at distance d in the tree. According to the structure of the graph, two processes at distance d of the root do not necessarily have the same parent in different executions. A simple example is given in Fig. 1.10 where process p_5 , which is at distance 2 of the root p_1 , has different parents in the breadth-first trees described on the right part of the figure.

This section presents two algorithms that build breadth-first trees. Both are iterative algorithms, but the first one has no centralized control, while the second one is based on a centralized control governed by the distinguished root process.

1.3.1 Breadth-First Spanning Tree Built Without Centralized Control

Principle of the Algorithm This algorithm, which is due to T.-Y. Cheung (1983), is based on parallel traversals of the communication graph. These traversals are concurrent and some of them can stop others. In addition to the local variables $parent_i$, *children_i*, and *expexted_msg_i*, each process p_i manages a local variable, denoted *level_i*, which represents its current approximation of its distance to the root. Moreover, each message GO() carries now the current level of the sending process.

Then, when a process p_i receives a message GO(d), there are two cases according to the current state of p_i and the value of d.

- The message GO(d) is the first message GO() received by p_i . In that case, p_i initializes *level*_i to d + 1 and forwards the message GO(d + 1) to its neighbors (except the sender of the message GO(d)).
- The message GO(d) is not the first message GO() received by p_i and $level_i > d + 1$. In that case, p_i (a) updates its variable $level_i$ to d + 1, (b) defines the sender of the message GO(d) just received as its new parent, and (c) forwards a message GO(d + 1) to each of its other neighbors p_k in order that they recompute their distances to the root.

As we can see, these simple principles consist of a chaotic distributed iterative computation. They are used to extend the basic parallel network traversal algorithm of Fig. 1.7 with a forward/discard strategy that allows processes to converge to their final position in the breadth-first spanning tree.

Description of the Algorithm The algorithm is described in Fig. 1.11. As just indicated, it uses the parallel network traversal described in Fig. 1.7 as a skeleton on which are grafted appropriate statements to obtain a breadth-first rooted spanning tree. These new statements implement the convergence of the local variables $parent_i$, *children_i*, and *level_i* to their final values. More precisely, we have the following.

Initially, a single process p_i receives an external message START(). This process, which will be the root of the tree, sends a message GO(-1) to itself (line 1). When it receives the message, p_i sets $parent_i = i$ (hence it is the root) and its distance to itself is set to $level_i = 0$.

As previously indicated, there are two cases when a process p_i receives a message GO(d). Let us remember that d represents the current approximation of the distance of the sender of the message GO() to the root. If $parent_i = \bot$, this message is the first message GO() received by p_i (line 2). In that case, p_i enters the tree at level d + 1 (line 3) and propagates the network traversal to its other neighbors by sending them the message GO(d + 1) in order that they enter the tree or improve their position in the tree under construction (line 5). If the sender of the message GO(d) is its only neighbor, p_i sends by return the message BACK(yes, d + 1) to inform it that it is one of its children at level d + 1 (line 6). when START() is received do % only the distinguished process receives this message % (1)send GO(-1) to itself. when GO(d) is received from p_i do (2)**if** (*parent*_{*i*} = \perp) **then** parent_i \leftarrow j; children_i \leftarrow Ø; level_i \leftarrow d + 1; (3) (4) $expected_msg_i \leftarrow |neighbors_i \setminus \{j\}|;$ (5)**if** $(expected_msg_i = 0)$ (6) then send BACK(yes, d + 1) to p_{parent} . else for each $k \in neighbors_i \setminus \{j\}$ do send GO(d + 1) to p_k end for (7)(8) end if (9) else if $(level_i > d + 1)$ (10)**then** $parent_i \leftarrow j$; $children_i \leftarrow \emptyset$; $level_i \leftarrow d + 1$; (11) $expected_msg_i \leftarrow |neighbors_i \setminus \{j\}|;$ (12)**if** $(expected_msg_i = 0)$ then send BACK(yes, $level_i$) to p_{parent_i} (13)else for each $k \in neighbors_i \setminus \{j\}$ do send GO(d + 1) to p_k end for (14)(15)end if else send BACK(no, d + 1) to p_j (16)(17)end if (18) end if. when BACK(resp, d) is received from p_i do (19) **if** $(d = level_i + 1)$ (20)then if (resp = yes) then $children_i \leftarrow children_i \cup \{j\}$ end if; (21) $expected_msg_i \leftarrow expected_msg_i - 1;$ (22)**if** $(expected_msg_i = 0)$ (23)then if $(parent_i \neq i)$ then send BACK(yes, $level_i$) to p_{parent_i} (24)else p_i learns that the breadth-first tree is built (25)end if (26)end if (27) end if.

Fig. 1.11 Construction of a breadth-first spanning tree without centralized control (code for p_i)

If the message GO(d) is not the first message GO() received by p_i , there are two cases. Let p_i be the sender of the message GO(d).

- If $level_i \leq d+1$, p_i cannot improve its position in the tree. It then sends by return the message BACK(no, d+1) to inform the sender of the message GO() that it cannot be its child at distance d+1 of the tree (line 16). Hence, p_i stops the network traversal associated with the message GO(d) it has received.
- If $level_i > d + 1$, p_i has to improve its position in the tree under construction. To that end, it propagates the network traversal associated with the message GO(d) it has received in order to allow its other neighbors to improve their positions in the tree. Hence, it executes the same statements as those executed when it received its first message GO(d) (lines 10–15 are exactly the same as lines 3–8).

When a process p_i receives a message BACK(*resp*, d), it considers it only if $level_i = d - 1$ (line 19). This is because this message is meaningful only if its sender p_i sent it when its level was $level_i = d = level_i + 1$. In the other cases, the message

Fig. 1.12 An execution of the algorithm of Fig. 1.11

BACK() is discarded. If the message is meaningful and resp = yes, p_i adds p_j to its children (and those are at level *level*_i + 1, line 20).

Finally, as in a simple parallel network traversal, if it has received a message $BACK(-, level_i + 1)$ from each of its other neighbors, p_i sends a message $BACK(yes, level_i)$ to its current parent. If p_i is the root, it learns that the breadth-first tree is built. Let us observe that, if p_i is not the root, it is possible that it later receives other messages GO() that will improve the current value of $level_i$.

Termination It follows from line 23 that the root learns the termination of the algorithm.

On the other hand, the local variable $level_i$ of a process p_i , which is not the root, can be updated each time it receives a message GO(). Unfortunately, the number of such messages received by p_i is not limited to the number of its neighbors but depends on (a) the number of neighbors of its neighbors, etc. (i.e., the structure of the communication graph), and (b) the speed of messages (i.e., asynchrony). As its knowledge of the communication graph is local (it is restricted to its neighbors), a process cannot define a local predicate indicating that its local variables have converged to their final values. But, as the root can discover when the construction of the tree has terminated, it can send a message (which will be propagated along the tree) to inform the other processes that their local variables $parent_i$, children_i, and *level_i* have their final values.

A Simple Example Let us consider the communication graph described on the left of Fig. 1.12. As the graph is a clique, a single breadth-first tree can be obtained, namely the star graph centered at the distinguished process (here p_1). This star is depicted on the right of the figure.

A worst case execution of the algorithm of Fig. 1.11 is depicted in the middle of Fig. 1.12 (worst case with respect to the number of messages). Only the message GO() from a process p_i to a process p_j with i < j is represented in the space-time diagram. The worst case occurs when the message GO() sent by p_1 to p_3 arrives after the message GO() sent by p_2 , and both the message GO() sent by p_1 to p_4 and the message GO() sent by p_2 to p_4 arrive after the message GO() sent by p_3 to p_4 . It follows that, with this pattern of message arrivals, p_2 discovers it is at distance 1 when it receives its first message GO(), p_3 discovers that it is at distance 1 when it receives the message GO() sent by p_1 .

Cost There are two type of messages, and each message carries an integer whose value is bounded by the diameter D of the communication graph. Moreover, a message BACK() carries an additional Boolean value. It follows that the size of each message is upper bounded by $2 + \log_2 D$ bits. It is easy to see that the time complexity is O(D), i.e., O(n) in the worst case.

As far as the message complexity is concerned, the worst case is a fully connected communication graph (i.e., any pair of processes is connected by a channel) and a process at distance d of the root updates $level_i d$ times (as in Fig. 1.12). This means that among the (n - 1) processes which are not the root, one updates its level once, another one updates it twice, etc., and one updates it (n - 1) times. Moreover, each time a process updates its level, a process forwards the messages GO() to (n - 2) of its neighbors (all processes but itself and the sender of the GO() that entailed the update of its own level). The root sends (n - 1) messages GO(). Hence the total number of messages GO() is

$$(n-1) + (n-2)\sum_{i=1}^{n-1} i = \frac{(n-1)(n^2 - 2n + 2)}{2}.$$

As at most one message BACK() is associated with each message GO(), it follows that, in a fully connected network, the message complexity is upper bounded by $O(n^3)$.

1.3.2 Breadth-First Spanning Tree Built with Centralized Control

This section presents a second distributed algorithm that builds a breadth-first spanning tree. Differently from the previous one, this algorithm—which is due to Y. Zhu and T.-Y. Cheung (1987)—is based on a centralized control that allows each process to locally learn when its participation to the algorithm has terminated. Moreover, both its time and message complexities are $O(n^2)$. This shows an interesting trade-off with the previous algorithm whose time complexity is O(n) while its message complexity is $O(n^3)$.

Underlying Principle This principle consists in a distributed iteration whose progress is handled by the distinguished process p_a . Let us call *wave* each new iteration launched by p_a . The first wave (first iteration) attains only the neighbors of the root p_a , which discover they are at distance 1 and enter the tree. The second wave directs the processes at distance 2 of the root to enter the tree. More generally, the wave number *d* directs the processes at distance *d* of the root to enter the tree. After the wave number *d* has attained the processes at distance *d*, it returns to the root in order to launch the next wave (see Fig. 1.13).

It follows that, when p_a launches the wave number d + 1, the processes at distance less than d + 1 know their position in the tree, and the processes at distance d + 1 will discover they are at distance d + 1 by receiving a message from a process

at distance d. Hence, the messages implementing the wave number d + 1 can use only the channels of the breadth-first spanning tree of depth d that has been built by the previous waves. This reduces consequently the number of messages needed to implement a wave.

From an implementation point of view, for any d, the wave number d going from the root up to processes at distance d is implemented with messages GO(), while its return to the root is implemented with messages BACK(), as depicted in Fig. 1.13.

Algorithm: Local Variables In addition to the constant set *neighbors_i* and its local variables *parent_i* (initialized to \perp) and *children_i*, each process *p_i* manages the following local variables in order to implement the underlying principle previously described.

- *distance_i* is a write-once local variable that keeps the distance of p_i to the root.
- *to_send_i* is a set that, once *p_i* has been inserted into the spanning tree, contains its neighbors to which it has to propagate the waves it receives from the root. If *p_i* is at distance *d*, these wave propagations will concern waves whose number is greater than *d*.
- *waiting_from_i* is a set used by *p_i* to manage the return of the current wave to its parent in the tree. (Its role is similar to that of the local variable *expected_msg_i* used in the previous algorithms.)

Algorithm: Launching by p_a The algorithm assumes that the system is made up of at least two processes.

The initial code executed by the distinguished process is described in Fig. 1.14. This process defines itself as the root (as in previous algorithms, it will be the only process p_i such that $parent_i = i$), initializes its other local variables and sends a message GO(0) to each of its neighbors. More generally, the value d in a message GO(d) sent by a process p_i means that d is the distance of p_i to the root of the tree.

The behavior of a process p_i when it receives a message GO() or BACK() is described in Fig. 1.15 (the root process receives only messages BACK()).

```
when START() is received do % only the distinguished process receives this message % parent_i \leftarrow i; children_i \leftarrow \emptyset; distance_i \leftarrow 0; to\_send_i \leftarrow neighbors_i; for each k \in to\_send_i do send GO(0) to p_k end for; waiting\_from_i \leftarrow neighbors_i.
```

Fig. 1.14 Construction of a breadth-first spanning tree with centralized control (starting code)

```
when GO(d) is received from p_i do
       if (parent<sub>i</sub> = \perp)
(1)
           then parent<sub>i</sub> \leftarrow j; children<sub>i</sub> \leftarrow \emptyset; distance<sub>i</sub> \leftarrow d + 1; to_send<sub>i</sub> \leftarrow neighbors<sub>i</sub> \ {j};
(2)
(3)
                  if (to\_send_i = \emptyset) then send BACK(stop) to p_i
(4)
                                        else send BACK(continue) to p<sub>i</sub> end if
(5)
           else if (parent_i = i)
                    then for each k \in to\_send_i do send GO(distance_i) to p_k end for;
(6)
(7)
                           waiting_from<sub>i</sub> \leftarrow to_send<sub>i</sub>
(8)
                    else send BACK(no) to p_i
(9)
                  end if
(10) end if.
when BACK(resp) is received from p_i do
(11) waiting_from<sub>i</sub> \leftarrow waiting_from<sub>i</sub> \setminus \{j\};
(12) if resp \in \{continue, stop\} then children_i \leftarrow children_i \cup \{j\} end if;
(13) if resp \in \{ stop, no \} then to\_send_i \leftarrow to\_send_i \setminus \{j\} end if;
(14) if (to\_send_i = \emptyset) % we have then waiting_from<sub>i</sub> = \emptyset %
(15)
           then if (parent_i = i) then the root learns that the tree is built
(16)
                                      else send BACK(stop) to pparent;
(17)
                  end if
           else if (waiting\_from_i = \emptyset)
(18)
(19)
                    then if (parent_i = i)
(20)
                              then for each k \in to\_send_i do send GO(distance_i) to p_k end for;
(21)
                                     waiting_from<sub>i</sub> \leftarrow to_send<sub>i</sub>
(22)
                              else send BACK(continue) to pparent;
(23)
                           end if
(24)
                  end if
(25) end if.
```

Fig. 1.15 Construction of a breadth-first spanning tree with centralized control (code for a process p_i)

Reception of a Message GO() When a process p_i receives for the first time a message GO(*d*), it discovers that it is at distance d + 1 of the root (line 1). Let p_j be the sender of this message GO(*d*). The receiving process p_i consequently initializes its local variables *parent_i* to *j* and *distance_i* to d + 1 (line 2). It also initializes its set *children_i* to \emptyset and *to_send_i* to its set of neighbors except p_j .

Then, p_i returns the current wave to its parent p_j by returning to it a message BACK() (line 3). If *to_send_i* is empty, p_j is the only neighbor of p_i , and consequently p_i returns the message BACK(stop) to indicate to p_j that (a) it is one of its children and (b) no more processes can be added to the tree as far it is concerned. Hence, if there are new waves, its parent p_j will not have to send it messages GO(d)

in order to expand the tree. If to_send_i is not empty, p_i is one of the children of p_j and the tree can possibly be expanded from p_i . In this case, p_i sends the message BACK(continue) to its parent p_j to inform it that it is one of its children and (b) possibly, during the next wave, new processes can be added to the tree with p_i as parent. These two cases are expressed at line 3.

If p_i already has a parent $(parent_i \neq \bot)$, i.e., it is already in the tree when it receives a message GO(d), its behavior depends then on the sender p_j of the message GO(d) line 5. If p_j is its parent, p_i forwards the wave by sending the message GO(d + 1) to its other neighbors in the set to_send_i (line 6) and resets accordingly waiting_from_i to to_send_i (line 7). If p_j is not its parent (line 8), p_i sends back the message BACK(no) to the process p_j to inform it that (a) it is not one of its children and consequently (b) p_j no longer has to forward waves to it.

Reception of a Message BACK() When a process p_i receives a message BACK() it has already determined its position in the breadth-first spanning tree. This message BACK() sent by a neighbor p_j is associated with a message GO() sent by p_i to p_j . It carries a value $resp \in \{stop, continue, no\}$.

Hence, when p_i receives BACK(*resp*) from p_j , it first suppresses p_j from the process from which it waits for messages (line 11). Then, if $resp \in \{\texttt{stop}, \texttt{continue}\}$, p_j is one of its children (line 12) and if $resp \in \{\texttt{stop}, \texttt{no}\}$, p_i discovers that it has no longer to send messages to p_j (line 13). The behavior of p_i depends then on the set to_send_i .

- If *to_send_i* is empty (line 14), p_i knows that its participation to the algorithm is terminated. (Let us notice that, due to lines 7, 11 and 13, we have then *waiting_from_i* = \emptyset .) If p_i is the root, it also knows that the algorithm has terminated (line 15). If it is not the root, it sends the message BACK(stop) to its parent to inform it that (a) it has locally terminated, and (b) the tree can no longer be extended from it (line 16).
- If to_send_i is not empty, it is possible that the tree can be expanded from p_i . In this case, if *waiting_from*_i = Ø, p_i returns the wave to its parent by sending it the message BACK(continue) (line 22). If it is the root, p_i starts a new wave by sending the message GO(0) to its neighbors from which the tree can possibly be expanded (line 20) and resets appropriately its local set to_send_i (line 21).

On Distributed Synchronization As we can see, this algorithm exhibits two types of synchronization. The first, which is global, is realized by the root process that controls the sequence of waves. This appears at lines 20-21. The second is local at each process. It occurs at line 3, line 16, or line 22 when a process p_i sends back a message BACK() to its parent.

Local Versus Global Termination Differently from the algorithm described in Fig. 1.11 in which no process—except the root—knows when its participation to the algorithm has terminated, the previous algorithm allows each process to know that it has terminated.

For a process which is not the root, this occurs when it sends a message BACK(stop) to its parent at line 3 (if the parent of p_i is its only neighbor) or

at line 16 (if p_i has several neighbors). Of course, the fact that a process has locally terminated does not mean that the algorithm has terminated. Only the root can learn it. This occurs at line 15 when the root p_i receives a message BACK(stop) entailing the last update of to_send_i which becomes empty.

Cost Let us first consider the number of messages. As in previous algorithms, each message BACK() is associated with a message GO(). Hence, we have only to determine the number of messages GO().

Let *e* be the number of channels of the communication graph. At most two messages GO() are exchanged on each channel that will not belong to the tree. It follows that at most 2e - (n - 1) messages GO() are exchanged on these channels. Since the tree will involve (n - 1) channels and, in the worst case, there are at most *n* waves, it follows that at most $O(n^2)$ messages GO() travel on the channels of the tree. As *e* is upper bounded by $O(n^2)$, it follows that the total number of messages GO() and BACK() is upper bounded by $O(n^2)$.

As far as the time complexity is concerned we have the following. The first wave takes two time units (messages GO() from the root to its neighbors followed by messages BACK() from these processes to the root). The second wave takes 4 time units (two sequential sendings of messages GO() from the root to the processes at distance 2 from it and two sequential sendings of messages BACK() from these processes to the root), etc. As there are at most *D* waves (where *D* is the diameter of the communication graph), the time complexity is upper bounded by $2(1 + 2 + \cdots + D)$, i.e., $O(D^2)$.

It follows that both the message and the time complexities are bounded by $O(n^2)$. As already noticed, this shows an interesting tradeoff when comparing this algorithm with the algorithm without centralized synchronization described in Fig. 1.11 whose message and time complexities are $O(n^3)$ and O(n), respectively. The added synchronization allows for a reduction of the number of messages at the price of an increase in the time complexity.

1.4 Depth-First Traversal

Starting from a distinguished process p_a , a distributed depth-first network traversal visits one process at a time. This section presents first a simple distributed depth-first traversal algorithm which benefits from the traversal to construct a rooted tree. Two improvements of this algorithm are then presented. Finally, one of them is enriched to obtain a distributed algorithm that builds a logical ring on top of an arbitrary connected communication graph.

1.4.1 A Simple Algorithm

Description of the Algorithm The basic depth-first distributed algorithm is described in Fig. 1.16. The algorithm starts when a distinguished process received the

```
when START() is received do
                                       % only p_a receives this message %
      parent_i \leftarrow i; children_i \leftarrow \emptyset; visited_i \leftarrow \emptyset;
(1)
(2) let k \in neighbors_i; send GO() to p_k.
when GO() is received from p_i do
(3)
       if (parent_i = \bot)
(4)
           then parent<sub>i</sub> \leftarrow j; children<sub>i</sub> \leftarrow Ø; visited<sub>i</sub> \leftarrow {j};
(5)
                  if (visited<sub>i</sub> = neighbors<sub>i</sub>)
(6)
                     then send BACK(yes) to p_i
(7)
                     else let k \in neighbors_i \setminus visited_i; send GO() to p_k
(8)
                  end if
           else send BACK(no) to p_i
(9)
(10) end if.
when BACK(resp) is received from p_j do
(11) if (resp = yes) then children_i \leftarrow children_i \cup \{j\} end if;
(12) visited_i \leftarrow visited_i \cup \{j\};
(13) if (visited<sub>i</sub> = neighbors<sub>i</sub>)
(14)
          then if (parent_i = i)
(15)
                   then the traversal is terminated
                                                              % global termination %
                   else send BACK(yes) to p_{parent_i} % local termination %
(16)
(17)
                 end if
(18)
          else let k \in neighbors_i \setminus visited_i; send GO() to p_k
(19) end if.
```

Fig. 1.16 Depth-first traversal of a communication graph (code for p_i)

external message START(). The distinguished process sends first a message GO () to one of its neighbors (line 2).

Then, when a process p_i receives a message GO (), it defines the message sender as its parent in the depth-first tree (lines 3–4). The local variable *visited_i* is a set containing the identities of its neighbors which have been already visited by the depth-first traversal (implemented by the progress of the message GO()). If p_j is its only neighbor, p_i sends back to p_j the message BACK(Yes) to inform it that (a) it is one of its children and (b) it has to continue the depth-first traversal (lines 5–6). Otherwise (*neighbors_i* \neq *visited_i*, p_i propagates the depth-first traversal to one of its neighbors that, from its point of view, has not yet been visited (line 7). Finally, if p_i has already been visited by the depth-first traversal (*parent_i* $\neq \perp$), it sends back to p_i a message BACK(no) to inform it that it is not one of its children (line 9).

When a process p_i receives a message BACK(*resp*), it first adds its sender p_j to its set of children if resp = yes (line 11). Moreover, it also adds p_j to the set of its neighbors which have been visited by the depth-first traversal (line 12). Then, its behavior is similar to that of lines 5–8. If, from its point of view, not all of its neighbors have been visited, it sends a message GO() to one of them (line 18). If all of its neighbors have been visited (line 13), it claims the termination if it is the root (line 14). If it is not the root, it sends to its parent the message BACK(yes) to inform the parent that it is one of its children and it has to forward the depth-first traversal.

On the Tree That Is Built It is easy to see that, given a predefined root process, the depth-first spanning tree that is built does not depend on the speed of messages but depends on the way each process p_i selects its neighbor p_k to which it propagates the depth-first traversal (line 7 and line 18).

Cost As in previous algorithms, a message BACK() is associated with each message GO(). Moreover, at most one message GO() is sent in each direction on every channel. It follows that the message complexity is O(e), where *e* is the number of channels of the communication graph. Hence, it is upper bounded by $O(n^2)$.

There are two types of messages, and message BACK() carries a binary value. Hence, the size of a message is one or two bits.

Finally, at most one message GO() or BACK() is traveling on a channel at any given time. It follows that the time complexity is the same as the message complexity, i.e., O(e).

An Easy Improvement of the Basic Algorithm A simple way to improve the time complexity of the previous distributed depth-first traversal algorithm consists in adding a local information exchange phase when the depth-first traversal visits a process for the first time. This additional communication phase, which is local (it involves only the process receiving a message GO() and its neighbors), allows for an O(n) time complexity (let us remember that n is the number of processes).

This additional exchange phase is realized as follows. When a process p_i receives a message GO() for the first (and, as we will see, the only) time, the following statements are executed before it forwards the depth-first traversal to one of its neighbors (line 7):

- p_i sends an additional control message VISITED() to each of its neighbors p_j , and waits until it has received an answer message KNOWN() from each of them.
- When a process p_j receives a message VISITED() from one of its neighbors p_i , it adds *i* to its local set *visited i* and sends by return the message KNOWN() to p_i .

It is easy to see that when a message GO() has been received by a process p_i , all its neighbors are informed that it has been visited by the depth-first traversal, and consequently none of them will forward the depth-first traversal to it. Moreover, thanks to this modification, no message BACK() carries the value no (line 9 disappears). Consequently, as all the messages BACK() carry the value yes, this value can be left implicit and line 11 can be shortened to "*children_i* \leftarrow *children_i* \cup {*j*}".

It follows that the modified algorithm sends (n - 1) messages GO(), the same number of messages BACK(), 2e - (n - 1) messages VISITED(), and the same number of messages KNOWN(). Hence, the message complexity is O(e).

As far as the time complexity is concerned, we have the following. There are (n-1) messages GO(), the same number of messages BACK(), and no two of these messages are traveling concurrently. When it receives a message GO(), each process sends a message VISITED() to its neighbors (except its parent), and these messages travel concurrently. The same occurs for the answer messages KNOWN(). Let n_1 be the number of processes that have a single neighbor in the communication graph. The time complexity is consequently $2(n-1) + 2n - 2n_1$, i.e., O(n).

```
when START() is received do
                                         % only p_a receives this message %
(1)
       parent_i \leftarrow i;
      let k \in neighbors_i;
(2)
       send GO({i}) to p_k; children<sub>i</sub> \leftarrow {k}.
(3)
when GO(visited) is received from p_i do
      parent<sub>i</sub> \leftarrow j;
(4)
(5)
       if (neighbors<sub>i</sub> \subseteq visited)
           then send BACK(visited \cup {i}) to p_i; children<sub>i</sub> \leftarrow \emptyset;
(6)
(7)
           else let k \in neighbors_i \setminus visited;
(8)
                  send GO(visited \cup {i}) to p_k; children<sub>i</sub> \leftarrow {k}
(9)
       end if.
when BACK(visited) is received from p_i do
(10) if (neighbors<sub>i</sub> \subseteq visited)
          then if (parent_i = i)
(11)
                                                                    % global termination %
(12)
                    then the traversal is terminated
(13)
                    else send BACK(visited) to p_{parent} % local termination %
(14)
                 end if
(15)
          else let k \in neighbors_i \setminus visited;
                 send GO() to p_k; children<sub>i</sub> \leftarrow children<sub>i</sub> \cup {k}
(16)
(17) end if.
```

Fig. 1.17 Time and message optimal depth-first traversal (code for p_i)

1.4.2 Application: Construction of a Logical Ring

The Notion of a Local Algorithm Both the previous algorithm (Fig. 1.16) and its improvement are *local* in the sense that (a) each process has initially to know only its identity, that of its neighbors, and the fact no two processes have the same identity, and (b) the size of the information exchanged between any two neighbors is bounded.

Another Improvement of the Basic Depth-First Traversal Algorithm This part presents a depth-first traversal algorithm that is not local but whose message complexity and time complexity are O(n). The idea is to replace the local synchronization used by the improved version of the previous algorithm (implemented with the messages VISITED() and KNOWN()) by a global control information, namely, the set (denoted *visited*) of the processes which have been already visited by the network traversal (i.e., by messages GO()). To that end, each message GO() and each message BACK() carry the current value of the set *visited*.

The corresponding depth-first traversal algorithm is described in Fig. 1.17. When the distinguished process p_a receives the external message START(), it defines itself as the root (*parent_i* = *i*, line 1), and launches the depth-traversal by sending a message GO({*i*}) to one of its neighbors that it includes in its set of children (lines 2–3).

Then, when a process p_i receives a message GO(*visited*) from a neighbor process p_j , it defines p_j as its parent (line 4). If all of its neighbors have been visited, p_i sends back the message GO(*visited* \cup {*i*}) to its parent (line 6). Otherwise, it

propagates the depth-first traversal to one of its neighbors p_k that has not yet been visited and initializes *children_i* to $\{k\}$ (lines 7–8).

Finally, when a process p_i receives a message BACK(*visited*) such that all its neighbors have been visited (line 10), it claims termination if it is the root (line 12). If it is not the root, it forwards the message BACK(*visited*) to its parent (line 13). If some of its neighbors have not yet been visited, p_i selects one of them, propagates the network traversal by sending to it the message GO(*visited*) and adds it to its set of children (lines 15–16).

It is easy to see that this algorithm builds a depth-first spanning tree, and requires (n-1) messages GO() and (n-1) messages BACK(). As no two messages are concurrent, the time complexity is 2(n-1). As already indicated, this algorithm is not local: the set *visited* carried by each message grows until it contains all the process identities. Hence, the size of a message includes one bit for the message type and up to $n \log_2 n$ bits for its content.

A Token Traveling Along a Logical Ring A token is a message that navigates a network. A simple way to exploit a token consists in using a logical unidirectional ring. The token progresses then from a process to the next process on the ring. Assuming that no process keeps the token forever, it follows that no process that wants to use the token will miss it.

The problem that then has to be solved consists in building a logical unidirectional ring on top of a connected arbitrary network. Such a construction is presented below.

In order that the ring can be exploited by the token, the algorithm building the ring computes the value of two local variables at each process p_i :

- The local variable *succ_i* denotes the identity of the successor of *p_i* on the unidirectional ring.
- The local variable $routing_i[j]$, where p_j is a neighbor of p_i , contains the identity of its neighbor to which p_i will have to forward the token when it receives it from p_j .

The set of local variables $routing_i[j]$, $1 \le i \le n$, defines the appropriate routing (at the level of the underlying communication graph) which ensures the correct move of the token on the logical ring from any process to its logical successor.

Once these two local variables have been computed at each process p_i , the navigation of the token is easily ensured by the statements described in Fig. 1.18. When it leaves a process, the token carries the identity *dest* of its destination, i.e., the next process on the unidirectional ring. When it receives the token and *dest* = *i*, a process p_i uses it. Before releasing it, the process sets the token field *dest* to *succ_i*, the next process on the ring (i.e., the next process allowed to use the token). Finally, (whether it was its previous destination or not) p_i sends the token to its neighbor p_k such that $k = routing_i[j]$ (where p_j is the process from which it received the token in the communication graph). Hence, when considering the underlying communication graph, the token progresses from p_i to p_k where $k = routing_i[j]$, then to p_ℓ where $\ell = routing_k[i]$, then to p_m where $m = routing_\ell[k]$, etc., where the sequence

1.4 Depth-First Traversal

Fig. 1.18 Management of the token at process p_i

when TOKEN(*dest*) is received from p_j do if (*dest* = *i*) then use the token; *dest* \leftarrow *succ_i* end if; let $k = routing_i[j]$; send TOKEN(*dest*) to p_k .

of successive neighbor processes p_j , p_i , p_k , p_ℓ , ..., p_j constitutes the circuit implementing the logical unidirectional ring.

A Distributed Algorithm Building a Logical Ring The distributed depth-first traversal algorithm described in Fig. 1.17 constitutes the skeleton on which are grafted statements that build the logical ring, i.e., the statements that give their values to the local variables $succ_i$ and $routing_i[j]$ of each process p_i . The resulting algorithm, which is due to J.-M. Hélary and M. Raynal (1988), is described in Fig. 1.19.

As we can see, this algorithm is nearly the same as that of Fig. 1.17. Its underlying principle follows: As a process receives a single message GO(), a process is added to the logical ring when it receives such a message. Moreover, in addition to the set of processes *visited*, each message is required to carry the identity (denoted *last*) of the last process that received a message GO().

In order to establish the sense of direction of the ring and compute the distributed routing tables, the algorithm uses the total order in which processes are added to the ring, i.e., the order in which the processes receive a message GO(). More precisely, the sense of direction of the ring is then defined as opposite to the order in which the processes are added to the ring during its construction. This is depicted in Fig. 1.20.

```
when START() is received do % only p_a receives this message %
(1) parent_i \leftarrow i;
(2) let k \in neighbors_i;
(3) send GO(\{i\}, i) to p_k; first<sub>i</sub> \leftarrow k.
when GO(visited, last) is received from p_j do
(4) parent_i \leftarrow j; succ_i \leftarrow last;
(5) if (neighbors<sub>i</sub> \subseteq visited)
(6)
           then send BACK(visited \cup {i}, i) to p_i; routing<sub>i</sub>[j] \leftarrow j
(7)
           else let k \in neighbors_i \setminus visited;
(8)
                  send GO(visited \cup {i}, i) to p_k; routing<sub>i</sub>[k] \leftarrow j
(9) end if.
when BACK(visited, last) is received from p<sub>i</sub> do
(10) if (neighbors<sub>i</sub> \subseteq visited)
(11)
          then if (parent_i = i)
                    then succ_i \leftarrow last; routing_i[first_i] \leftarrow j \% the ring is built %
(12)
(13)
                    else send BACK(visited, last) to p_{parent_i}; routing<sub>i</sub>[parent<sub>i</sub>] \leftarrow j
(14)
                 end if
(15)
          else let k \in neighbors_i \setminus visited;
(16)
                 send GO(visited, last) to p_k; routing<sub>i</sub>[k] \leftarrow j
(17) end if.
```

Fig. 1.19 From a depth-first traversal to a ring (code for p_i)

Fig. 1.20 Sense of direction of the ring and computation of routing tables

Progress of the token through the routing tables: $routing_i[k] = j$

From an operational point of view, we have the following. When the distinguished process receives the message START() it defines itself as the starting process (*parent_i* = *i*), selects one of its neighbors p_k , and sends to p_k the message GO(*visited*, *i*) where *visited* = {*i*} (lines 1–3). Moreover, the starting process records the identity *k* in order to be able to close the ring when it discovers that the depth-first traversal has terminated (line 12).

When a process p_i receives a message GO(*visited*, *last*) (let us remember that it receives exactly one message GO()), it defines (a) its parent with respect to the depth-first traversal as the sender p_j of the message GO(), and (b) its successor on the ring as the last process (before it) that received a message GO(), i.e., the process p_{last} (line 4). Then, if all its neighbors have been visited by the depth-first traversal, it sends back to its parent p_j the message GO(*visited* \cup {*i*}, *i*) and defines the appropriate routing for the token, namely it sets $routing_i[j] = j$ (lines 5–6). If there are neighbors of p_i that have not yet been visited, p_i selects one of them (say p_k) and propagates the depth-first traversal by sending the message GO(*visited* \cup {*i*}, *i*) to p_k . As before, it also defines the appropriate routing for the token, namely it sets $routing_i[k] = j$ (lines 7–8).

When a process p_i receives a message BACK(*visited*, *last*), it does the same as previously if some of its neighbors have not yet been visited (lines 15–16 are similar to lines 7–8). If all its neighbors have been visited and p_i is the starting process, it closes the ring by assigning to *routing_i*[*first_i*] the identity *j* of the process that sent the message BACK(-, -) (lines 11–12). If p_i is not the starting process, it forwards the message BACK(*visited*, *last*) to its parent which will make the depth-first traversal progress. It also assigns the identity *j* to *routing_i*[*parent_i*] for the token to be correctly routed along the appropriate channel of the communication graph in order to attain its destination process on the logical ring.

Cost This ring construction requires always 2(n - 1) messages: (n - 1) messages GO() and (n - 1) messages BACK(). Moreover the ring has *n* virtual channels vc_1, \ldots, vc_n and the length ℓ_x of vc_x , $1 \le x \le n$, is such that $1 \le \ell_x \le (n - 1)$ and $\sum_{1 \le x \le n} \ell_x = 2(n - 1)$. Hence, both the cost of building the ring and ensuring a full turn of the token on it are 2(n - 1) messages sent one after the other.

Remarks The two logical neighbors on the ring of each process p_i depend on the way a process selects a non-visited neighbor when it has to propagate the depth-first traversal.

Allowing the messages GO() and BACK() to carry more information (on the structure of the network that has been visited—or has not been visited—by the depth-first

1.4 Depth-First Traversal

Fig. 1.21 An example of a logical ring construction

traversal) allows the length of the ring at the communication graph level to be reduced to x, where $x \in [n \dots 2(n-1)]$. This number x depends on the structure of the communication graph and the way neighbors are selected when a process propagates the network traversal.

An Example Let us consider the communication graph depicted Fig. 1.21 (without the dotted arrows). The dotted arrows represent the logical ring constructed by the execution described below.

In this example, when a process has to send a message GO() to one of its neighbors, it selects the neighbor with the smallest identity in the set *neighbors*_i *visited*.

- 1. The distinguished process sends the message $GO(\{1\}, 1)$ to its neighbor p_2 and saves the identity 2 into *first_i* to be able to close the ring at the end of the network traversal.
- 2. Then, when it receives this message, p_2 defines $succ_2 = 1$, forwards the depth-first traversal by sending the message $GO(\{1, 2\}, 2)$ to p_3 and defines $routing_2[3] = 1$.
- 3. When p_3 receives this message, it defines $succ_3 = 2$, forwards the depthfirst traversal by sending the message $GO(\{1, 2, 3\}, 3)$ to p_4 and defines $routing_3[4] = 2$.
- 4. When p_4 receives this message, it defines $succ_4 = 3$, and propagates the depthfirst traversal by sending the message BACK($\{1, 2, 3, 4\}, 4$) to its parent p_3 . Moreover, it defines $routing_4[3] = 3$.
- 5. When p_3 receives this message, as *neighbors*₃ \subset *visited* and it is not the starting process, it forwards BACK({1, 2, 3, 4}, 4) to its parent p_2 and defines *routing*₃[2] = 4.
- 6. When p_2 receives this message, as *neighbors*₃ is not included in *visited*, it selects its not yet visited neighbor p_5 and sends it the message GO({1, 2, 3, 4}, 4). It also defines *routing*₂[5] = 3.
- 7. When p_5 receives this message, it defines p_4 as its successor on the logical ring (*succ*₅ = 4), sends back to its parent p_2 the message BACK({1, 2, 3, 4, 5}, 5) and defines *routing*₅[2] = 2.
- 8. When p_2 receives this message, p_2 forwards it to its parent p_1 and defines $routing_2[1] = 5$.

Table 1.1 The paths implementing the virtual channels of the logical ring the logical ring	Virtual channel of the ring	Implemented by the path
	$2 \rightarrow 1$ $1 \rightarrow 5$ $5 \rightarrow 4$ $4 \rightarrow 3$	$2 \rightarrow 1$ $1 \rightarrow 2 \rightarrow 5$ $5 \rightarrow 2 \rightarrow 3 \rightarrow 4$ $4 \rightarrow 3$
	$3 \rightarrow 2$	$3 \rightarrow 2$

9. Finally, when p_1 receives the message BACK({1, 2, 3, 4, 5}, 5), all its neighbors have been visited. Hence, the depth-first traversal is terminated. Consequently, p_1 closes the ring by assigning its value to $routing_1[first_1]$, i.e., it defines $routing_1[2] = 2$.

The routing tables at each process constitute a distributed implementation of the paths followed by the token to circulate on the ring from each process to its successor. These paths are summarized in Table 1.1 which describes the physical paths implementing the n virtual channels of the logical ring.

1.5 Summary

After defining the notion of a distributed algorithm, this chapter has presented several traversal network algorithms, namely, parallel, breadth-first, and depth-first traversal algorithms. It has also presented algorithms that construct spanning trees or rings on top of a communication graph. In addition to being interesting in their own right, these algorithms show that distributed traversal techniques are different from their sequential counterparts.

1.6 Bibliographic Notes

- Network traversal algorithms are presented in several books devoted to distributed computing, e.g., [24, 150, 219, 242, 335]. Several distributed traversal algorithms are described by A. Segall in [341].
- A distributed version of Ford and Fulkerson's algorithm for the maximum flow problem is described in [91]. This adaptation is based on a distributed depth-first search algorithm.
- The notion of a wave-based distributed iteration has been extensively studied in several books, e.g., [308, 365]. The book by Raynal and Hélary [319] is entirely devoted to wave-based and phase-based distributed algorithms.
- The improved depth-first traversal algorithm with O(n) time complexity is due to B. Awerbuch [25]. The technique of controlling the progress of a network traversal with a set *visited* carried by messages is due to J.-M. Hélary, A. Maddi and

M. Raynal [170]. Other depth-first traversal algorithms have been proposed in the literature, e.g., [95, 224].

- The breadth-first traversal algorithm without centralized control is due to C.-T. Cheung [91]. The one with centralized control is due to Y. Zhu and C.-T. Cheung [395].
- The algorithm building a logical ring on top of an arbitrary network is due to J.-M. Hélary and M. Raynal [177]. It is shown in this paper how the basic algorithm described in Fig. 1.19 can be improved to obtain an implementation of the ring requiring a number of messages $\leq 2n$ to implement a full turn of the token on the ring.
- The distributed construction of minimum weight spanning trees has been addressed in many papers, e.g., [143, 209, 231].
- Graph algorithms and algorithmic graph theory can be found in many textbooks (e.g., [122, 158]). The book by M. van Steen [359] constitutes an introduction to graph and complex networks for engineers and computer scientists. Recent advances on graph theory are presented in the collective book [164].

1.7 Exercises and Problems

- 1. Let us assume that a message GO() is allowed to carry the position of its sender in the communication graph. How can we improve a distributed graph traversal algorithm so that it can benefit from this information? Solution in [319].
- 2. Write the full text of the depth-first traversal algorithm corresponding to the improvement presented in the part titled "An easy improvement of the basic algorithm" of Sect. 1.4.1. Depict then a run of it on the communication graph described in the left part of Fig. 1.8.
- 3. Let us consider the case of a directed communication graph where the meaning of "directed" is as follows. A channel from p_i to p_j allows (a) p_i to send only messages GO() to p_j and (b) p_j to send only messages BACK() to p_i . Two processes p_i and p_j are then such that either there is no communication channel connecting them, or there is one directed communication channels (one in each direction).

Design a distributed algorithm building a breadth-first spanning tree with a distinguished root p_a and compare it with the algorithm described in Fig. 1.11. It is assumed that there is a directed path from the distinguished root p_a to any other process.

Solution in [91].

4. Consider a communication graph in which the processes have no identity and each process p_i knows its position in the communication network with the help of a local array *channel*_i[1.. c_i] (where c_i is the number of neighbors of p_i). An example is given in Fig. 1.22. As we can see in this figure, the channel connecting

 p_i and p_j is locally known by p_i as *channel*_i[2] and locally known by p_j as *channel*_i[1].

Using a distributed depth-first traversal algorithm where a distinguished process receives a message START(), design an algorithm that associates with each process p_i an identity id_i and an identity table *neighbor_name*_i[1..c_i] such that:

- $\forall i : id_i \in \{1, 2, ..., n\}.$
- $\forall i, j : id_i \neq id_j$.
- If p_i and p_j are neighbors and the channel connecting them is denoted *channel*_i[k] at p_i and *channel*_j[l] at p_j , we have *neighbor_name*_i[k] = id_j and *neighbor_name*_j[l] = id_i.
- 5. Enrich the content of the messages GO() and BACK() of the algorithm described in Fig. 1.19 in order to obtain a distributed algorithm that builds a logical ring and uses as few messages as possible. This means that the number of messages x will be such that $n \le x \le 2(n - 1)$. Moreover, the length of the logical ring (counted as the number of channels of the underlying communication graph) has to be equal to x.

Solution in [177].

6. Design a distributed algorithm that builds a logical ring such that the length of the path in the communication graph of any two neighbors in the logical ring is at most 3.

Let us recall that, if G is a connected graph, G^3 is Hamiltonian. Hence, the construction is possible. (Given a graph G, G^k is a graph with the same vertices as G and any two vertices of G^k are neighbors if their distance in G is at most k.)

Chapter 2 Distributed Graph Algorithms

This chapter addresses three basic graph problems encountered in the context of distributed systems. These problems are (a) the computation of the shortest paths between a pair of processes where a positive length (or weight) is attached to each communication channel, (b) the coloring of the vertices (processes) of a graph in $\Delta + 1$ colors (where Δ is the maximal number of neighbors of a process, i.e., the maximal degree of a vertex when using the graph terminology), and (c) the detection of knots and cycles in a graph. As for the previous chapter devoted to graph traversal algorithms, an aim of this chapter is not only to present specific distributed graph algorithms, but also to show that their design is not always obtained from a simple extension of their sequential counterparts.

Keywords Distributed graph algorithm \cdot Cycle detection \cdot Graph coloring \cdot Knot detection \cdot Maximal independent set \cdot Problem reduction \cdot Shortest path computation

2.1 Distributed Shortest Path Algorithms

This section presents distributed algorithms which allow each process to compute its shortest paths to every other process in the system. These algorithms can be seen as "adaptations" of centralized algorithmic principles to the distributed context.

The notations are the same as in the previous chapter. Each process p_i has a set of neighbors denoted *neighbors_i*; if it exists, the channel connecting p_i and p_j is denoted $\langle i, j \rangle$. The communication channels are bidirectional (hence $\langle i, j \rangle$ and $\langle j, i \rangle$ denote the same channel). Moreover, the communication graph is connected and each channel $\langle i, j \rangle$ has a positive length (or weight) denoted $\ell g_i[j]$ (as $\langle i, j \rangle$ and $\langle j, i \rangle$ are the same channel, we have $\ell g_i[j] = \ell g_j[i]$).

2.1.1 A Distributed Adaptation of Bellman–Ford's Shortest Path Algorithm

Bellman–Ford's sequential algorithm computes the shortest paths from one predetermined vertex of a graph to every other vertex. It is an iterative algorithm based **Fig. 2.1** Bellman–Ford's dynamic programming principle

on the dynamic programming principle. This principle and its adaptation to a distributed context are presented below.

Initial Knowledge and Local Variables Initially each process knows that there are *n* processes and the set of process identities is $\{1, ..., n\}$. It also knows its position in the communication graph (which is captured by the set *neighbors_i*). Interestingly, it will never learn more on the structure of this graph. From a local state point of view, each process p_i manages the following variables.

- As just indicated, $\ell g_i[j]$, for $j \in neighbors_i$, denotes the length associated with the channel $\langle i, j \rangle$.
- $length_i[1..n]$ is an array such that $length_i[k]$ will contain the length of the shortest path from p_i to p_k . Initially, $length_i[i] = 0$ (and keeps that value forever) while $length_i[j] = +\infty$ for $j \neq i$.
- *routing_to_i*[1..*n*] is an array that is not used to compute the shortest paths from p_i to each other process. It constitutes the local result of the computation. More precisely, when the algorithm terminates, for any $k, 1 \le k \le n$, *routing_to_i*[k] = j means that p_j is a neighbor of p_i on a shortest path to p_k , i.e., p_j is an optimal neighbor when p_i has to send information to p_k (where optimality is with respect to the length of the path from p_i to p_k).

Bellman–Ford Principle The dynamic programming principle on which the algorithm relies is the following. The local inputs at each process p_i are the values of the set *neighbors_i* and the array $\ell g_i[neighbors_i]$. The output at each process p_i is the array $length_i[1..n]$. The algorithm has to solve the following set of equations (where the unknown variables are the arrays $length_i[1..n]$):

$$\forall i, k \in \{1, \dots, n\}: \quad length_i[k] = \min_{j \in neighbors_i} \left(\ell g_i[j] + length_j[k] \right)$$

The meaning of this formula is depicted in Fig. 2.1 for a process p_i such that $neighbors_i = \{j_1, j_2, j_3\}$. Each dotted line from p_{j_x} to p_k , $1 \le x \le 3$, represents the shortest path joining p_{j_x} to p_k and its length is $length_{j_x}[k]$. The solution of this set of equations is computed asynchronously and iteratively by the *n* processes, each process p_i computing successive approximate values of its local array $length_i[1..n]$ until it stabilizes at its final value.

The Algorithm The algorithm is described in Fig. 2.2. At least one process p_i has to receive the external message START() in order to launch the algorithm. It

```
when START() is received do
(1) for each j \in neighbors_i do send UPDATE(length_i) to p_i end for.
when UPDATE(length) is received from p_i do
(2)
      updated_i \leftarrow false;
      for each k \in \{1, \ldots, n\} \setminus \{i\} do
(3)
(4)
          if (length_i[k] > \ell g_i[j] + length[k])
(5)
               then length_i[k] \leftarrow \ell g_i[j] + length[k];
(6)
                     routing_to<sub>i</sub>[k] \leftarrow j;
                     updated_i \leftarrow true
(7)
(8)
          end if
(9)
      end for:
(10) if (updated_i)
(11)
          then for each j \in neighbors_i do send UPDATE(length_i) to p_i end for
(12) end if.
```

Fig. 2.2 A distributed adaptation of Bellman–Ford's shortest path algorithm (code for p_i)

sends then to each of its neighbors the message UPDATE($length_i$) which describes its current local state as far as the computation of the length of its shortest paths to each other process is concerned.

When a process p_i receive a message UPDATE(*length*) from one of its neighbors p_j , it applies the forward/discard strategy introduced in Chap. 1. To that end, p_i first strives to improve its current approximation of its shortest paths to any destination process (lines 3–9). Then, if p_i has discovered shorter paths than the ones it knew before, p_i sends its new current local state to each of its neighbors (lines 10–12). If its local state (captured by the array *length*_i[1..n]) has not been modified, p_i does not send a message to its neighbors.

Termination While there is a finite time after which the arrays $length_i[1..n]$ and $routing_to_i[1..n]$, $1 \le i \le n$, have obtained their final values, no process ever learns when this time has occurred.

Adding Synchronization in Order that Each Process Learns Termination The algorithm described in Fig. 2.3 allows each process p_i not only to compute the shortest paths but also to learn that it knows them (i.e., learn that its local arrays $length_i[1..n]$ and $routing_to_i[1..n]$ have converged to their final values).

This algorithm is synchronous: the processes execute a sequence of synchronous rounds, and rounds are given for free: they belong to the computation model. During each round r, in addition to local computation, each process sends a message to and receives a message from each of its neighbors. The important synchrony property lies in the fact that a message sent by a process p_i to a neighbor p_j at round r is received and processed by p_j during the very same round r. The progress of a round r to the round r + 1 is governed by the underlying system. (A general technique to simulate a synchronous algorithm on top of an asynchronous system will be described in Chap. 9.)

when r = 1, 2, ..., D do begin synchronous round for each $j \in neighbors_i$ do send UPDATE $(length_i)$ to p_i end for; (1)for each $j \in neighbors_i$ do receive UPDATE $(length_i)$ from p_i end for; (2)(3)for each $k \in \{1, \ldots, n\} \setminus \{i\}$ do (4)let $length_ik1 = \min_{j \in neighbors_i} (\ell g_i[j] + length_i[k]);$ (5)if $(length_ik < length_i[k])$ then (6) $length_i[k] \leftarrow length_ik;$ (7)routing_to_i[k] \leftarrow a neighbor j that realizes the previous minimum (8)end if (9) end for end synchronous round.

The algorithm considers that the diameter D of the communication graph is known by the processes (let us remember that the diameter is the number of channels separating the two most distant processes). If D is not explicitly known, it can be replaced by an upper bound, namely the value (n - 1).

The text of the algorithm is self-explanatory. There is a strong connection between the current round number and the number of channels composing the paths from which p_i learns information. Let us consider a process p_i at the end of a round r.

- When r < D, p_i knows the shortest path from itself to any other process p_k , which is composed of at most r channels. Hence, this length to p_k is not necessarily the shortest one.
- Differently, when it terminates round r = D, p_i has computed both (a) the shortest lengths from it to all the other processes and (b) the corresponding appropriate routing neighbors.

2.1.2 A Distributed Adaptation of Floyd–Warshall's Shortest Paths Algorithm

Floyd–Warshall's algorithm is a sequential algorithm that computes the shortest paths between any two vertices of a non-directed graph. This section presents an adaptation of this algorithm to the distributed context. This adaptation is due to S. Toueg (1980). As previously, to make the presentation easier, we consider that the graph (communication network) is connected and the length of each edge of the graph (communication channel) is a positive number. (Actually, the algorithm works when edges have negative lengths as long as no cycle has a negative length.)

Floyd–Warshall's Sequential Algorithm Let LENGTH[1..n, 1..n] be a matrix such that, when the algorithm terminates, LENGTH[i, j] represents the length of the shortest path from p_i to p_j . Initially, for any i, LENGTH[i, i] = 0, for any pair (i, j)

(1)	for pv from 1 to n do	
(2)	for <i>i</i> from 1 to <i>n</i> do	
(3)	for <i>j</i> from 1 to <i>n</i> do	
(4)	if $LENGTH[i, pv] + LENGTH[pv, j] < LENGTH[i, j]$	
(5)	then $LENGTH[i, j] \leftarrow LENGTH[i, pv] + LENGTH[pv, j];$	
(6)	$routing_to_i[j] \leftarrow routing_to_i[pv]$	
(7)	end if	
(8)	end for	
(9)	end for	
(10) end for .		

Fig. 2.4 Floyd-Warshall's sequential shortest path algorithm

Fig. 2.5 The principle that underlies Floyd–Warshall's shortest paths algorithm

such that $j \in neighbors_i$, LENGTH[i, j] is initialized to the length of the channel from p_i to p_j , and LENGTH[i, j] = $+\infty$ in the other cases. Moreover, for any i, the array routing_to_i[1..n] is such that routing_to_i[i] = i, routing_to_i[j] = j for each $j \in neighbors_i$ and routing_to_i[j] is initially undefined for the other values of j.

The principle of Floyd–Warshall's algorithm is an iterative algorithm based on the following principle. For any process p_i , the algorithm computes first the shortest path from any process p_i to any process p_j that (if any) passes through process p_j among all the paths from p_i to p_j which pass only through processes in the set $\{p_1, p_2\}$. More generally, at the step pv of the iteration, the algorithm computes the shortest path from any process p_i to any process p_j among all the paths from p_i to p_j which are allowed to pass through the set of processes $\{p_1, \ldots, p_{pv}\}$. The text of the algorithm is given in Fig. 2.4. As we can see, the algorithm is made up of three nested **for** loops. The external one defines the processes (namely p_1, \ldots, p_{pv}) allowed to appear in current computation of the shortest from any process p_i to any process p_j . The process index pv is usually called the *pivot*.

The important feature of this sequential algorithm lies in the fact that, when computing the shortest path from p_i to p_j involving the communication channels connecting the processes in the set $\{p_1, \ldots, p_{pv}\}$, the variable *LENGTH*[*i*, *pv*] contains the length of the shortest path from p_i to p_{pv} involving only the communication channels connecting the processes in the set $\{p_1, \ldots, p_{pv-1}\}$ (and similarly for the variable *LENGTH*[*pv*, *j*]). This is described in Fig. 2.5 when considering the computation of the shortest from p_i to p_j involving the processes $\{p_1, \ldots, p_{pv}\}$ (this constitutes the *pv*th iteration step of the external loop). **From a Sequential to a Distributed Algorithm** As a distributed system has no central memory and communication is by message passing between neighbor processes, two issues have to be resolved to obtain a distributed algorithm. The first concerns the distribution of the data structures; the second the synchronization of processes so that they can correctly compute the shortest paths and the associated routing tables.

The array *LENGTH*[1..*n*, 1..*n*] is split into *n* vectors such that each process p_i computes and maintains the value of *LENGTH*[*i*, 1..*n*] in its local array $length_i$ [1..*n*]. Moreover, as seen before, each process p_i computes the value of its routing local array *routing_to_i*[1..*n*]. On the synchronization side, there are two issues:

- When p_i computes the value of $length_i[j]$ during the iteration step pv, process p_i locally knows the current values of $length_i[j]$ and $length_i[pv]$, but it has to obtain the current value of $length_{pv}[j]$ (see line 4 of Fig. 2.4).
- To obtain from p_{pv} a correct value for $length_{pv}[j]$, the processes must execute simultaneously the same iteration step pv. If a process p_i is executing an iteration step with the pivot value pv while another process p_k is simultaneously executing an iteration step with the pivot value $pv' \neq pv$, the values they obtain, respectively, from p_{pv} for $length_{pv}[j]$ and from $p_{pv'}$ $length_{pv'}[j]$ can be mutually inconsistent if these computations are done without an appropriate synchronization.

The Distributed Algorithm The algorithm is described in Fig. 2.6. The processes execute concurrently a loop where the index pv takes the successive values from 1 to n (line 1). If a process receives a message while it has not yet started executing its local algorithm, it locally starts the local algorithm before processing the message. As the communication graph is connected, it follows that, as soon as at least one process p_i starts its local algorithm, all the processes start theirs.

As indicated just previously, when the processes execute the iteration step pv, the process p_{pv} has to broadcast its local array $length_{pv}[1..n]$ so that each process p_i to try to improve its shortest distance to any process p_i as indicated in Fig. 2.5.

To this end, let us observe that if, at the *pv*th iteration of the loop, there is path from p_i to p_{pv} involving only processes in the set $\{p_1, \ldots, p_{pv-1}\}$, there is then a favorite neighbor to attain p_{pv} , namely the process whose index has been computed and saved in *routing_to*_i[*pv*]. This means that, at the *pv*th iteration, the set of local variables *routing_to*_x[*pv*] of the processes p_x such that $length_x[pv] \neq +\infty$ define a tree rooted at p_{pv} .

The algorithm executed by the processes, which ensures a correct process coordination, follows from this observation. More precisely, a local algorithm is made up of three parts:

• Part 1: lines 1–6. A process p_i first sends a message to each of its neighbors p_k indicating if p_i is or not one of p_k 's children in the tree rooted at p_{pv} . It then waits until it has received such a message from each of its neighbors.

Then, p_i executes the rest of the code for the *pv*th iteration only if it has a chance to improve its shortest paths with the help of p_{pv} , i.e., if $length_i[pv] \neq +\infty$.

```
(1)
     for pv from 1 to n do
(2)
        for each k \in neighbors_i do
(3)
         if (routing_to_i[pv] = k) then child \leftarrow yes else child \leftarrow no end if;
(4)
         send CHILD(pv, child) to p_k
(5)
       end for:
        wait (a message CHILD(pv, -) received from each neighbor);
(6)
(7)
       if (length_i[pv] \neq +\infty) then
(8)
         if (pv \neq i) then
(9)
            wait (message PV_LENGTH (pv, pv_length[1..n]) from p<sub>routing to;[pv]</sub>)
(10)
         end if:
(11)
         for each k \in neighbors_i do
(12)
              if (CHILD(pv, yes) received from p_k) then
(13)
                 if (pv = i) then send PV_LENGTH(pv, length_i[1..n]) to p_k
(14)
                             else send PV_LENGTH(pv, pv\_length[1..n]) to p_k
(15)
                 end if
(16)
              end if
         end for;
(17)
(18)
         for j from 1 to n do
(19)
              if length_i[pv] + pv\_length[j] < length_i[j]
(20)
                 then length_i[j] \leftarrow length_i[pv] + pv\_length[j];
(21)
                       routing\_to_i[j] \leftarrow routing\_to_i[pv]
(22)
              end if
(23)
         end for
(24)
        end if
(25) end for.
```

Fig. 2.6 Distributed Floyd-Warshall's shortest path algorithm

• Part 2: lines 8–17. This part of the algorithm ensures that each process p_i such that $length_i[pv] \neq +\infty$ receives a copy of the array $length_{pv}[1..n]$ so that it can recompute the values of its shortest paths and the associated local routing table (which is done in Part 3).

The broadcast of $length_{pv}[1..n]$ by p_{pv} is launched at line 13, where this process sends the message PV_LENGTH (pv, $length_{pv}$) to all its children in the tree whose it is the root. When it receives such a message carrying the value pv and the array $pv_length[1..n]$ (line 9), a process p_i forwards it to its children in the tree rooted at p_{pv} (lines 12 and 14).

• Part 3: lines 18–23. Finally, a process p_i uses the array $pv_length[1..n]$ it has received in order to improve its shortest paths that pass through the processes p_1, \ldots, p_{pv} .

Cost Let *e* be the number of communication channels. It is easy to see that, during each iteration, (a) at most two messages CHILD() are sent on each channel (one in each direction) and (b) at most (n - 1) messages PV_LENGTH() are sent. It follows that the number of messages is upper-bounded by n(2e + n); i.e., the message complexity is $O(n^3)$. As far the size of messages is concerned, a message CHILD() carries a bit, while PV_LENGTH() carries *n* values whose size depends on the individual lengths associated with the communication channels.

```
(1) for i from 1 to n do

(2) c \leftarrow 1;

(3) while (COLOR[i] = \bot) do

(4) if (\bigwedge_{j \in neighbors_i} COLOR[j] \neq c) then COLOR[i] \leftarrow c else c \leftarrow c + 1 end if

(5) end while

(6) end for.
```

Fig. 2.7 Sequential $(\Delta + 1)$ -coloring of the vertices of a graph

Finally, there are *n* iteration steps, and each has O(n) time complexity. Moreover, in the worst case, the processes starts the algorithm one after the other (a single process starts, which entails the start of another process, etc.). When summing up, it follows that the time complexity is upper-bounded by $O(n^2)$.

2.2 Vertex Coloring and Maximal Independent Set

2.2.1 On Sequential Vertex Coloring

Vertex Coloring An important graph problem, which is encountered when one has to model application-level problems, concerns vertex coloring. It consists in assigning a value (color) to each vertex such that (a) no two vertices which are neighbors have the same color, and (b) the number of colors is "reasonably small". When the number of colors has to be the smallest possible one, the problem is NP-complete.

Let Δ be the maximal degree of a graph (let us remember that, assuming a graph where any two vertices are connected by at most one edge, the degree of a vertex is the number of its neighbors). It is always possible to color the vertices of a graph in $\Delta + 1$ colors. This follows from the following simple reasoning by induction. The assertion is trivially true for any graph with at most Δ vertices. Then, assuming it is true for any graph made up of $n \ge \Delta$ vertices and whose maximal degree is at most Δ , let us add a new vertex to the graph. As (by assumption) the maximal degree of the graph is Δ , it follows that this new vertex has at most Δ neighbors. Hence, this vertex can be colored with the remaining color.

A Simple Sequential Algorithm A simple sequential algorithm that colors vertices in at most $(\Delta + 1)$ colors is described in Fig. 2.7. The array variable COLOR[1..n], which is initialized to $[\bot, ..., \bot]$, is such that, when the algorithm terminates, for any *i*, COLOR[i] will contain the color assigned to process p_i .

The colors are represented by the integers 1 to $(\Delta + 1)$. The algorithm considers sequentially each vertex *i* (process p_i) and assigns to it the first color not assigned to its neighbors. (This algorithm is sensitive to the order in which the vertices and the colors are considered.)

```
for each j \in neighbors_i do send INIT(color_i[i]) to p_j end for;
(1)
(2)
     for each j \in neighbors_i
(3)
             do wait (INIT(col_j) received from p_i); color<sub>i</sub>[j] \leftarrow col_j
(4) end for;
(5) for r_i from (\Delta + 2) to m do
        begin asynchronous round
(6)
        if (color_i[i] = r_i)
          then c \leftarrow smallest color in \{1, \ldots, \Delta + 1\} such that \forall j \in neighbors_i : color_i[j] \neq c;
(7)
(8)
                color_i[i] \leftarrow c
(9)
        end if:
        for each j \in neighbors_i do send COLOR(r_i, color_i[i]) to p_i end for;
(10)
(11)
        for each j \in neighbors_i do
(12)
          wait (COLOR(r, col_j) with r = r_i received from p_j);
(13)
          color_i[j] \leftarrow col_j
        end for
(14)
        end asynchronous round
(15) end for.
```

Fig. 2.8 Distributed $(\Delta + 1)$ -coloring from an initial *m*-coloring where $n \ge m \ge \Delta + 2$

2.2.2 Distributed $(\Delta + 1)$ -Coloring of Processes

This section presents a distributed algorithm which colors the processes in at most $(\Delta + 1)$ colors in such a way that no two neighbors have the same color. Distributed coloring is encountered in practical problems such as resource allocation or processor scheduling. More generally, distributed coloring algorithms are symmetry breaking algorithms in the sense that they partition the set of processes into subsets (a subset per color) such that no two processes in the same subset are neighbors.

Initial Context of the Distributed Algorithm Such a distributed algorithm is described in Fig. 2.8. This algorithm assumes that the processes are already colored in $m \ge \Delta + 1$ colors in such a way that no two neighbors have the same color. Let us observe that, from a computability point of view, this is a "no-cost" assumption (because taking m = n and defining the color of a process p_i as its index *i* trivially satisfies this initial coloring assumption). Differently, taking $m = \Delta + 1$ assumes that the problem is already solved. Hence, the assumption on the value of *m* is a complexity-related assumption.

Local Variables Each process p_i manages a local variable $color_i[i]$ which initially contains its initial color, and will contain its final color at the end of the algorithm. A process p_i also manages a local variable $color_i[j]$ for each of its neighbors p_j . As the algorithm is asynchronous and round-based, the local variable r_i managed by p_i denotes its current local round number.

Behavior of a Process p_i The processes proceed in consecutive asynchronous rounds and, at each round, each process synchronizes its progress with its neighbors. As the rounds are asynchronous, the round numbers are not given for free by

the computation model. They have to be explicitly managed by the processes themselves. Hence, each process p_i manages a local variable r_i that it increases when it starts a new asynchronous round (line 5).

The first round (lines 1–2) is an initial round during which the processes exchange their initial color in order to fill in their local array $color_i[neighbors_i]$. If the processes know the initial colors of their neighbors, this communication round can be suppressed. The processes then execute $m - (\Delta + 1)$ asynchronous rounds (line 5).

The processes whose initial color belongs to the set of colors $\{1, \ldots, \Delta + 1\}$ keep their color forever. The other processes update their colors in order to obtain a color in $\{1, \ldots, \Delta + 1\}$. To that end, all the processes execute sequentially the rounds $\Delta + 2, \ldots$, until *m*, considering that each round number corresponds to a given distinct color. During round $r, \Delta + 2 \le r \le m$, each process whose initial color is *r* looks for a new color in $\{1, \ldots, \Delta + 1\}$ which is not the color of its neighbors and adopts it as its new color (lines 6–8). Then, each process exchanges its color with its neighbors (lines 10–14) before proceeding to the next round. Hence, the round invariant is the following one: When a round *r* terminates, the processes whose initial colors were in $\{1, \ldots, r\}$ (a) have a color in the set $\{1, \ldots, \Delta + 1\}$, and (b) have different colors if they are neighbors.

Cost The time complexity (counted in number of rounds) is $m - \Delta$ rounds (an initial round plus $m - (\Delta + 1)$ rounds). Each message carries a tag, a color, and possibly a round number which is also a color. As the initial colors are in $\{1, ..., m\}$, the message bit complexity is $O(\log_2 m)$.

Finally, during each round, two messages are sent on each channel. The message complexity is consequently $2e(m - \Delta)$, where *e* denotes the number of channels.

It is easy to see that, the better the initial process coloring (i.e., the smaller the value of m), the more efficient the algorithm.

Theorem 1 Let $m \ge \Delta + 2$. The algorithm described in Fig. 2.8 is a legal $(\Delta + 1)$ -coloring of the processes (where legal means that no two neighbors have the same color).

Proof Let us first observe that the processes whose initial color belongs to $\{1, ..., \Delta + 1\}$ never modify their color. Let us assume that, up to round *r*, the processes whose initial colors were in the set $\{1, ..., r\}$ have new colors in the set $\{1, ..., \Delta + 1\}$ and any two of them which are neighbors have different colors. Thanks to the initial *m*-coloring, this is initially true (i.e., for the fictitious round $r = \Delta + 1$).

Let us assume that the previous assertion is true up to some round $r \ge \Delta + 1$. It follows from the algorithm that, during round r + 1, only the processes whose current color is r + 1 update it. Moreover, each of them updates it (line 7) with a color that (a) belongs to the set $\{1, \ldots, \Delta + 1\}$ and (b) is not a color of its neighbors (we have seen in Sect. 2.2.1 that such a color does exist). Consequently, at the end of round r + 1, the processes whose initial colors were in the set $\{1, \ldots, r + 1\}$

Fig. 2.9 One bit of control information when the channels are not FIFO

have new colors in the set $\{1, ..., \Delta + 1\}$ and no two of them have the same new color if they are neighbors. It follows that, as claimed, this property constitutes a round invariant from which we conclude that each process has a final color in the set $\{1, ..., \Delta + 1\}$ and no two neighbor processes have the same color.

Remark on the Behavior of the Communication Channels Let us remember that the only assumption on channels is that they are reliable. No other behavioral assumption is made, hence the channels are implicitly non-FIFO channels.

Let us consider two neighbor processes that execute a round r as depicted in Fig. 2.9. Each of them sends its message COLOR(r, -) to its neighbors (line 10), and waits for a message COLOR() from each of them, carrying the very same round number (line 12).

In the figure, p_j has received the round r message from p_i , proceeded to the next round, and sent the message COLOR(r + 1, -) to p_i while p_i is still waiting for round r message from p_j . Moreover, as the channel is not FIFO, the figure depicts the case where the message COLOR(r + 1, -) sent by p_j to p_i arrives before the message COLOR(r, -) it sent previously. As indicated in line 12, the algorithm forces p_i to wait for the message COLOR(r, -) in order to terminate its round r.

As, in each round, each process sends a message to each of its neighbors, a closer analysis of the message exchange pattern shows that the following relation on round numbers is invariant. At any time we have:

$$\forall (i, j): (p_i \text{ and } p_j \text{ are neighbors }) \Rightarrow (0 \le |r_i - r_j| \le 1).$$

It follows that the message COLOR() does not need to carry the value of r but only a bit, namely the parity of r. The algorithm can then be simplified as follows:

- At line 10, each process p_i sends the message COLOR($r_i \mod 2, color_i[i]$) to each of its neighbors.
- At line 12, each process p_i waits for a message COLOR(b, $color_i[i]$) from each of its neighbors where $b = (r_i \mod 2)$.

Finally, it follows from previous discussion that, if the channels are FIFO, the messages COLOR() do not need to carry a control value (neither r, nor its parity bit).

Fig. 2.10 Examples of maximal independent sets

2.2.3 Computing a Maximal Independent Set

Maximal Independent Set: Definition An *independent set* is a subset of the vertices of a graph such that no two of them are neighbors. An independent set M is *maximal* if none of its strict supersets M' (i.e., $M \subset M'$ and $M \neq M'$) is an independent set. A graph can have several maximal independent sets.

The subset of vertices $\{1, 4, 5, 8\}$ of the graph of depicted in the left part of Fig. 2.10 is a maximal independent set. The subsets $\{1, 5, 7\}$ and $\{2, 3, 6, 7\}$ are other examples of maximal independent sets of the same graph. The graph depicted on the right part has two maximal independent sets, the set $\{1\}$ and the set $\{2, 3, 4, 5\}$.

There is a trivial greedy algorithm to compute a maximal independent set in a sequential context. Select a vertex, add it to the independent set, suppress it and its neighbors from the graph, and iterate until there are no more vertices. It follows that the problem of computing a maximal independent set belongs to the time complexity class P (the class of problems that can be solved by an algorithm whose time complexity is polynomial).

A maximum independent set is an independent set with maximal cardinality. When considering the graph at the left of Fig. 2.10, the maximal independent sets $\{1, 4, 5, 8\}$ and $\{2, 3, 6, 7\}$ are maximum independent sets. The graph on the right of the figure has a single maximum independent set, namely the set $\{2, 3, 4, 5\}$.

While, from a time complexity point of view, the computation of a maximal independent set is an *easy* problem, the computation of a maximum independent set is a *hard* problem: it belongs to the class of NP-complete problems.

From *m***-Coloring to a Maximal Independent Set** An asynchronous distributed algorithm that computes a maximal independent set is presented in Fig. 2.11. Each process p_i manages a local array $selected_i[j]$, $j \in neighbors_i \cup \{i\}$, initialized to $[false, \ldots, false]$. At the end of the algorithm p_i belongs to the maximal independent set if and only if $selected_i[i]$ is equal to *true*.

This algorithm assumes that there is an initial *m*-coloring of the processes (as we have just seen, this can be obtained from the algorithm of Fig. 2.8). Hence, the algorithm of Fig. 2.11 is a distributed reduction of the maximal independent set problem to the *m*-coloring problem. Its underlying principle is based on a simple observation and a greedy strategy. More precisely,

• Simple observation: the processes that have the same color define an independent set, but this set is not necessarily maximal.

```
(1)
      for r_i from 1 to m do
        begin asynchronous round
(2)
        if (color_i = r_i) then
(3)
          if (\bigwedge_{i \in neighbors} (\neg selected_i[j])) then selected_i[i] \leftarrow true end if;
(4)
        end if:
        for each j \in neighbors_i do send SELECTED(r_i, selected_i[i]) to p_i end for;
(5)
        for each j \in neighbors_i do
(6)
               wait (SELECTED(r, selected_j) with r = r_i received from p_i);
(7)
(8)
               selected_i[j] \leftarrow selected_j
(9)
        end for
        end asynchronous round
(10) end for.
```

Fig. 2.11 From *m*-coloring to a maximal independent set (code for p_i)

• Greedy strategy: as the previous set is not necessarily maximal, the algorithm starts with an initial independent set (defined by some color) and executes a sequence of rounds, each round *r* corresponding to a color, in which it strives to add to the independent set under construction as much possible processes whose color is *r*. The corresponding "addition" predicate for a process *p_i* with color *r* is that none of its neighbors is already in the set.

As previous algorithms, the algorithm described in Fig. 2.11 simulates a synchronous algorithm. The color of a process p_i is kept in its local variable denoted *color_i*. The messages carry a round number (color) which can be replaced by its parity. The processes execute *m* asynchronous rounds (a round per color). When it executes round *r*, if its color is *r* and none of its neighbors belongs to the set under construction, a process p_i adds itself to the set (line 3). Then, before starting the next round, the processes exchange their membership of the maximal independent set in order to update their local variables *selected_i*[*j*]. (As we can see, what is important is not the fact that the rounds are executed in the order $1, \ldots, m$, but the fact that the processes execute the rounds in the same predefined order, e.g., $1, m, 2, (m-1), \ldots$)

The size of the maximal independent set that is computed is very sensitive to the order in which the colors are visited by the algorithm. As an example, let us consider the graph at the right of Fig. 2.10 where the process p_1 is colored a while the other processes are colored b. If a = 1 and b = 2, the maximal independent set that is built is the set {1}. If a = 2 and b = 1, the maximal independent set that is built is the set {2, 3, 4, 5}.

A Simple Algorithm for Maximal Independent Set This section presents an algorithm, due to M. Luby (1987), that builds a maximal independent set.

This algorithm uses a random function denoted random() which outputs a random value each time it is called (the benefit of using random values is motivated below). For ease of exposition, this algorithm, which is described in Fig. 2.12, is expressed in the synchronous model. Let us remember that the main property of the synchronous model lies in the fact that a message sent in a round is received by its

```
repeat forever
(1)
       begin three synchronous rounds r, r + 1 and r + 2
       beginning of round r
(2)
       random_i[i] \leftarrow random();
(3)
       for each j \in com_with_i do send RANDOM(random<sub>i</sub>[i]) to p_i end for;
       for each j \in com_with_i do
(4)
          wait (RANDOM(random_j) received from p_i); random<sub>i</sub>[j] \leftarrow random_j
(5)
(6)
       end for;
       end of round r and beginning of round r + 1
(7)
       if (\forall j \in com_with_i : random_i[j] > random_i[i])
(8)
          then for each j \in com_with_i do send SELECTED(yes) to p_j end for;
(9)
               state_i \leftarrow in; return(in)
(10)
         else for each j \in com_with_i do send SELECTED(no) to p_i end for;
(11)
               for each j \in com_with_i do wait (SELECTED(-) received from p_i) end for;
               end of round r + 1 and beginning of round r + 2
(12)
               if (\exists k \in com_with_i: SELECTED(yes) received from <math>p_k)
(13)
                 then for each j \in com_with_i: SELECTED(no) received from p_i
(14)
                             do send ELIMINATED(yes) to p_i
(15)
                       end for;
(16)
                       state_i \leftarrow out; return(out)
                 else for each i \in com_with_i do send ELIMINATED(no) to p_i end for;
(17)
(18)
                       for each j \in com_with_i
(19)
                           do wait (ELIMINATED(-) received from p_j)
(20)
                       end for;
(21)
                       for each j \in com_with_i: ELIMINATED(yes) received from p_i
(22)
                           do com_with_i \leftarrow com_with_i \setminus \{j\}
(23)
                       end for;
(24)
                       if (com_with_i = \emptyset) then state_i \leftarrow in; return(in) end if
               end if
(25)
       end if:
(26)
       end three synchronous rounds
(27) end repeat.
```


destination process in the very same round. (It is easy to extend this algorithm so that it works in the asynchronous model.)

Each process p_i manages the following local variables.

- The local variable $state_i$, whose initial value is arbitrary, is updated only once. It final value (*in* or *out*) indicates whether p_i belongs or not to the maximal independent set that is computed. When, it has updated $state_i$ to its final value, a process p_i executes the statement return() which stops its participation to the algorithm. Let us notice that the processes do not necessarily terminate during the same round.
- The local variable com_with_i , which is initialized to $neighbors_i$, is a set containing the processes with which p_i will continue to communicate during the next round.
- Each local variable $random_i[j]$, where $j \in neighbors_i \cup \{i\}$, represents the local knowledge of p_i about the last random number used by p_j .

Fig. 2.13 Messages exchanged during three consecutive rounds

As indicated, the processes execute a sequence of synchronous rounds. The code of the algorithm consists in the description of three consecutive rounds, namely the rounds r, r + 1, and r + 2, where r = 1, 4, 7, 10, ... The messages exchanged during these three consecutive rounds are depicted in Fig. 2.13.

The behavior of the synchronous algorithm during these three consecutive rounds is as follows:

• Round r: lines 2–6.

Each process p_i invokes first the function random() to obtain a random number (line 2) that it sends to all its neighbors it is still communicating with (line 3). Then, it stores all the random numbers it has received, each coming from a process in *com_with_i*.

• Round r + 1: lines 7–11.

Then, p_i sends the message SELECTED(yes) to its neighbors in *com_with_i* if its random number is smaller than theirs (line 8). In this case, it progresses to the local state *in* and stops (line 9).

Otherwise, its random number is not the smallest. In this case, p_i first sends the message SELECTED(no) to its neighbors in *com_with_i* (line 10), and then waits for a message from each of these neighbors (line 11).

• Round r + 2: lines 12–26.

Finally, if p_i has not entered the maximal independent set under construction, it checks if one of its neighbors in *com_with_i* has been added to this set (line 12).

- If one of its neighbors has been added to the independent set, p_i cannot be added to this set in the future. It consequently sends the message ELIMI-NATED(yes) to its neighbors in *com_with_i* to inform them that it no longer competes to enter the independent set (line 13). In that case, it also enters the local state *out* and returns it (line 16).
- If none of its neighbors in com_with_i has been added to the independent set, p_i sends them the message ELIMINATED(no) to inform them that it is still competing to enter the independent set (line 17). Then, it waits for a message ELIMINATED(-) from each of them (line 18) and suppresses from the set com_with_i its neighbors that are no longer competing (those are the processes which sent it the message ELIMINATED(yes), lines 21–23).

Finally, p_i checks if $com_with_i = \emptyset$. If it is the case, it enters the independent set and returns (line 24). Otherwise, it proceeds to the next round.

The algorithm computes an independent set because when a process is added to the set, all its neighbors stop competing to be in the set (lines 12-15). This set is maximal because when a process enters the independent set, only its neighbors are eliminated from being candidates.

Why to Use Random Numbers Instead of Initial Names or Precomputed Colors

As we have seen, the previous algorithm associates a new random number with each process when this process starts a new round triple. The reader can check that the algorithm works if each process uses its identity or a legal color instead of a new random number at each round. Hence, the question: Why use random numbers?

The instance of the algorithm using *n* distinct identities (or a legal process *m*-coloring) requires a number of round triples upper bounded by $\lceil n/2 \rceil$ (or $\lceil m/2 \rceil$). This is because, in each round triple, at least one process enters the maximal independent set and at least one process is eliminated. Taking random numbers does not reduce this upper bound (because always taking initial identities corresponds to particular random choices) but reduces it drastically in the average case (the expected number of round triples is then $O(\log_2 n)$).

2.3 Knot and Cycle Detection

Knots and cycles are graph patterns encountered when one has to solve distributed computing problems such as deadlock detection. This section presents an asynchronous distributed algorithm that detects such graph patterns.

2.3.1 Directed Graph, Knot, and Cycle

A directed graph is a graph where every edge is oriented from one vertex to another vertex. A directed path in a directed graph is a sequence of vertices $i_1, i_2, ..., i_x$ such that for any $y, 1 \le y < x$, there is an edge from the vertex i_y to the vertex i_{y+1} . A cycle is a directed path such that $i_x = i_1$.

A knot in a directed graph G is a subgraph G' such that (a) any pair of vertices in G' belongs to a cycle and (b) there is no directed path from a vertex in G' to a vertex which is not in G'. Hence, a vertex of a directed graph belongs to a knot if and only if it is reachable from all the vertices that are reachable from it. Intuitively, a knot is a "black hole": once in a knot, there is no way to go outside of it.

An example is given in Fig. 2.14. The directed graph has 11 vertices. The set of vertices $\{7, 10, 11\}$ defines a cycle which is not in a knot (this is because, when traveling on this cycle, it is possible to exit from it). The subgraph restricted to the vertices $\{3, 5, 6, 8, 9\}$ is a knot (after entering this set of vertices, it is impossible to exit from it).

Fig. 2.14 A directed graph with a knot

2.3.2 Communication Graph, Logical Directed Graph, and Reachability

As previously, the underlying communication graph is not directed. Each channel is bidirectional which means that, if two processes are neighbors, either of them can send messages to the other.

It is assumed that a directed graph is defined on the communication graph. Its vertices are the processes, and if p_i and p_j are connected by a communication channel, there is (a) either a logical directed edge from p_i to p_j , or (b) a logical directed edge from p_i to p_j , or (c) two logical directed edges (one in each direction).

If there is a directed edge from p_i to p_j , we say " p_j is an *immediate successor* of p_i " and " p_i is an *immediate predecessor* of p_j ". A vertex p_j is said to be *reachable* from a vertex p_i if there is a directed path from p_i to p_j .

From an application point of view, a directed edge corresponds to a dependence relation linking a process p_i to its neighbor p_j (e.g., p_i is waiting for "something" from p_j).

2.3.3 Specification of the Knot Detection Problem

The problem consists in detecting if a given process belongs to a knot of a directed graph. For simplicity, it is assumed that only one process initiates the knot detection. Multiple instantiations can be distinguished by associating with each of them an identification pair made up of a process identity and a sequence number.

The knot detection problem is defined by the following properties, where p_a is the process that initiates the detection:

• Liveness (termination). If p_a starts the knot detection algorithm, it eventually obtains an answer.

- Safety (consistency).
 - If p_a obtains the answer "knot", it belongs to a knot. Moreover, it knows the identity of all the processes involved in the knot.
 - If p_a obtains the answer "no knot", it does not belong to a knot. Moreover, if it belongs to at least one cycle, p_a knows the identity of all the processes that are involved in a cycle with p_a .

As we can see, the safety property of the knot detection problem states what is a correct result while its liveness property states that eventually a result has to be computed.

2.3.4 Principle of the Knot/Cycle Detection Algorithm

The algorithm that is presented below relies on the construction of a spanning tree enriched with appropriate statements. It is due to D. Manivannan and M. Singhal (2003).

Build a Directed Spanning Tree To determine if it belongs to a knot, the initiator p_a needs to check that every process that is reachable from it is on a cycle which includes it (p_a) .

To that end, p_a sends a message GO_DETECT() to its immediate successors in the directed graph and these messages are propagated from immediate successors to immediate successors along directed edges to all the processes that are reachable from p_a . The first time it receives such a message from a process p_j , the receiver process p_i defines p_j as its parent in the directed spanning tree.

Remark The previous message GO_DETECT() and the messages CYCLE_BACK(), SEEN_BACK(), and PARENT_BACK() introduced below are nothing more than particular instances of the messages GO() and BACK() used in the graph traversal algorithms described in Chap. 1.

How to Determine Efficiently that p_a Is on a Cycle If the initiator p_a receives a message GO_DETECT() from a process p_j , it knows that it is on a cycle. The issue is then for p_a to know which are the processes involved in the cycles to which it belongs.

To that end, p_a sends a message CYCLE_BACK() to p_j and, more generally when a process p_i knows that it is on a cycle including p_a , it will send a message CYCLE_BACK() to each process from which it receives a message GO_DETECT() thereafter. Hence, these processes will learn that they are on a cycle including the initiator p_a .

But it is possible that, after it has received a first message GO_DETECT(), a process p_i receives more GO_DETECT() messages from other immediate predecessors (let p_k be one of them, see Fig. 2.15). If this message exchange pattern occurs, p_i

Fig. 2.15 Possible message pattern during a knot detection

sends back to p_k the message SEEN_BACK(), and when p_k receives this message it includes the ordered pair $\langle k, i \rangle$ in a local set denoted *seen_k*. (Basically, the message SEEN_BACK() informs its receiver that its sender has already received a message GO_DETECT().) In that way, if later p_i is found to be on a cycle including p_a , it can be concluded from the pair $\langle k, i \rangle \in seen_k$ that p_k is also on a cycle including p_a (this is because, due to the messages GO_DETECT(), there is a directed path from p_a to p_k and p_i , and due to the cycle involving p_a and p_i , there is a directed path from p_i to p_a).

Finally, as in graph traversal algorithms, when it has received an acknowledgment from each of its immediate successors, a process p_i sends a message PAR-ENT_BACK() to its parent in the spanning tree. Such a message contains (a) the processes that, due to the messages CYCLE_BACK() received by p_i from immediate successors, are known by p_i to be on a cycle including p_a , and (b) the ordered pairs $\langle i, \ell \rangle$ stored in *seen_i* as a result of the acknowledgment messages SEEN_BACK() and PARENT_BACK() it has received from its immediate successors in the logical directed graph. This information, which will be propagated in the tree to p_a , will allow p_a to determine if it is in a knot or a cycle.

2.3.5 Local Variables

Local Variable at the Initiator p_a **Only** The local variable *candidates_a*, which appears only at the initiator, is a set (initially empty) of process identities. If p_a is in a knot, *candidates_a* will contain the identities of all the processes that are in the knot including p_a , when the algorithm terminates. If p_a is not in a knot, *candidates_a* will contain all the processes that are in a cycle including p_a (if any). If *candidates_a* = Ø when the algorithm terminates, p_a belongs to neither a knot, nor a cycle.

Local Variables at Each Process p_i Each (initiator or not) process p_i manages the following four local variables.

• The local variable *parent_i* is initialized to \perp . If p_i is the initiator we will have $parent_i = i$ when it starts the detection algorithm. If p_i is not the initiator, $parent_i$ will contain the identity of the process from which the first message GO_DETECT() was received by p_i . When all the processes reachable from p_a

have received a message GO_DETECT(), these local variables define a directed spanning tree rooted at p_a which will be used to transmit information back to this process.

- The local variable *waiting_from_i* is a set of process identities. It is initialized to set of the immediate successors of *p_i* in the logical directed graph.
- The local variable *in_cycle_i* is a set (initially empty) of process identities. It will contain processes that are on a cycle including *p_i*.
- The local variable *seen_i* is a set (initially empty) of ordered pairs of process identities. As we have seen, $\langle k, j \rangle \in seen_i$ means that there is a directed path from p_a to p_k and a directed edge from p_k to p_j in the directed graph. It also means that both p_k and p_j have received a message GO_DETECT() and, when p_j received the message GO_DETECT() from p_k , it did not know whether it belongs to a cycle including p_a (see Fig. 2.15).

2.3.6 Behavior of a Process

The knot detection algorithm is described in Fig. 2.16.

Launching the Algorithm The only process p_i that receives the external message START() discovers that it is the initiator, i.e., p_i is p_a . If it has no outgoing edges – predicate (*waiting_from*_i $\neq \emptyset$) at line 1 –, p_i returns the pair (no knot, \emptyset), which indicates that p_i belongs neither to a cycle, nor to a knot (line 4). Otherwise, it sends the message GO_DETECT() to all its immediate successors in the directed graph (line 3).

Reception of a Message GO_DETECT() When a process p_i receives the message GO_DETECT() from p_j , it sends back to p_j the message CYCLE_BACK() if it is the initiator, i.e., if $p_i = p_a$ (line 7). If it is not the initiator and this message is the first it receives, it first defines p_j as its parent in the spanning tree (line 9). Then, if $waiting_from_i \neq \emptyset$ (line 10), p_i propagates the detection to its immediate successors in the directed graph (line 11). If $waiting_from_i = \emptyset$, p_i has no successor in the directed graph. It then returns the message PARENT_BACK(*seen_i*, *in_cycle_i*) to its parent (both *seen_i* and *in_cycle_i* are then equal to their initial value, i.e., \emptyset ; *seen_i* = \emptyset means that p_i is not involved in a cycle including the initiator).

If p_i is already in the detection tree, it sends back to p_j the message SEEN_BACK() or CYCLE_BACK() according to whether the local set *in_cycle_i* is empty or not (line 14–15). Hence, if *in_cycle_i* $\neq \emptyset$, p_i is on a cycle including p_a and p_j will consequently learn that it is also on a cycle including p_a .

Reception of a Message XXX_BACK() When a process p_i receives a message XXX_BACK() (where XXX stands for SEEN, CYCLE, or PARENT), it first suppresses its sender p_j from *waiting_from_i*.

when START() is received do **if** (*waiting_from*_i $\neq \emptyset$) (1)(2)**then** parent_i \leftarrow i; (3)for each $j \in waiting_from_i$ do send GO_DETECT() to p_i end for (4)else return(no knot, Ø) end if. (5)when GO_DETECT() is received from p_i do **if** $(parent_i = i)$ (6) (7)then send CYCLE_BACK() to p_i (8) else if $(parent_i = \bot)$ (9) **then** parent_i \leftarrow j; (10)**if** (*waiting_from*; $\neq \emptyset$) (11)then for each $k \in waiting_from_i$ do send GO_DETECT() to p_k end for (12)else send PARENT_BACK(seen_i, in_cycle_i) to p_{parent_i} (13)end if (14)else if $(in_cycle_i \neq \emptyset)$ then send CYCLE_BACK() to p_i (15)else send SEEN_BACK() to p_i end if (16)end if (17)(18) end if. when SEEN_BACK() is received from p_i do (19) waiting_from_i \leftarrow waiting_from_i \ {j}; seen_i \leftarrow seen_i \cup { $\langle i, j \rangle$ }; check_waiting_from(). when CYCLE_BACK() is received from p_i do (20) waiting_from_i \leftarrow waiting_from_i $\setminus \{j\}$; in_cycle_i \leftarrow in_cycle_i $\cup \{j\}$; (21) check_waiting_from(). when PARENT_BACK(seen, in_cycle) is received from p_i do (22) waiting_from_i \leftarrow waiting_from_i $\setminus \{j\}$; seen_i \leftarrow seen_i \cup seen; (23) **if** $(in_cycle = \emptyset)$ (24)**then** seen_i \leftarrow seen_i \cup { $\langle i, j \rangle$ } (25)else $in_cycle_i \leftarrow in_cycle_i \cup in_cycle$ (26) end if; (27) check_waiting_from(). internal operation check_waiting_from() is (28) **if** (*waiting_from*_{*i*} = \emptyset) **then** (29)**if** $(parent_i = i)$ (30)then for each $k \in in_cycle_i$ do (31) $in_cycle_i \leftarrow in_cycle_i \setminus \{k\}; candidates_i \leftarrow candidates_i \cup \{k\};$ (32) for each $x \in \{1, ..., n\}$ do (33) **if** $(\langle x, k \rangle \in seen_i)$ (34)then $in_cycle_i \leftarrow in_cycle_i \cup \{x\};$ (35) $seen_i \leftarrow seen_i \setminus \{\langle x, k \rangle\}$ end if (36)end for (37) (38)end for: (39) if $(seen_i = \emptyset)$ then $res \leftarrow knot$ else $res \leftarrow no knot$ end if; (40) $return(res, candidates_i)$ (41) else if $(in_cycle_i \neq \emptyset)$ then $in_cycle_i \leftarrow in_cycle_i \cup \{i\}$ end if; (42)send PARENT_BACK(seen_i, in_cycle_i) to p_{parent_i} ; return() (43)end if (44) end if.

Fig. 2.16 Asynchronous knot detection (code of p_i)

As we have seen, a message SEEN_BACK() informs its receiver p_i that its sender p_j has already been visited by the detection algorithm (see Fig. 2.15). Hence, p_i adds the ordered pair $\langle i, j \rangle$ to *seen_i* (line 19). Therefore, if later p_j is found to be on a cycle involving the initiator, the initiator will be able to conclude from *seen_i* that p_i is also on a cycle involving p_a . The receiver p_i then invokes the internal operation check_waiting_from().

If the message received by p_i from p_j is CYCLE_BACK(), p_i adds j to in_cycle_i (line 20) before invoking check_waiting_from(). This is because there is a path from the initiator to p_i and a path from p_j to the initiator, hence p_i and p_j belong to a same cycle including p_a .

If the message received by p_i from p_j is PARENT_BACK(*seen*, *in_cycle*), p_i adds the ordered pairs contained in *seen* sent by its child p_j to its set *seen_i* (line 22). Moreover, if *in_cycle* is not empty, p_i merges it with *in_cycle_i* (line 25). Otherwise p_i adds the ordered pair $\langle i, j \rangle$ to *seen_i* (line 24). In this way, the information allowing p_a to know (a) if it is in a knot or (b) if it is only in a cycle involving p_i will be propagated from p_i first to its parent, and then propagated from its parent until p_a . Finally, p_i invokes check_waiting_from().

The Internal Operation check_waiting_from() As just seen, this operation is invoked each time p_i receives a message XXX_BACK(). Its body is executed only if p_i has received a message XXX_BACK() from each of its immediate successors (line 28). There are two cases.

If p_i is not the initiator, it first adds itself to in_cycle_i if this set is not empty (line 41). This is because, if $in_cycle_i \neq \emptyset$, p_i knows that it is on a cycle involving the initiator (lines 20 and 25). Then, p_i sends to its parent (whose identity has been saved in *parent_i* at line 9) the information it knows on cycles involving the initiator. This information has been incrementally stored in its local variables *seen_i* and in_cycle_i at lines 19–27. Finally, p_i invokes return(), which terminates its participation (line 42).

If p_i is the initiator p_a , it executes the statements of lines 30–39. First p_i cleans its local variables $seen_i$ and in_cycle_i (lines 30–38). For each $k \in in_cycle_i$, p_i first moves k from in_cycle_i to $candidates_i$. This is because, if p_i is in a knot, so are all the processes which are on a cycle including p_i . Then, for each x, if the ordered pair $\langle x, k \rangle \in seen_i$, p_i suppresses it from $seen_i$ and adds p_x to in_cycle_i . This is because, after p_a has received a message XXX_BACK() from each of its immediate successors, we have for each process p_k reachable from p_a either $k \in in_cycle_a$ or $\langle x, k \rangle \in seen_a$ for some p_x reachable from p_a . Hence, if $k \in in_cycle_a$ and $\langle x, k \rangle \in$ $seen_a$, then p_x is also in a cycle with p_a .

Therefore, after the execution of lines 30–38, *candidates_a* contains the identities of all the processes reachable from p_a which are on a cycle with p_a . It follows that, if *seen_a* becomes empty, all the processes reachable from p_a are on a cycle with p_a . The statement of line 39 is a direct consequence of this observation. If *seen_a* = \emptyset , p_a belongs to a knot made up of the processes which belong to the set *candidates_i*. If *seen_a* $\neq \emptyset$, *candidates_a* contains all the processes that are involved in a cycle including p_a (hence if *candidates_a* = \emptyset , p_i is involved neither in a knot, nor in a cycle).

An Example Let us consider the directed graph depicted in Fig. 2.17. This graph has a knot composed of the processes p_2 , p_3 , and p_4 , a cycle involving the processes p_1 , p_6 , p_5 and p_7 , plus another process p_8 . If the initiator process p_a belongs to the knot, p_a will discover that it is in a knot, and we will have *candidates*_a = {2, 3, 5} and *seen*_a = Ø when the algorithm terminates. If the initiator process p_a belongs to the cycle on the right of the figure (e.g., p_a is p_1), we will have *candidates*_a = {1, 6, 5, 7} and *seen*_a = { $\langle 4, 2 \rangle$, $\langle 3, 4 \rangle$, $\langle 2, 3 \rangle$, $\langle 1, 2 \rangle$, $\langle 5, 4 \rangle$ } when the algorithm terminates (assuming that the messages GO_DETECT() propagate first along the process chain (p_1 , p_2 , p_3 , p_4), and only then from p_5 to p_4).

Cost of the Algorithm As in a graph traversal algorithm, each edge of the directed graph is traversed at most once by a message $GO_DETECT()$ and a message $SEEN_BACK()$, $CYCLE_BACK()$ or $PARENT_BACK()$ is sent in the opposite direction. It follows that the number of message used by the algorithm is upper bounded by 2e, where e is the number of edges of the logical directed graph.

Let D_T be the depth of the spanning tree rooted at p_a that is built. It is easy to see that the time complexity is $2(D_T + 1)$ (D_T time units for the messages GO_DETECT() to go from the root p_a to the leaves, D_T time units for the messages XXX_BACK() to go back in the other direction and 2 more time units for the leaves to propagate the message GO_DETECT() to their immediate successors and obtain their acknowledgment messages XXX_BACK()).

2.4 Summary

Considering a distributed system as a graph whose vertices are the processes and edges are the communication channels, this chapter has presented several distributed graph algorithms. "Distributed" means here each process cooperates with its neighbors to solve a problem but never learns the whole graph structure it is part of.

The problems that have been addressed concern the computation of shortest paths, the coloring of the vertices of a graph in $\Delta + 1$ colors (where Δ is the maximal degree of the vertices), the computation of a maximal independent set, and the detection of knots and cycles.

As the reader has seen, the algorithmic techniques used to solve graph problems in a distributed context are different from their sequential counterparts.

2.5 Bibliographic Notes

- Graph notions and sequential graph algorithms are described in many textbooks, e.g., [122, 158]. Advanced results on graph theory can be found in [164]. Time complexity results of numerous graph problems are presented in [148].
- Distributed graph algorithms and associated time and message complexity analyses can be found in [219, 292].
- As indicated by its name, the sequential shortest path algorithm presented in Sect. 2.1.1 is due to R.L. Ford. It is based on Bellman's dynamic programming principle [44]. Similarly, the sequential shortest path algorithm presented in Sect. 2.1.2 is due to R.W. Floyd and R. Warshall who introduced independently similar algorithms in [128] and [384], respectively. The adaptation of Floyd–Warshall's shortest path algorithm is due to S. Toueg [373].

Other distributed shortest path algorithms can be found in [77, 203].

- The random algorithm presented in Sect. 2.2.3, which computes a maximal independent set, is due to M. Luby [240]. The reader will find in this paper a proof that the expected number of rounds is $O(\log_2 n)$. Another complexity analysis of $(\Delta + 1)$ -coloring is presented in [201].
- The knot detection algorithm described in Fig. 2.3.4 is due to D. Manivannan and M. Singhal [248] (this paper contains a correctness proof of the algorithm). Other asynchronous distributed knot detection algorithms can be found in [59, 96, 264].
- Distributed algorithms for finding centers and medians in networks can be found in [210].
- Deterministic distributed vertex coloring in polylogarithmic time, suited to synchronous systems, is addressed in [43].

2.6 Exercises and Problems

- 1. Adapt the algorithms described in Sect. 2.1.1 to the case where the communication channels are unidirectional in the sense that a channel transmits messages in one direction only.
- 2. Execute Luby's maximal independent set described in Fig. 2.12 on both graphs described in Fig. 2.10 with various values output by the function random().
- 3. Let us consider the instances of Luby's algorithm where, for each process, the random numbers are statically replaced by its initial identity or its color (where no two neighbor processes have the same color).

Compare these two instances. Do they always have the same time complexity?

- 4. Adapt Luby's synchronous maximal independent set algorithm to an asynchronous message-passing system.
- 5. Considering the directed graph depicted in Fig. 2.14, execute the knot detection algorithm described in Sect. 2.3.4 (a) when p_5 launches the algorithm, (b) when p_{10} launches the algorithm, and (c) when p_4 launches the algorithm.

Chapter 3 An Algorithmic Framework to Compute Global Functions on a Process Graph

This chapter is devoted to distributed graph algorithms that compute a function or a predicate whose inputs are disseminated at the processes of a network. The function (or the predicate) is global because the output at each process depends on the inputs at all the processes. It follows that the processes have to communicate in order to compute their results.

A general algorithmic framework is presented which allows global functions to be computed. This distributed framework is (a) symmetric in the sense that all processes obey the same rules of behavior, and (b) does not require the processes to exchange more information than needed. The computation of shortest distances and the determination of a cut vertex in a graph are used to illustrate the framework. The framework is then improved to allow for a reduction of the size and the number of messages that are exchanged. Finally, the chapter analyzes the particular case of regular networks (networks in which all the processes have the same number of neighbors).

Keywords Cut vertex · De Bruijn's graph · Determination of cut vertices · Global function · Message filtering · Regular communication graph · Round-based framework

3.1 Distributed Computation of Global Functions

3.1.1 Type of Global Functions

The problems addressed in this chapter consist for each process p_i in computing a result *out_i* which involves the whole set of inputs $in_1, in_2, ..., in_n$, where in_i is the input provided by process p_i . More precisely, let IN[1..n] be the vector that, from an external observer point of view, represents the inputs, i.e., $\forall i: IN[i] = in_i$. Similarly, let OUT[1..n] be the vector such that $\forall i: OUT[i] = out_i$. Hence, the processes have to cooperate and coordinate so that they collectively compute

$$OUT = F(IN).$$

According to the function F() which is computed, all the processes may obtain the same result *out* (and we have then $OUT[1] = \cdots = OUT[n] = out$) or different

results (i.e., it is possible that there are processes p_i and p_j such that $out_i \neq out_j$). Examples of such problems are the following.

Routing Tables In this case, the input of a process is its position in the network and its output is a routing table that, for each process p_j , defines the local channel that p_i has to use so that the messages to p_j travel along the path with the shortest distance (let us recall that the distance is the minimal number of channels separating p_i from p_j).

Eccentricity, Diameter, Radius, Center, and Peripheral Vertex The eccentricity of a process p_i (vertex) in a communication graph is the longest distance from p_i to any other process. The eccentricity of p_i is denoted ecc_i .

The diameter *D* of a graph is its largest eccentricity: $D = \max_{1 \le i \le n} (ecc_i)$. The radius of a graph is its minimal eccentricity, a center of a graph is a vertex (process) whose eccentricity is equal to the radius, while a peripheral vertex (process) is a vertex (process) whose eccentricity is equal to the diameter.

The computation of the diameter (or the radius) of a communication graph corresponds to a function that provides the same parameter to all the processes. Differently, the computation of its eccentricity by each process corresponds to a function that does not necessarily provide the processes with the same result. The same occurs when each process has to know if it is a center (or a peripheral process) of the communication graph.

Maximal or Minimal Input Simple functions returning the same result to all the processes are the computation of the maximum (or minimum) of their inputs. This is typically the case in the election problem where, assuming that processes have distinct and comparable identities, the input of each process is its identity and their common output is the greatest (or smallest) of their identities, which defines the process that is elected.

Cut Vertex A cut vertex in a graph is a vertex (process) whose suppression disconnects the graph. Knowledge of such processes is important to analyze message bottleneck and fault-tolerance. The global function computed by each process is here a predicate indicating, at each process, if it is a cut vertex.

3.1.2 Constraints on the Computation

On the Symmetry Side: No Centralized Control A simple solution to compute a function F() would be to use a broadcast/convergecast as presented in Sect. 1.2.1. The process p_a , which is the root of the spanning tree, broadcasts a request message GO() and waits until it has received response messages BACK() from each of its children (each of these messages carries input values from a subset of processes, and they all collectively carry all the input values except the one of p_a). The root process

 p_a then knows the input vector IN[1..n]. It can consequently compute OUT[1..n] = F(IN) with the help of a sequential algorithm, and returns its result to each process along the channels of the spanning tree.

While this solution is viable and worthwhile for some problems, we are interested in this chapter in a solution in which the control is distributed, that is to say in a solution in which no process plays a special role. This can be expressed in the form of the following constraint: the processes must obey the same rules of behavior.

On the Efficiency Side: Do Not Learn More than What Is Necessary A solution satisfying the previous constraint would be for each process to flood the system with its input so that all the processes learn all the inputs, i.e., the input vector IN[1..n]. Then, each process p_i can compute the output vector OUT[1..n] and extracts from it its local result $out_i = OUT[i]$.

As an example, if the processes have to compute the shortest distances, they could first use the algorithm described in Fig. 1.3 (Sect. 1.1.2) in order to learn the communication graph. They could then use any sequential shortest path algorithm to compute their shortest distances. This is not satisfactory when a process p_i learns more information than what is needed to compute its table of shortest distances. As we have seen in Sect. 2.1, it is not necessary for it to know the whole structure of the communication graph in which it is working.

The solutions in which we are interested are thus characterized by a second constraint: a process has not to learn information which is useless from the point of view of the local output it has to compute.

3.2 An Algorithmic Framework

This section presents an algorithmic framework which offers a solution for the class of distributed computations which have been described previously, while respecting the symmetry and efficiency constraints that have been stated. This framework is due to J.-Cl. Bermond, J.-Cl. König, and M. Raynal (1987).

3.2.1 A Round-Based Framework

The algorithmic framework is based on rounds. Moreover, to simplify the presentation, we consider that the communication channels are FIFO (if they are not—as we have seen in Fig. 2.9, Sect. 2.2.2—each message has to carry a parity bit defined from the current round of its sender).

Each process executes first an initialization part, followed by an asynchronous sequence of rounds. If a process receives a message before it started its participation in the algorithm, it executes its initialization part and starts its first round before processing the message.

Asynchronous Round-Based Computation Differently from synchronous systems, the rounds are not given for free in an asynchronous system. Each process p_i has to handle a local variable r_i which denotes its current round number.

We first consider that, in each round r it executes, a process sends a message to each of its neighbors, and receives a message from each of them. (This assumption on the communication pattern will be relaxed in the next section.) It then executes a local processing which depends on the particular problem that is solved.

Local Variables at Each Process p_i In addition to its local variable r_i and its identity id_i , a process manages the following local variables:

- As already indicated, *in_i* is the input parameter provided by *p_i* to solve the problem, while *out_i* is a local variable that will contain its local output.
- A process p_i has c_i (1 ≤ c_i ≤ n − 1) bidirectional channels, which connect it to c_i distinct neighbors processes. The set *channels_i* = {1,..., c_i} is the set of local indexes that allow these neighbors to be addressed, and the local array *channel_i*[1..c_i] defines the local names of these channels (see Exercise 4, Chap. 1). This means that the local names of the channel (if any) connecting p_i and p_j are *channel_i*[x] (where x ∈ *channels_i*) at p_i and *channel_j*[y] (where y ∈ *channels_i*) at p_j.
- new_i is a local set that, at the end of each round r, contains all the information that p_i learned during this round (i.e., it receives this information at round r for the first time).
- *inf_i* is a local set that contains all the information that *p_i* has learned since the beginning of the execution.

Principle The underlying principle is nothing more than the forward/discard principle. During a round r, a process sends to its neighbors all the new information it has received during the previous round (r - 1). It is assumed that it has received its input during the fictitious round r = 0.

It follows that, during the first round a process learns the inputs of the processes which are distance 1 from it, during the second round it learns the inputs of the processes at distance 2, and more generally it learns the inputs of the processes at distance *d* during the round r = d.

Example: Computation of the Routing Tables As a first example, let us consider the computation of the routing tables at each process p_i . Here in_i is the identity of p_i (id_i), and it is assumed that no two processes have the same identity. As far as the output is concerned, out_i is here a routing table $out_i[1..c_i]$, where each $out_i[x]$ is a set initially empty. At the end of the algorithm, $out_i[x]$ will contain the identities of the processes p_j such that *channel*_i[x] is the channel that connects p_i to its neighbor on the shortest distance to p_j .

To simplify the presentation, the description of the algorithm assumes that the processes know the diameter D of the communication graph. It follows from the design principle of the algorithm that, when $r_i = D$, each process has learned all the

```
init inf_i \leftarrow \{id_i\}; new_i \leftarrow \{id_i\}; r_i \leftarrow 0.
(1) for r_i from 1 to D do
           begin asynchronous round
 (2)
           r_i \leftarrow r_1 + 1;
           for each x \in channels_i do send MSG(new_i) on channel_i[x] end for;
(3)
(4)
           new_i \leftarrow \emptyset;
 (5)
           for each x \in channels_i do
 (6)
                wait (MSG(new) received on channel<sub>i</sub>[x]);
(7)
                let aux = new \setminus (inf_i \cup new_i);
 (8)
                out_i[x] \leftarrow out_i[x] \cup aux;
 (9)
                new_i \leftarrow new_i \cup aux
(10)
           end for:
 (11)
           inf_i \leftarrow inf_i \cup new_i
           end asynchronous round
 (12) end for;
 (13) return(out_i[1..c_i]).
```

Fig. 3.1 Computation of routing tables defined from distances (code for p_i)

information it can ever know. Consequently, if D is known, D rounds are necessary and sufficient to compute the routing tables.

The corresponding algorithm is described in Fig. 3.1. Each process p_i executes D rounds (line 1). During a round, it first sends to its neighbors what it has learned during the previous round (line 3), which has been saved in its local variable new_i (line 9; initially, it knows only its identity id_i).

Then, p_i waits for a round r message from each of its neighbors. When it receives such a message on channel *channel*_i[x], it first computes what it learns from this message (line 7). As already noticed, what it learns are identities of processes at distance r from it. It consequently adds these identities to the routing table $out_i[x]$. The update of $out_i[x]$ (line 8) is such that *channel*_i[x] is the favorite channel to send messages to the processes whose identity belongs to $out_i[x]$. (If we want to use an array *routing_to*_i[*id*], as done in the previous chapter, $id \in out_i[x]$ means that *routing_to*_i[*id*] = *channel*_i[x].) Then p_i updates appropriately its local variable new_i (line 9).

Finally, before proceeding to the next round, p_i updates inf_i which stores all the identities learned since the beginning (line 11). If it has executed the *D* rounds, it returns its local routing table $out_i[1..n]$ (line 13).

Cost As previously, let one time unit be the maximal transit time for a message from a process to one of its neighbors. The time complexity is 2D. The worst case is when a single process starts the algorithm. It then takes D messages sent sequentially from a process to another process before all processes have started their local algorithm. Then, all the processes execute D rounds.

Each process executes D rounds, and two messages are exchanged on each channel at each round. Hence, the total number of messages is 2eD, where e is the number of channels of the communication graph.

A General Algorithm A general algorithm is easily obtained as follows. Let in_i the input of p_i . The initialization is then replaced by the statements " $inf_i \leftarrow \{(i, in_i)\}$; $new \leftarrow \{(i, in_i)\}$ ", and line 8 is modified according to the function or the predicate that one wants to compute.

3.2.2 When the Diameter Is Not Known

This section shows how to eliminate the a priori knowledge of the diameter.

A Simple Predicate Let us observe that, if a process does not learn any new information at a given round, it will learn no more during the next rounds.

This follows from the fact that, if p_i learns nothing new in round r, there is no process situated at distance r from p_i , and consequently no process at a distance greater than r. Hence, if it learns nothing new in round r, p_i will learn nothing new during rounds r' > r.

Actually, the last round *r* during which p_i learns something new is the round $r = ecc_i$ (its eccentricity), but, not knowing ecc_i , it does not know that it has learned everything. In contrast, at the end of round $r = ecc_i + 1$, p_i will have $new_i = \emptyset$ and it will then learn that it knows everything. (Let us observe that this predicate also allows p_i to easily compute ecc_i .)

Not All Processes Terminate During the Same Round Let us observe that, as not all the processes have necessarily the same eccentricity, they do not terminate at the same round. Let us consider two neighbor processes p_i and p_j such that p_i learns no new information during round r while p_j does. We have the following:

- As p_i and p_j are neighbors, we have $0 \le |ecc_i ecc_j| \le 1$. Thus, p_j will have $new_j = \emptyset$ at the end of round r + 1.
- In order that p_j does not block during round r + 1 waiting for a message from p_i , this process has to execute round r + 1, sending it a message carrying the value $new_i = \emptyset$.

It follows that a process p_i now executes $ecc_i + 2$ rounds. At round $r = ecc_i$ it knows everything, at round $r = ecc_i + 1$ it knows that it knows everything, and at round $r = ecc_i + 2$ it informs its neighbors of this and terminates.

The corresponding generic algorithm is described in Fig. 3.2. Each process manages an additional local variable com_with_i , which contains the channels on which it has to send and receive messages. The management of this variable is the main novelty with respect to the algorithm of Fig. 3.1.

If the empty set is received on a channel *channel*_i[x], this channel is withdrawn from *com_with*_i (line 7). Moreover, to prevent processes from being blocked waiting forever for a message, a process p_i (before it terminates) sends the message MSG(\emptyset) on each channel which is still open (line 15). It also empties the open channels by waiting for a message on each of them (line 16).

init $inf_i \leftarrow \{(id_i, in_i)\}; new_i \leftarrow \{(id_i, in_i)\}; com_with_i \leftarrow \{1, \dots, c_i\}; r_i \leftarrow 0.$ (1) while $(new_i \neq \emptyset)$ do begin asynchronous round (2) $r_i \leftarrow r_i + 1;$ (3)for each $x \in com_with_i$ do send $MSG(new_i)$ on $channel_i[x]$ end for; (4) $new_i \leftarrow \emptyset;$ (5)for each $x \in com_with_i$ do **wait** (MSG(*new*) received on *channel*_i[x]); (6)if $(new = \emptyset)$ then $com_with_i \leftarrow com_with_i \setminus \{x\}$ (7)(8)else let $aux = new \setminus (inf_i \cup new_i);$ (9) specific statements related to the function that is computed; $new_i \leftarrow new_i \cup aux$ (10)(11)end if end for: (12) $inf_i \leftarrow inf_i \cup new_i$ (13)end asynchronous round (14) end while; (15) for each $x \in com_with_i$ do send $MSG(new_i)$ on $channel_i[x]$ end for; (16) for each $x \in com_with_i$ do wait (MSG(new) on channel_i[x]) end for; (17) specific statements which compute out_i ; (18) return (out_i) .

Fig. 3.2 A diameter-independent generic algorithm (code for p_i)

Cost It is easy to see that the time complexity is upper-bounded by D + (D+2) = 2D + 2, and the message complexity is O(2e(D+2)).

A Round-Based Algorithm as an Iteration on a Set of Equations The algorithm of Fig. 3.2 can be rephrased as a set of equations relating the local variables at round r - 1 and round r. This makes the algorithm instantiated with a function F() easier to verify than an algorithm computing the same function F() which would not be based on rounds. These equations use the following notations:

- $sent_i[x]^r$ denotes the content of the message sent by p_i on $channel_i[x]$ during round r,
- *received*_i[x]^r denotes the content of the message received by p_i on *channel*_i[x] during round r; moreover, p_j is the process that sent this message on its local channel *channel*_j[y],
- new_i^{r-1} is the content of new_i at the end of round r-1,
- $com_with_i^{r-1}$ and inf_i^{r-1} are the values of com_with_i and inf_i at the end of round r-1, respectively.

Using these notations, the equations that characterize the generic round-based algorithm are the following ones for all $i \in [1..n]$:

$$\forall x \in com_with_i^{r-1}: \quad sent_i[x]^r = new_i^{r-1},$$

$$\forall x \in com_with_i^{r-1}: \quad received_i[x]^r = sent_i[y]^r,$$

Fig. 3.3 A process graph with three cut vertices

$$new_i^r = \left(\bigcup_{x \in com_with_i^r} received_i[x]^r\right) \setminus inf_i^{r-1},$$

 $com_with_i^r = com_with_i^{r-1} \setminus \{x \mid received_i[x]^r = \emptyset\}.$

3.3 Distributed Determination of Cut Vertices

3.3.1 Cut Vertices

Definition A *cut vertex* (or articulation point) of a graph is a vertex whose suppression disconnects the graph. A graph is *biconnected* if it remains connected after the deletion of any of its vertices. Thus, a connected communication graph is biconnected if and only if it has no cut vertex. A connected graph can be decomposed in a tree whose vertices are its biconnected components.

Given a vertex (process) p_i of a connected graph, let R_i be the local relation defined on the edges (channels) incident to p_i as follows. Let e_1 and e_2 be two edges incident to p_i ; $e_1 R_i e_2$ if the edges e_1 and e_2 belong to the same biconnected component of the communication graph. It is easy to see that R_i is an equivalence relation; i.e., it is reflexive, symmetric, and transitive. Thus, if $e_1 R_i e_2$ and $e_2 R_i e_3$, then, the three edges e_1, e_2 , and e_3 incident to p_i belong to the same biconnected component.

Example As an example, let us consider the graph depicted in Fig. 3.3. The processes p_4 , p_5 , and p_8 are cut vertices (the deletion of any of them disconnects the graph).

There are four biconnected components (ellipsis on the figure) denoted C_1 , C_2 , C_3 , and C_4 . As an example, the deletion of any process (vertex) inside a component does not make it disconnected.

When looking at the four edges a, b, c, and d connecting process p_8 to its neighbors, we have $a R_8 b$ and $c R_8 d$, but we do not have $a R_8 d$. This is because the channels a and b belong to the biconnected component C_3 , the channels c and d belong to the biconnected component C_4 , and $C_3 \cup C_4$ is not a biconnected component of the communication graph.

3.3.2 An Algorithm Determining Cut Vertices

Principle of the Algorithm The algorithm, which is due to J.-Cl. Bermond and J.-Cl. König (1991), is based on the following simple idea.

Given a process p_i which is on one or more cycles, let us consider an elementary cycle to which p_i belongs (an elementary cycle is a cycle that does not pass several times through the same vertex/process). Let $a = channel_i[x]$ and $b = channel_i[y]$ be the two distinct channels of p_i on this cycle (see an example in Fig. 3.4). Moreover, let p_j be the process on this cycle with the greatest distance to p_i , and let ℓ be this distance. Hence, the length of the elementary cycle including p_i and p_j is 2ℓ or $2\ell + 1$ (in the figure, it is $2\ell + 1 = 3 + 4$).

The principle that underlies the design of the algorithm follows directly from (a) the message exchange pattern of the generic framework, and (b) the fact that, during each round r, a process sends only the new information it has learned during the previous round. More precisely, we have the following.

• It follows from the message exchange pattern that p_i receives id_j during round $r = \ell$ (in the figure, id_j is learned from channel *b*). Moreover, p_i also receives id_j from channel *a* during round $r = \ell$ if the length of the cycle is even, or during round $r = \ell + 1$ if the length of the cycle is odd. In the figure, as the length of the elementary cycle is odd, p_i receives id_j a first time on channel *b* during round ℓ and a second time on channel *a* during round $\ell + 1$. The pair $(a, b) \in R_i$, i.e., the channels *a* and *b* (which are incident to p_i) belong to the same biconnected component.

This observation provides a simple local predicate, which allows a process p_i to determine if two of its incident channels belong to the same biconnected component.

• Let us now consider two channels incident to the same process p_i that are not in the same biconnected component (as an example, this is the case of channels *b* and *c*, both incident to p_8). As these two channels do not belong to a same elementary cycle including p_i , this process cannot receive two messages carrying the same process identity during the same round or two consecutive rounds. Thus, the previous predicate is an "if and only if" predicate.

Description of the Algorithm The algorithm is described in Fig. 3.5. This algorithm is an enrichment of the generic algorithm of Fig. 3.2: the only addition are the lines $N.9_1-N.9_10$, which replace line 9, and lines 17_1-17_3 , which replace

init $inf_i \leftarrow \{id_i\}$; $new_i \leftarrow \{id_i\}$; $com_with_i \leftarrow \{1, \ldots, c_i\}$. (1)while $(new_i \neq \emptyset)$ do begin asynchronous round (2) $r_i \leftarrow r_i + 1;$ for each $x \in com_with_i$ do send $MSG(new_i)$ on $channel_i[x]$ end for; (3) (4) $new_i \leftarrow \emptyset;$ (5) for each $x \in com_with_i$ do (6) **wait** (MSG(*new*) received on *channel*_i[x]); (7)**if** $(new = \emptyset)$ **then** $com_with_i \leftarrow com_with_i \setminus \{x\}$ else let $aux = new \setminus (inf_i \cup new_i);$ (8) (N.9_1) for each $id \in new$ do (N.<mark>9</mark>_2) **if** $(id \notin inf_i \cup new_i)$ **then** *routing_to*_{*i*}[*id*] \leftarrow *x*; *dist*_{*i*}[*id*] \leftarrow *r*_{*i*} $(N.9_3)$ else if $(r_i = dist_i[id] \lor r_i = dist_i[id] + 1)$ $(N.9_4)$ (N.9_5) then let $y = routing_to_i[id];$ $(N.9_6)$ $channel_i[y], channel_i[x]$ $(N.9_7)$ \in same biconnected component (N.9_8) end if (N.9_9) end if end for; $(N.9_{10})$ (10) $new_i \leftarrow new_i \cup aux$ (11)end if (12)end for; (13) $inf_i \leftarrow inf_i \cup new_i$ end asynchronous round (14)end while; (15)for each $x \in com_with_i$ do send MSG(*new_i*) on *channel_i*[x] end for; (16)for each $x \in com_with_i$ do wait (MSG(*new*) on *channel*_i[x]) end for; $(N.17_1)$ Considering *channel*_i $[1..c_i]$ and the pairs computed at line N.9-6, compute the $(N.17_2)$ transitive closure of the local relation R_i (belong to a same biconnected component); $(N.17_3)$ if (all channels of p_i belong to the same biconnected component) **then** $out_i \leftarrow no$ **else** $out_i \leftarrow yes$ $(N.17_4)$ (N.17_5) end if; (18)return(out_i).

Fig. 3.5 An algorithm determining the cut vertices (code for p_i)

line 17. Said differently, by suppressing all the lines whose number is prefixed by N, we obtain the algorithm of Fig. 3.2.

Each process p_i manages two array-like data structures, denoted *routing_to_i* and *dist_i*. Given a process identity *id*, *dist_i[id]* contains the distance from p_i to the process whose identity is *id*, and *routing_to_i[id]* contains the local channel on which messages for this process have to be sent. We use an array-like structure to make the presentation clearer. Since initially a process p_i knows neither the number of processes, nor their identities, a dynamic list has to used to implement *routing_to_i* and *dist_i*.

Thus, let us consider a process p_i that, during a round r, receives on a channel *channel*_{*i*}[*x*] a message carrying the value $new \neq \emptyset$. Let $id \in new$ (line N.9_1) and let p_i be the corresponding process (i.e., $id = id_i$). There are two cases:

- If *id* is an identity not yet known by p_i (line N.9_2), p_i creates the variables *routing_to_i*[*id*] and *dist_i*[*id*] and assigns them *x* (the appropriate local channel to send message to p_j) and r_i (the distance separating p_i and p_j), respectively (line N.9_3).
- If *id* is an identity known by p_i , it checks the biconnectivity local predicate, namely $(r_i = dist_i[id]) \lor (r_i = dist_i[id] + 1)$ (line N.9_4). If this predicate is true, p_i has received twice the same identity during the same round r_i , or during the rounds r_i and $r_i 1$. As we have seen, this means that *channel*_i[x] (the channel on which the message MSG(*new*) has been received) and *channel*_i[y] (the channel on which *id* has been received for the first time, line N.9_5), belong to the same biconnected component. Hence, we have (*channel*_i[x], *channel*_i[y]) $\in R_i$ (line N.9_6).

The second enrichment of the generic algorithm is the computation of the result at lines N.17_1–N.17_3. A process p_i computes the transitive closure of its relation R_i , which has been incrementally computed at line N.9_6. Let R_i^* denote this transitive closure. If R_i^* is made up of a single class of equivalence, then p_i is not a cut vertex and the result is consequently the value no. If R_i^* contains two or more classes of equivalence, each class defines a distinct biconnected component to which p_i belongs. In this case, p_i is a cut vertex of the communication graph, and it consequently locally outputs yes (N.17_3).

3.4 Improving the Framework

This section shows that the previous generic algorithm can be improved so as to reduce the size and the number of messages that are exchanged.

3.4.1 Two Types of Filtering

Filtering That Affects the Content of Messages A trivial way to reduce the size of messages exchanged during a round r, is for each process p_i to not send on a channel *channel*_i[x] the complete information new_i it has learned during the previous round, but to send only the content of new_i minus what has been received on this channel during the previous round.

Let *received*_{*i*}[*x*] be the information received by p_i on the channel *channel*_{*i*}[*x*] during a round *r*. Thus, p_i has to send only $sent_i[x] = new_i \setminus received_i[x]$ on *channel*_{*i*}[*x*] during the round r + 1. This is the first filtering: it affects the content of messages themselves.

Filtering That Affects the Channels That Are Used The idea is here for a process p_i to manage its channels according to their potential for carrying new information.

To that end, let us consider two neighbor processes p_i and p_j such that we have $new_i = new_j$ at the end of round r. According to the message exchange pattern and the round-based synchronization, this means that p_i and p_j have exactly the same set E of processes at distance r, and during that round both learn the input values of the processes in the set E. Hence, if p_i and p_j knew that $new_i = new_j$, they could stop exchanging messages. This is because the new information they will acquire in future rounds will be the inputs of the processes at distance r + 1, r + 2, etc., which they will obtain independently from one another (by way of the processes in the set E).

The problem of exploiting this property lies in the fact that, at the end of a round, a process does not know the value of the set *new* that it will receive from each of its neighbors. However, at the end of a round r, each process p_i knows, for each of its channels *channel*_i[x], the value *sent*_i[x] it has sent on this channel, and the value *received*_i[x] it has received on this channel. Four cases may occur (let p_j denote the neighbor to which p_i is connected by *channel*_i[x]).

- 1. $sent_i[x] = received_i[x]$. In this case, p_i and p_j sent to each other the same information during round r. They do not learn any new information from each other. What is learned by p_i is the fact that it has learned in round (r 1) the information that p_j sent it in round r, and similarly for p_j . Hence, from now on, they will not learn anything more from each other.
- 2. $sent_i[x] \subset received_i[x]$. In this case, p_j does not learn anything new from p_i in the current round. Hence, it will not learn anything new from p_i in the future rounds.
- 3. $received_i[x] \subset sent_i[x]$. This case is the inverse of the previous one: p_i learns that it will never learn new information on the channel *channel*_i[x], in all future rounds.
- 4. In the case where $sent_i[x]$ and $received_i[x]$ cannot be compared, both p_i and p_j learn new information from each other, $received_i[x] \setminus sent_i[x]$ as far as p_i is concerned.

These items allow for the implementation of the second filtering. It is based on the values carried by the messages for managing the use of the communication channels.

3.4.2 An Improved Algorithm

Two More Local Variables To implement the previous filtering, each process p_i is provided with two local set variables, denoted c_{in_i} and c_{out_i} . They contain indexes of local channels, and are initialized to $\{1, \ldots, c_i\}$. These variables are used as follows in order to implement the management of the communication channels:

- When $sent_i[x] = received_i[x]$ (item 1), x is suppressed from both c_{in_i} and c_{out_i} .
- When $sent_i[x] \subset received_i[x]$ (item 2), x is suppressed from c_{out_i} .
- When $received_i[x] \subset sent_i[x]$ (item 3), x is suppressed from c_{in_i} .

```
init inf_i \leftarrow \{(id_i, in_i)\}; new_i \leftarrow \{(id_i, in_i)\}; r_i \leftarrow 0;
      c\_in_i \leftarrow \{1, \ldots, c_i\}; c\_out_i \leftarrow \{1, \ldots, c_i\};
      for each x \in \{1, \ldots, c_i\} do received<sub>i</sub>[x] \leftarrow \emptyset end for.
(1)
        while (c_{in_i} \neq \emptyset) \lor (c_{out_i} \neq \emptyset) do
             begin asynchronous round
(2)
             r_i \leftarrow r_i + 1;
(3)
             for each x \in c_{out_i} do
                  if (x \in c_{in_i}) then sent_i[x] \leftarrow new_i \setminus received_i[x] else sent_i[x] \leftarrow new_i end if;
(4)
                   send MSG(sent_i[x]) on channel_i[x];
(5)
                   if (sent_i[x] = \emptyset) then c\_out_i \leftarrow c\_out_i \setminus \{x\} end if
(6)
(7)
             end for;
             new_i \leftarrow \emptyset;
 (8)
(9)
             for each x \in c_{in_i} do
                   wait (MSG(received<sub>i</sub>[x]) received on channel<sub>i</sub>[x]);
(10)
(11)
                   if (x \in c \ out_i)
                      then if (sent_i[x] \subseteq received_i[x]) then c_out_i \leftarrow c_out_i \setminus \{x\} end if;
(12)
(13)
                             if (received_i[x] \subseteq sent_i[x]) then c_{in_i} \leftarrow c_{in_i} \setminus \{x\} end if
                      else if (received_i[x] = \emptyset) then c_{in_i} \leftarrow c_{in_i} \setminus \{x\} end if
(14)
(15)
                   end if:
(16)
                   new_i \leftarrow new_i \cup (received_i[x] \setminus inf_i)
(17)
             end for;
(18)
             inf_i \leftarrow inf_i \cup new_i
             end asynchronous round
(19) end while;
(20) return(inf_i).
```

Fig. 3.6 A general algorithm with filtering (code for p_i)

The Improved Algorithm The final algorithm is described in Fig. 3.6. It is the algorithm of Fig. 3.2 modified according to the previous discussion. The local termination is now satisfied when a process p_i can no longer communicate; i.e., it is captured by the local predicate $(c_{ini} = \emptyset) \land (c_{out_i} = \emptyset)$.

When it executes its "send" part of the algorithm (lines 3–7), a process p_i has now to compute the value $sent_i[x]$ sent on each open output channel $channel_i[x]$. Moreover, if $sent_i[x] = \emptyset$, this channel is suppressed from the set c_out_i , which contains the indexes of the output channels of p_i that are still open. In this case, the receiving process p_j will also suppress the corresponding channel from its set of open input channels c_in_j (lines 14).

When it executes its "receive" part of the algorithm (lines 9–17), a process p_i updates its set of input channels c_{in_i} and its set of output channels c_{out_i} according to the value $received_i[x]$ it has received on each input channel that is still open (i.e., on each *channel*_i[x] such that $x \in c_{in_i}$).

Complexity The algorithm terminates in D + 1 rounds. This comes from the fact that when $sent_i[x] = \emptyset$, both the sender p_i and the receiver p_j withdraw the corresponding channel from c_{out_i} and c_{in_j} , respectively. The maximum number of messages is consequently 2e(D + 1). The time complexity is 2D + 1 in the worst case (which occurs when a single process starts, its first round message wakes up

other processes, etc., and the eccentricity of the starting process is equal to the diameter D of the communication graph).

3.5 The Case of Regular Communication Graphs

3.5.1 Tradeoff Between Graph Topology and Number of Rounds

A graph is characterized by several parameters, among which its number of vertices n, its number of edges e, its diameter D, and its maximal degree Δ , are particularly important.

On the Message Complexity This appears clearly in the message complexity (denoted *C* in the following) of the previous algorithm for which *C* is upper bounded by 2e(D + 1). If *D* is known by the processes, one round is saved, and we have C = 2eD. This means that

- If the graph is fully connected we have D = 1, e = n(n-1)/2, and $C = O(n^2)$.
- If the graph is a tree we have e = (n 1), and C = O(nD).

This shows that it can be interesting to first build a spanning tree of the communication graph and then use it repeatedly to compute global functions. However, for some problems, a tree is not satisfactory because the tree that is obtained can be strongly unbalanced in the sense that processes may have a distinct number of neighbors.

The Notion of a Regular Graph Hence, for some problems, we are interested in communication graphs in which the processes have the same number of neighbors (i.e., the same degree Δ). When, they exist, such graph are called *regular*. In such a graph we have $e = (n\Delta)/2$, and consequently we obtain

$$C = n\Delta D$$
.

This relation exhibits a strong relation linking three of the main parameters associated with a regular graph.

What Regular Graphs Can Be Built? Given Δ and D, Moore's bound (1958) is an upper bound on the maximal number of vertices (processes) that a regular graph with diameter D and degree Δ can have. This number is denoted $n(D, \Delta)$, and we have $n(D, \Delta) \leq 1 + \Delta + \Delta(\Delta - 1) + \cdots + \Delta(\Delta - 1)^{D-1}$, i.e.,

$$n(D, 2) \le 2D + 1$$
, and
 $n(D, \Delta) \le \frac{\Delta(\Delta - 1)^D - 2}{\Delta - 2}$ for $\Delta > 2$.

This is an upper bound. Therefore (a) it does not mean that regular graphs for which $n(D, \Delta)$ is equal to the bound exist for any pair (D, Δ) , and (b) when such a graph exists, it does not state how to built it. However, this bound states that, in the regular graphs that can be built, we have $\Delta \geq \sqrt[p]{n}$. It follows that, in the regular networks that can be built, we have

$$C = D \sqrt[D]{n^{D+1}}.$$

This formula relates clearly the number of rounds *D* and the number of messages exchanged at each round, namely $n \sqrt[D]{n}$.

3.5.2 De Bruijn Graphs

The graphs known as *De Bruijn's graphs* are directed regular graphs, which can be easily built. This section presents them, and shows their interest in computing global functions. (These graphs can also be used as overlay structures in distributed applications.)

Let *x* be a vertex of a directed graph. $\Delta^+(x)$ denotes its input degree (number of incoming edges), while $\Delta^-(x)$ denotes its output degree (number of output edges). In a regular network, we have $\forall x : \Delta^+(x) = \Delta^-(x) = \Delta$, and the value Δ defines the degree of the graph.

De Bruijn's Graph Let us consider a vocabulary V of Δ letters (e.g., $\{0, 1, 2\}$ for $\Delta = 3$).

- The vertices are all the words of length D that can be built on a vocabulary V of Δ letters. Hence, there are $n = \Delta^D$ vertices.
- Each vertex $x = [x_1, ..., x_{D-1}, x_D]$ has Δ output edges that connect it to the vertices $y = [x_2, ..., x_D, \alpha]$, where $\alpha \in V$ (this is called the *shifting* property).

It follows from this definition that the input channels of a vertex $x = [x_1, ..., x_{D-1}, x_D]$ are the Δ vertices labeled $[\beta, x_1, ..., x_{D-1}]$, where $\beta \in V$.

Let us also observe that the definition of the directed edges implies that each vertex labeled $[a, a, ..., a], a \in V$, has a channel to itself (this channel counts then as both an input channel and an output channel).

A De Bruijn's graph defined from a specific pair (Δ, D) is denoted dB (Δ, D) . Such a graph has $n = \Delta^D$ vertices and $e = n\Delta$ directed edges.

Examples of De Bruijn's Graphs Examples of directed De Bruijn's graphs are described Fig. 3.7.

- The graph at the top of the figure is dB(2,1). We have $\Delta = 2$, D = 1, and $n = 2^1 = 2$ vertices.
- The graph in the middle of the figure is dB(2,2). We have $\Delta = 2$, D = 2, and $n = 2^2 = 4$ vertices.
- The graph at the bottom of the figure is dB(2,3). We have $\Delta = 2$, D = 3, and $n = 2^3 = 8$ vertices.

Fig. 3.7 The De Bruijn's directed networks dB(2,1), dB(2,2), and dB(2,3)

A Fundamental Property of a De Bruijn's Graph In addition to being easily built, De Bruijn's graphs possess a noteworthy property which makes them attractive for the computation of global functions, namely there is exactly one directed path of length D between any pair of vertices (including each pair of the form (x, x)).

Computing a Function on a De Bruijn's Graph The algorithm described in Fig. 3.8 is tailored to compute a global function F() in a round-based synchronous (or asynchronous) distributed system whose communication graph is a De Bruijn's graph (as seen in Fig. 2.9, messages have to carry the parity bit of the current round number in the asynchronous case).

This algorithm is designed to benefit from the fundamental property of De Bruijn's graphs. Let c_{in_i} denote the set of Δ input channels and c_{out_i} denote the set of Δ output channels of p_i . At the end of a round, the local variable *received*_i contains all pairs (j, in_j) received by p_i in the current round (lines 3–7). Initially, *received*_i contains the input pair of p_i , i.e. (i, in_i) . When, it starts a round, a process p_i sends the value of *received*_i on each of its output channels (line 2). Hence, during a round r, a process sends on each of its output channels what it has learned from all its input channels during the previous round (r - 1). There is neither filtering nor memorization of what has been received during all previous rounds r' < r.

It follows from the fundamental property of De Bruijn's graphs that, at the end of the last round r = D, the set *received*_i of each process p_i contains all the input values, each exactly once; i.e., we have then *received*_i = {(1, *in*₁),

```
init received<sub>i</sub> \leftarrow {(i, in<sub>i</sub>)}.
       when r = 1, 2, ..., D do
(1)
           begin synchronous round
(2)
           for each x \in c_{out_i} do send MSG(received<sub>i</sub>) on channel<sub>i</sub>[x] end for;
(3)
           received<sub>i</sub> \leftarrow \emptyset;
           for each x \in c_{in_i} do
(4)
(5)
                 wait (MSG(rec) received on channel<sub>i</sub>[x]);
(6)
                 received_i \leftarrow received_i \cup rec
(7)
           end for
           end synchronous round
(8)
        end when;
(9)
        out_i \leftarrow F(received_i);
(10) return(out_i).
```


 $(2, in_2), \ldots, (n, in_i)$ }. Each process can consequently compute $F(received_i)$ and returns the corresponding result.

A Simple Example Let us consider the communication graph DB(2,2) (the one described in the middle of Fig. 3.7). We have the following:

- At the end of the first round:
 - The process labeled 00 is such that $received_{00} = \{(00, in_{00}), (10, in_{10})\}$.
 - The process labeled 10 is such that $received_{10} = \{(01, in_{01}), (11, in_{11})\}$.
- At the end of the second round, the process labeled 01 is such that $received_{01}$ contains the values of $received_{00}$ and $received_{10}$ computed at the previous round. We consequently have $received_{01} = \{(00, in_{00}), (10, in_{10}), (01, in_{01}), (11, in_{11})\}$.

If the function F() is associative and commutative, a process can compute $to_send = F(received_i)$ at the end of each round, and send this value instead of *received_i* during the next round (line 2). Merging of files, max(), min(), and + are examples of such functions.

3.6 Summary

This chapter has presented a general framework to compute global functions on a set of processes which are the nodes of a network. The main features of this framework are that all processes execute the same local algorithm, and no process learns more than what it needs to compute F. Moreover, the knowledge of the diameter D is not necessary and the time complexity is 2(D + 1), while the total number of messages is upper bounded by 2e(D + 2), where e is the number of communication channels.

3.7 Bibliographic Notes

- The general round-based framework presented in Sect. 3.2 and its improvement presented in Sect. 3.4 are due to J.-Cl. Bermond, J.-Cl. König, and M. Ray-nal [48].
- The algorithm that computes the cut vertices of a communication graph is due to J.-Cl. Bermond and J.-Cl. König [47]. Other distributed algorithms determining cut vertices have been proposed (e.g., [187]).
- The tradeoff between the number of rounds and the number of messages is addressed in [223, 243] and in the books [292, 319].
- The use of the general framework in regular directed networks has been investigated in [46]. Properties of regular networks (such as hypercubes, De Bruijn's graphs, and Kautz's graphs) are presented in [45, 49].
- A general technique for network synchronization is presented [27].
- A graph problem is *local* if it can be solved by a distributed algorithm with time complexity smaller than D (the diameter of the corresponding graph). The interested reader will find in [236] a study on the locality of the graph coloring problem in rings, regular trees of radius r, and n-vertex graphs with largest degree Δ .

3.8 Problem

1. Adapt the general framework presented in Sect. 3.2 to communication graphs in which the channels are unidirectional. It is, however, assumed that the graphs are strongly connected (there is a directed path from any process to any process).

Chapter 4 Leader Election Algorithms

This chapter is on the leader election problem. Electing a leader consists for the processes of a distributed system in selecting one of them. Usually, once elected, the leader process is required to play a special role for coordination or control purposes.

Leader election is a form of symmetry breaking in a distributed system. After showing that no leader can be elected in anonymous regular networks (such as rings), this chapter presents several leader election algorithms with a special focus on non-anonymous ring networks.

Keywords Anonymous network · Election · Message complexity · Process identity · Ring network · Time complexity · Unidirectional versus bidirectional ring

4.1 The Leader Election Problem

4.1.1 Problem Definition

Let each process p_i be endowed with two local Boolean variables *elected_i* and *done_i*, both initialized to *false*. (Let us recall that *i* is the index of p_i , i.e., a notational convenience that allows us to distinguish processes. Indexes are not known by the processes.) The Boolean variables *elected_i* are such that eventually exactly one of them becomes true, while each Boolean variable *done_i* becomes true when the corresponding process p_i learns that a process has been elected. More formally, the election problem is defined by the following safety and liveness properties, where var_i^{τ} denotes the value of the local variable var_i at time τ .

• Safety property:

$$\begin{array}{l} - \ (\forall \ i : elected_i^{\tau} \Rightarrow (\forall \tau' \ge \tau : \ elected_i^{\tau'})) \land (\forall \ i : \ done_i^{\tau} \Rightarrow (\forall \tau' \ge \tau : \ done_i^{\tau'})). \\ - \ \forall \ i, \ j, \ \tau, \ \tau' : \ (i \ne j) \Rightarrow \neg (elected_i^{\tau} \land elected_j^{\tau'}). \\ - \ \forall \ i : \ done_i^{\tau} \Rightarrow (\exists \ j, \ \tau' \le \tau : \ elected_j^{\tau'}). \end{array}$$

The first property states that the local Boolean variables $elected_i$ and $done_i$ are stable (once true, they remain true forever). The second property states that at most one process is elected, while the third property states that a process cannot learn that the election has terminated while no process has yet been elected.

- Termination property:
 - $\exists i, \tau : elected_i^{\tau}.$
 - $\forall i : \exists \tau : done_i^{\tau}.$

This liveness property states that a process is eventually elected, and this fact is eventually known by all processes.

4.1.2 Anonymous Systems: An Impossibility Result

This section assumes that the processes have no identities. Said differently, there is no way to distinguish a process p_i from another process p_j . It follows that all the processes have the same number of neighbors, the same code, and the same initial state (otherwise these features could be considered as their identities). The next theorem shows that, in such an anonymity context, there is no solution to the leader election problem. For simplicity reasons, the theorem considers the case where the network is a ring.

Theorem 2 There is no deterministic election algorithm for leader election in a (bi/unidirectional) ring of n > 1 processes.

Proof The proof is by contradiction. Let us assume that there is a deterministic distributed algorithm A that solves the leader election problem in an anonymous ring. A is composed of n local deterministic algorithms $A_1, \ldots, A_i, \ldots, A_n$, where A_i is the local algorithm executed by p_i . Moreover, due to anonymity, we have $A_1 = \cdots = A_n$. We show that A cannot satisfy both the safety and the termination properties that define the leader election problem.

For any *i*, let σ_i^0 denote the initial state of p_i , and let $\Sigma^0 = (\sigma_1^0, \ldots, \sigma_n^0)$ denote the initial global state. As all the processes execute the same local deterministic algorithm A_i , there is a synchronous execution during which all the processes execute the same step of their local deterministic algorithm A_i , and each process p_i proceeds consequently from σ_i^0 to σ_i^1 (this step can be the execution of an internal statement or a communication operation). Moreover, as $\sigma_1^0 = \cdots = \sigma_n^0$ and A_i is deterministic and the same for all processes, it follows that the set of processes progress from $\Sigma^0 = (\sigma_1^0, \ldots, \sigma_n^0)$ to $\Sigma^1 = (\sigma_1^1, \ldots, \sigma_n^1)$, where $\sigma_1^1 = \cdots = \sigma_n^1$. The important point here is that the execution progresses from a symmetric global state Σ^0 to another symmetric global state Σ^1 ("symmetric" meaning here that all processes are in the same local state).

As all A_i are deterministic and identical, the previous synchronous execution can be continued and the set of processes progresses then from the symmetric global state Σ^1 to a new symmetric global state Σ^2 , etc. It follows that the synchronous execution can be extended forever from a symmetric global state Σ to another symmetric global state Σ' . Consequently, the previous synchronous execution never terminates. This is because for it to terminate, it has to enter an asymmetric global state (due to its very definition, the global state in which a process is elected is asymmetric). Hence, the algorithm A fails to satisfy the termination property of the leader election problem, which concludes the proof of the theorem.

4.1.3 Basic Assumptions and Principles of the Election Algorithms

Basic Assumptions Due to the previous theorem, the rest of this chapter assumes that each process p_i has an identity id_i , and that distinct processes have different identities (i.e., $i \neq j \Rightarrow id_i \neq id_j$). Moreover, it is assumed that identities can be compared with the help of the operators <, =, >.

Basic Principles of the Election Algorithms The basic idea of election algorithms consists in electing the process whose identity is an extremum (the greatest identity or the smallest one) among the set of all processes or a set of candidate processes. As no two processes have the same identity and all identities can be compared, there is a single extremum identity.

4.2 A Simple $O(n^2)$ Leader Election Algorithm for Unidirectional Rings

4.2.1 Context and Principle

Context This section considers a network structured as a unidirectional ring, i.e., each process has two neighbors, one from which it can receive messages and another one to which it can send messages. Moreover, a channel connecting two neighbor processes is not required to be FIFO (first in first out).

A process knows initially its identity and the fact that no two processes have the same identity. It does not know the total number of processes n that define the ring.

Principle This algorithm, which is due to E. Chang and R. Roberts (1979), is one of the very first election algorithms. The idea is the following. Each process p_i sends its identity on the ring, and stops the progress of any identity id_j it receives if $id_j < id_i$. As all the processes have distinct identities, it follows that the only identity whose progress on the ring cannot be stopped is the highest identity. This is the identity of the process that is eventually elected.

when START() is received do (1) if $(\neg part_i)$ then $part_i \leftarrow true$; send ELECTION (id_i) end if. when ELECTION(id) is received do (2)case $(id > id_i)$ then $part_i \leftarrow true$; send ELECTION(id) $(id < id_i)$ then if $(\neg part_i)$ then $part_i \leftarrow true$; send ELECTION (id_i) end if (3) (4) $(id = id_i)$ then send ELECTED(id); $elected_i \leftarrow true$ (5) end case. when ELECTED(id) is received do (6)*leader*_i \leftarrow *id*; *done*_i \leftarrow *true*; if $(id \neq id_i)$ then $elected_i \leftarrow false$; send ELECTED(id) end if. (7)

Fig. 4.1 Chang and Robert's election algorithm (code for p_i)

4.2.2 The Algorithm

The code of the algorithm is described in Fig. 4.1. In addition to its identity id_i , and the Boolean variables *elected_i* and *done_i*, each process p_i manages another Boolean denoted *part_i* (and initialized to *false*), and a variable *leader_i* that will contain the identity of the elected process.

The processes that launch the election are the processes p_i that receive the external message START() while $part_i = false$. When this occurs, p_i becomes a participant and sends the message ELECTION(id_i) on its single outgoing channel (line 1).

When a process p_i receives a message ELECTION(*id*) on its single input channel, there are three cases. If $id > id_i$, p_i cannot be the winner, and it forwards the message it has received (line 2). If $id < id_i$, if not yet done, p_i sends the message ELECTION(id_i) (line 3). Finally, if $id = id_i$, its message ELECTION(id_i) has visited all the processes, and consequently id_i is the highest identity. So, p_i is the elected process. Hence, it informs the other processes by sending the message ELECTED(id_i) on its outgoing channel (line 4).

When a process p_i receives a message ELECTED(*id*), it learns both the identity of the leader and the fact that the election is terminated (line 5). Then, it forwards the message ELECTED(*id*) so that all processes learn the identity of the elected leader.

4.2.3 Time Cost of the Algorithm

In all cases, the algorithm sends n messages ELECTED(), which are sent one after the other. Hence, in the following we focus only on the cost due to the messages ELECTION(). To compute the time complexity, we assume that each message takes one time unit (i.e., all messages take the worst transfer delay which is defined as being equal to one time unit).

The best case occurs when only the process p_i with the highest identity receives a message START(). It is easy to see that the time complexity is n (the message

ELECTION(id_i) sent by p_i is passed from each process to its neighbor on the ring before returning to p_i).

The worst case occurs when the process p_j with the second highest identity (a) is the only process that receives a message START(), and (b) follows on the ring the process p_i that has the highest identity. Hence, (n-1) processes separate p_j and p_i . The message ELECTION (id_j) takes (n-1) time units before attaining p_i , and then the message ELECTION (id_i) takes n times units to travel the ring. Hence, (2n - 1) time units are required. It follows that, whatever the case, an election requires between n and (2n - 1) times units.

4.2.4 Message Cost of the Algorithm

Best Case and Worst Case The best case for the number of messages is the same as for the time complexity, which happens when only the process with the highest identity receives a message START(). The algorithm then gives rise to exactly n messages ELECTION(). The worst case is when (a) each process p_i receives a message START() while $part_i = false$, (b) each message takes one time unit, and (c) the processes are ordered in the ring as follows: first, the process with the highest identity, then the one with the second highest identity, etc., until the process with the smallest identity (Fig. 4.2 where id_n is the highest identity, etc., until id_1 , which is the smallest one).

It follows that the message START() received by the process with the smallest identity gives rise to one message ELECTION(), the one with the second smallest identity gives rise to two messages ELECTION() (one from itself to the process with the smallest identity, plus another one from this process to the process with the highest identity), and so on until the process with the highest identity whose message START() gives rise to *n* messages ELECTION(). It follows that the total number of messages is $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$, i.e., $O(n^2)$.

Average Case To compute the message complexity in the average case, let P(i, k) be the probability that the message ELECTION() sent by the process p_x with the *i*th smallest identity is forwarded k times. Assuming that the direction of the ring

is clockwise (as in Fig. 4.2), P(i,k) is the probability that the k-1 clockwise neighbors of p_x (the processes that follow p_x on the ring) have an identity smaller than id_x and the kth clockwise neighbor of p_x has an identity greater than id_x . Let us recall that there are (i-1) processes with an identity smaller than id_x and (n-i)processes with an identity greater than id_x .

Let $\binom{a}{b}$ denote the number of ways of choosing *b* elements in a set of *a* elements. We have

$$P(i,k) = \frac{\binom{i-1}{k-1}}{\binom{n-1}{k-1}} \times \frac{n-i}{n-k}.$$

Since there is a single message that makes a full turn on the ring (the one carrying the highest identity), let us consider each of the (n - 1) other messages. The expected number of passes of the *i*th message (where *i* denotes the rank of the identity of the corresponding ELECTION() message) is then for $i \neq n$:

$$E_i(k) = \sum_{k=1}^{n-1} k P(i,k).$$

Hence, the expected number of transfers for all messages is

$$E = n + \sum_{i=1}^{n-1} \sum_{k=1}^{n-1} k P(i,k),$$

which can be simplified to

$$E = n + \sum_{k=1}^{n-1} \frac{n}{k+1} = n \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} \right).$$

As the harmonic series $1 + 1/2 + \cdots + 1/n + \cdots$ is upper bounded by $c + \log_e n$ (where c is a constant), the average number of ELECTION() messages E is upper bounded by $O(n \log n)$.

4.2.5 A Simple Variant

The previous algorithm always elects the process with the maximal identity. It is possible to modify this algorithm to obtain an algorithm that elects the process with the highest identity among the processes whose participation in the algorithm is due to the reception of a START() message (this means that, whatever its identity, a process that does not receive a START() message, or that receives such a message only after having received an ELECTION() message, cannot be elected).

The corresponding algorithm is depicted in Fig. 4.3. Each process p_i manages a local variable *idmax_i* which contains the greatest identity of a competing process seen by p_i . Initially, *idmax_i* is equal to 0.

```
when START() is received do

(1) if (idmax_i = 0) then idmax_i \leftarrow id_i; send ELECTION(id_i) end if.

when ELECTION(id) is received do

(2) case (id > idmax_i) then idmax_i \leftarrow id; send ELECTION(id)

(3) (id < idmax_i) then skip

(4) (id = id_i) then send ELECTED(id); elected_i \leftarrow true

(5) end case.

when ELECTED(id) is received do

(6) leader_i \leftarrow id; done_i \leftarrow true;

(7) if (id \neq id_i) then elected_i \leftarrow false; send ELECTED(id) end if.
```

Fig. 4.3 A variant of Chang and Robert's election algorithm (code for p_i)

When it receives a START() message (if it ever receives one), a process p_i considers and processes it only if $idmax_i = 0$. Moreover, when it receives a message ELECTION(*id*), a process p_i discards it if $id < idmax_i$ (this is because p_i has seen a competing process with a higher identity). The rest of the algorithm is similar to the algorithm of Fig. 4.1.

4.3 An *O*(*n* log *n*) Leader Election Algorithm for Bidirectional Rings

4.3.1 Context and Principle

Context This section considers a bidirectional ring. As before, each process has a left neighbor and a right neighbor, but it can now send a message to, and receive a message from, any of these neighbors. Given a process p_i , the notations *left*_i and *right*_i are used to denote the channels connecting p_i to its left neighbor and to its right neighbor, respectively.

The notions of left and right are global: they are the same for all processes, i.e., going only to left allows a message to visit all processes (and similarly when going only to right).

Principle The algorithm presented below is due to D.S. Hirschberg and J.B. Sinclair (1980). It is based on the following idea. The processes execute asynchronous rounds. During each round, processes compete, and only the processes that win in a round r are allowed to continue competing during round r + 1. During the first round (denoted round 0), all processes compete.

A process p_i , which is competing during round r, is a winner at the end of that round if it has the largest identifier on the part of the ring that spans the 2^r processes on its left side and the 2^r processes on its right side, i.e., in a continuous neighborhood of $2^{r+1} + 1$ processes. This is illustrated in Fig. 4.4.

Fig. 4.4 Neighborhood of a process p_i competing during round r

If it has the highest identity, p_i proceeds to the next round as a competitor. Otherwise, it no longer competes to become leader. It follows that any two processes that remain competitors after round *r* are at a distance $d > 2^r$ (see Fig. 4.5, where p_i and p_j are competitors at th end of round *r*). Said differently, after each round, the number of processes that compete to become leader is divided at least by two.

4.3.2 The Algorithm

To simplify the presentation, it is assumed that each process receives a message START() before any message sent by the algorithm.

The algorithm is described in Fig. 4.6. When it starts participating in the algorithm, a process p_i sends a message ELECTION(id_i, r, d) to its left and right neighbors (line 1), where id_i is its identity, r = 0 is the round number associated with this message (let us recall that the first round is numbered 0), and d = 1 is the number of processes that have already been visited by this message.

When a process p_i receives a message ELECTION(*id*, *r*, *d*), its behavior depends on the respective values of *id_i* and *id*. If *id* > *id_i*, there are two cases.

- If $d < 2^r$, the message has not yet visited the full left (or right) neighborhood of size 2^r it has to visit. In this case, p_i forwards the message ELECTION($id_i, r, d + 1$) to the appropriate right or left neighbor (line 2).
- If $d \ge 2^r$, the message has visited all the process neighborhood it had to visit. As the progress of this message has not been stopped, p_i sends back (line 3) the message REPLY(*id*, *r*) to inform the process p_x whose identity is *id* that the message ELECTION(*id*, *r*, -) it sent has visited all the processes of its right (or left) neighborhood of size 2^r without being stopped (this neighborhood starts at p_x and ends at p_i).

```
when START() is received do
(1) send ELECTION(id_i, 0, 1) on both left<sub>i</sub> and right<sub>i</sub>.
when ELECTION(id, r, d) is received on left_i (resp., right_i) do
(2) case (id > id_i) \land (d < 2^r) then send ELECTION(id, r, d + 1) to right, (resp., left)
             (id > id_i) \land (d \ge 2^r) then send REPLY(id, r) to left_i (resp., right_i)
(3)
(4)
                                        then skip
             (id < id_i)
             (id = id_i)
(5)
                                        then send ELECTED(id) on left_i; elected_i \leftarrow true
(6)
       end case.
when REPLY(id, r) is received on left<sub>i</sub> (resp., right<sub>i</sub>) do
(7) if (id \neq id_i)
         then send REPLY(id, r) on right<sub>i</sub> (resp., left<sub>i</sub>)
(8)
(9)
         else if (already received REPLY(id, r) from right<sub>i</sub> (resp., left<sub>i</sub>))
                  then send ELECTION(id_i, r + 1, 1) on both left_i and right_i
(10)
(11)
                end if
(12) end if.
when ELECTED(id) is received on right<sub>i</sub> do
(13) leader_i \leftarrow id; done_i \leftarrow true;
(14) if (id \neq id_i) then elected_i \leftarrow false; send ELECTED(id) on left_i end if.
```

Fig. 4.6 Hirschberg and Sinclair's election algorithm (code for p_i)

If $id_i > id$, the process whose identity is id cannot be elected (this is because its identity is not the greatest one). Hence, p_i stops the progress of the message ELECTION(id, -, -) (line 4). Finally, if $id_i = id$, the message ELECTION(id, r, -) sent by p_i has visited all the processes without being stopped. It follows that id_i is the greatest identity, and p_i consequently sends a message ELECTED(id_i) (line 5), which will inform all processes that the election is over (lines 13–14).

When a process p_i receives a message REPLY(id, r), p_i forwards it to the appropriate (right or left) neighbor if it is not the final destination process of this message (line 8). If it is the final destination process ($id_i = id$), and this is the second message REPLY(id, r) (i.e., the message coming from the other side of the ring), p_i learns that it has the highest identity in both its left and right neighborhoods of size 2^r (line 9). It consequently proceeds to the next round by sending to its left and right neighbors the message ELECTION($id_i, r + 1, 1$) (line 10), which starts its next round.

4.3.3 Time and Message Complexities

Message Complexity Let us first notice that a process p_i remains a competitor on its left and right neighborhoods, each of size 2^r , only if it has not been defeated by a process within distance 2^{r-1} on its left or its right neighborhood. Moreover, in a set of $2^{r-1} + 1$ consecutive processes, at most one process can remain competitor for round *r*. It follows that we have the following:

- *n* processes are competitors on paths of length $2^0 = 1$ (round 0),
- At most $\lceil \frac{n}{2} \rceil$ processes are competitors on paths of length $2^1 = 2$ (round 1),
- At most $\lceil \frac{n}{2} \rceil$ processes are competitors on paths of length 2² (round 2), etc.,
- At most $\lceil \frac{n}{2^{r-1}+1} \rceil$ processes are competitors on paths of length 2^r (round *r*), etc.

Let us also observe that a process, which is competitor at round r, entails the transfer of at most 4×2^r messages (a message ELECTION() and a message REPLY(), one in each direction, both on the right path and the left path of size 2^r). It follows that the total number of ELECTION() and REPLY() messages is upper bounded by

$$4\left(1\times n+2\left\lceil\frac{n}{2^{0}+1}\right\rceil+2^{2}\left\lceil\frac{n}{2^{1}+1}\right\rceil+2^{3}\left\lceil\frac{n}{2^{2}+1}\right\rceil+\dots+2^{r}\left\lceil\frac{n}{2^{r-1}+1}\right\rceil+\dots\right)$$

Each internal term is less than 2n, and there are at most $1 + \log_2 n$ terms. It follows that the total number of messages is upper bounded by $8n(1 + \log_2 n)$, i.e., $O(n \log_2 n)$.

Time Complexity To simplify, let us assume that $n = 2^k$, and let us consider the best case, namely, all the processes start simultaneously. Moreover, as usual for time complexity, it is assumed that each message takes one time unit. The process with the highest identity will execute from round 0 until round *k*, and a round *r* will take 2^r time units. By summing the time taken by all rounds, the process with the highest identity will be elected after at most $2(1+2^1+2^2+\cdots+2^r+\cdots+2^k)$ time units (the factor 2 is due to a message ELECTION() in one direction plus a message REPLY() in the other direction). It follows that, in the best case, the time complexity is upper bounded by $2(\frac{2^{k+1}-1}{2-1}) = 4n - 2$, i.e., O(n). The worst case time complexity, which is also O(n), is addressed in Exercise 3.

The worst case time complexity, which is also O(n), is addressed in Exercise 3. This means that the time complexity is linear with respect to the size of the ring.

4.4 An O(n log n) Election Algorithm for Unidirectional Rings

4.4.1 Context and Principles

Context This section considers a unidirectional ring network in which the channels are FIFO (i.e., on each channel, messages are received in their sending order). As in the previous section, each process p_i knows only its identity id_i and the fact that no two processes have the same identity. No process knows the value n.

Principle The algorithm presented below is due to D. Dolev, M. Klawe, and M. Rodeh (1982). It is based on a very simple and elegant idea.

As in the previous election algorithms, initially all processes compete to be elected as a leader, and execute consecutive rounds to that end. During each round, at most half of the processes that are competitors remain competitors during the next round. Hence, there will be at most $O(\log_2 n)$ rounds.

Fig. 4.7 Neighbor processes on the unidirectional ring

Fig. 4.8 From the first to the second round

The novel idea is the way the processes simulate a bidirectional ring. Let us consider three processes p_i , p_j , and p_k such that p_i and p_k are the left and the right neighbor of p_j on the ring (Fig. 4.7). Moreover, let us assume that a process receives messages from its right neighbor and sends messages to its left neighbor.

During the first round, each process sends its identity to its left neighbor, and after it has received the identity id_x of its right neighbor p_x , it forwards id_x to its left neighbor. Hence, when considering Fig. 4.7, p_i receives first id_j and then id_k , which means that it knows three identities: id_i , id_j , and id_k . It follows that it can play the role of p_j . More precisely

- If $id_j > \max(id_i, id_k)$, p_i considers id_j as the greatest identity it has seen and progresses to the next round as a competitor on behalf of id_j .
- If $id_j < \max(id_i, id_k)$, p_i stops being a competitor and its role during the next rounds will be to forward to the left the messages it receives from the right.

It is easy to see that, if p_i remains a competitor (on behalf of id_j) during the second round, its left neighbor p_h and its right neighbor p_j can no longer remain competitors (on behalf of id_i , and on behalf of id_k , respectively). This is because

$$id_i > \max(id_i, id_k) \Rightarrow \neg(id_i > \max(id_h, id_j)) \land \neg(id_k > \max(id_j, id_\ell)).$$

It follows that, during the second round, at most half of the processes remain competitors. During that round, the processes that are no longer competitors only forward the messages they receive, while the processes that remain competitors do the same as during the first round, except that they consider the greatest identity they have seen so far instead of their initial identity. This is illustrated in Fig. 4.8, where it is assumed that $id_j > \max(id_i, id_k), id_\ell < \max(id_k, id_m), \text{ and } id_m > \max(id_\ell, id_p),$ and consequently p_i competes on behalf of id_j , and p_ℓ competes on behalf of id_m . The processes that remain competitors during the second round define a logical ring with at most n/2 processes. This ring is denoted with dashed arrows in the figure.

Finally, the competitor processes that are winners during the second round proceed to the third round, etc., until a round with a single competitor is attained, which occurs after at most $1 + \lceil \log_2 n \rceil$ rounds.

```
when START() is received do
(1) competitor<sub>i</sub> \leftarrow true; maxid<sub>i</sub> \leftarrow id<sub>i</sub>; send ELECTION(1, id<sub>i</sub>).
when ELECTION(1, id) is received do
(2) if (\neg competitor_i)
         then send ELECTION(1, id)
(3)
(4)
         else if (id \neq maxid_i)
(5)
                  then send ELECTION(2, id); proxy_for_i \leftarrow id
(6)
                  else send ELECTED(id, id_i)
(7)
               end if
(8) end if.
when ELECTION(2, id) is received do
(9) if (\neg competitor_i)
         then send ELECTION(2, id)
(10)
         else if (proxy\_for_i > max(id, maxid_i))
(11)
                  then maxid_i \leftarrow proxy\_for_i; send ELECTION(1, proxy\_for_i)
(12)
(13)
                  else competitor<sub>i</sub> \leftarrow false
(14)
               end if
(15) end if.
when ELECTED(id1, id2) is received do
(16) leader_i \leftarrow id_1; done_i \leftarrow true; elected_i \leftarrow (id_1 = id_i);
(17) if (id2 \neq id_i) then send ELECTED(id1, id2) end if.
```

Fig. 4.9 Dolev, Klawe, and Rodeh's election algorithm (code for p_i)

4.4.2 The Algorithm

As in Sect. 4.3, it is assumed that each process receives an external message START() before any message sent by the algorithm. The algorithm is described in Fig. 4.9.

Local Variables In addition to $done_i$, $leader_i$, and $elected_i$, each process p_i manages three local variables.

- *competitor_i* is a Boolean which indicates if p_i is currently competing on behalf of some process identity or is only relaying messages. The two other local variables are meaningful only when *competitor_i* is equal to *true*.
- $maxid_i$ is the greatest identity know by p_i .
- $proxy_for_i$ is the identity of the process for which p_i is competing.

Process Behavior When a process receives a message START(), it initializes *competitor_i* and *maxid_i* before sending a message ELECTION(1, *id_i*) on its single outgoing channel (line 1). Let us observe that messages do not carry round numbers. Actually, round numbers are used only to explain the behavior of the algorithm and compute the total number of messages.

When a process p_i receives a message ELECTION(1, *id*), p_i forwards it on its outgoing channel if it is no longer a competitor (lines 2–3). If p_i is a competitor, there are two cases.

- If the message ELECTION $(1, id_i)$ is such that $id = maxid_i$, then it has made a full turn on the ring, and consequently $maxid_i$ is the greatest identity. In this case, p_i sends the message ELECTED $(maxid_i, id_i)$ (line 6), which is propagated on the ring to inform all the processes (lines 16–17).
- If message ELECTION(1, *id*) is such that $id \neq maxid_i$, p_i copies *id* in *proxy_for_i*, and forwards the message ELECTION(2, *id*) on its outgoing channel.

When a process p_i receives a message ELECTION(2, *id*), it forwards it (as previously) on its outgoing channel if it is no longer a competitor (lines 9–10). If it is a competitor, p_i checks if $proxy_for_i > max(id, maxid_i)$, i.e., if the identity of the process it has to compete for (namely, $proxy_for_i$) is greater than both $maxid_i$ (the identity of the process on behalf of which p_i was previously competing) and the identity *id* it has just received (line 11). If it is the case, p_i updates $maxid_i$ and starts a new round (line 12). Otherwise, $proxy_for_i$ is not the highest identity. Consequently, as p_i should compete for an identity that cannot be elected, it stops competing (line 13).

4.4.3 Discussion: Message Complexity and FIFO Channels

Message Complexity During each round, except the last one, each process sends two messages: a message ELECTION(1, -) and a message ELECTION(2, -). Moreover, there are only ELECTION(1, -) messages during the last round. As we have seen, there are at most $\log_2 n + 1$ rounds. It follows that the number of messages ELECTION(1, -) and ELECTION(2, -) sent by the algorithm is at most $2n \log n + n$.

Type of Channels Each process receives alternately a message ELECTION(1, -) followed by a message ELECTION(2, -). As the channels are FIFO, it follows that the numbers 1 and 2 used to tag the messages are useless: A message ELECTION() needs to carry only a process identifier, and consequently, there are only *n* different messages ELECTION().

4.5 Two Particular Cases

Leader Election in an Arbitrary Network To elect a leader in a connected arbitrary network, one can use network traversal algorithms such as those described in Chap. 1.

Each process launches a network traversal with feedback, and all the messages related to the network traversal launched by a process p_i are tagged with its identity id_i . Moreover, each process continues participating only in the network traversal it has seen that has been launched with the greatest identity. It follows that a single network traversal will terminate, namely the one launched by the process with the greatest identity.

(1) rd_i ← random(1, n); broadcast RANDOM(rd_i);
 (2) wait(a message RANDOM(rd_x) from each process p_x);
 (3) elected_i ← (Σⁿ_{x=1}rd_x) mod n + 1.

Fig. 4.10 Index-based randomized election (code for p_i)

When the Indexes Are the Identities When the identity of a process is its index, and both this fact and n are known by all processes, the leader election problem is trivial. It is sufficient to statically select an index and define the corresponding process as the leader. While this works, it has a drawback, namely, the same process is always elected.

There is a simple way to solve this issue, as soon as the processes can use random numbers. Let random(1, n) be a function that returns a random number in $\{1, ..., n\}$ each time it is called.

The algorithm described in Fig. 4.10 is a very simple randomized election algorithm. Each process first obtains a random number and sends it to all. Then, it waits until it has received all random numbers. When this occurs, the processes can compute the same process identity, and consistently elect the corresponding process (line 3). The costs of the algorithm are O(1) time units and $O(n^2)$ messages.

The probability that a given process p_x is elected can be computed from the specific probability law associated with the function random().

4.6 Summary

This chapter was devoted to election algorithms on a ring. After a simple proof that no such algorithm exists in anonymous ring networks, the chapter presented three algorithms for non-anonymous rings. Non-anonymous means here that (a) each process p_i has an identity id_i , (b) no two processes have the same identity, (c) identities can be compared, (d) initially, a process knows only its identity, and (e) no process knows n (total number of processes).

Interestingly, this chapter has presented two $O(n \log n)$ elections algorithms that are optimal. The first, due to Hirschberg and Sinclair, is suited to bidirectional rings, while the second, due to Dolev, Klawe, and Rodeh, is suited to both unidirectional rings and bidirectional rings (this is because a bidirectional ring can always be considered as if it was unidirectional). This algorithm shows that, contrary to what one could think, the fact that a ring is unidirectional or bidirectional has no impact on its optimal message complexity when considering a O() point of view.

4.7 Bibliographic Notes

• The impossibility of solving the leader election problem in anonymous rings is due to D. Angluin [19].

- The general problem of what can be computed in anonymous networks is addressed in [22, 392, 393].
- The distributed election problem and its first solution are due to G. Le Lann [232].
- The $O(n^2)$ election algorithm presented in Sect. 4.2 is due to E.J.H. Chang and R. Roberts [83].
- The *O*(*n* log *n*) election algorithm for bidirectional rings presented in Sect. 4.3 is due to D.S. Hirschberg and J.B. Sinclair [185].
- The *O*(*n* log *n*) election algorithm for unidirectional rings presented in Sect. 4.4 is due to D. Dolev, M. Klawe, and M. Rodeh [117]. Simultaneously and independently, a similar algorithm was presented by G.L. Peterson [295]. Another leader election algorithm for rings is presented in [134].
- Leader election algorithms in complete networks are studied in [208]. Numerous leader election algorithms suited to various network topologies (e.g., trees) are presented by N. Santoro in [335].
- Several authors have shown that Ω(n log n) is a lower bound on the number of messages in both ring networks and complete networks (e.g., [24, 56, 288]).
- The best election algorithm on unidirectional ring networks known so far is due to L. Higham and T. Przytycka [184]. Its message complexity is $1.271 n \log n + O(n)$. However, it is not yet known what is the smallest constant *c* such that an election can be solved on unidirectional rings with message complexity $c \times n \log n + O(n)$ (it is only known that $c \ge 0.69$ [56]).

Higham and Przytycka's algorithm is based on rounds and assumes that all processes start with the same initial round number. An extension of this algorithm is presented in [20], which allows the processes to start with arbitrary round numbers. This extension, which is motivated by fault-tolerance with respect to initial values, guarantees that the message complexity is $O(n \log n)$ when the processes start with the same round number, and may increase up to $O(n^2)$ when each process starts with an arbitrary round number. This fault-tolerance property is called *graceful degradation* with respect to initial values.

• Leader election in dynamic networks and mobile ad hoc networks is addressed in [197, 244].

4.8 Exercises and Problems

- 1. Extend the proof of Theorem 2 so that it works for any anonymous regular network.
- 2. Considering the variant of Chang and Robert's election algorithm described in Fig. 4.3, and assuming that *k* processes send an ELECTION() message at line 1, what is the maximal number of ELECTION() messages sent (at lines 1 and 2) during an execution of the algorithm?

Answer: $nk - \frac{k(k-1)}{2}$.

3. Show that the worst case for the time complexity of Hirschberg and Sinclair's election algorithm is when *n* is 1 more than a power of 2. Show that, in this case, the time complexity is 6n - 6. Solution in [185].

Chapter 5 Mobile Objects Navigating a Network

A mobile object is an object that, according to requests issued by user processes, travels from process to process. This chapter is on algorithms that allow a mobile object to navigate a network. It presents three distributed navigation algorithms with different properties. All these algorithms ensure both that the object remains always consistent (i.e., it is never present simultaneously at several processes), and that any process that requires the object eventually obtains it.

Keywords Adaptive algorithm · Distributed queuing · Edge/link reversal · Mobile object · Mutual exclusion · Network navigation · Object consistency · Routing · Scalability · Spanning tree · Starvation-freedom · Token

5.1 Mobile Object in a Process Graph

5.1.1 Problem Definition

A mobile object is an object (such as a file or a data structure) that can be accessed sequentially by different processes. Hence, a mobile object is a concurrent object that moves from process to process in a network of processes.

When a process momentarily owns a mobile object, the process can use the object as if it was its only user. It is assumed that, after using a mobile object, a process eventually releases it, in order that the object can move to another process that requires it. So what has to be defined is a navigation service that provides the processes with two operations denoted acquire_object() and release_object() such that any use of the object by a process p_i is bracketed by an invocation to each of these operations, namely

acquire_object(); use of the object by p_i ; release_object().

As already noticed, in order that the state of the object remains always consistent, it is required that the object be accessed by a single process at a time, and the object has to be live in the sense that any process must be able to obtain the mobile object. This is captured by the two classical safety and liveness properties which instantiate as follows for this problem (where the sentences "the object belongs to a process" or "a process owns the object" means that the object is currently located at this process):

- Safety: At any time, the object belongs to at most one process.
- Liveness: Any process that invokes acquire_object() eventually becomes the owner of the object.

Let us notice that a process p_i invokes release_object() after having obtained and used the object. Hence, it needs to invoke again acquire_object() if it wants to use the mobile object again.

5.1.2 Mobile Object Versus Mutual Exclusion

The particular case where the ownership of the mobile object gives its owner a particular right (e.g., access to a resource) is nothing more than an instance of the mutual exclusion problem. In that case, the mobile object is a stateless object, which is usually called a *token*. The process that has the token can access the resource, while the other processes cannot. Moreover, any process can require the token in order to be eventually granted the resource.

Token-based mutual exclusion algorithms define a family of distributed mutual exclusion algorithms. We will see in Chap. 10 another family of distributed mutual exclusion algorithms, which are called *permission-based* algorithms.

5.1.3 A Centralized (Home-Based) Algorithm

A simple solution to the navigation of a mobile object consists in using a *home*based structure by statically associating a fixed process p with the mobile object. Such a home-based scheme is easy to implement. When it is not used, the object resides at its home process p, and a three-way handshake algorithm is used to ensure that any process that invokes acquire_object() eventually obtains the object.

Three-Way Handshake Algorithm The three-way handshake algorithm works as follows. Its name comes from the three messages used to satisfy an object request.

- When a process p_i invokes acquire_object(), p_i sends a message REQUEST(*i*) to the home process p, and waits for the object.
- When the home process receives a message REQUEST(i) from a process p_i , it adds this message in a local queue and sends back the object to p_i if this request is at the head of the queue.
- When p_i receives the object, it uses the object, and eventually invokes release_ object(). This invocation entails sending a message RELEASE_OBJECT(*i*) to the home process *p*. Moreover, if the object has been updated by p_i , the RE-LEASE_OBJECT(*i*) message carries the last value of the object as modified by p_i .

Fig. 5.1 Home-based three-way handshake mechanism

• When the home process receives a message RELEASE_OBJECT(*i*), it stores the new value of the object (if any), and suppresses the request of *p_i* from its local queue. Then, if the queue is not empty, *p* sends the object to the first process of the queue.

This three-way handshake algorithm is illustrated in Fig. 5.1, with two processes p_i and p_j . When the home process p receives the message REQUEST(j), it adds it to its local queue, which already contains REQUEST(i). Hence, the home process will answer this request when it receives the message RELEASE_OBJECT(i), which carries the last value of the object as modified by p_i .

Discussion Let us first observe that the home process p can manage its internal queue on a FIFO basis or use another priority discipline. This actually depends on the application.

While they may work well in small systems, the main issue of home-based algorithms lies in their poor ability to cope with scalability and locality. If the object is heavily used, the home process can become a bottleneck. Moreover, always returning the object to its home process can be inefficient (this is because when a process releases the object, it could be sent to its next user without passing through its home).

5.1.4 The Algorithms Presented in This Chapter

The algorithms that are described in this chapter are not home-based and do not suffer the previous drawback. They all have the following noteworthy feature: If, when a process p_i releases the object, no other process wants to acquire it, the object remains at its last user p_i . It follows that, if the next user is p_i again, it does not need to send messages to obtain the object. Consequently, no message is needed in this particular case.

The three algorithms that are presented implicitly consider that the home of the object is dynamically defined: the home of the mobile object is its last user. These

algorithms differ in the structure of the underlying network they assume. As we will see, their cost and their properties depend on this structure. They mainly differ in the way the mobile object and the request messages are routed in the network.

5.2 A Navigation Algorithm for a Complete Network

This section presents a navigation algorithm which assumes a complete network (any pair of processes is connected by an asynchronous channel). The channels are not required to be FIFO. This algorithm was proposed independently by G. Ricart and A.K. Agrawala (1983), and I. Suzuki and T. Kasami (1985). The system is made up of *n* processes, p_1, \ldots, p_n and the index *i* is used as the name of p_i .

5.2.1 Underlying Principles

As there is no statically defined home notion, the main issue that has to be solved is the following: When a process p_i releases the object, to which process has it to send the mobile object?

A Control Data Inside the Mobile Object First, the mobile object is enriched with a control data, denoted *obtained*[1..*n*], such that *obtained*[*i*] counts the number of times that p_i has received the object. Let us notice that it is easy to ensure that, for any *i*, *obtained*[*i*] is modified only when p_i has the object. It follows that the array *obtained*[1..*n*] always contains exact values (and no approximate values). This array is initialized to [0, ..., 0].

Local Data Structure In order to know which processes are requesting the object, a process p_i , which does not have the object and wants to acquire it, sends a message REQUEST(*i*) to every other process to inform them that it is interested in the object.

Moreover, each process p_i manages a local array request_by_i[1..n] such that request_by_i[j] contains the number of REQUEST() messages sent by p_j , as know by p_i .

Determining Requesting Processes Let p_i be the process that has the mobile object. The set of processes that, from its point of view, are requesting the token can be locally computed from the arrays $request_by_i[1..n]$ and obtained[1..n]. It is the set S_i including the processes p_k such that (to p_i 's knowledge) the number of REQUEST() messages sent by p_k is higher than the number of times p_k has received the object (which is saved in obtained[k]), i.e., it is the set

$$S_i = \{k \mid request_by_i[k] > obtained[k]\}$$

This provides p_i with a simple predicate $(S_i \neq \emptyset)$ that allows it to know if processes are requesting the mobile object. This predicate can consequently be used to

ensure that, if processes want to acquire the object, eventually there are processes that obtain it (deadlock-freedom property).

Ensuring Starvation-Freedom Let us consider the case where all processes have requested the object and p_1 has the object. When, p_1 releases the object, it sends it p_2 , and just after sends a message REQUEST(1) to again obtain the object. It is possible that, when it releases the object, p_2 sends it to p_1 , and just after sends a message REQUEST(2) to again obtain the object. This scenario can repeat forever, and, while processes p_1 and p_2 repeatedly forever obtain the mobile object, the other processes never obtain it.

A simple way to solve this problem (and consequently obtain the starvationfreedom property) consists in establishing an order on the processes of S_i that p_i has to follow when it releases the object. The order, which depends on *i*, is the following one for p_i :

$$i + 1, i + 2, \ldots, n, 1, \ldots, i - 1.$$

The current owner of the object p_i sends the object to the first process of this list that belongs to S_i . This means that, if $(i + 1) \in S_i$, p_i sends the object to p_{i+1} . Otherwise, if $(i + 2) \in S_i$, p_i sends the object to p_{i+2} , etc. It is easy to see that, as no process can be favored, no process can be missed, and, consequently, any requesting process will eventually receive the mobile object.

5.2.2 The Algorithm

Additional Local Variables and Initialization In addition to the array *request_* $by_i[1..n]$ (which is initialized to [0, ..., 0]), each process p_i manages the following local variables:

- *interested_i* is a Boolean initialized to *false*. It is set to *true* when *p_i* is interested in the object (it is waiting for it or is using it).
- $object_present_i$ is a local Boolean variable, which is true if and only if the object is present at process p_i . Initially, all these Boolean variables are equal to *false*, except at the process where the object has been initially deposited.

It is important to notice that, in addition to the fact that processes have distinct names (known by all of them), the initialization is asymmetric: the mobile object is initially present at a single predetermined process p_i .

Structural View The structural view of the navigation algorithm at each process is described in Fig. 5.2. The module associated with each process p_i contains the previous local variables and four pieces of code, namely:

• The two pieces of code for the algorithms implementing the operations acquire_ object() and release_object(), which constitute the interface with the application layer.

Fig. 5.2 Structural view of the navigation algorithm (module at process p_i)

• Two additional pieces of code, each associated with the processing of a message, namely the message REQUEST() and the message OBJECT(). As we have seen, the latter contains the mobile object itself plus the associated control data *obtained*[1..n].

The Algorithm The navigation algorithm is described in Fig. 5.3. Each piece of code is executed atomically, except the **wait**() statement. This means that, at each process p_i , the execution of lines 1–4, lines 7–14, line 15, and lines 16–19, are mutually exclusive. Let us notice that these mutual exclusion rules do not prevent a process p_i , which is currently using the mobile object, from being interrupted to execute lines 16–19 when it receives a message REQUEST().

When a process p_i invokes acquire_object(), it first sets *interested_i* to true (line 1). If it is the last user of the object, (*object_present_i* is then true, line 2), p_i returns from the invocation and uses the object. If it does not have the object, p_i increases *request_by_i* (line 3), sends a REQUEST(*i*) message to each other process (line 4), and waits until it has received the object (lines 5 and 15).

When a process which was using the object invokes release_object(), it first indicates that it is no longer interested in the mobile object (line 7), and updates the global control variable *obtained*[*i*] to the value *request_by*_{*i*}[*i*] (line 8). Then, starting from p_{i+1} (line 9), p_i looks for the first process p_k that has requested the mobile object more often than the number of times it acquired the object (line 10) (let us notice that p_i is then such that \neg *interested*_{*i*} \land *object_present*_{*i*}).

If there is such a process, p_i sends it the object (lines 11–12) and returns from the invocation of release_object(). If, to its local knowledge, no process wants the object, p_i keeps it and returns from the invocation of release_object() (let us notice that p_i is then such that \neg interested_i \land object_present_i).

As already seen, p_i sets *object_present_i* to the value *true* when it receives the object. A process can receive the mobile object only if it has previously sent a request message to obtain it.

Finally, when a process p_i receives a message REQUEST(k), it first increases accordingly *request_by*_i[k] (line 16). Then, if it has the object and is not using it, p_i sends it to p_k by return (lines 17–19).

```
operation acquire_object() is
(1)
       interested<sub>i</sub> \leftarrow true;
       if (\neg object\_present_i) then
(2)
           request\_by_i[i] \leftarrow request\_by_i[i] + 1;
(3)
(4)
           for k \in \{1, ..., n\} \setminus \{i\} do send REQUEST(i) to p_k end for;
(5)
           wait (object_present<sub>i</sub>)
(6)
       end if.
operation release_object() is
       interested<sub>i</sub> \leftarrow false;
(7)
(8) obtained[i] \leftarrow request_by<sub>i</sub>[i];
(9) for k from i + 1 to n and then from 1 to i - 1 do
(10)
           if (request_by_i[k] > obtained[k]) then
(11)
                object\_present_i \leftarrow false;
(12)
                send OBJECT() to p_k; exit loop
(13)
           end if
(14) end for.
when OBJECT() is received do
(15) object\_present_i \leftarrow true.
when REQUEST(k) is received do
(16) request_by<sub>i</sub>[k] \leftarrow request_by<sub>i</sub>[k] + 1;
(17) if (object_present<sub>i</sub> \land \neg interested<sub>i</sub>) then
(18)
           object\_present_i \leftarrow false; send OBJECT() to p_k
(19) end if.
```

Fig. 5.3 A navigation algorithm for a complete network (code for p_i)

Cost of the Algorithm The number of messages needed for one use of the mobile object is 0 when the object is already present at the process that wants to use it, or n (n - 1 request messages plus the message carrying the object).

A message REQUEST() carries a process identity. Hence, its size is $O(\log_2 n)$.

The time complexity is 0 when the object is already at the requesting process. Otherwise, let us first observe that the transit time used by request messages that travel while the object is used has not to be counted. This is because, whatever their speed, as the object is used, these transit times cannot delay the transfer of the object. Assume that all messages take one time unit; it follows that the time complexity lies between 1 and 2. One time unit happens in heavy load: When a process p_i releases the object, the test of line 10 is satisfied, and the object takes one time unit before being received by its destination process. Two times units are needed in light load: One time unit is needed for the request message to attain the process that has the object, and one more time unit is needed for the object to travel to the requesting process (in that case, the object is sent at line 18).

Are Early Updates Good? When a process p_i receives the object (which carries the control data *obtained*[1..*n*]), it is possible that some entries *k* are such that *obtained*[*k*] > *request_by*_{*i*}[*k*]. This is due to asynchrony, and is independent of whether or not the channels are FIFO. This occurs when some request messages

Fig. 5.4 Asynchrony involving a mobile object and request messages

are very slow, as depicted in Fig. 5.4, where the path followed by the mobile object is indicated with dashed arrows (the dashed arrow on a process is the period during which this process uses the mobile object). Moreover, as shown in the figure, the REQUEST() message from p_j to p_i is particularly slow with respect to the object.

Hence the question: when a process p_i receives the object, is it interesting for p_i to benefit from the array *obtained*[1..*n*] to update its local array *request_by*_i[1..*n*], i.e., to execute at line 15 the additional statement

for $k \in \{1, ..., n\}$ do request_by_i[k] $\leftarrow \max(request_by_i[k], obtained[k])$ end for.

Due to the fact that each REQUEST() message has to be counted exactly once, this early update demands other modifications so that the algorithm remains correct. To that end, line 4 has to be replaced by

(4') for $k \in \{1, ..., n\} \setminus \{i\}$ do send REQUEST(*i*, request_by_i[*i*]) to p_k end for,

and, when a message REQUEST(k, rnb) is received, line 16 has to be replaced by

(16') request_by_i[k] $\leftarrow \max(request_by_i[k], rnb)$.

It follows that trying to benefit from the array *obtained*[1..*n*] carried by the mobile object to early update the local array *request_by_i*[1..*n*] requires us to add (a) sequence numbers to REQUEST() messages, and (b) associated update statements. It follows that these modifications make the algorithm less efficient and a little bit more complicated. Hence, contrarily to what one could a priori hope, early updates are not good for this navigation algorithm.

5.3 A Navigation Algorithm Based on a Spanning Tree

The previous navigation algorithm is based on the broadcast of requests and uses sequence numbers, which can increase forever. In contrast, the algorithm presented

in this section has only bounded variables. It is based on a statically defined spanning tree of the network, and each process communicates only with its neighbors in the tree, hence the algorithm is purely local. This algorithm is due to K. Raymond (1989).

5.3.1 Principles of the Algorithm: Tree Invariant and Proxy Behavior

As just indicated, the algorithm considers a statically defined spanning tree of the network. Only the channels of this spanning tree are used by the algorithm.

Tree Invariant Initially, the process that has the mobile object is the root of the tree, and each process has a pointer to its neighbor on its path to the root. This is depicted in Fig. 5.5, where the mobile object is located at process p_a .

This tree structure is the invariant maintained by the algorithm: A process always points to its neighbor in the subtree containing the object. In that way, a process always knows in which part of the tree the object is located.

Let us consider the process p_c that wants to acquire the object. Due to the tree orientation, it can send a request to its current parent in the tree, namely process p_b , which in turn can forward it to its parent, etc., until it attains the root of the tree. Hence, the tree orientation allows requests to be propagated to the appropriate part of the tree. When p_a receives the request, it can send the object to p_b , which forwards it to p_c . The object consequently follows the same path of the tree (in the reverse order) as the one the request. Moreover, in order to maintain the invariant associated with the tree orientation, the mobile object reverses the direction of the edges during its travel from the process where it was previously located (p_a in the figure) to its destination process (p_c in the figure). This technique, which is depicted in Fig. 5.6, is called *edge reversal*.

The Notion of a Proxy Let us consider process p_b that receives a request for the mobile object from its neighbor p_d after it has received a request from p_c (Fig. 5.6). Hence, it has already sent a request to p_a to obtain the object on behalf of p_c . Moreover, a process only knows its neighbors in the tree. Additionally, after having

Fig. 5.6 Navigation tree: after the object has moved to p_c

received requests from its tree neighbors p_c and p_d , p_b may require the object for itself. How do solve these conflicts between the requests by p_c , p_d , and p_b ?

To that end, p_b manages a local FIFO queue, which is initially empty. When it receives the request from p_c , it adds the request to the queue, and as the queue contains a single request, it plays a proxy role, namely, it sends a request for itself to its parent p_a (but this request is actually for the process p_c , which is at the head of its local queue). This is a consequence of the fact that a process knows only its neighbors in the tree (p_a does not know p_c).

Then, when it receives the request from p_d , p_b adds to its queue, and, as this request is not the only one in the queue, p_b does not send another request to p_a . When later p_b receives the mobile object, it forwards it to the process whose request is at the head of its queue (i.e., p_c), and suppresses its request from the queue. Moreover, as the queue is not empty, p_b continues to play its proxy role: it sends to p_c a request (for the process at the head of its queue, which is now p_d). This is depicted in Fig. 5.7, where the successive states of the local queue of p_b are explicitly described.

5.3.2 The Algorithm

The structure of the algorithm is the same as the one described in Fig. 5.2.

Local Variables and Initialization In addition to the Boolean variable *interested*_i, whose meaning and behavior are the same as in the algorithm described in Fig. 5.3, each process p_i manages the following local variables.

Fig. 5.7 Navigation tree: proxy role of a process

• $queue_i$ is the local queue in which p_i saves the requests it receives from its neighbors in the tree, or from itself. Initially, $queue_i$ is empty. If p_i has d neighbors in the tree, $queue_i$ will contain at most d process identities (one per incoming edge plus one for itself). It follows that the bit size of $queue_i$ is bounded by $d \log_2 n$.

The following notations are used:

- queue_i \leftarrow queue_i + $\langle j \rangle$ means "add j at the end of queue_i".
- $queue_i \leftarrow queue_i \langle j \rangle$ means "withdraw j from $queue_i$ (which is at its head)".
- head(queue_i) denotes the first element of $queue_i$.
- $-|queue_i|$ denotes the size of $queue_i$, while \emptyset is used to denote the empty queue.
- *parent_i* contains the identity of the parent of p_i in the tree. The set of local variables $\{parent_i\}_{1 \le i \le n}$ is initialized in such a way that they form a tree rooted at the process where the object is initially located. The root of the tree is the process p_k such that $parent_k = k$.

The Boolean *object_present_i* used in the previous algorithm is no longer needed. This is because it is implicitly encoded in the local variable *parent_i*. More precisely, we have $(parent_i = i) \equiv object_present_i$.

Behavior of a Process The algorithm is described in Fig. 5.8. When a process p_i invokes acquire_object(), it first sets *interested_i* to the value *true* (line 1), and checks if it has the object (predicate $parent_i = i$, line 2). If it has not the object, it adds its request to its local queue (line 3), and sends a request to its current parent in the spanning tree if *queue_i* contains only its own request (line 4). Then, p_i waits until it is at the head of its queue and receives the object (lines 5, 20, and 21).

When, after it has used the mobile object, a process p_i invokes release_object(), it first resets *interested_i* to the value *false* (line 7), and then checks the state of its local queue (line 8). If *queue_i* is not empty, p_i sends the object to its neighbor in the tree that is at the head of *queue_i*, and defines it as the new parent in the tree. Let us notice that, in that way, *parent_i* points to the neighbor of p_i in the subtree containing the object. Finally, if *queue_i* is not empty, p_i sends a request to its new parent (line 11) so that the object eventually returns to it to satisfy this request. (Let us remark that, if two messages are sent at lines 10 and 11, they can be sent as a single message carrying both the object and a request.)

When a process p_i receives a message REQUEST() from a neighbor p_k in the spanning tree, (p_i is then the parent of p_k in the tree), its behavior depends on whether or not it has the object. If p_i has the object and is using it, it enqueues the request (lines 13–14). If p_i has the object and it is not using it (p_i was then the last user of the object), it sends the object to p_k , and defines p_k as its new parent in the spanning tree (line 15). If p_i does not have the object when it receives a message REQUEST(k), it adds k to its request queue (line 17), and, as a proxy, sends a request message to its parent if the request it has received is the only request in its queue (line 18, which is the same as line 4).

Finally, let us observe that a process can receive the object only if it has previously sent a request. This means that, when a process p_i receives the mobile object, we necessarily have $queue_i \neq \emptyset$. Hence, when it receives the object, a process p_i

operation acquire_object() is (1)interested_i \leftarrow true; if $(parent_i \neq i)$ then (2)(3) queue_i \leftarrow queue_i + $\langle i \rangle$; (4)if $(|queue_i| = 1)$ then send REQUEST(i) to p_{parent_i} end if; (5) **wait** (*parent*_{*i*} = i) (6) end if. operation release_object() is (7)interested_i \leftarrow false; (8) **if** $(queue_i \neq \emptyset)$ **then** (9) let $k = head(queue_i)$; $queue_i \leftarrow queue_i - \langle k \rangle$; (10)send OBJECT() to p_k ; parent_i $\leftarrow k$; (11)if $(queue_i \neq \emptyset)$ then send REQUEST(i) to p_{parent_i} end if (12) end if. when REQUEST(k) is received do (13) **if** $(parent_i = i)$ **then if** (*interested*_i) **then** $queue_i \leftarrow queue_i + \langle k \rangle$ (14)(15)else send OBJECT() to p_k ; parent_i $\leftarrow k$ (16)end if (17)else queue_i \leftarrow queue_i + $\langle k \rangle$; (18)if $(|queue_i| = 1)$ then send REQUEST(i) to p_{parent_i} end if (19) end if. when OBJECT() is received do (20) let $k = head(queue_i)$; $queue_i \leftarrow queue_i - \langle k \rangle$; (21) if (i = k) then $parent_i \leftarrow i$ (22) else send OBJECT() to p_k ; parent_i $\leftarrow k$; (23)if $(queue_i \neq \emptyset)$ then send REQUEST(i) to p_{parent_i} end if (24) end if.

Fig. 5.8 A spanning tree-based navigation algorithm (code for p_i)

considers the request at the head of $queue_i$ (line 20). If it is its own request, the object is for it, and consequently p_i becomes the new root of the spanning tree and is the current user of the object (line 21). Otherwise, the object has to be forwarded to the neighbor p_k whose request was at the head of $queue_i$ (line 22), and p_i has to send a request to its new parent p_k if $queue_i \neq \emptyset$ (line 23). (Let us observe that lines 22–23 are the same as lines 10–11.)

5.3.3 Discussion and Properties

On Messages As shown in Figs. 5.5 and 5.6, it follows that, during the object's travel in the tree to its destination process, the object reverses the direction of the tree edges that have been traversed (in the other direction) by the corresponding request messages.

Fig. 5.9 The case of non-FIFO channels

Each message REQUEST() carries the identity of its sender (lines 4, 11, 18, 23). Thus, the control information carried by these messages is bounded. Moreover, all local variables are bounded.

Non-FIFO Channels As in the previous one, this algorithm does not require the channels to be FIFO. When channels are not FIFO, could a problem happen if a process p_i , which has requested the object for it or another process p_k , first receives a request and then the object, both from one of its neighbor p_j in the tree?

This scenario is depicted in Fig. 5.9, where we initially have $parent_i = j$, and p_i has sent the message REQUEST(*i*) to its parent on behalf of the process p_y at the head of $queue_i$ (hence $|queue_i| \ge 1$). Hence, when p_i receives REQUEST(*j*), it is such that $parent_i \ne i$ and $|queue_i| \ge 1$. It then follows from lines 13–19 that the only statement executed by p_i is line 17, namely, p_i adds *j* to its local queue $queue_i$, which is then such that $|queue_i| \ge 2$).

On the Tree Invariant The channels used by the algorithm constitute an undirected tree. When considering the orientation of these channels as defined by the local variable $parent_i$, we have the following.

Initially, these variables define a directed tree rooted at the process where the object is initially located. Then, according to requests and the move of the object, it is possible that two processes p_i and p_j are such that $parent_i = j$ and $parent_j = i$. Such is the case depicted in Fig. 5.9, in which the message REQUEST(j) can be suppressed (let us observe that this is independent of whether or not the channel connecting p_i and p_j is FIFO). When this occurs we necessarily have:

- *parent* $_{i} = i$ and p_{j} has sent the object to p_{i} , and
- $parent_i = j$ and p_i has sent the message REQUEST(i) to p_j .

When the object arrives at p_i , *parent_i* is modified (line 21 or line 22, according to the fact that p_i is or is not the destination of the object), and, from then on, the edge of the spanning tree is directed from p_i to p_i .

Hence, let us define an abstract spanning tree as follows. The orientation of all its edges, except the one connecting p_i and p_j when the previous scenario occurs, are defined by the local variables $parent_k$ ($k \neq i, j$). Moreover, when the previous scenario occurs, the edge of the abstract spanning tree is from p_j to p_i , i.e., the

direction in which the object is moving. (This means that the abstract spanning tree logically considers that the object has arrived at p_i .) The invariant preserved by the algorithm is then the following: At any time there is exactly one abstract directed spanning tree, whose edges are directed to the process that has the object, or to which the object has been sent.

Cost of the Algorithm As in the previous algorithm, the message cost is 0 messages in the most favorable case. The worst case depends on the diameter D of the tree, and occurs when the two most distant processes are such that one has the object and the other requests it. In this case, D messages and D time units are necessary for the requests to arrive at the owner of the object, and again D messages and D time units are necessary for the necessary for the object to arrive at the requesting process. Hence, both message complexity and time complexity are O(D).

On Process Identities As any process p_i communicates only with its neighbors in the spanning tree, the only identities that can appear in *queue_i* are the identities of these neighbors plus its own identity *i*. So that no two identities in *queue_i* can be confused, the algorithm requires them to be different.

As the identities of any two processes p_i and p_j that are at a distance greater than 2 in the tree can never appear in the same queue, it follows that any two processes at a distance greater than 2 in the tree can have the same name without making the algorithm incorrect. This noteworthy property is particularly interesting from a scalability and locality point of view.

On Priority As each local queue $queue_i$ is managed according to the FIFO discipline, it follows that each request is eventually granted (the corresponding process obtains the mobile object). It is possible to apply other management rules to these queues, or particular rules to a subset of processes, in order to favor some processes, or obtain specific priority schemes. This versatility dimension of the algorithm can be exploited by some applications.

5.3.4 Proof of the Algorithm

Theorem 3 The algorithm described in Fig. 5.8 guarantees that the object is never located simultaneously at several sites (safety), and any process that wants the object eventually acquires it (liveness).

Proof Proof of the safety property. Let us first observe that the object is initially located at a single process. The proof is by induction. Let us assume that the property is true up to the *x*th move of the object from a process to another process. Let p_i be the process that has the object after its *x*th move. If p_i keeps the object forever, the property is satisfied. Hence, let us assume that eventually p_i sends the object. There are three lines at which p_i can send the object. Let us consider each of them.

• p_i invokes release_object(). In this case, we have $i \notin queue_i$. This is because when, after its last acquire_object(), p_i received the object, it was at the head of $queue_i$ but it suppressed its name from $queue_i$ before using the object (lines 20–21).

If $queue_i = \emptyset$, p_i keeps the object and the property is satisfied. If $queue_i \neq \emptyset$, p_i sends the object to the process p_k whose request is at the head of $queue_i$ (and $k \neq i$, due to the previous observation). It also sets $parent_i$ to k (lines 7–10). We have then $parent_i = k \neq i$, which means that the object is no longer at p_i , and the property is satisfied.

- p_i executes line 15. In this case, we have $k \neq i$ at line 15 (this is because only p_i can send messages REQUEST(*i*), and a process does not send request messages to itself). It follows that, after it has executed line 15, we have $parent_i \neq i$, i.e., p_i no longer has the object, and the safety property is satisfied.
- p_i executes line 22. In this case, we have $i \neq k$ (line 21). Hence, $parent_i = k \neq i$ after p_i has forwarded the object, and the safety property is satisfied.

Proof of the liveness property. This proof is made up of two parts. It is first proved that, if processes want to acquire the object, one process obtains it (deadlock-freedom). It is then proved that any process that wants to acquire the object, eventually obtains it (starvation-freedom).

Proof of the deadlock-freedom property. Let us consider that the object is located at p_i , and at least one process p_i has sent a request. Hence, p_i has sent a message REQUEST(j) to parent_i, which in turn has sent a message REQUEST(parent_i) to its parent, etc. (these request messages are not necessarily due to the request of p_i if other processes have issued requests). The important point is that, due to orientation of the edges and the loop-freedom property of the abstract dynamic spanning tree, p_i receives a message REQUEST(k) (this message is not necessarily due to the p_i 's request). When this occurs, if *interested*_i, p_i adds k to *queue*_i (the important point is here that $queue_i \neq \emptyset$, line 14), and will send the object to the head of $queue_i$ when it will execute line 10 of the operation release_object(). If \neg interested_i when p_i receives REQUEST(k), it sends by return the object to p_k (line 15). Hence, whatever the value of *interested*_i, p_i eventually sends the object to p_k . If k is at the head of $queue_k$, it has requested the object and obtains it. Otherwise, p_k forwards the object to the process $p_{k'}$ such that k' is at the head of queue_k. Iterating this reasoning, and considering the orientation property of the abstract spanning tree, it follows that the object attains a process that has a pending request. It follows that the algorithm is deadlock-free.

Proof of the starvation-freedom property. Let *D* be the diameter of the spanning tree, $1 \le D \le n - 1$. Let p_i be process that has sent a message REQUEST(*i*) and p_j the process that has the mobile object. Let us associate the following vector *R* with the request of p_i (see Fig. 5.10):

$$R = [d(i_1), d(i_2), \dots, d(i_{x-1}), d(i_x), 0, \dots, 0]$$

where $i_1 = i$, $i_x = j$, $N(i_y)$ is the degree of p_{i_y} in the spanning tree, and

• $d(i_1)$ is the rank of i_1 in $queue_{i_1} \equiv queue_i$ $(1 \le d(i_1) \le N(i_1))$,

Fig. 5.10 The meaning of vector $R = [d(i_1), d(i_2), \dots, d(i_{x-1}), d(i_x), 0, \dots, 0]$

- $d(i_2)$ is the rank of i_1 in $queue_{i_2}$ $(1 \le d(i_2) \le N(i_2))$,
- $d(i_3)$ is the rank of i_2 in queue_{i3} $(1 \le d(i_3) \le N(i_3))$, etc.,
- $d(i_x)$ is the rank of i_{x-1} in queue_{ix} \equiv queue_i $(1 \le d(i_x) \le N(i_x))$.

Let us observe that, as R has D entries and each entry has a bounded domain, it follows that the set of all possible vectors R is bounded and totally ordered (when considering lexicographical ordering).

Moreover, as each local queue is a FIFO queue and a process cannot issue a new request while its previous request is still pending, it follows that, when p_x sends the object (this necessarily occurs from the deadlock-freedom property), we proceed from the vector R to the vector

- $R' = [d(i_1), d(i_2), \dots, d(i_{x-1}) 1, 0, \dots, 0]$ if $d(i_x) = 1$, or
- $R'' = [d(i_1), d(i_2), \dots, d(i_{x-1}), d(i_x) 1, *, \dots, *]$ if $d(i_x) > 1$.

The first case $(d(i_x) = 1)$ is when p_{i_x} sends the object to $p_{i_{x-1}}$ (which is at the head of its queue), while the second case $(d(i_x) > 1)$ is when a process different from $p_{i_{x-1}}$ is at the head of *queue*_{i_x} (where the "*" stands for appropriate values according to the current states the remaining (D - x) local queues).

The important point is that we proceed from vector R to a vector R' or R'', which is smaller than R according to the total order on the set of possible vectors. Hence, starting from R' or R'', we proceed to another vector R''' (smaller than R' or R''), etc., until we attain the vector [1, 0, ..., 0]. When this occurs p_i has the object, which concludes the proof of the starvation-freedom property.

5.4 An Adaptive Navigation Algorithm

This section presents a distributed algorithm that implements a distributed FIFO queue. A process invokes the operation enter() to append itself at the end of the queue. Once it has become the head of the queue, it invokes the operation exit() to leave the queue.

This algorithm, which was proposed by M. Naimi and M. Trehel (1987), assumes both a complete asynchronous network, and an underlying spanning tree whose structure evolves according to the requests to enter the queue issued by the processes.

From a mobile object point of view, this means that a process invokes enter() (i.e., acquire_object()) to obtain the object, and this operation terminates when the invoking process is at the head of the queue. After using the object, a process invokes

exit() (i.e., release_object()) to exit the queue and allows its successor in the queue to become the new head of the queue.

5.4.1 The Adaptivity Property

A distributed algorithm implementing a distributed object (or a distributed service) is *adaptive*, if, for each process that is not interested in using the object (or the service), there is a finite time after which these processes no longer have to participate in the algorithm (hence, they no longer receive messages sent by the algorithm).

As an example, let us consider the two algorithms described in Figs. 5.3 and 5.8, which implement a navigation service for a mobile object. None of them is adaptive. Let p_x be a process that, after some time, never invokes the operation acquire_object(). In the algorithm of Fig. 5.3, p_x receives all the messages RE-QUEST() sent by the other processes. In the algorithm of Fig. 5.8, according to its position in the spanning tree, p_x has to play a proxy role for the requests issued by its neighbors in the tree, and, in the other direction, the object has to pass through p_x to attain its destination. Hence, in both cases, p_x has to forever participate in the navigation algorithm.

As we are about to see, the algorithm described in this section is adaptive: If after some time τ , a process p_x never invokes enter(), there is a finite time $\tau' \ge \tau$, after which p_x it is not required to participate in the distributed algorithm.

5.4.2 Principle of the Implementation

A Distributed Queue To implement the queue, each process p_i manages two local variables. The Boolean *interested*_i is set to the value *true* when p_i starts entering the queue, and is reset to the value *false* when it exits the queue. The second local variable is denoted *next*_i, and is initialized to \bot . It contains the successor of p_i in the queue. Moreover, $next_i = \bot$ if p_i is the last element of the queue.

Hence, starting from the process p_x that is the head of the queue, the queue is defined by the sequence of pointers $next_x$, $next_{next_x}$, etc., until the process p_y such that $next_y = \bot$.

Due to its very definition, there is a single process at the head of the queue. Hence, the algorithm considers that this is the process at which the mobile object is currently located. When this process p_i exits the queue, it has to send the mobile object to p_{next_i} (if $next_i \neq \bot$).

How to Enter the Queue: A Spanning Tree to Route Messages Let p_{ℓ} be the process that is currently the last process of the queue (hence, $interested_{\ell} \land next_{\ell} = \bot$). The main issue that has to be solved consists in the definition of an addressing mechanism that allows a process p_i , that wants to enter the queue, to inform p_{ℓ} that it is no longer the last process in the queue and it has a successor.

Fig. 5.11 A dynamically evolving spanning tree

To that end, we need a distributed routing structure that permits any process to send a message to the last process of the queue. Moreover, this distributed routing structure has to be able to evolve, as the last process of the queue changes according to the request issued by processes. The answer is simple, namely, the distributed routing structure we are looking for is a dynamically evolving spanning tree whose current root is the last process of the queue.

More specifically, let us consider Fig. 5.11. There are five processes, p_1, \ldots, p_5 . The local variable *parent_i* of each process p_i points to the process that is the current parent of p_i in the tree. As usual, $parent_x = x$ means that p_x is the root of the tree. The process p_4 is the current root (initial configuration). The process p_2 sends a message REQUEST(2) to its parent p_1 and defines itself as new root by setting *parent*₂ to 2. When p_1 receives this message, as it is not the root, it forwards this message to its parent p_4 and redefines its new parent as being p_2 (intermediary configuration). Finally, when p_4 receives the message REQUEST(2) forwarded by p_1 , it discovers that it has a successor in the queue (hence, it executes $next_4 \leftarrow 2$), and it considers p_2 as the new root of the spanning tree (update of $parent_4$ to 2 in the final configuration).

As shown by the previous example, it is possible that, at some times, several trees coexist (each spanning a distinct partition of the network). The important point is that there is no creation of cycles, and there is a single new spanning tree when all control messages have arrived and been processed.

Differently from the algorithm described in Fig. 5.8, which is based on "edge reversal" on a statically defined tree, this algorithm benefits from the fact any channel can be part of the dynamically evolving spanning tree, The directed path p_2 , p_1 , p_4 of the initial spanning tree, is replaced by two new directed edges (from p_1 to p_2 , and from p_4 to p_2). Hence, a path (in the initial configuration) of length d from the new root to the old root is replaced by d edges, each directly pointing to the new root (in the final configuration).

Heuristic Used by the Algorithm The previous discussion has shown that the important local variable for a process p_i to enter the queue is *parent_i*. It follows from the modification of the edges of the spanning tree, which are entailed by the

messages REQUEST(), that the variable $parent_i$ points to the process p_k that has issued the last request seen by p_i .

Hence, when p_i wants later to enter the queue, it sends its request to the process p_{parent_i} , because this is the last process in the queue from p_i 's point of view.

The Case of the Empty Queue As in the diffusion-based algorithm of Fig. 5.3, each process p_i manages a local Boolean variable $object_present_i$, whose value is *true* if and only if the mobile object is at p_i (if we are not interested in the navigation of a mobile object, this Boolean could be called *first_in_queue_i*).

As far as the management of the queue is concerned, its implementation has to render an account of the case where the queue is empty. To that end, let us consider the case where the queue contains a single process p_i . This process is consequently the first and the last process of the queue, and we have then $object_present_i \land (parent_i = i)$.

If p_i exits the queue, the queue becomes empty. The previous predicate remains satisfied, but we have then \neg *interested*_i. It follows that, if a process p_i is such that $(\neg$ *interested*_i \land *object_present*_i) \land (*parent*_i = i), it knows that it was the last user of the queue, which is now empty.

5.4.3 An Adaptive Algorithm Based on a Distributed Queue

Structure of the Algorithm and Initialization The structure of the algorithm is the same as in both previous algorithms (see Fig. 5.2). In order to be as generic as possible, and allow for an easy comparison with the previous algorithms, we continue using the operation names acquire_object() and release_object(), instead of enter() and exit(), respectively.

Initially, the object is located at some predetermined process p_k . This is a process that is fictitiously placed at the head of the distributed empty queue (see the predicate associated with an empty queue). The local variables are then initialized as follows:

- *object_present*_k is initialized to *true*,
- $\forall i \neq k$: *object_present*_i is initialized to *false*,
- $\forall i: parent_i$ is initialized to k, and *interested_i* is initialized to *false*.

Behavior of a Process The algorithm is described in Fig. 5.12. As in the previous algorithms, the four parts of code (except the **wait** statement at line 4) are mutually exclusive.

When a process invokes acquire_object() (i.e., when it wants to enter the queue), it first sets *interested*_i to the value *true* (line 1). If *object_present*_i is equal to *false*, p_i sends the message REQUEST(*i*) to its parent in order to be added at the end of the queue, and defines itself as the new end of the queue (line 3). Then, it waits until it has obtained the object, i.e., it is the head of the queue (lines 4 and 10).

If $object_present_i$ is equal to *true*, p_i is at the head of the queue (it has the object). This is due to the following observation. Just before invoking acquire_object() to enter the queue (obtain the object), p_i was such that $(\neg interested_i) \land object_present_i$,

```
operation acquire_object() is
(1) interested<sub>i</sub> \leftarrow true;
(2)
       if (\neg object\_present_i) then
(3)
           send REQUEST(i) to p_{parent_i}; parent_i \leftarrow i;
(4)
           wait(object_present<sub>i</sub>)
(5)
       end if.
operation release_object() is
(6) interested<sub>i</sub> \leftarrow false;
       if (next_i \neq \bot) then
(7)
(8)
           send OBJECT() to p_{next_i}; object\_present_i \leftarrow false; next_i \leftarrow \bot
(9)
       end if.
when OBJECT() is received do
(10) object\_present_i \leftarrow true.
when REQUEST(k) is received do
(11) if (parent<sub>i</sub> \neq i)
           then send REQUEST(k) to p_{parent_i}
(12)
(13)
           else if (interested<sub>i</sub>) then next_i \leftarrow k
                                     else send OBJECT() to p_k; object\_present_i \leftarrow false
(14)
(15)
                  end if
(16) end if;
(17) parent<sub>i</sub> \leftarrow k.
```

Fig. 5.12 A navigation algorithm based on a distributed queue (code for p_i)

from which we conclude that, the last time p_i has invoked release_object(), it was such that $next_i = \bot$ (line 7), and no other process has required the object (otherwise, p_i would have set *object_present_i* to *false* at line 14). It follows that the object remained at p_i since the last time it used it (i.e., the queue was empty and p_i was its fictitious single element).

When p_i invokes release_object(), it first resets *interested_i* to the value *false*, i.e., it exits the queue (line 6). Then, if $next_i = \bot$, p_i keeps the object. Otherwise, it first sends the object to p_{next_i} (i.e., it sends it the property "you are the head of the queue"), and then resets *object_present_i* to *false*, and *next_i* to \bot (line 8).

When p_i receives a message REQUEST(k), its behavior depends on the fact that it is, or it is not, the last element of the queue. If it is not, it has only to forward the request message to its current parent in the spanning tree, and redefine *parent_i* as being p_k (lines 11–12 and 17). This is to ensure that *parent_i* always points to the last process that, to p_i 's knowledge, has issued a request. Let us remark that the message REQUEST(k) that is forwarded is exactly the message received. This ensures that the variables *parent_x* of all the processes p_x visited by this message will point to p_k .

If p_i is such that $parent_i = \bot$, there are two cases. If *interested_i* is true, p_i is in the queue. It consequently adds p_k to the queue (line 13). If *interested_i* is false, we are in the case where the queue is empty (p_i is its fictitious single element). In this case, p_i has the object and sends it to p_k (line 14). Moreover, whatever the case, to preserve its correct meaning (p_{parent_i} is the last process that, to p_i knowledge, has issued a request), p_i updates $parent_i$ to k (line 17).

Fig. 5.13 From the worst to the best case

5.4.4 Properties

Variable and Message Size, Message Complexity A single bit is needed for each local variable *object_present_i* and *interested_i*; $\lceil \log_2 n \rceil$ bits are needed for each variable *parent_i*, while $\lceil \log_2(n + 1) \rceil$ bits are needed for each variable *next_i*. As each message REQUEST() carries a process identity, it needs to $\lceil \log_2 n \rceil$ bits. If the algorithm is used only to implement a queue, the message OBJECT() does not have to carry application data, and a single bit is needed to distinguish the two message types.

In the best case, an invocation of acquire_object() does not generate REQUEST() messages, while it gives rise to (n - 1) REQUEST() messages plus one OBJECT() message in the worst case. This case occurs when the spanning tree is a chain.

The left side of Fig. 5.13 considers the worst case: The process denoted p_i issues a request, and the object is at the process denoted p_j . The right side of the figure shows the spanning tree after the message REQUEST(*i*) has visited all the processes. The new spanning tree is optimal in the sense that the next request by a process will generate only one request message. More generally, it has been shown that the average number of messages generated by an invocation of acquire_object() is $O(\log n)$.

Adaptivity The adaptivity property concerns each process p_i taken individually. It has been defined as follows: If after some time p_i never invokes acquire_object(), there is a finite time after which it does not receive REQUEST() messages, and it consequently stops participating in the algorithm.

Considering such a process p_i , let τ be a time after which all the messages REQUEST(*i*) that have been sent have been received and processed. Moreover, let $\{k_1, k_2, \ldots\}$ be the set of identities of the processes whose parent is p_i at time τ (this set of processes is bounded).

Let us first observe that, as p_i never sends a message REQUEST(*i*) at any time after τ , it follows from line 17 that no process p_y , $y \in \{1, ..., n\} \setminus \{k_1, k_2, ...\}$ can be such that $parent_y = i$ after time τ .

Moreover, let us assume that after time τ , p_i forwards a message REQUEST(k) it has received from some process p_x , $x \in \{k_1, k_2, \ldots\}$. It follows from line 17 that we have $parent_x = k$ after p_x has forwarded the message REQUEST(k) to p_i . Hence, in the future, p_i will no longer receive messages REQUEST() from p_x . As this is true for any process p_x , $x \in \{k_1, k_2, \ldots\}$, and this set is bounded, it follows that there is a time $\tau' \ge \tau$ after which p_i will no longer receive REQUEST() messages.

This adaptivity property is particularly interesting from a scalability point of view. Intuitively, it means that if, during a long period, some processes do not invoke

Fig. 5.14 Example of an execution

ACQUIRE_OBJECT(), they are "ignored" by the algorithm whose cost is accordingly reduced.

5.4.5 Example of an Execution

An example of an execution of the algorithm in a system of five processes, p_1, \ldots, p_5 is described in Fig. 5.14. The initial configuration is depicted on the left of the top line of the figure. The plain arrows represent the spanning tree (pointer *parent_i*), while the dashed arrows represent the queue (pointer *next_i*). The processes that are in the queue, or are entering it, are represented with dashed circles. The star represents the object; it is placed close to the process at which it is currently located.

Both the processes p_2 and p_3 invoke acquire_object() and send to their parent p_1 the message REQUEST(2) and REQUEST(3), respectively. Let us assume that the message REQUEST(2) is the one that arrives first at p_1 . This process consequently sends the object to p_2 . We obtain the structure depicted in the middle of the top line of the figure (in which the message REQUEST(3) has not yet been processed by p_1).

When p_1 receives the message REQUEST(3), it forwards it to p_2 , and defines p_3 as its new parent in the tree. Then, when p_2 receives the message REQUEST(3), it defines p_3 as its new parent (for its next requests), and sets *next*₂ to point to p_3 . The queue including p_2 and p_3 is now formed (right of the top line of the figure).

Then, p_4 invokes acquire_object(). It sends the message REQUEST(4) to its parent p_1 , and considers itself the new root. When p_1 receives this message, it forwards REQUEST(4) to its previous parent p_3 , and then updates its pointer *parent*₁ to 4. Finally, when p_3 receives REQUEST(4), it updates accordingly *parent*₃ and *next*₃, which now point to p_4 (left of the bottom line of the figure).

Let us assume that p_2 invokes release_object(). It consequently leaves the queue by sending the object to the process pointed to by *next*₂, (i.e., p_3). This is depicted

in the middle of the bottom line of the figure. Finally, the last subfigure (right of the bottom line) depicts the value of the pointers $parent_i$ and $next_i$ after a new invocation of acquire_object() by process p_2 .

As we can see, when all messages generated by the invocations of acquire_ object() and release_object() have been received and processed, the sets of pointers *parent_i* and *next_i* define a single spanning tree and a single queue, respectively. Moreover, this example illustrates also the adaptivity property. When considering the last configuration, if p_5 and p_1 do not invoke the operation acquire_object(), they will never receive messages generated by the algorithm.

5.5 Summary

This chapter was on algorithms that allow a mobile object to navigate a network made up of distributed processes. The main issue that these algorithms have to solve lies in the routing of both the requests and the mobile object, so that any process that requires the object eventually obtains it. Three navigation algorithms have been presented. They differ in the way the requests are disseminated, and in the way the mobile object moves to its destination.

The first algorithm, which assumes a fully connected network, requires O(n) messages per use of the mobile object. The second one, which uses only the edges of a fixed spanning tree built on the process network, requires O(D) messages, where D is the diameter of the spanning tree. The last algorithm, which assumes a fully connected network, manages a spanning tree whose shape evolves according to the requests issued by the processes. Its average message cost is $O(\log n)$. This algorithm has the noteworthy feature of being adaptive, namely, if after some time a process is no longer interested in the mobile object, there is a finite time after which it is no longer required to participate in the algorithm.

When the mobile object is a (stateless) token, a mobile object algorithm is nothing more than a token-based mutual exclusion algorithm. Actually, the algorithms presented in this chapter were first introduced as token-based mutual exclusion algorithms.

Finally, as far as algorithmic principles are concerned, an important algorithmic notion presented in this chapter is the "edge reversal" notion.

5.6 Bibliographic Notes

- The diffusion-based algorithm presented in Sect. 5.2 was proposed independently by G. Ricart and A.K. Agrawala [328], and I. Suzuki and T. Kasami [361]. This algorithm is generalized to arbitrary (connected) networks in [176].
- The algorithm presented in Sect. 5.3 is due to K. Raymond [304]. This algorithm, which assumes a statically defined tree spanning the network of processes, is based on the "edge reversal" technique.

- The edge reversal technique was first proposed (as far as we know) by E. Gafni and D. Bertsekas [141]. This technique is used in [78] to solve resource allocation problems. A monograph entirely devoted to this technique has recently been published [388].
- The algorithm presented in Sect. 5.4 is due to M. Naimi and M. Trehel [275, 374]. A formal proof of it, and the determination of its average message complexity (namely, $O(\log n)$), can be found in [276].
- A generic framework for mobile object navigation along trees is presented in [172]. Both the algorithms described in Sects. 5.3 and 5.4, and many other algorithms, are particular instances of this very general framework.
- Variants of the algorithms presented in Sects. 5.3 and 5.4 have been proposed. Among them are the algorithm presented by J.M. Bernabéu-Aubán and M. Ahamad [50], the algorithm proposed by M.L. Nielsen and M. Mizuno [279] (see Exercise 4), a protocol proposed by J.L.A. van de Snepscheut [355], and the *arrow* protocol proposed by M.J. Demmer and M. Herlihy [105]. (The message complexity of this last algorithm is investigated in [182].)
- The algorithm proposed by J.L.A. van de Snepscheut [355] extends a tree-based algorithm to work on any connected graph.
- Considering a mobile object which is a token, a dynamic heuristic-based navigation algorithm is described in [345]. Techniques to regenerate lost tokens are described in [261, 285, 321]. These techniques can be extended to more sophisticated objects.

5.7 Exercises and Problems

- Modify the navigation algorithm described in Fig. 5.3 (Sect. 5.2), so that all the local variables *request_by_i[k]* have a bounded domain [1..*M*]. (Hint: consider the process that is the current user of the object.)
- 2. The navigation algorithm described in Fig. 5.3 assumes that the underlying communication network is a complete point-to-point network. Generalize this algorithm so that it works on any connected network (i.e., a non-necessarily complete network).

Solution in [176].

3. A greedy version of the spanning tree-based algorithm described in Fig. 5.8 (Sect. 5.3) can be defined as follows. When a process p_i invokes acquire_object() while $parent_i \neq i$ (i.e., the mobile object is not currently located at the invoking process), p_i adds its identity *i* at the head of *queue_i* (and not at its tail as done in Fig. 5.8). The rest of the algorithm is left unchanged.

What is the impact of this modification on the order in which the processes obtain the mobile object? Does the liveness property remain satisfied? (Justify your answers.)

Solution in [304].
```
operation acquire_object() is
(1) interested<sub>i</sub> \leftarrow true;
(2)
       if (\neg object\_present_i) then
(3)
           send REQUEST(i, i) to p_{parent_i}; parent_i \leftarrow i;
(4)
           wait(object_present<sub>i</sub>)
(5)
       end if.
when release_object() is
(6) interested<sub>i</sub> \leftarrow false;
       if (next_i \neq \bot) then
(7)
(8)
           send OBJECT() to p_{next_i}; object\_present_i \leftarrow false; next_i \leftarrow \bot
(9)
       end if.
when OBJECT() is received do
(10) object\_present_i \leftarrow true.
when \operatorname{REQUEST}(j, k) is received do
(11) if (parent<sub>i</sub> \neq i)
(12)
           then send REQUEST(i, k) to p_{parent_i}
(13)
           else if (interested<sub>i</sub>) then next_i \leftarrow k
(14)
                                      else send OBJECT() to p_k; object_present<sub>i</sub> \leftarrow false
(15)
                  end if
(16) end if;
(17) parent<sub>i</sub> \leftarrow j.
```

Fig. 5.15 A hybrid navigation algorithm (code for p_i)

4. In the algorithm described in Fig. 5.8 (Sect. 5.3), the spanning tree is fixed, and both the requests and the object navigate its edges (in opposite direction). Differently, in the algorithm described in Fig. 5.12, the requests navigate a spanning tree that they dynamically modify, and the object is sent directly from its current owner to its next owner.

Hence the idea to design a variant of the algorithm of Fig. 5.12 in which the requests are sent along a fixed spanning (only the direction of its edges is modified according to requests), and the object is sent directly from its current user to its next user. Such an algorithm is described in Fig. 5.15. A main difference with both previous algorithms lies in the message REQUEST(). Such a message carries now two process identities j and k, where p_j is the identity of the process that sent the message, while p_k is the identity of the process from which originates this request. (In the algorithm of Fig. 5.8, which is based on the notion of a proxy process, a request message carries only the identity of its sender. Differently, in the algorithm of Fig. 5.12, a request message carries only the identity of the process from which the request originates.) The local variables have the same names (*interested_i*, *object_present_i*, *parent_i*, *next_i*), and the same meaning as in the previous algorithms.

Is this algorithm correct? If it is not, find a counterexample. If it is, prove its correction and compute its message complexity. Solution in [279].

Part II Logical Time and Global States in Distributed Systems

This part of the book, which consists of four chapters (Chap. 6 to Chap. 9), is devoted to the concepts of event, local state, and global state of a distributed computation and associated notions of logical time. These are fundamental notions that provide application designers with sane foundations on the nature of asynchronous distributed computing in reliable distributed systems.

Chapter 6 shows how a distributed computation can be represented as a partial order on the set of events produced by the processes. It also introduces the notion of a consistent global state and presents two algorithms that compute such global states on the fly. The notion of a lattice of global states and its interest are also discussed.

Chapter 7 introduces distinct notions of logical time encountered in distributed systems, namely, linear time (also called scalar time, or Lamport's time), vector time, and matrix time. Each type of time is defined, its main properties are stated, and examples of its uses are given.

Chapter 8 addresses distributed checkpointing in asynchronous message-passing systems. It introduces the notion of communication and checkpoint pattern, and presents two consistency conditions which can be associated with such an abstraction of a distributed computation. The first one (called z-cycle-freedom) captures the absence of cycles among local checkpoints, while the second one (called rollback-dependency trackability) allows us to associate, without additional computation, a global checkpoint with each local checkpoint. Checkpointing algorithms that ensure these properties are presented.

Finally, Chap. 9, which is the last chapter of this part, presents general techniques (called synchronizers) to simulate a synchronous system on top of an asynchronous distributed system.

Chapter 6 Nature of Distributed Computations and the Concept of a Global State

A sequential execution can be represented by the sequence (trace) of consecutive local states it has produced, or, given its initial state, by the sequence of statements that have been executed. Hence, a question that comes naturally to mind is the following one: How do we model a distributed execution?

This chapter answers first this question. To that end, it gives basic definitions, and presents three ways to model a distributed execution, namely, a partial order on a set of events, a partial order on a set of local states, and a lattice of global states. While these three types of models are equivalent, it appears that each one is more appropriate than the others to analyze and understand specific features of distributed executions.

The chapter then focuses on a fundamental notion of distributed computing, namely, the notion of a *global state*. The chapter analyzes global states and presents several distributed algorithms, which compute on the fly global states of a distributed application. These algorithms are *observation* algorithms (they have to observe an execution without modifying its behavior). It is shown that the best that can be done is the computation of a global state in which a distributed execution has passed or could have passed. This means that no process can know if the distributed execution has passed or has not passed through the global state which is returned as a result. This noteworthy feature illustrates the relativistic nature of the observation of distributed computations. Despite this relativistic feature, the computation of such global states allows distributed computing problems to be solved (such as the detection of stable properties).

Both the terms "global state" and "snapshot" are used with the same meaning in the literature. They have to be considered as synonyms. This chapter uses the term global state.

Keywords Event · Causal dependence relation · Causal future · Causal path · Causal past · Concurrent (independent) events · Causal precedence relation · Consistent global state · Cut · Global state · Happened before relation · Lattice of global states · Observation · Marker message · Nondeterminism · Partial order on events · Partial order on local states · Process history · Process local state · Sequential observation

6.1 A Distributed Execution Is a Partial Order on Local Events

This chapter considers asynchronous systems made up of *n* processes p_1, \ldots, p_n , where the identity of process p_i is its index *i*. The power of a process is that of a Turing machine enriched with point-to-point send and receive operations.

6.1.1 Basic Definitions

Events The execution of a statement by a process is called an *event*. Hence, being sequential, a process consists of a sequence of events. In a distributed system, three types of events can be distinguished.

- A communication event involves a process and a channel connecting this process to another process. There are two types of communication events:
 - A send event occurs when a process sends a message to another process.
 - A receive event occurs when a process receives a message from another process.
- The other events are called *internal* events. Such an event involves a single process and no communication channel. Its granularity depends on the observation level. It can be the execution of a subprogram, the execution of a statement expressed in some programming language, the execution of a single machine instruction, etc. The important point is that an internal event does not involve communication. Hence, any sequence of statements executed by a process between two communication events can be abstracted by a single internal event.

Process History As each process is sequential, the events executed by a process p_i are totally ordered. The corresponding sequence is sometimes called the *history* of p_i .

Let e_i^x and \hat{h}_i denote the *x*th event produced by process p_i , and the history of p_i , respectively. We consequently have

$$\widehat{h_i} = e_i^1, \ e_i^2, \dots, \ e_i^x, \ e_i^{x+1}, \ \dots$$

From a notational point of view, we sometimes denote \hat{h}_i as a pair (h_i, \rightarrow_i) , where h_i is the set of events produced by p_i , and \rightarrow_i is the (local) total order on the events of h_i .

6.1.2 A Distributed Execution Is a Partial Order on Local Events

Let $H_i = \bigcup_{1 \le i \le n} h_i$ (i.e., the set of all the events produced by a distributed execution). Moreover (to simplify the presentation), let us assume that no process sends the same message twice.

Message Relation Let *M* be the set of all the messages exchanged during an execution. Considering the associated send and receive events, let us define a "message order" relation, denoted " \longrightarrow_{msg} ", as follows. Given any message $m \in M$, let s(m) denote its send event, and r(m) denote its receive event. We have

$$s(m) \longrightarrow_{msg} r(m)$$

This relation expresses the fact that any message *m* is sent before being received.

Distributed Computation The flow of control of a distributed execution (computation) is captured by the smallest partial order relation, denoted $\widehat{H}_i = (H_i, \stackrel{ev}{\longrightarrow})$, where $e_i^x \stackrel{ev}{\longrightarrow} e_i^y$ if:

- Process order: $i = j \land x < y$, or
- Message order: $\exists m \in M : e_i^x = s(m)$ and $e_i^y = r(m)$, or
- Transitive closure: $\exists e: e_i^x \xrightarrow{ev} e \land e \xrightarrow{ev} e_i^y$.

"Process order" comes from the fact that each process is sequential; a process produces one event at a time. "Message order" comes from the fact that a message has first to be sent in order to be later received. Finally, "transitive closure" binds process order and message order.

The relation \xrightarrow{ev} is usually called *happened before* relation. It is also sometimes called the *causal precedence* relation. There is then a slight abuse of language as, while we can conclude from $\neg(e_i^x \xrightarrow{ev} e_j^y)$ that the event e_i^x is not a cause of the event e_j^y , it is not possible to conclude from $e_i^x \xrightarrow{ev} e_j^y$ that e_i^x is a cause of e_j^y (as a simple example, two consecutive events on a process are not necessarily "causally related"; they appear one after the other only because the process that issued them is sequential). Despite this approximation, we will use "causally precede" as a synonym of "happen before". Hence, $e_i^x \xrightarrow{ev} e_j^y$ has to be understood as "it is possible that event e_i^x causally affects event e_j^y ".

This approach to model a distributed computation as a partial order on a set of events is due to L. Lamport (1978). It is fundamental as, being free from physical time, it captures the essence of asynchronous distributed computations, providing thereby a simple way to abstract them so that we can analyze and reason on them.

An example of a distributed execution is depicted in the classical space-time diagram in Fig. 6.1. There are three processes, and each bullet represents an event; e_3^3 is an internal event, e_1^3 is a receive event, while e_2^3 is a send event.

6.1.3 Causal Past, Causal Future, Concurrency, Cut

Causal Path A causal path is a sequence of events $a(1), a(2), \ldots, a(z)$ such that

$$\forall x : 1 \le x < z : \quad a(x) \xrightarrow{ev} a(x+1).$$

.....

Fig. 6.1 A distributed execution as a partial order

Hence, a causal path is a sequence of consecutive events related by \xrightarrow{ev} . Let us notice that each process history is trivially a causal path.

When considering Fig. 6.1, the sequence of events e_2^2 , e_2^3 , e_3^3 , e_3^3 , e_3^4 , e_1^3 is a causal path connecting the event e_2^2 (sending by p_2 of a message to p_3) to the event e_1^3 (reception by p_1 of a message sent by p_3). Let us also observe that this causal relates an event on p_2 (e_2^3) to an event on p_1 (e_1^3), despite the fact that p_2 never sends a message to p_1 .

Concurrent Events, Causal Past, Causal Future, Concurrency Set Two events a and b are *concurrent* (or *independent*) (notation a||b), if they are not causally related, none of them belongs to the causes of the other, i.e.,

$$a||b \stackrel{def}{=} \neg(a \stackrel{ev}{\longrightarrow} b) \land \neg(b \stackrel{ev}{\longrightarrow} a).$$

Three more notions follow naturally from the causal precedence relation. Let e be an event.

- Causal past of an event: $past(e) = \{f \mid f \xrightarrow{ev} e\}$. This set includes all the events that causally precede the event *e*.
- Causal future of an event: future $(e) = \{f \mid e \xrightarrow{ev} f\}$. This set includes all the events that have e in their causal past.
- Concurrency set of an event: $concur(e) = \{f \mid f \notin (past(e) \cup future(e))\}$. This set includes all the events that are not causally related with the event *e*.

Examples of such sets are depicted in Fig. 6.2, where the event e_2^3 is considered. The events of $past(e_2^3)$ are the three events to the left of the left bold line, while the events of $future(e_2^3)$ are the six events to the right of the bold line on the right side of the figure.

It is important to notice that while, with respect to physical time, e_3^1 occurs "before" e_2^3 , and e_1^2 occurs "after" e_2^3 , both are independent from e_2^3 (i.e., they are logically concurrent with e_2^3). Process p_1 cannot learn that the event e_2^3 has been produced before receiving the message from p_3 (event e_1^3 , which terminates the causal

Fig. 6.2 Past, future, and concurrency sets associated with an event

path from starting at e_2^3 on p_2). A process can learn it only thanks to the flow of control created by the causal path $e_2^3, e_3^2, e_3^3, e_3^4, e_1^3$.

Cut and Consistent Cut A *cut* C is a set of events which define initial prefixes of process histories. Hence, a cut can be represented by a vector $[\operatorname{prefix}(\widehat{h_1}), \ldots, \operatorname{prefix}(\widehat{h_n})]$, where $\operatorname{prefix}(\widehat{h_i})$ is the corresponding prefix for process p_i . A *consistent cut* C is a cut such that $\forall e \in C: f \xrightarrow{ev} e \Rightarrow f \in C$. As an example, $C = \{e_1^2, e_2^1, e_2^3, e_3^1\}$ is not a cut because the only event from p_1

As an example, $C = \{e_1^2, e_2^1, e_2^3, e_3^1\}$ is not a cut because the only event from p_1 is e_1^2 , which is not a prefix of the history of p_1 (an initial prefix also has to include e_1^1 , because it has been produced before e_1^2).

If e_1^1 , which is not a produced before e_1^2). $C = \{e_1^1, e_1^2, e_2^1, e_2^2, e_3^1, e_3^2\}$ is a cut because its events can be partitioned into initial prefix histories: e_1^1, e_1^2, e_2^2 is an initial prefix of \hat{h}_1, e_2^1, e_2^2 is an initial prefix of \hat{h}_2 , and e_3^1, e_3^2 is an initial prefix of \hat{h}_3 . It is easy to see that the cut *C* is not consistent, because $e_2^2 \notin C$, $e_3^2 \in C$, and $e_2^3 \xrightarrow{ev} e_3^2$. Differently, the cut $C' = C \cup \{e_2^3\}$ is consistent.

The term "cut" comes from the fact that a cut can be represented by a line separating events in a space-time diagram. The events at the left of the cut line are the events belonging to the cut. The cut C and the consistent cut C' are represented by dashed lines in Fig. 6.3.

6.1.4 Asynchronous Distributed Execution with Respect to Physical Time

As we have seen, the definition of a distributed execution does not refer to physical time. This is similar to the definition of a sequential execution, and is meaningful as long as we do not consider real-time distributed programs. Physical time is a resource needed to execute a distributed program, but is not a programming object

Fig. 6.3 Cut and consistent cut

Fig. 6.4 Two instances of the same execution

accessible to the processes. (Physical time can be known only by an omniscient global observer, i.e., an observer that is outside the computation.)

This means that the sets of distributed executions with the same set of events and the same partial order on these events are the very same execution, whatever the physical time at which the events have been produced. This is depicted in Fig. 6.4.

This means that equivalent executions are obtained when abstracting space/time diagrams (as introduced in Sect. 1.1.1) from the duration of both real-time intervals between events and message transfer delays.

The events, which are denoted a, \ldots, j , are the same in both executions. As an example, a is the event abstracting the execution of the statement $x_1 \leftarrow 0$ (where x_1 is a local variable of the process p_1), g is the sending of a given message by p_2 to p_1 , and d is the reception of this message by p_1 .

Physical time is represented by a graduated arrow at the bottom of each execution, where τ_0 denotes the starting time of both executions. Each small segment of a graduated arrow represents one physical time unit.

This shows that the partial order on events produced by a distributed execution captures causal dependences between events, and only them. There is no notion of "duration" known by the processes. Moreover, this shows that the only way for a process to learn information from its environment is by receiving messages.

Fig. 6.5 Consecutive local states of a process p_i

In an asynchronous system, the passage of time alone does not provide information to the processes. This is different in synchronous systems, where, when a process proceeds to the next synchronous round, it knows that all the processes do the same. (This point will be addressed in Chap. 9, which is devoted to synchronizers.)

6.2 A Distributed Execution Is a Partial Order on Local States

From Events to Local States Each process p_i starts from an initial local state denoted σ_i^0 . Then, its first event e_i^1 entails its move from σ_i^0 to its next local state σ_i^1 , and more generally, its *x*th event e_i^x entails its progress from σ_i^{x-1} to σ_i^x . This is depicted in Fig. 6.5, where the small rectangles denote the consecutive local states of process p_i .

We sometimes use the transition-like notation $\sigma_i^x = \delta(\sigma_i^{x-1}, e_i^x)$ to state that the statement generating the event e_i^x makes p_i progress from the local state σ_i^{x-1} to the local state σ_i^x .

A Slight Modification of the Relation \xrightarrow{ev} In order to obtain a simple definition for a relation on local states, let us consider the relation on events denoted $\xrightarrow{ev'}$, which is \xrightarrow{ev} enriched with reflexivity. This means that the "process order" part of the definition of \xrightarrow{ev} , namely $i = j \land x < y$, is extended to $i = j \land x \leq y$ (i.e., by definition, each event precedes itself).

A Partial Order on Local States Let S be the set of all local states produced by a distributed execution. Thanks to $\xrightarrow{ev'}$, we can define, in a simple way, a partial order on the elements of S. This relation, denoted $\xrightarrow{\sigma}$, is defined as follows

$$\sigma_i^x \xrightarrow{\sigma} \sigma_j^y \stackrel{def}{=} e_i^{x+1} \xrightarrow{ev'} e_j^y$$

This definition is illustrated on Fig. 6.6. There are two cases.

• If e_i^{x+1} is the event associated with the sending of a message, and e_j^y the event associated with its reception, the local state σ_i^x preceding e_i^{x+1} "happens before" (causally precedes) the local state σ_j^y generated by e_j^y (top of the figure).

Fig. 6.6 From a relation on events to a relation on local states

If the events e_i^{x+1} and e_j^y have been produced by the same process (i = j), and are consecutive (y = x + 1), then the local state σ_i^x preceding e_i^{x+1} = e_j^y "happens before" (causally precedes) the local state σ_j^y = σ_i^{x+1} generated by e_j^y (bottom of the figure). In this case, the reflexivity (e_i^{x+1} is e_j^y) can be interpreted as an "internal communication" event, where p_i sends to itself a fictitious message. And, the corresponding send event e_i^{x+1} and receive event e_j^y are then merged to define a single same internal event.

It follows from the definition of $\xrightarrow{\sigma}$ that a distributed execution can be abstracted as a partial order \widehat{S} on the set of the process local states, namely, $\widehat{S} = (S, \xrightarrow{\sigma})$.

Concurrent Local States Two local states $\sigma 1$ and $\sigma 2$ are *concurrent* (or independent, denoted $\sigma 1 || \sigma 2$) if none of them causally precedes the other one, i.e.,

$$\sigma 1 || \sigma 2 \stackrel{def}{=} \neg (\sigma 1 \stackrel{\sigma}{\longrightarrow} \sigma 2) \land \neg (\sigma 2 \stackrel{\sigma}{\longrightarrow} \sigma 1).$$

It is important to notice that two concurrent local states may coexist at the same physical time. This is, for example, the case of the local states σ_i^{x+1} and σ_j^{y-1} in the top of Fig. 6.6 (this coexistence lasts during the—unknown and arbitrary—transit time of the corresponding message). On the contrary, this can never occur for causally dependent local states (a "cause" local state no longer exists when any of its "effect" local states starts existing).

6.3 Global State and Lattice of Global States

6.3.1 The Concept of a Global State

Global State and Consistent Global State A global state Σ of a distributed execution is a vector of *n* local states, one per process:

$$\Sigma = [\sigma_1, \ldots, \sigma_i, \ldots, \sigma_n],$$

where, for each *i*, σ_i is a local state of process p_i .

Intuitively, a *consistent global state* is a global state that could have been observed by an omniscient external observer. More formally, it is a global state $\Sigma = [\sigma_1, \dots, \sigma_i, \dots, \sigma_n]$ such that

$$\forall i, j : i \neq j \Rightarrow \sigma_i || \sigma_j.$$

This means no two local states of a consistent global state can be causally dependent.

Global State Reachability Let $\Sigma_1 = [\sigma_1, ..., \sigma_i, ..., \sigma_n]$ be a consistent global state. The global state $\Sigma_2 = [\sigma'_1, ..., \sigma'_i, ..., \sigma'_n]$ is *directly reachable* from Σ_1 if there is a process p_i and an event e_i (representing a statement that p_i can execute in its local state σ_i) such that

• $\forall j \neq i : \sigma'_i = \sigma_j$, and

•
$$\sigma_i' = \delta(\sigma_i, e_i).$$

Hence, direct reachability states that, the distributed execution being in the global state Σ_1 , there is a process p_i that produces its next event, and this event directs the distributed execution to enter the global state Σ_2 , which is the same as Σ_1 except for its *i*th entry.

It follows that, given a consistent global state $\Sigma_1 = [\sigma_1, \ldots, \sigma_i, \ldots, \sigma_n]$, for any $i, 1 \le i \le n$, and assuming e_i exists, the consistent global state $\Sigma_2 = [\sigma_1, \ldots, \delta(\sigma_i, e_i), \ldots, \sigma_n]$ is directly reachable from Σ_1 . This is denoted $\Sigma_2 = \delta(\Sigma_1, e_i)$.

More generally, Σ_1 and Σ_z being two consistent global states, Σ_z is *reachable* from Σ_1 (denoted $\Sigma_1 \xrightarrow{\Sigma} \Sigma_z$) if there is a sequence of consistent global states Σ_2 , Σ_3 , etc., such that, for any k, $1 < k \leq z$, the global state Σ_k is directly reachable from the global state Σ_{k-1} . By definition, for any $\Sigma_1, \Sigma_1 \xrightarrow{\Sigma} \Sigma_1$.

6.3.2 Lattice of Global States

Let us consider the very simple two-process distributed execution described in Fig. 6.7. While it is in its initial local state, p_1 waits for a message from p_2 . The reception of this message entails its progress from σ_1^0 to σ_1^1 . Then, p_1 sends back an answer to p_2 and moves to σ_1^2 . The behavior of p_2 can be easily deduced from the figure.

Reachability Graph Interestingly, it is possible to represent all the consistent global states in which a distributed execution can pass, as depicted in Fig. 6.8. To simplify the notation, the global state $[\sigma_1^x, \sigma_2^y]$ is denoted [x, y]. Hence, the initial global state Σ_{init} is denoted [0, 0], while the final global state Σ_{final} is denoted [2, 3].

Starting from the initial global state, only p_2 can produce an event, namely the sending of a message to p_1 . It follows that a single consistent global state can be directly attained from the initial global state [0, 0], namely the global state [0, 1]. Then, the execution being in the global state [0, 1], both p_1 and p_2 can produce an event. If p_1 produces e_1^1 , the execution progresses from the global state [0, 1] to [1, 1]. Differently, if p_2 produces its next event e_2^2 , the execution progresses from the global state [0, 1] to the global state [0, 2]. Progressing this way, we can built the reachability graph including all the consistent global states that can be visited by the distributed execution depicted in Fig. 6.6.

A Distributed Execution as a Lattice of Global States The fact that the previous execution has two processes, generates a graph with "two dimensions": one asso-

Fig. 6.8 Lattice of consistent global states

130

Fig. 6.9 Sequential observations of a distributed computation

ciated with the events issued by p_1 (edges going from right to left in the figure), the other one associated with the events issued by p_2 (edges going left to right in the figure). More generally, an *n*-process execution gives rise to a graph with "*n* dimensions".

The reachability graph actually has a lattice structure. A *lattice* is a directed graph such that any two vertices have a unique greatest common predecessor and a unique lowest common successor. As an example, the consistent global states denoted [2, 1] and [0, 2] have several common predecessors, but have a unique greatest common predecessor, namely the consistent global state denoted [0, 1]. Similarly they have a unique lowest common successor, namely the consistent global state denoted [2, 2]. As we will see later, these lattice properties become particularly relevant when one is interested in determining if some global state property is satisfied by a distributed execution.

6.3.3 Sequential Observations

Sequential Observation of a Distributed Execution A *sequential observation* of a distributed execution is a sequence including all its events, respecting their partial ordering. The distributed execution of Fig. 6.6 has three sequential observations, which are depicted in Fig. 6.9. They are the following:

• $O_1 = e_2^1, e_1^1, e_2^2, e_2^2, e_2^3$. This sequential observation is depicted by the dashed line at the left of Fig. 6.9.

- $O_2 = e_2^1, e_1^1, e_2^2, e_1^2, e_2^3$. This sequential observation is depicted by the dotted line in the middle of Fig. 6.9.
- $O_3 = e_2^1, e_2^2, e_1^1, e_1^2, e_2^3$. This sequential observation is depicted by the dashed/ dotted line at the right of Fig. 6.9.

As each observation is a total order on all the events that respects their partial ordering, it follows that we can go from one observation to another one by permuting any pair of consecutive events that are concurrent. As an example, O_2 can be obtained from O_1 by permuting e_1^2 and e_2^2 (which are independent events). Similarly, as e_1^1 and e_2^2 are independent events, permuting them in O_2 provides us with O_3 .

Let us finally observe that the intersection of all the sequential observations (i.e., their common part) is nothing more than the partial order on the events associated with the computation.

Remark 1 As each event makes the execution proceed from a consistent global state to another consistent global state, an observation can also be defined at a sequence of consistent global states, each global state being directly reachable from its immediate predecessor in the sequence. As an example, O_1 corresponds to the sequence of consistent global states [0, 0], [0, 1], [1, 1], [2, 2], [2, 3].

Remark 2 Let us insist on the fact that the notion of global state reachability considers a single event at a time. During an execution, independent events can be executed in any order or even simultaneously. If, for example, e_1^1 and e_2^2 are executed "simultaneously", the execution proceeds "directly" from the global state [0, 1] to the global state [1, 2]. Actually, whatever does really occur, it is not possible to know it. The advantage of the lattice approach, which considers one event at a time, lies in the fact that no global state in which the execution could have passed is missed.

6.4 Global States Including Process States and Channel States

6.4.1 Global State Including Channel States

In some cases, we are not interested in global states consisting of only one local state per process, but in global states consisting both of process local states and channel states.

To that end we consider that processes are connected by unidirectional channels. This is without loss of generality as a bidirectional channel connecting p_i and p_j can be realized with two unidirectional channels, one from p_i to j and one from p_j to p_i . The state of the channel from p_i to p_j consists in the messages that have been sent by p_i , and have not yet been received by p_j . A global state is consequently made up of two parts:

- a vector Σ with a local state per process, plus
- a set ΣC whose each element represents the state of a given channel.

Fig. 6.10 Illustrating the notations " $e \in \sigma_i$ " and " $f \notin \sigma_i$ "

6.4.2 Consistent Global State Including Channel States

Notation Let σ_i be a local state of a process p_i , and e and f be two events produced by p_i . The notation $e \in \sigma_i$ means that p_i has issued e before attaining the local state σ_i , while $f \notin \sigma_i$ means that p_i has issued f after its local state σ_i . We then say "e belongs to the past of σ_i ", and "f belongs to the future of σ_i ". These notations are illustrated in Fig. 6.10.

In-transit Messages and Orphan Messages The notions of in-transit and orphan messages are with respect to an ordered pair of local states. Let *m* be a message sent by p_i to p_j , and σ_i and σ_j two local states of p_i and p_j , respectively. Let us recall that s(m) and r(m) are the send event (by p_i) and the reception event (by p_j) associated with *m*, respectively.

• A message *m* is *in-transit* with respect to the ordered pair of local states $\langle \sigma_i, \sigma_j \rangle$ if

$$s(m) \in \sigma_i \land r(m) \notin \sigma_i.$$

• A message *m* is *orphan* with respect to the ordered pair of local states $\langle \sigma_i, \sigma_j \rangle$ if

$$s(m) \notin \sigma_i \wedge r(m) \in \sigma_j$$
.

These definitions are illustrated in Fig. 6.11, where there are three processes, and two channels, one from p_1 to p_2 , and one from p_3 to p_2 . As, on the one hand, $s(m_1) \in \sigma_1$ and $s(m_3) \in \sigma_1$, and, on the other hand, $r(m_1) \in \sigma_2$ and $r(m_3) \in \sigma_2$, both m_1 and m_3 are "in the past" of the directed pair $\langle \sigma_1, \sigma_2 \rangle$. Differently, as $s(m_5) \in \sigma_1$ and $r(m_5) \notin \sigma_2$, the message m_5 is in-transit with respect to the ordered pair $\langle \sigma_1, \sigma_2 \rangle$.

Similarly, the message m_2 belongs to the "past" of the pair of local states $\langle \sigma_3, \sigma_2 \rangle$. Differently, with respect to this ordered pair, the message m_4 has been received by p_2 ($r(m_4) \in \sigma_2$), but has not been sent by p_3 ($s(m_4) \notin \sigma_3$); hence it is an orphan message.

Considering Fig. 6.11, let us observe that message m_5 , which is in-transit with respect to pair of local states $\langle \sigma_1, \sigma_2 \rangle$, does not make this directed pair inconsistent

(it does not create a causal path invalidating $\sigma_1 || \sigma_2$). The case of an orphan message is different. As we can see, the message m_4 creates the dependence $\sigma_3 \xrightarrow{\sigma} \sigma_2$, and, consequently, we do not have $\sigma_3 || \sigma_2$. Hence, orphan messages prevent local states from belonging to the same consistent global state.

Consistent Global State Let us define the state of a FIFO channel as a sequence of messages, and the state of a non-FIFO channel as a set of messages. The state of a channel from p_i to p_j with respect to a directed pair $\langle \sigma_i, \sigma_j \rangle$ is denoted $c_state(i, j)$. As already indicated, it is the sequence (or the set) of messages sent by p_i to p_j whose send events are in the past of σ_i , while their receive events are not in the past of σ_j (they are in its "future").

Let $C = \{(i, j) \mid \exists \text{ a directed channel from } p_i \text{ to } p_j\}$. A global state $(\Sigma, C\Sigma)$, where $\Sigma = [\sigma_1, \dots, \sigma_n]$ and $C\Sigma = \{c_state(i, j)\}_{(i, j) \in C}$, is consistent if, for any message *m*, we have (where \oplus stands for exclusive or)

- C1: $(s(m) \in \sigma_i) \Rightarrow (r(m) \in \sigma_j \oplus m \in c_state(i, j))$, and
- C2: $(s(m) \notin \sigma_i) \Rightarrow (r(m) \notin \sigma_j \land m \notin c_state(i, j)).$

This definition states that, to be consistent, a global state $(\Sigma, C\Sigma)$ has to be such that, with respect to the process local states defined by Σ , (C1) each in-transit message belongs to the state of the corresponding channel, and (C2) there is no message received and not sent (i.e., no orphan message).

 Σ Versus $(\Sigma, C\Sigma)$ Let us observe that the knowledge of Σ contains implicitly the knowledge of $C\Sigma$. This is because, for any channel, the past of the local state σ_i contains implicitly the messages sent by p_i to p_j up to σ_i , while the past of the local state σ_j contains implicitly the messages sent by p_i and received by p_j up to σ_j . Hence, in the following we use without distinction Σ or $(\Sigma, C\Sigma)$.

6.4.3 Consistent Global State Versus Consistent Cut

The notion of a cut was introduced in Sect. 6.1.3. A cut *C* is a set of events defined from prefixes of process histories. Let σ_i be the local state of p_i obtained after executing the events in its prefix history prefix(\hat{h}_i) as defined by the cut, i.e., $\sigma_i = \delta(s_i^0, \operatorname{prefix}(\hat{h}_i))$ using the transition function-based notation (σ_i^0 being the initial state of p_i). It follows that $[\sigma_1, \ldots, \sigma_i, \ldots, \sigma_n]$ is a global state Σ . Moreover, the cut *C* is consistent if and only if Σ is consistent.

When considering $(\Sigma, C\Sigma)$, we have the following. If the cut giving rise to Σ is consistent, the state of the channels in $C\Sigma$ correspond to the messages that cross the cut line (their send events belong to the cut, while their receive events do not). If the cut is not consistent, there is at least one message that crosses the cut line in the "bad direction" (its send event does not belong to the cut, while its receive event does, this message is an orphan message).

Fig. 6.12 Cut versus global state

Examples of a cut C', which is consistent, and a cut C, which is not consistent, were depicted in Fig. 6.3. This execution is reproduced in Fig. 6.12, which is enriched with local states. When considering the consistent cut C', we obtain the consistent global state $\Sigma' = [\sigma_1^2, \sigma_2^3, \sigma_3^2]$. Moreover, $C\Sigma'$ is such that the state of each channel is empty, except for the channel from p_1 to p_3 for which we have $c_state(1,3) = \{m'\}$. When considering the inconsistent cut C, we obtain the (inconsistent) global state $\Sigma = [\sigma_1^2, \sigma_2^2, \sigma_3^2]$, whose inconsistency is due to the orphan message m.

6.5 On-the-Fly Computation of Global States

6.5.1 Global State Computation Is an Observation Problem

The aim is to design algorithms that compute a consistent global state of a distributed application made up of *n* processes p_1, \ldots, p_n . To that end, a controller (or observer) process, denoted cp_i , is associated with each application process p_i . The role of a controller is to observe the process it is associated with, in such a way that the set of controllers computes a consistent global state of the application.

Hence, the computation of a consistent global state of a distributed computation is an *observation* problem: The controllers have to observe the application processes without modifying their behavior. This is different from problems such as the navigation of a mobile object (addressed in the previous chapter), where the aim was to provide application processes with appropriate operations (such as acquire() and release()) that they can invoke.

The corresponding structural view is described in Fig. 6.13. Ideally, the addition/suppression of controllers/observers must not modify the execution of the distributed application.

Fig. 6.13 Global state computation: structural view

6.5.2 Problem Definition

The computation of a global state is launched independently by any number x of controllers, where $1 \le x \le n$. The problem is defined by the following properties.

- Liveness. If at least one controller launches a global state computation, a global state is computed.
- Safety. Let $(\Sigma, C\Sigma)$ be the global state that is computed.
 - Validity. Let Σ_{start} be the global state of the application when the global state computation starts and Σ_{end} its global state when it terminates. Σ is such that $\Sigma_{start} \xrightarrow{\Sigma} \Sigma$ and $\Sigma \xrightarrow{\Sigma} \Sigma_{end}$.
 - Channel consistency. $C\Sigma$ records all the messages (and only those) that are in-transit with respect to Σ .

The validity property states that the global state Σ that is computed is consistent and up to date (always returning the initial state would not solve the problem). Moreover, when considering the lattice of global states associated with the distributed execution, the computed global state Σ is reachable from Σ_{start} , and Σ_{end} is reachable from it. This defines the "freshness" of Σ . The channel consistency states that $C\Sigma$ (recorded channel states) is in agreement with Σ (recorded process local states).

6.5.3 On the Meaning of the Computed Global State

On the Nondeterminism of the Result Considering the lattice of global states described in Fig. 6.8, let us assume that the computation starts when the application is in state $\Sigma_{start} = [0, 1]$ and terminates when the application is in state $\Sigma_{end} = [1, 2]$. The validity property states that the computed global state Σ is one of the global states [0, 1], [1, 1], [0, 2],or [1, 2].

The global state that is computed depends actually on the execution and the interleaving of the events generated by the application processes and by the controllers in charge of the computation of the global state. The validity property states only that Σ is a consistent global state that the execution *might* have passed through. Maybe the execution passed through Σ , maybe it did not. Actually, there is no means to know if the distributed execution passed through Σ or not. This is due to fact that independent events can be perceived, by distinct sequential observers, as having been executed in different order (see Fig. 6.9). Hence, the validity property characterizes the best that can be done, i.e., (a) Σ is consistent, and (b) it can have been passed through by the execution. Nothing stronger can be claimed.

The Case of Stable Properties A stable property is a property that, once true, remains true forever. "The application has terminated", "there is a deadlock", or " a distributed cell has become inaccessible", are typical examples of stable properties that can be defined on the global states of a distributed application. More precisely, let \mathcal{P} be a property on the global states of a distributed execution. If \mathcal{P} is a stable property, we have

$$\mathcal{P}(\Sigma) \Rightarrow \left(\forall \Sigma' \colon \Sigma \xrightarrow{\Sigma} \Sigma' \colon \mathcal{P}(\Sigma') \right).$$

Let Σ be a consistent global state that has been computed, and Σ_{start} and Σ_{end} as defined previously. We have the following:

- As *P* is a stable property and Σ → Σ_{end}, we have *P*(Σ) ⇒ *P*(Σ_{end}). Hence, if *P*(Σ) is true, whether the distributed execution passed through Σ or not, we conclude that *P*(Σ_{end}) is satisfied, i.e., the property is satisfied in the global state Σ_{end}, which is attained by the distributed execution (and can never be explicitly known). Moreover, from then on, due to its stability, we know that *P* is satisfied on all future global states of the distributed computation.
- If ¬P(Σ), taking the contrapositive of the definition of a stable property, we can conclude ¬P(Σ_{start}), but nothing can be concluded on P(Σ_{end}).

In this case, a new global state can be computed, until either a computed global state satisfies \mathcal{P} , or the computation has terminated. (Let us observe that, if \mathcal{P} is "the computation has terminated", it is eventually satisfied. Special chapters of the book are devoted to the detection of stable properties such as distributed termination and deadlock detection.)

6.5.4 Principles of Algorithms Computing a Global State

An algorithm that computes a global state of a distributed execution has to ensure that each controller cp_i records a local state σ_i of the process p_i it is associated with, and each pair of controllers (cp_j, cp_i) has to compute the value $c_state(j, i)$ (i.e., the state of the directed channel from p_j to p_i).

In order that $(\Sigma, C\Sigma)$ be consistent, the controllers have to cooperate to ensure the conditions C1 and C2 stated in Sect. 6.4.2. This cooperation involves both synchronization and message recording.

- Synchronization. In order that there is no orphan message with respect to a pair $\langle \sigma_j, \sigma_i \rangle$, when a message is received from p_j , the controller cp_i might be forced to record the local state of p_i before giving it the message.
- Message recording. In order that the in-transit messages appear in the state of the corresponding channels, controllers have to record them in one way or another.

While nearly all global state computation algorithms use the same synchronization technique to ensure Σ is consistent, they differ in (a) the technique they use to record in-transit messages, and (b) the FIFO or non-FIFO assumption they consider for the directed communication channels.

6.6 A Global State Algorithm Suited to FIFO Channels

The algorithm presented in this section is due to K.M. Chandy and L. Lamport (1985). It was the first global state computation algorithm proposed. It assumes that (a) the channels are FIFO, and (b) the communication graph is strongly connected (there is a directed communication path from any process to any other process).

6.6.1 Principle of the Algorithm

A Local Variable per Process Plus a Control Message The local variable gs_state_i contains the state of p_i with respect to the global state computation. Its value is *red* (its local state has been recorded) or *green* (its local state has not yet been recorded). Initially, $gs_state_i = green$.

A controller cp_i , which has not yet recorded the local state of its associated process p_i , can do it at any time. When cp_i records the local state of p_i , it atomically (a) updates gs_state_i to the value red, and (b) sends a control message (denoted MARKER(), and depicted with dashed arrows) on all its outgoing channels. As channels are FIFO, a message MARKER() is a synchronization message separating the application messages sent by p_i before it from the application messages sent after it. This is depicted in Fig. 6.14.

When a message is received by the pair (p_i, cp_i) , the behavior of cp_i depends on the value of gs_state_i . There are two cases.

• $gs_state_i = green$. This case is depicted in Fig. 6.15. The controller cp_i discovers that a global state computation has been launched. It consequently participates in it by atomically recording σ_i , and sending MARKER() messages on its outgoing channels to inform their destination processes that a global state computation has been started.

 cp_i records σ_i and sends a marker on each of its outgoing channels

Fig. 6.14 Recording of a local state

 cp_i records σ_i and sends a marker on each of its outgoing channels

Fig. 6.15 Reception of a MARKER() message: case 1

 cp_i records all the messages received by p_i between the recording of σ_i and the marker, which define the state of the channel from p_i to p_i

Fig. 6.16 Reception of a MARKER() message: case 2

Moreover, for the ordered pair of local states $\langle \sigma_j, \sigma_i \rangle$ to be consistent, cp_i defines the state $c_state(j, i)$ of the incoming channel from p_j as being empty.

• $gs_state_i = red$. In this case, depicted in Fig. 6.16, cp_i has already recorded σ_i . Hence, it has only to ensure that the recorded channel state $c_state(j, i)$ is consistent with respect to the ordered pair $\langle \sigma_j, \sigma_j \rangle$. To that end, cp_i records the sequence of messages that are received on this channel between the recording of σ_i and the reception of the marker sent by cp_j .

Properties Assuming at least one controller process cp_i launches a global state computation (Fig. 6.14), it follows from the strong connectivity of the communi-

internal operation record_ls() is (1) $\sigma_i \leftarrow$ current local state of p_i ; (2) $gs_state_i \leftarrow red;$ for each $k \in c_{in_i}$ do $c_{state}(k, i) \leftarrow \emptyset$ end for; (3) (4) for each $j \in c_{out_i}$ do send MARKER() on *out_channel*_i[j] end for. when START() is received do (5) **if** $(gs_state_i = green)$ **then** record_ls() **end if**. when MSG(v) is received on *in_channel*_i[j] do case MSG = MARKER then if $(gs_state_i = green)$ then record_ls() end if; (6) (7) $closed_i[j] \leftarrow true$ MSG = APPL**then if** $(gs_state_i = red) \land (\neg closed_i[j])$ (8) (9)**then** add the message APPL() at the tail of $c_{state}(j, i)$ (10)end if; pass the message APPL(v) to p_i (11)(12) end case.

Fig. 6.17 Global state computation (FIFO channels, code for cp_i)

cation graph and the rules associated with the control messages MARKER() that exactly one local state per process is recorded, and exactly one marker is sent on each directed channel. It follows that a global state is eventually computed.

Let us color a process with the color currently in cs_state_i . Similarly, let the color of an application message be the color of its sender when the message is sent. According to these colorings, an orphan message is a red message received by a green process. But, as the channel from p_j to p_i is FIFO, no red message can arrive before a marker, from which it follows that there is no orphan message. The fact that all in-transit messages are recorded follow the recording rules expressed in Figs. 6.15 and 6.16. The recorded global state is consequently consistent.

6.6.2 The Algorithm

Local Variables Let c_{in_i} denote the sets of process identities j such that there is a channel from p_j to p_i ; this channel is denoted $in_cchannel_i[j]$. Similarly, let c_out_i denote the sets of process identities j such that there is a channel from p_i to p_j ; this channel is denoted $out_cchannel_i[j]$. These sets are known both by p_i and its controller cp_i . (As the network is strongly connected, no set c_in_i or c_out_i is empty.)

The local array $closed_i[c_in_i]$ is a Boolean array. Each local variable $closed_i[j]$ is initialized to *false*, and is set to value *true* when cp_i receives a marker from cp_j .

Algorithm Executed by cp_i The algorithm executed by a controller process cp_i is described in Fig. 6.17. The execution of the internal operation record_ls(), and the processing associated with the reception of a message START() or MSG() are

Fig. 6.18 A simple automaton for process p_i (i = 1, 2)

atomic. This means they exclude each other, and exclude also concurrent execution of the process p_i . (Among other issues, the current state of p_i has not to be modified when cp_i records σ_i).

One or several controller processes launch the algorithm when they receive an external message START(), while their local variable $gs_state_i = green$ (line 4). Such a process then invokes the internal operation record_ls(). This operation records the current local state of p_i (line 1), switches gs_state_i to red (line 2), initializes the channel states $c_state(j, i)$ to the empty sequence, denoted \emptyset (line 3), and sends markers on p_i 's outgoing channels (line 4).

The behavior of a process cp_i that receives a message depends on the message. If it is marker (control message), cp_i learns that the sender cp_j has recorded σ_j . Hence, if not yet done, cp_i executes the internal operation record_ls() (line 6). Moreover, in all cases, it sets $closed_i[j]$ to *true* (line 7), to indicate that the state of the input channel from p_j has been computed, this channel state being consistent with respect to the pair of local states $\langle \sigma_i, \sigma_i \rangle$ (see Figs. 6.15 and 6.16).

If the message is an application message, and the computation of $c_state(j,i)$ has started and is not yet finished (predicate of line 8), cp_i adds it at the end of $c_state(j,i)$. In all cases, the message is passed to the application process p_i .

6.6.3 Example of an Execution

This section illustrates the previous global state computation algorithm with a simple example. Its aim is to give the reader a deeper insight on the subtleties of global state computations.

Application Program and a Simple Execution The application is made up of two processes p_1 and p_2 and two channels, one from p_1 to p_2 , and one from p_2 to p_1 . Moreover, both processes have the same behavior, described by the automaton described in Fig. 6.18. Process p_i is in state σ_i^0 and moves to state σ_i^1 by sending the message m_i to the other process p_j . It then returns to its initial state when it receives the message m_i from process p_j , and this is repeated forever.

A prefix of an execution of p_1 and p_2 is described in Fig. 6.19.

Superimposing a Global State Computation Figure 6.20 describes a global state computation. This global state computation is superimposed on the distributed execution described in Fig. 6.19. The control processes cp_1 and cp_2 access the local

Fig. 6.19 Prefix of a simple execution

Fig. 6.20 Superimposing a global state computation on a distributed execution

control variables gs_state_1 and gs_state_2 , respectively, and send MARKER() messages. This global state computation involves four time instants (defined from an external omniscient observer's point of view).

- At time τ_0 , the controller cp_1 receives a message START() (line 5). Hence, when the global state computation starts, the distributed execution is in the global state $\Sigma_{start} = [\sigma_1^0, \sigma_2^0]$. The process cp_1 consequently invokes record_ls(). It records the current state of p_1 , which is then σ_1^0 , and sends a marker on its only outgoing channel (lines 1–5).
- Then, at time τ_1 , the application message m_2 arrives at p_1 (lines 8–11). This message is first handled by cp_1 , which adds a copy of it to the channel state $c_state(2, 1)$. It is then received by p_1 which moves from σ_1^1 to σ_1^0 .
- Then, at time τ_2 , cp_2 receives the marker sent by cp_1 (lines 6–7). As $gs_state_2 = green$, cp_2 invokes record_ls(): It records the current state of p_2 , which is σ_2^1 , and sends a marker to cp_1 .
- Finally, at time τ_3 , the marker sent by cp_2 arrives at cp_1 . As $gs_state_1 = red$, cp_1 has only to stop recording the messages sent by p2 to p_1 . Hence, when the global state computation terminates, the distributed execution is in the global state $\Sigma_{end} = [\sigma_1^0, \sigma_2^1]$.

Fig. 6.21 Consistent cut associated with the computed global state

Fig. 6.22 A rubber band transformation

It follows that the global state that been cooperatively computed by cp_1 and cp_2 is the pair $(\Sigma, C\Sigma)$, where $\Sigma = [\sigma_1^0, \sigma_2^1]$, and $C\Sigma = \{c_state(1, 2), c_state(2, 1)\}$ with $c_state(1, 2), = \emptyset$ and $c_state(2, 1) = \langle m_2 \rangle$. It is important to see that this computation is not at all atomic: as illustrated in the space-time diagram, it is distributed both with respect to space (processes) and time.

Consistent Cut and Rubber Band Transformation Figure 6.21 is a copy of Fig. 6.19, which explicitly represent the consistent cut associated with the global state that has been computed. This figure shows that the distributed execution did not pass through the computed global state.

Actually, as suggested in Sect. 6.1.4, we can play with asynchrony and physical time to exhibit a distributed execution which has passed through the computed global state. This distributed is obtained by the "rubber band transformation": in the space-time diagram, we consider process axes are rubber bands that can be stretched or shrunk as long as no message is going backwards. Such a rubber band transformation is described in Fig. 6.22. As the execution described in Fig. 6.21 and the execution described in Fig. 6.22 define the same partial order, they are actually the *same* execution.

6.7 A Global State Algorithm Suited to Non-FIFO Channels

This section presents a global state computation algorithm suited to systems with directed non-FIFO channels. This algorithm, which is due to T.H. Lai and T.H.

Yang (1987), differs from the previous one mainly in the way it records the state of the channels.

6.7.1 The Algorithm and Its Principles

The local variables c_{in_i} , c_{out_i} , $in_{channel_i}[k]$, and $out_{channel_i}[k]$ have the same meaning as before. In addition to gs_{state_i} , which is initialized to green and is eventually set to *red*, each controller cp_i manages two arrays of sets defined as follows:

• $rec_msg_i[c_in_i]$ is such that, for each $k \in c_in_i$, we have

$rec_msg_i[k] =$

{all the messages received on $in_channel_i[k]$ since the beginning}.

• $sent_msg_i[c_out_i]$ is such that, for each $k \in c_out_i$, we have

 $sent_msg_i[k] = \{all \text{ the messages sent on } out_channel_i[k] \text{ since the beginning} \}.$

Each array is a log in which cp_i records all the messages it receives on each input channel, and all the messages it sends on each output channel. This means that (differently from the previous algorithm), cp_i has to continuously observe p_i . But now there is no control message: All the messages are application messages. Moreover, each message inherits the current color of its sender (hence, each message carries one control bit).

The basic rule is that, while a green message can always be consumed, a red message can be consumed only when its receiver is red. It follows that, when a green process p_i receives a red message, cp_i has first to record p_i 's local state so that p_i becomes red before being allowed to receive and consume this message.

The algorithm is described in Fig. 6.23. The text is self-explanatory. *m.color* denotes the color of the application message m. Line 7 ensures that a red message cannot be received by a green process, which means that there is no orphan message with respect to an ordered pair of process local states that have been recorded.

6.7.2 How to Compute the State of the Channels

Let *cp* be any controller process. After it has recorded σ_i , *rec_msg*_i[*c_in*_i], and *sent_msg*_i[*c_out*_i] (line 3), a controller *cp*_i sends this triple to *cp* (line 4).

When it has received such a triple from each controller cp_i , the controller cp pieces together all the local states to obtain $\Sigma = [\sigma_1, ..., \sigma_n]$. As far as $C\Sigma$ is concerned, it defines the state of the channel from p_i to p_i as follows:

$$c_state(j, i) = sent_msg_i[i] \setminus rec_msg_i[j].$$

internal operation record_ls() is (1) $\sigma_i \leftarrow$ current local state of p_i ; (2) $gs_state_i \leftarrow red;$ (3)record σ_i , rec_msg_i[c_in_i], and sent_msg_i[c_out_i]; (4)send the previous triple to *cp*. when START() is received do (5) **if** $(gs_state_i = green)$ **then** record_ls() **end if**. when MSG(m) is received on in_channel_i[j] do (6) $rec_msg_i[j] \leftarrow rec_msg_i[j] \cup \{m\};$ if $(m.color = red) \land (gs_state_i = green)$ then record_ls() end if; (7)(8)pass MSG(m) to p_i . when MSG(m) is sent on out_channel_i[j] do (9) $m.color \leftarrow gs_state_i;$ (10) $sent_msg_i[k] \leftarrow sent_msg_i[j] \cup \{m\}.$

Fig. 6.23 Global state computation (non-FIFO channels, code for cp_i)

Fig. 6.24 Example of a global state computation (non-FIFO channels)

It follows from (a) this definition, (b) the fact that $sent_msg_j[i]$ is the set of messages sent by p_j to p_i before σ_j , and (c) the fact that $rec_msg_i[j]$ is the set of messages received by p_i from p_j before σ_i , that $c_state(j, i)$ records the messages that are in-transit with respect to the ordered pair $\langle \sigma_j, \sigma_i \rangle$. As there is no orphan message with respect to the recorded local states (see above), the computed global state is consistent.

An Example An example of execution of the previous algorithm is described in Fig. 6.24. Green messages are depicted with plain arrows, while red messages are depicted with dashed arrows.

In this example, independently from the other controller processes, each of cp_1 and cp_2 receives an external START() message, and consequently records the local states of p_1 and p_2 , respectively. After σ_2 has been recorded, p_2 sends a (red) message to p_4 . When this message is received, σ_4 is recorded by cp_4 before being

passed to p_4 . Then, p_4 sends a (red) message to p_3 . As this message is red, its reception entails the recording of σ_3 by cp_3 , after which the message is received and processed by p_3 .

The cut corresponding to this global state is indicated by a bold dashed line. It is easy to see that it is consistent. The in-transit messages are the two green messages (plain arrows) that cross the cut line.

Remark The logs $sent_msg_i[c_out_i]$ and $rec_msg_i[c_out_i]$ may require a large memory, which can be implemented with a local secondary storage. In some applications, based on the computation of global states, what is relevant is not the exact value of these sets, but their cardinality. In this case, each set $sent_msg_i[k]$, and each set $rec_msg_i[j]$, can be replaced by a simple counter. As a simple example, this is sufficient when one wants to know which channels are empty in a computed global state.

6.8 Summary

This chapter was on the nature of a distributed execution and the associated notion of a global state (snapshot). It has defined basic notions related to the execution of a distributed program (event, process history, process local state, event concurrency/independence, cut, and global state). It has also introduced three approaches to model a distributed execution, namely, a distributed execution can be represented as a partial order on events, a partial order on process local states, or a lattice of global states.

The chapter then presented algorithms that compute on the fly consistent global states of a distributed execution. It has shown that the best that can be done is the computation of a global state that might have been passed through by the distributed computation. The global state that has been computed is consistent, but no process can know if it really occurred during the execution. This nondeterminism is inherent to the nature of asynchronous distributed computing. An aim of this chapter was to give the reader an intuition of this relativistic dimension, when the processes have to observe on the fly the distributed execution they generate.

6.9 Bibliographic Notes

- The capture of a distributed execution as a partial order on the events produced by processes is due to L. Lamport [226]. This is the first paper that formalized the notion of a distributed execution.
- The first paper that presented a precise definition of a global state of a distributed computation and an algorithm to compute a consistent global state is due to K.M. Chandy and L. Lamport [75]. Their algorithm is the one presented in Sect. 6.6. A formal proof can be found in [75].

- The algorithm by Chandy and Lamport computes a single global state. It has been extended in [57, 357] to allow for repeated global state computations.
- The algorithm for non-FIFO channels presented in Sect. 6.7 is due to Y.T. Lai and Y.T. Yang [222].
- Numerous algorithms that compute consistent global states in particular contexts have been proposed. As an example, algorithms suited to causally ordered communication are presented in [1, 14]. Other algorithms that compute (on the fly) consistent global states are presented in [169, 235, 253, 377]. A reasoned construction of an algorithm computing a consistent global state is presented in [80]. A global state computation algorithm suited to large-scale distributed systems is presented in [213]. An introductory survey on global state algorithms can be found in [214].
- The algorithms that have been presented are non-inhibitory, in the sense that they never freeze the distributed execution they observe. The role of inhibition for global state computation is investigated in [167, 363].
- The view of a distributed computation as a lattice of consistent global states is presented and investigated in [29, 98, 250]. Algorithms which determine which global states of a distributed execution satisfy some predefined properties are presented in [28, 98]. Those algorithms are on-the-fly algorithms.
- A global state Σ of a distributed execution is *inevitable* if, when considering the lattice associated with this execution, it belongs to all the sequential observations defined by this lattice. An algorithm that computes on the fly all the inevitable global states of a distributed execution is described in [138].
- The causal precedence (happened before) relation has been generalized in several papers (e.g., [174, 175, 297]).
- Snapshot computation in anonymous distributed systems is addressed in [220].

6.10 Exercises and Problems

- Adapt the algorithm described in Sect. 6.6 so that the controller processes are able to compute several consistent global states, one after the other. Answer in [357].
- 2. Use the rubber band transformation to give a simple characterization of an orphan message.
- 3. Let us consider the algorithm described in Fig. 6.25 in which each controller process cp_i manages the local variable gs_state_i (as in the algorithms described in this chapter), plus an integer $count_i$. Moreover, each message *m* carries the color of its sender (in its field *m.color*). The local control variable *count_i* counts the number of green messages sent by p_i minus the number of green messages received by p_i . The controller cp is one of the controllers, known by all, that is in charge of the construction of the computed global state.

When *cp* has received a pair $(\sigma_i, count_i)$ from each controller *cp_i*, it computes $ct = \sum_{1 \le i \le n} count_i$.

```
internal operation record_ls() is
(1) \sigma_i \leftarrow current local state of p_i;
(2) gs\_state_i \leftarrow red;
(3) record \sigma_i, count<sub>i</sub>; send the pair (\sigma_i, count<sub>i</sub>) to cp.
when START() is received do
(4) if (gs\_state_i = green) then record_ls() end if.
when MSG(m) is received on in_channel<sub>i</sub>[j] do
(5) if (m.color = red) \land (gs\_state_i = green) then record_ls() end if;
(6) if (m.color = green) then
          if (gs\_state_i = green) then count_i \leftarrow count_i - 1 else send a copy of m to cp end if
(7)
(8) end if;
(9) pass MSG(m) to p_i.
when MSG(m) is sent on out_channel<sub>i</sub>[j] do
(10) m.color \leftarrow gs\_state_i;
(11) if (m.color = green) then count_i \leftarrow count_i + 1 end if.
```

Fig. 6.25 Another global state computation (non-FIFO channels, code for cp_i)

- What does the counter *ct* represent?
- What can be concluded on a message *m* sent to cp by a controller cp_i at line 7?
- Show that the global state $\Sigma = [\sigma_1, \ldots, \sigma_n]$ obtained by *cp* is consistent.
- How can *cp* compute the state of the channels?
- Does this algorithm compute a consistent pair $(\Sigma, C\Sigma)$? To answer "yes", you need to show that each channel state $c_state(j, i)$ contains all the green messages sent by p_j to p_i that are received by p_i while it is red. To answer "no", you need to show that there is no means for cp to always compute correct values for all channel states.

Answer in [250].

Chapter 7 Logical Time in Asynchronous Distributed Systems

This chapter is on the association of consistent dates with events, local states, or global states of a distributed computation. Consistency means that the dates generated by a dating system have to be in agreement with the "causality" generated by the considered distributed execution. According to the view of a distributed execution we are interested in, this causality is the causal precedence order on events (relation \xrightarrow{ev}), the causal precedence order on local states (relation $\xrightarrow{\sigma}$), or the reachability relation in the lattice of global states (relation $\xrightarrow{\Sigma}$), all introduced in the previous chapter. In all cases, this means that the date of a "cause" has to be earlier than the date of any of its "effects". As we consider time-free asynchronous distributed systems, these dates cannot be physical dates. (Moreover, even if processes were given access to a global physical clock, the clock granularity should be small enough to always allow for a consistent dating.)

Three types of logical time are presented, namely, scalar (or linear) time, vector time, and matrix time. Each type of time is defined, its properties are stated, and illustrations showing how to use it are presented.

Keywords Adaptive communication layer \cdot Approximate causality relation \cdot Causal precedence \cdot Causality tracking \cdot Conjunction of stable local predicates \cdot Detection of a global state property \cdot Discarding old data \cdot Hasse diagram \cdot Immediate predecessor \cdot Linear (scalar) time (clock) \cdot Logical time \cdot Matrix time (clock) \cdot Message stability \cdot Partial (total) order \cdot Relevant event \cdot k-Restricted vector clock \cdot Sequential observation \cdot Size of a vector clock \cdot Timestamp \cdot Time propagation \cdot Total order broadcast \cdot Vector time (clock)

7.1 Linear Time

Linear time considers events and the associated partial order relation \xrightarrow{ev} produced by a distributed execution. (The same could be done by considering local states, and the associated partial order relation $\xrightarrow{\sigma}$.) This notion of logical time is due to L. Lamport (1978), who introduced it together with the relation \xrightarrow{ev} . when producing an internal event *e* do (1) $clock_i \leftarrow clock_i + 1$. % date of the internal event (2) Produce event *e*. when sending MSG(*m*) to p_j do (3) $clock_i \leftarrow clock_i + 1$; % date of the send event (4) send MSG(*m*, *h*) is received from p_j do (5) $clock_i \leftarrow max(clock_i, h)$; (6) $clock_i \leftarrow clock_i + 1$. % date of the receive event.

Fig. 7.1 Implementation of a linear clock (code for process p_i)

7.1.1 Scalar (or Linear) Time

Linear (Scalar) Clock As just indicated, the aim is to associate a logical date with events of a distributed execution. Let date(e) be the date associated with event e. To be consistent the dating system has to be such that

$$\forall e_1, e_2 : (e_1 \xrightarrow{e_v} e_2) \Rightarrow date(e_1) < date(e_2).$$

The simplest time domain which can respect event causality is the sequence of increasing integers (hence the name linear or scalar time): A date is an integer.

Hence, each process p_i manages an integer local variable $clock_i$ (initialized to 0), which increases according to the relation \xrightarrow{ev} , as described by the local clock management algorithm of Fig. 7.1. Just before producing its next internal event, or sending a message, a process p_i increases its local clock $clock_i$, and this new clock value is the date of the corresponding internal or send event. Moreover, each message carries its sending date. When a process receives a message, it first updates its local clock and then increases it, so that the receive event has a date greater than both the date of the corresponding send event and the date of the last local event.

It follows trivially from these rules that the linear time increases along all causal paths, and, consequently, this linear time is consistent with the relation \xrightarrow{ev} (or $\xrightarrow{\sigma}$). Any increment value d > 0 could be used instead of 1. Considering d = 1 allows for the smallest clock increase while keeping consistency.

An Example An illustration of the previous linear clock system is depicted in Fig. 7.2. The global linear clock is implemented by three integer local clocks, $clock_1$, $clock_2$, and $clock_3$, and all the integers associated with events or messages represent clock values. Let us consider process p_2 . Its first event is the sending of a message to p_3 : Its date is 1. Its next event is an internal event, and its date is 2. Its third event is the reception of a message whose sending date is 3, hence this receive event is dated 4. Similarly, its next receive event is dated 5, etc.

This example shows that, due to resetting entailed by message receptions, a local clock $clock_i$ may skip integer values. As an example, $clock_1$ jumps from value 4

Fig. 7.2 A simple example of a linear clock system

to value 6. The fact that (a) logical time increases along causal paths, and (b) the increment value has been chosen equal to 1, provides us with the following property

 $(date(e) = x) \Leftrightarrow$ (there are *x* events on the longest causal path ending at *e*).

Properties The following properties follow directly from clock consistency. Let e_1 and e_2 be two events.

- $(date(e_1) \leq date(e_2)) \Rightarrow \neg(e_2 \xrightarrow{e_v} e_1).$
- $(date(e_1) = date(e_2)) \Rightarrow (e_1||e_2).$

The first property is simply the contrapositive of the clock consistency property, while the second one is a restatement of $(date(e_1) \leq date(e_2)) \land (date(e_2) \leq date(e_1))$.

These properties are important from an operational point of view. The partial order \xrightarrow{ev} on events allows us to understand and reason on distributed executions, while the dates associated with events are operational and can consequently be used to design and write distributed algorithms. Hence, the aim is to extract information on events from their dates.

Unfortunately, it is possible to have $(date(e_1) < date(e_2)) \land \neg(e_1 \xrightarrow{ev} e_2)$. With linear time, it is not because the date of an event e_1 is earlier (smaller) than the date of an event e_2 , that e_1 is a cause of e_2 .

7.1.2 From Partial Order to Total Order: The Notion of a Timestamp

The previous observation is the main limitation of any linear time system. But, fortunately, this is not a drawback if we have to totally order events while respecting the partial order \xrightarrow{ev} . To that end, in addition to its temporal coordinate (its date), let us associate with each event a spatial coordinate (namely the identity of the process p_i that issued this event).

The Notion of a Timestamp Hence let us define the *timestamp* of an event *e* as the pair $\langle h, i \rangle$ such that:

- p_i is the process that issued *e*, and
- *h* is the date at which *e* has been issued.

Timestamps allow events to be totally ordered without violating causal precedence. Let e_1 and e_2 be two events whose timestamps are $\langle h, i \rangle$ and $\langle k, j \rangle$, respectively. The causality-compliant total relation on the events, denoted $\stackrel{to_ev}{\longmapsto}$, is defined as follows:

$$e_1 \stackrel{to_ev}{\longmapsto} e_2 \stackrel{def}{=} (h < k) \lor ((h = k) \land (i < j)).$$

This total order is nothing more than the lexicographical order on the pairs made up of two integers, a date and a process identity. (It is of course assumed that no two processes have the same identity.)

Notation In the following the notation $\langle h, i \rangle < \langle k, j \rangle$ is used to denote $(h < k) \lor ((h = k) \land (i < j))$.

7.1.3 Relating Logical Time and Timestamps with Observations

The notion of a sequential observation was introduced in Chap. 6 devoted to global states, namely, it is a sequence (a) including the events generated by a distributed execution, and (b) respecting their partial ordering.

Linear Time and Non-sequential Observation Let us consider the distributed execution depicted in Fig. 7.3, in which the corresponding timestamp is associated with each event. Let us first consider all the events whose date is H = 1, then all the events whose date is H = 2, etc. This is indicated in the figure with bold lines, which partition the events according to their dates. This corresponds to a non-sequential observation, i.e., execution that could be observed by an observer able to see several events at the same time, namely all the events with the same logical date.

7.1 Linear Time

Fig. 7.4 A sequential observation obtained from timestamps

Timestamps and Sequential Observation Figure 7.4 represents the lattice of global states of the distributed execution of Fig. 7.3. Let us now totally order all the events produced by this execution according to the relation $\stackrel{to_ev}{\longrightarrow}$. We obtain the sequence of events e_2^1 , e_1^1 , e_2^2 , e_1^2 , e_2^3 , which is denoted with a bold zigzag arrow on Fig. 7.4. It is easy to see that this sequence is nothing more than a particular sequential observation of the distributed execution depicted in Fig. 7.3.

More generally, the total order on timestamps defines a sequential observation of the corresponding distributed execution.

7.1.4 Timestamps in Action: Total Order Broadcast

Linear time and timestamps are particularly useful when one has to order operations or messages. The most typical case is the establishment of a total order on a set of requests, which have to be serviced one after the other. This use of timestamps will be addressed in Chap. 10, which is devoted to permission-based mutual exclusion.

This section considers another illustration of timestamps, namely, it presents a timestamp-based implementation of a high-level communication abstraction, called *total order broadcast*.

The Total Order Broadcast Abstraction Total order broadcast is a communication abstraction defined by two operations, denoted to_broadcast() and to_deliver(). Intuitively, to_broadcast() allows a process p_i to send a message m to all the processes (we then say " p_i to_broadcasts m"), while to_deliver() allows a process to receive such a message (we then say " p_i to_delivers m"). Moreover, all the messages that have been to_broadcast must be to_delivered in the same order at each process, and this order has to respect the causal precedence order. To simplify the presentation, it is assumed that each message is unique (this can be easily realized by associating a pair (sequence number, sender identity) with each message).

A Causality-Compliant Partial Order on Messages M being the set of messages which are to_broadcast during an execution, let $\widehat{M} = (M, \rightarrow_M)$ be the relation where \rightarrow_M is defined on M as follows. Given $m, m' \in M, m \rightarrow_M m'$ (and we the say "m causally precedes m'") if:

- *m* and *m'* have been to_broadcast by the same process, and *m* has been to_broadcast before *m'*, or
- *m* has been to_delivered by a process p_i before p_i to_broadcasts m', or
- there is a message $m'' \in M$ such that $m \to_M m''$ and $m'' \to_M m'$.

Total Order Broadcast: Definition The total order broadcast abstraction is formally defined by the following properties. Said differently, this means that, to be correct, an implementation of the total order broadcast abstraction has to ensure that these properties are always satisfied.

- Validity. If a process to_delivers a message *m*, there is a process that has to_broadcast *m*.
- Integrity. No message is to_delivered twice.
- Total order. If a process to_delivers *m* before *m'*, no process to_delivers *m'* before *m*.
- Causal precedence order. If $m \rightarrow_M m'$, no process to_delivers m' before m.
- Termination. If a process to_broadcasts a message *m*, any process to_delivers *m*.

The first four properties are safety properties. Validity relates the outputs to the inputs. It states that there is neither message corruption, nor message creation. Integrity states that there is no message duplication. Total order states that messages are to_delivered in the same order at every process, while causal precedence states that this total order respects the message causality relation \rightarrow_M . Finally, the termination property is a liveness property stating that no message is lost.

Principle of the Implementation To simplify the description, we consider that the communication channels are FIFO. Moreover, each pair of processes is connected by a bidirectional channel.

The principle that underlies the implementation is very simple: it consists in associating a timestamp with each message, and to_delivering the messages according to their timestamp order. As timestamps are totally ordered and this order respects causal precedence, we obtain both total order and causal precedence order properties.

To illustrate the main issue posed by associating appropriate timestamps with messages, and define accordingly a correct message delivery rule, let us consider Fig. 7.5. Independently one from the other, p_1 and p_2 to_broadcast the messages m_1 and m_2 , respectively. Neither of p_1 and p_2 can immediately to_deliver its message, otherwise the total order delivery property would be violated. The processes have to

Fig. 7.5 Total order broadcast: the problem that has to be solved

Fig. 7.6 Structure of the total order broadcast implementation

cooperate so that they to_deliver m_1 and m_2 in the same order. This remains true if only p_1 to_broadcasts a message. This is because, when it issues to_broadcast (m_1) , p_1 does not know whether p_2 has independently issued to_broadcast (m_2) or not.

It follows that a to_broadcast message generates two distinct communication events at each process. The first one is associated with the reception of the message from the underlying communication network, while the second one is associated with its to_delivery.

Message Stability A means to implement the same to_delivery order at each process consists in providing each process p_i with information on the clock values of the whole set of processes. This local information can then be used by each process p_i to know which, among the to_broadcast messages it has received and not yet to_delivered, are *stable*, where message stability is defined as follows.

A message timestamped $\langle k, j \rangle$ received by a process p_i is *stable* (at that process) if p_i knows that all the messages it will receive in the future will have a timestamp greater than $\langle k, j \rangle$. The main job of a timestamp-based implementation consists in ensuring the message stability at each process.

Global Structure and Local Variables at a Process p_i The structure of the implementation is described in Fig. 7.6. Each process p_i has a local module imple-

menting the operations to_broadcast() and to_deliver(). Each local module manages the following local variables.

- $clock_i[1..n]$ is an array of integers initialized to [0, ..., 0]. The local variable $clock_i[i]$ is the local clock of p_i , which implements the global linear time. Differently, for $j \neq i$, $clock_i[j]$ is the best approximation of the value of the local clock of p_j , as known by p_i . As the communication channels are FIFO, $clock_i[j]$ contains the last value of $clock_j[j]$ received by p_i . Hence, in addition to the fact that the set of local clocks $\{clock_i\}_{1 \leq i \leq n}$ implement a global scalar clock, the local array $clock_i[1..n]$ of each process p_i represents its current knowledge on the progress of the whole set of local clocks.
- $to_deliverable_i$ is a sequence, initially empty (the empty sequence is denoted ϵ). This sequence contains the list of messages that (a) have been received by p_i , (b) have then been totally ordered, and (c) have not yet been to_delivered. Hence, $to_deliverable_i$ is the list of messages that can be to_delivered to the local upper layer application process.
- *pending*_i is a set of pairs $\langle m, \langle d, j \rangle \rangle$, where *m* is a message whose timestamp is $\langle d, j \rangle$. Initially, *pending*_i = \emptyset .

Description of the Implementation The timestamp-based algorithm implementing the total order broadcast abstraction is described in Fig. 7.7. It is assumed that p_i does not interleave the execution of the statements at lines 1–4, lines 9–14, and lines 18–22. Let us recall that there is a bidirectional FIFO point-to-point communication channel connecting any pair of distinct processes. This algorithm works as described below.

When a process p_i invokes to_broadcast(m), it first associates with m a new timestamp $ts(m) = \langle clock_i[i], i \rangle$ (line 2). Then, it adds the pair $\langle m, ts(m) \rangle$ to its local set *pending_i* (line 3), and sends to all the other processes the message TOBC(m, ts(m)) to inform them that a new message has been to_broadcast (line 4). An invocation of to_deliver() returns the first message in the local list $to_deliverable_i$ (line 5–8).

The behavior of a process p_i when it receives a message $TOBC(m, \langle sd_date, j \rangle)$ can be decomposed into two parts.

• The process p_i first modifies its local context according to content of the TOBC() message it has just received. It updates $clock_i[j]$ (line 9), and adds the pair $\langle m, \langle sd_date, j \rangle \rangle$ to its local set *pending_i* (line 10).

Let us notice that, as (a) $clock_j[j]$ never decreases, (b) p_j increased it before sending the message TOBC(m, -), and (c) the channels are FIFO, it follows that we have $clock_i[j] < sd_date$ when the message $TOBC(m, \langle sd_date, j \rangle)$ is received. Hence the systematic update at line 9.

• The second set of statements executed by p_i (lines 11–14) is related to the update of its local clock $clock_i[i]$, and the dissemination of its new value to the other processes. This is to ensure both that (a) each message that has been to_broadcast is eventually to_delivered, and (b) message to_deliveries satisfy total order.

If $sd_date \ge clock_i[i]$, p_i resets its local clock (line 12) to a value greater than sd_date (as in the basic scalar clock algorithm of Fig. 7.1). Then p_i sends to each

Fig. 7.7 Implementation of total order broadcast (code for process p_i)

To_delivery predicate for the message timestamped $\langle d, k \rangle$: $\forall j \neq k : \langle d, k \rangle < \langle clock_i[j], j \rangle$

Fig. 7.8 To_delivery predicate of a message at process p_i

process a control message denoted CATCH_UP(). This message carries the new clock value of p_i (line 13). As the channels are FIFO, it follows that when this message is received by p_k , $1 \le k \ne i \le n$, this process has necessarily received all the messages TOBC() sent by p_i before this CATCH_UP() message. This allows p_k to know if, among the to_broadcast messages it has received, the one with the smallest timestamp is stable (Fig. 7.8).

Finally, a background task checks if some of the to_broadcast messages which have been received by p_i are stable, and can consequently be moved from the set

pending_i to the local sequence to_partitionable_i. To that end, when pending_i $\neq \emptyset$ (line 17), p_i looks for the message *m* with the smallest timestamp (line 18). Let $ts(m) = \langle d, k \rangle$. If, for any $j \neq k$, ts(m) is smaller than $\langle clock_i[j], j \rangle$, it follows (from lines 11–14 executed by each process when it received the pair $\langle m, ts(m) \rangle$) that any to_broadcast message not yet received by p_i will have a timestamp greater than ts(m). Hence, if the previous predicate is true, the message *m* is stable at p_i (Fig. 7.8). Consequently, p_i withdraws $\langle m, ts(m) \rangle$ from the set pending_i (line 20) and adds *m* at the tail of to_partitionable_i (line 21). As we will see in the proof, message stability at each process to_partitionable_x, $\leq x \leq n$.

Theorem 4 *The algorithm described in Fig.* 7.7 *implements the total order broadcast abstraction.*

Proof The validity property (neither corruption, nor creation of messages) follows directly from the reliability of the channels. The integrity property (no duplication) follows from the reliability of the underlying channels, the fact that no two to_broadcast messages have the same timestamp, and the fact that when a message is added to *to_deliverable_i*, it is suppressed from *pending_i*.

The proof of the termination property is by contradiction. Assuming that to_broadcast messages are never to_delivered by a process p_i (i.e., added to $to_deliverable_i$), let *m* be the one with the smallest timestamp, and let $ts(m) = \langle d, k \rangle$.

Let us observe that, each time a process p_j updates its local clock (to a greater value), it sends its new clock value to all processes. This occurs at lines 1 and 4, or at lines 12 and 13.

As each other process p_j receives the message TOBC(m, ts(m)) sent by p_k , its local clock becomes greater than d (if it was not before). It then follows from the previous observation that a value of $clock_j[j]$ greater than d becomes eventually known by each process, and we eventually have $clock_i[j] > d$. Hence, the to_delivery predicate for m becomes eventually satisfied at p_i . The message m is consequently moved from $pending_i$ to $to_deliverable_i$, which contradicts the initial assumption and proves the termination property.

The proof of the total order property is also by contradiction. Let m_x and m_y be two messages timestamped $ts(m_x) = \langle d_x, x \rangle$ and $ts(m_y) = \langle d_y, y \rangle$, respectively. Let us assume that $ts(m_x) < ts(m_y)$, and m_y is to_delivered by a process p_i before m_x (i.e., m_y is added to $to_deliverable_i$ before m_x).

Just before m_y is added to $to_deliverable_i$, $(m_y, ts(m_y))$ is the pair with the smallest timestamp in *pending_i*, and $\forall j \neq y$: $\langle d_y, y \rangle < \langle clock_i[j], j \rangle$ (lines 18–19). It follows that we have then $\langle d_x, x \rangle < \langle d_y, y \rangle < \langle clock_i[x], x \rangle$. As (a) p_x sends only increasing values of its local clock (lines 1 and 4, and lines 12–13), (b) $d_x < clock_i[x]$, and (c) the channels are FIFO, it follows that p_i has received the message TOBC($m_x, ts(m_x)$) before the message carrying the value of $clock_x[x]$ which entailed the update of $clock_i[x]$ making true the predicate $\langle d_y, y \rangle < \langle clock_i[x] \rangle$

 $\langle clock_i[x], x \rangle$. Consequently, as m_x is not yet to_delivered (assumption), it follows that $(m_y, ts(m_y))$ cannot be the pair with the smallest timestamp in *pending_i*. This contradicts the initial assumption. It follows that the messages that have been to_broadcast and are to_delivered, are to_delivered at each process in the same total order (as defined by their timestamp).

The proof that the total order on timestamps respects the causal precedence order on to_broadcast messages follows from the two following observations.

- A process p_i increases it local clock $clock_i[i]$ each time it invokes to_broadcast(). Hence, if p_i to_broadcasts m before m', we have ts(m) < ts(m').
- Due to line 11, it follows that, after it has received a message $\text{TOBC}(m, \langle d, j \rangle)$, we have $clock_i[i] > d$. It follows that, if later p_i to_broadcasts a message m', we necessarily have ts(m) < ts(m').

7.2 Vector Time

As we have seen, the domain of linear time is the set of non-negative integers, and a set of *n* logical clocks (one per process) allows us to associate dates with events, in such a way that the dates respect the causal precedence relation \xrightarrow{ev} . However, as we have seen, except for those events that have the same date, linear dates do not allow us to determine with certainty if one event belongs to the causes of another one. The aim of vector time (which is implemented by vector clocks) is to solve this issue. Vector time, and its capture by vector clocks, was simultaneously and independently proposed in 1988 by C.J. Fidge, F. Mattern, and F. Schmuck.

7.2.1 Vector Time and Vector Clocks

Vector Time: Definition A vector clock system is a mechanism that is able to associate dates with events (or local states) in such a way that the comparison of their dates allows us to determine if the corresponding events are causally related or not, and if they are which one belongs to the cause of the other. Vector time is the time notion captured by vector clocks.

More precisely, let date(e) be the date associated with an event *e*. The aim of a vector clock system is to provide us with a time domain in which any two dates either can be compared (<, >), or are incomparable (denoted ||), in such a way that the following properties are satisfied

- $\forall e_1, e_2: (e_1 \xrightarrow{e_v} e_2) \Leftrightarrow date(e_1) < date(e_2)$, and
- $\forall e_1, e_2: (e_1 || e_2) \Leftrightarrow date(e_1) || date(e_2)$ (the dates cannot be compared).

This means that the dating system has to be in perfect agreement with the causal precedence relation \xrightarrow{ev} . To attain this goal, vector time considers that the time domain is made up of all the integer vectors of size *n* (the number of processes).

```
when producing an internal event e do

(1) vc_i[i] \leftarrow vc_i[i] + 1;

(2) Produce event e. % The date of e is vc_i[1..n].

when sending MSG(m) to p_j do

(3) vc_i[i] \leftarrow vc_i[i] + 1; % vc_i[1..n] is the sending date of the message.

(4) send MSG(m, vc_i[1..n]) to p_j.

when MSG(m, vc) is received from p_j do

(5) vc_i[i] \leftarrow vc_i[i] + 1;

(6) vc_i[1..n] \leftarrow \max(vc_i[1..n]). % vc_i[1..n] is the date of the receive event.
```

Fig. 7.9 Implementation of a vector clock system (code for process p_i)

Vector Clock: Definition To implement vector time, each process p_i manages a vector of non-negative integers $vc_i[1..n]$, initialized to [0, ..., 0]. This vector is such that:

- $vc_i[i]$ counts the number of events produced by p_i , and
- $vc_i[j], j \neq i$, counts the number of events produced by p_j , as known by p_i .

More formally, let *e* be an event produced by some process p_i . Just after p_i has produced *e* we have (where 1(k, i) = 1 if p_k is p_i , and 1(k, i) = 0 otherwise):

 $vc_i[k] = |\{f | (f \text{ has been produced by } p_k) \land (f \xrightarrow{ev} e)\}| + 1(k, i).$

Hence, $vc_i[k]$ is the number of events produced by p_k in the causal past of the event *e*. The term 1(k, i) is to count the event *e*, which has been produced by p_i . The value of $vc_i[1..n]$ is the vector date of the event *e*.

Vector Clock: Algorithm The algorithm implementing the vector clock system has exactly the same structure as the one for linear time (Fig. 7.1). The difference lies in the fact that only the entry *i* of the local vector clock of p_i (i.e., $vc_i[i]$) is increased each time it produces a new event, and each message *m* piggybacks the current value of the vector time, which defines the sending time of *m*. This value allows the receiver to update its local vector clock, so that the date of the receive event is after both the date of the sending event associated with *m* and the immediately preceding local event produced by the receiver process. The operator max() on integers is extended to vectors as follows (line 5):

$$\max(v1, v2) = \left[\max(v1[1], v2[1]), \dots, \max(v1[j], v2[j]), \dots, \max(v1[n], v2[n])\right].$$

Let us observe that, for any pair (i, k), it follows directly from the vector clock algorithm that (a) $vc_i[k]$ never decreases, and (b) at any time, $vc_i[k] \le vc_k[k]$.

Fig. 7.10 Time propagation in a vector clock system

Example of Time Propagation An example of an execution of the previous algorithm is depicted in Fig. 7.10. The four local vector clocks are initialized to [0, 0, 0, 0]. Then, p_2 produces an internal event dated [0, 1, 0, 0]. Its next event is the sending of a message to p_1 , dated [0, 2, 0, 0]. The reception of this message by p_1 is its first event, and consequently the reception of this message is dated [1, 2, 0, 0], etc.

The bottom of the figure shows what could be seen by an omniscient external observer. The global time seen by this observer is defined as follows: At any time τ_x , it sees how many events have been produced by each process up to τ_x . Hence, the current value of this global time is $[vc_1[1], vc_2[2], vc_3[3], vc_4[4]]$. Initially, no process has yet produced events, and the observer sees the global vector time [0, 0, 0, 0] at external time τ_1 . Then, at τ_3 , it sees the sending by p_2 of a message to p_1 at the global time [0, 2, 0, 0], etc. Some global time instants are indicated on the figure. The value of the last global time seen by the omniscient observer is [2, 3, 2, 2].

The global time increases when events are produced. As the observer is omniscient, this is captured by the fact that the global time values it sees increase in the sense that, if we consider any two global time vectors *GD*1 followed by *GD*2, we have $(\forall k : GD1[k] \le GD2[k]) \land (\exists k : GD1[k] < GD2[k])$.

Notation Given two vectors vc1 and vc2, both of size n, we have

- $vc1 \le vc2 \stackrel{def}{=} (\forall k \in \{1, \dots, n\} : vc1[k] \le vc2[k]).$
- $vc1 < vc2 \stackrel{def}{=} (vc1 \le vc2) \land (vc1 \ne vc2).$

• $vc1||vc2 \stackrel{def}{=} \neg (vc1 \le vc2) \land \neg (vc1 \le vc2).$

When considering Fig. 7.10, we have [0, 2, 0, 0] < [0, 3, 2, 2], and [0, 2, 0, 0] || [0, 0, 1, 0].

7.2.2 Vector Clock Properties

The following theorem characterizes the power of vector clocks.

Theorem 5 Let e.vc be the vector date associated with event e, by the algorithm of Fig. 7.9. These dates are such that, for any two distinct events e_1 and e_2 we have (a) $(e_1 \xrightarrow{ev} e_2) \Leftrightarrow (e_1.vc < e_2.vc)$, and (b) $(e_1||e_2) \Leftrightarrow (e_1.vc || e_2.vc)$.

Proof The proof is made up of three cases.

- $(e_1 \xrightarrow{ev} e_2) \Rightarrow (e_1.vc < e_2.vc)$. This case follows directly from the fact that the vector time increases along all causal paths (lines 1 and 3–6).
- $(e_1.vc < e_2.vc) \Rightarrow (e_1 \xrightarrow{ev} e_2)$. Let p_i be the process that produced event e_1 . We have $e_1.vc < e_2.vc \Rightarrow e_1.vc[i] \le e_2.vc[i]$. Let us observe that only process p_i can entail an increase of the entry *i* of any vector (if p_i no longer increases $vc_i[i] = a$ at line 1, no process p_j can be such that $vc_j[i] > a$). We conclude from this observation, the code of the algorithm (vector time increases only along causal paths), and $e_1.vc[i] \le e_2.vc[i]$ that there is a causal path from e_1 to e_2 .
- $(e_1||e_2) \Leftrightarrow (e_1.vc \mid | e_2.vc)$. By definition we have $(e_1 \mid | e_2) = (\neg(e_1 \xrightarrow{ev} e_2) \land \neg(e_2 \xrightarrow{ev} e_1))$. It follows from the previous items that $\neg(e_1 \xrightarrow{ev} e_2) \Leftrightarrow \neg(e_1.vc \le e_2.vc)$, i.e., $\neg(e_1 \xrightarrow{ev} e_2) \Leftrightarrow (e_1.vc > e_2.vc) \lor (e_1.vc \mid | e_2.vc)$. Similarly, $\neg(e_2 \xrightarrow{ev} e_1) \Leftrightarrow (e_2.vc > e_1.vc) \lor (e_2.vc \mid | e_1.vc)$. Combining the previous observations, and observing that we cannot have simultaneously $(e_1.vc > e_2.vc) \land (e_2.vc > e_1.vc)$, we obtain $(e_1 \mid | e_2) \Leftrightarrow (e_1.vc \mid | e_2.vc)$.

The next corollary follows directly from the previous theorem.

Corollary 1 Given the dates of two events, determining if these events are causally related or not can require up to n comparisons of integers.

Reducing the Cost of Comparing Two Vector Dates As the cost of comparing two dates is O(n), an important question is the following: Is it possible to add control information to a date in order to reduce the cost of their comparison? If the events are produced by the same process p_i , a simple comparison of the *i*th entry of their vector dates allows us to conclude. More generally, given an event *e* produced by a process p_i , let us associate with *e* a timestamp defined as the pair $\langle e.vc, i \rangle$. We have then the following theorem from which it follows that, thanks to the knowledge of the process that produced an event, the cost of deciding if two events are or not causally related is reduced to two comparisons of integers.

Theorem 6 Let e_1 and e_2 be events timestamped $\langle e_1.vc, i \rangle$ and $\langle e_2.vc, j \rangle$, respectively, with $i \neq j$. We have $(e_1 \xrightarrow{ev} e_2) \Leftrightarrow (e_1.vc[i] \leq e_2.vc[i])$, and $(e_1 || e_2) \Leftrightarrow ((e_1.vc[i] > e_2.vc[i]) \land (e_2.vc[j] > e_1.vc[j]))$.

Proof Let us first observe that time increases only along causal paths, and only the process that produced an event entails an increase of the corresponding entry in a vector clock (Observation O). The proof considers each case separately.

• $(e_1 \xrightarrow{e_v} e_2) \Leftrightarrow (e_1.vc[i] \le e_2.vc[i]).$

If $e_1 \xrightarrow{e_v} e_2$, there is a causal path from e_1 to e_2 , and we have $e_1.vc \le e_2.vc$ (Theorem 6), from which $e_1.vc[i] \le e_2.vc[i]$ follows.

If $e_1.vc[i] \le e_2.vc[i]$, it follows from observation O that there is a causal path from e_1 to e_2 .

• $(e_1 || e_2) \Leftrightarrow ((e_1.vc[i] > e_2.vc[i]) \land (e_2.vc[j] > e_1.vc[j])).$

As, at any time, we have $vc_j[i] \le vc_i[i]$, p_i increases $vc_i[i]$ when it produces e_1 , it follows from the fact that there is no causal path from e_1 to e_2 and observation O that $e_1.vc[i] > e_2.vc[i]$. The same applies to $e_2.vc[j]$ with respect to $e_1.vc$.

In the other direction, we conclude from $e_1.vc[i] > e_2.vc[i]$ that there is no causal path from e_1 to e_2 (otherwise we would have $e_1.vc[i] \le e_2.vc[i]$). Similarly, $e_2.vc[j] > e_1.vc[j]$ implies that there is no causal path from e_2 to e_1 .

To illustrate this theorem, let us consider Fig. 7.10, where the first event of p_2 is denoted e_2^1 , first event of p_3 is denoted e_3^1 , and the second event of p_3 is denoted e_3^2 . Event e_2^1 is timestamped $\langle [0, 1, 0, 0], 2 \rangle$, e_3^1 is timestamped $\langle [0, 0, 1, 0], 2 \rangle$, and e_3^2 is timestamped $\langle [0, 3, 2, 2], 2 \rangle$. As $e_2^1 \cdot vc[2] = 1 \le e_3^2 \cdot vc[2] = 3$, we conclude $e_2^1 \xrightarrow{e_2} e_3^2$. As $e_2^1 \cdot vc[2] = 1 > e_3^1 \cdot vc[2] = 0$ and $e_3^1 \cdot vc[3] = 1 > e_2^1 \cdot vc[3] = 0$, we conclude $e_2^1 \parallel e_3^1$.

7.2.3 On the Development of Vector Time

When considering vector time, messages put restrictions on the development of time. More precisely, let *m* be a message sent by a process p_i at local time $vc_i[i] = a$ and received by a process p_j at local time $vc_j[j] = b$. This message induces the restriction that no event *e* can be dated *e.vc* such that e.vc[i] < a and $e.vc[j] \ge b$. This restriction simply states that there is no event such that there is a message whose reception belongs to its causal past while its sending does not.

To illustrate this restriction created by messages on the vector time domain, let us consider the execution depicted in Fig. 7.11. There are two processes, and each of them produces six events. The vector time date of each event is indicated above or below the corresponding event. Let us notice that the channel from p_1 to p_2 is not FIFO (p_1 sends m_1 before m_2 , but p_2 receives m_2 before m_1).

Fig. 7.11 On the development of time (1)

Let us consider the message m_2 . As its sending time is [3, 0] and its receive time is [3, 4], it follows that it is impossible for an external observer to see a global time GD such that GD[1] < 3 and $GD[2] \ge 4$. The restrictions on the set of possible vector dates due to the four messages exchanged in the computation are depicted in Fig. 7.12. Each message prevents some vector clock values from being observed. As an example, the date [2, 5] cannot exist, while the vector date [3, 3] can be observed by an external observer.

The borders of the area including the vector dates that could be observed by external observers are indicated with dotted lines in the figure. They correspond to the history (sequence of events) of each process.

Fig. 7.12 On the development of time (2)

164

Fig. 7.13 Associating vector dates with global states

7.2.4 Relating Vector Time and Global States

Let us consider the distributed execution described on the left top of Fig. 7.13. Vector dates of events and local states are indicated in this figure. Both initial local states σ_1^0 and σ_2^0 are dated [0, 0]. Then, each σ_i^x inherits the vector date of the event e_i^x that generated it. As an example the date of the local state σ_2^2 is [0, 2].

The corresponding lattice of global states is described at the right of Fig. 7.13. In this lattice, a vector date is associated with each global state as follows: the *i*th entry of the vector is the number of events produced by p_i . This means that, when considering the figure, the vector date of the global state $[\sigma_i^x, \sigma_j^y]$ is [x, y]. (This dating system for global states, which is evidently based on vector clocks, was implicitly introduced and used in Sect. 6.3.2, where the notion of a lattice of global states was introduced.) Trivially, the vector time associated with global dates increases along each path of the lattice.

Let us recall that the greatest lower bound (GLB) of a set of vertices of a lattice is their greatest common predecessor, while the least upper bound (LUB) is their least common successor. Due to the fact that the graph is a lattice, each of the GLB and the LUB of a set of vertices (global states) is unique.

An important consequence of the fact that the set of consistent global states is a lattice and the associated dating of global states is the following. Let us consider two global states Σ' and Σ'' whose dates are $[d'_1, \ldots, d'_n]$ and $[d''_1, \ldots, d''_n]$, respectively. Let $\Sigma^- = \text{GLB}(\Sigma', \Sigma'')$ and $\Sigma^+ = \text{LUB}(\Sigma', \Sigma'')$. We have

• $date(\Sigma^{-}) = date(\text{GLB}(\Sigma', \Sigma'')) = [\min(d'_1, d''_1), \dots, \min(d'_n, d''_n)]$, and

• $date(\Sigma^+) = date(LUB(\Sigma', \Sigma'')) = [max(d'_1, d''_1), \dots, max(d'_n, d''_n)].$

As an example, let us consider the global states denoted Σ_d and Σ_e in the lattice depicted at the left of Fig. 7.13. We have $\Sigma_b = \text{GLB}(\Sigma_d, \Sigma_e)$ and $\Sigma_f = \text{LUB}(\Sigma_d, \Sigma_e)$. It follows that we have $date(\Sigma_b) = [\min(2, 1), \min(1, 2)] = [1, 1]$. Similarly, we have $date(\Sigma_f) = [\max(2, 1), \max(1, 2)] = [2, 2]$. The consistent cuts associated with Σ_d and Σ_e are depicted in the bottom of the left side of Fig. 7.13.

These properties of the vector dates associated with global states are particularly important when one has to detect properties on global states. It allows processes to obtain information on the lattice without having to build it explicitly. At the operational level, processes have to compute vector dates identifying consistent global states which are relevant with respect to the property of interest (see Sect. 7.2.5).

7.2.5 Vector Clocks in Action: On-the-Fly Determination of a Global State Property

To illustrate the use of vector clocks, this section presents an algorithm that determines the first global state of a distributed computation that satisfies a conjunction of stable local predicates.

Conjunction of Stable Local Predicates A predicate is *local* to a process p_i if it is only on local variables of p_i . Let LP_i be a predicate local to process p_i . The fact that the local state σ_i of p_i satisfies the predicate LP_i is denoted $\sigma_i \models LP_i$.

Let $\{LP_i\}_{1 \le i \le n}$ be a set of *n* local predicates, one per process. (If there is no local predicate for a process p_x , we can consider a fictitious local predicate $LP_x = true$ satisfied by all local states of p_x .) The predicate $\bigwedge_i LP_i$ is a global predicate, called *conjunction of local predicates*. Let $\Sigma = [\sigma_1, \ldots, \sigma_n]$ be a consistent global state. We say that Σ satisfies the global predicate $\bigwedge_i LP_i$, if $\bigwedge_i (\sigma_i \models LP_i)$. This is denoted $\Sigma \models \bigwedge_i LP_i$.

A predicate is *stable* if, once true, it remains true forever. Hence, if a local state σ_i satisfies a local stable predicate LP_i , all the local states that follow σ_i in p_i 's local history satisfy LP_i . Let us observe that, if each local predicate LP_i is stable, so is the global predicate $\bigwedge_i LP_i$.

This section presents a distributed algorithm that computes, on the fly and without using additional control messages, the first consistent global state that satisfies a conjunction of stable local predicates. The algorithm, which only adds control data to application messages, assumes that the application sends "enough" messages (the meaning of "enough" will appear clearly in the description of the algorithm).

On the Notion of a "First" Global State The consistent global state Σ defined by a process p_i from the vector date $first_i[1..n]$ is the *first* global state satisfying $\bigwedge_i LP_i$, in the following sense: There is no global state Σ' such that $(\Sigma' \neq \Sigma) \land$ $(\Sigma' \models \bigwedge_i LP_i) \land (\Sigma' \xrightarrow{\Sigma} \Sigma)$.

Fig. 7.14 First global state satisfying a global predicate (1)

Where Is the Difficulty Let us consider the execution described in Fig. 7.14. The predicates LP_1 , LP_2 and LP_3 are satisfied from the local states σ_1^x , σ_2^b , and σ_3^c , respectively. (The fact that they are stable is indicated by a bold line on the corresponding process axis.) Not all local states are represented; the important point is that σ_2^y is the state of p_2 after it has sent the message m_8 to p_1 , and σ_3^z is the state of p_3 after it has sent the message m_5 to p_2 . The first consistent global state satisfying $LP_1 \wedge LP_2 \wedge LP_3$ is $\Sigma = [\sigma_1^x, \sigma_2^y, \sigma_3^z]$.

Using causality created by message exchanges and appropriate information piggybacked by messages, the processes can "learn" information related to the predicate detection. More explicitly, we have the following when looking at the figure.

- When p_1 receives m_1 , it learns nothing about the predicate detection (and similarly for p_3 when it receives m_2).
- When p_1 receives m_4 (sent by p_2), it can learn that (a) the global state $[\sigma_1^0, \sigma_2^b, \sigma_3^0]$ is consistent and (b) it "partially" satisfies the global predicate, namely, $\sigma_2^b \models LP_2$.
- When p_2 receives the message m_3 (from p_1), it can learn that the global state $[\sigma_1^a, \sigma_2^b, \sigma_3^0]$ is consistent and such $\sigma_2^a \models LP_2$. When it later receives the message m_5 (from p_3), it can learn that the global state $[\sigma_1^a, \sigma_2^b, \sigma_3^c]$ is consistent and such $(\sigma_2^b \models LP_2) \land (\sigma_3^c \models LP_3)$. Process p_3 can learn the same when it receives the message m_7 (sent by p_2).
- When p_1 receives the message m_8 (sent by p_2), it can learn that, while LP_1 is not yet locally satisfied, the global state $[\sigma_1^a, \sigma_2^b, \sigma_3^c]$ is the first consistent global state that satisfies LP_2 and LP_3 .
- Finally, when p_1 produces the internal event giving rise to σ_1^x , it can learn that the first consistent global state satisfying the three local predicates is $[\sigma_1^x, \sigma_2^y, \sigma_3^z]$. The corresponding consistent cut is indicated by a dotted line on the figure.

Let us recall that the vector date of the local state σ_2^y is the date of the preceding event, which is the sending of m_8 , and this date is piggybacked by m_5 . Similarly, the date of σ_3^z is the date of the sending of m_5 .

Another example is given in Fig. 7.15. In this case, due to the flow of control created by the exchange of messages, it is only when p_3 receives m_3 that it can learn

Fig. 7.15 First global state satisfying a global predicate (2)

that $[\sigma_1^x, \sigma_2^y, \sigma_3^z]$ is the first consistent global state satisfying $\bigwedge_i LP_i$. As previously, the corresponding consistent cut is indicated by a dotted line on the figure.

As no control messages are allowed, it is easy to see that, in some scenarios, enough application messages have to be sent after $\bigwedge_i LP_i$ is satisfied, in order to compute the vector date of the first consistent global state satisfying the global predicate $\bigwedge_i LP_i$.

Local Control Variables In order to implement the determination of the first global state satisfying a conjunction of stable local predicates, each process p_i manages the following local variables:

- *vc_i*[1..*n*] is the local vector clock.
- *sat_i* is a set, initially empty, of process identities. It has the following meaning: $(j \in sat_i) \Leftrightarrow (p_i \text{ knows that } p_j \text{ has entered a local state satisfying } LP_j)$.
- $done_i$ is Boolean, initialized to *false*, and then set to the value *true* by p_i when LP_i becomes satisfied for the first time. As LP_i is a stable predicate, $done_i$ then keeps that value forever.
- *first_i* is the vector date of the first consistent global state, known by p_i , for which all the processes in *sat_i* satisfy their local predicate. Initially, *first_i* = [0, ..., 0]. Hence, $[\sigma_1^{first[1]}, ..., \sigma_n^{first[n]}]$ is this global state, and we have $\forall j \in sat_i : \sigma_i^{first[j]} \models LP_j$.

As an example, considering Fig. 7.14, after p_1 has received the message m_4 , we have $sat_1 = \{2\}$ and $first_1 = [0, b, 0]$. After it has received the message m_8 , we have $sat_1 = \{2, 3\}$ and $first_1 = [0, b, c]$.

The Algorithm The algorithm is described in Fig. 7.16. It ensures that if consistent global states satisfy $\bigwedge LP_i$, at least one process will compute the vector date of the first of them. As already indicated, this is under the assumption that the processes send enough application messages.

Before producing a new event, p_i always increases its local clock $vc_i[i]$ (lines 7, 10, and 13). If the event *e* is an internal event, and LP_i has not yet been satisfied (i.e., *done_i* is false), p_i invokes the operation check_lp() (line 9). If its current local state σ satisfies LP_i (line 1), p_i adds its identity to *sat_i* and, as it is the first time that

```
internal operation check_lp(\sigma) is
(1)
       if (\sigma \models LP_i) then
           sat_i \leftarrow sat_i \cup \{i\}; first_i[1..n] \leftarrow vc_i[1..n]; done_i \leftarrow true;
(2)
(3)
           if (sat_i = \{1, ..., n\}) then
(4)
               first<sub>i</sub>[1..n] is the vector date of the first global state satisfying \bigwedge_{i} LP_{i}
(5)
           end if
       end if.
(6)
when producing an internal event e do
(7) vc_i[i] \leftarrow vc_i[i] + 1;
(8) Produce event e and move to the next state \sigma;
(9) if (\neg done_i) then check_lp(\sigma) end if.
when sending MSG(m) to p_i do
(10) vc_i[i] \leftarrow vc_i[i] + 1; move to the next local state \sigma;
(11) if (\neg done_i) then check_lp(\sigma) end if;
(12) send MSG(m, vc_i, sat_i, first_i) to p_i.
when MSG(m, vc, sat, first) is received from p_i do
(13) vc_i[i] \leftarrow vc_i[i] + 1; vc_i \leftarrow \max(vc_i[1..n], vc[1..n]);
(14) move to the next local state \sigma;
(15) if (\neg done_i) then check_lp(\sigma) end if;
(16) if (sat \not\subseteq sat_i) then
           sat_i \leftarrow sat_i \cup sat; first_i \leftarrow \max(first_i[1..n], first[1..n]);
(17)
(18)
           if (sat_i = \{1, ..., n\}) then
                first<sub>i</sub>[1..n] is the vector date of the first global state satisfying \bigwedge_{i} LP_{i}
(19)
(20)
           end if
(21) end if.
```

Fig. 7.16 Detection the first global state satisfying $\bigwedge_i LP_i$ (code for process p_i)

 LP_i is satisfied, it defines accordingly *first_i* as being vc_i (which is the vector date of the global state associated with the causal past of the event *e* currently produced by p_i , line 2). Process p_i then checks if the consistent global state defined by the vector date *first_i*(= vc_i) satisfies the whole global predicate $\bigwedge_j LP_j$ (lines 3–4). If it is the case, p_i has determined the first global state satisfying the global predicate.

If the event *e* is the sending of a message by p_i to p_j , before sending the message, process p_i first moves to its next local state σ (line 10), and does the same as if *e* was an internal event. The important point is that, in addition to the application message, p_i sends to p_j (line 12) its full current state (from the global state determination point of view), which consists of vc_i (current vector time at p_i), sat_i (processes whose local predicates are satisfied), and *first_i* (date of the consistent global state satisfying the local predicates of the processes in sat_i).

If the event *e* is the reception by p_i of a message sent by p_j , p_i updates first its vector clock (line 13), and moves to its next local state (line 14). As in the previous cases, if LP_i has not yet been satisfied, p_i then invokes check_lp() (line 15). Finally, if p_i learns something new with respect to local predicates (test of line 16), it "adds" what it knew before (*sat_i* and *first_i*[1..*n*]) with what it learns (*sat* and *first*[1..*n*]). The new value of *first_i*[1..*n*] is the vector date of the first consistent global state

in which all the local states of the processes in $sat_i \cup sat$ satisfy their local predicates. Finally, p_i checks if the global state defined by $first_i[1..n]$ satisfies all local predicates (lines 18–20).

When looking at the executions described in Figs. 7.14 and 7.15, we have the following. In Fig. 7.14, p_1 ends the detection at line 4 after it has produced the event that gave rise to σ_1^x . In Fig. 7.15, p_3 ends the detection at line 19 after it has received the protocol message MSG(m_3 , [-, -, -], $\{1, 2\}$, [x, y, 0]). Just before it receives this message we have $sat_3 = \{2, 3\}$ and $first_3 = [0, y, z]$.

7.2.6 Vector Clocks in Action: On-the-Fly Determination of the Immediate Predecessors

The Notion of a Relevant Event At some abstraction level, only a subset of events are relevant. As an example, in some applications only the modification of some local variables, or the processing of specific messages, are relevant. Given a distributed computation $\hat{H} = (H, \stackrel{ev}{\longrightarrow})$, let $R \subset H$ be the subset of its events that are defined as relevant.

Let us accordingly define the causal precedence relation on these events, denoted $\xrightarrow{r_e}$, as follows

$$\forall e_1, e_2 \in R: \quad (e_1 \xrightarrow{re} e_2) \Leftrightarrow (e_2 \xrightarrow{ev} e_1).$$

This relation is nothing else than the projection of \xrightarrow{ev} on the elements of *R*. The pair $\widehat{R} = (R, \xrightarrow{re})$ constitutes an abstraction of the distributed computation $\widehat{H} = (H, \xrightarrow{ev})$.

Without loss of generality, we consider that the set of relevant events consists only of internal events. Communication events are low-level events which, without being themselves relevant, participate in the establishment of causal precedence on relevant events. If a communication event has to be explicitly observed as relevant, an associated relevant internal event can be generated just before or after it.

An example of a distributed execution with both relevant events and non-relevant events is described in Fig. 7.17. The relevant events are represented by black dots, while the non-relevant events are represented by white dots.

The management of vector clocks restricted to relevant events (Fig. 7.18) is a simplified version of the one described in Fig. 7.9. As we can see, despite the fact that they are not relevant, communication events participate in the tracking of causal precedence. Given a relevant *e* timestamped $\langle e.vc[1..n], i \rangle$, the integer e.vc[j] is the number of relevant events produced by p_j and known by p_i .

The Notion of an Immediate Predecessor and the Immediate Predecessor Tracking Problem Given two events $e_1, e_2 \in R$, the relevant event e_1 is an *immediate predecessor* of the relevant event e_2 if

$$(e_1 \xrightarrow{re} e_2) \land (\nexists e \in R : (e_1 \xrightarrow{re} e) \land (e \xrightarrow{re} e_2)).$$

Fig. 7.17 Relevant events in a distributed computation

when producing a relevant internal event e do (1) $vc_i[i] \leftarrow vc_i[i] + 1$; (2) Produce the relevant event e. % The date of e is $vc_i[1..n]$. when sending MSG(m) to p_j do (3) send MSG(m, $vc_i[1..n]$) to p_j . when MSG(m, vc) is received from p_j do (4) $vc_i[1..n] \leftarrow \max(vc_i[1..n])$.

Fig. 7.18 Vector clock system for relevant events (code for process p_i)

Fig. 7.19 From relevant events to Hasse diagram

The *immediate predecessor tracking* (IPT) problem consists in associating with each relevant event the set of relevant events that are its immediate predecessors. Moreover, this has been done on the fly and without adding control messages. The determination of the immediate predecessors consists in computing the transitive reduction (or Hasse diagram) of the partial order $\widehat{R} = (R, \xrightarrow{re})$. This reduction captures the essential causality of \widehat{R} .

The left of Fig. 7.19 represents the distributed computation of Fig. 7.17, in which only the relevant events are explicitly indicated, together with their vector dates and an identification pair (made up of a process identity plus a sequence number). The right of the figure shows the corresponding Hasse diagram.

An Algorithm Solving the IPT Problem: Local Variables The *k*th relevant event on process p_k is unambiguously identified by the pair (k, vck), where *vck* is the value of $vc_k[k]$ when p_k has produced this event. The aim of the algorithm is conse-

when producing a relevant internal event e do (1) $vc_i[i] \leftarrow vc_i[i] + 1;$ (2) Produce the relevant event e; let $e.imp = \{(k, vc_i[k]) \mid imp_i[k] = 1\}$; (3) $imp_i[i] \leftarrow 1;$ (4) for each $j \in \{1, ..., n\} \setminus \{i\}$ do $imp_i[j] \leftarrow 0$ end for. when sending MSG(m) to p_i do (5) send $MSG(m, vc_i[1..n], imp_i[1..n])$ to p_i . when MSG(m, vc, imp) is received do (6) **for each** $k \in \{1, ..., n\}$ **do case** $vc_i[k] < vc[k]$ **then** $vc_i[k] \leftarrow vc[k]$; $imp_i[k] \leftarrow imp[k]$ (7) $vc_i[k] = vc[k]$ then $imp_i[k] \leftarrow min(imp_i[k], imp[k])$ (8) (9) $vc_i[k] > vc[k]$ then skip (10)end case (11) end for.

Fig. 7.20 Determination of the immediate predecessors (code for process p_i)

quently to associate with each relevant event *e* a set *e.imp* such that $(k, vck) \in e.imp$ if and only if the corresponding event is an immediate predecessor of *e*.

To that end, each process p_i manages the following local variables:

- $vc_i[1..n]$ is the local vector clock.
- *imp_i*[1..*n*] is a vector initialized to [0,...,0]. Each variable *imp_i*[*j*] contains 0 or 1. Its meaning is the following: *imp_i*[*j*] = 1 means that the last relevant event produced by *p_j*, as known by *p_i*, is candidate to be an immediate predecessor of the next relevant event produced by *p_j*.

An Algorithm Solving the IPT Problem: Process Behavior The algorithm executed by each process p_i is a combined management of both the vectors vc_i and imp_i . It is described in Fig. 7.20.

When a process p_i produces a relevant event e, it increases its own vector clock (line 1). Then, it considers $imp_i[1..n]$ to compute the immediate predecessors of e (line 2). According to the definition of each entry of imp_i , those are the events identified by the pairs $(k, cv_i[k])$ such that $imp_i[k] = 1$ (which indicates that the last relevant event produced by p_k and known by p_i , is still a candidate to be an immediate predecessor of e).

Then, as it produced a new relevant event e, p_i must reset its local array $imp_i[1..n]$ (lines 3–4). It resets (a) $imp_i[i]$ to 1 (because e is candidate to be an immediate predecessor of relevant events that will appear in its causal future) and (b) each $imp_i[j]$ ($j \neq i$) to 0 (because no event that will be produced in the future of e can have them as immediate predecessors).

When p_i sends a message, it attaches to this message all its local control information, namely, cv_i and imp_i (line 5). When it receives a message, p_i updates it local vector clock as in the basic algorithm so that the new value of vc_i is the component-wise maximum of vc and the previous value of vc_i .

Fig. 7.21 Four possible cases when updating $imp_i[k]$, while $vc_i[k] = vc[k]$

The update of the array imp_i depends on the value of each entry of vc_i .

- If $vc_i[k] < vc[k]$, p_j (the sender of the message) has fresher information on p_k than p_i . Consequently, p_i adopts what is known by p_j , and sets $imp_i[k]$ to imp[k] (line 7).
- If $vc_i[k] = vc[k]$, the last relevant event produced by p_k and known by p_i is the same as the one known by p_j . If this event is still candidate to be an immediate predecessor of the next event produced by p_i from both p_i 's point of view $((imp_i[k])$ and p_j 's point of view ((imp[k]), then $imp_i[k]$ remains equal to 1; otherwise, $imp_i[k]$ is set to 0 (line 8). The four possible cases are depicted in Fig. 7.21.
- If $vc_i[k] > vc[k]$, p_i knows more on p_k than p_j . Hence, it does not modify the value of $imp_i[k]$ (line 9).

7.3 On the Size of Vector Clocks

This section first shows that vector time has an inherent price, namely, the size of vector clocks cannot be less than the number of processes. Then it introduces the notion of a *relevant event* and presents a general technique that allows us to reduce the number of vector entries that have to be transmitted in each message. Finally, it presents the notions of *approximation* of the causality relation and approximate vector clocks.

7.3.1 A Lower Bound on the Size of Vector Clocks

A vector clock has one entry per process, i.e., n entries. It follows from the algorithm of Fig. 7.9 and Theorem 5 that vectors of size n are sufficient to capture causality and independence among events. Hence the question: Are vectors of size n necessary to capture causality and concurrency among the events produced by n asynchronous processes communicating by sending and receiving messages through a reliable asynchronous network?

This section shows that the answer to this question is "yes". This means that there are distributed executions in which causality and concurrency cannot be captured by vector clocks of size smaller than n. The proof of this result, which is due to B. Charron-Bost (1991), consists in building such a specific execution and showing a contradiction if vector clocks of size smaller than n are used to capture causality and independence of events.

The Basic Execution Let us consider an execution of *n* processes in which each process p_i , $1 \le i \le n$, executes a sending phase followed by a reception phase. There is a communication channel between any pair of distinct processes, and the communication pattern is based on a logical ring defined as follows on the process identities: i, i + 1, i + 2, ..., n, 1, ..., i - 1, i. The notations i + x and i - y are used to denote the *x*th successor and the *y*th predecessor of the identity *i* on the ring, respectively. More precisely, the behavior of each process p_i is as follows.

- A process p_i first sends, one after the other, a message to each process of the following "increasing" list of (n 2) processes: $p_{i+1}, p_{i+2}, \ldots, p_n, p_1, \ldots, p_{i-2}$. The important points are the "increasing" order in the list of processes and the fact that p_i does not send a message to p_{i-1} .
- Then, p_i receives, one after the other, the (n-2) messages sent to it, in the "decreasing" order on the identity of their senders, namely, p_i receives first the message from p_{i-1} , then the one from $p_{i-2}, \ldots, p_1, p_n, \ldots, p_{i+2}$. As before, the important points are the "decreasing" order in the list of processes and the fact that p_i does not receive a message from p_{i+1} .

This communication pattern is described in Fig. 7.22. (A simpler figure with only three processes is described in Fig. 7.23.)

Considering a process p_i , let f_{s_i} denote its first send event (which is the sending of a message to p_{i+1}), and lr_i denote its last receive event (which is the reception of a message from p_{i+2}).

Lemma 1 $\forall i \in \{1, ..., n\}$: $lr_i || fs_{i+1}$.

Proof As any process first sends messages before receiving any message, there is no causal chain involving more than one message. The lemma follows from this observation and the fact p_{i+1} does not send message to p_i .

Lemma 2 $\forall i, j: 1 \leq i \neq j \leq n: fs_{i+1} \xrightarrow{ev} lr_j.$

Fig. 7.22 A specific communication pattern

Fig. 7.23 Specific communication pattern with n = 3 processes

Proof Let us first consider the case j = i + 1. We have then $lr_j = lr_{i+1}$. As both fs_{i+1} and lr_{i+1} are produced by p_{i+1} , and the send phase precedes the receive phase, the lemma follows.

Let us now consider the case $j \neq i + 1$. Due to the assumption, we have then $j \notin \{i, i + 1\}$. It then follows from the communication pattern that p_{i+1} sends a message to p_j . Let s(i, j) and r(i, j) be the corresponding send event and receive event, respectively. We have (a) $f_{s_{i+1}} = s(i, j)$ or $f_{s_{i+1}} \xrightarrow{ev} s(i, j)$, (b) $s(i, j) \xrightarrow{ev} r(i, j)$, and (c) $r(i, j) = lr_j$ or $r(i, j) \xrightarrow{ev} lr_j$. Combining the previous relations, we obtain $f_{s_{i+1}} \xrightarrow{ev} lr_j$.

Theorem 7 Let $n \ge 3$ be the number of processes. To capture causality and independence of events produced by asynchronous computations, the dimension of vector time has to be at least n. *Proof* Let e.vc[1..k] (*e.vc*) be the vector date associated with event *e*. Let us consider a process sp_i . It follows from Lemma 1 that, for each $i \in \{1, ..., n\}$, we have $lr_i || fs_{i+1}$, which means that the vector dates $lr_i.vc$ and $fs_{i+1}.vc$ have to be incomparable. If $lr_i.vc[j] \ge fs_{i+1}.vc[j]$ for any *j*, we would have $lr_i.vc \ge fs_{i+1}.vc$, which is impossible since the events are independent. There exist consequently indexes *x* such that $lr_i.vc[x] < fs_{i+1}.vc[x]$. Let $\ell(i)$ be one of these indexes. As this is true for any $i \in \{1, ..., n\}$, we have defined a function

$$\ell: \{1,\ldots,n\} \to \{1,\ldots,k\}$$

The rest of the proof shows that $k \ge n$. This is done by showing that the function $\ell()$ is one-to-one.

Let us assume by contradiction that $\ell()$ is such that there are two distinct indexes *i* and *j* such that $\ell(i) = \ell(j) = x$. Due to the definition of $\ell()$, we have $lr_i.vc[x] < fs_{i+1}.vc[x]$ (A1), and $lr_j.vc[x] < fs_{j+1}.vc[x]$ (A2). On another side, it follows from Lemma 2 that $fs_{i+1} \xrightarrow{ev} lr_j$. Since vector clocks are assumed to capture causality, we have $fs_{i+1}.vc[x] < lr_j.vc$ (A3). Combining (A1), (A2), and (A3), we obtain $lr_i.vc[x] < fs_{i+1}.vc[x] < lr_j.vc[x] < fs_{j+1}.vc[x]$, from which we conclude $\neg(fs_{j+1} \xrightarrow{ev} lr_i)$, which contradicts Lemma 2 and concludes the proof of the theorem.

The reader can notice that the previous proof relies only on the fact that vector entries are comparable. Moreover, from a theoretical point of view, it does not require the value domain of each entry to be restricted to the set of integers (even if integers are easier to handle).

7.3.2 An Efficient Implementation of Vector Clocks

Theorem 7 shows that there are distributed executions in which the dimension of vector time must be n if one wants to capture causality and independence (concurrency) among the events generated by n processes.

Considering an abstraction level defined by relevant events (as defined in Sect. 7.2.6), this section presents an abstract condition, and two of its implementations, that allows each message to carry only a subset of the vector clock of its sender. Of course, in the worst case, this subset is the whole vector clock of the sender. This condition is on a "per message" basis. This means that the part of a vector clock carried by a message m depends on what is known by its sender about the values of all vector clocks, when it sends this message. This control information is consequently determined just before a message is sent.

Let us recall that communication events cannot be relevant events. Only a subset of the internal events are relevant.

To Transmit or Not to Transmit Control Information: A Necessary and Sufficient Condition Given a message m sent by a process p_i to a process p_i , let

s(m, i, j) denote its send event and r(m, i, j) denote its receive event. Moreover, let pre(m, i, j) denote the last relevant event (if any) produced by p_j before r(m, i, j). Moreover, *e* being any (relevant or not) event produced by a process p_x , let $e.vc_x[k]$ be the value of $vc_x[k]$ when p_x produces *e*. Let K(m, i, j, k) be the following predicate:

$$K(m, i, j, k) \stackrel{def}{=} s(m, i, j) . vc_i[k] \le pre(m, i, j) . vc_i[k].$$

1 0

When true, K(m, i, j, k) means that $vc_i[k]$ is smaller or equal to $vc_j[k]$, when p_i sends *m* to p_j ; consequently, it is not necessary for p_i to transmit the value of $vc_i[k]$ to p_j . The next theorem captures the full power of this predicate.

Theorem 8 The predicate $\neg K(m, i, j, k)$ is a necessary and sufficient condition for p_i to transmit the pair $(k, vc_i[k])$ when it sends a message m to p_j .

Proof Necessity. Let us assume that $\neg K(m, i, j, k)$ is satisfied, i.e., $s(m, i, j).vc_i[k] > pre(m, i, j).vc_j[k]$. According to the definition of vector clocks we must have $s(m, i, j).vc_i[k] \le r(m, i, j).vc_j[k]$. If the pair $(k, vc_i[k])$ is not attached to m, p_j cannot update $vc_i[k]$ to its correct value, which proves the necessity part.

Sufficiency. Let us consider a message *m* sent by p_i to p_j such that K(m, i, j, k) is satisfied. Hence, we have $s(m, i, j).vc_i[k] \le pre(m, i, j).vc_j[k]$. As r(m, i, j). $vc_j[k] = pre(m, i, j).vc_j[k]$, we have $s(m, i, j).vc_i[k] \le r(m, i, j).vc_j[k]$, from which it follows that, if the pair $(k, vc_i[k])$ is attached to *m*, it is useless as $vc_j[k]$ does not need to be updated.

From an Abstract Predicate to an Operational Predicate Unfortunately, p_i cannot evaluate the predicates K(m, i, j, k), $1 \le k \le n$, before sending a message *m* to p_j . The aim is consequently to find an operational predicate K'(m, i, j, k), such that $K'(m, i, j, k) \Rightarrow K(m, i, j, k)$ (operational means that the corresponding predicate can be locally computed by p_i). This means that if K'(m, i, j, k) indicates that it is useless to transmit the pair $(k, vc_i[k])$, then this decision does not entail an incorrect management of vector clocks.

Of course, always taking K'(m, i, j, k) = false works, but would force each message to carry the full vector clock. In order to attach to each message *m* as few pairs $(k, vc_i[k])$ as possible, the aim is to find an operational predicate K'(m, i, j, k) that is the best possible approximation of K(m, i, j, k), which can be locally computed.

To implement such a local predicate K'(m, i, j, k), each process p_i manages an additional control data, namely a matrix denoted $kprime_i[1..n, 1..n]$. The value of each entry $kprime_i[\ell, k]$ is 0 or 1, and its initial value is 1. It is managed in such a way that, to p_i 's knowledge,

$$(kprime_i[\ell, k] = 1) \Rightarrow (vc_i[k] \le vc_\ell[k]).$$

Hence,

$$K'(m, i, j, k) \stackrel{def}{=} (s(m, i, j).kprime_i[j, k] = 1).$$

The algorithms that follow are due to J.-M. Hélary, M. Raynal, G. Melideo, and R. Baldoni (2003).

when producing a relevant internal event e do (1) $vc_i[i] \leftarrow vc_i[i] + 1; \quad \% \ e.vc_i[1..n]$ is the vector date of e for each $\ell \in \{1, \ldots, n\} \setminus \{i\}$ do $kprime_i[\ell, i] \leftarrow 0$ end for. (2)when sending MSG(m) to p_i do (3) **let** $vc_set = \{(k, vc_i[k]) \text{ such that } kprime_i[j, k] = 0 \};$ sendMSG (m, vc_set) to p_i . (4) when MSG(m, vc_set) is received do for each $(k, vck) \in vc_set$ do (5) (6) **case** $vc_i[k] < vck$ **then** $vc_i[k] \leftarrow vck$; (7)for each $\ell \in \{1, \ldots, n\} \setminus \{i, j, k\}$ **do** $kprime_i[\ell, k] \leftarrow 0$ (8) (9) end for: $kprime_i[j,k] \leftarrow 1$ (10) $vc_i[k] = vck$ then $kprime_i[j, k] \leftarrow 1$ (11)(12) $vc_i[k] > vck$ then skip (13)end case (14) end for.

Fig. 7.24 Management of $vc_i[1..n]$ and $kprime_i[1..n, 1..n]$ (code for process p_i): Algorithm 1

A First Algorithm The algorithm of Fig. 7.24 describes the way each process p_i has to manage its vector clock $vc_i[1..n]$ and its matrix $kprime_i[1..n, 1..n]$ so that the previous relation is satisfied. Let us recall that $vc_i[1..n]$ is initialized to [0, ..., 0], while $kprime_i[1..n, 1..n]$ is initialized to [[1, ..., 1], ..., [1, ..., 1]].

When it produces a relevant event, p_i increases $vc_i[i]$ (line 1) and resets to 0 (line 2) all entries of the column $kprime_i[1..n, i]$ (except its own entry). This is because, p_i knows then that $vc_i[i] > vc_\ell[i]$ for $\ell \neq i$.

When it sends a message to a process p_j , p_i adds to it the set vc_set containing the pairs (k, vck) such that, to its knowledge $vc_j[k] < vc_i[k]$ (line 3). According to the definition of $kprime_i[1..n, 1..n]$, those are the pairs (k, -) such that $kprime_i[j, k] = 0$.

When a process p_i receives a message m with an associated set of pairs vc_set , it considers separately each pair $(k, vck) \in vc_set$. This is in order to preserve the property associated with K'(m, i, j, k) for each k, i.e., $(kprime_i[\ell, k] = 1) \Rightarrow (vc_i[k] \le vc_\ell[k])$. The behavior of p_i depends on the values of the pair $(vc_i[k], vck)$. More precisely, we have the following.

- If vc_i[k] < vck, p_i is less informed on p_k than the sender p_j of the message. It consequently updates vc_i[k] to a more recent value (line 6), and sets (a) kprime_i[l,k] to 0 for l ≠ i, j, k (this is because p_i does not know if vc_l[k] ≥ vc_i[k], lines 7–9), and (b) kprime_i[j,k] to 1 (because now it knows that vc_i[k] ≥ vc_i[k], line 10).
- If $vc_i[k] = vck$, p_i sets accordingly $kprime_i[j, k]$ to 1 (line 11).
- If $vc_i[k] > vck$, p_i is more informed on p_k than the sender p_j of the message. It consequently does not modify the array $kprime_i$ (line 12).

when producing a relevant internal event e do (1) $vc_i[i] \leftarrow vc_i[i] + 1; \quad \% \ e.vc_i[1..n]$ is the vector date of e (2)for each $\ell \in \{1, \ldots, n\} \setminus \{i\}$ do $kprime_i[\ell, i] \leftarrow 0$ end for. when sending MSG(m) to p_i do (3') let $vc_set = \{(k, vc_i[k], kprime_i[1..n, k]) \text{ such that } kprime_i[j, k] = 0\};$ (4) sendMSG (m, vc_set) to p_i . when MSG(m, vc_set) is received do (5') for each $(k, vck, kpk[1..n]) \in vc_set$ do **case** $vc_i[k] < vck$ **then** $vc_i[k] \leftarrow vck$; (6) (7-10')for each $\ell \in \{1, \ldots, n\} \setminus \{i\}$ (7-10')**do** $kprime_i[\ell, k] \leftarrow kpk[\ell]$ (7-10')end for; $vc_i[k] = vck$ then for each $\ell \in \{1, \ldots, n\} \setminus \{i\}$ (11')(11')**do** $kprime_i[\ell, k] \leftarrow \max(kprime_i[\ell, k], kpk[\ell])$ (11')end for; (12) $vc_i[k] > vck$ then skip (13)end case (14) end for.

Fig. 7.25 Management of $vc_i[1..n]$ and $kprime_i[1..n, 1..n]$ (code for process p_i): Algorithm 2

Remark When considering a process p_i , the values in the column $kprime_i[1..n, i]$ (but $kprime_i[i, i]$) remain equal to 0 after its first update (line 2).

The Case of FIFO Channels If the channels are FIFO, when a process p_i sends a message *m* to another process p_j , the following line can be added after (line 3):

for each $(k, -) \in vc_set$ do $kprime_i[j, k] \leftarrow 1$ end for.

These updates save future sendings of pairs to p_j as long as p_i does not produce a new relevant event (i.e., until $vc_i[i]$ is modified). In particular, with this enhancement, a process p_i sends the pair $(i, vc_i[i])$ to a process p_j only if, since its last relevant event, this sending is the first sending to p_j .

A Modified Algorithm When p_i sends a message to p_j , the more entries of $kprime_i[j,k]$ are equal to 1, the fewer pairs (k, cvk) have to be transmitted (line 3). Hence, the idea is to design an algorithm that increases the number of entries of the local arrays $kprime_i[1..n, 1..n]$ equal to 1, in order to decrease the size of vc_set .

To that end, let us replace each pair (k, cvk) transmitted in vc_set by a triplet $(k, cvk, kprime_i[1..n, k])$, and modify the statements associated with a message reception to benefit from the values of the binary vectors which have been received. The corresponding algorithm is described in Fig. 7.25.

When p_i receives a message sent by a process p_j , it can update $kprime_i[\ell, k]$ to $kprime_k[\ell, k]$ if p_j was more informed on p_k than p_i (case $vc_i[k] < vc_j[k]$). In this case, for every ℓ , p_i updates it to the received value $kprime_j[\ell, k]$ (lines 7–10'), which replaces lines 7 and 10 of the algorithm in Fig. 7.24). If p_i and p_j are such that $vc_i[k] = vc_j[k]$, p_i updates each $kprime_j[\ell, k]$ to $max(kprime_i[\ell, k], kprime_i[\ell, k])$ (line 11') which replaces line (line 11). This is

because, if $vc_i[k] = vc_j[k]$ and $kprime_j[\ell, k] = 1$, p_i knows that $vc_\ell[k] \ge vc_i[k]$, if it did not know it before. There is of course a tradeoff between the number of pairs whose sending is saved and the number of binary vectors which have now to be sent (see below).

An Adaptive Communication Layer Let s be the number of bits required to encode the sequence numbers of the relevant events of each process. Let P0 be the basic vector clock algorithm suited to relevant event (Fig. 7.18), P1 the algorithm in which messages carry pairs (Fig. 7.24), and P2 the algorithm in which messages carry triplets (Fig. 7.25).

As vectors have a canonical representation, the bit size of the control information associated with a message *m* is $n \times s$ bits in P0. Given some point of an execution of algorithm P0, let *m* be a message sent by p_i to p_j . If, instead of the full vector clock, *m* had to piggyback the set *vc_set* defined at line 3 of P1, the bit size of the control information associated with *m* would be $\alpha_1 = set_size(s + \log_2 n)$ bits. Similarly, it would be $\alpha_2 = set_size(n + s + \log_2 n)$ bits if *m* had to piggyback the set *vc_set* defined at line 3' of P2.

Let us observe that, while $\alpha_1 < \alpha_2$, the algorithm P2 has the ability to make more entries of the matrices $kprime_i[1..n, 1..n]$ equal to 1, which has a direct impact on the size of the control information associated with messages that will be sent in the future. Hence, choosing between P1 and P2 has to depend on some heuristic function based on the structure of the computation. It is nevertheless possible to define an adaptive communication layer which selects, dynamically for each message *m*, the "best" algorithm among P0, P1, and P2, to send and receive *m*.

These observations direct us to the adaptive algorithm described in Fig. 7.26, in which the statements associated with the sending and the reception of each message m are dynamically selected. If sending the full vector clock is cheaper, the sending and receiving rules of P0 are chosen (lines 2–3). Otherwise, a heuristic function is used to select either the rules of P1, or the rules of P2. This is expressed with the predicate *heuristic*() (line 4), which may depend on the communication graph or the application structure. A simple example of such a predicate is the following one:

predicate *heuristic()* is return $((n - \sum_{1 \le x \le n} kprime_i[x, k]) > c)$ end predicate.

The value c is a threshold: if the number of triplets to transmit is not greater than c, then algorithm P2 is used, otherwise algorithm P1 is used.

Of course, plenty of possibilities are offered to the user. As a toy example, the messages sent to processes with an even identity could be sent and received with P1, while the other would be sent and received with P2. A more interesting strategy is the following. Let p_i and p_j be any pair of processes, where p_i is the sender and p_j the receiver. When P0 is not more efficient that P1 or P2 (line 2), p_i alternates in using P1 and P2 for its successive messages to p_j . Another strategy would consist to draw (at line 4) a random number in {1, 2}, which would be used to direct a process to use P1 or P2.

when sending MSG(m) to p_i do (1)let $set_size = |\{k \text{ such that } kprime_i[j, k] = 0 \}|;$ (2)**if** $(s \times n) < set_size(s + \log_2 n)$ then attach tag "0" to the message and use algorithm P0 to send it (3) (4)else if (heuristic) then attach tag "1" to the message and use algorithm P1 to send it else attach the "2" to the message and use algorithm P2 to send it (5) end if (6)(7)end if. when MSG(tag, m, vc_set) is received do (8) According to the tag of the message, use the reception statements of P0, P1, or P2.

Fig. 7.26 An adaptive communication layer (code for process p_i)

7.3.3 k-Restricted Vector Clock

An Approximation of the Causal Precedence Relation A relation \xrightarrow{app} on the set of events is an *approximation* of the causal precedence relation \xrightarrow{ev} if

$$\forall e_1, e_2 \colon (e_1 \xrightarrow{e_v} e_2) \Rightarrow (e_1 \xrightarrow{app} e_2).$$

This means that the relation \xrightarrow{app} orders correctly any pair of causally related events. Hence, when $e_1 \mid\mid e_2$, we have either $e_1 \xrightarrow{app} e_2$, or $e_2 \xrightarrow{app} e_1$, or e_1 and e_2 are not ordered by the relation \xrightarrow{app} . The important point is that any approximation has to respect causal precedence. As a simple example, the order on events defined by linear time (see Sect. 7.1.1) is an approximation of causal precedence.

k-Restricted Vector Clocks The notion of *restricted vector clocks* was introduced by F. Torres-Rojas and M. Ahamad (1999). It imposes a bound $k, 1 \le k \le n$, on the size of vector clocks (i.e., the dimension of vector time). The vector clock of each process p_i has only k entries, namely, $vc_i[1..k]$. These k-restricted vector clocks are managed by the algorithm described in Fig. 7.27 (which is the same as the vector clock algorithm described in Fig. 7.9, except for the way the vector entries are used).

Let $f_k()$ be a deterministic surjective function from $\{1, ..., n\}$ (the set of process identities) to $\{1, ..., k\}$ (the set of vector clock entries). As a simple example, $f_k(i)$ can be $(i \mod k) + 1$. The function $f_k()$ defines the set of processes that share the same entry of the restricted vector clocks.

Let e_1 and e_2 be two events timestamped $\langle e_1.vc[1..k], i \rangle$ and $\langle e_2.vc[1..k], j \rangle$, respectively. The set of timestamps defines an approximation relation as follows:

- $((i = j) \land (e_1.vc[i] < e_2.vc[i])) \Rightarrow (e_1 \xrightarrow{e_v} e_2).$
- $((i = j) \land (e_1.vc[i] > e_2.vc[i])) \Rightarrow (e_2 \xrightarrow{e_v} e_1).$
- $(e_1.vc || e_2.vc) \Rightarrow (e_1 || e_2).$
- $((i \neq j) \land (e_1.vc < e_2.vc)) \Rightarrow (e_1 \xrightarrow{app} e_2)$. (We have then $e_1 \xrightarrow{e_v} e_2$ or $e_1 || e_2$.)
- $((i \neq j) \land (e_1.vc > e_2.vc)) \Rightarrow (e_2 \xrightarrow{app} e_1)$. (We have then $e_2 \xrightarrow{e_v} e_1$ or $e_1 \mid |e_2.)$

when producing an internal event *e* do (1) $vc_i[f_k(i)] \leftarrow vc_i[f_k(i)] + 1$; (2) Produce event *e*. % The date of *e* is $vc_i[1..k]$. when sending MSG(*m*) to p_j do (3) $vc_i[f_k(i)] \leftarrow vc_i[f_k(i)] + 1$; % $vc_i[1..k]$ is the sending date of the message. (4) send MSG(*m*, $vc_i[1..k]$) to p_j . when MSG(*m*, vc) is received from p_j do (5) $vc_i[f_k(i)] \leftarrow vc_i[f_k(i)] + 1$; (6) $vc_i[1..k] \leftarrow max(vc_i[1..k])$, $vc_i[1..k]$). % $vc_i[1..k]$ is the date of the receive event.

Fig. 7.27 Implementation of a k-restricted vector clock system (code for process p_i)

When $e_1 \xrightarrow{app} e_2$, while $e_1 \parallel e_2$, we say that \xrightarrow{app} adds *false causality*.

If k = 1, we have then $f_k(i) = 1$ for any *i*, and the *k*-restricted vector clock system boils down to linear time. If k = n and $f_k(i) = i$, the *k*-restricted vector clock system implements the vector time of dimension *n*. The approximate relation \xrightarrow{app} then boils down to the (exact) causal precedence relation \xrightarrow{ev} . When 1 < k < n, \xrightarrow{app} adds false causality. Experimental results have shown that for n = 100 and $1 < k \le$ 5, the percentage of false causality (with respect to all the pairs of causally related events) added by \xrightarrow{app} remains smaller than 10 %. This shows that approximations of the causality relation giving few false positives can be obtained with a *k*-restricted vector clock system working with a very small time dimension *k*. This makes *k*restricted vector clock systems attractive when one has to simultaneously keep track of causality and cope with scaling problems.

7.4 Matrix Time

Linear time and vector time can be generalized to matrix time. While vector time captures "first-order" knowledge (a process knows that another process has issued some number of events), matrix time captures "second-order" knowledge (a process knows that another process knows that ...). This section introduces matrix time and illustrates its use with a simple example. Matrix time is due to M.J. Fischer and A. Michael (1982).

7.4.1 Matrix Clock: Definition and Algorithm

The matrix clock of a process p_i is a two-dimensional array, denoted $mc_i[1..n, 1..n]$, such that:

- $mc_i[i, i]$ counts the number of events produced by p_i .
- *mc_i*[*i*, *k*] counts the number of events produced by *p_k*, as known by *p_i*. It follows than *mc_i*[*i*, 1..*n*] is nothing else than the vector clock of *p_i*.

Fig. 7.28 Matrix time: an example

• $mc_i[j, k]$ counts the number of events produced by p_k and known by p_j , as known by p_i .

Hence, for any *i*, *j*, *k*, $mc_i[j,k] = x$ means " p_i knows that " p_j knows that " p_k has produced *x* events""".

Development of matrix time is illustrated in Fig. 7.28. Let *e* be the last event produced by p_i . The values of mc_i considered are the values of that matrix clock just after *e* has been produced. It follows that, if *e* is the *x*th event produced by p_i , we have $e.mc[i, i] = mc_i[i, i] = x$ (these numbers are indicated in the figure on top/bottom of the corresponding event).

- It is easy to see that e₂ is the last event produced by p_k and known by p_i (according to the relation →). If it is the yth event produced by p_k, we have e.mc[i, k] = mc_i[i, k] = mc_i[k, k] = y.
- Similarly, if e_4 (last event produced by p_j and known by p_i) is the *z*th event produced by p_j , we have $e.mc[j, j] = mc_i[i, j] = mc_i[j, j] = y$.
- The figure shows that e_1 is the last event of p_k which is known by p_j , and this is known by p_i . Let this event be the y'th event produced by p_k . We consequently have $e.mc[j,k] = mc_i[j,k] = y'$.
- Finally, e₃ is the last event produced by p_j and known by p_k, and this is known by p_i when it produces event e. Let this event be the z'th event produced by p_j. We have e.mc[k, j] = mc_i[k, j] = z'.

Matrix Time Algorithm The algorithm implementing matrix time is described in Fig. 7.29. A process p_i increases its event counter each time it produces an event (lines 1, 3, and 5). Each message piggybacks the current value of the matrix clock of its sender.

When a process p_i receives a message it updates its matrix clock as follows.

- The vector clock of p_i , namely $mc_i[i, 1..n]$, is first updated as in the basic vector clock algorithm (line 6). The value of the vector clock sent by p_j is in the vector mc[j, 1..n].
- Then, p_i updates each entry of its matrix clock so that the matrix contains everything that can be known according to the relation \xrightarrow{ev} (line 7).

```
when producing an internal event e do

(1) mc_i[i,i] \leftarrow mc_i[i,i] + 1;

(2) Produce event e. % The matrix date of e is mc_i[1..n][1..n].

when sending MSG(m) to p_j do

(3) mc_i[i,i] \leftarrow mc_i[i,i] + 1; % mc_i[1..n][1..n] is the sending date of the message.

(4) send MSG(m, mc_i[1..n][1..n]) to p_j.

when MSG(m, mc) is received from p_j do

(5) mc_i[i,i] \leftarrow mc_i[i,i] + 1;

(6) mc_i[i, 1..n] \leftarrow max(mc_i[i, 1..n], mc[j, 1..n]);

(7) for each (k, \ell) \in [1..n, 1..n] do mc_i[k, \ell] \leftarrow max(mc_i[k, \ell], mc[k, \ell]) end for.

% mc_i[1..n, 1..n] is the matrix date of the receive event.
```


Property of Matrix Clocks Let us consider the two following cases:

- Let $\min(mc_i[1, k], \dots, mc_i[n, k]) = x$. This means that, to p_i 's knowledge, all the processes know that p_k has produced x events. This can be used by p_i to forget events produced by p_k which are older than the (x + 1)th one.
- Let $\min(mc_i[k, i], \dots, mc_i[n, i]) = x$. This means that, to p_i 's knowledge, all the processes know that it has produced x events. This can be used by p_i to forget parts of its past older than its (x + 1)th event.

This means, in some applications, the two previous observations can be used by a process to discard old data, as soon as it knows that these data are known by all the processes.

7.4.2 A Variant of Matrix Time in Action: Discard Old Data

This example is related to the previous property of matrix clocks. It concerns the management of a message buffer.

A Buffer Management Problem A process can invoke two operations. The operation broadcast(m) allows it to send a message to all processes, while the operation deliver() returns to it a message that has been broadcast.

For some reasons (fault-tolerance, archive recording, etc.) each process keeps in a private space (e.g., local disk) called *buffer*, all the messages it has broadcast or delivered. A condition imposed to a process which wants to destroy messages to free buffer space is that a message has to be known by all other processes before being destroyed. A structural view of this buffer management problem is described in Fig. 7.30.

The Buffer Management Algorithm A simple adaptation of matrix clocks solves this problem. As only broadcast messages are relevant, the local time of a process is

represented here by the number of messages it has broadcast. The definition of the content of the vector entry $mc_i[j,k]$ has consequently to be interpreted as follows: $mc_i[j,k] = x$ means that, to p_i 's knowledge, the x first messages broadcast by p_k have been delivered by p_j .

The corresponding algorithm (which assumes FIFO channels) is described in Fig. 7.31. The FIFO assumption simplifies the design of the algorithm. It guarantees that, if a process p_i delivers a message *m* broadcast by a process p_k , it has previously delivered all the messages broadcast by p_k before *m*.

When p_i broadcasts a message *m* it increases $mc_i[i, i]$, which is the sequence number of *m* (line 1). Then, after it has associated the timestamp $\langle mc_i[i, 1..n], i \rangle$ with *m*, p_i sends *m* and its timestamp to all the other process, and deposits the pair $(m, \langle mc_i[i], i \rangle)$ in its local buffer (lines 2–3).

When it receives a message *m* with its timestamp $\langle vc, j \rangle$, a process p_i first deposits the pair $(m, \langle vc[j], j \rangle)$, in its buffer and delivers *m* to the local application process (line 4). Then, p_i increases $mc_i[i, j]$ (it has delivered one more message from p_j), and updates its local view of the vector clock of p_j , namely, $mc_i[j, 1..n]$, to vc (line 5). The fact that a direct assignment replaces the usual vector clock update

```
operation broadcast(m) is
(1)
       mc_i[i, i] \leftarrow mc_i[i, i] + 1;
(2)
       for each j \in \{1, ..., n\} \setminus \{i\} do send(m, \langle mc_i[i, 1..n], i \rangle) end for;
(3)
       deposit(m, (mc_i[i], i)) into the buffer and deliver m locally.
when (m, \langle vc, j \rangle) is received do
       deposit(m, \langle vc[j], j \rangle) into the buffer; deliver(m) to the upper layer;
(4)
(5)
       mc_i[i, j] \leftarrow mc_i[i, j] + 1; mc_i[j, 1..n] \leftarrow vc[1..n].
background task T is
       repeat forever
(6)
(7)
           if (\exists (m, \langle sn, k \rangle) \in buffer such that sn \leq min(mc_i[1, k], \dots, mc_i[n, k]))
                then (m, \langle sn, k \rangle) can be discarded from the buffer
(8)
 (9)
           end if
 (10) end repeat.
```

Fig. 7.31 A buffer management algorithm (code for process p_i)

statement $mc_i[j, 1..n] \leftarrow \max(mc_i[j, 1..n], vc[1..n])$ is due to the FIFO property of the channels.

Finally, a local task *T* runs forever in the background. This task is devoted to the management of the buffer. If there is message *m* in the buffer whose tag $\langle sn, k \rangle$ is such that $sn \leq \min(mc_i[1, k], \ldots, mc_i[n, k])$, p_i can conclude that all the processes have delivered this message. As a particular case, p_i knows that p_j has delivered *m* (which was broadcast by p_k) because (a) $mc_i[j, k] \geq sn$ and (b) the channels are FIFO ($mc_i[j, k]$ being a local variable that p_i modifies only when it receives a message from p_j , it follows that p_i has previously received from p_j a message carrying a vector vc_j such that $vc_j[k] \geq sn$.

Remark The reader can observe that this simple algorithm includes three notions of logical time: local time with sequence numbers, vector time which allows a process to know how many messages with a specific sender have been delivered by the other processes, and matrix time which encapsulates the previous notions of time. Matrix clocks are local, messages carry only vector clocks, and each buffer registers only sequence numbers.

7.5 Summary

This chapter has addressed the concept of *logical time* in distributed computations. It has introduced three types of logical time: linear (or scalar) time, vector time, and matrix time. An appropriate notion of virtual clock is associated with each of them. The meaning of these time notions has been investigated, and examples of their use have been presented. Basically, linear time is fundamental when one has to establish a total order on events that respects causal precedence, vector time captures exactly causal precedence, while matrix time provides processes with a "second order" knowledge on the progress of the whole set of processes.

7.6 Bibliographic Notes

- The notion of linear (scalar) time was introduced in 1978 by L. Lamport in [226]. This is a fundamental paper in which Lamport also introduced the *happened be-fore* relation (causal precedence), which captures the essence of a distributed computation.
- The timestamp-based total order broadcast algorithm presented in Sect. 7.1.4 is a variant of algorithms described in [23, 226].
- The notions of vector time and vector clocks were introduced in 1988 (ten years after linear clocks) simultaneously and independently by C.J. Fidge [124], F. Mattern [250], and F. Schmuck [338]. The underlying theory is described in [125, 250, 340].

7.7 Exercises and Problems

Preliminary intuitions of vector clocks appear in several papers (e.g., [53, 238, 290, 307, 338, 360]). Surveys on vector clock systems appear in [40, 149, 325]. The power and limitations of vector clocks are investigated in [126, 312].

- Tracking of causality in specific contexts is the subject of numerous papers. The case of synchronous systems is addressed in [6, 152], while the case of mobile distributed systems is addressed in [300].
- The algorithm which detects the first global state satisfying a conjunction of stable local predicates is due to M. Raynal [312].
- The proof of the lower bound showing that the size of vector clocks has to be at least *n* (the number of processes) if one wants to capture causality and independence of events is due to B. Charron-Bost [86].
- The notion of an efficient implementation of vector clocks was first introduced in [350]. The efficient algorithms implementing vector clocks presented in Sect. 7.3.2 are due J.-M. Hélary, M. Raynal, G. Melideo, and R. Baldoni [181]. An algorithm to reset vector clocks is presented in [394].
- The notion of a dependency vector was introduced in [129]. Such a vector is a weakened vector clock. This notion is generalized in [37] to the notion of *k*-dependency vector clock (*k* = *n* provides us with vector clocks).
- The notion of immediate predecessors of relevant events was introduced in [108, 198]. The corresponding tracking algorithm presented in Sect. 7.2.6 is due to E. Anceaume, J.-M. Hélary, and M. Raynal [17, 18].
- The notion of *k*-restricted vector clocks is due to F. Torres-Rojas and M. Ahamad [370], who also introduced a more general notion of *plausible* clock systems.
- Matrix time and matrix clocks were informally introduced in [127] and used in [334, 390] to discard obsolete data (see also [8]).
- Another notion of virtual time, suited to distributed simulation, is presented and studied in [199, 263].

7.7 Exercises and Problems

1. Let \mathcal{D} be the set of all the linear clock systems that are consistent. Given any $D \in \mathcal{D}$, let $date_D(e)$ be the date associated by D with the event e. Let E be a distributed execution. As any $D \in \mathcal{D}$ is consistent, we have $(e_1 \xrightarrow{ev} e_2) \Rightarrow date_D(e_1) < date_D(e_2)$, for any pair (e_1, e_2) of events of E.

Given a distributed execution E, show that, for any pair (e_1, e_2) of events of E, we have

- $(e_1||e_2) \Rightarrow (\exists D' \in \mathcal{D} : date_{D'}(e_1) = date_{D'}(e_2)).$
- $(e_1||e_2) \Rightarrow$ $[\exists D', D'' \in \mathcal{D} : (date_{D'}(e_1) \le date_{D'}(e_2)) \land (date_{D''}(e_1) \ge date_{D''}(e_2))].$
- 2. Considering the algorithm implementing the total order broadcast abstraction described in Fig. 7.7, let us replace the predicate of line 11, $sd_date \ge clock_i[i]$ by the following predicate $\langle sd_date, j \rangle < \langle clock_i[i], i \rangle$.

```
when producing an internal event e do

(1) g1_i \leftarrow g1_i + 1;

(2) Produce event e. % The date of e is the pair (g1_i, g2_i).

when sending MSG(m) to p_j do

(3) g1_i \leftarrow g1_i + 1; % (g1_i, g2_i) is the sending date of the message.

(4) send MSG(m, g1_i) to p_j.

when MSG(m, g1) is received from p_j do

(5) g1_i \leftarrow \max(g1_i, g1) + 1;

(6) g2_i \leftarrow \max(g2_i, g1). % (g1_i, g2_i) is the date of the receive event.
```

Fig. 7.32 Yet another clock system (code for process p_i)

- Is the algorithm still correct? (Either a proof or a counterexample is needed.)
- What is the impact of this new predicate on the increase of local clock values?
- 3. Show that the determination of the *first* global state satisfying a conjunction of stable local predicates cannot be done by repeated global state computations (which were introduced in Sect. 6.6 for the detection of stable properties).
- When considering k-restricted vector time, prove that the statements relating the timestamps with the relations ^{app}→ are correct.
- 5. Let us consider the dating system whose clock management is described in Fig. 7.32.

The clock of each process p_i is composed of two integers $g1_i$ and $g2_i$, both initialized to 0. The date of an event is the current value of the pair $(g1_i, g2_i)$, and its timestamp is the pair $\langle (g1_i, g2_i), i \rangle$.

- What relation between $g1_i$ and $g2_i$ is kept invariant?
- What do $g1_i$ and $g2_i$ mean, respectively?
- Let e_1 and e_2 be two events timestamped $\langle (g_1, g_2), i \rangle$ and $\langle (h_1, h_2), i \rangle$, respectively. What can be concluded on the causality relation linking the events e_1 and e_2 when $(g_1 > h_2) \land (h_1 > g_2)$?

More generally, define from their timestamps $\langle (g1, g2), i \rangle$ and $\langle (h1, h2), i \rangle$ an approximation of the causal precedence relation on e_1 and e_2 .

• Compare this system with a *k*-restricted vector clock system, 1 < k < n. Is one more powerful than the other from an approximation of the causal precedence relation point of view?

Solution in [370].

6. Design an algorithm that associates with each relevant event its immediate predecessors and uses the matrices *kprime_i*[1..*n*, 1..*n*] (introduced in Sect. 7.3.2) to reduce the bit size of the control information piggybacked by messages. Solution in [18].

Chapter 8 Asynchronous Distributed Checkpointing

This chapter is devoted to checkpointing in asynchronous message-passing systems. It first presents the notions of local and global checkpoints and a theorem stating a necessary and sufficient condition for a set of local checkpoints to belong to the same consistent global checkpoint.

Then, the chapter considers two consistency conditions, which can be associated with a distributed computation enriched with local checkpoints (the corresponding execution is called a communication and checkpoint pattern). The first consistency condition (called z-cycle-freedom) ensures that any local checkpoint, which has been taken by a process, belongs to a consistent global checkpoint. The second consistency condition (called rollback-dependency trackability) is stronger. It states that a consistent global checkpoint can be associated on the fly with each local checkpoint (i.e., without additional communication).

The chapter discusses these consistency conditions and presents algorithms that, once superimposed on a distributed execution, ensure that the corresponding consistency condition is satisfied. It also presents a message logging algorithm suited to uncoordinated checkpointing.

Keywords Causal path · Causal precedence ·

 $\label{eq:communication-induced checkpointing \cdot Interval (of events) \cdot Local checkpoint \cdot Forced local checkpoint \cdot Global checkpoint \cdot Hidden dependency \cdot Recovery \cdot Rollback-dependency trackability \cdot Scalar clock \cdot Spontaneous local checkpoint \cdot Uncoordinated checkpoint \cdot Useless checkpoint \cdot Vector clock \cdot Z-dependence \cdot Zigzag cycle \cdot Zigzag pattern \cdot Zigzag path \cdot Zigzag prevention$

8.1 Definitions and Main Theorem

8.1.1 Local and Global Checkpoints

It was shown in Chap. 6 that a distributed computation can be represented by a partial order $\widehat{S} = (S, \stackrel{\sigma}{\longrightarrow})$, where *S* is the set of all the local states produced by the processes and σ is the causal precedence relation on these local states. This chapter has also defined the notion of a consistent global state, namely $\Sigma = [\sigma_1, \dots, \sigma_n]$ is

consistent if, for any pair of distinct local states σ_i and σ_j , we have $\sigma_i \parallel \sigma_j$ (none of them depends on the other).

In many applications, we are not interested in all the local states, but only in a subset of them. Each process defines which of its local states are relevant. This is, for example, the case for the detection of properties on global states (a local checkpoint being then a local state satisfying some property), or for the definition of local states for consistent recovery. Such local states are called *local checkpoints*, and a set of *n* local checkpoints, one per process, is a global state called the *global checkpoint*.

A local checkpoint is denoted c_i^x , where *i* is the index (identity) of the corresponding process and *x* is its sequence number (among the local checkpoints of the same process). In the following, *C* will denote the set of all the local checkpoints.

An example of a distributed execution with local checkpoints is represented in Fig. 8.1, which is called a *checkpoint and communication pattern*. The local checkpoints are depicted with grey rectangular boxes. As they are irrelevant from a checkpointing point of view, the other local checkpoints are not represented. It is usually assumed that the initial local state and the final local state of every process are local checkpoints.

It is easy to see that the global checkpoint $[c_i^1, c_j^1, c_k^1]$ is consistent, while the global checkpoint $[c_i^2, c_j^2, c_k^1]$ is not consistent.

8.1.2 Z-Dependency, Zigzag Paths, and Z-Cycles

The sequence of internal and communication events occurring at a process p_i between two consecutive local checkpoints c_i^{x-1} and c_i^x , x > 0, is called *interval* I_i^x . Some intervals are represented in Fig. 8.1.

Zigzag Dependency Relation and Zigzag Path These notions, which are due to R.H.B. Netzer and J. Xu (1995), are an extension of the relation $\xrightarrow{\sigma}$ defined on local states. A relation on local checkpoints, called z-dependency, is defined as follows. A checkpoint c_i^x z-depends on a local checkpoint c_j^y (denoted $c_i^x \xrightarrow{zz} c_j^y$), if:

- there a sequence of messages $(m_1; \ldots; m_q), q \ge 1$, such that (let us recall that s(m) and r(m) are the sending and receiving events associated with message m):

 - $s(m_1) \in I_i^{x+1}$ (i.e., m_1 has been sent in the interval that starts just after c_i^x), $r(m_q) \in I_j^y$ (i.e., m_q has been received in the interval finishing just before c_j^y), - if q > 1, $\forall \ell : 1 \le \ell < q$, let I_k^t be the interval in which $r(m_\ell)$ occurs (i.e., m_ℓ is received during I_k^t). Then $s(m_{\ell+1}) \in I_k^{t'}$ where $t' \ge t$ (i.e., $m_{\ell+1}$ is sent by p_k in the interval in which m_ℓ has been received, or in a later interval). Let us observe that it is possible that $m_{\ell+1}$ has been sent before m_{ℓ} is received.

Such a sequence of messages is called a *zigzag path*.

• it exists c such that $c_i^x \xrightarrow{zz} c$ and $c \xrightarrow{zz} c_i^y$.

As an example, due to the sequence of message $\langle m_3; m_2 \rangle$, we have $c_k^0 \xrightarrow{zz} c_i^2$. Similarly, due to sequence of messages $\langle m_5; m_4 \rangle$, (or the sequence $\langle m_5; m_6 \rangle$), we have $c_i^2 \xrightarrow{zz} c_k^2$. Let us observe that we have $c_i^2 \xrightarrow{\sigma} c_k^2$, while we do not have $c_k^0 \xrightarrow{\sigma} c_i^2.$

A local checkpoint c_i^x belongs to a zigzag path $\langle m_1; \ldots; m_q \rangle$ if this path contains two consecutive messages m_{ℓ} and $m_{\ell+1}$ such that m_{ℓ} is received by p_i before c_i^x and $m_{\ell+1}$ is sent by p_i after c_i^x . As an example, in the figure, the local checkpoint c_i^2 belongs to the zigzag path $\langle m_3; m_2; m_5 \rangle$.

A local checkpoint c belongs to a zigzag cycle if $c \xrightarrow{zz} c$. As an example, in Fig. 8.1, we have $c_k^2 \xrightarrow{zz} c_k^2$. This is because the sequence $\langle m_7; m_5; m_6 \rangle$ is a zigzag cycle in which the reception of m_7 and the sending of m_5 (both by p_i) belong to the same interval I_i^3 .

Zigzag Pattern Let us consider a zigzag path $(m_1; \ldots; m_q)$. Two consecutive messages m_{ℓ} and $m_{\ell+1}$ define a zigzag pattern (also denoted zz-pattern) if the reception of m_{ℓ} and the sending of $m_{\ell+1}$ occurs in the same interval, and the sending of $m_{\ell+1}$ occur before the reception of m_{ℓ} .

As we have just seen, the sequence of messages $(m_7; m_5)$ is a zigzag pattern. Other zigzag patterns are the sequences of messages $(m_3; m_2)$ and $(m_5; m_4)$.

It is easy to notice that zigzag patterns are what make zigzag paths different from causal paths. Every causal path is a zigzag path, but a zigzag path that includes a zigzag pattern is not necessarily a causal path. Hence, c_1 and c_2 being any two distinct local checkpoints, we always have

$$(c_1 \xrightarrow{\sigma} c_2) \Rightarrow (c_1 \xrightarrow{zz} c_2),$$

while it is possible that $(c_1 \xrightarrow{z_2} c_2) \land \neg (c_1 \xrightarrow{\sigma} c_2)$. As an example, in Fig. 8.1, we have $(c_k^0 \xrightarrow{zz} c_i^2) \land \neg (c_k^0 \xrightarrow{\sigma} c_i^2)$. In that sense, the Z-dependency relation \xrightarrow{zz} is weaker (i.e., includes more pairs) than the causal precedence relations on events $\xrightarrow{\sigma}$.

Fig. 8.2 A zigzag pattern

8.1.3 The Main Theorem

A fundamental question associated with local and global checkpoints is the following one: Given a checkpoint and communication pattern, and a set LC of local checkpoints (with at most one local checkpoint per process), is it possible to extend LC (with local checkpoints of the missing processes, if any) in order to obtain a consistent global checkpoint?

What Is the Difficulty To illustrate this question let us again consider Fig. 8.1.

- Let us first consider $LC1 = \{c_j^1\}$. Is it possible to extend this set with a local checkpoint from p_j , and another one from p_i , such that, once pieced together, these three local checkpoints define a consistent global checkpoint? The figure shows that the answer is "yes": the global checkpoint $[c_i^1, c_j^1, c_k^0]$ answers the question (as does also the global checkpoint $[c_i^1, c_j^1, c_k^1]$).
- Let us now consider the question with $LC2 = \{c_i^2, c_k^0\}$. It is easy to see that neither c_j^t with $t \le 1$, nor c_j^t with $t \ge 2$, can be added to LC2 to obtain a consistent global checkpoint. Hence, the answer is "no" for LC2.
- Let us finally consider the case $LC3 = \{c_k^2\}$. The figure shows that neither c_i^2 nor c_i^3 can be consistent with c_k^2 (this is due to the causality precedence relating these local checkpoints to c_k^2). Hence, the answer is "no" for LC3.

If there is a causal path relating two local checkpoints, we know (from Chap. 6) that they cannot belong to the same consistent global checkpoint. Hence, to better appreciate the difficultly of the problem (and the following theorem), let us consider Fig. 8.2. Let $LC = \{c_i^{\alpha}, c_k^{\gamma+1}\}$. It is easy to see that adding either c_j^{β} or $c_j^{\beta+1}$ to LC does not work. As depicted, each cut line (dotted line in the figure) defines an inconsistent global checkpoint. Consequently, there is no mean to extend LC with a local checkpoint of p_j in order to obtain a consistent global checkpoint. This observation shows that, absence of causal dependences among local checkpoints is a necessary condition to have a consistent global checkpoint, but is not a sufficient condition.

This example shows that, in addition to causal precedence, there are hidden dependences among local checkpoints that prevent them to belong to the same consistent global checkpoint. These hidden dependences are the ones created by zigzag patterns. These patterns, together with causal precedence, are formally captured by the relation $\frac{zz}{z}$. The following theorem, which characterizes the set of local checkpoints that can be extended to form a consistent global checkpoint, is due to R.H.B. Netzer and J. Xu (1995).

Theorem 9 Let LC be a set of local checkpoints. LC can be extended to a consistent global checkpoint if and only if $\forall c_1, c_2 \in LC$, we have $\neg(c_1 \xrightarrow{zz} c_2)$.

Proof Proof of the "if" part. Let us assume that, $\forall c_1, c_2 \in LC$, we have $\neg(c_1 \xrightarrow{zz} c_2)$. The proof consists in (a) first constructing a global checkpoint Σ that includes the local checkpoints of *LC*, plus one local checkpoint per process not in *LC*, and (b) then proving that Σ is consistent.

The global checkpoint Σ is built as follows. Let p_j be a process that has no local checkpoint in *LC*.

• Case 1: p_j has a local checkpoint c(j) with a zigzag path to a local checkpoint in LC (i.e., $\exists c \in LC : c(j) \xrightarrow{zz} c$).

The local checkpoint c'(j) is added to Σ , where c'(j) is the first checkpoint of p_j that has no zigzag path to a local checkpoint in *LC*. Such a local checkpoint c'(j) exists because it is assumed that the last local state of a process is its last local checkpoint (and such a local checkpoint cannot be the starting point of a zigzag path to any other local checkpoint).

• Case 2: p_j has no local checkpoint c(j) with a zigzag path to a local checkpoint in *LC* (i.e., $\nexists c \in LC : c(j) \xrightarrow{zz} c$).

The local checkpoint c'(j) is added to Σ , where c'(j) is the first checkpoint of p_j . Such a local checkpoint c'(j) exists because it is assumed that the first local state of a process is its first local checkpoint.

Let us recall that the definition of the consistency of a global checkpoint (global state) Σ is based on the relation $\stackrel{\sigma}{\longrightarrow}$. More precisely, to prove that Σ is consistent, we have to show that, for any $c_1, c_2 \in \Sigma$, we cannot have $c_1 \stackrel{\sigma}{\longrightarrow} c_2$. Let \overline{LC} be the set of local checkpoints which are in Σ and not in *LC*. The proof is by contradiction: It assumes that there are $c_1, c_2 \in \Sigma$ such that $c_1 \stackrel{\sigma}{\longrightarrow} c_2$ and shows that this assumption is impossible. According to the fact that c_1 and c_2 belong or not to *LC* or \overline{LC} there are four possible cases to analyze:

1. $c_1, c_2 \in LC$ and $c_1 \xrightarrow{\sigma} c_2$.

This case is clearly impossible, as $\xrightarrow{\sigma} \subseteq \xrightarrow{zz}$, $c_1 \xrightarrow{\sigma} c_2$ contradicts $\neg(c_1 \xrightarrow{zz} c_2)$.

2. $c_1 \in \overline{LC}, c_2 \in LC$, and $c_1 \xrightarrow{\sigma} c_2$.

This implies that $c_1 \xrightarrow{zz} c_2$, which is impossible because it contradicts the way the local checkpoint $c_1 \in \overline{LC}$ is defined (according to the definition of the

local checkpoints of \overline{LC} , none of them can be the starting local checkpoint of a zigzag path to a local checkpoint in LC).

3. $c_1 \in LC, c_2 \in \overline{LC}$, and $c_1 \xrightarrow{\sigma} c_2$.

In this case, c_2 cannot be an initial local checkpoint. This is because no local checkpoint can causally precede (relation $\xrightarrow{\sigma}$) an initial local checkpoint. Hence, as $c_2 \in \overline{LC}$, c_2 is a local checkpoint defined by Case 1, i.e., c_2 is the first local checkpoint (of some process p_j) that has no zigzag path to a local checkpoint in LC.

Let c'_2 the local checkpoint of p_j immediately preceding c_2 . This local checkpoint c'_2 must have a zigzag path to a local checkpoint $c_3 \in LC$ (otherwise, c_2 would not be the first local checkpoint of p_j that has no zigzag path to a local checkpoint in LC).

This zigzag path from c'_2 to c_3 , plus the messages giving rise to $c_1 \xrightarrow{\sigma} c_2$, establish a zigzag path from c_1 to c_3 (Fig. 8.3). But this contradicts the fact that we have (assumption) $\neg(c_1 \xrightarrow{zz} c_3)$ for any pair $c_1, c_3 \in LC$. This contradiction concludes the proof of the case.

4. $c_1, c_2 \in \overline{LC}$ and $c_1 \stackrel{\sigma}{\longrightarrow} c_2$.

It follows from the argument of the previous item that there is a zigzag path from c_1 to a local checkpoint in *LC* (see the figure where $c_1 \in LC$ is replaced by $c_1 \in \overline{LC}$). But this contradicts the definition of c_1 (which is the first local checkpoint—of some process p_j —with no zigzag path to any local checkpoints of *LC*).

Proof of the "only if" part. We have to show that, if there are two (not necessarily distinct) local checkpoints $c_1, c_2 \in LC$ such that $c_1 \xrightarrow{zz} c_2$, there is no consistent global checkpoint Σ including c_1 and c_2 . Hence, let us assume that $c_1 \xrightarrow{zz} c_2$. If c_1 and c_2 are from the same process, the proof follows directly from the definition of global checkpoint consistency. Hence, let us assume that c_1 and c_2 are from different processes. There is consequently a zigzag path $\langle m_1; \ldots; m_q \rangle$ starting after c_1 and finishing before c_2 . The proof is by induction on the number of messages in this path.

• Base case: q = 1. If $c_1 \xrightarrow{zz} c_2$ and the zigzag path contains a single message, we necessarily have $c_1 \xrightarrow{\sigma} c_2$ (a zigzag path made up of a single message is necessarily a causal path), and the proof follows.

• Induction case: q > 1. Let us assume that, if a zigzag path made up of at most q messages joins two local checkpoints, these local checkpoints cannot belong to the same consistent global checkpoint. We have to prove that if two local checkpoints c_1 and c_2 are connected by a zigzag path of q + 1 messages $\langle m_1; \ldots; m_q; m_{q+1} \rangle$, they cannot belong to the same consistent global checkpoint.

The proof is by contradiction. Let us assume that there is a consistent global checkpoint Σ including c_1 and c_2 such that these two local checkpoints are connected by a zigzag path of q + 1 messages (if $c_1 = c_2$, the zigzag path is a zigzag cycle).

Let c_3 be the local checkpoint preceding the reception of the message m_q , and p_j be the corresponding receiving process. This means that c_1 is connected to c_3 by the zigzag path $\langle m_1; ...; m_q \rangle$ (Fig. 8.4). It follows from the induction assumption that c_1 and c_3 cannot belong to the same consistent global checkpoint. More generally, given any c'_3 that appears after c_3 on the same process p_j , c_1 and c'_3 cannot belong to the same consistent global checkpoint.

It follows from this observation that, for both c_1 and c_2 to belong to the same consistent global checkpoint Σ , this global checkpoint must include a local checkpoint of p_j that precedes c_3 . But, due the definition of "zigzag path", the message m_{q+1} has necessarily been sent after the local checkpoint of p_j that immediately precedes c_3 . This local checkpoint is denoted c''_3 in Fig. 8.4. It follows that any local checkpoint of p_j that causally precedes c_3 , causally precedes c_2 .

Thus, c_2 cannot be combined with any local checkpoint preceding c_3 to form a consistent global checkpoint. The fact that no local checkpoint of p_j can be combined with both c_1 and c_2 to form a consistent global checkpoint concludes the proof of the theorem.

It follows that a global checkpoint is consistent if and only if there is no zdependence among its local checkpoints.

Useless Checkpoint A local checkpoint is *useless* if it cannot belong to any consistent global checkpoint. It follows from the previous theorem that a local checkpoint *c* is useless if and only if $c \xrightarrow{zz} c$ (i.e., it belongs to a cycle of the z-precedence relation). Said the opposite way, a local checkpoint belongs to a consistent global checkpoint if and only if it does not belong to a z-cycle.

Fig. 8.5 Domino effect (in a system of two processes)

As an example, let us consider again Fig. 8.1. The local checkpoint c_k^2 is useless because it belongs to the zigzag path $\langle m_7; m_5; m_6 \rangle$ which includes the zigzag pattern $\langle m_7; m_5 \rangle$.

8.2 Consistent Checkpointing Abstractions

Let us recall that *C* denotes the set of all the local checkpoints defined during a distributed computation $\widehat{S} = (S, \stackrel{\sigma}{\longrightarrow})$. The pair $(C, \stackrel{zz}{\longrightarrow})$ constitutes a checkpointing abstraction of this distributed computation. Hence the fundamental question of the asynchronous checkpointing problem: Is $(C, \stackrel{zz}{\longrightarrow})$ a consistent checkpointing abstraction of the distributed computation \widehat{S} ?

Two different consistency conditions can be envisaged to answer this question.

8.2.1 Z-Cycle-Freedom

Definition An abstraction (C, \xrightarrow{zz}) is *z*-cycle-free if none of its local checkpoints belongs to a z-cycle: $\forall c \in C : \neg(c \xrightarrow{zz} c)$.

This means that z-cycle-freedom guarantees that no local checkpoint is useless, or equivalently each local checkpoint belongs to at least one consistent global checkpoint.

Domino Effect The domino effect is a phenomenon that may occur when looking for a consistent global checkpoint. As a simple example, let us consider processes that define local checkpoints in order to be able to recover after a local failure. In order that the computation be correct, the restart of a process from one of its previous checkpoints may entail the restart of other processes (possibly all) from one of their previous checkpoints. This is depicted in Fig. 8.5. After its local checkpoint c_2^1 , process p_2 experiences a failure and has to restart from one of its previous local state c_2 , which is such that there is a local state c_1 of process p_1 and the global checkpoint $[c_1, c_2]$ is consistent. Such a global checkpoint cannot be $[c_1^3, c_2^1]$ because it is not consistent. Neither can it be $[c_1^2, c_2^1]$ for the same reason. The reader can check that, in this example, the only consistent global checkpoint is the initial

one, namely $[c_1^0, c_2^0]$. This backtracking to find a consistent global checkpoint is called the *domino effect*.

It is easy to see that, if the local checkpoints satisfy the z-cycle-freedom property, no domino effect can occur. In the example, there would be a local checkpoint c_1 on p_1 , such that $\Sigma = [c_1, c_2^1]$ would be consistent, and the computation could be restarted from this consistent global checkpoint. Moreover, this consistent global checkpoint Σ has the property to be "as fresh as possible" in the sense that, any other consistent global checkpoint Σ' from which the computation could be restarted is such that $\Sigma' \xrightarrow{\Sigma} \Sigma$ (where $\xrightarrow{\Sigma}$ is the reachability relation on global states defined in Chap. 6).

8.2.2 Rollback-Dependency Trackability

Definition Rollback-dependency trackability (RDT) is a consistency condition stronger than the absence of z-cycles. It was introduced by Y.-M. Wang (1997). An abstraction $(C, \xrightarrow{z_2})$ can be z-cycle-free, while having pairs of local checkpoints which are related only by zigzag paths which are not causal paths (hence, each of these zigzag paths includes a zigzag pattern). This means that, c_1 and c_2 being two such local checkpoints, we have $c_1 \xrightarrow{z_2} c_2$ and $\neg(c_1 \xrightarrow{\sigma} c_2)$.

RDT states that any hidden dependency (created by a zigzag pattern) is "doubled" by a causal path. Formally, an abstraction (C, \xrightarrow{zz}) satisfies the RDT consistency condition if

$$\forall c_1, c_2 \in C : (c_1 \xrightarrow{zz} c_2) \Rightarrow (c_1 \xrightarrow{\sigma} c_2).$$

It follows that a checkpoint-based abstraction (C, \xrightarrow{zz}) of a distributed execution satisfies the RDT consistency condition if it is such that, when considering only the local states which are local checkpoints, we have $\xrightarrow{zz} \equiv \xrightarrow{\sigma}$. This does not mean that there are no zigzag patterns. It means that, if there is a zigzag pattern on a zigzag path connecting two local checkpoints, there is also a causal path connecting these local checkpoints.

An example of such a "doubling" is given in Fig. 8.1. We have $c_i^2 \xrightarrow{zz} c_k^2$, and the zigzag pattern $[m_5; m_4]$ is "doubled" by the causal path $[m_5; m_6]$. Differently, while we have $c_k^0 \xrightarrow{zz} c_i^2$, the zigzag pattern $[m_3; m_2]$ is not "doubled" by a causal path.

Why RDT Is Important When a checkpoint-based abstraction of a distributed execution satisfies the RDT consistency condition, we know that (if any) hidden dependencies among local checkpoints are doubled by causal paths. It follows that, in such a context, the statement of Theorem 9 simplifies and becomes: Any set *LC* of local checkpoints which are not pairwise causally related can be extended to form a consistent global checkpoint.

As causal dependences can be easily tracked by vector clocks, the RDT consistency condition can benefit and simplify the design of many checkpoint-based applications such as the detection of global properties, or the definition of global checkpoints for failure recovery. A noteworthy property of RDT is the following one: it allows us to associate with each local checkpoint c (on the fly and without additional cooperation among processes) the first consistent global checkpoint including c. (The notion of "first" considered here is with respect to the sublattice of consistent global states obtained by eliminating the global states which are not global checkpoints, see Chap. 6.) This property is particularly interesting when one has to track software errors or recover after the detection of a deadlock.

8.2.3 On Distributed Checkpointing Algorithms

Spontaneous vs. Forced Local Checkpoints It is assumed that, for applicationdependent reasons, each process p_i defines some of its local states as local checkpoints. Such checkpoints are called *spontaneous* checkpoints. However, there is no guarantee that the resulting abstraction (C, \xrightarrow{zz}) satisfies any of the previous consistency conditions. To that end, checkpointing algorithms have to be superimposed to the distributed execution in order additional local checkpoints be automatically defined. These are called *forced* checkpoints.

When a local state of a process p_i is defined as a local checkpoint, it is said that " p_i takes a local checkpoint". According to the application, the corresponding local checkpoint can be kept locally in volatile memory, saved in a local stable storage, or sent to a predetermined process.

Classes of Checkpointing Algorithms According to the underlying coordination mechanism they use, two classes of distributed checkpointing algorithms can be distinguished.

- In addition to the application messages that they can overload with control information, the algorithms of the first class use specific control messages (which do not belong to the application). Hence, this class of algorithms is based on *explicit synchronization*. Such an algorithm (suited to FIFO channels) was presented in Sect. 6.6. In the literature, these algorithms are called *coordinated checkpointing algorithms*.
- The second family of checkpointing algorithms is based on *implicit synchronization*. The processes can only add control information to application messages (they are not allowed to add control messages). This control information is used by the receiver process to decide if this message reception has to entail a forced local checkpoint. In the literature, these algorithms are called *communicationinduced checkpointing algorithms*.

8.3 Checkpointing Algorithms Ensuring Z-Cycle Prevention

This section presents checkpointing algorithms that (a) ensure the z-cycle-freedom property, and (b) associate with each local checkpoint a consistent global checkpoint to which it belongs. It is important to notice that (b) consists in associating a global identity with each local checkpoint, namely the identity of the corresponding consistent global checkpoint

8.3.1 An Operational Characterization of Z-Cycle-Freedom

Let us associate with each local checkpoint *c* a integer denoted *c.date* (a logical date from an operational point of view). Let (C, \xrightarrow{zz}) be a checkpointing abstraction.

Theorem 10 $(\forall c_1, c_2 \in C : (c_1 \xrightarrow{zz} c_2) \Rightarrow (c_1.date < c_2.date)) \Leftrightarrow ((C, \xrightarrow{zz})$ *is z-cycle-free*).

Proof Direction \Rightarrow . Let us assume by contradiction that there is a z-cycle $c \xrightarrow{zz} c$. It follows from the assumption that *c.date* < *c.date*, which is clearly impossible.

Direction \Leftarrow . Let us consider that (C, \xrightarrow{zz}) is acyclic. There is consequently a topological sort of its vertices. It follows that each vertex c (local checkpoint) can be labeled with an integer *c.date* such that $c_1 \xrightarrow{zz} c_2 \Rightarrow c_1.date < c_2.date$.

This theorem shows that all the algorithms ensuring the z-cycle-freedom property implement (in an explicit or implicit way) a consistent logical dating of local checkpoints (the time notion being linear time). It follows that, when considering the algorithms that implement explicitly such a consistent dating system, the local checkpoints that have the same date belong to the same consistent global checkpoint.

8.3.2 A Property of a Particular Dating System

Given a checkpointing abstraction (C, \xrightarrow{zz}) that satisfies the z-cycle-freedom property, let us consider the dating system that associates with each local checkpoint *c* the lowest possible consistent date, i.e., *c.date* = min{*c'.date* | *c'* \xrightarrow{zz} *c*} + 1.

This dating system has an interesting property, namely, it allows us to systematically associate with each local checkpoint c a consistent global checkpoint to which c belongs. It follows that any communication-induced checkpointing algorithm that implements this dating system has this property. The following theorem, which captures this dating system, is due to J.-M. Hélary, A. Mostéfaoui, R.H.B. Netzer, and M. Raynal (2000).

Theorem 11 Let $(C, \stackrel{zz}{\longrightarrow})$ be a z-cycle-free checkpointing and communication pattern abstraction, in which the first local checkpoint of each process is dated 0, and the date of each other local checkpoint c is such that c.date = max{c'.date | c' $\stackrel{zz}{\longrightarrow}$ c} + 1. Let us associate with each local checkpoint c the global checkpoint $\Sigma(c) = [c_1^{x_1}, \ldots, c_1^{x_n}]$ where $c_i^{x_i}$ is the last local checkpoint of p_i , such that $c_i^{x_i}$.date \leq c.date. Then, $\Sigma(c)$ includes c and is consistent.

Proof By construction of $\Sigma(c)$, *c* belongs to $\Sigma(c)$. The proof that $\Sigma(c)$ is consistent is by contradiction; α being the date of *c* (i.e., *c.date* = α), let us assume that $\Sigma(c)$ is not consistent. Let *next*(*x*) be the local checkpoint (if any) that appears immediately after *x* on the same process.

- R1 Due to the theorem assumption, we have $y.date \le \alpha$ for any $y \in \Sigma(c)$.
- R2 If $y \in \Sigma(c)$ and next(y) exist, due to the definition of *y.date*, we have $next(y).date > \alpha$.
- R3 As $\Sigma(c)$ is not consistent (assumption), there are local checkpoints $a, b \in \Sigma(c)$ such that $a \xrightarrow{zz} b$ (Fig. 8.6).
- R4 It follows from R3, the way dates are defined, and R1 that $a.date < b.date \le \alpha$.
- R5 As the last local state of any process is a local checkpoint, and this local checkpoint does not z-precede any other local checkpoint, it follows from R3 that next(a) exists.
- R6 It follows from R5 and R2 applied to next(a), that $next(a).date > \alpha$. Moreover, due to the property of the underlying dating system (stated in the theorem) we also have $next(a).date = \max\{c'.date \mid c' \xrightarrow{zz} next(a)\} + 1 > \alpha$. Hence, $\max\{c'.date \mid c' \xrightarrow{zz} next(a)\} \ge \alpha$.
- R7 From $a \xrightarrow{zz} next(a)$ and R4 (namely, $a.date < \alpha$), we conclude that the maximal date used in R6 is associated with a local checkpoint g produced on a process different from the one on which a has been produced, and we have $g.date = \max\{c'.date \mid c' \xrightarrow{zz} next(a)\} \ge \alpha$.
- R8 It follows from R7 that $g \xrightarrow{zz} next(a)$. As $a \xrightarrow{zz} b$, we have $g \xrightarrow{zz} b$ and, due to the dating system, date(g) < date(b).
- R9 It follows from R7 and R8 that $date(b) > \alpha$. But, as $b \in \Sigma(c)$, this contradicts R1 which states that $date(b) \le \alpha$, which concludes the proof of the theorem. \Box

internal operation take_local_checkpoint() is (1) $c \leftarrow \text{copy of current local state; } c.date \leftarrow clock_i$; (2) save c and its date c.date. when p_i decides to take a spontaneous checkpoint **do** (3) $clock_i \leftarrow clock_i + 1$; take_local_checkpoint(). when sending MSG(m) to p_j **do** (4) send MSG(m, $clock_i$) to p_j . when receiving MSG(m, sd) from p_j **do** (5) if $(clock_i < sd)$ then (6) $clock_i \leftarrow sd$; take_local_checkpoint() % forced local checkpoint (7) end if; (8) Deliver the message m to the application process.

Fig. 8.7 A very simple z-cycle-free checkpointing algorithm (code for p_i)

8.3.3 Two Simple Algorithms Ensuring Z-Cycle Prevention

Both the algorithms that follow are based on Theorems 10 and 11: They both ensure z-cycle-freedom and associate dates with local checkpoints as described in Theorem 11. Hence, given any local checkpoint c, the processes are able to determine a consistent global checkpoint to which c belongs.

To that end, each process p_i has a scalar local variable *clock_i* that it manages and uses to associate a date with its local checkpoints. Moreover, each process defines its initial local state as its first local checkpoint (e.g., with date 1), and all local clocks are initialized to that value.

A Simple Algorithm A fairly simple checkpointing algorithm, which ensures the z-cycle-freedom property, is described on Fig. 8.7. This algorithm is due to D. Manivannan and M. Singhal (1996). Before taking a spontaneous local checkpoint a process p_i increases its local clock (line 3) whose next value is associated with this checkpoint (line 1). Each message carries the current value of the clock of its sender (line 4). Finally, when a process p_i receives a pair (m, sd) (where sd is the date of the last local checkpoint taken by the sender, before it sent this message), it compares sd with $clock_i$ (which is the date of its last local checkpoint). If $sd > clock_i$, p_i resets its clock to sd and takes a forced local checkpoint (lines 5–6) whose date is sd, and passes the message to the application process only after the local checkpoint has been taken.

The behavior associated with a message reception is motivated by the following observation. The message *m* received by a process p_i might create a zz-pattern (from c_j to c_k , as depicted in Fig. 8.8). However, if, since its last checkpoint, p_i has sent messages with dates $clock_i \ge sd$, the zz-pattern created by *m* does not prevent local checkpoint dates from increasing in agreement with the z-precedence relation. When this occurs, p_i has nothing specific to do in order to guarantee the property

 $\forall c_1, c_2: (c_1 \xrightarrow{zz} c_2) \Rightarrow (c_1.date < c_2.date)$ (used in Theorem 10 to obtain z-cycle-freedom). On the contrary, if $clock_i < sd$, p_i has to prevent the possible formation of a zz-pattern with nonincreasing dates. A simple way to solve this issue (and be in agreement with the assumption of Theorem 10) consists in directing p_i to update $clock_i$ and take a forced local checkpoint.

A Simple Improvement Let us observe that, whatever the values of $clock_i$ and sd, no zz-pattern can be formed if p_i has not sent messages since its last local checkpoint. Let us introduce a Boolean variable $sent_i$ to capture this "no-send" pattern. The previous algorithm is consequently modified as follows:

- *sent_i* is set to *false* at line 1 and set to *true* at line 4.
- Moreover, line 6 becomes

 $clock_i \leftarrow sd$; if $(sent_i)$ then take_local_checkpoint() end if.

Figure 8.9 represents an execution of the checkpointing algorithm of Fig. 8.7 enriched with the local Boolean variables $sent_i$. The added forced local checkpoints are depicted with white rectangles (the base execution is the one described in Fig. 8.1 with one more spontaneous local checkpoint—the one on p_j whose date is 5—and one more message, namely m_8).

Let c(x, y) be the checkpoint of p_x whose date is y. The forced local checkpoint c(j, 3) is to prevent the zz-pattern $\langle m_5, m_4 \rangle$ from forming. If, when p_j receives m_5 , *clock_j* was greater than or equal to 3 (the date of the last local checkpoint of the sender of m_5), this forced local checkpoint would not have been taken.

Differently, p_j does not have to prevent the zz-pattern (m_3, m_2) from forming because it has previously taken a local checkpoint dated 2, and the message m_3 it

Fig. 8.9 An example of z-cycle prevention

receives has a smaller date. This means that c(j, 2) can be combined with c(k, 1) to form a consistent global checkpoint (let us notice that, as shown by the figure, it can also be combined with c(k, 2), and that is the combination imposed by Theorem 11). The forced local checkpoint c(i, 4) is taken to prevent the formation of a z-cycle including c(k, 4), while c(k, 5) is taken to prevent the possible formation of a zcycle (that does not exist). Additionally, c(k, 5) is needed to associate a consistent global checkpoint with c(i, 5) as defined by Theorem 11). If c(k, 5) is not taken but the clock of p_k is updated when m_8 is received, c(i, 5) would be associated with c(j, 5) and c(k, 4) which (due to message m_7) defines an inconsistent global checkpoint. If c(k, 5) is not taken and the clock of p_k is not updated when m_8 is received, c(k, 6) would be dated 5 and consequently denoted c'(k, 5); c(i, 5) would then be associated with c(j, 5) and c'(k, 5), which (due to message m_8) defines an inconsistent global checkpoint.

8.3.4 On the Notion of an Optimal Algorithm for Z-Cycle Prevention

An important issue concerns the design of an optimal communication-induced checkpointing algorithm which ensures z-cycle prevention. "Optimal" means here that the algorithm has to take as few forced local checkpoints as possible.

As it has been seen in Chaps. 6 and 7, the knowledge which is accessible to a process (and from which it can then benefit) is restricted to its causal past. This is because a process learns new information only when it receives messages. It is possible to design a communication-induced z-cycle-preventing algorithm which is optimal with respect to the communication and message pattern included in its causal past (see the bibliographic notes at the end of the chapter). But such an algorithm is not necessarily optimal with respect to the whole computation. This is due to the fact that, based on the information extracted from its causal past, a process p_i may not be forced to take a local checkpoint when it receives some message m. But, due to the (unknown for the moment) pattern of messages exchanged in the future, taking a local checkpoint when m is received could save the taking of local checkpoints in the future of p_i or other processes. In that sense, there is no optimal algorithm for z-cycle prevention.

8.4 Checkpointing Algorithms Ensuring Rollback-Dependency Trackability

8.4.1 Rollback-Dependency Trackability (RDT)

Definition Reminder As seen in Sect. 8.2.2, rollback-dependency trackability (RDT) is a consistency condition for communication and checkpoint patterns, which

just after p_i has taken a spontaneous/forced local checkpoint **do** (1) $tdv_i[i] \leftarrow tdv_i[i] + 1$. **when sending** MSG(m) **to** p_j **do** (2) send MSG(m, $tdv_i[1..n]$) to p_j . **when receiving** MSG(m, tdv) **from** p_j **do** (3) **for each** $k \in \{1, ..., n\}$ **do** $tdv_i[k] \leftarrow \max(tdv_i[k], tdv[k])$ **end for**.

Fig. 8.10 A vector clock system for rollback-dependency trackability (code for p_i)

is stronger than z-cycle-freedom: c_1 and c_2 being any pair of local checkpoints, RDT states that $(c_1 \xrightarrow{zz} c_2) \Rightarrow (c_1 \xrightarrow{\sigma} c_2)$. This means that there is no z-dependence relation among local checkpoints which remains hidden from a causal precedence point of view. As we have seen, given any local checkpoint c, a noteworthy property of RDT is the possibility to associate with c a global checkpoint to with it belongs, and this can be done on the fly and without additional communication among processes.

Vector Clock for RDT As causality tracking is involved in RDT, at the operational level, a vector clock system suited to checkpointing can be defined as follows. Each process p_i has a vector clock, denoted $tdv_i[1..n]$ (transitive dependence vector), managed as described in Fig. 8.10. The entry $tdv_i[i]$ is initialized to 1, while all other entries are initialized to 0. Process p_i increases $tdv_i[i]$ after it has taken a new local checkpoint. Hence, $tdv_i[i]$ is the sequence number of the current interval of p_i (see Fig. 8.1), which means that $tdv_i[i]$ is the sequence number of its next local checkpoint.

A vector date is associated with each local checkpoint. Its value is the current value of the vector clock $tdv_i[1..n]$ of the process p_i that takes the corresponding local checkpoint. Let us consider Fig. 8.11 in which I_j^{x+1} is the interval separating c_j^x and c_j^{x+1} , which means that $tdv_j[j] = x + 1$ just after c_j^x . It follows that the messages forming the causal path from I_j^{x+1} to p_i carry a value tdv[j] > x, and we have consequently c_i^y . tdv[j] > x.

The RDT property can consequently be re-stated in an operational way as follows, where c_1 and c_2 are any two distinct local checkpoints and c_1 belongs to p_i :

$$(c_1 \xrightarrow{zz} c_2) \Leftrightarrow (c_1.tdv[j] < c_2.tdv[j]).$$

If the communication and checkpoint pattern satisfies the RDT consistency condition, the previous vector clock system allows a process p_i to associate on the fly with each of its local checkpoint c the first consistent global checkpoint including c. This global checkpoint $\Sigma = [c_1, \ldots, c_n]$ is defined as follows: (a) c_i is c (the (c.tdv[i])th local checkpoint on p_i) and (b) for any $j \neq i, c_j$ is the (c.tdv[j])th local checkpoint of p_j .

8.4.2 A Simple Brute Force RDT Checkpointing Algorithm

To ensure the RDT property, a very simple algorithm consists in preventing any zz-pattern from forming. To that end, the algorithm forces the communication and checkpoint pattern to be such that, at any process, there is no message sending followed by a message reception without a local checkpoint separating them. The only pattern allowed is the one described in Fig. 8.12. This pattern (called Russell's pattern) states that the only message pattern that can appear at a process between two consecutive local checkpoints is a (possibly empty) sequence of message receptions, followed by a (possibly empty) sequence of message sendings.

The corresponding algorithm (due to Russell, 1980), is described in Fig. 8.13. The interest of this algorithm lies in its simplicity and in the fact that it needs only one Boolean per process.

```
internal operation take_local_checkpoint() is
(1) c ← copy of current local state; save c;
(2) sent<sub>i</sub> ← false.
when p<sub>i</sub> decides to take a spontaneous checkpoint do
(3) take_local_checkpoint().
when sending MSG(m) to p<sub>j</sub> do
(4) send MSG(m) to p<sub>j</sub>; sent<sub>i</sub> ← true.
when receiving MSG(m) from p<sub>j</sub> do
(5) if (sent<sub>i</sub>) then take_local_checkpoint() end if; % forced local checkpoint
(6) Deliver the message m to the application process.
```


It is possible to use the vector clock algorithm of Fig. 8.10 to associate a vector date with each checkpoint c. In this way, we obtain on the fly the first consistent global checkpoint to which c belongs.

8.4.3 The Fixed Dependency After Send (FDAS) RDT Checkpointing Algorithm

On Predicates for Forced Local Checkpoints According to the control data managed by processes and carried by application messages, stronger predicates governing forced checkpoints can be designed, where the meaning of "stronger" is the following. Let P1 and P2 be two predicates used to take forced checkpoints (when true, a checkpoint has to be taken). P1 is stronger than P2 if, when evaluated in the same context, we always have $P1 \Rightarrow P2$. This means that when P2 is true while P1 is false, no forced local checkpoint is taken if P1 is used, while P2 might force a local checkpoint to be taken. Hence P1 is stronger in the sense that it allows for less forced checkpoints.

Let us recall that taking a local checkpoint can be expensive, mainly when it has to be saved on a disk. Hence, finding strong predicates, i.e., predicates that allows for "as few as possible" forced checkpoints is important.

This section presents a predicate which is stronger than the one used in the algorithm of Fig. 8.13. This predicate, which is called "fixed dependency set after send" (FDAS) was introduced by Y.-M. Wang (1997).

The FDAS Predicate and the FDAS Algorithm The predicate is on the local Boolean variable *sent_i* used in Russell's checkpointing algorithm (Fig. 8.13), the vector clock $tdv_i[1..n]$ of the process p_i , and the vector date tdv[1..n] carried by the message received by p_i . The corresponding checkpointing algorithm, with the management of vector clocks, is described in Fig. 8.14. The predicate controlling forced checkpoints appears at line 5. It is the following

 $sent_i \land (\exists k : tdv[k] > tdv_i[k]).$

A process takes a forced local checkpoint if, when a message *m* arrives, it has sent a message since its last local checkpoint and, because of *m*, its vector $tdv_i[1..n]$ is about to change.

As we have already seen, no zz-pattern can be created by the reception of a message *m* if the receiver p_i has not sent messages since its last checkpoint. Consequently, if *sent_i* is false, no local forced checkpoint is needed. As far as the second part of the predicate is concerned, we have the following. If $\forall k : tdv[k] \le tdv_i[k]$, from a local checkpoint point of view, p_i knows everything that was known by the sender of *m* (when it sent *m*). As this message does not provide p_i with new information on dependencies among local checkpoints, it cannot create local checkpoint

internal operation take_local_checkpoint() is (1) $c \leftarrow \text{copy of current local state; save } c \text{ and its vector date } c.tdv = tdv_i[1..n];$ $sent_i \leftarrow false; tdv_i[i] \leftarrow tdv_i[i] + 1.$ (2)when p_i decides to take a spontaneous checkpoint **do** (3) take_local_checkpoint(). when sending MSG(m) to p_i do (4) send MSG (m, tdv_i) to p_i ; sent_i \leftarrow true. when receiving MSG(m, tdv) from p_i do **if** $(sent_i \land (\exists k : tdv[k] > tdv_i[k]))$ (5) then take_local_checkpoint() % forced local checkpoint (6) (7)end if: (8) for each $k \in \{1, ..., n\}$ do $tdv_i[k] \leftarrow \max(tdv_i[k], tdv[k])$ end for; (9)Deliver the message m to the application process.

Fig. 8.14 FDAS checkpointing algorithm (code for p_i)

dependencies that would remain unknown to p_i . Hence, the name FDAS comes from the fact that, at any process, after the first message sending in any interval, the transitive dependency vector remains unchanged until the next local checkpoint.

8.4.4 Still Reducing the Number of Forced Local Checkpoints

The fact that a process takes a forced local checkpoint at some point of its execution has trivially a direct impact on the communication and checkpoint pattern defined by the application program: The communication pattern is not modified but the checkpoint pattern is. This means that it might not be possible to determine on the fly if taking now an additional forced local checkpoint would decrease the number of forced local checkpoints taken in the future. The best that can be done is to find predicates (such as FDAS) that, according to the control information at their disposal, strive to take as few as possible forced local checkpoints. This section presents such a predicate (called BHMR) and the associated checkpointing algorithm. This predicate, which is stronger than FDAS, and the associated algorithm are due to R. Baldoni, J.-M. Hélary, A. Mostéfaoui, and M. Raynal (1997).

Additional Control Variables The idea that underlies the design of this predicate and the associated checkpointing algorithm is based on additional control variables that capture the interplay of the causal precedence relation and the last local checkpoints taken by each process. To that end, in addition to the vector clock $tdv_i[1..n]$, each process manages the following local variables, which are all Boolean arrays.

• $sent_to_i[1..n]$ is a Boolean array such that $sent_to_i[j]$ is true if and only if p_i sent a message to p_j since its last local checkpoint. (This array replaces the Boolean variable $sent_i$ used in the FDAS algorithm, Fig. 8.14.) Initially, for any j, we have $sent_to_i[j] = false$.

• *causal*_{*i*}[1..*n*, 1..*n*] is a two-dimensional Boolean array such that *causal*_{*i*}[*k*, *j*] is true if and only if, to p_i 's knowledge, there is a causal path from the last local checkpoint taken by p_k (as known by p_i) to the next local checkpoint that will be taken by p_j (this is the local checkpoint of p_j that follows its last local checkpoint known by p_i). Initially, *causal*_{*i*}[1..*n*, 1..*n*] is equal to *true* on its diagonal, and equal to *false* everywhere else.

As an example, let us consider Fig. 8.15 where μ , μ' and μ'' are causal paths. When p_i sends the message m, we have $causal_i[k, j] = true$ (p_i learned the causal path μ from p_k to p_j thanks to the causal path μ''), $causal_i[k, i] = true$ (this is due to both the causal paths μ' and $\langle \mu; \mu'' \rangle$), and $causal_i[j, i] = true$ (this is due to the causal path μ'').

• $pure_i[1..n]$ is a Boolean array such that $pure_i[j]$ is true if and only if, to p_i 's knowledge, no causal path starting at the last local checkpoint of p_j (known by p_i) and ending at p_i , contains a local checkpoint. An example is given in Fig. 8.16. A causal path from a process to itself without local checkpoints is called *pure*. The entry $pure_i[i]$ is initialized to *true* and keeps that value forever; for any $j \neq i$, $pure_i[j]$ is initialized to *false*.

The BHMR Predicate to Take Forced Local Checkpoints Let MSG(m, tdv, pure, causal) be a message received by p_i . Hence, if p_j is the sender of this message, tdv[1..n], pure[1..n], and causal[1..n] are the values of tdv_j , $pure_j$, and $causal_j$, respectively, when it sent the message. The predicate is made up of two parts.

Fig. 8.16 Pure (*left*) vs. impure (*right*) causal paths from p_i to p_i

208

Fig. 8.15 Matrix *causal*_{*i*}[1..*n*, 1..*n*]

• The first part of the predicate, which concerns the causal paths from any process p_j ($j \neq i$) to p_i , is

 $\exists (k, \ell): sent_to_i[k] \land ((tdv[k] > tdv_i[k]) \land \neg causal[k, \ell]).$

As we can see, the sub-predicate $\exists k : sent_to_i[k] \land (tdv[k] > tdv_i[k])$ is just the FDAS predicate expressed on a process basis. If it is true, p_i sent a message m' to p_k since its last checkpoint and the sender p_j knows more local checkpoints of p_k than p_i .

But, if *causal*[k, ℓ] is true, p_j knows also that there is a causal path from the last local checkpoint it knows of p_k to p_ℓ . Hence, there is no need for p_i to take a forced local checkpoint as the zz-pattern created by the message m just received, and the message m' previously sent by p_i to p_k , is doubled by a causal path (see the zigzag path $\langle \mu'; m; m' \rangle$ in Fig. 8.15 which is doubled by the causal path μ). Consequently, p_i takes conservatively a local checkpoint only if $\neg causal[k, \ell]$.

• The second part of the predicate concerns the causal paths from p_i to itself, which start after its last local checkpoint. It is

$$(tdv[i] = tdv_i[i]) \land \neg pure[i].$$

In this case (see Fig. 8.17), if the causal path whose last message is *m* is not pure, a local checkpoint *c* has been taken along this causal path starting and ending in the same interval $I_i^{tdv[i]}$ of p_i . In order this checkpoint *c* belongs to a consistent global checkpoint, p_i takes a forced local checkpoint (otherwise, a z-cycle would form).

The BHMR Checkpointing Algorithm The algorithm based on the previous control data structures and predicates is described in Fig. 8.18. When a process p_i takes a local checkpoint, it defines its vector date as the current value of its vector clock $tdv_i[1..n]$ (line 1), and updates accordingly the appropriate entries of its arrays $sent_to_i$, $pure_i$ and $causal_i$ (lines 2–3). Finally, it increases $tdv_i[i]$ to the sequence number of its new interval.

When it sends a message m, a process p_i adds to it the current values of its three control data structures (line 6). When it receives a message MSG $(m, tdv_i[1..n], pure[1..n], causal[1..n, 1..n]$) from a process p_i , p_i check first the predicate BHMR

```
internal operation take_local_checkpoint() is
(1) c \leftarrow \text{copy of current local state; save } c \text{ and its vector date } c.tdv = tdv_i[1..n];
       for each k \in \{1, ..., n\} do sent_to<sub>i</sub> [k] \leftarrow false end for;
(2)
(3) for each k \in \{1, ..., n\} \setminus \{i\} do pure_i[k] \leftarrow false; causal_i[i, k] \leftarrow false end for;
(4) tdv_i[i] \leftarrow tdv_i[i] + 1.
when p_i decides to take a spontaneous checkpoint do
(5) take_local_checkpoint().
when sending MSG(m) to p_i do
      send MSG(m, tdv_i[1..n], pure_i[1..n], causal_i[1..n, 1..n]) to p_i;
(6)
(7) sent_to<sub>i</sub>[j] \leftarrow true.
when receiving MSG(m, tdv_i[1..n], pure[1..n], causal[1..n, 1..n]) from p_i do
(8) if
            [\exists (k, \ell) : sent\_to_i[k] \land ((tdv[k] > tdv_i[k]) \land \neg causal[k, \ell])]
(9)
                \vee [(tdv[i] = tdv_i[i]) \land \neg pure[i]]
          then take_local_checkpoint() % forced local checkpoint
(10)
(11) end if;
(12) for each k \in \{1, ..., n\} do
(13)
          case (tdv[k] > tdv_i[k]) then
(14)
                        tdv_i[k] \leftarrow tdv[k]; pure_i[k] \leftarrow pure[k];
                        for each \ell \in \{1, ..., n\} do causal_i[k, \ell] \leftarrow causal[k, \ell] end for
(15)
                (tdv[k] = tdv_i[k]) then
(16)
(17)
                        pure_i[k] \leftarrow pure_i[k] \land pure[k];
(18)
                        for each \ell \in \{1, ..., n\}
(19)
                                do causal<sub>i</sub>[k, \ell] \leftarrow causal<sub>i</sub>[k, \ell] \lor causal[k, \ell]
(20)
                        end for
                (tdv[k] < tdv_i[k]) then skip
(21)
(22)
          end case
(23) end for;
(24) for each \ell \in \{1, ..., n\} do causal_i[\ell, i] \leftarrow causal_i[\ell, i] \lor causal[\ell, j] end for;
(25) Deliver the message m to the application process.
```

Fig. 8.18 An efficient checkpointing algorithm for RDT (code for p_i)

that has been presented previously (lines 8–9). Then, before delivering the message (line 25), p_i updates its control data structures so that their current values correspond to their definition (lines 12–24).

For each process p_k , p_i compares tdv[k] (the value of $tdv_j[k]$ when p_j sent the message) with its own value $tdv_i[k]$.

- If *tdv*[k] > *tdv_i*[k], *p_j* knows more local checkpoints of *p_k* than *p_i*. In this case, *p_i* resets *tdv_i*[k], *pure_i*[k], and *causal_i*[k, ℓ] for every ℓ, to the corresponding more up to date values sent by *p_j* (lines 13–15).
- If $tdv[k] = tdv_i[k]$, p_i and p_j know the same last local checkpoint of p_k . As they possibly know it through different causal paths, p_i adds what is known by p_j (*pure*[k] and *causal*[k, ℓ]) to what it already knows (lines 16–18).
- If p_i knows more on p_k than p_j , it is more up to date and consequently does nothing (line 21).

Finally, as the message *m* extends causal paths ending at p_j , process p_i updates accordingly each Boolean *causal*[ℓ , *i*], $1 \le \ell \le n$ (line 24).

This algorithm reduces the number of forced local checkpoints at the price of more control data and more information carried by each application message, which has to carry $n^2 + n$ bits and *n* integers (logical dates). Nevertheless, as we have seen in Sect. 8.3.4 for z-cycle prevention, there is no optimal communication-induced checkpointing algorithm that ensures the RDT property.

8.5 Message Logging for Uncoordinated Checkpointing

8.5.1 Uncoordinated Checkpointing

In uncoordinated checkpointing, each process defines independently its local checkpoints and there is no notion of a forced checkpoint. While this approach is prone to the domino effect, it can be interesting for some applications (for example, *backward recovery* after a failure) where processes take few local checkpoints and do it periodically. A consistent global checkpoint has then to be computed by a *recovery* algorithm. Moreover, according to the aim of the computed global checkpoint, this algorithm might also have to compute channel states, which have to be consistent with the computed global checkpoint. It follows that, if channel states have to computed, the processes have to *log messages on stable storage* during their execution.

Pessimistic vs. Optimistic Message Logging The message logging technique is called *sender-based* (resp., *receiver-based*) if messages are logged by their senders (resp., receivers). Two logging techniques are possible.

- In the case of *pessimistic logging*, a message is saved on stable storage by its sender (receiver) at the time it is sent (received). This can incur high overhead in failure-free executions, as each message entails an additional input/output.
- In the case of *optimistic logging*, a message is first saved in a *volatile log*, and this log is then saved on stable storage when a process takes a local checkpoint. When this occurs, the corresponding process saves on stable storage both its local state and the messages which are in its volatile log.

Content of This Section Considering an uncoordinated checkpointing algorithm, this section presents an optimistic sender-based message logging algorithm. The main feature of this algorithm is that only a subset of messages logged on a volatile log have to be saved on stable storage. To simplify the presentation, the channels are assumed to be FIFO.

8.5.2 To Log or Not to Log Messages on Stable Storage

Basic Principle Let c_i^x denote the *x*th local checkpoint taken by a process p_i . When p_i sends a message *m*, it saves it in a local volatile log. When later p_i takes

its next local checkpoint c_i^{x+1} , it (a) saves on stable storage c_i^{x+1} and the content of its volatile log, and (b) re-initializes to empty its volatile log. Hence, the messages are saved on stable storage by batch, and not individually. This decreases the number of input/output and consequently the overhead associated with message logging.

A simple example is depicted in Fig. 8.19. After it has taken its local checkpoint c_i^x , the volatile log of p_i is empty. Then, when it sends m_1 , m_2 , and m_3 , it saves them in its volatile log. Finally, when it takes c_i^{x+1} , p_i writes c_i^{x+1} and the current content of its volatile message log on stable storage before emptying its volatile log.

To Log or Not to Log: That Is the Question The question is then the following one: Which messages saved in its volatile log, p_i has to save in stable storage when it take its next local checkpoint c_i^{x+1} ?

To answer this question, let us consider Fig. 8.20. When looking at the execution of the left side, the local checkpoints c_j^y and c_i^{x+1} are concurrent and can consequently belong to the same consistent global checkpoint. The corresponding state of the channel from p_i to p_j then comprises the message *m* (this message is *in transit* with respect to the ordered pair (c_i^{x+1}, c_j^y)).

When looking at the execution of the right side, there is an additional causal path starting after c_j^y and ending before c_i^{x+1} . It follows that, in this case, c_j^y and c_i^{x+1} are no longer concurrent (independent) and it is not necessary to save the message *m* on stable storage as it cannot appear in a consistent global checkpoint. Hence, if p_i knows this fact, it does not have to save *m* from its volatile storage to stable storage. Process p_i can learn it if there is causal path starting from p_i after it has

Fig. 8.20 To log or not to log a message?

received *m*, and arriving at p_i before it takes c_i^{x+1} (this is depicted in the execution at the bottom of the figure).

Checkpointing Algorithm: Local Data Structures Hence, a process p_i has to log on stable storage the messages it sends only if (from its point of view) they might belong to a consistent global checkpoint. To implement this idea, the checkpointing algorithm is enriched with the following control data structures.

- *volatile_log_i* is the volatile log of p_i . It is initially empty.
- sn_i[1..n] is an array of sequence numbers. sn_i[j] = α means that p_i has sent α messages to p_j (as the channels are FIFO, those are the first α messages sent by p_i to p_j).
- $rec_known_i[1..n, 1..n]$ is an array of sequence numbers which captures the knowledge of p_i on the messages that have been exchanged by each pair of processes. $rec_known_i[j, k] = \beta$ means that p_i knows (due to causal paths) that p_j has received β messages from p_k .

(If processes do not send messages to themselves, all entries $rec_known_i[j, j]$ remain equal to 0. From an implementation point of view, they can be used to store the array $sn_i[1..n]$.)

• $ckpt_vc_i[1..n]$ is a vector clock associated with local checkpoints. $ckpt_vc_i[j] = \gamma$ means that p_i knows that p_j has taken γ local checkpoints. This control data is managed by the checkpointing algorithm, but used by the recovery algorithm to compute a consistent global checkpoint.

Checkpointing Algorithm: Process Behavior The behavior of a process p_i is described in Fig. 8.21.

When a process p_i sends a message *m* to a process p_j , it first adds the triple $\langle m, sn_i[j], j \rangle$ to its volatile log (the pair $(sn_i[j], j)$ is the identity of *m*, lines 1–2). Then it sends *m* to p_j with its vector date $ckpt_vc_i[1..n]$ and its current knowledge on the messages that have been received (line 3).

When it receives a message, p_i first updates its vector clock $ckpt_vc_i[1..n]$ (line 4), and its knowledge on which messages have been received (lines 5–6). Then it delivers the message (line 9).

When p_i takes an uncoordinated local checkpoint, it first updates its entry of its vector clock (line 10). Then it withdraws from its volatile log every message *m* it has sent and, to its current knowledge, has been received by its destination process p_dest (lines 11–13). Finally, before emptying its volatile log (line 15), p_i saves in stable storage the current state σ_i of the application process plus the control data that will allow for a computation of a consistent global checkpoint and the corresponding channel states (line 14). These control data comprise the volatile log plus three vectors of size *n*. when sending MSG(m) to p_i do (1) $sn_i[j] \leftarrow sn_i[j] + 1;$ (2) add $\langle m, sn_i[j], j \rangle$ to volatile_log_i; send MSG $(m, rec_known_i[1..n, 1..n], ckpt_vc_i[1..n])$ to p_i . (3) when receiving $MSG(m, rec_known[1..n, 1..n], ckpt_vc[1..n])$ from p_i do (4) for each $k \in \{1, ..., n\}$ do $ckpt_vc_i[k] \leftarrow max(ckpt_vc_i[k], ckpt_vc[k])$ end for; (5) $rec_known_i[i, j] \leftarrow rec_known_i[i, j] + 1;$ (6) **for each** $k, \ell \in \{1, ..., n\}$ **do** $rec_known_i[k, \ell] \leftarrow max(rec_known_i[k, \ell], rec_known_i[k, \ell])$ (7)(8) end for; (9) Deliver the message *m* to the application process. when p_i decides to take a (spontaneous) local checkpoint **do** (10) $ckpt_vc_i[i] \leftarrow ckpt_vc_i[i] + 1;$ (11) for each $\langle m, sn, dest \rangle \in volatile_log_i$ do if $(sn \le rec_known_i[dest, i])$ then withdraw (m, sn, dest) from *volatile_log_i* end if (12)(13) end for; (14) save on stable storage the current local state plus volatile_log_i, sn_i[1..n], ckpt_vc_i[1..n], and rec_known_i[i, 1..n]; (15) empty volatile_log_i.

8.5.3 A Recovery Algorithm

The following recovery algorithm is associated with the previous uncoordinated checkpointing algorithm. When a failure occurs, the recovery algorithm executes the following sequence of steps.

- 1. The non-faulty processes are first required to take a local checkpoint.
- 2. The most recent set of *n* concurrent local checkpoints it then computed iteratively.

Let $\Sigma = [c_1, \dots, c_i]$, where c_i is last local checkpoint taken by p_i ; while $(\exists (i, j) \text{ such that } c_i \xrightarrow{\sigma} c_j)$ do let $c'_j = \text{first predecessor of } c_j \text{ such that } \neg (c_i \xrightarrow{\sigma} c'_j);$ $\Sigma \leftarrow [c_1, \dots, c_i, \dots, c'_j, \dots, c_n]$ end while.

Thanks to Theorem 6, the values of $c_i \xrightarrow{\sigma} c_j$ and $\neg(c_i \xrightarrow{\sigma} c'_j)$ can be efficiently determined from the vector date $c_i.chpt_vc$ associated with each local checkpoint.

Assuming that the initial local state of each process is a local checkpoint, the previous loop terminates and the resulting global checkpoint Σ is consistent.

3. The state of the channel connecting p_i to p_j (i.e., the sequence of messages which are in transit with respect to the ordered pair (c_i, c_j)) is extracted from the stable storage of p_i as follows (let us note that only the sender p_i is involved in this computation).

Fig. 8.22 Retrieving the messages which are in transit with respect to the pair (c_i, c_j)

Let sn(i, j) be the value of the sequence number $sn_i[j]$ which has been saved by p_i on its stable storage together with c_i ; this is the number of messages sent by p_i to p_j before taking its local checkpoint c_i . It follows that the messages sent by p_i to p_j (after c_i) have a sequence number greater than sn(i, j). Similarly, let rk(j, i) be the value of $rec_known_j[j, i]$ which has been saved by p_j on its stable storage together with c_j ; this is the number of messages received (from p_i) by p_j before it took its local checkpoint c_j .

It follows that the messages from p_i received by p_j (before c_j) have a sequence number smaller than or equal to rk(j, i). As the channel is FIFO, the messages whose sequence number *sqnb* is such that $rk(j, i) < sqnb \le sn(i, j)$, define the sequence of messages which are in transit with respect to ordered pair (c_i, c_j) . This is depicted in Fig. 8.22, which represents the sequence numbers attached to messages.

Due to the predicate used at line 12 of the checkpointing algorithm, these messages have not been withdrawn from the volatile log of p_i and are consequently with c_i in p_i 's stable storage.

8.5.4 A Few Improvements

Adding Forced Checkpoints Let us note that, even if the basic checkpointing algorithm is uncoordinated, a few forced checkpoints can be periodically taken to reduce the impact of the domino effect.

Space Reclamation As soon as a consistent global checkpoint $\Sigma = [c_1, ..., c_i, ..., c_n]$ has been determined, the control data, kept in stable storage, which concern the local checkpoints which precede c_i , $1 \le i \le n$, become useless and can be discarded.

Moreover, a background task can periodically compute the most recent consistent global checkpoint in order to save space in the stable storage of each process.

Cost The fact that each message sent by a process p_i has to carry the current value of the integer matrix $rec_known_i[1..n, 1..n]$ can reduce efficiency and penalize the application program. Actually, only the entries of the matrix corresponding to the (directed) channels of the application program have to be considered. When the communication graph is a directed ring, the matrix shrinks to a vector. A similar gain is obtained when the communication graph is a tree with bidirectional channels.

Moreover, as channels are FIFO, for any two consecutive messages m_1 and m_2 sent by p_i to p_j , for each entry $rec_known_i[k, \ell]$, m_2 has only to carry the difference between its current value and its previous value (which was communicated to p_j by m_1).

The Case of Synchronous Systems Let us finally note that synchronous systems can easily benefit from uncoordinated checkpointing without suffering the domino effect. To that end, it is sufficient for the processes to take local checkpoints at the end of each round of a predefined sequence of rounds.

8.6 Summary

This chapter was on asynchronous distributed checkpointing. Assuming that processes take local checkpoints independently from another, it has presented two consistency conditions which can be associated with local checkpoints, namely, z-cycle-freedom and rollback-dependency trackability. The chapter then presented distributed algorithms that force processes to take additional local checkpoints so that the resulting communication and checkpoint pattern satisfies the consistency condition we are interested in. The chapter also introduced important notions such as the notion of a zigzag path, and the z-dependence relation among local checkpoints. Finally, a message-logging algorithm suited to uncoordinated checkpointing was presented.

8.7 Bibliographic Notes

- The checkpointing problem is addressed in many textbooks devoted to operating systems. One of the very first papers that formalized this problem is due to B. Randell [303]. The *domino effect* notion was also introduced in this paper.
- The fundamental theorem on the necessary and sufficient condition for a set of local checkpoints to belong to a same consistent global checkpoint is due to R.H.B. Netzer and J. Xu [283]. This theorem was generalized to more general communication models in [175], and to the read/write shared memory model in [35].
- The notions of zigzag path and z-cycle-freedom were introduced R.H.B. Netzer and J. Xu [283].
- The notion of an *interval* and associated consistency theorems are presented in [174].
- The rollback-dependency trackability consistency condition was introduced by Y.-M. Wang [381]. An associated theory is presented and investigated in [33, 36, 145, 375].
- Theorems 10 and 11 on linear dating to prevent z-cycle-freedom are due to J.-M. Hélary, A. Mostéfaoui, R.H.B. Netzer, and M. Raynal [171].

• The algorithm that ensures z-cycle-freedom presented in Fig. 8.7 is due to D. Manivannan and M. Singhal [247].

A more sophisticated algorithm which takes fewer forced checkpoints is presented [171]. This algorithm manages additional control data and uses a sophisticated predicate (whose spirit is similar to that of Fig. 8.18) in order to decrease the number of forced checkpoints. This algorithm is optimal with respect to the causal past of each process.

An evaluation of z-cycle-free checkpointing algorithms is presented in [376].

- The FDAS algorithm that ensures rollback-dependency trackability described in Fig. 8.14 is due Y.-M. Wang [381]. Russell's algorithm is described in [332].
- The algorithm that ensures rollback-dependency trackability described in Fig. 8.18 is due to R. Baldoni, J.-M., Hélary, A. Mostéfaoui, and M. Raynal [34].
- Another algorithm that ensures rollback-dependency trackability is presented in [146]. A garbage collection algorithm suited to RDT checkpointing protocols is presented in [337].
- Numerous checkpointing algorithms are presented in the literature, e.g., [2, 52, 62, 75, 103, 129, 144, 207, 246, 299, 344] to cite a few. The textbooks [149, 219] contain specific chapters devoted to checkpointing.
- The sender-based message logging algorithm presented in Sect. 8.5 is due to A. Mostéfaoui and M. Raynal [271]. The matrix of sequence numbers used in this algorithm is actually a matrix time (as defined in Chap. 7).

Other message logging algorithms have been proposed (e.g., [16, 104, 202, 383]). Recovery is the topic of many papers (e.g., [161, 284, 352] to cite a few). Space reclamation in uncoordinated checkpointing is addressed in [382]. A nice survey on rollback-recovery protocols for message-passing systems is presented in [120].

8.8 Exercises and Problems

- 1. Let us consider the z-dependency relation \xrightarrow{ZZ} introduced in Sect. 8.1.
 - Show that:

$$\left(\left(c_i^x \xrightarrow{zz} c_k^{t+1}\right) \land \left(c_k^t \xrightarrow{zz} c_j^y\right)\right) \Rightarrow \left(c_i^x \xrightarrow{zz} c_j^y\right)$$

- Let c_1 and c_2 be two local checkpoints (from distinct processes). Show that they can belong to the same consistent global checkpoint if
 - no z-cycle involving c_1 or c_2 exists, and
 - no zigzag path exists connecting c_1 and c_2 .

Solution in [283].

2. Let *c* be a local checkpoint of a process p_i , which is not its initial checkpoint. The notation pred(c) is used to denote the local checkpoint that precedes immediately

c on p_i . Let us define a new relation $\xrightarrow{zz'}$ as follows. $c_1 \xrightarrow{zz'} c_2$ if:

$$(c_1 \xrightarrow{\sigma} c_2) \land \left(\exists c \in C : (c_1 \xrightarrow{\sigma} c) \land \left(pred(e) \xrightarrow{zz'} c_2 \right) \right).$$

Show first that $\xrightarrow{zz'} \equiv \xrightarrow{zz}$. Then give a proof of Theorem 9 based on the relations $\xrightarrow{\sigma}$ and $\xrightarrow{zz'}$ (instead of the relations $\xrightarrow{\sigma}$ and \xrightarrow{zz}). Solution in [149] (Chap. 29).

- Prove formally that the predicate BHMR used to take a forced checkpoint in Sect. 8.4.4 is stronger than FDAS. Solution in [34].
- 4. The communication-induced checkpointing algorithms presented in Sects. 8.3 and 8.4 do not record the messages which are in transit with respect to the corresponding pairs of local checkpoints. Enrich one of the checkpointing algorithms presented in these sections so that in-transit messages are recorded. Solution in [173].
- 5. Modify the uncoordinated checkpointing algorithm described in Sect. 8.5 so that only causal paths made up of a single message are considered (i.e., when considering that the causal path μ of Fig. 8.20 has a single message, and this message is from p_j).

When comparing this algorithm with the one described in Fig. 8.21, does this constraint reduce the size of the control information carried by messages? Does it increase or reduce the number of messages that are logged on stable storage? Which algorithm do you prefer (motivate your choice)?

Chapter 9 Simulating Synchrony on Top of Asynchronous Systems

Synchronous distributed algorithms are easier to design and analyze than their asynchronous counterparts. Unfortunately, they do not work when executed in an asynchronous system. Hence, the idea to simulate synchronous systems on top of an asynchronous one. Such a simulation algorithm is called a *synchronizer*. First, this chapter presents several synchronizers in the context of fully asynchronous systems. It is important to notice that, as the underlying system is asynchronous, the synchronous algorithms simulated on top of it cannot consider physical time as a programming object they could use (e.g., to measure physical duration). The only notion of time they can manipulate is a logical time associated with the concept of a round. Then, the chapter presents synchronizers suited to partially synchronous systems. Partial synchrony means here that message delays are bounded but the clocks of the processes (processors) are not synchronized (some private local area networks have such characteristics).

Keywords Asynchronous system \cdot Bounded delay network \cdot Complexity \cdot Graph covering structure \cdot Physical clock drift \cdot Pulse-based programming \cdot Synchronizer \cdot Synchronous algorithm

9.1 Synchronous Systems, Asynchronous Systems, and Synchronizers

9.1.1 Synchronous Systems

Synchronous systems were introduced in Chap. 1, and several synchronous algorithms have been presented in Chap. 2; namely the computation of shortest paths in Fig. 2.3, and the construction of a maximal independent set in Fig. 2.12. In the first of these algorithms, a process sends a message to each of its neighbors at every round, while in the second algorithm the set of neighbors to which it sends a message monotonically decreases as rounds progress.

In a general synchronous setting, a process may send messages to some subset of neighbors during a round, and to a different subset during another round. It can also send no message at all during a round. In the following, the terms "pulse" and "round" are considered synonyms.

A Pulse-Based Synchronous Model We consider here another way to define the synchronous model. There is a logical global clock (denoted *CLOCK*) that can be read by all the processes. This clock produces pulses at instants defined by the integers 0, 1, 2, etc. The behavior of the processes and the channels is governed by the clock. They behave as follows.

- A message sent by a process p_i to its neighbors p_j at the beginning of a pulse r is received and processed by p_j before the pulse r + 1 starts. Hence, in terms of pulses, the transfer delays are bounded.
- It is assumed that local processing times are negligible with respect to transfer delays. Hence, they are assumed to have a null duration. (Actually, the processing time associated with the reception of a message can be seen as being "absorbed" in the message transfer time.)
- A process sends to a given neighbor at most one message per pulse. Hence, when a new pulse r + 1 is generated, a process p_i knows that (a) all the messages sent during pulse r have been received and processed, and (b) all the other processes are at pulse r + 1.

As we can see, this definition captures the same behavior as the definition given in Sect. 1.1. Only the terminology changes: a pulse is simply a round number. The only difference lies in the writing of algorithms. the clock/pulse-based notation allows synchronous algorithms to be easily expressed with the pattern "**when** ... **do** ..." (instead of the round-based pattern used in Chap. 2).

A synchronous execution is described in Fig. 9.1, where time flows from left to right and space is from top to bottom. In this space-time diagram, there are three processes p_1 , p_2 , and p_3 . During the first pulse (round), p_1 sends a message only to p_2 , and p_3 and p_3 send a message to each other. Each of the other rounds has a specific message exchange pattern.

A Synchronous Breadth-First Traversal Algorithm To illustrate the synchronous model expressed with pulses, let us consider the breadth-first traversal problem. The channels are bidirectional, and the communication graph is connected.

Let p_a be the process that launches the traversal. As in the previous chapter, *channel*_i[1..*c*_i] denotes the array that defines the local addresses of the *c*_i channels of a process p_i . Moreover, each process has two local variables, denoted *level*_i and *parent*_i.

when CLOCK is increased do
% a new pulse (round) is generated by the synchronous system %

if (level_i = CLOCK) then

for each x ∈ {1,..., c_i} do send LEVEL(level_i) on channel_i[x] end for

end if.
when LEVEL(l) is received on channel_i[x] do

if (father_i = ⊥) then level_i ← l + 1; parent_i ← x end if.

Fig. 9.2 Synchronous breadth-first traversal algorithm (code for p_i)

- The initial values of the variables *level_i*, 1 ≤ *i* ≤ *n*, are such that *level_a* = 0, and *level_i* = +∞ for *i* ≠ *a*. At the end of the algorithm, *level_i* contains the level of *p_i* (i.e., its distance to *p_a*).
- The initial values of the variables $parent_i$, $1 \le i \le n$, are such that $parent_a = a$, and $parent_i = \bot$ for $i \ne a$. At the end of the algorithm, $parent_i$ contains the index of the channel connecting p_i to its parent in the tree rooted at p_a .

The corresponding synchronous algorithm is described in Fig. 9.2. It is particularly simple. When the clock is set to 0, the algorithm starts, and p_a sends the message LEVEL(0) to all its neighbors which discover they are at distance 1 from p_a by the end of the first pulse. Then, when the next pulse is generated (*CLOCK* = 1), each of them sends the message LEVEL(1) to all its neighbors, etc. Moreover, the first message received by a process defines its parent in the breadth-first tree rooted at p_a . The global synchronization provided by the model ensures that the first LEVEL() message received by a process has followed a path whose number of channels is the distance from the root to that process.

It is easy to see that the time complexity is equal to the eccentricity of p_a (maximal distance from p_a to any other process), and the message complexity is equal to O(e), the number of communication channels. (Let us observe that (n-1) messages can be saved by preventing a process from sending a message to its parent.)

9.1.2 Asynchronous Systems and Synchronizers

Asynchronous Systems As we saw in Chap. 1, an asynchronous distributed system is a time-free system in the sense that there is no notion of an *external* time that would be given a priori, and could be used in the algorithms executed by the processes. In an asynchronous system, the progress of time is related only to the sequence of operations executed by each process and the flow of messages that they exchange.

To simplify the presentation, it is assumed that all the channels are FIFO channels. (If the channels are not FIFO, sequence numbers can be used to provide a communication layer where channels are FIFO.)

Fig. 9.3 Synchronizer: from asynchrony to logical synchrony

Synchronizer A synchronizer is a distributed asynchronous algorithm that simulates a synchronous system on top of an asynchronous system, as shown in Fig. 9.3. This concept was introduced by B. Awerbuch (1985).

Hence, if we consider a synchronizer and an asynchronous system, we obtain a simulator of a synchronous system on which synchronous algorithms can be executed (left part of Fig. 9.3). Conversely, if we consider a synchronous algorithm and a synchronizer, we obtain an asynchronous algorithm that can be executed on top of an asynchronous system (as depicted on the right part of Fig. 9.3). It is important to see that the simulation has to be general in the sense it has not to depend on the specific synchronous algorithms that will be executed on top it. A synchronizer is consequently an interpreter for synchronous algorithms.

Thus, the design of a synchronizer consists of developing a simulation technique enabling users to design distributed algorithms as they were intended to be executed on a synchronous system (as defined previously). To that end, a synchronizer has to ensure the following:

- Implement a local variable $clock_i$ on each process p_i such that the set of logical clocks $clock_1, \ldots,$ and $clock_n$, behave as if there was a single read-only clock CLOCK.
- Ensure that each message sent at pulse (round) r is received and processed at the very same pulse r by its destination process.

9.1.3 On the Efficiency Side

Time and Message Costs An important question concerns the cost added by a synchronizer to simulate a given synchronous algorithm. A_s being a synchronous algorithm, let $T_s(A_s)$ and $M_s(A_s)$ be its complexities in time and in number of messages (when executed in a synchronous system).

As we have just seen, a synchronizer Σ generates a sequence of pulses on each process in such a way that all the processes are simultaneously (with respect to a logical time framework) at the same pulse at the same time.

- The simulation of a pulse by Σ requires M_Σ^{pulse} messages and T_Σ^{pulse} time units.
 Moreover, the initialization of Σ requires M_Σ^{init} messages and T_Σ^{init} time units.

These values allows for the computation of the time and message complexities, denoted $T_{as}(A_s)$ and $M_{as}(A_s)$, of the asynchronous algorithm resulting from the execution of A_s by Σ . More precisely, as A_s requires $T_s(A_s)$ pulses, and each pulse costs M_{Σ}^{pulse} messages and T_{Σ}^{pulse} time units, we have

$$M_{as}(A_s) = M_s(A_s) + M_{\Sigma}^{init} + (T_s(A_s) \times M_{\Sigma}^{pulse}), \text{ and}$$
$$T_{as}(A_s) = T_{\Sigma}^{init} + (T_s(A_s) \times T_{\Sigma}^{pulse}).$$

A synchronizer Σ will be efficient if M_{Σ}^{init} , T_{Σ}^{init} , M_{Σ}^{pulse} , and T_{Σ}^{pulse} are "reasonably" small. Moreover, these four numbers, which characterize every synchronizer, allow synchronizers to be compared. Of course, given a synchronizer Σ , there is a compromise between these four values and they cannot be improved simultaneously.

Design Cost As indicated on the right of Fig. 9.1, combining a synchronous algorithm with a synchronizer gives an asynchronous algorithm. In some cases, such an asynchronous algorithm can "compete" with ad hoc asynchronous algorithms designed to solve the same problem.

Another interest of the synchronizer concept lies in its implementations. Those are based on distributed synchronization techniques, which are general and can be used to solve other distributed computing problems.

9.2 Basic Principle for a Synchronizer

9.2.1 The Main Problem to Solve

As stated previously, the role of a synchronizer is to

- generate pulses at each process of an asynchronous distributed system as if these
 pulses were issued by a global clock whose changes of value would be known
 instantaneously by all the processes, and
- ensure that a message sent at the beginning of a pulse r is received by its destination process before this process starts pulse r + 1.

It follows that a sequence of pulses has to satisfy the following property, denoted \mathcal{P} : A new pulse r + 1 can be generated at a process only after this process has received all the pulse r messages (of the synchronous algorithm) sent to it by its neighbors.

The crucial issue is that, during a round r, a process does not know which of its neighbors sent it a message (see Fig. 9.1). At the level of the underlying asynchronous system, transit delays are finite but not bounded, and consequently the solution for a process to wait during a "long enough" period of time cannot work.

9.2.2 Principle of the Solutions

Solving the previous issue requires adding synchronization among neighboring processes. To that end, let us introduce the notion of a safe process.

Notion of a Safe Process A process p_i is *safe* with respect to a pulse r if all the messages it has sent to its neighbors at the beginning of this pulse have been received by their destination process.

Let us observe that, using acknowledgment messages, it is easy for a process p_i to learn when it becomes safe with respect to a given pulse r. This occurs when it has received the acknowledgments associated with the messages it sent during the pulse r. With respect to the synchronous algorithm, this doubles the number of messages but does not change its order of complexity. Moreover, a process that sends no messages during a pulse is safe (at no cost) since the beginning of the corresponding round.

From Safe Processes to the Property \mathcal{P} The notion of a safe process can be used to ensure the property \mathcal{P} as follows: the local module implementing the synchronizer at a process p_i can generate a new pulse (r + 1) at that process when (a) p_i has carried on all its processing of pulse r and (b) learned that each of its neighbors is safe with respect to the pulse r.

The synchronizers, which are presented below, differ in the way they deliver to each process p_i the information "your neighbor p_j is safe with respect to the current pulse r".

9.3 Basic Synchronizers: α and β

Both the synchronizers α and β are due to B. Awerbuch (1985).

9.3.1 Synchronizer α

Principle of the Synchronizer α The underlying principle is very simple. When, thanks to the acknowledgment messages, a process p_i learns that it is safe with respect to its current pulse, it indicates this to its neighbors by sending them a control message denoted SAFE(). So, when a process (a) has terminated its actions with respect to a pulse r and (b) learned that its neighbors are safe with respect this pulse r, the local synchronizer module can generate the pulse r + 1 at p_i . This is because there is no longer any message related to a pulse $r' \leq r$, which is in transit on a channel incident to p_i .

Complexities For the complexities M_{α}^{pulse} and T_{α}^{pulse} , we have the following, where *e* is the number of channels of the communication graph. At each pulse, every application message is acknowledged, and each process p_i informs its c_i neighbors that it is safe. Hence $M_{\alpha}^{pulse} = O(e)$, i.e. $M_{\alpha}^{pulse} \leq O(n^2)$. As far the time complexity is concerned, let us observe that control messages are sent only between neighbors, hence $T_{\alpha}^{pulse} = O(1)$.

For the complexities M_{α}^{init} and T_{α}^{init} , it follows from the fact that there is no specific initialization part that we have $M_{\alpha}^{init} = T_{\alpha}^{init} = 0$.

Messages Used by the Synchronizer α The local modules implementing the synchronizer α exchange three types of message.

- An acknowledgment message is denoted ACK().
- A control message denoted SAFE() is sent by a process p_i to indicate that it is safe with respect to its last pulse.
- Each application message *m* sent by a synchronous application process to one of its neighbors is encapsulated in a simulation message denoted MSG(*m*).

Local Variables of the Synchronizer α The local variable *clock_i* is built by the synchronizer and its value can only be read by the local synchronous application process.

The local variables *channels_i* and *channel_i*[1..*c_i*] are defined by the communication graph of the synchronous algorithm. As in previous algorithms, *channels_i* is the set $\{1, ..., c_i\}$ (which consists of the indexes of the c_i channels of p_i), and for each $x \in channels_i, channel_i[x]$ denotes locally at p_i the corresponding channel.

The other two local variables, which are hidden to the upper layer, are used only to implement the required synchronization. These variables are the following:

- *expected_ack_i* contains the number of acknowledgments that *p_i* has still to receive before becoming safe with respect to the current round.
- neighbors_safe_i is a multiset (also called a bag) that captures the current perception of p_i on which of its neighbors are safe. Initially, neighbors_safe_i is empty. A multiset is a set that can contain several times some of its elements. As we about to see, it is possible that a process p_i receives several messages SAFE()
 (asch corresponding to a distinct pulse n n + 1 at a) form a maighbor n while

(each corresponding to a distinct pulse r, r + 1, etc.), from a neighbor p_j while it p_i still at pulse r. Hence, the use of a multiset.

On the Wait Statement It is assumed that the code of all the synchronizers cannot be interrupted except in a **wait** statement. This means that a process receives and processes a message (MSG(), ACK(), or SAFE()) only when it executes line 5 or line 7 of Fig. 9.4 when considering the synchronizer α . The same holds for the other synchronizers.

Algorithm of the Synchronizer α The algorithm associated with the local module implementing α at a process p_i is described in Fig. 9.4. When a process starts its next pulse (line 1), it first sends the messages MSG(m) (if any), which correspond to

repeat

- (1) $clock_i \leftarrow clock_i + 1$; % next pulse is generated %
- (2) Send the messages MSG() of the current pulse of the local synchronous algorithm;
- (3) *expected_ack_i* \leftarrow number of MSG(*m*) sent during the current pulse;
- (4) *neighbors_safe*_i \leftarrow *neighbors_safe*_i \setminus *channels*_i;
- (5) **wait** (*expected_ack*_i = 0); % p_i is safe respect to the current pulse %
- (6) for each $x \in channels_i$ do send SAFE() on $channel_i[x]$ end for;
- (7) wait (channels_i ⊆ neighbors_safe_i) % The neighbors of p_i are safe %
 % p_i has received all the messages MSG() sent to it during pulse clock_i %

until the last local pulse has been executed end repeat.

when MSG(m) is received on $channel_i[x]$ do

```
(8) send ACK() on channel<sub>i</sub>[x];
```

- (9) **if** $(x \notin neighbors_safe_i)$
- (10) then *m* belongs to the current pulse; deliver it to the synchronous algorithm
- (11) **else** *m* belongs to the next pulse; keep it to deliver it at the next pulse

```
(12) end if.
```

```
when ACK() is received on channel_i[x] do
(13) expected\_ack_i \leftarrow expected\_ack_i - 1.
```

when SAFE() is received on $channel_i[x]$ do (14) $neighbors_safe_i \leftarrow neighbors_safe_i \cup \{x\}$.

Fig. 9.4 Synchronizer α (code for p_i)

the application messages *m* that the local synchronous algorithm must send at pulse $clock_i$ (line 2).

Then p_i initializes appropriately *expected_ack_i* (line 3), and *neighbors_safe_i* (line 4). As *neighbors_safe_i* is a multiset, its update consists in suppressing one copy of each channel index. Process p_i then waits until it has become safe (line 5), and when this has happens, it sends a message SAFE() to each of its neighbors to inform them (line 6). Finally, it waits until all its neighbors are safe before proceeding to the next pulse (line 7).

When, it receives a message ACK() or SAFE(), a process p_i updates the corresponding local variable *expected_ack_i* (line 13), or *neighbors_safe_i* (line 14).

Let us remark that, due to the control messages SAFE() exchanged by neighbor processes, a message MSG(m) sent at pulse r by a process p_j to a process p_i will arrive before p_i starts pulse (r + 1). This is because p_i must learn that p_j is safe with respect to pulse r before being allowed to proceed to pulse (r + 1). But a message MSG(m) sent at pulse r' to a process p_i can arrive before p_i starts pulse r'. This is depicted on Fig. 9.5, where p_j and p_k are two neighbors of p_i , and where r' = r + 1 and p_i receives a pulse (r + 1) message while it is still at pulse r.

Moreover, let us benefit from this figure to consider the case where p_j does not send application messages during pulse (r + 1). In Fig. 9.5, the message MSG() sent by p_j is consequently replaced by the message SAFE(). In that case, *neighbors_safe_i* contains twice the local index of the channel connecting p_j to p_i . This explains why *neighbors_safe_i* has to be a multiset.

Fig. 9.5 Synchronizer α : possible message arrival at process p_i

When it receives a message MSG(m) on a channel *channel*_i[x] (which connects it to its neighbor p_j), a process p_i first sends back an ACK() message (line 8). According to the previous observation (Fig. 9.5), the behavior of p_i depends then on the current value of *neighbors_safe*_i (line 9). There are two cases.

- The channel index x ∉ neighbors_safe_i (line 10). In that case, p_i has not received from p_j the SAFE() message that closes pulse r. Hence, the message MSG(m) is associated with pulse r, and consequently, p_i delivers m it to the upper layer local synchronous algorithm.
- The channel index $x \in neighbors_safe_i$ (line 11). This means that p_i has already received the message SAFE() from p_j concerning the current pulse r. Hence, m is a message sent at pulse r + 1. Consequently, p_i has to store the message m, and delivers it during pulse r + 1 (after it has sent its messages associated with pulse r + 1).

9.3.2 Synchronizer β

Principle of the Synchronizer β The synchronizer β is based on a spanning tree rooted at some process p_a . The construction of this tree has to be done in an initialization stage. This tree is used to convey the control messages SAFE() from the leaves to the root, and (new) control messages PULSE() from the root to the leaves.

As soon as a process that is a leaf in the control tree is safe, it indicates this to its parent in the tree (messages SAFE()). A non-leaf process waits until it and its children are safe before informing its parent of this. When the root learns that all the processes are safe with respect to the current round, it sends a message PULSE(), which is propagated to all the processes along the channels of the tree.

Let us notice that, when the root learns that all the processes are safe, no message MSG(m) is in transit in the system.

Complexities Every message MSG(m) gives rise to an acknowledgment message, and at every pulse, two control messages (SAFE() and PULSE()) are sent on each channel of the tree. Moreover, the height of the tree rooted at a process p_a is equal to its eccentricity ecc_a , which is at most (n-1). Hence, we have $M_{\beta}^{pulse} = T_{\beta}^{pulse} = O(n)$.

If a rooted tree pre-exists, we have $M_{\beta}^{init} = T_{\beta}^{init} = 0$. If the tree has to be built, M_{β}^{init} and T_{β}^{init} are the costs of building a spanning tree (see Chap. 1).

Local Variables of the Synchronizer β As before, each process p_i has c_i neighbors with which it can communicate through the channels *channel*_i[1..*c*_i]. The spanning tree is implemented with the following local variables at each process p_i .

- *channel*_i[*parent*_i] denotes the channel connecting p_i to its parent in the tree. Moreover, the root p_a has an additional channel index *parent*_a such that *channel*_a[*parent*_a] = \perp .
- *children_i* is a set containing the indexes of the channels connecting process *p_i* to its children. If *children_i* = Ø, *p_i* is a leaf of the tree.

Finally, as the messages SAFE() are sent only from a process to its parents, the multiset *neighbors_safe_i* (used in the synchronizer α) is replaced by a local variable denoted *children_safe_i*. Since a process p_i waits for messages SAFE() only from its children in the control tree, this variable is no longer required to be a multiset. The set *children_safe_i* is initially empty.

Algorithm of the Synchronizer β The behavior of the synchronizer β is described in Fig. 9.6. The root sends a message PULSE() to its neighbors, and this message is propagated along the tree to all the processes (lines 1–3). Then, p_i sends (if any) its messages related to pulse *clock_i* of its local synchronous algorithm (line 4), and resets *expected_ack_i* to the number of these messages (line 6).

After it has sent the messages of the current pulse (if any), p_i waits until both itself and its children are safe (line 7). When this happens, it sends a message SAFE() to its parent to inform it that the subtree it controls is safe (line 8). Process p_i also resets *children_safe_i* to Ø (line 9). In this way, all the local variables *children_safe_i* are equal to their initial value (Ø) when the root triggers the next pulse. If, while p_i is waiting at line 7, or after it has sent the message SAFE() to its parent, p_i receives messages MSG(m) from some neighbor, p_i processes them and this lasts until it enter the next pulse at line 2.

This last point is one where synchronizer β differs from synchronizer α . In α , a process p_i learns locally when its neighbors are safe. In the synchronizer β , a process learns locally this only from its children (which are a subset of its neighbors). It learns that all its neighbors are safe only when it receives a message PULSE() which carries the global information that all the processes are safe with respect to pulse *clock_i*. This means that the message pattern depicted in Fig. 9.7 can happen with synchronizer β , while it cannot with synchronizer α .

Moreover, a message MSG(m) sent at pulse r can arrive at a process p_i while it is still at pulse $clock_i = r - 1$. This is due to the fact that messages PULSE() are not sent between each pair of neighbors, but only along the channel spanning tree. This pattern is described in Fig. 9.8. A simple way to allow the destination process p_i to know if a given message MSG(m) is related to pulse $clock_i$ or pulse $clock_i + 1$ consists in associating a sequence number to these messages. Actually, as the channels are FIFO, a simple parity bit (denoted pb in Fig. 9.6) is sufficient to disambiguate messages.

Fig. 9.9 Synchronizer γ : a communication graph

9.4 Advanced Synchronizers: γ and δ

Both the synchronizers γ and δ are generalizations of α and β . Synchronizer γ is due to B. Awerbuch (1985), while synchronizer δ is due to D. Peleg and J.D. Ullman (1989). These synchronizers differ in the totally different ways that they generalize α and β .

9.4.1 Synchronizer y

Looking for an Overlay Structure: Partitioning the Communication Graph When looking at complexity, the synchronizers α and β have opposite performances, namely α is better than β for time but worse for the number of messages. Synchronizer α is good for communication graphs with limited degree, while synchronizer β is good for communication graphs with small diameter.

The principle that underlies the design of synchronizer γ is to combine α and β in order to obtain better time complexity than β and better message complexity than α . Such a combination relies on a partitioning of the system (realized during the initialization part of γ).

To fix the idea, let us consider Fig. 9.9 which describes a communication graph with eleven processes. A partitioning of this graph is described in Fig. 9.10, where the communication graph is decomposed into three spanning trees which are interconnected. Each tree is surrounded by an ellipsis, and its corresponding edges (communication channels) are denoted by bold segments. The trees are connected by communication channels denoted by dashed segments. The communication channels which are neither in a tree nor interconnecting two trees are denoted by dotted segments.

While, messages of the synchronous application algorithm can be sent on any communication channel, control messages sent by the local modules of the synchronizer γ are sent only on the (bold) edges of a tree, or on the (dashed) edges that interconnect trees.

Fig. 9.10 Synchronizer γ : a partitioning

A tree is called a *group*, and we say "intragroup channel" or "intergroup channel". Hence, when considering Fig. 9.10, the dashed segments are inter-group channels.

Principle of Synchronizer γ Synchronizer γ is based on a two-level synchronization mechanism.

- Inside each group, the tree is used (as in β) to allow the processes of the group to learn that the group is safe (i.e., all its processes are safe).
- Then, each group behaves as if it was a single process and the synchronizer α is used among the groups to allow each of them to learn that its neighbor groups are safe. When this occurs, a new pulse can be generated inside the corresponding group.

Local Variables Used by Synchronizer γ The local variables of a process p_i related to communication are the following ones.

- As previously, *channels_i* = {1,..., c_i} is the set of local indexes such that, for each x ∈ *channels_i*, *channels_i*[x] locally denotes a communication channel of p_i. These are all the channels connecting process p_i to its neighbor processes.
- As for β , *channel*_i[*parent*_i] denotes the channel connecting p_i to its parent in the tree associated with its group, and *children*_i denotes the set of its children. The root p_a of a group is the process p_a such that *channel*_a[*parent*_a] = \bot . These channels are depicted as bold segments in Fig. 9.10.
- The set $it_group_channels_i \subseteq \{1, ..., c_i\}$, contains indexes of channels connecting p_i to processes of other groups. From a control point of view, two neighbor groups are connected by a single channel on which travel (application messages and) control messages. These channels are called *inter-group* channels. These are the channels depicted by dashed segments in Fig. 9.10.

The local variable *expected_ack_i* has the same meaning as in α or β , and *children_safe_i* has the same meaning as in β , while *neighbors_safe_i* is a multiset (initialized to \emptyset) which has the same meaning as in α .

Messages Used by Synchronizer γ In addition to the messages MSG(), ACK() used as in α or β , and the messages SAFE() used as in β (i.e., used inside a group and sent along the tree to inform the root), processes exchange messages GROUP_SAFE() and ALL_GROUP_SAFE().

A message GROUP_SAFE() is sent by a process p_i to its children, and to its neighbors which belong to other groups. These messages are used to inform their destination processes that all the processes of the group to which the sender belongs are safe. A message ALL_GROUP_SAFE() is used inside a group (from the leaves of the spanning tree until its root), to inform its processes that its neighbor groups are safe.

Algorithm of the Synchronizer γ The algorithm implementing synchronizer γ at a process p_i is described in Fig. 9.11.

Inside each group, the root process first sends a message PULSE() that is propagated along the channels of the tree associated to this group (lines 1–3). After it has received a message PULSE(), a process p_i starts interpreting the current pulse of the synchronous algorithm by sending the corresponding application messages (line 4). As we have seen with the tree-based synchronizer β , these messages carry the parity of the corresponding pulse so that they are processed at the correct pulse (lines 23–26). Then, p_i initializes *expected_ack_i* to its new value (line 6), and *neighbors_i_safe_i* similarly to what is done in the synchronizer α (line 7).

After these statements, p_i waits until it and its children are safe (hence, all the processes of its group in the subtree for which it is the root are safe line 8). When this occurs, p_i informs its parent by sending it the message SAFE() (line 10). If it is root, p_i learns that all the processes in its group are safe. It consequently sends a message GROUP_SAFE() (line 12–14) to its children and the processes of the other groups to which it is connected with a channel in *it_group_channels_i*. These messages GROUP_SAFE() are propagated to all the processes of the group, and along the channels in *it_group_channels_i* (lines 12–14 and 29–31). Moreover, when a process p_i receives a message GROUP_SAFE() from a process in another group (this occurs on a channel in *it_group_channels_i*), it updates *neighbors_safe_i* accordingly (line 32).

Then, p_i waits until it knows that all its neighbor groups are safe with respect to the current pulse *clock_i* (line 16). When this occurs, the corresponding information will propagate inside a group from the leaves of the spanning tree to its root (lines 17 and 18–20). (Let us observe that the waiting predicate of line 17 is trivially satisfied at a leaf of the tree.) When the root learns that the processes in all groups are safe with respect the current round, it starts the next pulse inside its groups.

Two Particular (Extreme) Cases If each process constitutes a group, the spanning trees inside each group, the tree-related variables (*parent_i*, *children_i*), and the tree-related messages (GROUP_SAFE()) disappear. Moreover, we have then *it_group_channels_i* = *channels_i*. The parity can also be suppressed. It follows that we can suppress lines 1, 3, 9–11, 15, 17–21, 28, and 29–31. As the reader can check, we then obtain the synchronizer α (where the messages SAFE() are replaced by GROUP_SAFE()).

```
repeat
(1)
       if (channel_i[parent_i] \neq \bot) then wait (PULSE() received on channel_i[parent_i]) end if;
       % all processes are safe with respect to pulse clock_i %
       clock_i \leftarrow clock_i + 1; % next pulse is generated %
(2)
(3)
       for each x \in children_i do send PULSE() on channel_i[x] end for;
(4)
       Send the messages MSG(-, pb) of the local synchronous algorithm
(5)
                                                            where pb = (clock_i \mod 2);
(6)
       expected_ack<sub>i</sub> \leftarrow number of MSG(m) sent during the current pulse;
       neighbors_safe<sub>i</sub> \leftarrow neighbors_safe<sub>i</sub> \setminus (it_group_channels<sub>i</sub> \cup children<sub>i</sub>);
(7)
       wait ((expected_ack<sub>i</sub> = 0) \land (children_safe<sub>i</sub> = children<sub>i</sub>));
(8)
       \% p_i and all its children are safe respect to the current pulse \%
(9) if (channel_i[parent_i] \neq \bot)
(10)
         then send SAFE() on channel<sub>i</sub>[parent<sub>i</sub>]
(11)
         else % p_i is the root of its group %
                for each x \in children_i \cup it\_group\_channels_i
(12)
(13)
                       do send GROUP_SAFE() on channel<sub>i</sub>[x]
(14)
                end for
(15) end if;
(16) wait (it_group_channels<sub>i</sub> \subseteq neighbors_safe<sub>i</sub>);
       \% p_i's group and its neighbor groups are safe with respect to pulse clock<sub>i</sub> \%
(17) wait (\forall x \in children_i: ALL_GROUPS_SAFE() received on channels<sub>i</sub>[x]);
(18) if (channel<sub>i</sub> [parent<sub>i</sub>] \neq \perp)
(19)
                then send ALL_GROUPS_SAFE() on channel<sub>i</sub>[parent<sub>i</sub>]
(20) end if;
(21) children_safe<sub>i</sub> \leftarrow \emptyset
until the last local pulse has been executed end repeat.
when MSG(m, pb) is received on channel_i[x] do
(22) send ACK() on channel<sub>i</sub>[x];
(23) if (pb = (clock_i \mod 2))
         then m belongs to the current pulse; deliver it to the synchronous algorithm
(24)
(25)
         else m belongs to the next pulse; keep it to deliver it at the next pulse
(26) end if.
when ACK() is received on channel_i[x] do
(27) expected_ack<sub>i</sub> \leftarrow expected_ack<sub>i</sub> - 1.
when SAFE() is received on children<sub>i</sub>[x] do % we have then x \in children_i %
(28) children_safe<sub>i</sub> \leftarrow children_safe<sub>i</sub> \cup \{x\}.
when GROUP_SAFE() is received on channel<sub>i</sub>[parent<sub>i</sub>] do
(29) for each x \in children_i \cup it\_group\_channels_i
(30)
             do send GROUP_SAFE() on channel_i[x]
(31) end for.
when GROUP_SAFE() is received on channel_i[x] where x \in it\_group\_channels_i do
(32) neighbors_safe<sub>i</sub> \leftarrow neighbors_safe<sub>i</sub> \cup \{x\}.
```

Fig. 9.11 Synchronizer γ (code for p_i)

In the other extreme case, there is a single group to which all the processes belong. In this case, both *it_group_channels_i*, which is now equal to \emptyset , and *neighbors_safe_i* become useless and disappear. Similarly, the messages GROUP_SAFE() and ALL_GROUP_SAFE() become useless. It follows that we can suppress lines 7, 11–14, 16–20, 29–31, and 32, and synchronizer β .

Complexities Let E_p be the channels on which control messages other than ACK() travel (those are the channels of the spanning trees and the intergroup channels). We do not consider the messages ACK() because they are used in all synchronizers. Let H_p be the maximum height of a spanning tree.

At most four message are sent on each channel of E_p , namely PULSE(), SAFE(), GROUP_SAFE(), and ALL_GROUP_SAFE(). It follows that we have $C_{\gamma}^{pulse} = O(|E_p|)$ and $T_{\gamma}^{pulse} = O(|H_p|)$. It is possible to find partitions such that $C_{\gamma}^{pulse} \leq kn$ and $T_{\gamma}^{pulse} \leq \log_k n$, where $1 \leq k \leq n$.

More generally, according to the partition that is initially built, we have $O(n) \leq C_{\gamma}^{pulse} \leq O(e) \leq O(n^2)$ (where *e* is the number of communication channels) and $O(1) \leq T_{\gamma}^{pulse} \leq O(n)$.

9.4.2 Synchronizer δ

Graph Spanner Let us first recall that a *partial* graph is obtained by suppressing edges, while a *subgraph* is obtained by suppressing vertices and their incident edges.

Given a connected undirected graph G = (V, E) (V is the set of vertices and E the set of edges), a partial subgraph G' = (V, E') is a *t*-spanner if, for any edge $(x, y) \in E$, there is path (in G') from the vertex x to the vertex y whose distance (number of channels) is at most t.

The notion of a graph spanner generalizes the notion of a spanning tree. It is used in distributed message-passing distributed systems to define overlay structures with appropriate distance properties.

Principle of Synchronizer δ This synchronizer assumes that a *t*-spanner has been built on the communication graph defined by the synchronous algorithm. Its principle is simple. When a process becomes safe, it executes *t* communication phases with its neighbors in the *t*-spanner, at the end of which it will know that all its neighbors in the communication graph are safe.

From an operational point of view, let us consider a process p_i that becomes safe. It sets a local variable ph_i to 0, sends a message SAFE() to its neighbors in the *t*-spanner, and waits such a message from each of its neighbors in the *t*-spanner. When, it has received these messages, it increases ph_i to $ph_i + 1$ and re-executes the previous communication pattern. After this has been repeated *t* times, p_i locally generates its next pulse.

Theorem 12 For all $k \in [0..t]$ and every process p_i , when ph_i is set to k, the processes at distance $d \le k$ from p_i in the communication graph are safe.

Proof The proof is by induction. Let us observe that the invariant is true for k = 0 (p_i is safe when it sets ph_i to 0). Let us assume that the invariant in satisfied up to k. When p_i increases its counter to k + 1, it has received (k + 1) messages SAFE()

Fig. 9.12 Synchronizer δ (code for p_i)

from each of its neighbors in the *t*-spanner. Let p_j be one of these neighbors. When p_j sent its (k + 1)th message SAFE() to p_i , we had $ph_j = k$. It follows from the induction assumption that the processes at distance $d \le k$ from p_j (in the communication graph) are safe, and this applies to every neighbor of p_i in the *t*-spanner. So, when p_i increases its counter to k + 1, all its neighbors in the communication graph at a distance $d \le k + 1$ are safe.

Algorithm of Synchronizer δ The behavior of a process p_i is described in Fig. 9.12. The local set *spanner_channels_i* contains the indexes of the channels of p_i that belong to the *t*-spanner. The local variable *t_neighbors_safe_i* (which is initially empty) is a multiset whose role is to contain indexes of *t*-spanner channels on which messages SAFE() have been received.

Complexities Let *m* be the number of channels in the *t*-spanner. It is easy to see that $C_{\gamma}^{pulse} = O(t)$ and $T_{\gamma}^{pulse} = O(mt)$.

It easy to see that the case t = 1 corresponds to the synchronizer α . If the *t*-spanner is a spanning tree, we have m = n - 1 and $t \le D$ (let us recall that D

when INIT() received do if $(\neg done_i)$ then $done_i \leftarrow true$; set $timer_i$ to 0; for each $x \in neighbors_i$ do send INIT() on $channel_i[x]$ end for end if.

Fig. 9.13 Initialization of physical clocks (code for p_i)

is the diameter of the communication graph), and we have $C_{\gamma}^{pulse} = O(D)$ and $T_{\gamma}^{pulse} = O(nD)$.

9.5 The Case of Networks with Bounded Delays

While synchronous and asynchronous algorithms are two extreme points of the synchronous behavior spectrum, there are distributed systems that are neither fully synchronous nor entirely asynchronous. This part of this chapter is devoted to such a type of system, and the construction of synchronizers, which benefit from its specific properties, is used to illustrate their noteworthy properties. Both synchronizers presented here are due to C.Y. Chou, I. Cidon, I. Gopal, and S. Zaks (1987).

9.5.1 Context and Hypotheses

Bounded Delay Networks These networks are systems in which (a) communication delays are bounded (by one time unit), (b) each process (processor) has a physical clock, (c) the clocks progress to same speed but are not synchronized, and (d) processing times are negligible when compared to message delay and are consequently assumed to be equal to 0.

Thus, the local clocks do not necessarily show the same time at the same moment but advance by equal amounts in equal time intervals. If the clocks could be started simultaneously, we would obtain a perfectly synchronous system. The fact that the system is not perfectly synchronous requires the addition of a synchronizer when one wants to execute synchronous algorithms on top of such systems.

Initialization of the Local Clocks The initialization (reset to 0) of the local clocks can be easily realized by a network traversal algorithm as described in Fig. 9.13. Each process has a Boolean *done_i* initialized to *false*. Its local clock is denoted *timer_i*.

At least one process (possibly more) receives an external message INIT(). The first time it receives such a message, a process sets its timer and propagates the message to its neighbors. The local variables $neighbors_i$ and $channel_i[neighbors_i]$ have the same meaning as before.

Fig. 9.14 The scenario to be prevented

Let us consider an abstract global time, and let τ_i be the time at which p_i set s time r_i to 0. This global time, which is not accessible to the processes, can be seen as the time of an omniscient external observer. Its unit is assumed to be the same as the one of the local clocks. The previous initialization provides us with the following relation:

$$\forall (i, j): |\tau_i - \tau_j| \le d(i, j) \quad (\mathbf{R}1),$$

where d(i, j) is the distance separating p_i and p_j (minimal number of channels between p_i and p_j). Let us notice that if p_i and p_j are neighbors, we have $|\tau_i - \tau_j| \le 1$.

9.5.2 The Problem to Solve

After a process p_i has received a message INIT(), *timer_i* accurately measures the passage of time, one unit of time being always the maximum transit time for a message.

Let us consider a scenario where, after the initialization of the physical clocks, there is no additional synchronization. This scenario is depicted in Fig. 9.14 where there are two neighbor processes p_i and p_j , and a logical pulse takes one physical time unit. At the beginning of its first pulse, p_j sends a message to p_i , but this message arrives while p_i is at its second pulse. Hence, this message arrives too late, and violates the fundamental property of synchronous message-passing.

Hence, synchronizers are not given for free in bounded delay networks. Implementing a synchronizer requires to compute an appropriate duration of ρ physical time units for a logical pulse (the previous scenario shows that we have necessarily $\rho > 1$). The *r*th pulse of p_i will then start when $timer_i = r\rho$, and will terminate when $timer_i$ reaches the value $(r + 1)\rho$.

Several synchronizers can be defined. They differ in the value of ρ and the instants at which they send messages of the synchronous algorithm they interpret. Thee next sections present two of them, denoted λ and μ .

duration for which p_i can receive pulse r messages

Fig. 9.15 Interval during which a process can receive pulse r messages

9.5.3 Synchronizer λ

In the synchronizer λ , a process p_i sends a message *m* of the synchronous algorithm relative to pulse *r* when *timer*_i = ρr . It remains to compute the value of ρ so that no message is received too late.

Pulse Duration Let p_j be a neighbor of a p_i , and let $\tau_j(r)$ be the global instant time at which p_j receives a pulse r message m from p_i . This message must be received and processed before p_j enter pulse r + 1, i.e., we must have

$$\tau_i(r) < \tau_i + (r+1)\rho \quad (\mathbf{R2}),$$

the left-hand side of this inequality is the abstract global time at which p_j starts pulse r + 1. As transfer delays are at most one time unit, we have $\tau_j(r) < (\tau_i + r\rho) + 1$. Combined with (R1), namely $\tau_i < \tau_j + 1$, we obtain $\tau_j(r) < \tau_j + r\rho + 2$, that is to say

$$\tau_i(r) < \tau_i + (r+1)\rho + (2-\rho)$$
 (R3).

It follows that we have

$$\left[(\rho \ge 2) \land (\mathbf{R3}) \right] \Rightarrow (\mathbf{R2}).$$

This means that the property (R2) required for the correct implementation of a synchronizer (namely, no message arrive too late) is satisfied as soon as $\rho \ge 2$.

(R3) gives an upper bound on the global time instant at which a process can receive pulse *r* messages sent by its neighbors. In the same way, it is possible to find a lower bound. Let p_i be the sender of a pulse *r* message received by process p_j at time $\tau_j(r)$. We have $\tau_j(r) \ge \tau_i + r\rho$. Combining this inequality with (R1) $(\tau_i \ge \tau_j + 1)$, we obtain

$$\tau_i(r) \ge \tau_i + r\rho - 1 = \tau_i + (r-1)\rho + (\rho-1)$$
 (R4).

Hence, the condition $\rho \ge 2$ ensures that a message sent at pulse *r* will be received by it destination process p_i (a) before p_i progresses to the pulse (r + 1), and (b) after p_i has started its pulse (r - 1). This is illustrated in Fig. 9.15.

when *timer_i* = ρr do *clock_i* ← r; % next pulse is generated % Send the messages MSG(-, pb) of the local synchronous algorithm where pb = (*clock_i* mod 2); process the pulse r messages.
when MSG(m, pb) is received on *channel_i*[x] do if (*clock_i* × ρ ≤ *timer_i* < (*clock_i* + 1)ρ) ∧ (pb = (*clock_i* mod 2)) then m belongs to the current pulse; deliver it to the synchronous algorithm else m belongs to the next pulse; keep it to deliver it at the next pulse end if.

Fig. 9.16 Synchronizer λ (code for p_i)

It follows that the pulse r of a process p_i spans the global time interval

$$[\tau_i + \rho r, \tau_i + (\rho + 1)r),$$

and during this time interval, p_i can receive from its neighbors only messages sent at pulse r or r + 1. It follows that messages have to carry the parity bit of the pulse at which they are sent so that the receiver be able to know if the received message is for the current round r or the next one (r + 1).

Algorithm of the Synchronizer λ The algorithm defining the behavior of a process p_i is described in Fig. 9.16. This description follows the previous explanation.

Complexities The time complexity of the synchronizer λ is a function of ρ . Taking $\rho = 2$, the time of the synchronous algorithm is multiplied by 2 and we have $T_{\lambda}^{pulse} = O(1)$. Moreover, as every message *m* has to carry one control bit and there are no additional control messages, the message complexity is $C_{\lambda}^{pulse} = O(1)$. Finally, the initialization part consists of the initialization of the local physical clocks of the processes.

9.5.4 Synchronizer μ

Aim of Synchronizer μ The aim of synchronizer μ is to ensure that each message sent at pulse *r* is received by its destination process p_j while it executes the pulse *r*. So that no message arrives too early, we need to have

$$\tau_i + \rho r \le \tau_i(r) < \tau_i + (r+1)\rho \quad (R5).$$

From an operational point of view, this means that the parity bits used in λ have to be eliminated.

when timer_i = ρr do clock_i ← r. % next pulse is generated %
when timer_i = ρ × clock_i + η do Send the messages MSG(-) of the local synchronous algorithm; When received, process pulse clock_i messages.
when MSG(m) is received on channel_i[x] do m belongs to the current pulse; deliver it to the synchronous algorithm.

Fig. 9.17 Synchronizer μ (code for p_i)

Determining the Appropriate Timing Parameters One way of achieving the previous requirement consists in delaying the sending of messages by an appropriate amount η of time units (in such a way that $\eta = 0$ would correspond to the synchronizer λ).

As the transit time is upper bounded by 1, and the sender p_i sends a pulse r message at time $\tau_i + r\rho + \eta$, we have on the one hand $\tau_j(r) \le \tau_i + r\rho + \eta + 1$, and on the other hand $\tau_j(r) \ge \tau_i + r\rho + \eta$ (as transit times are not negative). Hence, to satisfy (R5), it is sufficient to ensure

$$\tau_i(r) \le \tau_i + r\rho + \eta + 1 \le \tau_i + (r+1)\rho \quad (\mathbf{R6}),$$

and

$$\tau_i(r) \ge \tau_i + r\rho + \eta \ge \tau_i + r\rho \quad (\mathbf{R7})$$

or again

$$\rho \ge \eta + 1 + (\tau_i - \tau_j)$$
 and $\eta \ge \tau_j - \tau_i$.

But we have from (R1): $\tau_j - \tau_i < 1$ and $\tau_i - \tau_j < 1$. Hence, conditions (R6) and (R7) are satisfied when

$$\rho \ge \eta + 2$$
 and $\eta \ge 1$.

It follows that any pair of values (η, ρ) satisfying the previous condition ensures that any message is received at the same pulse at which it has been sent. The smallest values for η and ρ are thus 1 and 3, respectively.

Algorithm of Synchronizer μ The algorithm defining the behavior of a process p_i is described in Fig. 9.17. This synchronizer adds neither control messages nor control information to application messages, and we have $C_{\mu}^{pulse} = T_{\mu}^{pulse} = O(1)$.

9.5.5 When the Local Physical Clocks Drift

When the Clocks Drift The previous section assumed that, while local clocks of the processes (processors) do not output the same value at the same reference

time, they progress at the same speed. This simplifies the design of synchronizers α and β .

Unfortunately, physical clocks drift, but fortunately their drift with respect to the abstract global time perceived by an omniscient external observer (also called *reference time*) is usually bounded and captured by a parameter denoted ϵ (called the clock *drift*).

Hence, we consider that the faster clock counts one unit for $(1 - \epsilon)$ of reference time, while the slowest clock counts one unit for $(1 + \epsilon)$ of reference time (Fig. 9.18). Let Δ denote a time duration measured with respect to the reference time, and Δ_i be this time duration as measured by the clock of p_i . We have

$$\Delta(1-\epsilon) \le \Delta_i \le \Delta(1+\epsilon).$$

This formula is depicted in Fig. 9.18. As ϵ is usually very small, ϵ^2 is assumed to be equal to 0 (hence $(1 - \epsilon)(1 + \epsilon) \simeq 1$). The upper and lower lines define what is called the *linear time envelope* of a clock. The upper line in the figure considers the case where the clock of p_i always counts 1 for $(1 - \epsilon)$ of reference time, while the lower line considers the case where its clock always counts 1 for $(1 + \epsilon)$ of reference time. The dotted line in the middle considers the case where the clock does not drift. Of course, the drift of a clock is not constant, and a given clock can have a positive drift at some time and a negative one at another time.

It follows that, advancing at different rates, the clocks can measure differently a given interval of the reference time. It is consequently important to know how many pulses can be generated before such a confusion occurs, and makes a message arrive too late with respect to its pulse number, thereby making the corresponding synchronizer incorrect.

Conditions for Synchronizer μ We consider here the case of synchronizer μ . Let p_i and p_j be two neighbor processes, and let us assume that their clocks (*timer_i* and *timer_j*) have maximum and opposite drifts (i.e., of ϵ with respect to the reference time).

As we have seen, the conditions (R6) and (R7) stated in Sect. 9.5.4 ensure the respect of condition (R7), which defines the correct behavior of μ , namely a message sent by p_i at pulse *r* arrives at p_j during its pulse *r*.

When considering (R6), the worst case is produced when the sender p_i has the slower clock (*timer_i* counts 1 for $1 + \epsilon$ of reference time), while the receiver process

 p_j has the faster clock (*timer_i* counts 1 for $1 - \epsilon$ of reference time). In such a context, the condition (R6) becomes

$$\tau_i + (r\rho + \eta)(1 + \epsilon) + 1 \le \tau_i + (r+1)\rho(1 - \epsilon) \quad (\mathbf{R6}'),$$

where everything is expressed within the abstract reference time.

When considering (R7), the worst case is produced when the sender p_i has the faster clock, while the receiver p_j has the slower clock. In such a context, the condition (R7) becomes

$$\tau_i + (r\rho + \eta)(1 - \epsilon) \ge \tau_i + r\rho(1 + \epsilon) \quad (\mathbf{R7}').$$

Let us now consider (R1) to eliminate τ_i and τ_j and obtain conditions on ρ , η , and ϵ , which implies simultaneously (R6') and (R7').

• Taking $\tau_i - \tau_j < 1$, and considering (R7'), we obtain the following condition (C1) which implies (R6')

C1 =
$$[2r\rho\epsilon \le \rho(1-\epsilon) - 2 - \eta(1+\epsilon)].$$

• Taking $\tau_j - \tau_i < 1$, and considering (R7'), we obtain the following condition (C2), which implies (R7')

$$C2 = (2r\rho\epsilon \le \eta(1-\epsilon) - 1).$$

It follows from these conditions that the greatest pulse number r_{max} that can be attained without problem is such that $2r_{max}\rho\epsilon = \rho((1-\epsilon) - 2 - \eta(1+\epsilon)) = \eta(1-\epsilon) - 1$, which is obtained for

$$\eta = \frac{\rho(1-\epsilon) - 1}{2},$$

and we have then

$$r_{max} = \frac{\rho (1-\epsilon)^2 - 3 + \epsilon}{4\rho\epsilon}$$

Let us remark that, when there is no drift, we have $\epsilon = 0$, and we obtain $r_{max} = +\infty$ and $2\eta = \rho - 1$. As already seen in Sect. 9.5.4, $\rho = 3$ and $\eta = 1$ are the smallest values satisfying this equation.

Considering physical clocks whose drift is 10^{-1} seconds a day (i.e., $\epsilon = 1/864\,000$), Table 9.1 shows a few numerical results for three increasing values of ρ .

9.6 Summary

This chapter has presented the concept of a synchronizer which encapsulates a general methodology to simulate (non-real-time) distributed synchronous algorithms on

Table 9.1 Value of r_{max} as a function of ρ	Value of ρ	Value of r_{max}
	4	54 000
	8	135 000
	12	162 000

top of asynchronous distributed systems. It has presented several synchronizers for both pure asynchronous systems and for bounded delay networks. The chapter has also shown that graph covering structures (spanning trees and *t*-spanners) are important concepts when one has to define appropriate overlay structures on which are sent control messages.

9.7 Bibliographic Notes

- The interpretation of synchronous distributed algorithms on asynchronous distributed systems was introduced by B. Awerbuch [27] who in 1985 introduced the concept of a synchronizer and defined synchronizers α , β , and γ . This paper also presents a distributed algorithm that builds partitions for γ where the spanning trees and the intergroups channels are such that, given $k \in [1..n]$, we obtain a message complexity $C_{\gamma}^{pulse} \leq kn$ and a time complexity $T_{\gamma}^{pulse} \leq \log_k n$. The work of B. Awerbuch is mainly focused on the design of synchronizers from the point of view of their time and message complexities.
- Synchronizer δ is due to D. Peleg and J.D. Ullman [293]. They applied it to networks whose *t*-spanner is a hypercube structure. The notion of a graph *t*-spanner is due to D. Peleg. An in-depth study of these graph covering structures can be found in [292].
- The synchronization-related concepts used in the design of synchronizers have their origin in the work of R.G. Gallager [142] (1982), A. Segall [341] (1983), and B. Awerbuch [26] (1985).

The idea of a safe state of a process (i.e., it knows that all its messages have been received) has been used in many distributed algorithms. One of the very first works using this idea is a paper by E.W. Dijkstra and C.S. Scholten [115], who use it to control termination of what they called a "diffusing computation".

- The study of synchronizers for bounded delay networks is due to C.T. Chou, I. Cidon, I. Gopal, and S. Zaks [93], who defined the synchronizers λ and μ . Their bounded delay assumption is valuable for many local area networks and real-time embedded systems. Adaptation to the case where clocks can drift is addressed in [319].
- The interested reader will find in [385] a method of simulating a system composed of synchronous processes and asynchronous channels on top of a system where both processes and channels are asynchronous. This type of simulation is investigated in the presence of different types of faults.

- On the implementation side, K.B. Lakshmanan and K. Thulisaraman studied the problems posed by the management of waiting queues in which messages are stored, when one has to implement a synchronizer on top of a fully asynchronous system [225]. On the theoretical side, A. Fekete, N.A. Lynch, and L. Shrira presented a general methodology, based on communicating automata, for the design of modular proofs of synchronizers [123].
- Numerous works have addressed the synchronization of distributed physical clocks (e.g., [101, 116, 230, 291, 358, 386]).
- Optimal synchronization for asynchronous bounded delay networks with drifting local clocks is addressed in [211].
- The distributed unison problem requires that (a) no process starts its round r + 1 before all processes have executed their round r, and (b) no process remains blocked forever in a given round. Self-stabilizing algorithms are algorithms that can cope with transient faults such as the corruption of values [112, 118]. An abundant literature has investigated distributed unison in the context of self-stabilizing algorithms. The interested reader can consult [60, 100, 162] to cite a few.

9.8 Exercises and Problems

1. The simulation of a synchronous system implemented by the synchronizer α presented in Sect. 9.3.1 is more synchronized than what is needed. More precisely, it allows a process to proceed to next pulse r + 1 only when (a) its neighbors are safe with respect to pulse r, and (b) it is safe itself with respect to pulse r. But, as the reader can observe, item (b) is not required by the property \mathcal{P} , which has to be satisfied for a process to locally progress from its current pulse to the next one (property \mathcal{P} is stated in Sect. 9.2.1).

Modify the synchronizer α in order to obtain a less synchronized synchronizer α' in which only item (a) is used to synchronize neighbors' processes. Solutions in [27, 319].

- 2. Write versions of synchronizers λ and μ in which the drift of the physical clocks of processors is upper bounded by ϵ .
- 3. Prove that it is impossible to implement a synchronizer in an asynchronous distributed system in which processes (even a single one) may crash.

Part III Mutual Exclusion and Resource Allocation

This part of the book and the following one are on the enrichment of the distributed message-passing system in order to offer high-level operations to processes. This part, which is on resource allocation, is composed of two chapters. (The next part will be on high-level communication operations.)

Chapter 10 introduces the mutual exclusion (mutex) problem, which is the most basic problem encountered in resource allocation. An algorithm solving the mutex problem has to ensure that a given hardware or software object (resource) is accessed by at most one process at a time, and that any process that wants to access it will be able to do so. Two families of mutex algorithms are presented. The first is the family of algorithms based on individual permissions, while the second is the family of algorithms based on arbiter permissions. A third family of mutex algorithms is the family of token-based algorithms. Such a family was already presented in Chap. 5, devoted to mobile objects navigating a network (a token is a dataless mobile object).

Chapter 11 considers first the problem posed by a single resource with several instances, and then the problem posed by several resources, each with multiple instances. It assumes that a process is allowed to acquire several instances of several resources. The main issues are then to prevent deadlocks from occurring and to provide processes with efficient allocation algorithms (i.e., algorithms which reduce process waiting chains).

Chapter 10 Permission-Based Mutual Exclusion Algorithms

This chapter is on one of the most important synchronization problems, namely mutual exclusion. This problem (whose name is usually shortened to "mutex") consists of ensuring that at most one process at a time is allowed to access some resource (which can be a physical or a virtual resource).

After having defined the problem, the chapter presents two approaches which allow us to solve it. Both are based on permissions given by processes to other processes. The algorithms of the first approach are based on individual permissions, while the algorithms of the second approach are based on arbiter permissions (arbiter-based algorithms are also called quorum-based algorithms).

Keywords Adaptive algorithm · Arbiter permission · Bounded algorithm · Deadlock-freedom · Directed acyclic graph · Extended mutex · Adaptive algorithm · Grid quorum · Individual permission · Liveness property · Mutual exclusion (mutex) · Preemption · Quorum · Readers/writers problem · Safety property · Starvation-freedom · Timestamp · Vote

10.1 The Mutual Exclusion Problem

10.1.1 Definition

The Operations acquire_mutex() and release_mutex() The mutual exclusion problem consists in enriching the underlying system with two operations denoted acquire_mutex() and release_mutex(), which are used as "control statements" to encapsulate a set of application statements usually called a *critical section*. Let *cs* denote such a set of application statements. A process p_i that wants to execute *cs* issues the following sequence of statements:

acquire_mutex(); cs; release_mutex().

The operations acquire_mutex() and release_mutex() can be seen as "control brackets" which open and close a particular execution context, respectively.

It is assumed that the processes are well-formed, i.e., they always execute the previous pattern when they want to execute the statements *cs*. Moreover, it is assumed that, when executed by a single process, the code denoted *cs* always terminates.

Fig. 10.1 A mutex invocation pattern and the three states of a process

The Three States of a Process Given a process p_i , let cs_state_i be a local variable denoting its current local state from the critical section point of view. We have $cs_state_i \in \{out, trying, in\}$, where

- $cs_state_i = out$, means that p_i is not interested in executing the statement cs.
- $cs_state_i = trying$, means that p_i is executing the operation acquire_mutex().
- $cs_state_i = in$, means that p_i is executing the statement cs.

An invocation pattern of acquire_mutex() and release_mutex(), together with the corresponding values of cs_state_i , is represented in Fig. 10.1.

Problem Definition The mutual exclusion problem consists in designing an algorithm that implements the operations acquire_mutex() and release_mutex() in such a way that the following properties are satisfied:

- Safety. At any time, at most one process p_i is such that $cs_state_i = in$ (we say that at most one process is inside the critical section).
- Liveness. If a process p_i invokes acquire_mutex(), then we eventually have $cs_state_i = in$ (i.e., if p_i wants to enter the critical section, it eventually enters it).

This liveness property is sometimes called *starvation-freedom*. It is important to notice that it is a property stronger than the absence of deadlock. Deadlock-freedom states that if processes want to enter the critical section (i.e., invoke acquire_mutex()), at least one process will enter it. Hence, a solution that would allow some processes to repeatedly enter the critical section, while preventing other processes from entering, would ensure deadlock-freedom but would not ensure starvation-freedom.

10.1.2 Classes of Distributed Mutex Algorithms

Mutex Versus Election The election problem was studied in Chap. 4. The aim of both an election algorithm and a mutex algorithm is to create some *asymmetry* among the processes. But these problems are deeply different. In the election problem, any process can be elected and, once elected, a process remains elected forever. In the mutex problem, each process that wants to enter the critical section must eventually be allowed to enter it. In this case, the asymmetry pattern evolves dynamically according to the requests issued by the processes.

Token-Based Algorithms One way to implement mutual exclusion in a messagepassing system consists in using a token that is never duplicated. Only the process that currently owns the token can enter the critical section. Hence, the safety property follows immediately from the fact that there is a single token. A token-based mutex algorithm has only to ensure that any process that wants the token will eventually obtain it.

Such algorithms were presented in Chap. 5, which is devoted to mobile objects navigating a network. In this case, the mobile object is a pure control object (i.e., the token carries no application-specific data) which moves from process to process according to process requests.

Algorithms Based on Individual/Arbiter Permissions This chapter is on the class of mutex algorithms which are based on permissions. In this case, a process that wants to enter the critical section must ask for permissions from other processes. It can enter the critical section only when it has received all the permissions it has requested. Two subclasses of permission-based algorithms can be distinguished.

- In the case of individual permissions, the permission given by a process p_i to a process p_j engages only p_i . Mutex algorithms based on individual permissions are studied in Sects. 10.2 and 10.3.
- In the case of arbiter permissions, the permission given by a process p_i to a process p_j engages all the processes that need p_i 's permission to enter the critical section. Mutex algorithms based on arbiter permissions are studied in Sect. 10.4.

In the following R_i represents the set of processes to which p_i needs to ask permission in order to enter the critical section.

Remark on the Underlying Network In all the algorithms that are presented in Sects. 10.2, 10.3, and 10.4, the communication network is fully connected (there is a bidirectional channel connecting any pair of distinct processes). Moreover, the channels are not required to be FIFO.

10.2 A Simple Algorithm Based on Individual Permissions

10.2.1 Principle of the Algorithm

The algorithm presented in this section is due to G. Ricart and A.K. Agrawala (1981).

Principle: Permissions and Timestamps The principle that underlies this algorithm is very simple. We have $R_i = \{1, ..., n\} \setminus \{i\}$, i.e., a process p_i needs the permission of each of the (n - 1) other processes in order to be allowed to enter the critical section. As already indicated, the intuitive meaning of the permission sent by p_j to p_i is the following "as far as p_i (only) is concerned, p_i allows p_j to enter the critical section".

Fig. 10.2 Mutex module at a process p_i : structural view

Hence, when a process p_i wants to enter the critical section, it sends a REQUEST() message to each other process p_j , and waits until it has received the (n - 1) corresponding permissions. The core of the algorithm is the predicate used by a process p_j to send its permission to a process p_i when it receives a request from this process. There are two cases. The behavior of p_j depends on the fact that it is currently interested or not in the critical section.

- If p_j is not interested (i.e., $cs_state_j = out$), it sends by return its permission to p_i .
- If p_j is interested (i.e., cs_state_j ≠ out), it is either waiting to enter the critical section or is inside the critical section. In both cases, p_j has issued a request, and the requests from p_j and p_i are conflicting. One process has to give its permission to the other one (otherwise, they will deadlock each other), and only one has to give its permission by return (otherwise, the safety property would be violated). This issue can be solved by associating a priority with each request.

Priorities can easily be implemented with timestamps. As we have seen in Chap. 7, a timestamp is a pair $\langle h, j \rangle$, where *h* is a logical clock value and *i* a process identity. As we have seen in Sect. 7.1.2, any set of timestamps can be totally ordered by using a topological sort, namely, $\langle h1, i \rangle$ and $\langle h2, j \rangle$ being two timestamps, we have

$$\langle h1, i \rangle < \langle h2, j \rangle \stackrel{def}{=} (h1 < h2) \lor ((h1 = h2) \land (i < j)).$$

It follows that this algorithm uses timestamps to ensure both the safety property and the liveness property defining the mutex problem.

Structural View The structure of the local module implementing the mutual exclusion service at a process p_i is described in Fig. 10.2. (As the reader can check, this structure is the same as the one described in Fig. 5.2.)

```
operation acquire_mutex() is
(1) cs\_state_i \leftarrow trying;
(2) \ell rd_i \leftarrow clock_i + 1;
(3) waiting_from<sub>i</sub> \leftarrow R_i; % R_i = \{1, \ldots, n\} \setminus \{i\}
(4) for each j \in R_i do send REQUEST(\ell rd_i, i) to p_i end for;
(5) wait (waiting_from<sub>i</sub> = \emptyset);
(6) cs\_state_i \leftarrow in.
operation release_mutex() is
(7) cs\_state_i \leftarrow out;
(8) for each j \in perm\_delayed_i do send PERMISSION(i) to p_i end for;
(9) perm\_delayed_i \leftarrow \emptyset.
when \operatorname{REQUEST}(k, j) is received do
(10) clock_i \leftarrow max(clock_i, k);
(11) prio_i \leftarrow (cs\_state_i \neq out) \land (\langle \ell rd_i, i \rangle < \langle k, j \rangle);
(12) if (prio_i) then perm\_delayed_i \leftarrow perm\_delayed_i \cup \{j\}
                    else send PERMISSION(i) to p_i
(13)
(14) end if.
when PERMISSION(j) is received do
(15) waiting_from<sub>i</sub> \leftarrow waiting_from<sub>i</sub> \setminus \{j\}.
```

Fig. 10.3 A mutex algorithm based on individual permissions (code for p_i)

10.2.2 The Algorithm

Description of the Algorithm: Local Variables In addition to the constant set R_i and the local variable cs_state_i (initialized to *out*), each process p_i manages the following variables:

- $clock_i$ is a scalar clock initialized to 0. Its scope is the whole execution; ℓrd_i (for ℓ ast request date) is a local variable used by p_i to save the logical date of its last invocation of acquire_mutex().
- *waiting_from_i* is a set used to contain the identities of the processes from which p_i is waiting for a permission.
- *perm_delayed*_i is a set used by *p*_i to contain the identities of the processes to which it will have to send its permission when it exits the critical section.
- $prio_i$ is an auxiliary Boolean variable where p_i computes its priority when it receives a request message.

Description of the Algorithm: Behavior of a Process The algorithm implementing mutual exclusion at a process p_i is described in Fig. 10.3. Except for the **wait** statement at line 5, the four sets of statements are locally executed in mutual exclusion.

When it invokes acquire_mutex(), a process p_i first updates cs_state_i (line 1), computes a clock value for its current request (line 2), and sets *waiting_from_i* to R_i (line 3). Then, it sends a timestamped request message to each other process (line 4),

and waits until it has received the corresponding permissions (line 5). When this occurs, it enters the critical section (line 6).

When it receives a permission, p_i updates accordingly its set *waiting_from_i* (line 15).

When it invokes release_mutex(), p_i proceeds to the local state *out* (line 7), and sends its permission to all the processes of the set *perm_delayed*_i. This is the set of processes whose requests were competing with p_i 's request, but p_i delayed the corresponding permission-sending because its own request has priority over them (lines 8–9).

When p_i receives a message REQUEST(k, j), it first updates its local clock (line 10). It then computes if it has priority (line 11), which occurs if $cs_state_i \neq out$ (it is then interested in the critical section) and the timestamp of its current request is smaller than the timestamp of the request it has just received. If p_i has priority, it adds the identity j to the set *perm_delayed_i* (line 12). If p_i does not have priority, it sends by return its permission to p_j (line 13).

A Remark on the Management of $clock_i$ Let us observe that $clock_i$ is not increased when p_i invokes acquire_mutex(): The date associated with the current request of p_i is the value of $clock_i$ plus 1 (line 2). Moreover, when p_i receives a request message, it updates $clock_i$ to max($clock_i, k$), where k is the date of the request just received by p_i (line 10), and this update is the only update of $clock_i$.

As a very particular case, let us consider a scenario in which only p_i wants to enter the critical section. It is easy to see that, not only $\langle 1, i \rangle$ is the timestamp of its first request, but $\langle 1, i \rangle$ is the timestamp of all its requests (this is because, as line 10 is never executed, *clock_i* remains forever equal to 0).

As we are about to see in the following proof, the algorithm is correct. It actually considers that, when a process p_i enters several times the critical section while the other processes are not interested, it is not necessary to increase the clock of p_i . This is because, in this case and from a clock point of view, the successive invocations of acquire_mutex() issued by p_i can appear as a single invocation. Hence, the algorithm increases the local clocks as slowly as possible.

Message Cost It is easy to see that each use of the critical section by a process requires 2(n-1) messages: (n-1) request messages and (n-1) permission messages.

10.2.3 Proof of the Algorithm

Lemma 3 *The algorithm described in Fig.* 10.3 *satisfies the mutex safety property.*

Proof The proof is by contradiction. Let us assume that two processes p_i and p_j are simultaneously in the critical section, i.e., from an external omniscient observer point of view, we have $cs_state_i = in$ and $cs_state_i = in$. It follows from the code of

Fig. 10.4 Proof of the safety property of the algorithm of Fig. 10.3

acquire_mutex() that each of them has sent a request message to the other process and has received its permission. A priori two scenarios are possible for p_i and p_j to be simultaneously inside the critical section. Let $\langle h, i \rangle$ and $\langle k, j \rangle$ be the timestamps of the request messages sent by p_i and p_j , respectively.

• Each process has sent its request message before receiving the request from the other process (left side of Fig. 10.4).

As $i \neq j$, we have either $\langle h, i \rangle < \langle k, j \rangle$ or $\langle k, j \rangle < \langle h, i \rangle$. Let us assume (without loss of generality) that $\langle h, i \rangle < \langle k, j \rangle$. In this case, p_j is such that $\neg prio_j$ when it received REQUEST(h, i) (line 11) and, consequently, it sent its permission to p_i (line 13). Differently, when p_i received REQUEST(h, i), we had $prio_i$, and consequently p_i did not send its permission to p_j (line 12; it will send the permission only when it will execute (line 8 of release_mutex()).

It follows that, when this scenario occurs, p_j cannot enter the critical section while p_i is inside the critical section, which contradicts the initial assumption.

• One process (e., p_j) has sent its permission to the other process (p_i) before sending its own request (right side of Fig. 10.4).

When p_j receives REQUEST(h, i), it executes $clock_j \leftarrow max(clock_j, h)$ (line 10), hence we have $clock_j \ge h$. Then, when later p_j invokes acquire_ mutex(), it executes $\ell rd_j \leftarrow clock_i + 1$ (line 2). Hence, $\ell rd_j > h$, and the message REQUEST(k, j) sends by p_j to p_i is such that $k = \ell rd_j > h$. It follows that, when p_i receives this message we have $cs_state_i \ne out$ (assumption), and $\langle h, i \rangle < \langle k, j \rangle$. Consequently $prio_i$ is true (line 11), and p_i does not send its permission to p_j (line 12). It follows that, as in the previous case, p_j cannot enter the critical section while p_i is inside the critical section, which contradicts the initial assumption.

It can be easily checked that the previous proof remains valid if messages are lost.

Lemma 4 The algorithm described in Fig. 10.3 satisfies the mutex liveness property.

Proof The proof of the liveness property is done in two parts. The first part shows that the algorithm is deadlock-free. The second part shows the algorithm

Fig. 10.5 Proof of the liveness property of the algorithm of Fig. 10.3

is starvation-free. Let us first observe that as the clocks cannot decrease, the timestamps cannot decrease.

Proof of the deadlock-freedom property. Let us assume, by contradiction, that processes have invoked acquire_mutex() and none of them enters the local state *in*. Among all these processes, let p_i be the process that sent the request message with the smallest timestamp $\langle h, i \rangle$, and let p_j any other process. When p_i receives REQUEST(h, i) it sends by return the message PERMISSION(j) to p_i if $cs_tate_j = out$. If $cs_tate_j \neq out$, let $\langle k, j \rangle$ the timestamp of its request. Due to definition of $\langle h, i \rangle$, we have $\langle h, i \rangle < \langle k, j \rangle$. Consequently, p_j sends PERMISSION(j) to p_i . It follows that p_i receives a permission message from each other process (line 15). Consequently, p_j stops waiting (5) and enters the critical section (line 6). Hence, the algorithm is deadlock-free.

Proof of the starvation-freedom property. To show that the algorithm is starvationfree, let us consider two processes p_i and p_j which are competing to enter the critical section. Moreover, let us assume that p_i repeatedly invokes acquire_mutex() and enters the critical section, while p_j remains blocked at line 5 waiting for the permission from p_i . The proof consists in showing that this cannot last forever.

Let $\langle h, i \rangle$ and $\langle k, j \rangle$ be the timestamps of the requests of p_i and p_j , respectively, with $\langle h, i \rangle < \langle k, j \rangle$. The proof shows that there is a finite time after which the timestamp of a future request of p_i will be $\langle h', i \rangle > \langle k, j \rangle$. When this will occur, the request of p_j will have priority with respect to that of p_i . The worst case scenario is described in Fig. 10.5: $clock_i = h - 1 < clock_j = k - 1$, the request messages from p_i to p_j and the permission messages from p_j to p_i are very fast, while the request message from p_j to p_i is very slow. When it receives the message REQUEST(h, i), p_j sends by return its permission to p_i . This message pattern, which is surrounded by an ellipsis, can occur repeatedly an unbounded number of times, but the important point is that it cannot appear an infinite number of times. This is because, when p_i receives the message (if any) will carry a date greater than k and will have a smaller priority than p_j 's current request. Hence, no process can prevent another process from entering the critical section.

The following property of the algorithm follows from the proof of the previous lemma. The invocations of acquire_mutex() direct the processes to enter the critical section according to the total order on the timestamps generated by these invocations.

Theorem 13 *The algorithm described in Fig.* 10.3 *solves the mutex problem.*

Proof The proof is a direct consequence of Lemmas 3 and 4.

10.2.4 From Simple Mutex to Mutex on Classes of Operations

The Readers/Writers Problem The most known generalization of the mutex problem is the readers/writers problem. This problem is defined by two operations, denoted read() and write(), whose invocations are constrained by the following synchronization rule.

• Any execution of the operation write() is mutually exclusive with the simultaneous execution of any (read() or write()) operation.

It follows from this rule that simultaneous executions of the operation read() are possible, as long as there is no concurrent execution of the operation write().

Generalized Mutex More generally, it is possible to consider several types of operations and associated exclusion rules defined by a concurrency matrix. Let op1() and op2() be two operations whose synchronization types are *st*1 and *st*2, respectively. These synchronization types are used to state concurrency constraints on the execution of the corresponding operations. To that end, a Boolean symmetric matrix denoted *exclude* is used (symmetric means that *exclude*[*st*1, *st*2] = *exclude*[*st*2, *st*1]). Its meaning is the following: An operation whose type is *st*1 and an operation whose type is *st*2 cannot be executed simultaneously if *exclude*[*st*1, *st*2] is true.

As an example, let us consider the readers/writers problem. There are two operations and a synchronization type per operation, namely r is the type of the operation read() and w is the type associated with the operation write(). The concurrency matrix is such that exclude[r, r] = false, exclude[w, r] = exclude[w, w] = false.

An Extended Mutex Algorithm Let us associate with each operation op() two control operations denoted begin_op() and end_op(). These control operations are used to bracket each invocation of op() as follows:

begin_op(); op(); end_op().

Let *op_type* be the synchronization type associated with the operation op() (let us observe that several operations can be associated with the same synchronization type). The algorithm described in Fig. 10.6 is a trivial extension of the mutex

 \square

operation begin_op() is (1) $cs_state_i \leftarrow trying;$ (2) $\ell r d_i \leftarrow clock_i + 1;$ waiting_from_i $\leftarrow R_i$; % $R_i = \{1, \ldots, n\} \setminus \{i\}$ (3) (4') for each $j \in R_i$ do send REQUEST($\ell rd_i, i, op_type$) to p_j end for; (5) wait (waiting_from_i = \emptyset); (6) $cs_state_i \leftarrow in.$ operation end_op() is (7) $cs_state_i \leftarrow out;$ (8) for each $j \in perm_delayed_i$ do send PERMISSION(*i*) to p_i end for; (9) $perm_delayed_i \leftarrow \emptyset.$ when REQUEST(k, j, op_t) is received do (10) $clock_i \leftarrow max(clock_i, k);$ (11') $prio_i \leftarrow (cs_state_i \neq out) \land (\langle \ell rd_i, i \rangle < \langle k, j \rangle) \land exclude(op_type, op_t);$ (12) **if** $(prio_i)$ **then** $perm_delayed_i \leftarrow perm_delayed_i \cup \{j\}$ (13)else send PERMISSION(i) to p_i (14) end if. when PERMISSION(j) is received do (15) waiting_from_i \leftarrow waiting_from_i $\setminus \{j\}$.

Fig. 10.6 Generalized mutex based on individual permissions (code for p_i)

algorithm described in Fig. 10.3. It ensures that (a) the concurrency constraints expressed by the exclusion matrix are respected, and (b) the invocations which are not executed concurrently are executed according to their timestamp order.

Only two lines need to be modified to take into account the synchronization type of the operation (their number is postfixed by '). At line 4', the request message has to carry the type of the corresponding operation. Then, at line 11', the Boolean value of *exclude(op_type, op_t)* (where *op_type* is the type of the current operation of p_i and op_t is the type of the operation that p_j wants to execute) is used to compute the value of *prio_i*, which determines if p_i has to send by return its permission to p_j .

It is easy to see that, if there is a single operation op(), and this operation excludes itself (i.e., its type op_type is such that $exclude(op_type, op_type = true)$, the algorithm boils down to that of Fig. 10.3.

10.3 Adaptive Mutex Algorithms Based on Individual Permissions

10.3.1 The Notion of an Adaptive Algorithm

The notion of an adaptive message-passing algorithm was introduced in Sect. 5.4.1, in the context of a mobile object navigating a network. In the context of mutual exclusion, it translates as follows. If after some time τ a process p_i is no longer

interested in accessing the critical section, then there is a time $\tau' \ge \tau$ after which this process is no longer required to participate in the mutual exclusion algorithm. It is easy to see that the mutex algorithm described in Fig. 10.3 is not adaptive: Each time a process p_i wants to enter the critical section, every other process p_j has to send it a permission, even if we always have $cs_state_j = out$.

This section presents two adaptive mutex algorithms. The first one is obtained from a simple modification of the algorithm of Fig. 10.3. The second one has the noteworthy property of being both adaptive and bounded.

10.3.2 A Timestamp-Based Adaptive Algorithm

This algorithm is due to O. Carvalho and G. Roucairol (1983).

Underlying Principle: Shared Permissions Let us consider two processes p_i and p_j such that p_i wants to enter the critical section several times, while p_j is not interested in the critical section. The idea is the following: p_i and p_j share a permission and, once p_i has this permission, it keeps it until p_j asks for it. Hence, if p_j is not interested in the critical section, p_j will not reclaim it, and p_i will not have to ask for it again to p_j .

As an example, let consider the case where only p_i wants to enter the critical section and, due to its previous invocation of acquire_mutex(), it has the (n - 1) permissions that it shares with every other process. In this scenario, p_i can enter the critical section without sending request messages, and its use of the critical section then costs no message.

The previous idea can be easily implemented with a message PERMISSION($\{i, j\}$) shared by each pair of processes p_i and p_j (PERMISSION($\{j, i\}$) is not another permission but a synonym of PERMISSION($\{i, j\}$)). Initially, this message is placed either on p_i or p_j , and the set R_i containing the identities of the processes to which p_i has to ask the permission is initialized as follows

 $R_i = \{j \mid \text{PERMISSION}(\{j, i\}) \text{ is initially on } p_j \}.$

Then, p_i adds j to R_i when it sends PERMISSION($\{i, j\}$) to p_j , and suppresses k from R_i when it receives PERMISSION($\{k, i\}$) from p_k .

Timestamp-Based Adaptive Mutex Algorithm The corresponding algorithm is described in Fig. 10.7.

The code implementing acquire_mutex() is nearly the same as in Fig. 10.3. The only difference lies in the fact that the set R_i is no longer a constant. A process p_i sends a request message only to the processes from which it does not have shared permission (line 3), and then waits until it has the (n - 1) permissions it individually shares with each other process (line 4). When it receives such a permission it withdraws the corresponding process from R_i (line 17).

The code implementing nearly_mutex() is the same as in Fig. 10.3, with an additional statement related to the management of R_i (line 8). This set takes the value

operation acquire_mutex() is (1) $cs_state_i \leftarrow trying;$ (2) $\ell rd_i \leftarrow clock_i + 1;$ (3) for each $j \in R_i$ do send REQUEST $(\ell rd_i, i)$ to p_i end for; (4) wait $(R_i = \emptyset)$; (5) $cs_state_i \leftarrow in$. operation release_mutex() is (6) $cs_state_i \leftarrow out;$ (7) for each $j \in perm_delayed_i$ do send PERMISSION($\{i, j\}$) to p_i end for; (8) $R_i \leftarrow perm_delayed_i;$ (9) $perm_delayed_i \leftarrow \emptyset$. when $\operatorname{REQUEST}(k, j)$ is received from p_i do (10) $clock_i \leftarrow max(clock_i, k);$ (11) $prio_i \leftarrow (cs_state_i = in) \lor ((cs_state_i = trying) \land (\langle \ell rd_i, i \rangle < \langle k, j \rangle));$ (12) **if** $(prio_i)$ **then** $perm_delayed_i \leftarrow perm_delayed_i \cup \{j\}$ (13)else send PERMISSION($\{i, j\}$) to p_i (14) $R_i \leftarrow R_i \cup \{j\};$ (15)if $(cs_state_i = trying)$ then send REQUEST $(\ell rd_i, i)$ to p_i end if (16) end if. when PERMISSION($\{i, j\}$) is received from p_i do (17) $R_i \leftarrow R_i \setminus \{j\}.$

Fig. 10.7 An adaptive mutex algorithm based on individual permissions (code for p_i)

of *perm_delayed*_i, which contains the set of processes to which p_i has just sent the permission it shares with each of them.

Finally, when p_i receives a message REQUEST(k, j), it has the priority if it is currently inside the critical section or it is waiting to enter it (line 11). If its current request has priority with respect to the request it has just received, it delays the sending of its permission (line 12). If it does not have priority, it sends by return to p_j the message PERMISSION($\{i, j\}$) (line 13) and adds j to R_i (line 14). Moreover, if p_i is competing for the critical section ($cs_state_i = trying$), it sends a request message to p_j so that p_j eventually returns to it the shared message PERMISSION($\{i, j\}$) (line 15) so that it will be allowed to enter the critical section.

Adaptivity, Message Cost, and the Management of Local Clocks It is easy to see that the algorithm is adaptive. If after some time a process p_i does not invoke acquire_mutex(), while other processes p_j do invoke this operation, p_i sends to each of them the permission it shares with them, after which it will no longer receive request messages.

It follows from the adaptivity property that the number of messages involved in one use of the critical section is $2|R_i|$ (requests plus the associated permissions), where $0 \le |R_i| \le n - 1$. The exact number depends on the current state of the processes with respect to their invocations of acquire_mutex() and release_mutex().

When considering the basic algorithm of Fig. 10.3, a process that invokes acquire_mutex() sends a timestamped request message to each other process. This

Fig. 10.8 Non-FIFO channel in the algorithm of Fig. 10.7

allows the local clocks to be synchronized in the sense that, as it has been already noticed, we always have $|clock_i - clock_j| \le n - 1$. Due to the adaptivity feature of the previous algorithm, this local clock synchronization is no longer ensured and the difference between any two local clocks cannot be bounded.

Non-FIFO Channels and Management of the R_i **Sets** It is possible that a process p_i sends to a process p_j a message PERMISSION($\{i, j\}$) followed by a message REQUEST($\ell rd_i, i$) (lines 13 and 15). As the channel is not required to be FIFO, it is possible that p_j receives and processes first the message REQUEST($\ell rd_i, i$) and then the message PERMISSION($\{i, j\}$). Does this create a problem?

To see why the answer is "no", let us consider Fig. 10.8, where are depicted a request message from p_i to p_j , the corresponding permission message from p_j to p_i , and a request message from p_j to p_i , which arrives at p_i before the request message. Predicates on the values of R_i and R_j are indicated on the corresponding process axis. Due to line 10, which is executed when p_j receives the message REQUEST(h, i), and line 2, which is executed before p_j sends the message REQUEST(k, j), we have k > h. It follows that, when p_i receives REQUEST(k, j), we have $\langle h, i \rangle < \langle k, j \rangle$, i.e., *prio_i* is true, and p_i delays the sending of the permission to p_j (line 12). Hence, p_i and p_j do not enter a livelock in which they would repeatedly send to each other the permission message without ever entering the critical section. The fact that the message REQUEST(k, j) arrives before or after the message PERMISSION($\{i, j\}$) has no impact on the way it is processed.

10.3.3 A Bounded Adaptive Algorithm

The mutex algorithm that is presented in this section has two main properties: It is adaptive and has only bounded variables. Moreover, process identities (whose scope is global) can be replaced by channel identities whose scopes are local to each process.

This algorithm is due to K.M. Chandy and J. Misra (1984). It is derived here from the permission-based algorithms which were presented previously. To simplify the presentation, we consider a version of the algorithm which uses process identities.

Fig. 10.9 States of the message PERMISSION($\{i, j\}$)

PERMISSION($\{i, j\}$) is sent by p_i to p_j (or p_j to p_i)

 p_i (or p_j) enters the critical section

Principle of the Algorithm: State of a Permission As before, each pair of distinct processes p_i and p_j share a permission message denoted PERMISSION($\{i, j\}$), and, to enter the critical section, a process needs each of the (n - 1) permissions it shares with each other process.

The main issue consists in ensuring, without using (unbounded) timestamps, that each invocation of acquire_mutex() terminates. To that end, a state is associated with each permission message; the value of such a state is *used* or *new*.

When a process p_i receives the message PERMISSION($\{i, j\}$) from p_j , the state of the permission is *new*. After it has benefited from this message to enter the critical section, the state of the permission becomes *used*. The automaton associated with the permission shared by p_i and p_j is described in Fig. 10.9.

Principle of the Algorithm: Establish a Priority on Requests The core of the algorithm is the way it ensures that each invocation of require_mutex() terminates. The state of a permission is used to establish a priority among conflicting requests.

Let $perm_state_i[j]$ be a local variable of p_i , which stores the current state of the permission shared by p_i and p_j when this permission is at process p_i .

When, while it has issued a request, process p_i receives a request from p_j , it has priority on p_i if one of the following cases occurs:

- $cs_state_i = in$. (Similarly to the corresponding case in the algorithm of Fig. 10.7, p_i has trivially priority because it is inside the critical section.)
- If *cs_state_i* = *trying*, there are two subcases.
 - Case $j \notin R_i$. In this case, the permission shared by p_i and p_j is located at p_i , and p_i does not have to ask for it. The priority depends then on the state of this permission. If $perm_state_i[j] = new$, p_i has not yet used the permission and consequently it has priority. If $perm_state_i[j] = used$, p_i does not have priority with respect to p_j .
 - Case $j \in R_i$. As p_i receives a request from p_j , process p_j was such that $i \in R_j$ when it sent the request, which means that p_j did not have the message PERMISSION($\{i, j\}$). As $j \in R_i$, this permission message is not at process p_i either. It follows that this permission is still in transit from p_j to p_i (it has been sent by p_j before its request, but will be received by p_i after p_j 's request). When this permission message PERMISSION($\{i, j\}$) will be received by p_i , its

260

```
operation acquire_mutex() is
(1) cs\_state_i \leftarrow trying;
(2)
       for each j \in R_i do send REQUEST() to p_i end for;
(3) wait (R_i = \emptyset);
(4) cs\_state_i \leftarrow in;
(5) for each j \in \{1, ..., n\} \setminus \{i\} do perm\_state_i[j] \leftarrow used end for.
operation release_mutex() is
(6) cs\_state_i \leftarrow out;
(7) for each j \in perm\_delayed_i do send PERMISSION(\{i, j\}) to p_i end for;
(8) R_i \leftarrow perm\_delayed_i;
(9) perm\_delayed_i \leftarrow \emptyset.
when REQUEST() is received from p_i do
(10) prio_i \leftarrow (cs\_state_i = in) \lor
                             ((cs\_state_i = trying) \land [(perm\_state_i[j] = new) \lor (j \in R_i)]);
(11) if (prio_i) then perm\_delayed_i \leftarrow perm\_delayed_i \cup \{j\}
(12)
                  else send PERMISSION(\{i, j\}) to p_i
(13)
                         R_i \leftarrow R_i \cup \{j\};
(14)
                         if (cs\_state_i = trying) then send REQUEST() to p_i end if
(15) end if.
when PERMISSION(\{i, j\}) is received from p_i do
(16) R_i \leftarrow R_i \setminus \{j\};
(17) perm\_state_i[j] \leftarrow new.
```

Fig. 10.10 A bounded adaptive algorithm based on individual permissions (code for p_i)

state will be *new*, which means that the current request of p_i has priority on the request of p_j .

This scenario, which is due to the fact that channels are not FIFO, is exactly the scenario which has been depicted in Fig. 10.8 for the timestamp-based adaptive mutex algorithm (in Fig. 10.8, as p_i knows both the timestamp of its last request and the timestamp of p_j 's request, a timestamp comparison is used instead of the predicate $j \in R_i$).

It follows that, when p_i receives a request from p_j , it has priority if

 $(cs_state_i = in) \lor ((cs_state_i = trying) \land [(perm_state_i[j] = new) \lor (j \in R_i)]).$

Initialization As in both previous algorithms, the local variables cs_state_i and $perm_delayed_i$ of each process p_i are initialized to *out* and \emptyset , respectively. Moreover, for each pair of processes p_i and p_j such that i < j, the message PERMIS-SION($\{i, j\}$) is initially at p_i (hence, $i \in R_j$ and $j \notin R_i$), and its initial state is *used* (i.e., $perm_state_i[j] = used$).

Bounded Adaptive Mutex Algorithm The corresponding algorithm is described in Fig. 10.10.

The code is nearly the same as in Fig. 10.7. The only modifications are the suppression of the management of the local clocks, the addition of the management of the permission states, and the appropriate modification of the priority predicate.

- Just before entering the critical section, a process p_i indicates that the permission it shares with any other process p_i is now used (line 5).
- When p_i receives (from p_j) the message PERMISSION($\{i, j\}$), p_i sets to *new* the state of this permission (line 17).
- The computation of the value of the Boolean $prio_i$ is done as explained previously (the timestamp-based comparison $\langle \ell rd_i, i \rangle < \langle k, j \rangle$ used in Fig. 10.7 is replaced by the predicate $perm_state_i[j] = new \lor j \in R_i$, which is on bounded local variables).

Adaptivity and Cost As for the algorithm of Fig. 10.7, it is easy to see that the algorithm is adaptive and each use of the critical section costs $2|R_i|$ messages, where the value of $|R_i|$ is such that $0 \le |R_i| \le n - 1$ and depends on the current state of the system. Moreover, the number of distinct messages is bounded.

As far as the local memory of a process p_i is concerned, we have the following: As in the previous algorithms, cs_state_i , R_i , and $perm_delayed_i$ are bounded, and so is $perm_state_i[1..n]$, which is an array of one-bit values.

10.3.4 Proof of the Bounded Adaptive Mutex Algorithm

An Acyclic Directed Graph The following directed graph G (which evolves according to the requests issued by the processes) is central to the proof of the liveness property of the bounded adaptive algorithm. The vertices of G are the n processes. There is a directed edge from p_i to p_j (meaning that p_j has priority over p_i) if:

- the message PERMISSION({*i*, *j*}) is located at process *p_i* and *perm_state_i*[*j*] = *used*, or
- the message PERMISSION($\{i, j\}$) is in transit from p_i to p_j , or
- the message PERMISSION({*i*, *j*}) is located at process *p_j* and *perm_state_j*[*i*] = *new*.

It is easy to see that the initial values are such that there is a directed edge from p_i to p_j if and only if i < j. Hence, this graph is initially acyclic.

Lemma 5 The graph G always remains acyclic.

Proof Let us observe that the only statement that can change the direction of an edge is (a) when a process uses the corresponding permission and (b) the previous state of this permission was *new*. This occurs at line 5. If *perm_state_i[j] = new* before executing *perm_state_i[j] \leftarrow used*, the execution of this statement changes the priority edge from p_j to p_i into an edge from p_i to p_j (i.e., p_j then has priority with respect to p_i).

It follows that, whatever the values of the local variables $perm_state_i[x]$ before p_i executes line 5, after it has executed this line, the edges adjacent to p_i are only outgoing edges. Consequently, no cycle involving p_i can be created by this statement. It follows that, if the graph *G* was acyclic before the execution of line 5, it remains acyclic. The fact that the graph is initially acyclic concludes the proof of the lemma.

Theorem 14 The algorithm described in Fig. 10.10 solves the mutex problem.

Proof Proof of the safety property. It follows from the initialization that, for any pair of processes p_i and p_j , we initially have either $(i \in R_j) \land (j \notin R_i)$ or $(j \in R_i) \land (i \notin R_j)$. Then, when a process p_i sends a permission it adds the corresponding destination process to R_i (lines 7–8, or lines 12–13). Moreover, when it receives a permission from a process p_j , p_i suppresses this process from R_i . It follows that there is always a single copy of each permission message.

Due to the waiting predicate of line 3, a process p_i has all the permissions it shares with each other process when it is allowed to enter the critical section. From then on, and until it executes release_mutex(), we have $cs_state_i = in$. Hence, during this period, the Boolean variable $prio_i$ cannot be false, and consequently, p_i does not send permissions. As permissions are not duplicated, and there is a single permission shared by any pair of processes, it follows that, while $cs_state_i = in$, no process p_j has the message PERMISSION($\{i, j\}$) that it needs to enter the critical section, which proves the safety property of the bounded adaptive mutex algorithm.

Proof of the liveness property. Considering a process p_i in the acyclic graph G, let height(i) be the maximal distance of a path from p_i to the process without outgoing edges. Let p_i be a process such that $cs_state_i = trying$, and k = height(i). The proof consists in showing, by induction on k, that eventually p_i is such that $cs_state_i = in$.

Base case: k = 0. In this case, p_i has only incoming edges in G. Let us consider any other process p_j .

- It follows from the directed edge from p_j to p_i in G that, if the message PER-MISSION({i, j}) is at p_i (or in transit from p_j to p_i), its state is (or will be) new. It then follows from the priority computed at line 10 that, even if it receives a request from p_j, p_i keeps the permission until it invokes release_mutex().
- If the message PERMISSION({i, j}) is at p_j and p_j is such that cs_state_j ≠ in, it follows from the directed edge from p_j to p_i in G that perm_state_i[j] = used. Hence, p_j sends the message PERMISSION({i, j}) to p_i. As the state of this message is set to new when it arrives, p_i keeps it until it invokes release_mutex().
- If the message PERMISSION($\{i, j\}$) is at p_j and p_j is such that $cs_state_j = in$, the previous item applies after p_j invoked release_mutex().

It follows that p_i eventually obtains and keeps the (n - 1) messages, which allows it to enter the critical section (lines 3–4).

Induction case: k > 0. Let us assume that all the processes that are at a height $\leq k - 1$, eventually enter the critical section. Let p_j be a process whose height is k.
This process has incoming edges and outgoing edges. As far as the incoming edges are concerned, the situation is the same as in the base case, and p_j will eventually obtain and keep the corresponding permissions.

Let us now consider an outgoing edge from p_i to some process p_j . The height of p_j is $\leq k - 1$. Moreover, (a) the message PERMISSION($\{i, j\}$) is at p_i in the state used, or (b) is in transit from p_i to p_j , or (c) is at p_j in the state new. As the height of p_j is $\leq k - 1$, it follows from the induction assumption, that p_j eventually enters the critical section. When p_j does, the state of the permission becomes used, and the direction of the edge connecting p_i and p_j is then from p_j to p_i . Hence, the height of p_i becomes eventually $\leq k - 1$, and the theorem follows.

10.4 An Algorithm Based on Arbiter Permissions

10.4.1 Permissions Managed by Arbiters

Meaning of an Arbiter Permission In an algorithm based on arbiter permissions (similarly to the algorithms based on individual permissions), each process p_i must ask the permission of each process in its request set R_i . As indicated in Sect. 10.1.2, the important difference lies in the meaning of a permission whose scope is no longer restricted to a pair of processes.

A permission has now a global scope. More precisely, let PERMISSION(*i*) be the permission managed by p_i . When it gives its permission to p_j , p_i gives this permission, not on behalf of itself, but on behalf of all the processes that need this permission to enter the critical section. It follows that, when a process p_j exits the critical section, it has to send back to each process p_i such that $i \in R_j$ the permission it has previously obtained from it. This is needed to allow p_i to later give the permission PERMISSION(*i*) it manages to another requesting process.

Mutex Safety from Intersecting Sets As a process gives its permission to only one process at a time, the safety property of the mutual exclusion problem is ensured if we have

$$\forall i, j: R_i \cap R_j \neq \emptyset.$$

This is because, as there is at least one process p_k such that $k \in R_i \cap R_j$, this process cannot give PERMISSION(k) to p_j , if it has sent it to p_i and p_i has not yet returned it. Such a process p_k is an *arbiter* for the conflicts between p_i and p_j . According to the definition of the sets R_i and R_j , the conflicts between the processes p_i and p_j can be handled by one or more arbiters.

Fig. 10.11 Arbiter permission-based mechanism

Example This arbiter-based mechanism is depicted in Fig. 10.11, where there are five processes, p_1 , p_2 , p_3 , p_4 , and p_5 , $R_1 = \{2, 3\}$ and $R_5 = \{3, 4\}$. As $3 \in R_1 \cap R_5$, process p_3 is an arbiter for solving the conflicts involving p_1 and p_5 . Hence, as soon as p_3 has sent PERMISSION(3) to p_1 , it cannot honor the request from p_5 . Consequently, p_3 enqueues this request in a local queue in order to be able to satisfy it after p_1 has returned the message PERMISSION(3) to it. (A similar three-way handshake mechanism was described in Fig. 5.1, where the home process of a mobile object acts as an arbiter process.)

10.4.2 Permissions Versus Quorums

Quorums A *quorum system* is a set of pairwise intersecting sets. Each intersecting set is called a *quorum*. Hence, in mutual exclusion algorithms based on arbiter permissions, each set R_i is a quorum and the sets R_1, \ldots, R_n define a quorum system.

The Case of a Centralized System An extreme case consists in defining a quorum system made up of a single quorum containing a single process, i.e.,

$$\forall i: \quad R_i = \{k\}.$$

In this case, p_k arbitrates all the processes, and the control is consequently centralized. (This corresponds to the home-based solution for a mobile object—token navigating a network; see Chap. 5.)

Constraints on the Definition of Quorums Ideally, a quorum system should be symmetric and optimal, i.e., such that

• All quorums have the size K, i.e., $\forall i : |R_i| = K$. This is the "equal effort rule": All the processes need the same number of permissions to enter the critical section.

- Each process p_i belongs to the same number D of quorums i.e., $\forall i: |\{j \mid i \in R_j\}| = D$. This is the "equal responsibility rule": All the processes are engaged in the same number of quorums.
- *K* and *D* have to be as small as possible. (Of course, a solution in which $\forall i: R_i = \{1, ..., n\}$ works, but we would then have K = D = n, which is far from being optimal.)

The two first constraints are related to symmetry, while the third one is on the optimality of the quorum system.

10.4.3 Quorum Construction

Optimal Values of K and D Let us observe that the previous symmetry and optimality constraints on K and D link these values. More precisely, as both nK and nD represent the total number of possible arbitrations, the relation K = D follows.

To compute their smallest value, let us count the greatest possible number of different sets R_i that can be built. Let us consider a set $R_i = \{q_1, \ldots, q_K\}$ (all q_j are distinct and q_j is not necessarily p_j). Due to the definition of D, each q_j belongs to R_i and (D - 1) other distinct sets. Hence, an upper bound on the total number of distinct quorums that can be built is 1 + K(D - 1). (The value 1 comes from the initial set R_i , the value K comes from the size of R_i , and the value D - 1 is the number of quorums to which each q_j belongs—in addition to R_i —see Fig. 10.12.) As there is a quorum per process and there are n processes, we have

$$n = K(K-1) + 1.$$

It follows that the lower bound on *K* and *D*, which, satisfies both the symmetry and optimality constraints, is $K = D \simeq \sqrt{n}$.

Finite Projective Planes Find *n* sets R_i satisfying $K = D \simeq \sqrt{n}$ amounts to find a finite projective plane of *n* points. There exists such planes of order *k* when *k* is

Fig. 10.13 An order two projective plane

Table 10.1 Defining quorums from a $\sqrt{n} \times \sqrt{n}$ grid

power of a prime number. Such a plane has n = k(k + 1) + 1 points and the same number of lines. Each point belongs to (k + 1) distinct lines, and each line is made up of (k + 1) points. Two distinct points share a single line, and two distinct lines meet a single point. A projective plane with n = 7 points (i.e., k = 2) is depicted in Fig. 10.13. (The points are marked with a black bullet. As an example, the lines "1, 6, 5" and "3, 2, 5" meet only at the point denoted "5".) A line defines a quorum.

Being optimal, any two quorums (lines) defined from finite projective planes have a single process (point) in common. Unfortunately, there are not finite projective planes for any value of n.

Grid Quorums A simple way to obtain quorums of size $O(\sqrt{n})$, consists in arbitrarily placing the processes in a square grid. If *n* is not a square, $(\lceil \sqrt{n} \rceil)^2 - n$ arbitrary processes can be used several times to complete the grid. An example with n = 14 processes is given in Table 10.1. As $(\lceil \sqrt{14} \rceil)^2 - 14 = 2$, two processes are used twice to fill the grid (namely, p_5 and p_8 appear twice in the grid).

A quorum R_i consists then of all the processes in a line plus one process per column. As an example the set {6, 2, 13, 1, 8, 4, 14} constitutes a quorum. As any quorum includes a line of the grid, it follows from their construction rule that any two quorums intersect. Moreover, due to the grid structure, and according to the value of n, we have $\lceil \sqrt{n} \rceil \leq |R_i| \leq 2\lceil \sqrt{n} \rceil - 1$.

Quorums and Antiquorums Let $\mathcal{R} = \{R_1, ..., R_n\}$ be a set of quorums. An *antiquorum* (with respect to \mathcal{R}) is a set R' such that $\forall i \colon R' \cap R_i \neq \emptyset$. Let us observe that two antiquorums are not required to intersect.

An arbiter permission-based system that solves the readers/writers problem can be easily designed as follows. A quorum R_i and an antiquorum R'_i are associated with each process p_i . The quorum R_i defines the set of processes from which p_i must obtain the permission in order to write, while the antiquorum R'_i defines the set of processes from which it must obtain the permission in order to read.

When considering grid-based quorums, an antiquorum can be defined as composed of all the process in a column. The size of such an antiquorum is consequently $\lceil \sqrt{n} \rceil$. It is easy to see that we have then for all pairs (i, j):

- $R_i \cup R_j \neq \emptyset$, which ensures mutual exclusion among each pair of concurrent write operations.
- *R*[']_i ∪ *R*_j ≠ Ø, which ensures mutual exclusion among each pair of concurrent read and write operations.

It is also easy to see that the square grid structure can be replaced by a rectangle. When this rectangle becomes a vector (one line and n columns) a write operation needs all permissions, while a read operation needs a single permission. This extreme case is called ROWA (Read One, Write All).

Crumbling Walls In a *crumbling wall*, the processes are arranged in several lines of possibly different lengths (hence, all quorums will not have the same size). A quorum is then defined as a full line, plus a process from every line below this full line.

A triangular quorum system is a crumbling wall in which the processes are arranged in such a way the ℓ th line has ℓ processes (except possibly the last line).

Vote-Based Quorums Quorums can also be defined from weighted votes assigned to processes, which means that each process has a weighted permission. A vote is nothing more than a permission. Let *S* be the sum of the weight of all votes. A quorum is then a set of processes whose sum of weighted votes is greater than S/2. This vote system is called *majority voting*.

10.4.4 An Adaptive Mutex Algorithm Based on Arbiter Permissions

The algorithm that is presented in this section is a variant of an algorithm proposed by M. Maekawa (1985). The introduction of quorums of size \sqrt{n} (defined from projective planes and grids) is also due to M. Maekawa.

Two Simplifying Assumptions To simplify the presentation, the channels are assumed to be FIFO. Moreover, while in practice it is interesting to have $i \in R_i$ (to save messages), we assume here that $i \notin R_i$. This simplification allows for a simpler explanation of the behavior of p_i as a client (which wants to enter the critical section and, to that end, asks for and releases permissions), and its behavior as a server (which implements an arbiter by managing and granting a permission).

On the Safety Side This section describes a first sketch of an algorithm where the focus is only on the safety property. This safe algorithm is described in Fig. 10.14. The meaning of the local variables is the same as in the previous permission-based algorithms. An empty queue is denoted \emptyset .

operation acquire_mutex() is (1) $cs_state_i \leftarrow trying;$ (2) waiting_from_i $\leftarrow R_i$; (3) for each $j \in R_i$ do send REQUEST() to p_i end for; (4) **wait** (*waiting_from*_i = \emptyset); (5) $cs_state_i \leftarrow in$. when PERMISSION(*j*) is received from p_i do $\% j \in R_i \%$ (6) waiting_from_i \leftarrow waiting_from_i \ $\{j\}$. operation release_mutex() is (7) $cs_state_i \leftarrow out;$ (8) for each $j \in R_i$ do send PERMISSION(j) to p_j end for. when REQUEST() is received from p_i do $\% i \in R_i \%$ (9) **if** $(perm_here_i)$ **then** send PERMISSION(i) to p_i ; (10) $perm_here_i \leftarrow false$ (11)else append p_i 's request to queue_i (12) end if. when PERMISSION(*i*) is received from p_i do % $i \in R_i$ % (13) withdraw p_i 's request from $queue_i$; (14) if $(queue_i \neq \emptyset)$ then let p_k be the process at the head of $queue_i$; (15)send PERMISSION(*i*) to p_k (16) end if.

Fig. 10.14 A safe (but not live) mutex algorithm based on arbiter permissions (code for p_i)

On the client side we have the following (lines 1–8). When a process invokes acquire_mutex(), it sends a request to each process p_j of its request set R_i to obtain the permission PERMISSION(j) managed by p_j (line 3). Then, when it has received all the permissions (line 6 and line 4), p_i enters the critical section (line 5). When, it releases the critical section, p_i returns each permission to the corresponding arbiter process (line 8).

On the arbiter side, the behavior of p_i is as follows (lines 9–16). The local Boolean variable *perm_here_i* is equal to *true* if and only if p_i has the permission it manages (namely, PERMISSION(*i*)).

- When it receives a request from a process p_j (we have then i ∈ R_j), p_i sends it the permission it manages (PERMISSION(i)) if it has this permission (lines 9–10). Otherwise, it adds the request of p_j to a local queue (denoted queue_i) in order to serve it later.
- When p_i is returned its permission from a process p_j , it suppresses p_j 's request from its queue $queue_i$, and, if this queue is not empty, it sends PERMISSION(*i*) to the first process of this queue. Otherwise, it keeps its permission until a process p_j (such that $j \in R_j$) requests it.

The Liveness Issue Due to the quorum intersection property $(\forall i, j: R_i \cap R_j \neq \emptyset)$ and the management of permissions (which are returned to their managers after being used), the previous algorithm satisfies the safety property of the mutex problem.

Fig. 10.15 Permission preemption to prevent deadlock

Unfortunately, this algorithm is deadlock-prone. As a simple case, let us consider that both p_{j1} and p_{j2} are such that $i1, i2 \in R_{j1} \cap R_{j2}$. If p_{i1} gives its permission to p_{j1} while concurrently p_{i2} gives its permission to p_{j2} , none of p_{j1} and p_{j2} will obtain both permissions and will wait forever for the other permission.

Such a deadlock scenario may occur even if all the intersections of the sets R_i contain a single process. To that, it is sufficient to consider a system of three processes such that $R_1 = \{2, 3\}$, $R_2 = \{1, 3\}$, $R_3 = \{1, 2\}$, and an execution in which p_1 gives its permission to p_2 , p_2 gives its permission to p_3 , and p_3 gives its permission to p_1 . When this scenario occurs, no process can progress.

Solving the Liveness Issue, Part 1: Using Timestamps Two additional mechanisms are introduced to solve the liveness issue. The first is a simple scalar clock system that permits us to associate a timestamp with each request issued by a process. The local clock of a process p_i , denoted $clock_i$, is initialized to 0. As we saw in Chap. 7 and Sect. 10.2.1, this allows requests to be totally ordered, and consequently provides us with a simple way to establish priority among conflicting requests.

Solving the Liveness Issue, Part 2: Permission Preemption As a process is an arbiter for a subset of processes and not for all processes, it is possible that a process p_i gives its permission to a process p_{j1} (whose request its timestamped $\langle h1, j1 \rangle$), and while it has not yet been returned its permission, it receives a request timestamped $\langle h2, j2 \rangle$, such that $\langle h2, j2 \rangle < \langle h1, j1 \rangle$. As the request from p_{j2} has a smaller timestamp, it has priority over the request of p_{j1} .

In that case, p_i asks p_{j1} to yield the permission in order to prevent a possible deadlock. This is described in Fig. 10.15.

- p_i receives first a request message from p_{j1} , timestamped $\langle h1, j1 \rangle$. As $queue_i = \emptyset$, p_i sends its permission to p_{j1} and adds $\langle h1, j1 \rangle$ to $queue_i$.
- Then p_i receives a request message from p_{j2} , timestamped $\langle h2, j2 \rangle$ and such that $\langle h2, j2 \rangle < \langle h1, j1 \rangle$. p_i then adds $\langle h2, j2 \rangle$ to queue_i (which is always ordered

according to timestamp order, with the smallest timestamp at its head), and sends the message YIELD_PERM() to p_{j1} in order to be able to serve the request with the highest priority (here the request from p_{j2} , which has the smallest timestamp).

- Then p_i receives a request message from p_{j3} . The timestamp of this message $\langle h3, j3 \rangle$ is such that $\langle h2, j2 \rangle \langle \langle h3, j3 \rangle \langle \langle h1, j1 \rangle$. As this timestamp is not smaller than the timestamp at the head of the queue, p_i only inserts it in *queue_i*.
- When p_i receives PERMISSION(*i*) from p_{j1} , p_i forwards it to the process whose request is at the head of its queue (namely p_{j2}).
- Finally, when p_{j2} returns its permission to p_i , p_i forwards it to the process which is at the head of its queue, namely p_{j3} .

The resulting algorithm, which is an extension of the safe algorithm of Fig. 10.14, is described in Fig. 10.16. On the client side we have the following:

- When a process p_i invokes acquire_mutex(), it increases its local clock (line 3), and sends a message timestamped (clock_i, i) (line 4).
- When p_i receives a permission with a date d, p_i updates its local clock (line 7) and its waiting set *waiting_from_i* (line 8).
- When a process p_i invokes release_mutex(), it returns its permission to each process of the set R_i (line 10).
- When p_i receives a message YIELD_PERM() from one of its arbitres p_j , it returns its permission to p_j only if its local state is such that $cs_state_i = trying$ (lines 21–23). In this case, as it has no longer the permission of p_j , it also adds j to waiting_from_i.

If $cs_state_i = in$ when p_i receives a message YIELD_PERM() from one of its arbiter p_j , it does nothing. This is because, as it is in the critical section, it will return p_j 's permission when it will invoke release_mutex(). Let us finally notice that it is not possible to have $cs_state_i = out$ when p_i receives a message YIELD_PERM(). This is because, if p_i receives such a message, it is because it has previously received the corresponding permission (let us recall that the channels are FIFO).

On the arbiter side, the behavior of p_i is defined by the statements it executes when it receives a message REQUEST() or RETURNED_PERM(), or when a process sends it back its the message PERMISSION(i).

• When p_i receives a message REQUEST(d) from a process p_j , it first updates its clock (line 11) and adds the corresponding timestamp $\langle d, j \rangle$ to queue_i (line 12).

Then, if PERMISSION(*i*) is here, p_i sent it by return to p_j (lines 13–14). In this case, the permission message carries the current value of $clock_i$. This is to allow the client p_j to update its local clock (line 7). In this way, thanks to the intersection property of the sets R_i and R_j , the local clocks of the processes are forced to progress (and this global progress of local clocks allows each request to eventually have the smallest timestamp).

If PERMISSION(*i*) is not here, p_i has sent this permission message to some process p_k (whose identity has been saved in *sent_to_i*). If $\langle d, j \rangle$ is the smallest timestamp in *queue_i* and p_i has not reclaimed its permission to p_k , p_i reclaims it (lines 15–18).

operation acquire_mutex() is (1) $cs_state_i \leftarrow trying;$ (2) waiting from $i \leftarrow R_i$; (3) $clock_i \leftarrow clock_i + 1$; (4) for each $j \in R_i$ do send REQUEST(*clock_i*) to p_i end for; (5) **wait** (*waiting_from*_{*i*} = \emptyset); (6) $cs_state_i \leftarrow in$. when PERMISSION(j, d) is received from p_i do $\% j \in R_i \%$ (7) $clock_i \leftarrow max(clock_i, d);$ (8) waiting_from_i \leftarrow waiting_from_i $\setminus \{j\}$. operation release_mutex() is (9) cs state_i \leftarrow out: (10) for each $j \in R_i$ do send PERMISSION(j) to p_j end for. when $\operatorname{REQUEST}(d)$ is received from p_i do (11) $clock_i \leftarrow max(clock_i, d);$ (12) add the timestamp $\langle d, j \rangle$ to queue_i and sort it according to timestamp order; (13) if $(perm_here_i)$ then send PERMISSION $(i, clock_i)$ to p_i ; (14) $sent_to_i \leftarrow j; perm_here_i \leftarrow false$ (15)else if $((\langle d, j \rangle = \text{head of } queue_i) \land (\neg perm_asked_i))$ (16)then let $k = sent_to_i$; (17)send YIELD_PERM() to p_k ; (18) $perm_asked_i \leftarrow true$ (19)end if (20) end if. when YIELD_PERM() is received from p_i do $\% j \in R_i \%$ (21) **if** $(cs_state_i = trying)$ (22)**then** send RETURNED_PERM(j) to p_i ; wait_from_i \leftarrow wait_from_i $\cup \{j\}$ (23) end if. when RETURNED_PERM(*i*) is received from p_i do $\% j \in R_i \%$ (24) let $\langle -, k \rangle$ = head of queue_i; (25) send PERMISSION(*i*) to p_k ; (26) $sent_to_i \leftarrow k$; $perm_asked_i \leftarrow false$. when PERMISSION(*i*) is received from p_i do $\%_i \in R_i$ % (27) withdraw $\langle -, j \rangle$ from $queue_i$; (28) if $(queue_i \neq \emptyset)$ then let $\langle -, k \rangle = \text{head of } queue_i$; send PERMISSION $(i, clock_i)$ to p_k ; (29)(30) $sent_to_i \leftarrow j; perm_asked_i \leftarrow false$ (31) end if.

Fig. 10.16 A mutex algorithm based on arbiter permissions (code for p_i)

• When p_i receives RETURNED_PERM() from p_j , it forwards the message PER-MISSION(*i*) to the process at the head of the queue, which is the requesting process with the smallest timestamp (lines 24–26). As the request of p_j remains pending, p_i does not suppress p_j 's timestamp from queue_i. • When p_i receives from p_j the message PERMISSION(*i*) it manages, p_i first suppresses p_j 's timestamp from *queue_i* (lines 27). Then, if *queue_i* is not empty, p_i sends its permission (with it local clock value) to the first process in *queue_i* (lines 27–31).

Message Cost of the Algorithm The number of messages generated by one use of the critical section depends on the current system state. In the best case, a single process p_i wants to use the critical section, and consequently $3|R_i|$ messages are used. When several processes are competing, the *average number* of messages per use of the critical sections can be up to $6|R_i|$. This is due to the following observations. First, a YIELD_PERM() message can entail the sending of a RETURNED_PERM() message and, in that case, the permission message will have to be sent again to the yielding process. Second, it is possible that several YIELD_PERM() messages be (sequentially) sent to the same process p_i by the same arbiter p_j (each other process p_k such that $k \in R_j$ can entail such a scenario once).

10.5 Summary

The aim of this chapter was to present the mutual exclusion problem and the class of permission-based algorithms that solve it. Two types of permission-based algorithms have been presented, algorithms based on individual permissions and algorithms based on arbiter permissions. They differ in the meaning of a permission. In the first case a permission engages only its sender, while it engages a set of processes in the second case. Arbiter-based algorithms are also known under the name quorum-based algorithms. An aim of the chapter was to show that the concept of a permission is a fundamental concept when one has to solve exclusion problems. The notions of an adaptive algorithm and a bounded algorithm have also been introduced and illustrated.

The algorithms presented in Chap. 5 (devoted to mobile objects navigating a network) can also be used to solve the mutex problem. In this case, the mobile object is usually called a token, and the corresponding algorithms are called token-based mutex algorithms.

10.6 Bibliographic Notes

- The mutual exclusion problem was introduced in the context of shared memory systems by E.W. Dijkstra, who presented its first solution [109].
- One of the very first solutions to the mutex problem in message-passing systems is due to L. Lamport [226]. This algorithm is based on a general state-machine replication technique. It requires 3*n* messages per use of the critical section.

- The mutex problem has received many solutions both in shared memory systems (e.g., see the books [317, 362]) and in message-passing systems [306]. Surveys and taxonomies of message-passing mutex algorithms are presented in [310, 333, 349].
- The algorithm presented in Sect. 10.2.1 is due to R. Ricart and A.K. Agrawala [327].
- The unbounded adaptive algorithm presented in Sect. 10.3.2 is due to O. Carvalho and G. Roucairol [71]. This algorithm was obtained from a Galois field-based systematic distribution of an assertion [70].
- The bounded adaptive algorithm presented in Sect. 10.3.3 is due to K.M. Chandy and J. Misra [78]. This is one of the very first algorithms that used the notion of edge reversal to maintain a dynamic cycle-free directed graph. A novelty of this paper was the implementation of edge reversals with the notion of a *new/used* permission.
- The algorithm based on arbiter permissions is due to M. Maekawa [243], who was the first to define optimal quorums from finite projective planes.
- The notion of a quorum was implicitly introduced by R.H. Thomas and D.K. Gifford in 1979, who were the first to introduce the notion of a vote to solve resource allocation problems [159, 368].

The mathematics which underly quorum and vote systems are studied in [9, 42, 147, 195]. The notion of an anti-quorum is from [41, 147]. Tree-based quorums were introduced in [7]. Properties of crumbling walls are investigated in [294]. Availability of quorum systems is addressed in [277]. A general method to define quorums is presented in [281]. A monograph on quorum systems was recently published [380].

• Numerous algorithms for message-passing mutual exclusion have been proposed. See [7, 68, 226, 239, 282, 348] to cite a few. A mutex algorithm combining individual permissions and arbiter permissions is presented in [347]. An algorithm for arbitrary networks is presented in [176].

10.7 Exercises and Problems

- 1. Let us consider the mutex algorithm based on individual permission described in Sect. 10.2. The aim is here to prevent the phenomenon depicted in Fig. 10.5. More precisely, if p_i and p_j are conflicting and p_i wins (i.e., the timestamp associated with the request of p_i is smaller than the timestamp associated with the request of p_j), then p_j has to enter the critical section before the next invocation of p_i .
 - Modify the algorithm so that it satisfies the previous sequencing property.
 - Obtain the sequencing property by adding a simple requirement on the behavior of the channels (and without modifying the algorithm).
 - Which of the previous solutions is the most interesting? Why?

2. When considering the mutex algorithm based on individual permission described in Sect. 10.2, each use of the critical section by a process requires 2(n - 1) messages. Modify this algorithm in such a way that each use of the critical section requires exactly *n* messages when the fully connected network is replaced by a unidirectional ring network.

Solution in [327].

- 3. When considering the mutex algorithm based on individual permission described in Sect. 10.2, show that the relation $|clock_i clock_j| \le n 1$ is invariant. Exploit this property to obtain an improved algorithm in which the clock value domain is bounded by 2n 1. Solution in [327].
- 4. Rewrite the bounded adaptive mutex algorithm described in Fig. 10.10, in such a way that the identities of the processes (which have a global meaning) are replaced by channel identities (which have a local meaning).
- 5. When considering the bounded adaptive mutex algorithm described in Fig. 10.10, can the predicate " $j \in R_i$ " (used to compute the priority at line 10) be suppressed when the channels are FIFO?
- 6. When considering the mutex algorithm based on arbiter permissions described in Fig. 10.16, is the process identity j or i necessary in the following message received by p_i : PERMISSION(j, d), RETURN_PERM(i), and PERMISSION(i).
- 7. To simplify its presentation, the algorithm described in Fig. 10.16 assumes that $i \notin R_i$. To save messages, it is interesting to always have $i \in R_i$. Modify the algorithm so that it works when, for any *i*, we have $i \in R_i$.

Chapter 11 Distributed Resource Allocation

This chapter is on resource allocation in distributed systems. It first considers the case where there are M instances of the same resource, and a process may request several instances of it. The corresponding resource allocation problem is called *k*-*out-of-M* problem (where $k, 1 \le k \le M$, stands for the—dynamically defined—number of instances requested by a process). Then, the chapter addresses the case where there are several resources, each with a single or several instances.

The multiplicity of resources may generate deadlocks if resources are arbitrarily allocated to processes. Hence, the chapter visits deadlock prevention techniques suited to resource allocation. It also introduces the notion of a conflict graph among processes. Such a graph is a conceptual tool, which captures the possible conflicts among processes, when each resource can be accessed by a subset of processes. Finally, the chapter considers two distinct cases, according to the fact that the subset of resources required by a process is always the same, or may vary from one resource session to another one.

Keywords Conflict graph · Deadlock prevention · Graph coloring · Incremental requests · *k*-out-of-*M* problem · Permission · Resource allocation · Resource graph · Resource type · Resource instance · Simultaneous requests · Static/dynamic (resource) session · Timestamp · Total order · Waiting chain · Wait-for graph

11.1 A Single Resource with Several Instances

11.1.1 The k-out-of-M Problem

The mutual exclusion problem considers the case of a single resource with a single instance. A simple generalization is when there are M instances of the same resource, and a process may require several instances of it. More precisely, (a) each instance can be used by a single process at a time (mutual exclusion), and (b) each time it issues a request, a process specifies the number k of instances that it needs (this number is specific to each request).

Solving the k-out-of-M problem consists in ensuring that, at any time:

• no resource instance is accessed by more than one process,

- each process is eventually granted the number of resource instances it has requested, and
- when possible, resource instances have to be granted simultaneously. This last requirement is related to efficiency (if M = 5 and two processes asks for k = 2 and k' = 3 resource instances, respectively, and no other process is using or requesting resource instances, these two processes must be allowed to access them simultaneously).

11.1.2 Mutual Exclusion with Multiple Entries: The 1-out-of-M Mutex Problem

The 1-out-of-*M* problem is when every request of a process is always for a single resource instance. This problem is also called *mutual exclusion with multiple entries*.

This section presents an algorithm that solves the 1-out-of-M problem. This algorithm, which is due to K. Raymond (1989), is a straightforward adaptation of the mutex algorithm based on individual permission described in Sect. 10.2.

A Permission-Based Predicate As in Sect. 10.2, a process p_i that wants to acquire an instance of the resource, asks for the individual permission of each other process p_j . As there are M instances of the resource, p_i has to wait until it knows that at most (M - 1) other processes are using a resource instance. This translates into the waiting statement: Wait until (n - 1) - (M - 1) = n - M permissions have been received.

Management of Individual Permissions When a process has received (n - M) permissions, it is allowed to use an instance of the resource. The (M - 1) permissions that have not yet arrived, will be received later, i.e., while p_i is using the resource instance it has obtained, after it has used it, or even during a new use of a resource instance.

Moreover, let us notice that a process p_i may delay the sending of several permissions with respect to another process p_j . As an example, let us consider three processes, p_1 , p_2 , and p_3 , and two instances of a resource (M = 2). Process p_1 obtains n - M = 1 permission (from p_2 or p_3) and uses a resource instance for a very long period of time. During this period of time, process p_2 may use the other resource instance several times due to the permission sent by p_3 (which is not interested in the resource). In this scenario, process p_1 receives several requests from p_2 that it will answer only when it will release its instance of the resource.

Local Variables of a Process p_i In addition to the local variables cs_state_i , $clock_i$, ℓrd_i , and the constant set $R_i = \{1, ..., n\} \setminus \{i\}$, and according to the previous discussion on the permissions sent and received by the processes, each process p_i manages two local arrays of non-negative integers (both initialized to [0, ..., 0]), and a non-negative integer variable.

operation acquire_resource() is (1) $cs_state_i \leftarrow trying;$ (2) $\ell r d_i \leftarrow clock_i + 1;$ (3) $nb_perm_i \leftarrow 0;$ (4) for each $j \in R_i$ do send REQUEST $(\ell rd_i, i)$ to p_i ; (5) $wait_perm_i[j] \leftarrow wait_perm_i[j] + 1$ (6) end for; (7)wait $(nb_perm_i \ge n - M));$ (8) $cs_state_i \leftarrow in$. operation release_resource() is (9) $cs_state_i \leftarrow out;$ (10) **foreach** *j* such that $perm_delayed_i[j] \neq 0$ **do** (11)send PERMISSION(*i*, perm_delayed_i[j]); perm_delayed_i[j] $\leftarrow 0$ (12) end for. when REQUEST(k, j) is received do (13) $clock_i \leftarrow max(clock_i, k);$ (14) $prio_i \leftarrow (cs_state_i = in) \lor [(cs_state_i = trying) \land (\langle \ell rd_i, i \rangle < \langle k, j \rangle)];$ (15) **if** $(prio_i)$ **then** $perm_delayed_i[j] \leftarrow perm_delayed_i[j] + 1$ (16)else send PERMISSION(i, 1) to p_i (17) **end if**. when PERMISSION(j, x) is received do (18) wait_perm_i[j] \leftarrow wait_perm_i[j] - x; (19) if $((cs_state_i = trying) \land (wait_perm_i[j] = 0))$ then $nb_perm_i \leftarrow nb_perm_i + 1$ end if.

Fig. 11.1 An algorithm for the multiple entries mutex problem (code for p_i)

- wait_perm_i[1..n] is an array such that wait_perm_i[j] contains the number of permissions that p_i is waiting on from p_j.
- *perm_delayed*_i[1..*n*] is an array such that *perm_delayed*_i[*j*] contains the number of permissions that *p*_i has to send to *p*_j when it will release the resource instance it is currently using.
- nb_perm_i , which is meaningful only when p_i is waiting for permission, contains the number of permissions received so far by p_i (i.e., $nb_perm_i = |\{j \neq i \text{ such that } wait_perm_i[j] = 0\}|$).

Behavior of a Process p_i The algorithm based on individual permission that solves the multiple entries mutual exclusion problem is described in Fig. 11.1. As already indicated, this algorithm is a simple extension of the mutex algorithm described in Fig. 10.3. The following comments are only on the modified parts of this algorithm.

When a process p_i invokes acquire_resource(), it sends a timestamped request message to each other process p_j in order to obtain its permission, and updates accordingly *wait_perm_i*[*j*] (lines 4–5). Then, p_i waits until it has received (n - M) permissions (line 7).

When a process p_i invokes release_resource(), it sends to each process p_j all the permissions whose sending has been delayed. If several permissions have been delayed with respect to p_j , they are sent in a single message (line 11).

When p_i receives a message REQUEST(k, j), p_i has priority if it is currently using an instance of the resource $(cs_state_i = in)$, or it is waiting and its current request has a smaller timestamp than the one it just received (line 14). If p_i has priority, it increases accordingly *perm_delayed*_i[j] (line 15), otherwise it sends its permission by return (line 16).

Finally, when p_i receives a message PERMISSION(j, x), it updates accordingly *wait_perm_i*[j] (line 18). Moreover, if p_i is waiting to obtain a resource instance and it is no longer waiting permissions from p_j , p_i increases nb_perm_i (line 19), which may allow it to use an instance of the resource if $nb_perm_i \ge n - M$ (line 7).

Message Cost of the Algorithm There are always (n - 1) request messages per use of a resource instance, while the number of permission messages depends on the system state and varies between (n - 1) and (n - M). The total number of messages per use of a resource instance is consequently at most 2(n - 1) and at least 2n - (M + 1).

11.1.3 An Algorithm for the k-out-of-M Mutex Problem

From 1-out-of-*M* **to** *k***-out-of***M* As previously indicated, in the *k*-out-of-*M* problem, there are *M* instances of the same resource type and, each time a process p_i invokes acquire_resource(), p_i passes as an input parameter the number *k* of instances it wants to acquire. The parameter *k*, $1 \le k \le M$, is specific to each instance (which means that there is no relation linking the parameters *k* and *k'* of any two invocations acquire_resource(*k*) and acquire_resource(*k'*).

An algorithm solving the k-out-of-M problem can be obtained from an appropriate modification of a mutex algorithm. As for the 1-out-of-M problem studied in the previous section, we consider here the mutex algorithm based on individual permissions described in Sect. 10.2. The resulting algorithm, which is described below, is due to M. Raynal (1991).

Algorithmic Principles: Guaranteeing Safety and Liveness In order to never violate the safety property (each resource instance is accessed in mutual exclusion and no more than M instances are simultaneously allocated to processes), a process p_i first computes an upper bound on the number of instances of the resource which are currently allocated to the other processes. To that end, each process p_i manages a local array $used_by_i[1..n]$ such that $used_by_i[j]$ is an upper bound on the number of instances currently used by p_j . Hence, when a process p_i invokes acquire_resource(k_i), it first computes the values of $used_by_i[1..n]$, and then waits until the predicate

$$\sum_{1 \le j \le n} used_by_i[j] \le M$$

Fig. 11.2 Sending pattern of NOT_USED() messages: Case 1

becomes satisfied. When this occurs, p_i is allowed to access k_i resource instances.

As far as the liveness property is concerned, each request message carries a timestamp, and the total order on timestamps is used to establish a priority among the requests.

Basic Message Pattern (1) When a process p_i sends a timestamped request message to p_j , it conservatively considers that p_j uses the *M* resource instances. When it receives the request sent by p_i , p_j sends by return a message NOT_USED(*M*) if it is not interested, or if its current request has a greater timestamp.

If its current request has priority over p_i 's request, p_j sends it by return a message NOT_USED $(M - k_j)$ (where k_j is the number of instances it asked for). This is depicted on Fig. 11.2. This message allows p_i to know how many instances of the resource are currently used or requested by p_j . Then, when it will later invoke release_resource (k_j) , p_j will send to p_i the message NOT_USED (k_j) to indicate that it has finished using its k_j instances of the resource.

When considering the permission-based terminology, a message PERMISSION() sent by a process p_i to a process p_i in the mutex algorithm based on individual permissions is replaced here by two messages, namely a message NOT_USED $(M - k_j)$ and a message NOT_USED (k_j) . Said in another way, a message NOT_USED(x) represents a fraction of a whole permission, namely, $\frac{x}{M}$ % of it.

Basic Message Pattern (2) It is possible that a process p_j uses k_j instances of a resource during a long period, and during this period p_i invokes several times first acquire_resource(k_i) (where $k_i + k_j \le M$), and later invokes acquire_resource(k'_i) (where $k'_i + k_j \le M$), etc. This scenario is depicted in Fig. 11.3.

When p_i issues its second invocation, it adds M to $used_by_i[j]$, which becomes then equal to $M + k_j$. In order that this value does not prevent p_i from progressing, p_j is required to send to p_i a message NOT_USED(M) when it receives the second request of p_i . The corresponding message exchange pattern is described in Fig. 11.3.

Behavior of a Process p_i The corresponding *k*-out-of-*M* algorithm executed by each process p_i is described in Fig. 11.4. The local variables cs_state_i , $clock_i$, ℓrd_i , and $perm_delayed_i$ are the same as in the basic-mutex algorithm of Fig. 10.3. The meaning of the additional array variable $used_by_i[1..n]$ has been explained above. The message pattern described in Fig. 11.3 is generated by the execution of line 15.

Fig. 11.3 Sending pattern of NOT_USED() messages: Case 2

```
operation acquire_resource(k_i) is
(1) cs\_state_i \leftarrow trying;
      \ell rd_i \leftarrow clock_i + 1;
(2)
(3)
      for each j \in R_i do send REQUEST(\ell rd_i, i) to p_i;
(4)
                              used_by_i[j] \leftarrow used_by_i[j] + M
(5)
      end for;
(6)
      used_by_i[i] \leftarrow k_i;
      wait (\sum_{1 \le j \le n} used_by_i[j] \le M);
(7)
(8)
      cs\_state_i \leftarrow in.
operation release_resource(k_i) is
(9) cs\_state_i \leftarrow out;
(10) foreach j \in perm\_delayed_i do send NOT_USED(k_i) end for;
(11) perm\_delayed_i \leftarrow \emptyset.
when REQUEST(k, j) is received do
(12) clock_i \leftarrow max(clock_i, k);
(13) prio_i \leftarrow ((cs\_state_i \neq out) \land (\langle \ell rd_i, i \rangle < \langle k, j \rangle));
(14) if (\neg prio_i \lor [prio_i \land (j \in perm\_delayed_i)])
          then send NOT_USED(M) to p_i
(15)
          else if (k_i \neq M) then send NOT_USED(M - k_i) to p_i end if;
(16)
(17)
                 perm\_delayed_i \leftarrow perm\_delayed_i \cup \{j\}
(18) end if.
when NOT_USED(x) is received from p_i do
(19) used_by_i[j] \leftarrow used_by_i[j] - x.
       % this line can render true the waiting predicate of line 7 %.
```

Fig. 11.4 An algorithm for the *k*-out-of-*M* mutex problem (code for p_i)

The particular case where a process asks for all instances of the resource is addressed at line 16.

Let us remember that, except for the **wait** statement of line 7, the code of each operation and the code associated with message receptions are locally executed in mutual exclusion.

The requests are served in their timestamp order. As an example, let us consider that M = 8 and let us assume that the first five invocations (according to their times-

tamp) are for 3, 1, 2, 5, 1 instances of the resource, respectively. Then, the first three invocations are served concurrently. The fourth invocation will be served as soon as any three instances of the resource will have been released.

Let us finally observe that it is easy to modify the algorithm to allow a process p_i to release separately its k_i instances of the resource.

Message Cost of the Algorithm There are always (n - 1) request messages per use of a resource instance. The number of NOT_USED() messages depends on the system state and varies between (n - 1) and 2(n - 1). Hence, the total number of messages per use of a set of instances of the resource is at least 2(n - 1) and at most 3(n - 1).

11.1.4 Proof of the Algorithm

This section proves that the previous algorithm solves the *k*-out-of-*M* problem. It assumes that (a) each invocation acquire_resource(*k*) is such that $1 \le k \le M$, and (b) the periods during which a process uses the instances of the resource that it has obtained are finite.

Lemma 6 Let x^{τ} be the number of instances of the resource accessed by the processes at time τ . The algorithm described in Fig. 11.4 guarantees that $\forall \tau : x^{\tau} \leq M$.

Proof The proof of the safety property is based on three claims.

Claim C1 $\forall i, j: used_by_i[j] \ge 0.$

Proof of Claim C1 As all the local variables $used_by_i[j]$ are initialized to 0, the claim is initially true.

A process p_i increases all its local counters $used_by_i[j]$ at line 4 when it invokes acquire_resource (k_i) (and this is the only place where p_i increases them). Moreover, it increases each of them by M. After these increases, the claim remains trivially true.

The reception of a message REQUEST() sent by p_i to another process p_j gives rise to either one message NOT_USED(M) or at most one message NOT_USED($M - k_j$) followed by at most one message NOT_USED(k_j). It follows from line 19 that, when these messages are received by p_i , used_by_i[j] is decreased and can be set to 0. Hence, used_by_i[j] never becomes negative and the claim follows. (End of the proof of the claim.)

Claim C2 $\forall i : \forall \tau : (cs_state_i^{\tau} = in) \Rightarrow (\sum_{1 \le j \le n} used_by_i^{\tau}[j] \le M).$

Proof of Claim C2 It follows from line 7 that the claim is true when p_i sets cs_state_i to the value *in*. As p_i does not invoke acquire_resource() while $cs_state_i = in$, no local variable $used_by_i[j]$ is increased when $cs_state_i = in$, and the claim follows. (End of the proof of the claim.)

Claim C3 Let $IN^{\tau} = \{i \mid cs_state_i^{\tau} = in\}$. Moreover, let nb_alloc_j be such that $nb_alloc_j = k_j$ if $j \in IN^{\tau}$, and $nb_alloc_j = 0$, otherwise $(k_j$ is the number of instances requested by p_j).

Considering $IN^{\tau} \neq \emptyset$, let p_m be the process such that $m \in IN^{\tau}$, and its request has the greatest timestamp among all the requests issued by the processes in IN^{τ} (i.e., $\forall k \in IN^{\tau} \land k \neq m : \langle d_m, m \rangle > \langle d_k, k \rangle$, where $\langle d_x, x \rangle$ is the timestamp associated with the request of p_x). We claim $\forall j \neq m : used_b y_m^{\tau}[j] \ge nb_alloc_j$.

Proof of Claim C3 If $j \notin IN^{\tau}$, we have (from Claim C1) $used_by_m^{\tau}[j] \ge 0 = nb_alloc_j$, and the claim follows. Hence, let us assume $j \in IN^{\tau}$ and $j \neq m$. We have then $nb_alloc_j = k_j$. Due to the definition of p_m , we have $\langle d_m, m \rangle > \langle d_j, j \rangle$. Consequently, when p_j receives REQUEST (d_m, m) , we have $prio_j = true$ and p_j sends to p_m the message NOT_USED $(M - k_j)$ (line 16). It follows that at time τ , p_j has not yet received NOT_USED (k_j) and consequently $used_by_m^{\tau}[j] \ge k_j = nb_alloc_j$. (End of the proof of the claim.)

Let U^{τ} be the number of instances of the resource which are used at time τ . If $IN^{\tau} = \emptyset$, no instance is used and consequently $U^{\tau} = 0 \le M$. So, let us assume $IN^{\tau} \ne \emptyset$. Let p_m be defined as in Claim C3. We have the following:

- $U^{\tau} = \sum_{i \in IN^{\tau}} k_i$ (definition of U^{τ}),
- $\sum_{j \in IN^{\tau}} k_j \leq k_m + \sum_{j \in IN^{\tau} \setminus \{m\}} used_b y_m^{\tau}[j]$ (from Claim C3),
- $\overline{k_m} + \sum_{j \in IN^\tau \setminus \{m\}} used_b y_m^\tau[j] \le \sum_{1 \le j \le n} used_b y_m^\tau[j]$ (from Claim C1),
- $\sum_{1 \le j \le n} used_b y_m^{\tau}[j] \le M$ (from Claim C2).

It follows by transitivity that $U^{\tau} \leq M$, which concludes the proof of the safety property.

Lemma 7 The algorithm described in Fig. 11.4 ensures that any invocation of acquire_resource() eventually terminates.

Proof Let us notice that the only statement at which a process may block is the **wait** statement at line 7. Let $WAIT^{\tau} = \{i \mid (cs_state_i = trying) \land (\sum_{1 \le j \le n} used_by_i^{\tau}[j] > M)\}$. The proof is based on the following claim.

Claim C4 Considering $WAIT^{\tau} \neq \emptyset$, let p_m be the process such that $m \in WAIT^{\tau}$, and its request has the smallest timestamp among all the requests issued by the processes in $WAIT^{\tau}$.

Then, the quantity $\sum_{1 \le j \le n} used_by_m[j]$ decreases when τ increases, and eventually either $cs_state_m = in$ or $\sum_{1 \le j \le n} used_by_m[j] = k_m + \sum_{z \in PRIO} k_z > M$, where $PRIO = \{z \mid (\langle d_z, z \rangle < \langle d_m, m \rangle) \land (cs_state_z = in)\}$. *Proof Claim C4* Let $j \ne m$. There are two cases.

1. Case $j \in WAIT^{\tau}$. Due to the definition of *m* we have $\langle d_j, j \rangle > \langle d_m, m \rangle$. It follows that, when p_j receives the message REQUEST (d_m, m) , it sends NOT_USED(M) by return to p_m (lines 13–15). It follows that $j \notin PRIO$ and we eventually have $used_by_m[j] = 0$.

2. Case $j \notin WAIT^{\tau}$. If $cs_state_j \neq in$ or $\langle d_j, j \rangle > \langle d_m, m \rangle$, we are in the same case as previously, $j \notin PRIO$ and eventually we have $used_by_m[j] = 0$. If $cs_state_j = in$ and $\langle d_j, j \rangle < \langle d_m, m \rangle$, we have $j \in PRIO$ and p_j sends NOT_USED $(M - k_j)$ by return to p_m (line 16). Hence, we eventually have $used_by_m[j] = k_j$.

While p_m is such that $cs_state_m = trying$, it does send new requests, and consequently no $used_by_m[x]$ can increase. It follows that, after a finite time, we have $cs_state_m = in$ or $\sum_{1 \le j \le n} used_by_m[j] = k_m + \sum_{z \in PRIO} k_z > M$, which concludes the proof of the claim. (End of the proof of the claim.)

We now prove that, for any τ , if a process belongs to $WAIT^{\tau}$, it will be such that $cs_state_i = in$. Let us consider the process p_m of $WAIT^{\tau}$ that has the smallest timestamp. It follows from Claim C4 that, after some finite time, we have

- Either $cs_state_m = in$. In this case, p_m returns from its invocation of acquire_resource().
- Or $(cs_state_m = trying) \land (k_m + \sum_{z \in PRIO} k_z > M)$. In this case, as the resource instances are eventually released (assumption), the set *PRIO* decreases and the quantity $\sum_{z \in PRIO} k_z$ decreases accordingly allowing the predicate $cs_state_m = in$ to eventually become true.

Hence, p_m eventually returns from its invocation of acquire_resource().

The proof that any process p_x returns from acquire_resource() follows from the fact that the new invocations will eventually have timestamps greater than the one of p_x . The proof is the same as for the mutex algorithm based on individual permissions (see the proof of its liveness property in Lemma 4, Sect. 10.2.3).

Theorem 15 *The algorithm described in Fig.* 11.4 *solves the k-out-of-M problem.*

Proof The theorem follows from Lemmas 6 and 7.

11.1.5 From Mutex Algorithms to k-out-of-M Algorithms

As noted when it was presented, the previous algorithm, which solves the *k*-out-of-M mutex problem, is an adaptation of the mutex algorithm described in Sect. 10.2. More generally, it is possible to extend other mutex algorithms to solve the *k*-out-of-M mutex problem. Problem 1 at the end of this chapter considers such an extension of the adaptive mutex algorithm described in Sect. 10.3.

11.2 Several Resources with a Single Instance

This section considers the case where there are *X* resource types, and there is one instance of each resource type $x, 1 \le x \le X$.

Fig. 11.5 Examples of conflict graphs

The pattern formed by (a) the acquisition of resources by a process, (b) their use, and (c) finally their release, is called a (resource) *session*. During its execution, a process usually executes several sessions.

11.2.1 Several Resources with a Single Instance

The Notion of a Conflict Graph A graph, called *conflict graph*, is associated with each resource. Let CG(x) be the conflict graph associated with the resource type x. This graph is an undirected fully connected graph whose vertices are the processes allowed to access the resource x. An edge means a possible conflict between the two processes it connects: their accesses to the resource must be executed in mutual exclusion.

As an example, let us consider six processes p_1, \ldots, p_6 , and three resource types x_1, x_2 , and x_3 . The three corresponding conflict graphs are depicted in Fig. 11.5. The edges of $CG(x_1)$ are depicted with plain segments, the edges of $CG(x_2)$ with dotted segments, and edges of $CG(x_3)$ with dashed segments. As we can see, the resource x_1 can be accessed by the four processes: p_2, p_3, p_5 , and p_6 ; p_1 accesses only x_3 , while both p_2 and p_4 are interested in the resources x_1 and x_3 .

The union of these three conflict graphs defines a graph in which each edge is labeled by the resource from which it originates (the label is here the fact that the edge is plain/dotted/dashed). This graph, called *global conflict graph*, gives a global view on the conflicts on the whole set of resources.

The global graph associated with the previous three resources is depicted in Fig. 11.6. As we can see, this global graph allows p_1 to access x_3 while p_6 is accessing the pair resources (x_1, x_2) . Differently, p_3 and p_6 conflict on both the resources x_1 and x_2 .

Requests Are on All or a Subset of the Resources As already indicated, two types of requests can be defined.

In the first case, each resource session of a process *p_i* is *static* in the sense that it is always on all the resources that *p_i* is allowed to access. This set of resources is the set {*x* | *i* ∈ *CG*(*x*)}.

When considering the global conflict graph of Fig. 11.6, this means that each session of p_6 is always on both x_1 and x_2 , while each resource session of p_4 is always on x_2 and x_3 , etc.

• In the second case, each session of a process p_i is *dynamic* in the sense that it is on a dynamically defined subset of the resources that p_i is allowed to access.

In this case, some sessions of p_6 can be only on x_1 , others on x_2 , and others on both x_1 and x_2 . According to the request pattern, dynamic allocation may allow for more concurrency than static allocation. As a simple example, if p_6 wants to access x_1 while p_3 wants to access x_2 , and no other process wants to access these resources, then p_6 and p_3 can access them concurrently.

The first case is sometimes called in the literature the *dining philosophers problem*, while the second case is sometimes called the *drinking philosophers problem*.

11.2.2 Incremental Requests for Single Instance Resources: Using a Total Order

Access Pattern We consider here the case where a process p_i requires the resources it needs for its session one after the other, hence the name *incremental requests*. Moreover, a session can be static or dynamic.

Possibility of Deadlock The main issue that has to be solved is the prevention of deadlocks. Let us consider the processes p_3 and p_6 in Fig. 11.6. When both processes want to acquire both the resources x_1 and x_2 , the following can happen with incremental requests.

- p_3 invokes acquire_resource(x_1) and obtains the resource x_1 .
- p_6 invokes acquire_resource(x_2) and obtains the resource x_2 .
- Then p_3 and p_6 invoke acquire_resource(x_2) and acquire_resource(x_1), respectively. As the resource asked by a process is currently owned by the other process, each of p_3 and p_6 starts waiting, and the waiting period of each of them will terminate when the resource it is waiting on is released. But, as each process releases resources only after it has obtained all the resources it needs for the current session, this will never occur (Fig. 11.7).

Fig. 11.7 A deadlock scenario involving two processes and two resources

This is a classical deadlock scenario. (Deadlocks involving more than two processes accessing several resources can easily be constructed.)

Deadlock Prevention: A Total Order on Resources Let $\{x_1, x_2, ..., x_X\}$ be the whole set of resources accessed by the processes, each process accessing possibly only a subset of them (as an example, see Fig. 11.6). Let \prec be a total order on this set of resources, e.,g., $x_1 \prec \cdots \prec x_m$. The processes are required to obey the following rule:

• During a session, a process may invoke acquire_resource(x_k) only if it has already obtained all the resources x_j it needs (during this session) which are such that $x_j \prec x_k$.

Theorem 16 If, during each of its sessions, every process asks for the resources (it needs for that session) according to the total order \prec , no deadlock can occur.

Proof Let us first introduce the notion of a *wait-for* graph (WFG). Such a graph is a directed graph defined as follows (see also Sect. 15.1.1). Its vertices are the processes and its edges evolve dynamically. There is an edge from p_i to p_j if (a) p_j is currently owning a resource x (i.e., p_j has obtained and not yet released the resource x) and (b) p_i wants to acquire it (i.e., p_i has invoked acquire_resource(x)). Let us observe that, when there is a (directed) cycle, this cycle never disappears (for it to disappear, a process in the cycle should release a resource, but this process is blocked waiting for another resource). A cycle in the WFG means that there is deadlock: each process p_k in the cycle is waiting for a resource owned by a process $p_{k'}$ that belongs to the cycle, etc., without ever exiting from the cycle. The progress of each process p_k on the directed cycle depends on a statement (releasing a resource) that it cannot execute.

The proof is by contradiction. Let us suppose that there is a directed cycle in the WFG. To simplify the proof, and without loss of generality, let us assume that the cycle involves only two processes p_1 and p_2 : p_1 wants to acquire the resource x_a that is currently owned by p_2 , and p_2 wants to acquire the resource x_b that is currently owned by p_1 (Fig. 11.8).

The following information can be extracted from the graph:

Fig. 11.8 No deadlock with ordered resources

 x_a is owned but not used by p_i ; it cannot be used by another process

Fig. 11.9 A particular pattern in using resources

- As p_1 is owning the resource x_a and waiting for the resource x_b , it invoked first acquire_resource(x_a) and then acquire_resource(x_b).
- As p_2 is owning the resource x_b and waiting for the resource x_a , it invoked first acquire_resource(x_b) and then acquire_resource(x_a).

As there is an imposed total order to acquire resources, it follows that either p_1 or p_2 does not follow the rule. Taking the contrapositive, we have that "each process follows the rule" \Rightarrow "there is no cycle in WFG". Hence, no deadlock can occur if every process follows the rule (during all its sessions of resource use).

Drawback of the Previous Approach Accessing resources according to a predefined total order agreed upon by all processes prevents deadlock from occurring. But deadlock prevention always has a price. Let us consider a process that, during a session, wants to use first a resource x_b alone, then both the resources x_a and x_b , and finally the resource x_a alone. The corresponding time pattern is described (above the process axis) in Fig. 11.9.

- If $x_b \prec x_a$, the order in which p_i needs the resources is the same as the imposed total order. In this case, the allocation is optimal in the sense that, during the session, x_b and x_a are obtained just when p_i needs them. This is the case depicted above the process axis in Fig. 11.9.
- If $x_a \prec x_b$, to obey the rule, p_i is forced to require x_a before x_b . This case is depicted below the process axis in Fig. 11.9. The backward arrow means that p_i has

to invoke acquire_resource(x_a) before invoking acquire_resource(x_b). The total order on x_a and x_b does not fit the order in which p_i needs them. Hence, during some duration, x_a is owned but not used by p_i . If, during that period of time, another process wants to use the resource x_a , it cannot. This is the inescapable price that has to be paid when a total order on resources is used to prevent deadlocks from occurring.

11.2.3 Incremental Requests for Single Instance Resources: Reducing Process Waiting Chains

A Worst-Case Scenario Let us consider six processes p_1, \ldots, p_6 , and six resources x_1, \ldots, x_6 , such that, in each session, each process needs two resources, namely

 p_i requires x_{i-1} and x_i , for $1 < i \le 6$, and p_1 requires x_1 and x_6 .

The corresponding global conflict graph is described in Fig. 11.10. The label associated with an edge indicates the resource on which its two processes (vertices) conflict. (This example is the conflict graph of the resource allocation problem known as the *dining philosophers problem*. Each process is a philosopher who needs both the fork at his left and the fork at its right—the forks are the resources—to eat spaghetti.)

Let us consider an execution in which

First p_6 obtains x_5 and x_6 , Then p_5 obtains x_4 and waits for x_5 (blocked by p_6), Then p_4 obtains x_3 and waits for x_4 (blocked by p_5), Then p_3 obtains x_2 and waits for x_3 (blocked by p_4), Then p_2 obtains x_1 and waits for x_2 (blocked by p_6), Then p_1 waits for x_2 (blocked by p_2).

There is no deadlock (process p_6 is active, using x_5 and x_6). However, all the processes, except p_6 , are passive (waiting for a resource instance). Moreover, p_1 , p_2 , p_3 , and p_4 are waiting for a resource currently owned by a passive process. The corresponding WFG is as follows (let us recall that a directed edge means "blocked by")

$$p_1 \rightarrow p_2 \rightarrow p_3 \rightarrow p_4 \rightarrow p_5 \rightarrow p_6.$$

Hence, the length of the waiting chain (longest path in the WFG) is n - 1 = 5, which is the worst case: only one process is active.

Reduce the Length of Waiting Chains: Coloring a Resource Graph An approach to reduce the length of waiting chains consists in imposing on each process separately a total order on the resources it wants to acquire. Moreover, the resulting partial order obtained when considering all the resources has to contain as few edges as possible. This approach is due to N.A. Lynch (1981).

To that end, let us define a *resource graph* as follows. Its vertices are the resources and there is an edge connecting two resources if these two resources can be requested by the same process during one of its sessions. The resource graph associated with the previous example is described in Fig. 11.11 (the label on an edge denotes the processes that request the corresponding resources). The meaning of a (non-directed) edge is that the corresponding resources are requested in some order by some process(es). As there is no process accessing both x_1 and x_4 , there is no edge connecting these vertices.

Hence, the aim is to find a partial order on the resources such that (a) the resources requested by each process (during a session) are totally ordered and (b) there are as few edges as possible. Such a partial order can be obtained as follows.

- First, find an optimal vertex-coloring of the resource graph (no two resources connected by an edge have the same color and the number of color is minimal).
- Then, define a total order on the colors.
- Finally, each process acquires the resources it needs during a session according to the order on their colors. (Let us observe that, due to its construction, the resources accessed by a process are totally ordered.)

Example When considering Fig. 11.11, the minimal number of colors is trivially two. Let us color the non-neighbor resources x_1 , x_3 , and x_5 with color a and the non-neighbor resources x_2 , x_4 , and x_6 with color b. Moreover, let a < b be the total order imposed on these colors. Hence, the edges of the corresponding resource graph are directed from top to bottom, which means that p_4 has to acquire first x_3 and then x_4 , while p_5 has to acquire first x_5 and then x_4 .

The worst case scenario described in Sect. 11.2.2 cannot occur. When p_6 has obtained x_5 and x_6 , p_5 is blocked waiting for x_5 (which it has to require before x_4). Hence, p_4 can obtain x_3 and x_4 , and p_2 can obtain x_1 and x_2 . More generally, the maximal length of a waiting chain is the number of colors minus 1.

Remark Let us remember that the optimal coloring of the vertices of a graph is an NP-complete problem (of course, a more efficient near-optimal coloring may be used). Let us observe that the non-optimal coloring in which all the resources are colored with different colors corresponds to the "total order" strategy presented in Sect. 11.2.2.

11.2.4 Simultaneous Requests for Single Instance Resources and Static Sessions

Differently from the *incremental request* approach, where a process requires, one after the other, the resources it needs during a session, the *simultaneous request* approach directs each process to require simultaneously (i.e., with a single operation invocation) all the resources it needs during a session. To that end, the processes are provided with an operation

acquire_resource(
$$res_set_i$$
),

whose input parameter res_set_i is the set of resources that the invoking process p_i needs for its session.

As we consider static sessions, every session of a process p_i involve all the resources that this process is allowed to access (i.e., $res_set_i = \{x \mid i \in CG(x)\}$).

Conflict Graph for Static Sessions As, during a session, the requests of a process are on all the resources it is allowed to access, the global conflict graph (see Fig. 11.6) can be simplified. Namely, when two processes conflict on several resources, e.g., x_a and x_b , these resources can be considered as a single virtual resource $x_{a,b}$. This is because, the sessions being static, each session of these processes involves both x_a and x_b .

The corresponding conflict graph for static session is denoted *SS_CG*. Its vertices are the vertices in the conflict graphs $\bigcup_{1 \le x \le M} CG(x)$. There is an edge (p_y, p_z) in *SS_CG* if there is a conflict graph CG(x) containing such an edge. The graph *SS_CG* associated with the global conflict graph of Fig. 11.6 is described in Fig. 11.12. Let

us observe that, when p_6 accesses x_1 and x_2 , nothing prevents p_1 from accessing x_3 .

Due to the fact that, in each of its sessions, a process p_i requires all the resources x such that $i \in CG(x)$, it follows that each process is in mutual exclusion with all its neighbors in the static session conflict graph. Hence, a simple solution consists in adapting a mutex algorithm so that mutual exclusion is required only between processes which are neighbors in the static conflict graph.

Mutual Exclusion with Neighbor Processes in the Conflict Graph Let us consider the mutex algorithms based on individual permissions described in Chap. 10. These algorithms are modified as follows:

- Each site manages an additional local variable *neighbors_i* which contains the identities of its neighbors in the conflict graph. (Let us notice that if $j \in neighbors_i$, then $i \in neighbors_i$.)
- When considering the non-adaptive algorithm of Fig. 10.3, the set R_i (which was a constant equal to $\{1, \ldots, n\} \setminus \{i\}$) remains a constant which is now equal to *neighbors_i*.
- When considering the adaptive algorithm of Fig. 10.7, let p_i and p_j be two processes which are neighbors in the conflict graph. The associated message PER-MISSION($\{i, j\}$) is initially placed at one these processes, e.g., p_i , and the initial values of R_i and R_j are then such that $j \notin R_i$ and $i \in R_j$.
- When considering the bounded adaptive algorithm of Fig. 10.10, the initialization is as follows. For any two neighbors p_i and p_j in the conflict graph such that i > j, the message PERMISSION($\{i, j\}$) is initially at p_i (hence, $i \in R_j$ and $j \notin R_i$), and its initial state is *used* (i.e., *perm_state_i[j] = used*).

In the last two cases, R_i evolves according to requests, but we always have $R_i \subseteq neighbors_i$. Moreover, when the priority on requests (liveness) is determined from timestamps (the first two cases), as any two processes p_i and p_j which are not neighbors in the conflict graph never compete for resources, it follows that p_i and p_j can have the same identity if $neighbors_i \cap neighbors_j = \emptyset$ (this is because their common neighbors, if any, must be able to distinguish them). Hence, any two processes at a distance greater than 2 in the conflict graph can share the same identity. This can help reduce the length of waiting chains.

11.2.5 Simultaneous Requests for Single Instance Resources and Dynamic Sessions

The Deadlock Issue In this case, each session of a process p_i involves a dynamically defined subset of the resources for which p_i is competing with other processes, i.e., a subset of $\{x \mid i \in CG(x)\}$.

Let us consider the global conflict graph depicted in Fig. 11.6. If, during a session, the process p_6 wants to access the resource x_1 only, it needs a mutual exclusion

algorithm in order to prevent p_2 , p_3 , or p_5 from simultaneously accessing this resource. To that end, a mutex algorithm per resource is used. Let M(x) denote the mutex algorithm associated with x.

As each of these algorithms involves only the processes accessing the corresponding resource, this allows processes whose current sessions require different sets of resources to access them concurrently. As an example, if the current session of p_6 requires only x_1 while, simultaneously, the current session of p_3 requires only x_2 , being managed by distinct mutex algorithms, these resources can be accessed concurrently by p_6 and p_3 .

Unfortunately, as the mutex algorithms M(x) are independent one from the others, there is a risk of deadlock when both the current sessions of p_6 and p_3 require both the resources x_1 and x_2 . This is because the mutex algorithm $M(x_1)$ can allocate x_1 to p_3 , while the algorithm $M(x_2)$ allocates x_2 to p_6 .

Establish a Priority to Prevent Deadlock A way to prevent deadlock from occurring consists in the stacking of an additional mutex algorithm on top of the M(x) algorithms. More precisely, let us consider an additional mutex algorithm, denoted *GM*, which ensures mutual exclusion on neighbor processes in the conflict graph for static session *SS_CG* introduced in the previous section (Fig. 11.12).

This algorithm is used to solve conflicts between neighbor processes in SS_CG when they want to use several resources. As an example, when both p_6 and p_3 want to use the resources x_1 and x_2 , their conflict is solved by GM: If p_6 has priority over p_3 in GM, it has priority to access both resources. This has a side effect, namely, if $M(x_2)$ has already granted the resource x_2 to p_3 , this process has to release it in order p_6 can obtain it. (If p_3 has obtained both resources, whatever the priority given by GM, it keeps them until the end of its session).

Cooperation Between *GM* and the Mutex Algorithms Associated with Each Resource Mutex algorithms between neighbor processes in a graph were introduced in the last part of Sect. 11.2.4. Let us consider that the mutex algorithm *GM* and all the mutex algorithms M(x) are implemented by the one described in the last item of Sect. 11.2.4, in which all variables are bounded. (As we have seen, this algorithm was obtained from a simple modification of the adaptive mutex algorithm of Fig. 10.10.)

Let us recall that such a mutex algorithm is fair: Any process p_i that invokes acquire_mutex() eventually enters the critical section state, and none of its neighbors p_j will enter it simultaneously. Moreover, two processes p_i and p_j which are not neighbors can be simultaneously in critical section.

Let cs_state_i be the local variable of p_i that describes its current mutex exclusion state with respect to the general algorithm *GM*. As we have seen, its value belongs to {*out*, *trying*, *in*}. Similarly, let $cs_state_i[x]$ be the local variable of p_i that describes its current state with respect to the mutex algorithm M(x).

Let us consider the algorithm *GM*. Given a process p_i , we have the following with regard the transitions of its local variable cs_state_i . Let us recall that the transition of cs_state_i from *trying* to *in* is managed by the mutex algorithm itself. Differently, the transitions from *out* to *trying*, and from *in* to *out*, are managed by the

invoking process p_i . Hence, as far as *GM* is concerned, rules that force a process to proceed from *out* to *trying* and from *in* to *out* have to be defined. These rules are as follows:

- R1. If $(cs_state_i = out) \land (\exists x : cs_state_i[x] = trying)$, p_i must invoke the operation acquire_resource() of *GM* to acquire the mutual exclusion with respect to its neighbors in *SS_CG*, so that eventually $cs_state_i = trying$.
- R2. If (*cs_state_i* = *in*) ∧ (∀*x* : *i* ∈ *CG*(*x*) : *cs_state_i*[*x*]] ≠ *trying*), *p_i* must invoke the operation release_resource() of *GM* so that eventually *cs_state_i* = *out*.

Finally, when a process p_i receives a request for a resource x from its neighbor p_j , the priority rule followed by p_i is the following:

R3. If (a) p_i is not interested in the resource x (cs_state_i[x] = out), or (b) p_i is neither using the resource x nor having priority with respect to p_j in GM, then p_i allows p_j to use the resource x (i.e., p_i sends its permission to p_j).

Sketch of a Bounded Resource Allocation Algorithm for Dynamic Sessions At each process p_i and for each resource x, $cs_state_i[x]$ is initialized to *out*. Moreover, each process p_i manages the following additional local variables.

- $need_i[x]$ is a Boolean which is true when p_i is interested in the resource x.
- req_i[x, j] is a Boolean which is true when p_i is allowed to request (to p_j) the permission to access the resource x. This permission is represented by the message X_PERMISSION(x(i, j)).
- *here*_i[x, j] is a Boolean which is true when p_i has obtained (from p_j) the permission to access the resource x.

Initially, for any pair of neighbors p_i and p_j the message X_PERMISSION(x(i, j)) is placed at one process, e.g., p_i . We have then $here_i[x, j] = true$, $req_i[x, j] = false$, $here_j[x, i] = false$, and $req_i[x, i] = true$.

As already indicated, the transitions of the mutex algorithm GM are governed by the rules R1 and R2. A sketch of a description of the resource allocation algorithm is presented in Fig. 11.13. It considers a single pair of neighbor processes p_i and p_j and a single of the possibly many resources x that they share. When it receives from p_j a request for the resource x, p_i computes its priority (line 5); as explained above, this computation involves the state of p_i with respect to GM. (This is expressed by the presence of the message PERMISSION($\{i, j\}$) at p_i . Let us recall that this message is a message of the algorithm GM.) The writing of the whole detailed algorithm is the topic of Problem 5 at the end of this chapter.

11.3 Several Resources with Multiple Instances

The Generalized *k***-out-of-***M* **Problem** This section considers the case where there are *X* resource types, and for each *x*, $1 \le x \le X$, there are M[x] instances of the resource type *x*. A request of a process p_i may concern several instances of

```
to acquire x with respect to p_i do
(1)
       if ((cs\_state_i[x] = trying) \land need_i[x] \land req_i[x, j] \land (\neg here_i[x, j]))
          then send REQUEST(x) to p_j; req_i[x, j] \leftarrow false
(2)
(3)
       end if.
to release x with respect to p_i do
(4) if (req_i[x, j] \land here_i[x, j])
(5)
          then if (\neg need_i[x, j]) \lor \neg[(cs\_state_i[x] = in) \land (PERMISSION(\{i, j\}) \text{ is at } p_i))
(6)
                   then send X_PERMISSION(x) to p_i; here<sub>i</sub>[x, j] \leftarrow false
(7)
                 end if
(8) end if.
when \operatorname{REQUEST}(x) is received from p_i do
(9) req_i[x, j] \leftarrow true.
when X_{PERMISSION}(x) is received from p_j do
(10) here_i[x, j] \leftarrow true.
```

Fig. 11.13 Simultaneous requests in dynamic sessions (sketch of code for p_i)

each resource. As an example, for a given session, p_i may request $k_i[x]$ instances of resource type x and $k_i[y]$ instances of the resource type y.

This section presents solutions for dynamic sessions (as we have seen this means that, in each session, a process defines the specific subset of resources it needs from the set of resources it is allowed to access). Let us observe that, as these solutions work for dynamic sessions, they trivially work for static sessions.

The Case of Dynamic Sessions with Incremental Requests In this case, the same techniques as the ones described in Sect. 11.2 (which was on resources with a single instance) can be used to prevent deadlocks from occurring (total order on the whole set of resources, or partial order defined from a vertex-coloring of the resource graph).

As far as algorithms are concerned, a *k*-out-of-*M* mutex algorithm is associated with each resource type *x*. A process invokes then acquire_resource(*x*, k_i), where *x* is the resource type and k_i the number of its instances requested by p_i , with $1 \le k_i \le M[x]$.

The Case of Dynamic Sessions with Simultaneous Requests Let $RX_i \subset \{x \mid i \in CG(x)\}$ denote the dynamically defined set of resource types that the invoking process p_i wants to simultaneously acquire during a session, and, for each $x \in RX_i$, let k_i^x denote the number of *x*'s instances that it needs.

A generalization of the *k*-out-of-*M* algorithm presented in Fig. 11.4, which implements the operations acquire_resource($\{(x, k_i^x)\}_{x \in RX_i}$) and release_resource($\{(x, k_i^x)\}_{x \in RX_i}$), is presented in Fig. 11.14. It assumes a partial instance of the basic-algorithm of Fig. 11.4 for each resource type $x \in RX_i$. Let $cs_tate_i^x$, $used_by_i^x$, and $perm_delayed_i^x$ be the local variables of p_i associated with the resource type x; $perm_delayed_i^x$ contains only identities of the processes in CG(x),

operation acquire_resource($\{(x, k_i^x)\}_{x \in RX_i}$) is (1)for each $x \in RX_i$ do $cs_state_i^x \leftarrow trying$ end for; (2) $\ell rd_i \leftarrow clock_i + 1;$ (3) for each $x \in RX_i$ do (4) for each $j \in CF(x)$ do send REQUEST $(x, k_i^x, \langle \ell rd_i, i \rangle)$ to p_i ; (5) $used_by_i^x[j] \leftarrow used_by_i^x[j] + M[x]$ (6) end for; (7) $used_by_i^x[i] \leftarrow k_i^x;$ (8) end for; (9) wait $(\bigcap_{x \in RX_i} (\sum_{1 \le j \le n} used_b y_i^x[j] \le M[x]));$ (10) for each $x \in RX_i$ do $cs_state_i^x \leftarrow in$ end for. **operation** release_resource($\{(x, k_i^x)\}_{x \in RX_i}$) is (11) for each $x \in RX_i$ do (12) $cs_state_i^x \leftarrow out;$ for each $j \in perm_delayed_i^x$ do send NOT_USED (x, k_i^x) to p_j end for; (13)(14) $perm_delayed_i^x \leftarrow \emptyset$ (15) end for.

Fig. 11.14 Algorithms for generalized k-out-of-M (code for p_i)

and $used_by_i^x$ is an array with one entry per process in CG(x). Moreover, each message is tagged with the corresponding resource type. Figure 11.14 is a simple extension of the basic- k-out-of-M.

When p_i invokes acquire_resource({ (x, k_i^x) } $_{x \in RX_i}$), it first proceeds to the state *trying* for each resource x (line 1). Then, it computes a date for its request (line 2). Let us observe that this date is independent of the set RX_i . Process p_i then sends a timestamped request to all the processes with which it competes for the resources in RX_i , and computes an upper bound of the number of instances of the resources in which it is interested (lines 3–8). When there are enough available instances of the resources it needs, p_i is allowed to use them (line 9). It then proceeds to the state *in* with respect to each of these resources (line 10).

When p_i invokes release_resource({ (x, k_i^x) }_{x \in RX_i}), it executes the same code as in Fig. 11.4 for each resource of RX_i (lines 11–15).

The "server" role of a process (management of the message reception) is the same as in Fig. 11.4. The messages for a resource type x are processed by the corresponding instance of the basic-algorithm. The important point is that all these instances share the same logical clock $clock_i$. The key of the solution lies in the fact that a single timestamp is associated with all the request messages sent during an invocation, and all conflicting invocations on one or several resources are totally ordered by their timestamps.

11.4 Summary

This chapter was devoted to the generalized k-out-of-M problem. This problem captures and abstracts resource allocation problems where (a) there are one or several

types of resource, (b) each resource has one or several instances, and (c) each process may request several instances of each resource type. Several algorithms solving this problem have been presented. Due to the multiplicity of resources, one of the main issues that these algorithms have to solve is deadlock prevention. Approaches that address this issue have been discussed.

The chapter has also introduced the notion of a conflict graph, which is an important conceptual tool used to capture conflicts among processes. It has also shown how the length of process waiting chains can be reduced. Both incremental versus simultaneous requests on the one side, and static versus dynamic sessions of resource allocation on the other side, have been addressed in detail.

11.5 Bibliographic Notes

- Resource allocation and the associated deadlock prevention problem originated in the design and the implementation of the very first operating systems (e.g., [110, 165]).
- The dining philosophers problem was introduced by E.W. Dijkstra in [111]. It abstracts the case where, in each of its sessions, each process requires always the same set of resources. The drinking philosophers problem was introduced by K.M. Chandy and J. Misra in [78]. It generalizes the dining philosophers problem in the sense that the set of resources required by a process is defined dynamically in each session.
- The deadlock prevention technique based on a total ordering of resources is due to J.W. Havender [166]. The technique based on vertex coloring of a resource graph is due to N.A. Lynch [241].
- The algorithm solving the multiple entries mutex problem (1-out-of-*M*) presented in Fig. 11.1 is due to K. Raymond [305].

The general k-out-of-M resource allocation algorithm presented in Fig. 11.4 is due to M. Raynal [311].

The basic mutex algorithm from which these two algorithms have been derived is due to G. Ricart and A.K. Agrawala [327] (this algorithm was presented in Chap. 10).

- The bounded resource allocation algorithm for single instance resources in dynamic sessions presented in Sect. 11.2.5 is due to K.M. Chandy and J. Misra [78]. This algorithm is known under the name *drinking philosophers* algorithm (the resources are bottles shared by neighbor processes). Presentation of this algorithm can also be found in [149, 242, 387].
- Quorum (arbiter)-based algorithms that solve the *k*-out-of-*M* are presented in [245, 280].

```
operation acquire_resource(k_i) is
(1)
       cs\_state_i \leftarrow trying;
(2)
       \ell rd_i \leftarrow clock_i + 1;
(3)
       for each j \in R_i do
(4)
            if (used_by_i[j] = 0) then send REQUEST(\ell rd_i, i) to p_i;
(5)
                                            sent\_to_i[j] \leftarrow true; used\_by_i[j] \leftarrow M
(6)
                                      else sent_to<sub>i</sub>[j] \leftarrow false
(7)
            end if
       end for;
(8)
(9) used_by_i[i] \leftarrow k_i;
(10) wait (\sum_{1 \le j \le n} used\_by_i[j] \le M);
(11) cs\_state_i \leftarrow in.
operation release_resource(k_i) is
(12) cs\_state_i \leftarrow out;
(13) foreach j \in perm\_delayed_i do send NOT_USED(k_i) end for;
(14) perm\_delayed_i \leftarrow \emptyset.
when REQUEST(k, j) is received do
(15) clock_i \leftarrow max(clock_i, k);
(16) prio_i \leftarrow ((cs\_state_i = in) \lor [(cs\_state_i = trying) \land (\langle \ell rd_i, i \rangle < \langle k, j \rangle)]);
(17) if (\neg prio_i) then send NOT_USED(M) to p_i
(18)
                      else if (k_i \neq M) then send NOT_USED(M - k_i) to p_j end if;
(19)
                            perm\_delayed_i \leftarrow perm\_delayed_i \cup \{j\}
(20) end if.
when NOT_USED(x) is received from p_i do
(21) used_by_i[j] \leftarrow used_by_i[j] - x;
(22) if ((cs\_state_i = trying) \land (used\_by_i[j] = 0) \land (\neg sent\_to_i[j]))
(23)
                      then send REQUEST(\ell r d_i, i) to p_j
(24)
                             sent_to_i[j] \leftarrow true; used_by_i[j] \leftarrow M
(25) end if.
```

Fig. 11.15 Another algorithm for the *k*-out-of-*M* mutex problem (code for p_i)

11.6 Exercises and Problems

The k-out-of-M algorithm described in Fig. 11.4 requires between 2(n − 1) and 3(n − 1) messages per use of a set of instances of the resource. The following algorithm is proposed to reduce this number of messages. When used_by_i[j] ≠ 0, the process p_i knows an upper bound on the number of instances of the resource used by p_j. In that case, it is not needed for p_i to send a request message to p_j. Consequently, p_i sends a request to p_j only when used_by_i[j] = 0; when this occurs, p_i records it by setting a flag sent_to_i[j] to the value true.

The corresponding algorithm is described in Fig. 11.15 (where $R_i = \{1, ..., n\} \setminus \{i\}$). Let us recall that the quantity $\sum_{1 \le j \le n} used_b y_i[j]$, which appears in the **wait** statement (line 10) is always computed in local mutual exclusion with the code associated with the reception of a message NOT_USED().

• Show that the algorithm is correct when the channels are FIFO.

- Show that the algorithm is no longer correct when the channels are not FIFO. To that end construct a counterexample.
- Is the statement *sent_to*_i[j] \leftarrow *true* at line 24 necessary? Justify your answer.
- Is it possible to replace the static set R_i by a dynamic set (as done in the mutex algorithm of Fig. 10.7)?
- Can the message exchange pattern described in Fig. 11.3 occur?
- What are the lower and upper bounds on the number of messages per use of a set of *k* instances of the resource?
- Is the algorithm adaptive?
- Let the waiting time be the time spent in the **wait** statement. Compare the waiting time of the previous algorithm with the waiting time of the algorithm described in Fig. 11.4. From a waiting time point of view, is one algorithm better than the other?

Solution in [311].

- 2. Write the server code (i.e., the code associated with message receptions) of the generalized *k*-out-of-*M* algorithm for simultaneous requests whose client code is described in Fig. 11.14.
- 3. The generalized *k*-out-of-*M* algorithm for simultaneous requests in dynamic sessions described in Fig. 11.14 uses timestamp.

Assuming the conflict graph of Fig. 11.6 in which each resource has a single instance (hence k = 1), let us consider an execution in which concurrently

- p_2 issues acquire_resource(1) (i.e., p_2 requests resource x_1),
- *p*₆ issues acquire_resource(1, 3) (i.e., *p*₆ requests each of the resources *x*₁ and *x*₃),
- *p*₆ issues acquire_resource(3) (i.e., *p*₄ requests resource *x*₃).

Moreover, let $\langle h_i, i \rangle$ be the timestamp of the request of p_i . How are these requests served if

- $\langle h_2, 2 \rangle < \langle h_6, 6 \rangle < \langle h_4, 4 \rangle$?
- $\langle h_2, 2 \rangle < \langle h_4, 4 \rangle < \langle h_6, 6 \rangle$?

What can be concluded about the order in which the requests are served?

- 4. The algorithm of Fig. 11.14 solves the generalized k-out-of-M problem for simultaneous requests in dynamic sessions. This algorithm uses timestamp and is consequently unbounded. Design a bounded algorithm for the same problem.
- 5. Write the full code of the algorithm for simultaneous requests in dynamic sessions (see Sect. 11.2.5), i.e., the code of (a) the corresponding operations acquire_resource(RX_i) and release_resource(RX_i), and (b) the code associated with the corresponding message receptions. (As in the algorithm described in Fig. 11.14, RX_i denotes the dynamically defined set of resources that p_i needs for its current session.)

Elements for a solution in [242, 387].
Part IV High-Level Communication Abstractions

This part of the book is on the enrichment of a base send/receive distributed message-passing system with high-level communication abstractions. Chapter 12 focuses on abstractions that ensure specific order properties on message delivery. The most important of such communication abstractions is causal message delivery (also called causal order). Chapter 13 is on the rendezvous communication abstraction abstraction abstraction.

These communication abstractions reduce the asynchrony of the system and consequently can facilitate the design of distributed applications. Their aim is to hide "basic machinery" to users and offer them high-level communication operations so that they can concentrate only on the essence of the problem they have to solve.

Chapter 12 Order Constraints on Message Delivery

High-level communication abstractions offer communication operations which ensure order properties on message delivery. The simplest (and best known) order property is the *first in first out* (FIFO) property, which ensures that, on each channel, the messages are received in their sending order. Another order property on message delivery is captured by the total order broadcast abstraction, which was presented in Sect. 7.1.4. This communication abstraction ensures that all the messages are delivered in the same order at each process, and this order complies with their causal sending order.

This chapter focuses first on causal message delivery. It defines the corresponding message delivery property and presents several algorithms that implement it, both for point-to-point communication and broadcast communication. Then the chapter presents new algorithms that implement the total order broadcast abstraction. Finally, the chapter plays with a channel by considering four order properties which can be associated with each channel taken individually.

When discussing a communication abstraction, it is assumed that all the messages sent at the application level are sent with the communication operation provided by this communication abstraction. Hence, there is no hidden relation on messages that will be unknown by the algorithms implementing these abstractions.

Keywords Asynchronous system · Bounded lifetime message · Causal barrier · Causal broadcast · Causal message delivery order · Circulating token · Client/server broadcast · Coordinator process · Delivery condition · First in first out (FIFO) channel · Order properties on a channel · Size of control information · Synchronous system

12.1 The Causal Message Delivery Abstraction

The notion of causal message delivery was introduced by K.P. Birman and T.A. Joseph (1987).

Fig. 12.1 The causal message delivery order property

12.1.1 Definition of Causal Message Delivery

The Problem Let us consider the communication pattern described at the left of Fig. 12.1. Process p_1 sends first the message m_1 to p_3 and then the message m_2 to p_2 . Moreover, after it has received m_2 , p_2 sends the message m_3 to p_3 . Hence, when considering the partial order relation \xrightarrow{ev} on events (defined in Chap. 6), the sending of m_1 belongs to the causal past of the sending of m_2 , and (by the transitivity created by m_2) belongs to the causal past of the sending of m_3 . We consequently have $s(m_1) \xrightarrow{ev} s(m_3)$ (where s(m) denotes the "sending of m" event). But we do not have $r(m_1) \xrightarrow{ev} r(m_3)$ (where r(m) denotes the "reception of m" event).

While the messages m_1 and m_2 are sent to the same destination process, and their sending are causally related, their reception order does not comply with their sending order. The causal message delivery order property (formally defined below) is not ensured. Differently, the reception order in the communication pattern described at the right in Fig. 12.1 is such that $r(m_1) \xrightarrow{ev} r(m_3)$ and satisfies the causal message delivery order property.

Definition The *causal message delivery* (also called *causal order* or *causal message ordering*) abstraction provides the processes with two operations denoted $co_send()$ and $co_deliver()$. When a process invokes them, we say that it co_sends or $co_delivers$ a message. The abstraction is defined by the following properties. It is assumes that all messages are different (which can be easily realized by associating with each message a pair made up of a sequence number plus the identity of the sender process). Let $co_s(m)$ and $co_del(m)$ be the events associated with the co_sending of *m* and its $co_delivery$, respectively.

- Validity. If a process p_i co_delivers a message m from a process p_j , then m was co_sent by p_j .
- Integrity. No message is co_delivered more than once.
- Causal delivery order. For any pair of messages m and m', if $co_s(m) \xrightarrow{ev} co_s(m')$ and m and m' have the same destination process, we have $co_del(m) \xrightarrow{ev} co_del(m')$.
- Termination. Any message that was co_sent is co_delivered by its destination process.

This definition is the similar to the one of the total order broadcast abstraction given in Sect. 7.1.4, from which the "total order" requirement is suppressed. The first

Fig. 12.2 The delivery pattern prevented by the empty interval property

three requirements define the safety property of causal message delivery. Validity states that no message is created from thin air or is corrupted. Integrity states that there is no message duplication. Causal order states the added value provided by the abstraction. The last requirement (termination) is a liveness property stating that no message is lost.

While Fig. 12.1 considers a causal chain involving only two messages (m_2 and m_3), the length of such a chain in the third requirement can be arbitrary.

A Geometrical Remark As suggested by the right side of Fig. 12.1, causal order on message delivery is nothing more than the application of the famous "triangle inequality" to messages.

12.1.2 A Causality-Based Characterization of Causal Message Delivery

Let us recall the following definitions associated with each event e (Sect. 6.1.3):

- Causal past of e: past $(e) = \{f \mid f \xrightarrow{ev} e\},\$
- Causal future of e: future $(e) = \{f \mid e \xrightarrow{ev} f\}$.

Let us consider an execution in which the messages are sent with the operations send() and receive(), respectively. Moreover, let M be the set of messages that have been sent. The message exchange pattern of this execution satisfies the causal message delivery property, if and only if we have

$$\forall m \in M$$
: future $(s(m)) \cap \text{past}(r(m)) = \emptyset$,

or equivalently,

$$\forall m \in M: \quad \left\{ e \mid \left(s(m) \stackrel{ev}{\longrightarrow} e \right) \land \left(e \stackrel{ev}{\longrightarrow} r(m) \right) \right\} = \emptyset.$$

This formula (illustrated in Fig. 12.2) states that, for any message m, there is a single causal path from s(m) to r(m) (namely the path made up of the two events s(m) followed by r(m)). Considered as a predicate, this formula is called the *empty interval* property.

Table 12.1 Hierarchies of communication abstractions		
Point-to-point	Asynchronous \prec FIFO channels \prec Causal message delivery	
Broadcast	Asynchronous \prec FIFO channels \prec Causal message delivery \prec Total order	

Table 12.1 Hierarchies of communication abstractions

12.1.3 Causal Order with Respect to Other Message Ordering Constraints

It is important to notice that two messages m and m', which have been co_sent to the same destination process and whose co_sendings are not causally related, can be received in any order. Concerning the abstraction power of causal message delivery with respect to other ordering constraints, we have the following:

- The message delivery constraint guaranteed by FIFO channels is simply causal order on each channel taken separately. Consequently, FIFO channels define an ordering property weaker than causal delivery.
- Let us extend causal message delivery from point-to-point communication to broadcast communication. This is addressed in Sect. 12.3. Let us recall that the total order broadcast abstraction presented in Sect. 7.1.4 is stronger than causal broadcast. It is actually "causal broadcast" plus "same message delivery order at each process" (even the messages whose co_broadcasts are not causally related must be co_delivered in the same order at any process).

We consequently have the hierarchies of communication abstractions described in Table 12.1, where "asynchronous" means no constraint on message delivery, and \prec means "strictly weaker than".

12.2 A Basic Algorithm for Point-to-Point Causal Message Delivery

12.2.1 A Simple Algorithm

The algorithm described in this section is due to M. Raynal, A. Schiper, and S. Toueg (1991). It assumes that no process sends messages to itself.

Underlying Principle As done when implementing the FIFO property on top of a non-FIFO channel, a simple solution consists in storing in a local buffer the messages whose delivery at reception time would violate causal delivery order. The corresponding structure of an implementation at a process p_i is described in Fig. 12.3.

The key of the algorithm consists in devising a delivery condition that allows us (a) to delay the delivery of messages that arrive "too early" (to ensure the safety property of message deliveries), and (b) to eventually deliver all the messages (to ensure the liveness property). To that end, each process manages the following local data structures.

Fig. 12.3 Structure of a causal message delivery implementation

- $sent_i[1..., 1..n]$ is an array of integers, each initialized to 0. The entry $sent_i[k, \ell]$ represents the number of messages co_sent by p_k to p_ℓ , as known by p_i . (Let us recall that a causal message chain ending at a process p_i is the only way for p_i to "learn" new information.)
- *delivered*_i[1..n] is an array of integers, each initialized to 0. The entry *delivered*_i[j] represents the number of messages co_delivered by p_i, which have been co_sent by p_i to p_i.
- *buffer_i* is the local buffer where *p_i* stores the messages that have been received and cannot yet be co_delivered. The algorithm is expressed at an abstraction level at which the use of this buffer is implicit.

Delivery Condition When a process p_j co_sends a message *m* to a process p_i , it associates with *m* its current knowledge of which messages have been co_sent in the system, i.e., the current value of its array $sent_j[1..n, 1..n]$. Let $CO(m, sent_j)$ denote the corresponding message sent to p_j .

When p_i receives, at the underlying network level, the message CO(*m*, *sent*) from p_j , it is allowed to co_deliver *m* only if it has already co_delivered all the messages *m'* which have been sent to it and are such that $co_m(') \xrightarrow{ev} co_s(m)$. This delivery condition is captured by the following predicate, which can be locally evaluated by p_i :

$$DC(m) \equiv (\forall k : delivered_i[k] \ge sent[k, i]).$$

Due to its definition, sent[k, i] is the number of messages sent by p_k to p_i , to m's knowledge (i.e., as known by p_j when it sent m). Hence, if $delivered_i[k] \ge sent[k, i]$, p_i has already co_delivered all the messages m' whose sending is in the causal past of the event $co_s(m)$. If this is true for all $k \in \{1, ..., n\}$, p_i can safely co_deliver m. If there exists a process p_k such that $delivered_i[k] < sent[k, i]$, there is at least one message sent by p_k to p_i , whose sending belongs to the causal past of m, which has not yet been co_delivered by p_i . In this case, m is stored in the local buffer *buffer_i*, and remains in this buffer until its delivery condition becomes true.

operation co_send(m) to p_j is (1) send CO(m, sent_i) to p_j ; (2) sent_i[i, j] \leftarrow sent_i[i, j] + 1. when CO(m, sent) is received from p_j do (3) wait ($\forall k$: delivered_i[k] \geq sent[k, i]); (4) co_delivery of m to the application layer; (5) sent_i[j, i] \leftarrow sent_i[j, i] + 1; (6) delivered_i[j] \leftarrow delivered_i[j] + 1; (7) for each (x, y) \in {1,..., n}² (8) do sent_i[x, y] \leftarrow max(sent_i[x, y], sent[x, y]) (9) end for.

Fig. 12.4 An implementation of causal message delivery (code for p_i)

The Algorithm The algorithm based on the previous data structures is described in Fig. 12.4. When a process p_i invokes $co_send(m)$, it first sends the message $CO(m, sent_i)$ to the destination process p_j (line 1), and then increases the sequence number $sent_i[i, j]$, which counts the number of messages co_sent by p_i to p_j (line 2). Let us notice that the sequence number of an application message mis carried by the algorithm message CO(m, sent) (this sequence number is equal to sent[i, j] + 1).

When p_i receives from the network a message CO(*m*, *sent*) from a process p_j , it stores the message in *buffer_i* until its delivery condition *DC*(*m*) becomes satisfied (line 3). When this occurs, *m* is co_delivered (line 4), and the control variables are updated to take this co_delivery into account. First *sent_i*[*j*, *i*] and *delivered_i*[*j*] are increased (lines 5–6) to record the fact that *m* has been co_delivered. Moreover, the knowledge on the causal past of *m* (which is captured in *sent*[1..*n*, 1..*n*]) is added to current knowledge of p_i (namely, every local variable *sent_i*[*x*, *y*] is updated to max(*sent_i*[*x*, *y*], *sent*[*x*, *y*]), lines 7–9).

It is assumed that a message is co_delivered as soon as its delivery condition becomes true. If, due to the co_delivery of some message m, the conditions associated with several messages become true simultaneously, these messages are co_delivered in any order, one after the other.

Remark Let us observe that, for any pair (i, j), both $sent_i[j, i]$ and $delivered_i[j]$ are initialized to 0 and are updated the same way at the same time (lines 5–6). It follows that the vector $delivered_i[1..n]$ can be replaced by the vector $sent_i[j, 1..n]$. Line 6 can then be suppressed and the delivery condition becomes

$$DC(m) \equiv (\forall k : sent_i[k, i] \ge sent[k, i]).$$

In the following we nevertheless consider the algorithm as written in Fig. 12.4 as it is easier to understand.

12.2.2 Proof of the Algorithm

Lemma 8 Let *m* be an application message sent by p_j to p_i , and sent[1..., 1..n] the control information attached to this message. When considering all the messages co_sent by p_j to p_i , and assuming that sequence numbers start at value 1, sent[j, i] + 1 is the sequence number of *m*.

Proof As the process p_j does not co_send messages to itself, the only line at which $sent_j[j, i]$ is modified is line 2. The proof trivially follows from the initialization of $sent_j[j, i]$ to 0 and the sequentiality of the lines 1 an 2.

Lemma 9 Message co_delivery respects causal delivery order.

Proof Let m1 and m2 be two application messages such that (a) co_send(m1) causally precedes co_send(m2), (b) both are co_sent to the same process p_i , (c) m1 is co_sent by p_{j1} , and (d) m2 is co_sent by p_{j2} . Moreover, let CO(m1, sent1) and CO(m2, sent2) be the corresponding messages sent by the algorithm (see Fig. 12.5).

As there is a causal path from co_send(m1) to co_send(m2), it follows from the fact that line 2 is executed between send(m1, sent1) and send(m2, sent2) that we have sent1[j1, i] < sent2[j1, i]. We consider two cases.

- $j1 = j2 (m1 \text{ and } m2 \text{ are co_sent by the same sender})$. As $delivered_i[j1]$ is the sequence number of the last message co_delivered from p_{j1} , it follows from (a) the predicate $delivered_i[j1] \ge sent[j1, i]$, and (b) the fact that sent[j1, i] is the sequence number of the previous message co_sent by p_{j1} to p_i (Lemma 8), that the messages co_sent by p_{j1} to p_i are co_delivered according to their sequence number. This proves the lemma for the messages co_sent by the same process.
- $j1 \neq j2 \ (m1 \text{ and } m2 \text{ are co_sent}$ by distinct senders). If the delivery condition of m2 is satisfied we have $delivered_i[j1] \ge sent2[j1,i]$, which means that, as sent2[j1,i] > sent1[j1,i], we have then $delivered_i[j1] > sent1[j1,i]$. But, it follows from the previous item that the messages from p_{j1} are received according their sequence numbers, from which we conclude that m1 has been previously co_delivered, which concludes the proof of the lemma.

Lemma 10 Any message that is co_sent by a process is co_delivered by its destination process. *Proof* Let \prec denote the following relation on the application messages. Let *m* and *m'* be any pair of application messages; $m \prec m'$ if co_send(*m*) causally precedes co_send(*m'*). As the causal precedence relation \xrightarrow{ev} on events is a partial order, so is the relation \prec .

Given a process p_i , let *pending_i* be the set of messages which have been co_sent to it and are never co_delivered. Assuming *pending_i* $\neq \emptyset$, let $m \in pending_i$ a message that is minimal with respect \prec (i.e., a message which has no predecessor—according to \prec —in *pending_i*).

As *m* cannot be co_delivered by p_i there is (at least) one process p_k such that $delivered_i[k] < sent[k, i]$ (line 3). It then follows from Lemma 9 that there is a message *m'* such that (a) *m'* has been co_sent by p_k to p_i , co_send(*m'*) causally precedes co_send(*m*), and *m'* is not co_delivered by p_i (Fig. 12.5 can still be considered after replacing *m*1 by *m'* and *m*2 by *m*). Hence this message belongs to pending_i and is such that $m' \prec m$. But this contradicts the fact that *m* is minimal in pending_i, which concludes the proof of the liveness property.

Theorem 17 *The algorithm described in Fig.* 12.4 *implements the causal message delivery abstraction.*

Proof The proof of the validity and integrity properties are trivial and are left to the reader. The proof of the causal message delivery follows from Lemma 9, and the proof of the termination property follows from Lemma 10. \Box

12.2.3 Reduce the Size of Control Information Carried by Messages

The main drawback of the previous algorithm lies in the size of the control information that has to be attached to each application message m. Let b be the number of bits used for each entry of a matrix $sent_i[1.n, 1..n]$. As a process does not send message to itself, the diagonal $sent_i[j, j]$, $1 \le j \le n$, can be saved. The size of the control information that is transmitted with each application message is consequently $(n^2 - n)b$ bits. This section shows how this number can be reduced.

Basic Principle Let us consider a process p_i that sends a message $CO(m, sent_i)$ to a process p_j . The idea consists in sending to p_j only the set of values of the entries of the matrix *sent_i* that have been modified since the last message CO() sent to p_j . The set of values that has to be transmitted by p_i to p_j is the set of 3-tuples

 $\{\langle k, \ell, sent_i[k, \ell] \rangle \mid sent_i[k, \ell] \text{ has been}$ modified since the last co _send of p_i to $p_j \}$.

Let us remember that a similar approach was used in Sect. 7.3.2 to reduce the size of the vector dates carried by messages.

A First Solution An easy solution consists in directing each process to p_i manage (n-1) additional matrices, one per process p_j , $j \neq i$, in such a way that the matrix $last_sent_i[j]$ contains the value of the matrix $sent_i$ when p_i sent its last message to p_j . Each such matrix is initialized as $sent_i$ (i.e., 0 everywhere). The code of the operation co_send(m) then becomes:

operation co_send(m) to
$$p_j$$
 is
let $set_i = \{\langle k, \ell, sent_i[k, \ell] \rangle \mid sent_i[k, \ell] \neq last_sent_i[j][k, \ell]\};$
send CO(m, set_i) to p_j ;
 $last_sent_i[j] \leftarrow sent_i;$
 $sent_i[i, j] \leftarrow sent_i[i, j] + 1.$

The code associated with the reception of a message CO(m, set) can be easily modified to reconstruct the matrix *sent_i* used in the algorithm of Fig. 12.4.

As far as local memory is concerned, this approach costs n - 1 additional matrices (without their diagonal) per process, i.e., $(n - 1)(n^2 - n)b \in O(n^3b)$ bits per process. It is consequently worthwhile only when *n* is small.

A Better Solution: Data Structures This section presents a solution for which the additional data structures at each process need only $(n^2 + 1)b$ bits. These data structures are the following.

- *clock_i* is a local logical clock which measures the progress of *p_i*, counted as the number of messages it has co_sent (i.e., *clock_i* counts the number of relevant events—here they are the invocations of co_send()—issued by *p_i*). Initially, *clock_i* = 0.
- *last_send_to_i*[1..*n*] is an vector, initialized to [0,...,0], such that *last_send_to_i*[*j*] records the local date of the last co_send to *p_i*.
- *last_mod_i*[1..n, 1..n] is an array such that *last_mod_i*[k, ℓ] is the local date of the last modification of *sent_i*[k, ℓ]. The initial value of each *last_mod_i*[k, ℓ] is −1.

As the diagonal of $last_mod_i$ is useless, it can be used to store the vector $last_send_to_i[1..n]$.

A Better Solution: Algorithm The corresponding algorithm is described in Fig. 12.6. When a process wants to co_send a message *m* to a process p_j , it first computes the set of entries of $sent_i[1..n, 1..n]$ that have been modified since the last message it sent to p_j (line 1). Then, it attaches the corresponding tuples to *m*, sends them to p_j (line 2), and increases the local clock (line 3). Finally, p_i updates the other control variables: $sent_i[i, j]$ (as in the basic algorithm) and $last_i[i, j]$ (line 4); and $last_sent_i[j]$ (line 5).

When p_i receives a message CO(m, set) from p_j , it first checks the delivery condition (line 6). Let us notice that the delivery condition is now only on the pairs (k, i) such that $\langle k, i, - \rangle \in set$. This is because, for each pair (k', i) such that $\langle k', i, - \rangle \notin set$, the local variable $sent_j[k', i]$ of the sender p_j has not been modified since its last sending to p_i . Consequently the test $delivered_i[k'] \ge sent_j[k', i]$ was done when the message m' carrying $\langle k', i, - \rangle$ (previously sent by p_j to p_i) is **operation** co_send(m) to p_j **is** (1) **let** $set_i = \{\langle k, \ell, sent_i[k, \ell] \rangle \mid last_mod_i[k, \ell] \ge last_sent_to_i[j]\};$ (2) send CO(m, set_i) to p_j ; (3) $clock_i \leftarrow clock_i + 1;$ (4) $sent_i[i, j] \leftarrow sent_i[i, j] + 1; last_mod_i[i, j] \leftarrow clock_i;$ (5) $last_sent_to_i[j] \leftarrow clock_i.$ **when** CO(m, set) **is received from** p_j **do** (6) **wait** ($\forall \langle k, \ell, x \rangle \in set : delivered_i[k] \ge x$); (7) co_delivery of m to the application layer; (8) $delivered_i[j] \leftarrow delivered_i[j] + 1;$ (9) $sent_i[j, i] \leftarrow sent_i[j, i] + 1; last_mod_i[i, j] \leftarrow clock_i;$ (10) **for each** $\langle k, \ell, x \rangle \in set_i$ **do** (11) **if** $(sent_i[k, \ell] < x)$ **then** $sent_i[k, \ell] \leftarrow x; last_mod_i[k, \ell] \leftarrow clock_i$ **end if** (12) **end for**.

Fig. 12.6 An implementation reducing the size of control information (code for p_i)

Fig. 12.7 Control information carried by consecutive messages sent by p_i to p_i

received by p_i . Let us notice that—except possibly for the first message co_sent by p_j —the set *set* cannot be empty because there is at least the triple $\langle j, i, x \rangle$, where x is the sequence number of the previous message co_sent by p_j to p_i . (See Fig. 12.7.)

After *m* has been co_delivered, p_i updates its local control variables $delivered_i[j]$, $sent_i[j, i]$ as in the basic algorithm (line 8–9). It also updates entries of $sent_i[1..n, 1..n]$ according to the values it has received in the set set_i (line 10–12).

An Adaptive Solution As done in Sect. 7.3.2 for vector clocks, it is possible to combine the basic algorithm of Fig. 12.4 with the algorithm of Fig. 12.6 to obtain an adaptive algorithm. The resulting sending procedure to be used at line 2 of Fig. 12.6 is described in Fig. 12.8.

As we can see, the test at line 2 is a simple switch that directs p_i to attach the least control information to the message m. The associated delivery condition is then that of Fig. 12.4 or that of Fig. 12.6 according to the tag of the message.

before sending $CO(m, -)$ to p_i is		
(1)	let $s = set_i $;	
(2)	if $((n^2 - n)b < s(2\log_2 n + b))$	
(3)	then tag the message to be sent with "0" and send the full matrix $sent_i$	
(4)	else tag the message to be sent with "1" and send the set set_i	
(5)	end if.	

Fig. 12.8 An adaptive sending procedure for causal message delivery

Fig. 12.9 Illustration of causal broadcast

12.3 Causal Broadcast

12.3.1 Definition and a Simple Algorithm

Definition Causal broadcast is a communication abstraction that ensures causal message delivery in the context of broadcast communication. It provides processes with two operations denoted co_broadcast() and co_deliver(). The only difference from point-to-point communication is that each message has to be co_delivered by all the processes (including its sender).

An example is depicted in Fig. 12.9. The message pattern on the left side does not satisfy the causal message delivery property. This is due to the messages m_1 and m_3 : while the broadcast of m_1 causally precedes the broadcast of m_3 , their delivery order at p_3 does not comply with their broadcast order. Differently, as there is no causal relation linking the broadcast of m_1 and m_2 , they can be delivered in any other at each process (and similarly for m_2 and m_3). The message pattern on the right side of the figure satisfies the causal message delivery property.

A Simple Causal Broadcast Algorithm A simple algorithm can be derived from the point-to-point algorithm described in Fig. 12.4. As the sending of a message *m* to a process is replaced by the sending of *m* to all processes, the matrix $sent_i[1..n, 1..n]$ can be shrunk into a vector $broadcast_i[j]$ such that

 $broadcast_i[j] = sent_i[j, 1] = \cdots = sent_i[j, n],$

which means that $broadcast_i[j]$ represents the number of messages that, to p_i 's knowledge, have been broadcast by p_j . (The initial value of $broadcast_i[j]$ is 0.)

operation co_broadcast(m) is (1) for each $j \in \{1, ..., n\} \setminus \{i\}$ do send CO_BR(m, broadcast_i[1..n]) to p_j end for; (2) broadcast_i[i] \leftarrow broadcast_i[i] + 1; (3) co_delivery of m to the application layer.

when $CO_BR(m, broadcast[1..n])$ is received from p_j do

- (4) **wait** $(\forall k : broadcast_i[k] \ge broadcast[k]);$
- (5) co_delivery of m to the application layer;
- (6) $broadcast_i[j] \leftarrow broadcast_i[j] + 1.$

In addition to the previous observation, let us remark that when a process p_i which co_broadcasts a message, can locally co_deliver it at the very same time. This is because the local co_delivery of such a message *m* cannot depend on messages not yet co_delivered by p_i (it causally depends only on the messages previously co_broadcast or co_delivered by p_i).

The corresponding algorithm is described in Fig. 12.10. When a process p_i invokes co_broadcast(m), it sends the message CO_BR(m, $broadcast_i$) to each other process (line 1), increases accordingly $broadcast_i[i]$ (line 2), and co_delivers m to itself (line 3).

When it receives a message CO_BR(m, broadcast), a process p_i first checks the delivery condition (line 4). As the sequence numbers of all the messages m' that have been co_broadcast in the causal past of m are registered in the vector broadcast[1..n], the delivery condition is

 $(\forall k : broadcast_i[k] \ge broadcast[k]).$

When this condition becomes true, m is locally co_delivered (line 5), and $broadcast_i[j]$ is increased to register this co_delivery of a message co_broadcast by p_i (line 6).

Remark on the Vectors $broadcast_i$ Let us notice that each array $broadcast_i[1..n]$ is nothing more than a vector clock, where the local progress of each process is measured by the number of messages it has co_broadcast. Due to the delivery condition, the update at line 6 is equivalent to the vector clock update

```
for each k \in \{1, ..., n\}
do broadcast_i[k] \leftarrow \max(broadcast_i[k], broadcast[m])
end for.
```

It follows that the technique presented in Sect. 7.3.2 to reduce the size of control information carried by application messages can be used.

An Example An example of an execution of the previous algorithm is described in Fig. 12.11. The co_broadcast of the application messages m_1 and m_2 are independent (not causally related). The co_broadcast of m_1 generates the algorithm message CO_BR(m_1 , [0, 0, 0]). As it has an empty causal past (from the co_broadcast

Fig. 12.11 The causal broadcast algorithm in action

point of view), this message can be co_delivered as soon as it arrives at a process. We have the same for the application message m_2 , which gives rise to the algorithm message CO_BR $(m_2, [0, 0, 0])$. When this messages arrives at p_1 we have $broadcast_1 = [1, 0, 0] > [0, 0, 0]$, and after p_1 has co_delivered m_2 , we have $broadcast_1 = [1, 1, 0]$, witnessing that the co_broadcast of m_1 and m_2 are in the causal past of the next message that will co_broadcast by p_1 .

Differently, the co_broadcast of m_1 belongs to the causal past of m_3 , and p_3 consequently sends the algorithm message CO_BR(m_3 , [1, 0, 0]). As $broadcast_1 = [1, 1, 0]$ when p_1 receives CO_BR(m_3 , [1, 0, 0]), p_1 can immediately co_deliver m_3 when it receives CO_BR(m_3 , [1, 0, 0]). Differently, $broadcast_2 = [0, 1, 0]$ when p_2 receives CO_BR(m_3 , [1, 0, 0]). As $broadcast_2$ [1] = 0 < 1, p_2 is forced to delay the co_delivery of m_3 until it has co_delivered m_1 .

12.3.2 The Notion of a Causal Barrier

This section presents a simple causal broadcast algorithm that reduces the size of the control information carried by messages.

Message Causality Graph Let *M* be the set of all the messages which are co_broadcast during the execution of an application. Let us define a partial order relation, denoted \prec_{im} , on application messages as follows. Let *m* and *m'* be any two application messages. We have $m \prec_{im} m'$ (read: *m* precedes immediately *m'* in the message graph) if:

- The co_broadcast(m) causally precedes co_broadcast(m').
- There is no message m'' such that (a) co_broadcast(m) causally precedes co_broadcast(m''), and (b) co_broadcast(m'') causally precedes co_broadcast(m').

Fig. 12.12 The graph of immediate predecessor messages

An example is depicted on Fig. 12.12. The execution is on the left side, and the corresponding message graph is on the right side. This graph, which captures the immediate causal precedence on the co_broadcast of messages, states that the co_delivery of a message depends only on the co_delivery of its immediate predecessors in the graph. As an example, the co_delivery of m_4 is constrained by the co_delivery of m_3 and m_2 , and the co_delivery of m_3 is constrained by the co_delivery of m_1 . Hence, the co_delivery of m_4 is not (directly) constrained by the co_delivery of m_1 . It follows that a message has to carry control information only on its immediate predecessors in the graph defined by the relation \prec_{im} .

Causal Barrier and Local Data Structures Let us associate with each application message an identity (a pair made up of a sequence number plus a process identity). The *causal barrier* associated with an application message is the set of identities of the messages that are its immediate predecessors in the message causality graph. Each process manages accordingly the following data structures.

- *causal_barrier_i* is the set of identities of the messages that are immediate predecessors of the next message that will be co_broadcast by p_i . This set is initially empty.
- delivered_i[1..n] has the same meaning as in previous algorithms. It is initialized to [0,...,0], and delivered_i[j] contains the sequence number of the last message from p_j that has been co_delivered by p_i.
- sn_i is a local integer variable initialized to 0. It counts the number of messages that have been co_broadcast by p_i .

Algorithm The corresponding algorithm, in which the causal barrier of a message *m* constitutes the control information attached to it, is described in Fig. 12.13.

When a process p_i invokes co_broadcast(*m*), it first builds the message CO_BR(*m*, *causal_barrier_i*) and sends it to all the other processes (line 1). According to the definition of *causal_barrier_i*, a destination process will be able to co_deliver *m* only after having co_delivered all the messages whose identities belong to *causal_barrier_i*. Then, p_i co_delivers locally *m* (line 2), increases sn_i (line 3), and resets its causal barrier to { (sn_i, i) } (line 4). This is because the co_delivery of the next message co_broadcast by p_i will be constrained by *m* (whose identity is the pair (sn_i, i)).

operation co_broadcast(*m*) **is** (1) **for each** $j \in \{1, ..., n\} \setminus \{i\}$ **do** send CO_BR(*m*, *causal_barrier_i*) to p_j **end for**; (2) co_delivery of *m* to the application layer; (3) $sn_i[i] \leftarrow sn_i + 1$; (4) *causal_barrier_i* $\leftarrow \{\langle sn_i, i \rangle\}$. **when** CO_BR(*m*, *causal_barrier*) **is received from** p_j **do** (5) **wait** ($\forall \langle sn, k \rangle \in causal_barrier : delivered_i[k] \ge sn$; (6) co_delivery of *m* to the application layer; (7) *delivered_i*[*j*] \leftarrow *delivered_i*[*j*] + 1; (8) *causal_barrier_i \leftarrow (<i>causal_barrier_i \ causal_barrier*) $\cup \{\langle delivered_i[j], j \rangle\}$.

Fig. 12.13 A causal broadcast algorithm based on causal barriers (code for p_i)

When it receives an algorithm message $(m, causal_barrier)$ from p_j , p_i delays the co_delivery of m until it has co_delivered all the messages whose identity belongs to causal_barrier, i.e., until it has co_delivered all the immediate predecessors of m (lines 5–6). Then, p_i updates delivered_i[j] (line 7). Finally, p_i updates its causal barrier (line 8). To that end, p_i first suppresses from it the message identities which are in causal_barrier (this is because, due to delivery condition, it has already co_delivered the corresponding messages). Then, p_i adds to causal_barrier_i the identity of the message m it has just co_delivered, namely the pair (delivered_i[j], j) (this is because, the message m will be an immediate predecessor of the next message that p_i will co broadcast).

Let us finally observe that the initial size of a set *causal_barrier* is 0. Then, as soon as p_i has co_broadcast or co_delivered a message, we have $1 \le |causal_barrier_i| \le n$.

12.3.3 Causal Broadcast with Bounded Lifetime Messages

This section has two aims: show the versatility of the causal barrier notion and introduce the notion of messages with bounded lifetime. The algorithm presented in this section is due to R. Baldoni, R. Prakash, M. Raynal, and M. Singhal (1998).

Asynchronous System with a Global Clock Up to now we have considered fully asynchronous systems in which there is no notion of physical time accessible to processes. Hence, no notion of expiry date can be associated with messages in such systems.

We now consider that, while the speed of each process and the transit time of each message remains arbitrary (asynchrony assumption), the processes have access to a common physical clock that they can only read. This global clock is denoted *CLOCK*. (Such a common clock can be implemented when the distributed application covers a restricted geographical area.)

Fig. 12.14 Message with bounded lifetime

Bounded Lifetime Message The *lifetime* of a message is the physical time duration during which, after the message has been sent, its content is meaningful and can consequently be used by its destination process(es). A message that arrives at its destination process after its lifetime has elapsed becomes useless and must be discarded. For the destination process, it is as if the message was lost. A message that arrives at a destination process before its lifetime has elapsed must be delivered by the expiration of its lifetime.

For simplicity, we assume that all the messages have the same lifetime Δ and processing times are negligible when compared to message transit times.

Let τ be the sending time of a message. The physical date $\tau + \Delta$ is the *deadline* after which this message is useless for its destination process. This is illustrated in Fig. 12.14. The message *m* arrives by its deadline and must be processed by its deadline. On the opposite, *m'* arrives after its deadline and must be discarded.

It is also assumed that the lifetime Δ is such that, in practice, a great percentage of messages arrives by their deadline, as is usually the case in distributed multimedia applications.

\Delta-Causal Broadcast Δ -causal broadcast is a causal broadcast in a context in which the application messages have a bounded lifetime Δ . It is defined by the operations co_broadcast() and co_deliver() which satisfy the following properties.

- Validity. If a process p_i co_delivers a message m from a process p_j , m was co_broadcast by p_j .
- Integrity. No message is co_delivered more than once.
- Causal delivery order. For any pair of messages m and m' that arrives at a process p_j by their deadlines, p_j co_delivers m before m' if co_broadcast(m) causally precedes co_broadcast(m').
- Expiry constraint. No message that arrives after its deadline at a process is co_delivered by this process.
- Termination. Any message that arrives at a destination process p_j by its deadline is processed by p_j by its deadline.

Fig. 12.15 On-time versus too late

As shown in Fig. 12.15, it is possible for a message *m* to be co_delivered by its deadline at a process p_j (termination property), and discarded at another process p_k (expiry constraint).

Message Delivery Condition Let us replace the sequence numbers associated with messages in the time-free algorithm of Fig. 12.13 by their sending dates, as defined by the common clock *CLOCK*. Consequently, the identity of a message m is now a pair made up of a physical date (denoted) *sdt* plus a process identity.

An algorithm message sent by a process p_j carries now three parts: the concerned application message *m*, its sending date *st*, and the current value of *causal_barrier_j*.

When, p_i receives such a message CO_BR($m, st, causal_barrier$) from p_j , p_i discards the message if it arrives too late, i.e., if $CLOCK - st > \Delta$. In the other case $(CLOCK - st \le \Delta)$, the message has to be co_delivered by time $st + \Delta$. If Δ was equal to $+\infty$, all the messages would arrive by their deadlines, and they all would have to be co_delivered. The delivery condition would then be that of the time-free algorithm, where sequence numbers are replaced by physical sending dates, i.e., we would have

$$DC'(m) \equiv (\forall \langle sdt, k \rangle \in causal_barrier : delivered_i[k] \ge sdt)$$

When $\Delta \neq +\infty$, it is possible that there is a process p_k that, in the causal past of co_broadcast(m), has co_broadcast a message m' (identified $\langle sdt, k \rangle$) such that (a) $\langle sdt, k \rangle \in causal_barrier$, (b) $delivered_i[k] > sdt$, and (c) m' will be discarded because it will arrive after its deadline. The fact that (i) the co_broadcast of m' causally precedes the co_broadcast of m, and (ii) m' is not co_delivered, has not to prevent p_i from co_delivering m. To solve this issue, p_i delays the co_delivery of m until the deadline of m' (namely $std + \Delta$), but no more. The final delivery condition is consequently

$$DC'(m) \equiv \forall \langle sdt, k \rangle \in causal_barrier : \begin{cases} (delivered_i[k] \ge sdt) \\ \lor (CLOCK - sdt > \Delta). \end{cases}$$

```
operation co_broadcast(m) is
(1) st \leftarrow CLOCK;
(2) for each i \in \{1, ..., n\} \setminus \{i\} do send CO_BR(m, st, causal_barrier<sub>i</sub>) to p_i end for;
(3) co_delivery of m to the application layer;
(4) causal_barrier<sub>i</sub> \leftarrow \{\langle st, i \rangle\}.
when CO_BR(m, st, causal\_barrier) is received from p_i do
(5) current\_time \leftarrow CLOCK;
(6) if current_time > st + \Delta
           then discard m
(7)
(8)
           else wait (\forall \langle std, k \rangle \in causal\_barrier :
(9)
                        (delivered_i[k] \ge sdt) \lor (current\_time > std + \Delta));
(10)
                 co_delivery of m to the application layer;
(11)
                 delivered<sub>i</sub>[j] \leftarrow sdt;
                  causal\_barrier_i \leftarrow (causal\_barrier_i \setminus causal\_barrier) \cup \{\langle sdt, j \rangle\};
(12)
(13) end if.
```

Fig. 12.16 A Δ -causal broadcast algorithm (code for p_i)

Algorithm The corresponding Δ -causal broadcast algorithm is described in Fig. 12.16. It is a simple adaptation of the previous time-free causal broadcast algorithm to (a) physical time and (b) messages with a bounded lifetime Δ . (Taking $\Delta = +\infty$ provides us with a deadline-free causal order algorithm based on physical clocks.)

As already said, it is assumed that the duration of local processing is 0. Moreover, the granularity of the common clock is assumed to be such that any two consecutive invocations of co_broadcast() by a process have different dates.

A message CO_BR(m, st, $causal_barrier_i$) sent at line 2 carries its sending date st, so that the receiver can discard it as soon as it arrives, if it arrives too late (lines 6–7).

12.4 The Total Order Broadcast Abstraction

12.4.1 Strong Total Order Versus Weak Total Order

Strong Total Order Broadcast Abstraction The total order broadcast abstraction was introduced in Sect. 7.1.4 to illustrate the use of scalar clocks. For the self-completeness of this chapter, its definition it repeated here. This abstraction provides the processes with two operations denoted to_broadcast() and to_deliver() which satisfy the following properties. Let us recall that it is assumed that all the messages which are co_broadcast are different.

- Validity. If a process to_delivers a message *m*, there is a process that has to_broadcast *m*.
- Integrity. No message is to_delivered more than once.

- Total order. If a process to_delivers *m* before *m'*, no process to_delivers *m'* before *m*.
- Causal precedence order. If the to_broadcast of *m* causally precedes the to_broadcast of *m'*, no process to_delivers *m'* before *m*.
- Termination. If a process to_broadcasts a message m, every process to_delivers m.

In the following this communication abstraction is called *strong* total order abstraction.

Weak Total Order Broadcast Abstraction Some applications do not require that message delivery complies with causal order. For these applications, the important point is the fact that the messages are delivered in the same order at each process, the causality among their broadcast being irrelevant. This defines a *weak* total order abstraction, which is total order broadcast without the "causal precedence order" requirement.

Causal Order Versus Total Order As has been seen in the algorithms ensuring causal message delivery, when a process p_i receives an algorithm message carrying an application message m, it can be forced to delay the local delivery of m (until the associated delivery condition becomes true), but it is not required to coordinate with other processes.

This is the fundamental difference with the algorithms that implement total order message delivery. Let us consider Fig. 12.17 in which, independently, p_1 invokes to_broadcast(m) and p_2 invokes to_broadcast(m'). Let us consider any two distinct processes p_i and p_j . As the co_broadcasts of m and m' are not causally related, it is possible that p_i receives first the algorithm message carrying m and then the one carrying m', while p_j receives them in the opposite order. If the message delivery requirement was causal order, there will be no problem, but this is no longer the case for total order: p_i and p_j have to coordinate in one way or another, directly or indirectly, to agree on the same delivery requirement are inherently more costly (in terms of time and additional exchanged messages) than the algorithms implementing only causal message delivery.

Fig. 12.18 Total order broadcast based on a coordinator process

12.4.2 An Algorithm Based on a Coordinator Process or a Circulating Token

Using a Coordinator Process A simple solution to implement a total order on message delivery consists in using a coordinator process p_{coord} , as depicted in the example on the left of Fig. 12.18. More precisely, we have the following.

- Each process p_i manages a local variable lsn_i , which is used to associate a sequence number with each application message it to_broadcasts. Then, when a process p_i invokes to_broadcast(m), it increases lsn_i and sends the algorithm message LTO_BR (m, lsn_i) to p_{coord} .
- The coordinator process *p_{coord}* manages a local variable *gsn_i*, used to associate a global sequence number (i.e., a sequence number whose scope is the whole system) with each message *m* it receives.

For each process p_i , the coordinator processes the messages LTO_BR(m, lsn) it receives from p_i according to their local sequence numbers. Hence, when looking at the arrival pattern described on the right of Fig. 12.18, p_{coord} is able to recover the sending order of m and m'.

The processing of a message *m* is as follows. First p_{coord} increases gsn_i , and associates the new value with *m*. It then sends the message $GTO_BR(m, gsn_i)$ to all the processes.

• A process *p_i* to_delivers the application messages *m*, that it receives in algorithm messages GTO_BR(*m*, *gsn*), according to their global sequence numbers.

This simple algorithm implements the strong total order broadcast abstraction (i.e., total order on the delivery of application messages which complies with message causal precedence). It is a two-phase algorithm: For each application message m, a process sends first an algorithm message to the coordinator process, and then the coordinator sends an algorithm message to all.

Replacing the Coordinator Process by a Token The coordinator process can be replaced by a mobile token which acts as a moving coordinator. The token message, denoted TOKEN(*gsn*), carries a sequence number generator *gsn*, initialized

to 0. When a process p_i invokes co_broadcast(m), it waits for the token and, when it receives the token, it increases gsn by 1, whose new value becomes the global sequence number associated with m. Then, p_i sends the message GTO_BR(m, gsn) to all the processes. Finally, a process to_delivers the application messages it receives according to their sequence numbers. An example is depicted in Fig. 12.19.

As far as the moves of the token are concerned, two approaches are possible.

 As the token is a mobile object, any of the algorithms presented in Chap. 5 can be used. A process that needs a global sequence number invokes the corresponding operations acquire_object() and release_object().

This approach can be interesting when the underlying navigation algorithm is adaptive as, in this case, only the processes that want to to_broadcast messages are required to participate in the navigation algorithm.

• The processes are arranged along a unidirectional logical ring, and the token moves perpetually along the ring. When a process receives the token, it computes the next sequence number (if needed), and then forwards the token to the next process on the ring.

This solution has the drawback that all the processes are required to participate in the move of the token, even if they do not want to co_broadcast messages. This approach is consequently more interesting in applications where all the processes very frequently want to to_broadcast messages.

Mutual Exclusion Versus Total Order As shown by the previous algorithms, there is a strong relation between mutual exclusion and total order broadcast. In both cases, a total order has to be implemented: on the accesses to a critical section, or on the delivery of messages.

Nevertheless, mutual exclusion and total order broadcast differ in the sense that, in addition to a total order, mutual exclusion prevents two or more processes from being simultaneously in the critical section (hence the operation release_resource(), which needs to be invoked to allow the next process to enter the critical section; such a "release" operation does not exist in total order broadcast).

12.4.3 An Inquiry-Based Algorithm

Structural Decomposition: Clients, Servers, and State Machine Let us consider that the processes are decomposed into two groups: the client processes p_1, \ldots, p_n , and the server processes q_1, \ldots, q_m (see Fig. 12.20). Of course several processes can be both client and server, but, to simplify the presentation and without loss of generality, we consider here clients and servers as distinct entities. This algorithm is due to D. Skeen (1982).

The clients broadcast messages to the servers, and all servers have to deliver these messages in the same order. Hence, this structure is particularly well suited to the duplication of a deterministic state machine (e.g., a queue, a stack, etc.), where each server maintains a copy of the state machine. When a process wants to issue an operation (or command) on the state machine, it builds a message describing this operation and broadcasts it to all the servers using a total order broadcast communication abstraction. The same sequence of operations (command) will consequently be applied on all the copies of the state machine.

Underlying Principle The idea is to associate a timestamp with each application message and to_deliver messages according to their timestamp order. The dates used in timestamps, which can be considered as delivery dates, are computed as follows from logical scalar clocks associated with each server.

When a process p_i wants to broadcast an application message m, it sends an inquiry message to each server q_j , which sends back to it the current value of its clock. This value is a proposed delivery date for m. When p_i has received all the dates proposed for the delivery of m, it computes the maximal one, which becomes the final delivery date of m, and sends it to all the servers. As a same delivery date can be associated with different messages, (as already announced) the control data associated with m is actually a timestamp, i.e., a pair made up of the delivery date of m and the identity of the client that sent it. Finally, each server delivers the application messages according to their timestamp order.

Communication Graph Let us remark that in the communication pattern generated by the previous process and server behavior, the clients (resp., the servers) do not communicate among themselves: A client communicates only with servers and a server communicates only with clients. The communication graph is a bipartite graph with a channel connecting each client and each server as depicted in Fig. 12.20.

Local Variable at a Client Process A client p_i manages a single local variable denoted sn_i . Initialized to 0, this variable allows p_i to associate a sequence number with every application message that it to_broadcasts. Hence, each pair (sn_i, i) is the identity of a distinct message.

Local Variables at a Server Process A server process q_j manages three local variables.

- $clock_J$, is the local scalar clock of q_i . It is initialized to 0.
- *pending_i* is a set, initialized to Ø, which contains the application messages (and associated control data) received and not yet to_delivered by q_i.
- *to_deliverable_i* is a queue, initially empty, at the tail of which *q_j* deposits the next to_delivered message.

Delivery Condition The set *pending_i* contains tuples of the form $\langle m, date, i, tag \rangle$, where *m* is an application message, *i* the identity of its sender, *date* the tentative delivery date currently associated with *m*, and *tag* is a control bit. If *tag* = no_del, the message *ms* not yet been assigned its final delivery date and cannot consequently be to_delivered (added to *to_deliverable_j*). Let us notice that its final delivery date will be greater than or equal to its current tentative delivered if it is stable. Stability means that no message in *pending_i* (and by transitivity, no message to_broadcast in the future) can have a timestamp smaller than the one associated with *m*.

The delivery condition DC(m) for a message *m* such that $(m, date, i, del) \in pending_i$ is consequently the following (let us recall that all application messages are assumed to be different):

$$\forall \langle m', date', i', - \rangle \in pending_i: (m' \neq m) \Rightarrow [(date_i < date_{i'}) \lor (date_i = date_{i'} \land i < i')].$$

The Total Order Broadcast Algorithm The corresponding total order broadcast algorithm is described in Fig. 12.21. A client process p_i is allowed to invoke again to_broadcast() only when it has completed its previous invocation (this means that, while it is waiting at line 3, a process remains blocked until it has received the appropriate messages).

When it invokes to_broadcast(m), p_i first computes the sequence number that will identify m (line 1). It then sends the message INQUIRY(m, sn_i) to each server (line 2) and waits for their delivery date proposals (line 3). When p_i has received

= on client side === **operation** co_broadcast(m) by a client p_i is (1) $sn_i \leftarrow sn_i + 1;$ for each $j \in \{1, ..., m\}$ do send INQUIRY (m, sn_i) to q_j end for; (2)(3) wait (a message PROP_DATE(sn_i, d_i) has been received from each q_i); (4) Let date $\leftarrow \max(\{d_i\}_{1 \le i \le m});$ for each $j \in \{1, ..., m\}$ do send FINAL_DATE(*sn_i*, *date*) to q_j end for. (5) ==== on server side === when INQUIRY(m, sn) is received from p_i by a server q_j do (6) $msg_sn \leftarrow sn;$ (7) $clock_{j} \leftarrow clock_{j} + 1;$ (8) pending_i \leftarrow pending_i $\cup \{\langle m, clock_i, i, no_del \rangle\};$ (9) send PROP_DATE(sn, $clock_i$) to p_i ; (10) wait (FINAL_DATE(*sn*, *date*) received from p_i where $sn = msg_sn$); (11) replace $\langle m, -, i, \text{no_del} \rangle$ in *pending*_i by $\langle m, date, i, del \rangle$; (12) $clock_i \leftarrow max(clock_i, date)$. back ground task T is (13) repeat forever **wait** $(\exists \langle m, date, i, del \rangle \in pending_i \text{ such that } \forall \langle m', date', i', - \rangle \in pending_i$: (14) $(m' \neq m) \Rightarrow [(date_i < date_{i'}) \lor (date_i = date_{i'} \land i < i')];$ withdraw $\langle m, date, i, del \rangle$ from *pending*_i; (15)(16)add *m* at the tail of $to_deliverable_i$ (17) end repeat.

Fig. 12.21 A total order algorithm from clients p_i to servers q_i

them, p_i computes the final delivery date of m (line 4) and sends it to the servers (line 5). (As we can see, this is nothing more than a classical handshake coordination mechanism which has been already encountered in other chapters.)

The behavior of a server q_j is made up of two parts. When q_j receives a message TO_1(*m*, *sn*) from a client p_i , q_j stores the sequence of the message (line 6), and increases its local clock (line 7), adds $\langle m, clock_j, i, no_del \rangle$ to *pending_i* (line 8), and sends to p_i a proposed delivery date for *m* (line 9). Then, as far as *m* is concerned, q_j waits until it has received the final date associated with *m* (line 10). When this occurs, it replaces in *pending_i* the proposed date by the final delivery date and marks the message as deliverable (line 11), and updates its local scalar clock (line 12).

The second processing part associated with a server is a background task which suppresses messages from *pending_i* and adds them at the tail of the queue *to_deliverable_j*. The core of this task, described at lines 13–17, is the delivery condition DC(m), which has been previously introduced.

12.4.4 An Algorithm for Synchronous Systems

This section considers total order broadcast in a synchronous system. The algorithm which is described is a simplified version of a fault-tolerant algorithm due to F. Cristian, H. Aghili, R. Strong, and D. Dolev (1995).

```
operation co_broadcast(m) is
(1) sdt \leftarrow CLOCK;
(2) for each j \in \{1, ..., m\} do send TO_BR(m, sdt) to p_j end for.
when (m, sdt) is received from p_i do
(3) pending i \leftarrow pending i \cup \{\langle m, sdt + \Delta \rangle\}.
back ground task T is
(4) repeat forever
         let dmin = smallest date in pending;
(5)
(6)
         wait(CLOCK = dmin);
(7)
         withdraw from pending<sub>i</sub> the messages whose delivery date is dmin,
(8)
         and add them at the tail of to_deliverable i in increasing timestamp order
(9) end repeat.
```

Fig. 12.22 A total order algorithm for synchronous systems

Synchronous System The synchrony provided to the processes by the system is defined as follows:

- There is an upper bound, denoted Δ , on message transit duration.
- There is a global physical clock, denoted *CLOCK*, that all the processes can read. (The case where *CLOCK* is implemented with local physical clocks—which can drift—is considered in Problem 8.)

The granularity of this clock is such that no two messages sent by the same process are sent at the same physical date.

The Algorithm The algorithm is described in Fig. 12.22. When a process invokes $co_broadcast(m)$ it sends the message $TO_BR(m, sdt)$ to all the processes (including itself), where *sdt* is the message sending date.

When a process p_i receives a message TO_BR(m, sdt), p_i delays its delivery until time $sdt + \Delta$. If several messages have the same delivery date, they are to_delivered according their timestamp order (i.e., according to the identity of their senders). The local variables *pending_i* and *to_deliverable_i* have the same meaning as in the previous algorithms.

As we can see, this algorithm is based on the following principle: It systematically delays the delivery of each message as if its transit duration was equal to the upper bound Δ . Hence, this algorithm reduces all cases to the worst-case scenario. It is easy to see that the total order on message delivery, which is the total order on their sending times (with process identities used to order the messages sent at the same time), is the same at all the processes.

Total Order in Synchronous Versus Asynchronous Systems Whether the system is synchronous or synchronous, let $\widehat{\Delta}$ be the average message transit time. Assuming that processing times are negligible with respect to transit times, this means

that, in the average, the to_delivery of a message takes $2\widehat{\Delta}$ in the coordinator-based algorithm of Sect. 12.4.2, and $3\widehat{\Delta}$ in the client-server algorithm of Sect. 12.4.3. Differently, the to_delivery of a message takes always Δ in the synchronous algorithm of Fig. 12.22. It follows that, when considering algorithms executed on top of a synchronous system, an asynchronous algorithm can be more efficient than a synchronous algorithm when $2\widehat{\Delta} < \Delta$ (or $3\widehat{\Delta} < \Delta$).

12.5 Playing with a Single Channel

Considering a channel, this section considers four ordering properties that can be associated with each message sent of this channel, and algorithms which implement them. This section has to be considered as an exercise in two-process communication.

12.5.1 Four Order Properties on a Channel

Definitions Let us consider a message m sent by a process p_i to a process p_j , and m' any other message sent by p_i to p_j . Four types of delivery constraints can be associated with the message m. Let s(m) and del(m) be the events "sending of m" and delivery of m, respectively (and similarly for m'). The four types of delivery constraints which can be imposed on m are denoted ct_future, ct_past, marker, and ordinary. They are defined as follows, where type(m) denotes the constraint associated with m.

type(m) = ct_future. In this case, m cannot be bypassed by messages m' sent after it (m controls its future). Moreover, nothing prevents m from bypassing messages m" sent before it. This constraint is depicted in Fig. 12.23: all the messages m' sent after m are delivered by p_i after m.

Formally, if type(m) = ct_future, we have for any other message m' sent by p_i to p_j :

$$(s(m) \xrightarrow{ev} s(m')) \Rightarrow (del(m) \xrightarrow{ev} del(m')).$$

type(m) = ct_past. In this case, m cannot bypass the messages m' sent before it (m is controlled by its past). Moreover, nothing prevents m from being bypassed by messages m" sent after it. This constraint is depicted in Fig. 12.24: all the messages m' sent before m are delivered by p_i before m.

Formally, if type(m) = ct_past, we have for any other message m' sent by p_i to p_j :

$$(s(m') \xrightarrow{ev} s(m)) \Rightarrow (del(m') \xrightarrow{ev} del(m)).$$

• type(m) = marker. In this case, *m* can neither bypass messages *m'* sent after it, nor be bypassed by messages *m''* sent before it. This constraint is depicted in Fig. 12.25. (This type of message has been implicitly used in Sect. 6.6, devoted to the determination of a consistent global state of a distributed computation.)

Formally, if type(m) = marker, we have for any other message m' sent by p_i to p_j :

$$\left[\left(s(m) \xrightarrow{ev} s(m')\right) \Rightarrow \left(del(m) \xrightarrow{ev} del(m')\right)\right]$$

$$\land \left[\left(s(m') \xrightarrow{ev} s(m)\right) \Rightarrow \left(del(m') \xrightarrow{ev} del(m)\right)\right]$$

type(m) = ordinary. In this case, m imposes no delivery constraints on the other messages sent by p_i to p_j.

It is easy to see that if the type of all the messages sent by p_i to p_j is marker, the channel behaves as a FIFO channel. The same is true if the type of all the messages is either ct_future or ct_past.

12.5.2 A General Algorithm Implementing These Properties

This section presents an algorithm which ensures that the messages sent by p_i to p_j are delivered according to the constraints defined by their types.

A Simple Algorithm An algorithm that builds a FIFO channel on top of a non-FIFO channel can be used. Considering that (whatever their actual types) all the messages are typed ordinary, such an algorithm ensures that each message *m* behaves as if it was typed marker. As this type is stronger than the other types, all the constraints defined by the types of all the messages are trivially satisfied.

```
operation send(m, type(m)) by p_i to p_j is
(1) sn_i \leftarrow sn_i + 1;
(2)
      send (m, sn_i) to p_i.
when (m, sn) is received by p_i from p_i do
(3)
      if (last\_sn_i + 1 \neq sn)
          then pending_i \leftarrow pending_i \cup \{(m, sn)\}
(4)
(5)
          else deliver m; last\_sn_i \leftarrow last\_sn_i + 1
                 while (\exists (m', sn') \in pending_i : sn' = last\_sn_i + 1)
(6)
(7)
                    do deliver m'; last\_sn_i \leftarrow last\_sn_i + 1
 (8)
                 end while
       end if.
(9)
```

Fig. 12.26 Building a first in first out channel

Such an algorithm is describe in Fig. 12.26. The sender p_i manages a local variable sn_i (initialized to 0), that it uses to associate a sequence number with each message. The receiver process p_j manages two local variables: $last_sn_j$ (initialized to 0) contains the sequence number of the last message of p_i that it has delivered; *pending_i* is a set (initially empty) which contains the messages (with their sequence numbers) received and not year delivered by p_j . The sequence numbers allows p_j to deliver the messages in their sending order.

A Genuine Algorithm The previous algorithm is stronger than necessary: Whatever the type of each message, it forces all of them to behave as if they were typed marker. This section presents a genuine algorithm, i.e., an algorithm which imposes to messages only the constraints defined by their type.

To that end, in addition to sn_i (managed by p_i) and $pending_j$ (managed by p_j), the sender p_i and the receiver p_j manage the following local variables:

- no_bypass_i is a local variable of p_i that contains the sequence number of the last message which has been sent and cannot be bypassed by the messages that will be sent in the future. It is initialized to 0, and updated when p_i sends a message whose type is ct_future or marker (this is because, due to the definition of these types, such messages cannot be bypassed by messages sent in the future).
- $deliv_sn_j$ is a set of p_j that contains the sequence numbers of all the messages that p_j has already delivered. Its initial value is {0} (the sequence numbers start at 1). (As the messages are not necessarily delivered in their sending order, a simple counter such as *last_sn_j* is no longer sufficient to register which messages have been delivered.)

The genuine algorithm is described in Fig. 12.27. When p_i wants to send a message *m* to p_j , it associates the next sequence number sn_i with *m*, and sends the message $(m, sn_i, type(m), barrier)$ to p_j . The value *barrier* is a control data, which is the sequence number of the last message *m'* that *m* cannot bypass. If type(*m*) is ct_past or marker, due to the definition of these types, *m'* is the last message that p_i sent before *m* (lines 3 and 4). If type(*m*) is ct_future or ordinary, *barrier* is set to the value of no_bypass_i (lines 2 and 5). Moreover, if type(*m*) is

```
operation send(m, type(m)) by p_i to p_j is
(1)
      sn_i \leftarrow sn_i + 1;
       case (type(m) = ct_future) then barrier \leftarrow no_bypass<sub>i</sub>; no_bypass<sub>i</sub> \leftarrow sn<sub>i</sub>
(2)
(3)
             (type(m) = marker)
                                             then barrier \leftarrow ns_i - 1; no_bypass<sub>i</sub> \leftarrow sn_i
(4)
             (type(m) = ct_past)
                                             then barrier \leftarrow ns_i - 1
             (type(m) = ordinary) then barrier \leftarrow no_bypass<sub>i</sub>
(5)
(6)
      end case;
       send (m, sn_i, type(m), barrier) to p_j.
(7)
when (m, sn, type, barrier) is received from p_i do
(8) if
            [(type(m) \in \{ct_past, marker\}) \land (\{1, \dots, barrier\} \subseteq deliv_sn_i)]
          \vee [(type(m) \in {ordinary, ct_future}) \wedge (barrier \in deliv_sn<sub>i</sub>)]
(9)
          then deliver m; deliv_sn_i \leftarrow deliv_sn_i \cup \{sn\}
                while (\exists (m', sn', type', barrier') \in pending_i such that DC(m')
(10)
                        do deliver m'; deliv\_sn_j \leftarrow deliv\_sn_j \cup \{sn'\};
(11)
(12)
                            withdraw (m', sn', type', barrier') from pending<sub>i</sub>
(13)
                end while
(14)
          else add (m, sn, type, barrier) to pending;
(15) end if.
```

Fig. 12.27 Message delivery according to message types

ct_future or marker, the local variable no_bypass_i is set to sn_i , as no message sent in the future will be allowed to bypass m (whose sequence number is sn_i).

When p_j receives an application message (m, sn, type, barrier), it checks the delivery condition (line 8). If the condition is false, p_j stores (m, sn, type, barrier) in *pending_j* (line 14). If the condition is true, p_j delivers the application message m, and adds its sequence number to *deliv_sn_j* (line 9). Moreover, it also delivers the messages in *pending_j* whose delivery condition has became true due to the delivery of m, or—transitively—the delivery of other messages (lines 10–13).

The Delivery Condition Let (m, sn, type, barrier) be an algorithm message received by p_j . The delivery condition DC(m) associated with *m* depends on the type of *m*.

- If type(m) is ct_past or marker, m has to be delivered after all the messages sent before it, which means that we need to have {1,..., barrier} ⊆ deliv_sn_j.
- If type(m) is ct_future or ordinary, m can be delivered before messages sent before it. Hence, the only constraint is that its delivery must not violate the requirements imposed by the type of other messages. But these requirements are captured by the message parameter *barrier*, which states that the delivery of the message whose sequence number is *barrier* has to occur before the delivery of m. Hence, for these message types, the delivery condition is *barrier* ∈ *deliv_sn_i*.

An example is depicted in Fig. 12.28. The sequence numbers of m_1 , m_2 , m_3 , and m_4 , are 15, 16, 17, and 18, respectively. Before the sending of m_1 , $no_bypass_i = 10$. These messages can be correctly delivered in the order m_2 , m_4, m_3, m_1 .

Fig. 12.28 Delivery of messages typed ordinary and ct_future

To summarize, the delivery condition DC(m) is:

$$DC(m) \equiv \left[(type(m) \in \{ct_past, marker\}) \land (\{1, \dots, barrier\} \subseteq deliv_sn_j) \right] \\ \lor \left[(type(m) \in \{ordinary, ct_future\}) \land (barrier \in deliv_sn_j) \right].$$

12.6 Summary

The aim of this chapter was to present two communication abstractions, namely, the causal message delivery abstraction and the total order broadcast abstraction. These abstractions have been defined and algorithms implementing them have been described. Variants suited to bounded lifetime messages and synchronous systems have also been presented. Finally, as an exercise, the chapter has investigated ordering properties which can be imposed on messages sent on a channel.

12.7 Bibliographic Notes

• The notion of message causal ordering is due to K.P. Birman and T.A. Joseph [53]. This notion was then extended to overlapping groups of processes and multicast communication in [55].

Developments on the notion of causal order can be found in [88, 90, 217, 254, 340].

• The point-to-point causal message ordering described in Sect. 12.2 is due to M. Raynal, A. Schiper, and S. Toueg [324].

Other causal order algorithms can be found in [255, 296, 336].

- Causal order-based algorithms which compute a consistent snapshot of a distributed computation are described in [1, 14].
- The technique to reduce the size of control information presented in Sect. 12.2.3 is due to F. Mattern.
- The causal broadcast algorithm of Sect. 12.3 is from [55, 324].

- The notion of a causal barrier and the associated causal broadcast algorithm of Sect. 12.3.2 are due to R. Baldoni, R. Prakash, M. Raynal, and M. Singhal [39]. This algorithm was extended to mobile environments in [298].
- The notion of bounded lifetime messages and the associated causal order algorithm presented in Sect. 12.3.3 are due to R. Baldoni, A. Mostéfaoui, and M. Raynal [38].
- The notion of total order broadcast was introduced in many systems (e.g., [84] for an early reference).
- The client/server algorithm presented in Sect. 12.4.3 is due to D. Skeen [353].
- The total order algorithm for synchronous systems presented in Sect. 12.4.4 is a simplified version of a fault-tolerant algorithm due to F. Cristian, H. Aghili, R. Strong, and D. Dolev [102].
- State machine replication was introduced by L. Lamport in [226]. A general presentation of state machine replication can be found in [339].
- The notions of the message types ordinary, marker, controlling the past, and controlling the future, are due to M. Ahuja [12]. The genuine algorithm presented in Sect. 12.5.2 is due to M. Ahuja and M. Raynal [13].
- A characterization of message ordering specifications and algorithms can be found in [274]. The interconnection of systems with different message delivery guarantees is addressed in [15].
- While this book is devoted to algorithms in reliable message-passing systems, the reader will find algorithms that implement causal message broadcast in asynchronous message-passing systems in [316], and algorithms that implement total order broadcast in these systems in [24, 67, 242, 316].

12.8 Exercises and Problems

- 1. Prove that the empty interval predicate stated in Sect. 12.1.2 is a characterization of causal message delivery.
- Prove that the causal order broadcast algorithm described in Fig. 12.10 is correct. Solution in [39].
- 3. When considering the notion of a causal barrier introduced in Sect. 12.3.2, show that any two messages that belong simultaneously to *causal_barrier_i* are independent (i.e., the corresponding invocations of co_broadcast() are not causally related).
- 4. Modify the physical time-free algorithm of Fig. 12.4 so that it implements causal message delivery in a system where the application messages have a bounded lifetime Δ. Prove then that the resulting algorithm is correct. Solution in [38].
- 5. Let us consider an asynchronous system where the processes are structured into (possibly overlapping) groups. As an example, when considering five processes, a possible structuring into four groups is $G_1 = \{p_1, p_2, p_4, p_5\}, G_2 = \{p_2, p_3, p_4\}, G_3 = \{p_3, p_3, p_4\}, \text{ and } G_2 = \{p_1, p_5\}.$

When a process sends a message m, it sends m to all the processes of a group to which it belongs. As an example, when p_2 sends a message m, it sends m to the group G_1 or to the group G_2 . The sending of a message to a group is called *multicast*.

A simple causal multicast algorithm consists in using an underlying causal broadcast algorithm in which each process discards all the messages that have been multicast in a group to which it does not belong. While this solution works, it is not *genuine* in the sense that each process receives all messages.

Design a causal multicast algorithm in which a message sent to a group is sent only to the processes of this group.

Solution in [55].

6. As in the previous problem, let us consider an asynchronous system in which the processes are structured into (possibly overlapping) groups. Design a genuine total order multicast algorithm (i.e., an algorithm in which a message sent to a group is sent only to the processes of this group).

Solution in [55, 135]. (The algorithms described in these papers consider systems in which processes may crash.)

- 7. Let us consider the coordinator-based total order broadcast algorithm presented in Sect. 12.4.2.
 - (a) Prove that this algorithm implements the strong total order broadcast abstraction.
 - (b) Does this algorithm implement the strong total order broadcast abstraction when all sequence numbers are suppressed but channels to and from the coordinator process are FIFO?
 - (c) Let us suppress the local variable lsn_i of each process p_i and replace each algorithm message LTO_BR (m, lsn_i) by LTO_BR(m). Hence, the only sequence numbers used in this modified algorithm are the global sequence numbers generated by the coordinator process p_{coord} . Show that this modified algorithm implements the weak total order broadcast abstraction.
- 8. Let us consider a synchronous system where the global clock *CLOCK* is implemented with a physical clock ph_clock_i per process p_i . Moreover, the synchronization of these physical clocks is such that their drift is bounded by ϵ . This means that we always have $|ph_clock_i ph_clock_j| \le \epsilon$ for any pair of processes p_i and p_j .

Modify the total order algorithm described in Fig. 12.22 so that it works with the previous physical clocks.

9. Let us consider a channel connecting the processes p_i and p_j , and the message types ct_future, ct_past, and ct_marker, introduced in Sect. 12.5. Show that it is impossible to implement the message type ct_marker from messages typed ct_future and ct_past. (At the application level, p_i can send an arbitrary number of messages typed ct_future or ct_past.)

Chapter 13 Rendezvous (Synchronous) Communication

While the previous chapter was devoted to communication abstractions on message ordering, this chapter is on *synchronous* communication (also called *logically instantaneous* communication, or *rendezvous*, or *interaction*). This abstraction adds synchronization to communication. More precisely, it requires that, for a message to be sent by a process, the receiver has to be ready to receive it. From an external observer point view, the message transmission looks instantaneous: The sending and the reception of a message appear as a single event (and the sense of the communication could have been in the other direction). From an operational point of view, we have the following: For each pair of processes, the first process that wants to communicate—be it the sender or the receiver—has to wait until the other process is ready to communicate.

This chapter first defines synchronous communication and introduces a characterization based on a specific message pattern called a crown. It then presents several implementations of this communication abstraction, each suited to a specific context. It also describes implementations for real-time rendezvous in the context of synchronous message-passing systems. In this case, each process is required to associate a deadline with each of its rendezvous.

Keywords Asynchronous system · Client–server hierarchy · Communication initiative · Communicating sequential processes · Crown · Deadline-constrained interaction · Deterministic vs. nondeterministic context · Logically instantaneous communication · Planned vs. forced interaction · Rendezvous · Multiparty interaction · Synchronous communication · Synchronous system · Token

13.1 The Synchronous Communication Abstraction

13.1.1 Definition

Underlying Intuition When considering an asynchronous message-passing system, two events are associated with each message, namely its send event and its receive event. This captures the fact that a message takes time to transit from its sender to its destination process, and this duration can be arbitrary.

Fig. 13.1 Synchronous communication: messages as "points" instead of "intervals"

The intuition that underlies the definition of the synchronous communication abstraction is to consider messages as "points" instead of "time intervals" whose length is arbitrary. When considering messages as points (the send and receive events of each message being pieced together into a single point), the set of messages is structured as a partial order. As we will see below, this allows us to reason on distributed objects (each object being managed by a distinct process) as if they were all kept in a shared common memory. Hence, while it reduces asynchrony, synchronous communication makes reasoning and program analysis easier.

A simple example that shows how synchronous communication reduces messages as time intervals into messages as points is described in the right part of Fig. 13.1. From a space-time diagram point of view, reducing messages to points amounts to considering the transit time of each message as an arrow of zero duration (from an omniscient observer's point of view), i.e., as a vertical arrow. Messages considered as intervals are described on the left part of Fig. 13.1. It is easy to see that this communication pattern does not comply with synchronous communication: if the transfer of m_2 and m_3 can be depicted as vertical arrows, that of m_1 cannot. This is because the sending of m_1 has to appear before the point m_2 , which appears before the point m_3 , which in turn appears before the reception of m_1 . Such a schedule of events, which prevents a message pattern from being synchronous, is formalized below in Sect. 13.1.3.

Sense of Message Transfer As shown by the execution on the right of Fig. 13.1, it is easy to see that, when considering synchronous communication, the sense of direction for message transfer is irrelevant.

The fact that any of the messages m_1, m_2 , or m_3 would be transmitted in the other direction, does not change the fact that message transfers remain points when considering synchronous communication. We can even assume such a point abstracts the fact that two messages are simultaneously exchanged, one in each direction. Hence, the notions of sender and receiver are not central in synchronous communication.

Definition The synchronous communication abstraction provides the processes with two operations, denoted synchr_send() and synchr_deliver(), which allow them to send and receive messages, respectively. As in the previous chapter, we say

"a process synchr_sends or synchr_delivers a message", and assume (without loss of generality) that all the application messages are different. These operations satisfy the following properties, where the set H of the events that are considered are the events at program level. The following notations are used: $sy_s(m)$ and $sy_del(m)$ denote the events associated with the synchronous send and synchronous delivery of m, respectively.

- Validity. If a process p_i synchr_delivers a message from a process p_j , then p_j has synchr_sent this message.
- Integrity. No message is synchr_delivered more than once.
- Synchrony. Let \mathcal{D} be a dating function from the set of events H (program level) into the scalar time domain (set of natural numbers). We have:
 - For any two events e_1 and e_2 produced by the same process:

$$(e_1 \xrightarrow{e_0} e_2) \Rightarrow (\mathcal{D}(e_1) < \mathcal{D}(e_2)).$$

- For any message m: $(\mathcal{D}(sy_s(m)) = \mathcal{D}(sy_del(m)))$.
- Termination. Assuming that each process executes synchr_deliver() enough times, every message that was synchr_sent is synchr_delivered.

The validity property (neither creation nor corruption of messages), integrity property (no duplication), and termination property are the classical properties associated with message communication abstractions. The synchrony property states that there is time notion that increases inside each process taken individually, and, for each message m, associates a same integer date with its synchr_send and synchr_deliver events. This date, which is the "time point" associated with m, expresses the fact that m has been transmitted instantaneously when considering the time frame defined by the dating function $\mathcal{D}()$.

13.1.2 An Example of Use

Let us consider a simple application in which two processes p_1 and p_2 share two objects, each implemented by a server process. These objects are two FIFO queues Q_1 and Q_2 , implemented by the processes q_1 and q_2 , respectively.

The operations on a queue object Q are denoted Q.enqueue(x) (where x is the item to enqueue), and Q.dequeue(), which returns the item at the head of the queue or \bot if the queue is empty. The invocation of Q_j .enqueue(x) and Q_j .dequeue() by a process are translated as described in Table 13.1. (Due to the fact that communications are synchronous, the value returned by Q_j .dequeue() can be returned by the corresponding synchronous invocation.)

Let us consider the following sequences of invocations by p_1 and p_2 :

- p_1 : ... synchr_send(enqueue, a) to q_1 ; synchr_send(enqueue, b) to q_2 ; ...
- p_2 : ... synchr_send(enqueue, c) to q_2 ; synchr_send(enqueue, d) to q_1 ; ...
| Table 13.1 Operations as messages Image: Comparison of the second seco | Queue operation | Translated into |
|---|----------------------|--|
| | Q_j .enqueue (x) | synchr_send(<i>enqueue</i> , x) to q_j |
| | Q_j .dequeue() | synchr_send($dequeue$) to q_j |

In a context where the communications are asynchronous (i.e., when synchr_send() and synchr_deliver() are replaced by send() and receive(), respectively), the message pattern depicted in Fig. 13.2 can occur, where the label associated with a message is the value it carries.

When all messages have been received, Q_1 contains *d* followed by *a*, while Q_2 contains *b* followed by *c*, as shown on the right part of the figure. But this is inconsistent with the order of the invocations in p_1 and p_2 . As Q_2 contains *b* followed by *c*, it follows that the invocation of send(*enqueue*, *a*) by p_1 occurred before the invocation of send(*enqueue*, *d*) by p_2 . But, due to the asynchrony of the channels, the server q_1 receives first *d* and then *a*.

Synchronous communication solves this inconsistency problem. Several scenarios can happen, but any scenario which happens guarantees that the queues are consistent with the order in which the processes have sent the messages. Figure 13.3 describes one of the three possible consistent scenarios. The three scenarios differ according to the speed of processes p_1 and p_2 . In the scenario of the figure, p_1 and p_2 first enqueue a in Q_1 and c in Q_2 , respectively. Then p_1 enqueues b in Q_2 while p_2 enqueues d in Q_1 . (In another possible scenario Q_1 contains a followed by d, while Q_2 contains b followed by c. This scenario is the case where p_1 accesses each object before p_2 . In the last possible scenario Q_1 contains d followed by a, while Q_2 contains c followed by d. This scenario is the case where p_2 accesses each object before p_1 .)

13.1.3 A Message Pattern-Based Characterization

Synchronous Communication Is Strictly Stronger than Causal Order To show that synchronous communication is stronger than causal order, let us consider

Fig. 13.2 When communications are not synchronous

two messages m_1 and m_2 , sent to the same process, which are such that the event $sy_s(m_1)$ causally precedes the event $sy_s(m_2)$. We have the following.

- $\mathcal{D}(sy_s(m_1)) = \mathcal{D}(sy_del(m_1))$ (from communication synchrony).
- $\mathcal{D}(sy_s(m_2)) = \mathcal{D}(sy_del(m_2))$ (from communication synchrony).
- $\mathcal{D}(sy_s(m_1)) < \mathcal{D}(sy_s(m_2))$ (due to $sy_s(m_1) \xrightarrow{ev} sy_s(m_2)$).
- $\mathcal{D}(sy_del(m_1)) < \mathcal{D}(sy_del(m_2))$ follows from the previous items. Consequently, it follows from the fact that the function $\mathcal{D}()$ is strictly increasing inside a process, and any two events of a process are ordered, that we necessarily have $sy_del(m_1) \xrightarrow{ev} sy_del(m_2)$.

To show that synchronous communication is strictly stronger than causal order, let us observe that the message pattern described in the left part of Fig. 13.1 satisfies the causal message delivery order, while it does not satisfy the synchronous communication property.

The Crown Structure As we are about to see, the notion of a crown allows for a simple characterization of synchronous communication. A *crown* (of size $k \ge 2$) is a sequence of messages m_1, m_2, \ldots, m_k , such that we have

$$sy_s(m_1) \xrightarrow{ev} sy_del(m_2),$$

$$sy_s(m_2) \xrightarrow{ev} sy_del(m_3),$$

$$\dots,$$

$$sy_s(m_{k-1}) \xrightarrow{ev} sy_del(m_k),$$

$$sy_s(m_k) \xrightarrow{ev} sy_del(m_1).$$

Examples of crowns are depicted in Fig. 13.4. On the left side, the event $sy_s(m_1)$ causally precedes the event $sy_del(m_2)$ and the event $sy_s(m_2)$ causally precedes

Fig. 13.4 A crown of size k = 2 (*left*) and a crown of size k = 3 (*right*)

Fig. 13.5 Four message patterns

the event $sy_del(m_1)$, creating a crown of size k = 2 made up of the messages m_1 and m_2 . The right side of the figure describes a crown of size k = 3. Hence, a crown is a specific message pattern whose interest lies in the theorem that follows.

Theorem 18 The communication pattern of a distributed execution satisfies the synchronous communication property if and only if there is no crown.

Proof Let us first show that if the communication pattern satisfies the synchronous communication property, there is no crown. To that end, let us assume (by contradiction) that the communications are synchronous and there is a crown. Hence:

- There is a sequence of $k \ge 2$ messages m_1, m_2, \ldots, m_k such that $sy_s(m_1) \xrightarrow{ev} sy_del(m_2), \ldots, sy_s(m_k) \xrightarrow{ev} sy_del(m_1)$. It follows that $\forall x \in \{1, \ldots, k-1\}$, we have $\mathcal{D}(sy_s(m_x)) < \mathcal{D}(sy_del(m_{x+1}))$, and $\mathcal{D}(sy_s(m_k)) < \mathcal{D}(sy_del(m_1))$.
- As the communications are synchronous, we have $\forall x \in \{1, ..., k\}$: $\mathcal{D}(sy_s(m_x)) = \mathcal{D}(sy_del(m_x))$.

Combining the two previous items, we obtain

$$\mathcal{D}(sy_s(m_1)) < \mathcal{D}(sy_del(m_2)) = \mathcal{D}(sy_s(m_2)),$$

$$\mathcal{D}(sy_s(m_2)) < \mathcal{D}(sy_del(m_3)) = \mathcal{D}(sy_s(m_3)), \quad \text{etc., until}$$

$$\mathcal{D}(sy_del(m_k)) = \mathcal{D}(sy_s(m_k)) < \mathcal{D}(sy_del(m_1)) = \mathcal{D}(sy_s(m_1)),$$

i.e., $\mathcal{D}(sy_s(m_1)) < \mathcal{D}(sy_s(m_1))$, which is a contradiction.

To show that the communication pattern is synchronous if there is no crown let us consider the following directed graph G. Its vertices are the application messages exchanged by the processes and there is an edge from a message m to a message m' if one of the following patterns occurs (Fig. 13.5).

- $sy_s(m) \xrightarrow{ev} sy_s(m')$, or
- $sy_s(m) \xrightarrow{ev} sy_del(m')$, or
- $sy_del(m) \xrightarrow{ev} sy_s(m')$, or
- $sy_del(m) \xrightarrow{ev} sy_del(m')$.

It is easy to see that each case implies $sy_s(m) \xrightarrow{ev} sy_del(m')$, which means that a directed edge (m, m') belongs to *G* if and only if $sy_s(m) \xrightarrow{ev} sy_del(m')$. As there is no crown, it follows that *G* is acyclic. *G* can consequently be topologically sorted, and such a topological sort defines a dating function $\mathcal{D}()$ trivially satisfying the properties defining synchronous communication. \Box

13.1.4 Types of Algorithms Implementing Synchronous Communications

An algorithm implementing synchronous communications has to prevent crowns from forming. This chapter considers three distinct approaches to implement such a prevention. The terms *interaction* or *rendezvous* are used as synonyms of synchronous communication.

- A first approach consists in assuming that the application programs are well written (there is no deadlock, etc.). To that end, a nondeterministic construct is offered to users. Such a construct allows a process to list several synchronous communication statements such that one of them will be selected at run time according to the synchronous communications invoked by the other processes. This approach, called *nondeterministic planned interaction* is addressed in Sect. 13.2.
- A second approach consists in considering that a process is always ready to synchr_deliver a message. Hence, the nondeterministic construct is implicit. This approach, called *nondeterministic forced interaction*, is addressed in Sect. 13.3.
- A third approach consists in adding a deadline to each invocation of a synchronous communication operation in such a way that the communication occurs before the deadline or not at all. Of course, this approach is meaningful only in synchronous systems, i.e., systems where the processes have a common notion of physical time and the message transfer duration is bounded. This approach, which is called *deadline-constrained interaction*, is addressed in Sect. 13.4.

13.2 Algorithms for Nondeterministic Planned Interactions

This section considers planned interactions. The term *planned* refers to the fact that each invocation of a communication operation mentions the identity of the other process. While this is always the case for a send operation, here each invocation of synchr_del() states the identity of the process from which a message has to be received.

13.2.1 Deterministic and Nondeterministic Communication Contexts

Deterministic Context The invocation of a synchronous communication operation by a process p_i can appear in a classical deterministic context such as

statements_1; synchr_send(m) to p_x ; statements_2,

which means that the process p_i executes first the set of statements defined by statements_1, and then invokes the synchronous operation synchr_send(m) to p_x . It remains blocked until p_x invokes the matching synchronous operation synchr_deliver(v) from p_i . When this occurs the value of m is copied into the local variable v of p_x , and then both p_i and p_x continue their sequential execution. As far as p_i is concerned, it executes the set of statements defined by statements_2.

Nondeterministic Construct A process can also invoke communication operations in a nondeterministic context. A nondeterministic construct is used to that end. An example of such a construct is as follows:

begin nondeterministic context

	synchr_send (m_1) to p_x	then statements_1
or	synchr_send (m_2) to p_y	then statements_2
or	synchr_deliver(m) from p_z	then statements_3
end nondeterministic context.		

The meaning of this construct is the following. It states that the process p_i wants to execute one of the three synchronous operations. The choice is nondeterministic (it will actually depend on the speed of processes and implementation messages). Once one of these invocations has succeeded, p_i executes the sequence of statements associated with the corresponding invocation.

Associated Properties The fact that several synchronous communications may appear in a nondeterministic construct requires the statement of properties associated with this construct. These properties are the following.

- Safety. If a process enters a nondeterministic construct, it executes at most one of the synchronous communications listed in the construct. Moreover, if this synchronous communication is with process p_j , this process has invoked a matching synchronous operation.
- Liveness. If both p_i and p_j have invoked matching synchronous communication operations, and none of them succeeds in another synchronous communication, then the synchronous communication between p_i and p_j succeeds.

The safety property is a mutual exclusion property: A process can be engaged in at most one synchronous communication at a time. The liveness property states that, despite nondeterminism, if synchronous communications are possible, then one of them will occur (hence, nondeterminism cannot remain pending forever: it has to be solved).

13.2.2 An Asymmetric (Static) Client–Server Implementation

The algorithm presented in this section is due to A. Silberschatz (1979).

Basic Idea: An Underlying Client–Server Hierarchy Given a synchronous communication (rendezvous) between two processes p_i and p_j , the idea is to associate a client behavior with one of them and a server behavior with the other one. These associations are independent of the sense of the transfer. A client behavior means that the corresponding process has the initiative of the rendezvous, while a server behavior means that the corresponding process is waiting for the rendezvous.

The idea is to associate a client behavior with all the rendezvous invocations appearing in a deterministic context and a server behavior with all the invocations appearing in a nondeterministic context. Let us observe that, if needed, it is always possible to transform a deterministic context into a nondeterministic one, (while the opposite is not possible). As an example, the deterministic invocation "synchr_send(m) to p_x " can be replaced by

begin nondeterministic context synchr_send(m) to p_x then skip end nondeterministic context,

to force it to be implemented with a server behavior. This can be done at compile time.

The limit of this implementation of a rendezvous lies consequently in the fact that it does not accept that both the matching invocations of a rendezvous appear in a nondeterministic context.

Let us define the implementation rendezvous graph of a distributed program as follows. This graph is a directed graph which captures the client–server relation imposed on the processes by their rendezvous invocations. Its vertices are the processes and there is an edge from a process p_i to a process p_j if (a) there a rendezvous involving p_i and p_j , and (b) the client behavior is associated with p_i while the server behavior is associated with p_j . To prevent deadlock and ensure liveness, the algorithm implementing rendezvous that follows requires that this graph be acyclic. (Let us observe that this graph can be computed at compile time.)

Local Variables Each process p_i manages the following local variables:

- *my_client_i* is a set containing the identities of the processes for which *p_i* behave as a server.
- *buffer_i* is a variable in which *p_i* deposits the message it wants to send, or retrieves the message it is about to synchr_deliver.
- $may_read_i[client_i]$ is an array of Booleans, initialized to [false, ..., false]; $may_read_i[j] = true$ (where $j \in my_client_i$) means that the "client" p_j allows the "server" p_i to read the content of its buffer $buffer_j$. This variable is used in the rendezvous where the client p_j is the sender and the server p_i the receiver.
- $may_write_i[client_i]$ is an array of Booleans, initialized to [false, ..., false]; $may_write_i[j] = true$ means that the "client" p_j allows the "server" p_i to write into its local buffer $buffer_j$. This variable is used in the rendezvous where the client p_j is the receiver and the server p_i the sender.
- *end_rdv_i* is a Boolean (initialized to *false*), which is set to the value *true* to signal the end of the rendezvous.

Process p_j (server)	Process p_i (client)
operation synch_del(x) from p_i is	operation synch_send(<i>m</i>) to p_j is
(S1) wait($may_read_j[i]$); (S2) $r \leftarrow obtain(i)$:	(C1) $buffer_i \leftarrow m;$ (C2) signal(<i>i</i> may read[<i>i</i>]):
(S2) $x \leftarrow \text{obtain}(i)$, (S3) $may_read_i[i] \leftarrow false;$	(C3) wait (end_rdv_i) .
(S4) signal(i , end_rdv).	(C4) $end_rdv_i \leftarrow false$.

Fig. 13.6 Implementation of a rendezvous when the client is the sender

Underlying Communication The processes send and receive messages through a fully connected underlying asynchronous network. To have a modular presentation, the following intermediate communication operations are defined:

- deposit(*i*, *a*) allows the invoking process p_j to deposit the content of *a* in *buffer_i*. This operation can easily be realized with a single message: p_j sends the message STORE(*a*) to p_i , and, when it receives, p_i deposits *a* into *buffer_i*.
- obtain(i) allows the invoking process p_j to obtain the content of buffer_i. This operation can be easily be realized with two messages. Process p_j sends a request message REQ() to p_i, which sends by return to p_j the message AN-SWER(buffer_i).
- signal(*i*, x) allows the invoking process *p_j* to set to *true* the Boolean local variable *x_i* of process *p_i*.

This operation can be easily be realized with a single message: p_j sends the message SIGNAL(x) to p_i , and when it receives it, p_i assigns the value *true* to its local Boolean identified by x.

As the messages STORE() and SIGNAL() sent by a process p_j to a process p_i have to be received in their sending order, the channels are required to be FIFO. If they are not, sequence numbers have to be associated with messages.

Implementation When the Sender p_i **Is the Client** The corresponding implementation for a pair of processes (p_i, p_j) is described in Fig. 13.6. As $i \in my_client_j$, the invocations of "synch_send(m) to p_j " by p_i always occur in a deterministic context, while the matching invocations "synch_del(x) from p_i " issued by p_j always occur in a nondeterministic context.

When p_i invokes "synch_send(m) to p_j ", p_i deposits the message m in its local buffer (line C1), and sends a signal to p_j (line C2) indicating that p_j is allowed to read its local buffer. Finally, p_i awaits a signal indicating that the rendezvous is terminated (line C3).

When p_j invokes "synch_del(x) from p_i ", p_j waits until p_i allows it to read the content of its local buffer (line R1). Then, when p_j receives the corresponding signal, it reads the value saved in *buffer_i* (line S2). Finally it resets *may_read_j*[*i*] to its initial value (line S3), and sends a signal to p_i indicating the end of the rendezvous (line S4).

It is easy to see that, due to the signal/wait pattern used by the client p_i and the opposite wait/signal pattern used by the server p_i , no deadlock can occur and

Process p_j (server)	Process p_i (client)
operation synch_send(m) from p_i is	operation synch_del(x) to p_j is
(S1) wait(may_write_j[i]);	(C1) signal($j, may_write[i]$);
(S2) deposit(i, m);	(C2) wait (end_rdv_i);
(S3) may_write_j[i] \leftarrow false;	(C3) $x \leftarrow buffer_i$;
(S4) signal(i, end_rdv).	(C4) $end_rdv_i \leftarrow false$.

Fig. 13.7 Implementation of a rendezvous when the client is the receiver

there is a physical time at which both processes are executing their synchronous communication operations.

Implementation When the Sender p_i **Is the Server** This implementation, described in Fig. 13.7, is similar to the previous one. The message control pattern is exactly the same as the previous one. The only thing that differs is the sense of the transfer at the synchronous communication level.

Solving Nondeterminism To complete the description of the implementation, the way the nondeterministic construct is implemented has to be described. To that end, let us consider the nondeterministic construct described in Sect. 13.2.1, which involves the following three invocations: "synchr_send(m_1) to p_x ", "synchr_send(m_2) to p_y ", and "synchr_deliver(x) from p_z ".

Let p_j be the corresponding invoking process. This process is a server for p_x , p_y , and p_z , and we have consequently $x, y, z \in my_client_j$. Moreover, each of the matching invocations issued by these three processes is in deterministic context. When, p_j enters this nondeterministic construct, it executes the following sequence of statements:

wait $(may_write_j[x] \lor may_write_j[y] \lor may_read_j[z])$; among these Booleans, select one equal to *true*; let $i \in \{x, y, z\}$ be the corresponding process and let $may_xxx_j[i]$ the corresponding Boolean; if $(may_xxx_j[i]$ is $may_read_j[i])$ then execute the lines S2, S3, and S4 of Fig. 13.6 else execute the lines S2, S3, and S4 of Fig. 13.7 end if.

Thanks to the modular decomposition of the implementation, the previous code solving nondeterministic choices is particularly simple.

13.2.3 An Asymmetric Token-Based Implementation

The implementation of synchronous communication described in this section allows any combination of deterministic and nondeterministic matching invocations of the

Fig. 13.8 A token-based mechanism to implement an interaction

operations synchr_send() and synchr_del(). More precisely, any two matching invocations are allowed to appear both in a deterministic context, or in a nondeterministic context, or (as in the previous section) one in a deterministic context and the other one in a nondeterministic context. Hence, this section focuses only on the control needed to realize an interaction and not on the fact that a single message, or a message in each direction, is transmitted during the rendezvous. It is even possible that no message at all is transmitted. In this case, the interaction boils down to a pure rendezvous synchronization mechanism. The corresponding algorithm is due to R. Bagrodia (1989).

This section uses the term *interaction*, which has to be considered as a synonym of *rendezvous* or *synchronous communication*.

Underlying Idea: Associate a Token with Each Interaction A token is associated with each possible interaction. Considering any pair of processes p_i and p_j , the token TOKEN($\{i, j\}$) is introduced to allow them to realize a rendezvous.

The process that currently has the token (e.g., p_i) has the initiative to ask the other process (e.g., p_j) if p_j agrees to perform an interaction with it. To that end, p_i sends the token to p_j . When p_j receives the token, several cases are possible.

- If p_j agrees with this interaction request, it sends the token back to p_i and the interaction succeeds. This scenario is depicted on the left side of Fig. 13.8 (in which the second parameter in the token is the identity of the process that initiated the interaction).
- If p_j is not interested in an interaction with p_i , it sends back to p_i a message NO() and keeps the token. This means that the future request for an interaction involving p_i and p_j will be initiated by p_j . This scenario is depicted on the right side of Fig. 13.8.
- If p_j is interested in an interaction with p_i , but is waiting for an answer from a process p_k (to which it previously sent TOKEN($\{j, k\}$)), it will send an answer to p_i according to the answer it receives from p_k . The implementation has to ensure that there is neither a deadlock (with a process waiting forever for an answer), nor a livelock (with processes always sending NO() while an interaction is possible).

Preventing Deadlock and Livelock Let us consider the scenario described in Fig. 13.9. Process p_i , which has the token for initiating interactions with p_j , sends it this token, and starts waiting for an answer. The same occurs for p_j that sent TOKEN($\{j, k\}, j$) to p_k , and p_k that sent TOKEN($\{i, k\}, k$) to p_i . Typically, if none of them answers, there is a deadlock, and if all of them send the answer NO(), the liveness property is compromised as one interaction is possible.

Fig. 13.9 Deadlock and livelock prevention in interaction implementation

Solving this issue requires us to break the symmetry among the three messages TOKEN(). As seen in Sect. 11.2.2 when discussing resource allocation, one way to do that consists in defining a total order on the request messages TOKEN(). Such a total order can be obtained from the identity of the processes. As an example, assuming j < i < k, let us consider the process p_i when it receives the message TOKEN($\{i, k\}, k$). Its behavior is governed by the following rule:

if
$$(i < k)$$
 then delay the answer to p_k
else send NO() to p_k
end if,

i.e., p_i has priority (in the sense that it does not answer by return) if its identity is smaller than that of the process that sent the request.

When considering the execution of Fig. 13.9, p_i delays its answer to p_k , p_j delays its answer to p_i , but p_k sends the answer NO() to p_j . When p_j receives this message, it can tell p_i that it accepts its interaction, and finally when p_i learns it, p_i sends NO() to p_k . (As seen in Sect. 11.2.2 this identity-based "priority" rule prevents deadlocks from occurring and ensures interaction liveness.) Considering examples with more than three processes would show that this priority scheme allows independent interactions to be executed concurrently.

When considering Fig. 13.9, the crown that appears involves implementation messages. The priority rule prevents the application level from inheriting this implementation level crown.

Local Variable at a Process To implement the previous principles, each process manages the following local variables:

- *state_i* describes the local interaction state of p_i . Its value domain is {*out*, *interested*, *engaged*}. *state_i* = *out* means that p_i is not currently interested in a rendezvous; *state_i* = *engaged* means that p_i is interested and waiting for an answer; *state_i* = *interested* means that, while p_i is interested in an interaction, it is not currently waiting for an answer.
- *interaction_i* is a set containing the identities of the processes currently proposed by p_i to have an interaction. When it invokes an interaction with a process p_j in a deterministic context, p_i sets *interaction_i* to $\{j\}$. When it enters a nondeterministic construct containing invocations of rendezvous with p_j , p_k , p_ℓ , etc., it sets *interaction_i* to $\{j, k, \ell, \ldots\}$.

when p_i enters a (deterministic or nondeterministic) rendezvous context do (1) *interactions*_{*i*} \leftarrow {ids of the candidate proc. defined in the rendezvous context}; (2) $state_i \leftarrow interested;$ (3) **if** $(\exists j \in interactions_i \text{ such that } TOKEN(\{i, j\}) \in tokens_i)$ (4)**then** withdraw TOKEN($\{i, j\}$) from *tokens*_{*i*}; (5) send TOKEN($\{i, j\}, i$) to p_i ; (6) $state_i \leftarrow engaged;$ (7)delayed; $\leftarrow \bot$ (8) end if. when TOKEN($\{i, j\}, x$) is received from p_i do $\% x \in \{i, j\} \%$ (9) **if** $(state_i = out) \lor (j \notin interaction_i)$ (10) then send NO() to p_i ; add TOKEN($\{i, j\}$) to token_i (11) **else if** (*state*_{*i*} = *interested*) (12)then send TOKEN($\{i, j\}, x$) to p_i ; state_i \leftarrow out (13)else % state_i = engaged % case $(x > i) \land (delayed_i = \bot)$ (14)(15)**then** delayed_i \leftarrow TOKEN({i, j}, x) $(x < i) \lor [(x > i) \land (delayed_i \neq \bot)]$ (16)(17)then send NO() to p_i ; add TOKEN($\{i, j\}$) to token_i (18)(x = i) then add TOKEN $(\{i, j\})$ to token_i; (19)**if** (*delayed*_{*i*} $\neq \perp$) then let $delayed_i = TOKEN(\{i, k\}, k);$ (20)(21)send NO() to p_k ; (22)add TOKEN($\{i, k\}$) to *token_i* (23)end if (24) $state_i \leftarrow out$ (25)end case end if (26)(27) end if. when NO() is received from p_i do % state_i = engaged % (28) if $(delayed_i \neq \bot)$ then let $delayed_i = TOKEN(\{i, k\}, k);$ (29)send TOKEN($\{i, k\}, k$) to p_k ; state_i \leftarrow out (30)else same as lines 2-8(31) end if.

Fig. 13.10 A general token-based implementation for planned interactions (rendezvous)

• *tokens_i* is a set containing the tokens currently owned by p_i (let us recall that the token TOKEN($\{i, j\}$), allows its current owner— p_i or p_j —to send a request for an interaction with the other process).

Initially, each interaction token is placed at one of the processes associated with it.

• $delayed_i$ is a variable which contains the token for which p_i has delayed sending an answer; $delayed_i = \bot$ if no answer is delayed.

Behavior of a Process The algorithm executed by a process p_i is described in Fig. 13.10. When it enters a deterministic or nondeterministic communication context (as defined in Sect. 13.2.1), a process p_i becomes *interested* (line 2), and initializes its set *interactions_i* to the identities of the processes which it has defined

as candidates for a synchronous communication (line 1). Then, if it has the token for one of these interactions (line 3), it selects one of them (line 4), and sends the associated token to the corresponding process p_j (line 5). It becomes then *engaged* (line 5), and sets *delayed*_i to \perp (line 7). If the predicate of line 3 is false, p_i remains in the local state *interested*.

The core of the algorithm is the reception of a message TOKEN($\{i, j\}, x$) that a process p_i receives from a process p_j . As x is the identity of the process that initiated the interaction, we necessarily have x = i or x = j. When it receives such a message, the behavior of p_i depends on its state.

- If it is not interested in interactions or, while interested, $j \notin interactions_i$, p_i sends by return the message NO() to p_j and saves TOKEN($\{i, j\}$) in *tokens_i* (lines 9–10). In that way, p_i will have the initiative for the next interaction involving p_i and p_j , and during that time p_j will no longer try to establish a rendezvous with it.
- If $j \in interactions_i$, and p_i has no pending request (i.e., $state_i = interested$), it commits the interaction with p_j by sending back the message TOKEN($\{i, j\}, j$) (lines 11–12).
- Otherwise, we have $j \in interactions_i$ and $state_i = engaged$. Hence, p_i has sent a message TOKEN($\{i, k\}, i$) for an interaction with a process p_k and has not yet received an answer. According to the previous discussion on deadlock prevention, there are three cases.
 - If x > i and p_i has not yet delayed an answer, it delays the answer to p_j (lines 14–15).
 - If x < i, or x > i and p_i has already delayed an answer, it sends the answer NO() to p_j . In that way p_j will be able to try other interactions (lines 16–17). Let us remark that, if $delayed_i \neq \bot$, p_i will commit an interaction: either the interaction with the process p_k from which p_i is waiting for an answer to the message TOKEN($\{i, k\}, i$) that p_i previously sent to p_j , or with the process p_ℓ waiting for its answer (p_ℓ is such that $delayed_i = \text{TOKEN}(\{\ell, i\}, \ell)$).
 - If x = i, by returning the message TOKEN($\{i, j\}, i$) to p_i , its sender p_j commits the interaction. In that case, before moving to state *out* (line 24), p_i stores TOKEN($\{i, j\}$) in *tokens_i* (hence, p_i will the initiative for the next interaction with p_j), and sends the answer NO() to the delayed process p_k , if any (lines 18–24).

Finally, when p_i receives the answer NO() from a process p_j (which means that it previously became engaged by sending the request TOKEN($\{i, j\}, i$) to p_j), the behavior of p_i depends on the value of $delayed_i$. If $delayed_i \neq \bot$, p_i has delayed its answer to the process p_k such that $delayed_i = \text{TOKEN}(\{k, i\}, k)$. In that case, it commits the interaction with p_k (lines 28–29). Otherwise, it moves to the local state *interested* and tries to establish an interaction with another process in *interactions_i* for which it has the token (lines 2–8).

Properties Due to the round-trip of a message $TOKEN(\{i, j\}, i)$, it is easy to see that a process can simultaneously participate in at most one interaction at a time.

Each request (sending of a message TOKEN($\{i, j\}, i$)) gives rise to exactly one answer (the same message echoed by the receiver or a message NO(). Moreover, due to the total order on process identities, no process can indefinitely delay another one. Let us also notice that, if a process p_i is such that $k \in interactions_i$ and TO-KEN($\{i, k\}$) $\in tokens_i$, p_i will send the request TOKEN($\{i, k\}, k$) to p_k (if it does not commit another interaction before).

Let us consider the following directed graph. Its vertices are the processes, and there is an edge from p_i to p_j if $delayed_j = \text{TOKEN}(\{j, i\}, i)$ (i.e., p_j is delaying the sending of an answer to p_i). This graph, whose structure evolves dynamically, is always acyclic. This follows from the fact that an edge can go from a process p_i to a process p_j only if i > j. As the processes that are sink nodes of the graph eventually send an answer to the processes they delay, it follows (by induction) that no edge can last forever.

The liveness property follows from the previous observations, namely, if (a) two processes p_i and p_j are such that $i \in interactions_j$ and $j \in interactions_i$, and (b) none of them commits another interaction, then p_i and p_j will commit their common interaction.

13.3 An Algorithm for Nondeterministic Forced Interactions

13.3.1 Nondeterministic Forced Interactions

To prevent crown patterns from forming (at the level of application messages), processes have sometimes to deliver a message instead of sending one. In the context of the previous section, this is planned at the programming level and, to that end, processes are allowed to use explicitly a nondeterministic communication construct. As we have seen, this construct allows the communication operation which will prevent crown formation to be selected at run time.

This section considers a different approach in which there is no nondeterministic choice planned by the programmer, and all the invocations of synchr_send() appear in a deterministic context. To prevent crowns from forming, a process can be forced at any time to deliver a message or to delay the sending of a message, hence the name *forced interaction*.

13.3.2 A Simple Algorithm

Principle As no algorithm implementing a rendezvous can be completely symmetric, a way to solve conflicts is to rely on the identities of the processes (as done in Sect. 13.2.3). An interaction (rendezvous) involving p_i and p_j is conceptually controlled by the process $p_{\max(i,j)}$. If the process $p_{\min(i,j)}$ wants to synchr_send a message to $p_{\max(i,j)}$, it has to ask $p_{\max(i,j)}$ to manage the interaction. This algorithm is due to V.V. Murty and V.K. Garg (1997).

```
operation synchr_send(m) to p_i is
(1) if (i > j) then wait (\neg engaged_i);
                       send MSG(m) to p_i; engaged<sub>i</sub> \leftarrow true
(2)
                 else buffer<sub>i</sub>[j] \leftarrow m; send REQUEST() to p_j
(3)
(4) end if.
when MSG(m) is received from p_i do
(5) if (i > j) then synchr_delivery of m; engaged<sub>i</sub> \leftarrow false
(6)
                else wait (\neg engaged<sub>i</sub>);
                       synchr_delivery of m; send ACK() to p_i
(7)
(8) end if.
when ACK() is received from p_i do
(9) engaged_i \leftarrow false.
when REQUEST() is received from p_i do % j < i %
(10) wait (\neg engaged<sub>i</sub>);
(11) send PROCEED() to p_i; engaged<sub>i</sub> \leftarrow true.
when PROCEED() is received from p_i do % j > i %
(12) wait (\neg engaged<sub>i</sub>);
(13) send MSG(buffer_i[j]) to p_j.
```

Fig. 13.11 An algorithm for forced interactions (rendezvous)

The Algorithm Each process p_i manages a local Boolean variable $engaged_i$, initially equal to *false*. This variable is set to *true*, when p_i is managing a synchronous communication with a process p_j such that i > j. The aim of the variables $engaged_i$ is to prevent the processes from being involved in a cycle that would prevent liveness.

To present the algorithm we consider two cases according to the values of i and j, where p_i is the sender and p_j the receiver.

i > j. In that case the sender has the initiative of the interaction. It can send the message m only if it is not currently engaged with another process. It sends then MSG(m) to p_j and becomes engaged (lines 1–2).

When p_j receives MSG(m) from p_i , it waits until it is no longer engaged in another rendezvous (line 6). Then it synchr_delivers the message m, and sends the message ACK() to p_i (line 7). When p_i receives this message, it learns that the synchronous communication has terminated and consequently resets *engaged_i* to *false* (line 9). The corresponding pattern of messages exchanged at the implementation level is described in Fig. 13.12.

i < *j*. In this case, *p_i* has to ask *p_j* to manage the interaction. To that end, it sends the message REQUEST() to *p_j* (line 3). Let us notice that *p_i* is not yet engaged in a synchronous communication. When *p_j* receives this message, it waits until it is no longer engaged in another interaction (line 10). When this occurs, *p_j* sends to *p_i* a message PROCEED() and becomes engaged with *p_i* (line 11). When it receives this message, *p_i* sends the application message (which has been previously saved in *buffer_i[j*) and terminates locally the interaction (line 12). Fi-

Fig. 13.13 Forced interaction: message pattern when i < j

nally, the reception of this message MSG(m) by p_j entails the synchr_delivery of m and the end of the interaction on p_j 's side (line 5). The corresponding pattern of messages exchanged at the implementation level is described in Fig. 13.13. As in the previous figure, this figure indicates the logical time that can be associated with the interaction (from an application level point of view).

13.3.3 Proof of the Algorithm

This section shows that, when controlled by the previous algorithm, the pattern of application messages satisfies the synchrony property, and all application messages are synchr_delivered.

Lemma 11 The communication pattern of application messages generated by the algorithm satisfies the synchrony property.

Proof To show that the algorithm ensures that the application messages synchr_sent and synchr_delivered satisfy the synchrony property, we show that there is no crown at the application level. It follows then from Theorem 18 that the synchrony property is satisfied.

The proof is made up of two parts. We first show that, if the computation has a crown of size k > 2, it has also a crown of size 2 (Part I). Then, we show that there is no crown of size 2 (Part II). As in Sect. 13.1, let $sy_s(m)$ and $sy_del(m)$ be the events associated with the synchronous send and the synchronous delivery of the application message *m*, respectively.

Proof of Part I. Let $m_1, m_2, ..., m_k$ be the sequence of messages involved in a crown of size k > 2, and m_x be a message of this crown synchr_sent by a process p_i to a process p_j . We consider two cases.

- i > j. Due to the crown, we have $sy_s(m_x) \xrightarrow{ev} sy_del(m_{x+1})$. As, after it has sent the implementation message MSG (m_x) to p_j (line 2), p_i remains engaged with p_j until it receives an implementation message ACK() from it (line 9), it follows that we have $sy_del(m_x) \xrightarrow{ev} sy_del(m_{x+1})$. As (due to the crown) we also have $sy_s(m_{x-1}) \xrightarrow{ev} sy_del(m_x)$, it follows that $sy_s(m_{x-1}) \xrightarrow{ev} sy_del(m_{x+1})$, and there consequently a crown of size k - 1.
- i < j. The reasoning is similar to the previous case. Due to the crown, we have $sy_s(m_{x-1}) \xrightarrow{ev} sy_del(m_x)$. As, after it has sent the message PROCEED() to p_i (line 11), p_j remains engaged with p_i until it receives $MSG(m_x)$ from it (line 5), it follows that we have $sy_s(m_{x-1}) \xrightarrow{ev} sy_s(m_x)$. Combining this with $sy_s(m_x) \xrightarrow{ev} sy_del(m_{x+1})$, we obtain $sy_s(m_{x-1}) \xrightarrow{ev} sy_del(m_{x+1})$, and obtain a crown whose size is k 1.

Proof of Part II. Let assume by contradiction that there is crown of size 2. Hence, there are two messages m_1 and m_2 such that $sy_s(m_1) \xrightarrow{ev} sy_del(m_2)$ and $sy_s(m_2) \xrightarrow{ev} sy_del(m_1)$. (Let us recall that these relations can involve causal paths as shown in the crown of size 2 depicted at the left side of Fig. 13.4.) Let p_i be the process that synchr_sent m_1 to p_j , and $p_{i'}$ be the process that synchr_sent m_2 to $p_{j'}$. There are two cases.

- m_1 is such that i > j or m_2 is such that i' > j'. Without loss of generality we consider i > j. It follows from the previous reasoning (first item of Part I) that $sy_del(m_1) \xrightarrow{ev} sy_del(m_2)$.
 - If i' > j', we obtain with the same reasoning $sy_del(m_2) \xrightarrow{ev} sy_del(m_1)$,
 - If i' < j', we obtain with a similar reasoning $\neg(sy_del(m_1) \xrightarrow{ev} sy_del(m_1))$.

Both cases contradict $sy_del(m_1) \xrightarrow{ev} sy_del(m_2)$.

• m_1 and m_2 are such that i < j and i' < j'. By reasoning similar to that used in the second item of Part I, we obtain $sy_s(m_1) \xrightarrow{ev} sy_s(m_2)$ and $sy_s(m_2) \xrightarrow{ev} sy_s(m_1)$, a contradiction which concludes the proof of the lemma.

Lemma 12 Each invocation of synchr_send() terminates and the corresponding message is synchr_delivered.

Proof To prove this lemma we show that if a process p_i invokes synchr_send(), it proceeds eventually to the state $\neg engaged_i$.

Let us observe that process p_1 is never engaged (due to its smallest identity, it never executes line 2 or line 11, and consequently we always have $\neg engaged_1$). It follows that p_1 never receives a message REQUEST() or ACK(). Moreover, when it receives a message MSG(m) or PROCEED(), it always sends back an answer (lines 6–7 and lines 12–13). The rest of the proof is by induction. Let us assume that each process $p_1, p_2, \ldots, p_i, \ldots, p_k$, eventually moves eventually to the state $\neg engaged_i$ and answers the messages it receives. Let us observe that p_{k+1} can become engaged only when it sends a message MSG() to a process with a smaller identity (line 2), or when it sends a message PROCEED() to a process with a smaller identity (line 11). As these processes will answer the message from p_{k+1} (induction assumption), it follows that p_{k+1} is eventually such that $\neg engaged_{k+1}$, and will consequently answer the message it receives. Hence, no process will remain blocked forever, and all the invocations of synchr_send() terminate.

The fact that the corresponding messages are synchr_delivered follows trivially from line 5 and line 7. $\hfill \Box$

Theorem 19 The algorithm of Fig. 13.11 ensures that the message communication pattern satisfies the synchrony property, no process blocks forever, and each message that is synchr_sent is synchr_delivered.

Proof The proof follows from Lemmas 11 and 12.

13.4 Rendezvous with Deadlines in Synchronous Systems

This section introduces rendezvous with deadlines. As noticed in Sect. 13.1.4, this is possible only in synchronous distributed systems. This is due to the fact that, in asynchronous distributed systems, there is no notion of physical time accessible to the processes. This section presents first definitions, and then algorithms implementing rendezvous with deadline. These algorithms are due to I. Lee and S.B. Davidson (1987).

13.4.1 Synchronous Systems and Rendezvous with Deadline

Synchronous Systems As processing times are negligible when compared to message transfer durations, they are considered as having a zero duration. Moreover, there is an upper bound, denoted δ , on the transit time of all messages that are sent through the underlying network, where the transit time of a message is measured as the duration that elapses between its sending and its reception for processing by the destination process. (The time spent by a message in input/output buffers belongs to its transit time.) This bound is such that it is an upper bound, whatever the process that measures it.

Each process has a local physical clock denoted ph_clock_i that it can read to obtain the current date. These clocks are synchronized in such a way that, at any time, the difference between two clocks is upper bounded by θ .

The previous assumptions on δ and θ means that if, at time τ measured on p's local clock, process p sends a message m to a process q, m will be received by q by time $\tau + \delta + \theta$ measured on q's local clock.

If there is a common physical clock that can be read by all processes, the local clocks can be replaced by this common clock, and then $\theta = 0$.

Rendezvous with Deadline The *rendezvous with deadline* abstraction provides the processes with two operations denoted timed_send() and timed_receive(). Both the sender p, when it invokes timed_send(m, deadline1), and the receiver q, when it invokes timed_receive(x, deadline2), specify a deadline for the rendezvous (x is the local variable of q where the received message is deposited if the rendezvous succeeds).

If the rendezvous cannot happen before their deadlines, both obtain the control value timeout. If the rendezvous succeeds before their deadlines, both obtain the value commit. It is important to notice that both processes receive the same result: The rendezvous is successful for both (and then m has been transmitted), or is unsuccessful for both (and then m has not been transmitted).

Temporal Scope Construct The following language construct, called *temporal scope*, is used to ease the presentation of the algorithms. Its simplest form is the following:

within deadline do
 when a message is received do statements
at deadline occurrence return(timeout)
end within.

Its meaning is the following: Let τ be the time (measured by ph_clock_i) at which a process p_i enters a **within** ... **end within** construct. The duration spent in this construct is bounded by $\tau + deadline$. During this period of time, if p_i receives a message, it executes the associated code denoted "statements", which can contain invocations of return(commit) or return(timeout). If it executes such a return(), p_i exits the construct with the corresponding result. If return() has not been invoked by time $\tau + deadline$, p_i exits the construct with the result timeout.

13.4.2 Rendezvous with Deadline Between Two Processes

Let us consider the base case of two processes p and q such that p invokes timed_send(m, $deadline_p$) and q invokes timed_receive(x, $deadline_q$). Moreover, let τ_p be the time, measured at its local clock, at which p starts its invocation of timed_send(m, $deadline_p$). Similarly, let τ_q be the time, measured at its local clock, at which q starts its invocation of timed_receive(x, $deadline_q$).

A Predicate to Commit or Abort a Rendezvous Let us observe that if p sends a message to q at a time τ_p (measured on its clock) such that $\tau_p + \delta + \theta \leq deadline_q$, then q will receive this message before its deadline. Similarly, if q sends a message

to p at a time τ_q (measured on its clock) such that $\tau_q + \delta + \theta \leq deadline_p$, then p will receive this message before its deadline. Hence, when true, the predicate

$$(\tau_p + \delta + \theta \leq deadline_q) \land (\tau_q + \delta + \theta \leq deadline_p)$$

states that, whatever the actual speed on the messages, the rendezvous can be successful (see Fig. 13.14). If the predicate is false, the rendezvous can succeed or fail, which depends on the speed of the messages and on the deadline values. If $\tau_p + \delta + \theta > deadline_q$, the message sent by p to q may arrive before $deadline_q$ but it may also arrive later. There is no way to know this from the values of τ_p and $deadline_q$. (And similarly, in the other direction.) Hence, the previous predicate is the weakest predicate (based only on τ_p , τ_q , $deadline_p$, and $deadline_q$) which (when true) ensures safely that it is impossible for the rendezvous not to occur.

In order that both p and q compute this predicate, the message sent by p to q has to contain τ_p and *deadline*_p, and the message sent by q to p has to contain τ_q and *deadline*_q. This is the principle on which the rendezvous with deadlines between two processes is based.

The Rendezvous Algorithm The corresponding algorithms implementing timed_ send() and timed_receive() are described in Fig. 13.15. Their code is a simple translation of the previous discussion in terms of the **within** temporal scope construct.

In addition to the application message m, the sender p sends to q the date of its starting time τ_p and its deadline $deadline_p$ (line 2). Process p then enters the temporal scope (line 3), and waits for a message from q. If no message is received by p's deadline, the rendezvous failed and p returns timeout (line 9). If p receives a message from q (line 4) before its deadline, it computes the value of the success predicate (line 5), and returns the value commit if the rendezvous cannot "not occur", (line 6), or timeout otherwise.

The code of the operation timed_receive() is the same as that of the operation timed_send() (with an additional store of m into the local variable x if the rendezvous succeeds, line 16).

Theorem 20 The algorithm described in Fig. 13.15 ensures that both processes return the same value. Moreover this value is commit if and only the predicate $(\tau_p + \delta + \theta \le deadline_q) \land (\tau_q + \delta + \theta \le deadline_p)$ is satisfied, and then the message m is delivered by q.

operation timed_send $(m, deadline_p)$ to q is (1) $\tau_p \leftarrow ph_clock_p;$ (2)send MSG $(m, \tau_n, deadline_n)$ to q; (3) within deadline_p do (4) when READY(τ_q , deadline_q) is received from q do (5) **if** $(\tau_p + \delta + \theta \le deadline_q) \land (\tau_q + \delta + \theta \le deadline_p)$ (6)then return(commit) (7)else return(timeout) (8) end if (9) at deadline occurrence return(timeout) (10)end within. **operation** timed_receive $(x, deadline_q)$ from p is (11) $\tau_q \leftarrow ph_clock_q;$ send READY $(m, \tau_a, deadline_a)$ to p; (12)(13)within deadline_a do when $MSG(\tau_p, deadline_p)$ is received from q do (14)(15)**if** $(\tau_p + \delta + \theta \le deadline_q) \land (\tau_q + \delta + \theta \le deadline_p)$ (16)then $x \leftarrow m$; return(commit) (17)else return(timeout) (18)end if (19) at deadline occurrence return(timeout) (20)end within.

Fig. 13.15 Real-time rendezvous between two processes p and q

Proof Let us observe that if each process receives a control message from the other process, they necessarily return the same result (commit or timeout) because they compute the same predicate on the same values. Moreover, if no process receives a message by its deadline, it follows from the temporal scope construct that they both return timeout.

If a process receives a control message by its deadline, while the other does not, we have the following where, without loss of generality, p be the process that does not receive a message by its deadline. Hence p returns timeout. As it has not received the message READY(τ_q , deadline_q) by its deadline, we have $\tau_q + \delta + \theta > deadline_p$. It follows that, when evaluated by q, the predicate will be false, and q will return timeout (lines 17).

Finally, it follows from lines 15–16 that q delivers the application m if and only if the predicate is satisfied.

A Simple Improvement If the message READY() (resp., MSG()) has already arrived when the sender (resp., receiver) invokes its operation, this process can immediately evaluate the predicate and return timeout if the predicate is false. In that case, it may also save the sending of the message MSG() (resp., READY()). If the predicate is true, it executes its algorithm as described in Fig. 13.15.

It follows that, whatever its fate (commit or timeout), a real-time rendezvous between two processes requires one or two implementation messages.

13.4.3 Introducing Nondeterministic Choice

In some applications, a sender process may want to propose a rendezvous with deadline to any receiver process of a predefined set of processes, or a receiver may want to propose a rendezvous to any sender of a predefined set of processes. The first rendezvous that is possible is then committed. We consider here the second case (multiple senders and one receiver). Each of the senders and the receiver define their own deadline. Let $p_1, p_2, ..., p_n$ denote the senders and q denote the receiver.

Principle of the Solution: A Predicate for the Receiver As the invocation of timed_send(m, $deadline_i$) appears in a deterministic context, the implementation of this operation is close to that of Fig. 13.15, namely, the sender p sends the message send MSG(m, $deadline_i$) to q.

On the other hand, differently from the two-process case, the receiver process q plays now a particular role, namely, it has to select a single sender from the n senders. Moreover, the rendezvous is allowed to fail only if no rendezvous is possible, which means that q has to select one of them if several rendezvous are possible.

Let μ_q be the date (measured with its physical clock) at which the receiver q receives the message MSG(m, deadline_i) from the sender p_i . If the rendezvous is possible with p_i , q sends back the message COMMIT(). Otherwise it sends no message to p_i , which will obtain the value timeout when its deadline will be attained.

Hence, as before, the core of the algorithm is the predicate used by the receiver to answer (positively) or not answer a sender. Let us observe that $\mu_q \leq deadline_q$ is a necessary requirement to answer, but this is not sufficient to ensure that both q and p_i take the same decision concerning their rendezvous (commit or timeout()). To that end, similarly to the two-process case and assuming that the message COM-MIT() sent by q to p_i is sent at time μ_q , it is required that this message COMMIT() is received by p_i before its deadline, i.e.,

$$\mu_q + \delta + \theta \leq deadline_i$$
.

This is illustrated in Fig. 13.16. If this predicate is false, there is no certainty that the control message it is about to send to p_i will arrive at p_i before its deadline. Hence, if the predicate is false, q does not send the message COMMIT() to p_i .

```
operation timed_send(m, deadline_i) to q is
                                                % invoked by p_i %
(1)
       send MSG(m, deadline_i) to q;
(2)
       within deadline<sub>i</sub> do
            when COMMIT() is received from q do return(commit)
(3)
(4)
       at deadline occurrence return(timeout)
       end within.
(5)
operation timed_receive(x, deadline<sub>a</sub>) is % invoked by q %
(6)
       within deadline<sub>a</sub> do
            when MSG(m, deadline_i) is received from p_i do
(7)
(8)
                   if (ph\_clock_q + \delta + \theta \le deadline_i)
                     then send COMMIT() to p_i;
(9)
                          x \leftarrow m; return(commit)
(10)
(11)
                   end if
       at deadline occurrence return(timeout)
(12)
       end within.
(13)
```

Fig. 13.17 Nondeterministic rendezvous with deadline

As we can see, differently from the two-process case where the algorithms executed by the sender and the receiver are symmetric, the principle is now based on an asymmetric relation: The sender (which is in a deterministic context) acts as a client, while the receiver (which is in a nondeterministic context) acts as a server. Despite this asymmetry, the aim is the same as before: allow the processes to take a consistent decision concerning their rendezvous.

The Asymmetric Algorithm for Nondeterministic Choice The algorithm is described in Fig. 13.17. When a process p_i invokes timed_send(m, $deadline_i$), it sends the implementation message MSG(m, $deadline_i$) to q (line 1), and enters a temporal scope construct whose ending date is upper bounded by $deadline_i$ (line 2). If, while it is in its temporal scope, p_i receives a message from q, its rendezvous with q is committed and it returns the value commit (line 3). If it receives no message from q by its deadline, the rendezvous failed and p_i returns the value timeout (line 4).

When it invokes timed_receive(x, $deadline_q$), the receiver q enters a temporal scope construct upper bounded by its deadline (line 6). Then it starts waiting. If during this period it receives a message MSG(m, $deadline_i$) from a sender p_i such that the predicate $h_clock_q + \delta + \theta \le deadline_i$ is satisfied, it commits the rendezvous with p_i by sending back to p_i the message COMMIT() (lines 7–11). If no message satisfying this predicate is received by its deadline, no rendezvous can be committed and, consequently, q returns the value timeout (line 12).

Remark This asymmetric algorithm can be used when there is a single sender. We then obtain an asymmetric algorithm for a rendezvous between two processes (see Problem 5).

13.4.4 n-Way Rendezvous with Deadline

The Problem In some real-time applications, processes need to have a rendezvous with deadline involving all of them. This can be seen as a decision problem in which all the processes must agree on the same output (commit or timeout). Moreover, if the output is commit, each process must have received the messages sent by each other process. This section presents an algorithm solving *n*-way rendezvous with deadline (where *n* is the number of processes). This algorithm can be modified to work with predefined subsets of processes.

The operation offered to processes for such a multirendezvous is denoted multi_rdv(m, *deadline*) where m is the message sent by the invoking process p_i , $1 \le i \le n$, and *deadline* is its deadline for the global rendezvous.

The Predicate As each process is now simultaneously a sender and a receiver, the algorithm is a symmetric algorithm, in the sense that all the processes execute the same code. Actually, this algorithm is a simple extension of the symmetric algorithm for two processes, described in Fig. 13.15.

Hence, when a process p_i invokes multi_rdv(m_i , $deadline_i$), it sends the message MSG(m_i , τ_i , $deadline_i$) to each other process (where, as before, τ_i is the sending date of this message). Let us consider a process p_i that has received such a message from each other process. As the rendezvous is global, the two-process predicate $(\tau_p + \delta + \theta \le deadline_q) \land (\tau_q + \delta + \theta \le deadline_p)$ has to be replaced by a predicate involving all pairs of processes. We consequently obtain the generalized predicate

$$\forall (k, \ell): \quad \tau_k + \delta + \theta \leq deadline_{\ell}.$$

Instead of considering all pairs (τ_k , *deadline*_{ℓ}), this predicate can be refined as follows:

- The *n* starting dates τ_1, \ldots, τ_n , are replaced by a single one, namely the worst one from the predicate point of view, i.e., the latest sending time $\tau = \max(\{\tau_x\}_{1 \le x \le n})$.
- Similarly, the *n* starting deadlines can be replaced by the worst one from the predicate point of view, i.e., the earliest deadline $deadline = min(\{deadline_x\}_{1 < x < n})$.

The resulting predicate is consequently:

$$\tau + \delta + \theta \leq deadline.$$

The Algorithm As indicated, the resulting algorithm is a simple extension of the two-process symmetric algorithm of Fig. 13.15. It is described in Fig. 13.18.

The local variable rec_i is used to count the number of messages received by p_i . If the deadline occurs before $rec_i = n - 1$, one or more processes are late with respect to p_i 's deadline and, consequently, the multirendezvous cannot occur. In this case, p_i returns the value timeout (line 13). Otherwise, p_i has received a message from each other process before its deadline. In this case, p_i returns commit or timeout according to the value of the predicate (line 9–12). The proof that this algorithm is correct is a straightforward generalization of the proof of Theorem 20.

```
operation multi_rdv(m, deadline<sub>i</sub>) is
                                               % invoked by p_i %
(1)
        rec_i \leftarrow 0; \tau_i \leftarrow ph\_clock_i:
        for each i \in \{1, ..., n\} \setminus \{i\} do send MSG(m, \tau_i, deadline_i) to p_i end for;
(2)
(3)
        within deadline; do
(4)
                 while (rec_i < n-1) do
(5)
                      when MSG(m_i, \tau_i, deadline_i) is received from p_i do rec_i \leftarrow rec_i + 1
(6)
                 end while;
                 let \tau = \max(\{\tau_x\}_{1 \le x \le n});
(7)
(8)
                 let deadline = max(\{deadline_x\}_{1 \le x \le n});
(9)
                 if (\tau + \delta + \theta \leq deadline)
(10)
                        then return(commit)
(11)
                        else return(timeout)
                 end if
(12)
(13)
        at deadline occurrence return(timeout)
        end within.
(14)
```

Fig. 13.18 Multirendezvous with deadline

Observing that for any *i*, it is not necessary that the constraint $\tau_i + \delta + \theta \leq deadline_i$ be satisfied, an improved predicate, which allows for more rendezvous to succeed, can be designed. This is the topic of Problem 7.

13.5 Summary

This chapter was on synchronous communication. This type of communication synchronizes the sender and the receiver, and is consequently also called rendezvous or interaction. The chapter has first given a precise meaning to what is called *synchronous communication*. It has also presented a characterization based on a specific message pattern called a crown.

The chapter then presented several algorithms implementing synchronous communication, each appropriate to a specific context: planned interactions or forced interaction in fully asynchronous systems, and rendezvous with deadline suited to synchronous systems.

13.6 Bibliographic Notes

• The notion of a synchronous communication originated in the work of P. Brinch Hansen [63] (who introduced the notion of distributed processes), and C.A.R. Hoare [186] (who introduced the notion of communicating sequential processes, thereafter known under the name CSP).

The CSP language constructs relate intimately synchronous communication with the notion of guarded command and nondeterminism introduced by E.W. Dijkstra [113].

The notion of remote procedure call developed in some distributed systems [54] is strongly related to synchronous communication.

- The definition of synchronous communication based on logical scalar clocks (as used in this book) is due to V.K. Garg [149, 274]. The example used in Sect. 13.1.2 is from [149].
- The characterization of synchronous communication based on the absence of the message pattern called a crown is due to B. Charron-Bost, G. Tel, and F. Mattern [88].

Another characterization based on the acyclicity of a message graph is given by T. Soneoka and T. Ibaraki in [356].

- The asymmetric algorithm based on an acyclic client–server relation among the processes, presented in Sect. 13.2.2, is due to A. Silberschatz [343].
- The asymmetric token-based algorithm presented in Sect. 13.2.3 is due to R. Bagrodia [31].
- The algorithm for forced (message delivery) interactions presented in Sect. 13.3 is due to V.V. Murty and V.K. Garg [273].
- Other algorithms implementing synchronous rendezvous in asynchronous systems, and analyses of the concepts of synchrony and nondeterminism associated with synchronous communications, can be found in many papers (e.g., [30, 51, 57, 58, 66, 80, 94, 131, 133, 354]).
- The notion of multiparty interaction in asynchronous systems is addressed in [85, 121].
- The notion of rendezvous with deadline and the algorithms presented in Sect. 13.4 are due to I. Lee and S.B. Davidson [233].
- Other notions of synchronous communication have been introduced, mainly in the domain of distributed simulation [140, 199, 263, 329].

13.7 Exercises and Problems

1. Let us recall that a sequential observation $\widehat{S} = (H, \stackrel{to}{\longrightarrow})$ of a distributed execution $\widehat{H} = (H, \stackrel{ev}{\longrightarrow})$ is a topological sort of the partial order \widehat{H} , i.e., the total order $\stackrel{to}{\longrightarrow}$ respects the partial order $\stackrel{ev}{\longrightarrow}$ (see Chap. 6).

Show that the communication pattern of a distributed execution \widehat{H} satisfies the synchronous communication property if and only if \widehat{H} has a sequential observation $\widehat{S} = (H, \xrightarrow{to})$ in which, for each message *m*, the receive event immediately follows the send event (i.e., both events can be packed to form a single event).

- 2. Enrich the algorithm presented in Sect. 13.2.2 so that:
 - During each interaction, a message is transmitted in each direction.
 - Some interactions allow a message in each direction to be transmitted, while other interactions allow only one message to be transmitted (as in Sect. 13.2.2).
- 3. Let us consider the token-based implementation for planned interactions described in Fig. 13.10. Given two processes p_i and p_j , determine an upper bound on the number of messages exchanged by these processes to commit a rendezvous or discover that it cannot be realized. Solution in [31].

Fig. 13.19 Comparing two date patterns for rendezvous with deadline

4. Design an algorithm implementing a rendezvous in which each message is sent to a set of destination processes. The communication operations offered to processes are "synchr_send(m) to dest(m)" and "synchr_del()", where dest(m) is the set of processes to which m is sent, and synchr_del() allows the invoking process to deliver a message sent by any process. The set dest(m) can be different for each message m. Moreover, the communication context is that of forced interactions (see Sect. 13.3).

Everything has to appear in such a way that, for each message m, the same logical date can be associated with its send event and its delivery events by the processes of dest(m) (synchrony property stated in Sect. 13.1.1). Solution in [272].

- 5. Let us consider rendezvous with deadline between two processes. Compare the respective advantages of the symmetric algorithm of Fig. 13.15 and the asymmetric algorithm of Fig. 13.17 (instantiated with a single sender). To that end, it is interesting to compare them in the two date patterns described in Fig. 13.19, where p is the sender and q the receiver.
- 6. Let us consider rendezvous with deadline in a synchronous system where the maximal drift of a local clock with respect to real-time is bounded by ϵ . This physical time setting was introduced in Sect. 9.5.5. Let Δ be a real-time duration. This quantity of time is measured by a process p_i , with its physical clock, as a value Δ_i such that

$$(1-\epsilon)\Delta \leq \Delta_i \leq (1+\epsilon)\Delta$$
.

The left side corresponds to the case where the physical clock of p_i is slow, while the right side corresponds to the case where it is rapid. Hence, if a clock of a process is always rapid while the clock of another process is always slow, the difference between these two clocks can become arbitrarily large.

Modify the algorithms described in Figs. 13.15, 13.17, and 13.18, so that they are based on the assumption ϵ (instead of the assumption θ , which assume an underlying clock synchronization algorithm). What do you notice for the modified algorithm from Fig. 13.17?

Solution in [233].

7. Let us consider the algorithm for multirendezvous with deadline presented in Sect. 13.4.4. As noticed at the end of this section, it is not necessary that, for any *i*, the constraint $\tau_i + \delta + \theta \le deadline_i$ be satisfied.

To show this, in addition to τ and *deadline*, let us define two new values as follows: τ' is the second greatest sending time of a message MSG $(m, \tau_i, deadline_i)$ sent at line 2, and *deadline'* is the second smallest deadline value. These values can be computed by a process at line 7 and line 8. Moreover, let same_proc(τ , *deadline*) be a predicate whose value is true if and only if the values τ and *deadline* come from the same process. Show that the predicate ($\tau + \delta + \theta \leq deadline$) used at line 9 can be replaced by the following weaker predicate:

 $\begin{bmatrix} \mathsf{same_proc}(\tau, \mathit{deadline}) \land (\tau + \delta + \theta \le \mathit{deadline'}) \land (\tau' + \delta + \theta \le \mathit{deadline}) \end{bmatrix} \\ \lor \begin{bmatrix} \neg \mathsf{same_proc}(\tau, \mathit{deadline}) \land (\tau + \delta + \theta \le \mathit{deadline}) \end{bmatrix}.$

Part V Detection of Properties on Distributed Executions

The two previous parts of the book were on the enrichment of the system to provide processes with high-level operations. Part III was on the definition and the implementation of operations suited to the consistent use of shared resources, while Part IV introduced communication abstractions with specific ordering properties. In both cases, the aim is to allow application programmers to concentrate on their problems and not on the way some operations have to be implemented.

This part of the book is devoted to the observation of distributed computations. Solving an observation problem consists in superimposing a distributed algorithm on a computation, which records appropriate information on this computation in order to be able to detect if it satisfies some property. The specificity of the information is, of course, related to the property one is interested in detecting.

Two detection problems are investigated in this part of the book: the detection of the termination of a distributed execution (Chap. 14), and the detection of deadlocks (Chap. 15). Both properties "the computation has terminated" and "there is dead-lock" are stable properties, i.e., once satisfied they remain satisfied in any future state of the computation.

Remark Other property detection problems concern the detection of unstable properties such as the conjunction of local predicates or the detection of properties on execution flows. Their detection is a more advanced topic not covered in this book. The interested reader is invited to consult the following (non-exhaustive) list of references [73, 89, 98, 137, 139, 153, 154, 192, 193, 378].

Chapter 14 Distributed Termination Detection

This chapter is on the detection of the termination of a distributed computation. This problem was posed and solved for the first time in the early 1980s independently by E.W. Dijkstra and C.S. Scholten (1980) and N. Francez (1980). This is a non-trivial problem. While, in sequential computing, the termination of the only process indicates that the computation has terminated, this is no longer true in distributed computing. Even if we were able to observe simultaneously all the processes, observing all of them passive could not allow us to conclude that the distributed execution has terminated. This is because some messages can still be in transit, which will reactivate their destination processes when they arrive, and these re-activations will, in turn, entail the sending of new messages, etc.

This chapter presents several models of asynchronous computations and observation/detection algorithms suited to termination detection in each of them. As in other chapters, the underlying channels are not required to be FIFO. Moreover, while channels are bidirectional, the term "output" channels (resp., "input" channels) is used when considering message send (resp., message reception).

Keywords AND receive · Asynchronous system · Atomic model · Counting ·

Diffusing computation \cdot Distributed iteration \cdot Global state \cdot

k-out-of-n receive statement \cdot Loop invariant \cdot

Message arrival vs. message reception · Network traversal ·

Non-deterministic statement \cdot OR receive statement \cdot Reasoned construction \cdot

Receive statement \cdot Ring \cdot Spanning tree \cdot Stable property \cdot Termination detection \cdot Wave

14.1 The Distributed Termination Detection Problem

14.1.1 Process and Channel States

As in previous chapters, p_1, \ldots, p_n denote the set of asynchronous processes. Moreover, we assume that the underlying asynchronous communication network is fully connected.

 p_i invokes a message reception

 p_i receives a message

Process States Each process p_i has a local variable denoted *state_i*, the value of which is *active* or *passive*. Initially, some processes are in the active state, while the others are in the passive state. Moreover, at least one process is assumed to be in the active state. As far as the behavior of a process p_i is concerned, we have the following (Fig. 14.1):

- When $state_i = active$:
 - $-p_i$ can execute local computations and send messages to the other processes.
 - p_i can invoke a message reception. In that case, the value of *state_i* automatically changes from *active* to *passive*, and p_i starts waiting for a message.
- When, *p_i* receives a message (we have then *state_i* = *passive*), the value of *state_i* automatically changed from *passive* to *active*.

It is assumed that there is an invocation of a message reception for every message that is sent. (This assumption will be removed in Sect. 14.5.)

Channel States While each channel is bidirectional at the network level, it is assumed that at the application level the channels are unidirectional. Given two processes p_i and p_j , this allows us, from an observer's point of view, to distinguish the state of the channel from p_i to p_j from the state of the channel from p_j to p_i .

The abstract variable $empty_{(i,j)}$ is used to describe the state of the channel from p_i to p_j . It is a Boolean variable whose value is *true* if and only if there is no application message in transit p_i to p_j . Differently from the local variables $state_i$, the variables $empty_{(i,j)}$ are "abstract" because no process can instantaneously know their value (the sender does not know when messages arrive, and the receiver does not know when they are sent).

14.1.2 Termination Predicate

The Predicate Intuitively, a distributed computation is terminated if there is a time at which, simultaneously, all the processes are passive and all the channels are empty.

More formally, let us consider an external time reference (real-time, which is not known by the processes); τ being any date in this time framework, let *state*^{τ}_{*i*} and

 $empty_{(i,j)}^{\tau}$ denote the value of $state_i$ and $empty_{(i,j)}$ at time τ , respectively. C being a distributed execution, let us define the predicate $TERM(C, \tau)$ as follows:

$$TERM(\mathcal{C}, \tau) \equiv \left[\left(\forall i: state_i^{\tau} = passive \right) \land \left(\forall i, j: empty_{(i,j)}^{\tau} \right) \right].$$

This predicate captures the fact that, at time τ , C has terminated. Finally, the predicate that captures the termination of C, denoted TERM(C), is defined as follows:

$$TERM(\mathcal{C}) \equiv (\exists \tau : TERM(\mathcal{C}, \tau))$$

As already seen, a stable property is a property that, once true, remains true forever.

Theorem 21 TERM(C) is a stable property.

Proof Assuming that $TERM(\mathcal{C}, \tau)$ is satisfied, let $\tau' \geq \tau$. As, at time τ , no process is active and all channels are empty, it follows from the rules governing the behavior of the processes that no process can be re-activated by a message reception. Consequently, as only active processes can send messages, no new message will be sent after τ . Hence $TERM(\mathcal{C}, \tau) \Rightarrow TERM(\mathcal{C}, \tau')$.

14.1.3 The Termination Detection Problem

Given a distributed computation C, the termination detection problem consists in designing an algorithm A that satisfies the two following properties:

- Safety. If, at time τ , the algorithm *A* claims that *C* has terminated, then $TERM(C, \tau)$ is true (i.e., the computation has terminated at some time $\tau' \leq \tau$).
- Liveness. If C terminates at time τ (i.e., $TERM(C, \tau) \land (\forall \tau' < \tau: \neg TERM(C, \tau')))$, then there is a time τ'' at which A will claim that the computation has terminated.

As usual, the safety property is on consistency: An algorithm is not allowed to claim termination before it occurs. Safety alone is not sufficient as, if termination occurs, it allows an algorithm to never claim termination. This is prevented by the liveness property.

14.1.4 Types and Structure of Termination Detection Algorithms

The algorithms detecting the termination of distributed computations are structured in two parts (see Fig. 14.2):

• At each process, a local observer module that observes the corresponding application process. Basically, the local observer at a process p_i manages the local variable *state_i* and a few other control variables related to the state and the communications of p_i (e.g., number of messages sent and received by p_i).

Fig. 14.2 Global structure of the observation modules

• A distributed algorithm (with a module per process) which allows the local observers to cooperate in order to detect the termination.

The termination detection algorithms differ on two points: (a) the assumptions they do on the behavior of the computation, and (b) the way they cooperate.

As far as notations are concerned, the local observer of a process p_i is denoted obs_i .

Remark As termination is a stable property, it is possible to use a stable property detection algorithm based on global states (such as the one presented in Sect. 6.5.3) to detect termination.

The design of specific termination detection algorithms is motivated by efficiency and by the fact that termination detection algorithms are restricted to use only consistent global states. They may rely on both consistent and inconsistent global states.

14.2 Termination Detection in the Asynchronous Atomic Model

14.2.1 The Atomic Model

The atomic model is a simplified model in which only messages take time to travel from their senders to their destination processes. Message processing is done *atomically* in the sense that it appears as taking no time. Hence, when it can be observed a process is always passive.

A time-diagram of an execution in this model is represented in Fig. 14.3. Message processing is denoted by black dots. Initially, p_2 sends a message m_1 to p_1 , while p_1 and p_3 are waiting for messages. When it receives m_1 , p_1 processes it and sends two messages, m_2 to p_3 and m_3 to p_2 , etc. The processing of the messages m_4 , m_7 , and m_8 entails no message sending, and consequently (from a global observer point of view), the distributed computation has terminated after the reception and the processing of m_8 by p_2 .

Fig. 14.3 An execution in the asynchronous atomic model

Fig. 14.4 One visit is not sufficient

14.2.2 The Four-Counter Algorithm

An Inquiry-Based Principle The idea that underlies this algorithm is fairly simple. On the observation side, each process p_i is required to count the number of messages it has received rec_i , and the number of messages it has sent *sent*_i.

To simplify the presentation we consider that there is an additional control process denoted *observer*. This process is in charge of the detection of the termination. It sends an inquiry message to each process p_i , which answers by returning its pair of values (*sent_i*, *rec_i*). When the observer has all the pairs, it computes the total number of messages which have been sent *S*, and the total number of messages which have been received *R*. If $S \neq R$ it starts its next inquiry.

Unfortunately, as shown by the counterexample presented in Fig. 14.4, the observer cannot conclude from S = R that the computation has terminated. This is due to the asynchrony of communication. The inquiry messages REQUEST() are not received at the same time by the application processes, and p_1 sends back the message ANSWER(0, 1), p_2 sends back the message ANSWER(1, 0), and p_3 sends back the message ANSWER(0, 0). We then have S = 1 and R = 1, while the computation is not yet terminated. Due to the asynchrony among the reception of the messages REQUEST() at different processes, the final counting erroneously associates the sending of m_1 with the reception of m_2 . Of course, it could be possible to replace the counting mechanism by recording the identity of all the messages sent and received and then compare sets instead of counters, but this would be too costly and, as we are about to see, there is a simpler counter-based solution.

```
% local observation at each process p_i %
when a message m is received from a process p_i do
      rec_i \leftarrow rec_i + 1;
(1)
(2) let x = number of messages sent due to the processing of m;
(3) sent_i \leftarrow sent_i + x.
% interaction of p_i's local observer with the centralized observer %
when a message REQUEST() is received from observer do
     send ANSWER(sent<sub>i</sub>, rec<sub>i</sub>) to observer.
(4)
detection task observer is % behavior of the centralized observer %
       S1 \leftarrow 0; R1 \leftarrow 0;
(5)
      repeat forever
(6)
(7)
           for each i \in \{1, ..., n\} do send REQUEST() to p_i end for;
           wait (an answer message ANSWER(sent<sub>i</sub>, req<sub>i</sub>) received from each p_i);
(8)
(9)
           S2 \leftarrow \sum_{1 < i < n} sent_i; R2 \leftarrow \sum_{1 < i < n} rec_i;
           if (R1 = S2) then claim termination; exit loop
(10)
(11)
                          else S1 \leftarrow S2; R1 \leftarrow R2
(12)
           end if
(13) end repeat.
```


An Algorithm Based on Sequential Inquiries A solution, due to F. Mattern (1987), consists in replacing an inquiry by two consecutive inquiries. The resulting algorithm is described in Fig. 14.5.

When an application process p_i receives a message it processes the message and increases accordingly rec_i and $sent_i$ (lines 1–3). Moreover, it sends back the message ANSWER(*sent_i*, req_i) (line 4) when it receives a request from the observer.

The observer sends a request message to each application process (line 7) and waits for the corresponding answers (line 8). It then computes the results of its inquiry and stores them in S2 and R2 (line 9). S1 and R1 denote the values of its previous inquiry (lines 5 and 11). If S2 = R1, it claims termination. Otherwise, it starts a new inquiry. When considering two consecutive inquiries, let us observe that, when true, the termination predicate states that the number of messages perceived as sent by the second inquiry is equal to the number of messages perceived as received by the first inquiry. As we are about to see in the proof of the next theorem, the important point lies in the fact that inquires are sequential, and this allows us to cope with fact that each inquiry is asynchronous.

Theorem 22 Assuming that the application executes in the asynchronous atomic model, the 4-counter algorithm satisfies the safety and liveness properties defining the termination detection problem.

Proof Let us first prove the liveness property. If the computation terminates, there is a time τ after which no message is sent. Hence, after τ , no message is sent and no message is received. Let us consider the first two inquiries launched by the observer

Fig. 14.6 Two consecutive inquiries

after τ . It follows from the previous observation that E1 = R1 = E2 = R2, and the algorithm detects termination.

Proving the safety property consists in showing that, if termination is claimed, then the computation has terminated. To that end, let $sent_i^{\tau}$ be the value of $sent_i$ at time τ . As counters are not decreasing, we trivially have $(\tau \le \tau') \Rightarrow (sent_i^{\tau} \le sent_i^{\tau'})$, and the same holds for the counters rec_i .

Let us consider Fig. 14.6, which abstracts two consecutive inquiries launched by the observer. The first inquiry obtains the pair of values (S1, R1), and the second inquiry obtains the pair (S2, R2). As the second inquiry is launched after the results of the previous one have been computed, they are sequential. Hence, there is a time, between the end of the first inquiry and the beginning of the send one at which the number of messages sent is S', and the number of messages received is R' (these values are known neither by the processes, nor the observer). We have the following.

- S1 ≤ S' ≤ S2 and R1 ≤ R' ≤ R2 (from the previous observation on the nondecreasing property of the counters *sent_i* and *rec_i*).
- If S2 = R1, we obtain (from the previous item) $S' \le S2 = R1 \le R'$.
- $S' \ge R'$ (due to the computation itself).
- It follows from the two previous items that $(S2 = R1) \Rightarrow (S' = R')$.

Hence, if the predicate is satisfied, the computation was terminated before the second inquiry was launched, which concludes the proof of the theorem. \Box

14.2.3 The Counting Vector Algorithm

Principle The principle that underlies this detection algorithm, which is due to F. Mattern (1987), consists in using a token that navigates the network of processes. This token carries a vector $msg_count[1..n]$ such that, from its point of view, $msg_count[i]$ is the number of messages sent to p_i minus the number of messages received by p_i . When a process receives the token and the token is such that $msg_count = [0, ..., 0]$, it claims termination.

% local observation at each process p_i % when a message m is received from a process p_i do $msg_i[i] \leftarrow msg_i[i] - 1;$ (1)let $sent_i[k]$ = number of messages sent to p_k due to the processing of m; (2)(3) for each $k \in \{1, ..., n\} \setminus \{i\}$ do $msg_i[k] \leftarrow msg_i[k] + sent_i[k]$ end for. local detection task at process pi % cooperation among local observers % (4) repeat forever (5) wait (TOKEN(msg_count)); for each $k \in \{1, ..., n\}$ do (6) (7) $msg_count[k] \leftarrow msg_count[k] + msg_i[k];$ (8) $msg_i[k] \leftarrow 0$ (9) end for: (10)if (all processes have been visited at least once) \land (msg_count = [0, ..., 0]) then claim termination; exit loop (11)else send TOKEN(msg_count[1..n] to) next process on the ring (12)(13)end if (14) end repeat.

Fig. 14.7 The counting vector algorithm for termination detection

Algorithm The algorithm is described in Fig. 14.7. It assumes that a process does not send messages to itself. Moreover, in order that all processes are visited by the token, it also assumes that the token moves along a ring including all the processes. (According to Fig. 14.2, this is the way the local observers cooperate to detect termination.)

Each process p_i manages a local vector $msg_i[1..n]$ (initialized to [0, ..., 0]) such that $msg_i[i]$ is decreased by 1 each time p_i receives a message, and $msg_i[j]$ is increased by 1 each time p_i sends a message to p_j (lines 1–3). Moreover, when the token is at p_i , $msg_i[1..n]$ is added to the vector $msg_count[1..n]$, and reset to its initial value (lines 6–9).

As previously, let xx^{τ} be the value of x at time τ . Let $nb_msg_i^{\tau}$ denote the number of messages in transit to the process p_i at time τ . The algorithm maintains the following invariant:

$$\forall i: \left(msg_count^{\tau}[i] + \sum_{1 \le k \le n} msg_k^{\tau}[i] \right) = nb_msg_i^{\tau}.$$

After a process p_i has received the token and updated its value, it checks the predicate ($msg_count = [0, ..., 0]$) if the token has visited each process at least once (line 10). If the predicate is satisfied, p_i claims termination (line 11). Otherwise, it propagates the token to the next process (line 12).

Example An example illustrating the algorithm is described in Fig. 14.8. The visit of the token at each process is indicated with a rectangle. The order in which the token visits the processes is indicated by integers representing "real time".

We have the following. The value of the array *msg_count*[1..*n*] is its value after its has been updated by its current owner (i.e., after line 9).

Fig. 14.8 The counting vector algorithm at work

- At time $\tau = 1$: $msg_count^1[1..n] = [0, 1, 0, 1]$.
- At time $\tau = 2$: $msg_count^2[1..n] = [1, 0, 0, 2]$.
- At time $\tau = 3$: *msg_count*³[1..*n*] = [1, 1, -1, 2].
- At time $\tau = 4$: *msg_count*⁴[1..*n*] = [2, 1, -1, 0].
- At time $\tau = 5$: $msg_count^5[1..n] = [0, 1, 0, 0]$.
- At time $\tau = 6$: $msg_count^6[1..n] = [0, 0, 0, 0]$.

 $msg_count^2[1..n] = [1, 0, 0, 2]$ because, to the token's knowledge, a message (denoted *m*) is in transit to p_1 , no messages are in transit to p_2 and p_3 , and a message is in transit to p_4 . $msg_count^4[1..n] = [2, 1, -1, 0]$ because, to the token's knowledge, two messages are recorded as being in transit to p_1 , a message is in transit to p_2 , a message (namely *m'*) has been received by p_3 but this message is not yet recorded as sent (hence the value -1), and no messages are in transit to p_4 .

While the computation has terminated when the token visits p_1 at time $\tau = 5$, the content of msg_count^5 does not allow p_1 to claim termination (the token has not yet seen the reception of the message m'' by p_2). Differently, at time $\tau = 6$, the content of msg_count^6 allows p_2 to detect termination.

Termination Detection, Global States, and Cuts The notions of a *cut* and of a *global state* were introduced in Sects. 6.1.3, and 6.3.1, respectively. Moreover, we have seen that these notions are equivalent.

Actually, the value of the vector msg_count defines a global state. The global state Σ_2 associated with msg_count^2 and the global state Σ_4 associated with msg_count^4 are represented on the figure.

As we can see, the global states associated with vectors all of whose values are not negative are consistent, while the ones associated with vectors in which some values are negative are inconsistent. This comes from the fact that a negative value in $msg_count[i]$ means that p_i is seen by the token as having received messages, but their corresponding sendings have not yet been recorded by the token (as is the case for msg_count^3 and msg_count^4 , which do not record the sending of m'). The positive entries of a vector with only non-negative values indicate how many messages have been sent and are not yet received by the corresponding process (as an example, in the consistent global state associated with msg_count^5 , the message m'' sent to p_2 is in transit).

14.2.4 The Four-Counter Algorithm vs. the Counting Vector Algorithm

Similarity In both detection algorithms, no application message is overloaded with control information. Observation messages and application messages are independent.

Difference The four-counter algorithm requires an additional observer process. Moreover, after the computation has terminated, the additional observer process may have to issue up to two consecutive inquiries before claiming termination.

The counting vector algorithm does not require an additional process, but needs an underlying structure that allows the token to visit all the processes. This structure is not required to be a ring. Between two visits to a given process p_i , the token may visits any other process a finite number of times. Moreover, after termination has occurred, the token can claim it during the first visit (of all the processes), which starts after the computation has terminated. This is, for example, the case in Fig. 14.8. Other features of this algorithm are addressed in Problem 1.

14.3 Termination Detection in Diffusing Computations

This section and the following ones consider the base asynchronous model in which a process can be active or passive as defined in Sect. 14.1.1.

14.3.1 The Notion of a Diffusing Computation

Some applications are structured in such a way that initially a single process is active. Without loss of generality, let p_1 be this process (which is sometimes called the environment).

Process p_1 can send messages to other processes, which then become active. Let p_i such a process. It can, in turn, send messages to other processes, etc. (hence the name *diffusing computation*). After a process has executed some local computation and possibly sent messages to other processes, it becomes passive. It can become active again if it receives a new message. The aim is here to design a termination detection algorithm suited to diffusing computations.

14.3.2 A Detection Algorithm Suited to Diffusing Computations

Principle: Use a Spanning Tree As processes become active when they receive messages, the idea is to capture the activity of the application with a spanning tree which evolves dynamically. A process that is not in the tree enters the tree when it becomes active, i.e., when it receives a message. A process leaves the tree when there is no more activity in the application that depends on it. This principle and the corresponding detection algorithm are due to E.W. Dijkstra and C.S. Scholten (1980).

How to Implement the Previous Idea Initially, only p_1 is in the tree. Then, we have the following. Let us first consider a process p_i that receives a message from a process p_j . As we will see, a process that sends a message necessarily belongs to the tree. Moreover, due to the rules governing the behavior of a process, a process is always passive when it receives a message (see Fig. 14.1).

- If p_i is not in the tree, it becomes active and enters the tree. To that end, it defines the sender p_j of the message as its parent in the tree. Hence, each process p_i manages a local variable *parent_i*. Initially, *parent_i* = \perp at any process p_i , except for p_1 , for which we have *parent*₁ = 1.
- If p_i is in the tree when it receives the message from p_j , it becomes active and, as it does not need to enter the tree, it sends by return to p_j a message ACK() so that p_j does not consider it as one of its children.

Let us now introduce a predicate that allows a process to leave the tree. First, the process has to be passive. But this is not sufficient. If a process p_i sent messages, these messages created activity, and it is possible that, while p_i is passive, the activated processes are still active (and may have activated other processes, etc.). To solve this issue, each process p_i manages a local variable, called *deficit_i*, which counts the number of messages sent by p_i minus the number of acknowledgment messages it has received.

- If $deficit_i > 0$, all the messages sent by p_i have not yet been acknowledged. Hence, there is possibly some activity in the subtree rooted at p_i . Consequently, p_i conservatively remains in the tree.
- If $deficit_i = 0$, all the messages that p_i has sent have been acknowledged, and consequently no more activity depends on p_i . In this case, it can leave the tree, and does this by sending the message ACK() to, its parent.

Hence, when considering a process p_i which is in the tree (i.e., such that $parent_i \neq \bot$)), the local predicate that allows it to leave the tree is

$$(state_i = passive) \land (deficit_i = 0).$$

Finally, the environment process p_1 concludes that the diffusing computation has terminated when its local predicate *deficit*₁ = 0 becomes satisfied.

```
when p_i starts waiting for a message do
(1) state<sub>i</sub> \leftarrow passive;
(2) let k = parent_i;
(3) if (deficit_i = 0)
(4)
          then send ACK() to p_k; parent<sub>i</sub> \leftarrow \perp
(5) end if.
when p_i executes send(m) to p_i do
       % (state<sub>i</sub> = active) \land (parent<sub>i</sub> \neq \perp) %
(6) deficit_i \leftarrow deficit_i + 1.
when p_i receives a message m from p_i do
(7) state_i \leftarrow active;
(8) if (parent_i = \bot) then parent_i \leftarrow j
                            else send ACK() to p_i
(9)
(10) end if.
when ACK() is received from p_i do
(11) deficit_i \leftarrow deficit_i - 1;
(12) let k = parent_i;
(13) if (deficit<sub>i</sub> = 0) \land (state<sub>i</sub> = passive)
          then send ACK() to p_k; parent<sub>i</sub> \leftarrow \perp
(14)
```

(15) end if.

The Algorithm: Local Observation and Cooperation Between Observers The algorithm is described in Fig. 14.9. In this algorithm the local observation of a process and the cooperation among the local observers are intimately related.

When a process p_i starts waiting for a message, it becomes passive and leaves the tree if all its messages have been acknowledged, i.e., it is not the root of a subtree in which some processes are possibly still active (lines 1–5). On the observation side, the local deficit is increased each time p_i sends a message (line 6). The process p_i is then necessarily active and belongs to the tree.

When a process p_i receives a message m, it becomes active (line 7), and enters the tree if it was not there (line 8). If p_i was already in the tree, it sends by return a message ACK() to the sender of m (line 9) to inform the sender that its was already in the tree and its activity does not depends on it.

Finally, when a process receives a message ACK(), it leaves the tree (line 14) if it is passive and is not the root of a subtree in which some processes are active (line 13).

14.4 A General Termination Detection Algorithm

This section presents a reasoned construction of a general termination detection algorithm. This algorithm is general in the sense that it assumes neither that processing times have a zero duration, nor that the observed computation is a diffusing computation (it allows any number of processes to be initially active). This algorithm is

Fig. 14.9 Termination detection of a diffusing computation also generic in that sense that it uses an abstraction called a *wave*, which can be implemented in many different ways, each providing a specific instance of the general algorithm. This reasoned construction is due to J.-M. Hélary and M. Raynal (1991).

14.4.1 Wave and Sequence of Waves

Definition A *wave* is a control flow that is launched by a single process, visits each process once, and returns to the process that activated it. Hence, the notion of a *wave initiator* is associated with a wave. As a wave starts from a process and returns to that process, it can be used to disseminate information to each process and returns information from each process to the wave initiator.

As an example, each inquiry launched by the observer process in the four-counter algorithm (Sect. 14.2.2) is a wave. More generally, any distributed algorithm implementing a network traversal with feedback (such as the ones presented in Chap. 1) implements a wave.

A wave provides the processes with four operations, denoted start_wave(), end_wave(), forward_wave(), and return_wave(). Assuming the initiator is p_{α} , let sw_{α}^{x} and ew_{α}^{x} denote the events corresponding to the execution of its *x*th invocation of start_wave() and end_wave(), respectively. Similarly, given any process p_i , $i \neq \alpha$, let fw_i^{x} and rw_i^{x} denote the events corresponding to the execution of the *x*th invocation of forward_wave() and return_wave() by p_i , respectively.

The control flow associated with a sequence of waves initiated by p_{α} is defined by the following properties (where " $\stackrel{ev}{\longrightarrow}$ " is the causal order relation on events defined in Sect. 6.1.2).

- Process visit. $\forall x: \forall i \neq \alpha : sw_{\alpha}^{x} \xrightarrow{ev} fw_{i}^{x} \xrightarrow{ev} rw_{i}^{x} \xrightarrow{ev} ew_{\alpha}^{x}$. This property states that each process is visited by a wave before this wave returns to its initiator.
- Sequence of waves. $\forall x: ew_{\alpha}^{x} \xrightarrow{ev} sw_{\alpha}^{x+1}$. This property states that an initiator cannot launch the next wave before the previous has returned to it.

It is easy to see that the sequence of inquiries used in the four-counter algorithm (Fig. 14.5) is a sequence of waves.

Implementing a Wave In the following, two implementations of a wave are presented. They are canonical in the sense that they are based on the canonical structures which are a ring and a spanning tree. It is assumed that, in each wave, (a) the values returned to the initiator by the processes are Boolean values, and (b) the initiator is interested in the "and" of these values. (Adapting the implementation to other types of values, and operations more sophisticated than the "and" can be easily done.)

These implementations consider that the role of p_{α} is only to control the waves, i.e., p_{α} is an additional process which is not observed. Hence, an application process

Fig. 14.10 Ring-based implementation of a wave

```
operation start_wave() is % invoked by p_{\alpha} %

(1) send TOKEN (true) to next_{\alpha}.

operation forward_wave() is % invoked by p_i, i \neq \alpha %

(2) wait (TOKEN (r)); x_i \leftarrow r.

operation return_wave(b) is % invoked by p_i, i \neq \alpha %

(3) send TOKEN (x_i \land b) to next_i.

operation end_wave(res) is % invoked by p_{\alpha} %

(4) wait (TOKEN (r)); res \leftarrow r.
```

is denoted p_i , where $i \in \{1, ..., n\}$ and $\alpha \notin \{1, ..., n\}$. Modifying the wave implementations so that p_{α} is also an application process (i.e., a process that is observed) is easy. (This is the topic of Problem 3.)

Let us observe that it is not required that all the waves of a sequence of waves are implemented the same way. It is possible that some waves are implemented in one way (e.g., ring-based implementation), while the other waves are implemented differently (e.g., tree-based implementation).

Implementing a Wave on Top of a Ring Let us assume an underlying unidirectional ring including each process exactly once (the construction of such a ring has been addressed in Sect. 1.4.2). This communication structure allows for a very simple implementation of a wave. The successor on the ring of a process p_i is denoted *next_i*.

The control flow is represented by the progress of a message on the ring. This message, denoted TOKEN(), carries a Boolean whose value is the "and" of the values supplied by the process it has already visited. The corresponding implementation (which is trivial) is described in Fig. 14.10.

When it launches a new wave, the initiator sends the message TOKEN (*true*) to its successor (line 1). Then, when a process p_i is visited by the wave, it stores the current value carried by the token r in a local variable x_i (line 2). To forward the wave, it sends the message TOKEN ($x_i \land b$) to its successor, where b is its local contribution to the wave, and x_i is the contribution of the processes which have been already visited by the wave (line 3). Finally, when the initiator invokes end_wave(*res*), it waits for the token and deposits its value in a local variable *res*.

Implementing a Wave with a Spanning Tree Let us assume a spanning tree rooted at the initiator process p_{α} (several algorithms building spanning trees were presented in Chap. 1). Let *parent_i* and *children_i* denote the parent of p_i and the set of its children in this tree, respectively (if p_i is a leaf, *children_i* = \emptyset).

If the spanning tree is a star centered at p_{α} , the implementation reduces to the use of REQUEST() and ANSWER() messages, similarly to what is done in Fig. 14.5.

The tree-based implementation of a wave is described in Fig. 14.11. When the initiator p_{α} invokes start_wave(), it sends a message GO() to each of its children

```
operation start_wave() is \% invoked by p_{\alpha} %
(1) for each j \in children_{\alpha} do send GO () to p_i end for.
operation forward_wave() is % invoked by p_i, i \neq \alpha %
(2)
       wait (GO () from p<sub>parent</sub>;);
       for each j \in children_i do send GO () to p_i end for.
(3)
operation return_wave(b) is % invoked by p_i, i \neq \alpha %
(4) if (children<sub>i</sub> \neq \emptyset)
         then wait (BACK(v_i) has been received from each p_i, j \in children_i);
(5)
(6)
                x_i \leftarrow (\bigwedge_{j \in children_i} v_j)
         else x_i \leftarrow true
(7)
(8) end if;
(9) send BACK (x_i \wedge b) to p_{parent_i}.
operation end_wave(res) is \% invoked by p_{\alpha} %
(10) wait (BACK(v_i) has been received from each p_i, j \in children_{\alpha});
(11) res \leftarrow (\bigwedge_{j \in children_i} v_j).
```

Fig. 14.11 Spanning tree-based implementation of a wave

(line 1) and, when a process p_i is visited by the wave (i.e., receives a message GO()), it forwards the message GO() to each of its own children (lines 2–3).

Then, when a process p_i invokes return_wave(*b*), where *b* is its contribution to the final result, it waits for the contributions from the processes belonging to the subtree for which it is the root (lines 5–9). When, it has received all of these contributions, it sends back to its parent the whole contribution of this subtree (line 10). Finally, when p_{α} (which is the root of the spanning tree) has received the contribution of all its children, it deposits the Boolean result in its local variable *res*.

14.4.2 A Reasoned Construction

A Reasoned Construction: Step 1 (Definition of a Locally Evaluable Unstable Predicate) Let us recall that (as seen in Sect. 14.1.2), a computation C is terminated at time τ if the predicate $TERM(C, \tau)$ is true, where $TERM(C, \tau) \equiv (\forall i: state_i^{\tau} = passive) \land (\forall i, j: empty_{(i, i)}^{\tau})$.

While no process can instantaneously know the value of the predicate $\bigwedge_{j\neq i} empty_{(i,j)}$, it is possible to replace it by a stronger predicate, by associating an acknowledgment with each application message. (Differently from the acknowledgments used in the specific algorithm designed for diffusing computations, such acknowledgment messages are systematically sent by return when application messages are received.)

Let $deficit_i$ be a local control variable of p_i which counts the number of application messages sent by p_i and for which p_i has not yet received the corresponding acknowledgment. Hence, p_i can locally evaluate the following unstable predicate

$$idle_i \equiv (state_i = passive) \land (deficit_i = 0).$$

Fig. 14.12 Why $(\bigwedge_{1 \le i \le n} idle_i^x) \Rightarrow TERM(\mathcal{C}, \tau_\alpha^x)$ is not true

This predicate is safe in the sense that $idle_i \Rightarrow (state_i = passive) \land (\bigwedge_{j \neq i} empty_{(i,j)})$. It allows consequently each process p_i to know the state of the channels from it to the other processes. Let us nevertheless observe that this predicate is unstable. This is because, if p_i receives a message while $idle_i$ is satisfied, $state_i$ becomes equal to *active*, and $idle_i$ becomes consequently false.

A Reasoned Construction: Step 2 (Strengthening the Predicate) Let τ_i^x be the time (from an external observer point of view) at which a process p_i , which is visited by the *x*th wave, starts the invocation of return_wave(), and τ_{α}^x be the time at which p_{α} terminates its *x*th invocation of end_wave(). Let *idle*_i^x be the value of the predicate *idle*_i at time τ_i^x .

Unfortunately, we do not have $(\bigwedge_{1 \le i \le n} idle_i^x) \Rightarrow TERM(\mathcal{C}, \tau_{\alpha}^x)$. This is due to the fact that the instants at which the predicates $idle_i$ are evaluated and the corresponding process p_i invokes return_wave() are independent from each other. This is depicted in Fig. 14.12. Assuming the current wave is the *x*th, it is easy to see that, despite the fact that both $idle_i^x$ and $idle_j^x$ are true, p_{α} cannot conclude at time τ_{α}^x that the computation has terminated.

Continuously Passive Process This counterexample shows that termination detection cannot boil down to a simple collection of values. The visits of the wave to processes have to be coordinated, and the activity period of each process has to be recorded in one way or another. To that end, let us strengthen the local predicate $idle_i^x$ by adding the following predicate $ct_pass_i^x$ defined as follows:

 $ct_pass_i^x \equiv p_i$ remained *continuously* passive between τ_i^x and τ_α^x .

When satisfied, this predicate means that p_i has not been reactivated after the *x*th wave left it and returned at p_{α} . The important point is the fact that we have the following:

$$\bigwedge_{1\leq i\leq n} (idle_i^x \wedge ct_pass_i^x) \Rightarrow TERM(\mathcal{C}, \tau_{\alpha}^x).$$

This follows from the following observation. It follows from $idle_i^x \wedge ct_pass_i^x$ that p_i remained passive during the time interval $[\tau_i^x, \tau_\alpha^x]$, and consequently its outgoing channels remained empty in this time interval. As this is true for all the processes,

we conclude that, at time τ_{α}^{x} , all the processes are passive and all the channels are empty.

Unfortunately, as a process p_i does not know the time τ_{α}^x , it cannot evaluate the predicate $ct_pass_i^x$. As previously, a simple way to solve this problem consists in strengthening the predicate $ct_pass_i^x$ in order to obtain a predicate locally evaluable by p_i . As the waves are issued sequentially by p_{α} , such a strengthening is easy. As $\tau_{\alpha}^x < \tau_i^{x+1}$, τ_{α}^x (which is not known by p_i) is replaced by τ_i^{x+1} (which is known by p_i). Hence, let us replace $ct_pass_i^x$ by

*sct_pass*_{*i*}^[*x,x*+1] $\equiv p_i$ remained *continuously* passive between τ_i^x and τ_i^{x+1} .

We trivially have

$$\bigwedge_{1 \le i \le n} (idle_i^x \land sct_pass_i^{[x,x+1]}) \Rightarrow TERM(\mathcal{C}, \tau_{\alpha}^x).$$

A Reasoned Construction: Step 3 (Loop Invariant and Progress Condition) The predicate $\bigwedge_{1 \le i \le n} (idle_i^x \land sct_pass_i^{[x,x+1]})$ involves two consecutive waves, and each process is involved in the evaluation of two local predicates, namely, $idle_i^x$ and $sct_pass_i^{[x,x+1]}$. As a sequence of waves is nothing else than a distributed iteration controlled by the initiator process p_α , and, due to the application, there is no guarantee that a process remains continuously passive between two consecutive waves, this directs us to consider

- $\bigwedge_{1 \le i \le n} idle_i^x$ as the loop invariant, and
- $\bigwedge_{1 \le i \le n} sct_pass_i^{[x,x+1]}$ as the progress condition associated with the loop.

A Reasoned Construction: Step 4 (Structure the Algorithm) A local observer is associated with each process p_i . In addition to the local variables *state_i* and *deficit_i*, it manages the Boolean variable *cont_passive_i*. As far as initial values are concerned, we have the following: *state_i* is initialized to *active* or *passive*, according to the fact that p_i is initially active or passive; *deficit_i* is initialed to 0; *cont_passive_i* is initialized to *true* if and only if p_i is initially passive.

The algorithm is described in Fig. 14.13. The local observation of a process p_i is described at lines 1–6. The new point with respect to the algorithms that have been previously presented is line 4. When p_i receives a message, in addition of becoming active, its Boolean variable *cont_passive_i* is set to *false*.

A Reasoned Construction: Step 5 (Guaranteeing the Loop Invariant) The loop invariant and the progress condition associated with the sequence of waves are implemented at lines 7–16, which describe the cooperation among the local observers.

After it has been visited by a wave (invocation of forward_wave() at line 12), a process waits until its local predicate $idle_i$ is satisfied (line 13). When this occurs it invokes return_wave(b) (line 15) where b is the current value of $cont_passive_i$.

E. 1412	
Fig. 14.15	when p_i starts waiting for a message do
for termination detection	(1) $state_i \leftarrow passive.$
	when p_i executes send(<i>m</i>) to p_j do
	(2) $deficit_i \leftarrow deficit_i + 1.$
	when p_i receives a message from p_j do
	(3) $state_i \leftarrow active;$
	(4) $cont_passive_i \leftarrow false;$
	(5) send ACK() to obs_j .
	when a message ACK() is received do
	(6) $deficit_i \leftarrow deficit_i - 1.$
	local task at p_i for the cooperation between observers is
	(7) if $(i = \alpha)$
	(8) then repeat
	(9) start_wave(); end_wave(<i>res</i>)
	(10) until (<i>res</i>) end repeat ;
	(11) claim termination
	(12) else forward_wave();
	(13) wait $((state_i = passive) \land (deficit_i = 0));$
	(14) $b \leftarrow cont_passive_i; cont_passive_i \leftarrow true;$
	(15) $return_wave(b)$
	(16) end if .

The important point is that, thanks to the **wait** statement, the predicate $idle_i$ is true at time τ_i^x . As this is true at any process, we have $\bigwedge_{1 \le i \le n} idle_i^x$, i.e., the loop invariant is satisfied. For *idle_i* to be true at time τ_i^x , it is assumed that the application process is frozen (i.e., does not execute) from the time $idle_i$ becomes true (line 13) until τ_i^x , i.e., until return_wave(b) starts to be executed (line 15). This is depicted in Fig. 14.14. This freezing is introduced to simplify the presentation, it is not mandatory (as shown in Problem 4).

A Reasoned Construction: Step 6 (Ensuring Progress) At time τ_i^x , p_i resets *cont_passive*; to *true*. (line 14), and will transmit its value b to (x + 1)th wave when it will invoke return wave(b) during this wave. Thanks to the "and" on the values collected by the (x + 1)th wave, the Boolean value res obtained by the initiator p_{α}

384

at the end of the (x + 1)th wave is such that $res = \bigwedge_{1 \le i \le n} sct_pass_i^{[x,x+1]}$. If this Boolean is true, p_{α} claims termination (lines 10–11).

As we have then $\bigwedge_{1 \le i \le n} idle_i^x$ (due to the loop invariant) and $res = \bigwedge_{1 \le i \le n} sct_- pass_i^{[x,x+1]}$, it follows that $TERM(\mathcal{C}, \tau_{\alpha}^x)$ is true, and consequently the claim is true. Hence, if the computation terminates, its termination is detected. Moreover, the fact that there is no false claim follows from the use of the Boolean variables $cont_passive_i$ which are used to implement the predicates $sct_pass_i^{[x,x+1]}$.

14.5 Termination Detection in a Very General Distributed Model

14.5.1 Model and Nondeterministic Atomic Receive Statement

Motivation In the classical asynchronous model (considered previously) each receive statement involves a single message, the sender of which is any process.

This basic receive statement is not versatile enough to render an account of specific cases where, for example, a process p_i wants to atomically receive either two messages, one from a given process p_j and the other from a given process p_k , or a single message from a given process p_ℓ . This means that, when such a receive statement terminates, p_i has consumed atomically either two messages (one from p_i), or a single message (from p_ℓ).

Message Arrival vs. Message Reception As suggested by the previous example, the definition of powerful nondeterministic reception statements needs the introduction of the notion of an *arrived and not yet consumed* message. Hence, a channel is now made up of two parts: a *network* component (that a message uses to attain its destination) and a *buffer* component (where a message that has arrived is stored until its destination process receives and consumes it).

There is consequently a notion of *message arrival* which is different from the notion of a *message reception* (these notions are merged in the classical asynchronous communication model). It follows that the underlying communication model is composed of a communication network plus an input buffer for each pair of processes (p_i, p_i) , where the message arrived from p_i and not yet received by p_i are saved.

This means that there is a part of each input channel, namely the buffer component, which is now visible by the observer obs_i associated with each process p_i . Differently, the content of the network component of the channels remains locally invisible.

A simple example is depicted in Fig. 14.15. The messages m_1 (sent by p_j) and m_4 (sent by p_k) have arrived, but have not yet been received. They are stored in input buffers. The messages m_2 , m_3 , and m_5 are still on their way to p_i .

Dependency Set Providing versatile message reception requires us to define a generalized nondeterministic reception statement. To that end, the notion of a dependency set is first introduced.

Fig. 14.15 Structure of the channels to p_i

When it enters a receive statement, a process p_i specifies a set of process identities, denoted dep_set_i , composed of the processes from which it starts waiting for messages. Let us remark that this allows a message, which has been sent, to never be consumed by its destination process (because the sender never appears in the dependency set of its destination process). Several patterns of dependency sets can be defined, each one defining a specific message reception model.

AND Model In this reception pattern, a receive statement has the following structure:

receive message from
$$(p_a \text{ and } \dots \text{ and } p_x)$$
.

We have then $dep_set_i = \{a, ..., x\}$. When invoked by p_i , this statement terminates when a message from each process p_j , such that $j \in dep_set_i$, has arrived at p_i . The reception statement then withdraws these messages from their input buffers and returns them to p_i . Hence, this message reception statement allows for the atomic reception of several messages from distinct senders.

OR Model The receive statement of the OR pattern has the following structure:

receive message from $(p_a \text{ or } \dots \text{ or } p_x)$.

As previously, the dependency set is $dep_set_i = \{a, ..., x\}$, but its meaning is different. This receive statement terminates when a message from a process p_j , such that $j \in dep_set_i$, has arrived at p_i . If messages from several processes in dep_set_i have arrived, a single one is withdrawn from its input buffer and received and consumed by p_i . Hence, the "or" is an exclusive "or". This is consequently a simple nondeterministic receive statement.

OR/AND Model This reception pattern is a combination of the two previous ones. The receive statement has the following form.

receive message from dp_1 or ... or dp_x ,

where each dp_y , $1 \le y \le x$, is a set of processes, and (as before) the "or" is an exclusive "or". Moreover, $dep_set_i = \bigcup_{1 \le y \le x} dp_y$.

This statement terminates as soon as there is a set dp_y such that a message from each process p_j , with $j \in dp_y$, has arrived at p_i . This receive statement consumes only the messages sent by these processes. It is a straightforward generalization of the AND and OR reception models.

Basic *k***-out-of***-m* **Model** The receive statement of the *k*-out-of-*m* pattern has the following structure:

receive k_i messages from dep_set_i ,

where dep_set_i (a set of process identities). It is assumed that $1 \le k_i \le |dep_set_i|$. This statement terminates when a message from k_i distinct processes belonging to dep_set_i have arrived at p_i .

Disjunctive *k***-out-of-***m* **Model** This receive statement generalizes the previous one.

receive $(k_i^1 \text{ messages from } dp_1)$ or $(k_i^2 \text{ messages from } dp_2)$ or ... or $(k_i^x \text{ messages from } dp_x)$.

We have $dep_set_i = \bigcup_{1 \le y \le x} dp_y$. This statement terminates as soon as there is a set dp_y such that k_i^y messages have arrived from distinct processes belonging to dp_y .

The disjunctive *k*-out-of-*m* model is fairly general. When x = 1, we obtain the basic *k*-out-of-*m* model. When x = 1 and $k_i^1 = |dp_1| = |dep_set_i|$, we obtain the AND model. When $x \ge 1$ and $|dp_y| = 1$, $1 \le y \le x$, we obtain the OR model.

Unspecified Message Reception It is possible that a message that has arrived at a process might never be consumed. This depends on the message pattern specified by processes when they invoke a reception statement. Maybe, in some cases, this can be due to an erroneous distributed program, but termination detection also has to work for the executions generated by such programs.

Interestingly, the algorithms developed in this section not only detect the termination of such executions, but allow also for the reporting of messages arrived and not received.

14.5.2 The Predicate fulfilled()

A predicate, denoted *fulfilled*(), is introduced to abstract the activation condition of a process that has invoked a receive statement. This predicate is used to know if the corresponding process can be re-activated.

Let *A* be a set of process identities such that a message has arrived from each of these processes and these messages have not yet been consumed (hence, they are still in their input buffers). *fulfilled*(*A*) is satisfied if and only if these messages are sufficient to reactivate the invoking process p_i .

By definition $fulfilled(\emptyset)$ is equal to *false*. It is moreover assumed that the predicate fulfilled() is monotonous, i.e.,

$$(A \subseteq A') \Rightarrow [fulfilled(A) \Rightarrow fulfilled(A')].$$

(Monotonicity states only that, if a process can be reactivated with the messages from a set of processes *A*, it can also be reactivated with the messages from a bigger set of processes A', i.e., such that $A \subseteq A'$.)

The result of an invocation of *fulfilled*(A) depends on the type of receive statement issued by the corresponding process p_i . As a few examples, we have the following:

- In the AND model: $fulfilled(A) \equiv (dep_set_i \subseteq A)$.
- In the OR model: $fulfilled(A) \equiv (A \cap dep_set_i \neq \emptyset)$.
- In the OR/AND model: $fulfilled(A) \equiv (\exists dp_v : dp_v \subseteq A)$.
- In the *k*-out-of-*n* model: $fulfilled(A) \equiv (|A \cap dep_set_i| \ge k_i)$.
- In the disjunctive *k*-out-of-*n* model: $fulfilled(A) \equiv (\exists y: |A \cap dp_i^y| \ge k_i^y)$.

A process p_i stops executing because it is blocked on a receive statement, or because it has attained its "end" statement. This case is modeled as a receive statement in which $dep_set_i = \emptyset$. As processes can invoke distinct receive statements at different times, the indexed predicate *fulfilled*_i() is used to denote the corresponding predicate as far as p_i is concerned.

14.5.3 Static vs. Dynamic Termination: Definition

Channel Predicates and Process Sets Let us define the following predicates and abstract variables that will be used to define two notions of termination of a computation in the very general distributed model.

- empty(j, i) is a Boolean predicate (already introduced) which is true if and only if the network component of the channel from p_j to p_i is empty.
- *arrived_i(j)* is a Boolean predicate which is true if and only if the buffer component of the channel from p_i to p_i is not empty.
- $arr_from_i = \{j \mid arrived_i(j)\}$ (the set of processes from which messages have arrived at p_i but have not yet been received—i.e., consumed—by p_i).
- NE_i = {j | ¬empty(j, i)} (the set of processes that sent messages to p_i, and these messages have not yet arrived at p_i).

When looking at Fig. 14.15, we have $arr_from_i = \{j, k\}$, and $NE_i = \{j, \ell\}$.

Static Termination A distributed computation C is *statically terminated* at some time τ if the following predicate, denoted $S_TERM(C, \tau)$, is satisfied. The variables *state_i* have the same meaning as before (and xx^{τ} is the value of xx at time τ).

$$S_TERM(\mathcal{C},\tau) \equiv \left[\forall i: \left(state_i^{\tau} = passive\right) \land \left(NE_i^{\tau} = \emptyset\right) \land \left(\neg fulfilled_i\left(arr_from_i^{\tau}\right)\right)\right].$$

This predicate captures the fact that, at time τ , (a) all the processes are passive, (b) no application message is in transit in the network component, and (c) for each process p_i and according to its receive statement, the messages arrived and not yet consumed (if any) cannot reactivate it. Similarly to the definition of TERM(C)introduced in Sect. 14.1.2, $S_TERM(C)$ is defined as follows:

$$S_TERM(\mathcal{C}) \equiv \big(\exists \tau \colon S_TERM(\mathcal{C}, \tau)\big).$$

This definition of termination is focused on the states of processes and channels. It is easy to show that $S_TERM(C)$ is a stable property.

Dynamic Termination A distributed computation C is *dynamically terminated* at some time τ if the following predicate is satisfied, denoted $D_TERM(C, \tau)$, is satisfied.

$$D_TERM(\mathcal{C}, \tau) \equiv \left[\forall i: \left(state_i^{\tau} = passive\right) \land \left(\neg fulfilled_i\left(NE_i^{\tau} \cup arr_from_i^{\tau}\right)\right)\right].$$

This predicate captures the fact that, at time τ , (a) all the processes are passive, and (b) no process p_i can be reactivated when considering both the messages arrived and not yet consumed and the messages in transit to it. The important difference with the predicate $S_TERM(C, \tau)$, lies in the fact that it allows for early detection, namely, termination can occur and be detected even if some messages have not yet arrived at their destination processes. This definition is based on the real (*state_i* = *passive*) or potential (*fulfilled_i*($NE_i \cup arr_from_i$)) activity of processes and not on the fact that channels are or are not empty. As previously, let us define $D_TERM(C)$ as follows:

$$D_TERM(\mathcal{C}) \equiv \big(\exists \tau \colon D_TERM(\mathcal{C}, \tau)\big).$$

As all messages eventually arrive at their destination, it is easy to see that

$$D_TERM(\mathcal{C},\tau) \Rightarrow [\exists \tau' \geq \tau \colon S_TERM(\mathcal{C},\tau')].$$

In that sense, dynamic termination allows for "early" detection, while static termination allows only for "late" detection.

Static/Dynamic Termination vs. Classical Termination In the classical model for termination detection, each receive statement is for a single message from any process (hence there is no unspecified reception), and message arrival and message reception are merged (hence there is no notion of input buffer). Moreover, we have *fulfilled*(A) \equiv ($A \neq \emptyset$). It follows that *TERM*(C, τ) can be rewritten as follows:

$$TERM(\mathcal{C},\tau) \equiv \left[\forall i: \left(state_i^{\tau} = passive\right) \land \left(NE_i^{\tau} = \emptyset\right)\right].$$

The static and dynamic algorithms that follow are due to J. Brzezinsky, J.-M. Hélary, and M. Raynal (1993).

14.5.4 Detection of Static Termination

The structure of the algorithm detecting the static termination of a computation C (predicate $S_TERM(C)$) is the same as that of the algorithm in Fig. 14.13. A difference lies in the fact that the local observer obs_i of process p_i has now to consider the arrival of application messages instead of their reception.

Local Variables and Locally Evaluable Predicate As the set NE_i appears in $S_TERM(C, \tau)$, a value of it must consequently be computed or approximated. As a local observer obs_i cannot compute the state of its input channels without freezing (momentarily blocking) sender processes, it instead computes the state of its output channels. More precisely, as done in previous algorithms, a local observer can learn the state of the network component of its output channels by associating an acknowl-edgment with each application message. When a message from a process p_i arrives at a process p_j , the local observer obs_j sends by return an acknowledgment to the local observer obs_i associated with p_i . As previously, let *deficit_i* be the number of messages sent by p_i for which obs_i has not yet received an acknowledgment. When satisfied, the predicate $deficit_i = 0$ allows the local observer obs_i to know that the all the messages by p_i have arrived to their destination processes. As we will see in the proof of the algorithm, replacing NE_i by $deficit_i = 0$ allows for a safe detection of static termination.

To know the state of p_i 's input buffers, the local observer obs_i can use the set arr_from_i (which contains the identities of the processes p_j such that there is a message from p_j in the input buffer of p_i). The content of such a set arr_from_i can be locally computed by the local observer obs_i . This is because this observer (a) sends back an acknowledgment each time a message arrives, and (b) observes the reception of messages by p_i (i.e., when messages are withdrawn from their input buffers to be consumed p_i).

Finally, the predicate (which is not locally evaluable)

$$(state_i = passive) \land (NE_i = \emptyset) \land (\neg fulfilled_i(arr_from_i))$$

is replaced by the locally evaluable predicate

$$(state_i = passive) \land (deficit_i = 0) \land (\neg fulfilled_i(arr_from_i))$$

In addition to the previous local variables, the algorithm uses also the Boolean variable $cont_passive_i$, the role of which is exactly the same as in Fig. 14.13.

Static Termination Detection Algorithm The algorithm (which is close to the algorithm of Fig. 14.13) is described in Fig. 14.16. Lines 1–7 describe the observation part of the observer *obs_i* (at process p_i). When a process enters a receive statement, the dependency set and the reactivation condition (*fulfilled_i*()) associated with this receive statement are defined. When, according to messages arrived and not yet consumed, the predicate *fulfilled_i*(*arr_from_i*) becomes true (lines 5–6), the process p_i becomes active and (as in Fig. 14.13) the Boolean *cont_passive_i* is set to *false*. As already indicated, the role of *cont_passive_i* is the same as in Fig. 14.13.

```
when p_i enters a receive statement do
(1) compute dep\_set_i and fulfilled_i () from the receive statement;
 (2) state_i \leftarrow passive.
when p_i executes send(m) to p_i do
(3) deficit_i \leftarrow deficit_i + 1.
when a message from p<sub>i</sub> arrives do
(4) send ACK() to obs_i.
when fulfilled<sub>i</sub>(arr_from<sub>i</sub>) becomes satisfied do
(5) state_i \leftarrow active;
(6) cont\_passive_i \leftarrow false.
when a message ACK() is received do
(7) deficit_i \leftarrow deficit_i - 1.
local task at p_i for the cooperation between observers is
       if (i = \alpha)
(8)
(9)
         then repeat
(10)
                    for each j \in \{1, ..., n\} do send REQUEST() to p_j end for;
(11)
                    wait (ANSWER(b_i) received from each obs_i, j \in \{1, ..., n\});
(12)
                    res \leftarrow \bigwedge_{1 < j < n} b_j
 (13)
               until (res) end repeat;
 (14)
               claim termination
(15)
         else wait (message REQUEST() from obs_{\alpha});
                wait ((state<sub>i</sub> = passive) \land (deficit<sub>i</sub> = 0) \land (¬fulfilled<sub>i</sub>(arr_from<sub>i</sub>)));
 (16)
(17)
               b_i \leftarrow cont\_passive_i; cont\_passive_i \leftarrow true;
(18)
               send ANSWER(b_i) to obs_{\alpha}
(19) end if.
```

Fig. 14.16 An algorithm for static termination detection

The cooperation among the local observers is described at lines 8–19. To simplify the presentation, we consider that each wave is implemented by a star which is (a) centered at a process obs_{α} (which does not participate in the computation), and (b) implemented by messages REQUEST() and ANSWER() (as done in Fig. 14.5).

When obs_{α} launches a new wave it sends a message REQUEST() to each process observer obs_i (line 10). Then, it waits for a message ANSWER (b_i) from each of them (line 11), and claims termination if the conjunction $b_1 \wedge \cdots \wedge b_n$ is true (lines 12–14).

When a local observer obs_i is visited by a new wave (line 15), it waits until its local predicate (*state_i* = *passive*) \land (*deficit_i* = 0) \land (\neg *fulfilled_i*(*arr_from_i*) becomes true. When this occurs, it sends the current value of *cont_passive_i* to *obs*_{α} and resets this variable to the value *true* (lines 17–18).

Theorem 23 Assuming generalized receive statements, the algorithm described in Fig. 14.16 satisfies the safety and liveness properties defining the static termination detection problem.

Fig. 14.17 Definition of time instants for the safety of static termination

Proof Proof of the liveness property. We have to show that, if the computation C is statically terminated, the algorithm eventually claims it.

If the computation is statically terminated at time τ , we have $S_TERM(C, \tau)$ (definition). As static termination is a stable property, it follows that all the processes p_i are continuously passive, their re-activation conditions are not satisfied (i.e., $\neg fulfilled_i(arr_from_i)$) at each p_i), and the network component of each channel is empty. Moreover, it follows from the acknowledgment mechanism that there is a time $\tau' \ge \tau$ such that, from τ' , the predicate $deficit_i = 0$ is always satisfied at each process p_i .

Let the wave launched by obs_{α} after τ' be the *x*th wave. It follows from the predicate at line 16 that neither the *x*th wave, nor any future wave, will be delayed at this line. Moreover, while the value b_i returned by obs_i to the *x*th wave can be *true* or *false*, the value b_i returned to the (x + 1)th wave is necessarily the value *true* (this is because the *x*th wave set the local variables *cont_passive_i* to *true*, and none of them has been modified thereafter).

It follows that (if not yet satisfied for the *x*th wave) the (x + 1)th wave will be such that $b_i = true$ for each *i*. The observer obs_{α} will consequently claims termination as soon as it has received all the answers for the (x + 1)th wave.

Proof of the safety property. We have to show that, if the algorithm claims termination at time τ' , there is a time $\tau \leq \tau'$ such that $S_TERM(\mathcal{C}, \tau)$.

To that end, let τ be a time such that, for each *i*, we have $\tau_i^x < \tau_\alpha^x < \tau < \tau_i^{x+1} < \tau_\alpha^{x+1}$, where τ_i^x is the time at which *obs_i* sends its answer and locally terminates the visit of the *x*th wave, and τ_α^x be the time at which *obs_{\alpha}* terminates its **wait** statement of the *x*th wave (line 10). The time instants τ_i^{x+1} and τ_α^{x+1} are defined similarly for (*x* + 1)th wave. These time instants are depicted in Fig. 14.17.

The proof consists in showing that, if the algorithm claims termination at the end of the (x + 1)th wave (i.e., just after time τ_{α}^{x+1}), then computation was statically terminated at time τ (i.e., *S_TERM*(C, τ) is true). The proof is decomposed into three parts.

• Proof that, for each *i*, state $_{i}^{\tau} = passive$.

It follows from the management of the local variables *cont_passive*_i (lines 10 and 17) that, if obs_{α} claims termination just after time τ_{α}^{x+1} , each process p_i has

been continuously passive between τ_i^x and τ_i^{x+1} . As $\tau_i^x < \tau < \tau_i^{x+1}$, we conclude that we have *state*^{τ}_{*i*} = *passive*.

• Proof that, for each i, $NE_i^{\tau} = \emptyset$.

Due to the algorithm, each wave is delayed at an observer obs_i (at line 16, before the send of an answer message) until all messages sent by p_i have been acknowledged (predicate $deficit_i = 0$). On the other hand, no process p_i sent messages between τ_i^x and τ_i^{x+1} (because it was continuously passive during the time interval $[\tau_i^x, \tau_i^{x+1}]$, see the previous item). It follows from these two observations that, at time τ , there is no message sent by p_i and not yet arrived at its destination. As this is true for all the processes, if follows that we have $NE_i^{\tau} = \emptyset$.

• Proof that, for each i, $\neg fulfilled_i(arr_from_i^{\tau})$.

As previously, a wave is delayed at an observer obs_i until $\neg fulfilled_i(arr_from_i)$. Hence, as the algorithm claims termination just after τ_{α}^{x+1} , it follows that, for any *i*, we have $\neg fulfilled_i(arr_from_i^{x+1})$, where $arr_from_i^{x+1}$ denotes the value of arr_from_i at time τ_i^{x+1} (line 16).

As any process p_i has been continuously passive in the time interval $[\tau_i^x, \tau_i^{x+1}]$, it consumed no message during that period. Consequently the set arr_from_i can only increase during this period, i.e., we have $arr_from_i^{\tau} \subseteq arr_from_i^{x+1}$. It follows from the monotonicity of the predicate $fulfilled_i()$ that $(\neg fulfilled_i(arr_from_i^{x+1}) \Rightarrow (\neg fulfilled_i(arr_from_i^{\tau}))$. Hence, for any *i* we have $\neg fulfilled_i(arr_from_i^{\tau})$, which concludes the proof of the theorem. \Box

Cost of the Algorithm Each application message entails the sending of an acknowledgment. A wave requires two types of messages, n request messages which carry no value, and n answers which carry a Boolean. Moreover, after the computation has terminated, one or two waves are necessary to detect termination. Hence, 4n control messages are necessary in the worst case. If, instead of a star, a ring is used to implement waves, this number reduces to 2n.

14.5.5 Detection of Dynamic Termination

Local Data Structures To detect dynamic termination of a distributed computation C, i.e., the existence of a time τ such that the predicate

$$D_TERM(\mathcal{C},\tau) \equiv \left[\forall i: \left(state_i^{\tau} = passive\right) \land \left(\neg fulfilled_i\left(NE_i^{\tau} \cup arr_from_i^{\tau}\right)\right)\right]$$

is satisfied, for each process p_i , some knowledge on which messages are currently in transit to p_i is required. To that end, each observer *obs_i* (in addition of *state_i* and *arr_from_i*) and the observer *obs_a* are endowed with the following local variables.

sent_i[1..n] is an array, managed by obs_i, such that sent_i[j] contains the number of messages which, since the beginning of the execution, have been sent by p_i to p_j.

Fig. 14.18 Cooperation between local observers

- arr_i[1..n] is a second array, managed by obs_i, such that arr_i[j] contains the number of processes which, since the beginning of the execution, have been sent by p_i and have arrived at p_i.
- $ap_sent_{\alpha}[1..n, 1..n]$ is a matrix, managed by obs_{α} such that $ap_sent_{\alpha}[i, j]$ contains the number of messages that, from obs_{α} 's point of view, have been sent by p_i to p_j . As obs_{α} can learn now information only when it receives control messages from the local observers obs_i , $ap_sent_{\alpha}[i, j]$ represents an approximate knowledge (hence the identifier prefix ap). The way this array is used is described in Fig. 14.18.

Dynamic Termination Detection Algorithm The algorithm is described in Fig. 14.19. The local observation part of obs_i (lines 1–6) is close to that of the static termination detection algorithm. The difference is the fact that the acknowl-edgment messages are replaced by the counting of messages sent and arrived, on a per-process basis.

The cooperation among obs_{α} and the local observers obs_i is different from that used in static termination detection (Fig. 14.18).

First, the waves are used to provide *obs_α* with the most recent values of the number of messages which have been sent by each process *p_i*.

More precisely, when a local observer answers a wave (line 19), it sends a control message including the current value of $sent_i[1..n]$, so that, when obs_{α} receives this message, it can update accordingly the column *i* of its local matrix ap_sent_{α} to a more up-to-date value (lines 10–11). In that way, obs_{α} is able to learn more recent information on the communication generated by the observed computation.

• The waves are also used by obs_{α} to provide each local observer obs_i with more recent information on the number of messages which have been sent to process p_i (line 9 on obs_{α} 's side, and lines 15–16 on the side of each observer obs_i).

when p_i enters a receive statement do (1) compute dep_set_i and $fulfilled_i$ () from the receive statement; (2) *state*_i \leftarrow *passive*. when p_i executes send(m) to p_i do (3) $sent_i[j] \leftarrow sent_i[j] + 1$. when a message from p_i arrives do (4) $arr_i[j] \leftarrow arr_i[j] + 1$. when *fulfilled*_i(*arr_from*_i) becomes satisfied do (5) $state_i \leftarrow active;$ (6) $cont_passive_i \leftarrow false.$ local task at p_i for the cooperation between observers is if $(i = \alpha)$ (7)(8) then repeat (9) for each $j \in \{1, ..., n\}$ do send REQUEST $(ap_sent_{\alpha}[1..n, j])$ to p_j end for; **wait** (ANSWER $(b_j, st_j[1..n])$ received from each $obs_j, j \in \{1, ..., n\}$); (10)(11)for each $j \in \{1, ..., n\}$ do $ap_sent_{\alpha}[1..n, j] \leftarrow st_{j}[1..n]$ end for; *res* $\leftarrow \bigwedge_{1 \le j \le n} b_j$ (12)(13)until (res) end repeat; (14)claim termination (15)else wait (message REQUEST($ap_st[1..n]$) from obs_{α}); (16) $ap_ne_i \leftarrow \{ j \mid ap_st[j] > arr_i[j] \};$ (17) $b_i \leftarrow cont_passive_i \land (\neg fulfilled_i(arr_from_i \cup ap_ne_i));$ (18) $cont_passive_i \leftarrow (state_i = passive);$ (19)send ANSWER $(b_i, sent_i[1..n])$ to obs_{α} (20) end if.

Fig. 14.19 An algorithm for dynamic termination detection

As a local observer *obsi* does not know the value of *NEi*, it cannot compute the value of the predicate ¬*fulfilledi*(*NEi* ∪ *arr_fromi*) (which characterizes dynamic termination). To cope with this issue, *obsi* computes the set *ap_nei* = {*j* | *ap_st*[*j*] > *arri*[*j*]} (line 16), which is an approximation of *NEi* (maybe more messages have been sent to *pi* than the ones whose sending is recorded in the array *ap_st*[1..*n*] sent by *obsα*).

The observer obs_i can now compute the value of the local predicate $\neg fulfilled_i$ $(ap_ne_i \cup arr_from_i)$ (line 17). Then, obs_i sends to obs_α (line 19) a Boolean b_i which is true (line 17) if an only if (a) p_i has been continuously passive since the previous wave (as in static detection termination), and (b) the predicate $fulfilled_i(ap_ne_i \cup arr_from_i)$ is false (i.e., p_i cannot be reactivated with the messages that have arrived and are not yet consumed, and a subset of the messages which are potentially in transit to it).

Moreover, after b_i has been computed, obs_i resets its local variable $cont_passive_i$ to the Boolean value ($state_i = passive$). This is due to the fact that, differently from the previous termination detection algorithms, the waves are not

delayed by the local observers in dynamic termination detection. This is required to ensure "as early as possible" termination detection.

Finally, when there is a wave such that the Boolean value

$$\bigwedge_{1 \le i \le n} (\neg fulfilled_i(arr_from_i \cup ap_ne_i))$$

is true, obs_{α} claims dynamic termination. If the value is false, it starts a new wave.

The proof of this algorithm is close to that of static termination. It uses both the monotonicity of the predicate $fulfilled_i$ () and the monotonicity of the counters (see Problem 6).

Cost of the Algorithm After dynamic termination has occurred, two waves are necessary to detect it, in the worst case. No acknowledgment is used, but a wave requires 2n messages, each carrying an array of unbounded integers (freezing the observed computation would allow us to reset the counters). The algorithm does not require the channels to be FIFO (neither for application, nor for control messages). But as waves are sequential, the channels from obs_{α} to each obs_i , and the channels from every obs_i to obs_{α} , behave as FIFO channels for the control messages REQUEST() and control messages ANSWER(), respectively. It follows that, instead of transmitting the value of a counter, it is possible to transmit only the difference between its current value and the sum of the differences already sent.

14.6 Summary

A distributed computation has terminated when all processes are passive and all channels are empty. This defines a stable property (once terminated, a computation remains terminated forever) which has to be detected, in order that the system can reallocate local and global resources used by the processes (e.g., local memory space).

This chapter presented several distributed algorithms which detect the termination of a distributed computation. Algorithms suited to specific models (such as the asynchronous atomic model), and algorithms suited to specific types of computations (such as diffusing computations) were first presented. Then the chapter has considered more general algorithms. In this context it presented a reasoned construction of a very general termination detection algorithm. It also introduced a very general distributed model which allows for very versatile receive statements, and presented two termination detection algorithms suited to this distributed computation model.

14.7 Bibliographic Notes

• The distributed termination detection problem was simultaneously introduced by E.W. Dijkstra and C.S. Scholten [115], and N. Francez [130].

- The asynchronous atomic model was introduced by F. Mattern in [249], who proposed the four-counter algorithm (Fig. 14.5), and the counting vector algorithm (Fig. 14.7) to detect termination in this distributed computing model.
- The notion of diffusing computations was introduced by E.W. Dijkstra and C.S. Scholten [115], who proposed the algorithm described in Fig. 14.9 to detect the termination of such computations.
- The reasoned construction presented in Sect. 14.4, and the associated general termination detection algorithm presented in Fig. 14.13 are due to J.-M. Hélary and M. Raynal [178, 180].
- The wave concept is investigated in [82, 180, 319, 365].
- The notion of freezing in termination detection algorithms is studied in [132].
- The problem of detecting the termination of a distributed computation in a very general asynchronous model, and the associated detection algorithms, are due to J. Brzezinski, J.-M. Hélary, and M. Raynal [64].
- The termination detection problem has given rise to an abundant literature and many algorithms. Some are designed for the synchronous communication model (e.g., [114, 265]); some are based on snapshots [190]; some are based on roughly synchronized clocks [257]; some are based on prime numbers [309] (where the unicity of the prime number factorization of an integer is used to ensure consistent observations of a global state); some are based on the notion of credit distribution [251]. Other investigations of the termination detection problem and algorithms can be found in [74, 169, 191, 221, 252, 261, 302, 330] to cite a few.
- Termination detection in asynchronous systems where processes may crash is addressed in [168].
- Relations (in both directions) between termination detection and garbage collection are investigated in [366, 367].

14.8 Exercises and Problems

- 1. Let us consider the counting vector algorithm described in Fig. 14.7.
 - Why does the termination predicate of line 10 need to include the fact that each process has been visited at least once?
 - When the local observer at process p_i receives the token and is such that msg_count[i] > 0, it knows that messages sent to p_i have not yet arrived. Modify the algorithm so that the progression of the token is blocked at p_i until msg_count[i] = 0.
- Let us assume that the underlying system satisfies the following additional synchrony property: the transmission delay of each message is upper bounded by a constant δ. Moreover, each process has a local clock that allows it to measure durations. These clocks are not synchronized but measure correctly the duration δ.

Modify the termination detection algorithm suited to diffusing computations described in Fig. 14.9 so that it benefits from this synchrony assumption.

Fig. 14.20 Example of a monotonous distributed computation

Hint. When a process enters the tree, it sends a message ACK(in) to its parent and send no message if it is already in the tree. It will send to its parent a message ACK(out) when it leaves the tree.

Solution in [308].

- 3. Modify the algorithms implementing a wave and the generic termination detection algorithm described in Figs. 14.10, 14.11, and 14.13, respectively, so that the initiator p_{α} is also an application process (which has consequently to be observed).
- 4. The termination detection algorithm presented in Fig. 14.13 assumes that the application process p_i is frozen (Fig. 14.14) from the time the predicate *idle_i* becomes true (line 13) until *obs_i* starts the invocation of return_wave(*b*) (line 15).

Considering the *x*th wave, let us define τ_i^x as the time at which *idle_i* becomes true at line 13, and let us replace line 14 by

 $b \leftarrow cont_passive_i; \quad cont_passive_i \leftarrow (state_i = passive).$

Do these modifications allow for the suppression of the freezing of the application process p_i ?

- 5. Let us consider the family of distributed applications in which each process has a local variable x_i whose value domain is a (finite or infinite) ordered set, and each process follows the following rules:
 - Each message *m* sent by p_i carries a value $c_m \ge x_i$.
 - When it modifies the value of x_i , a process p_i can only increase it.
 - When it receives a message *m*, which carries the value *c_m*, *p_i* can modify *x_i* to a value equal to or greater than min(*x_i*, *c_m*).

These computations are called *monotonous computations*. An example of a computation following these rules is given in Fig. 14.20, where the value domain is the set of positive integers. The value c_m associated with a message *m* is indicated with the corresponding arrow, and a value *v* on the axis of a process p_i indicates that its local variable x_i is updated to that value, e.g., $x_3 = 1$ a time τ_1 , and $x_1 = 5$ at time τ_2 .

At some time τ , the values of the local variables x_i and the values *c* carried by the messages define the current global state of the application. Let $F(\tau)$ be the smallest of these values. Two examples are given in Fig. 14.20.

Distributed simulation programs are an example of programs where the processes follow the previous rules (introductory surveys on distributed simulation can be found in [140, 263]). The variables x_i are the local simulation times at each process, and the function $F(\tau)$ defines the global simulation time.

- Show that $(\tau_1 \leq \tau_2) \Rightarrow [F(\tau_1) \leq F(\tau_2)].$
- An observation algorithm for such a computation is an algorithm that computes approximations of the value of *F*(τ) such that
 - Safety. If at time τ the algorithm returns the value *z*, then $z \leq F(\tau)$.
 - Liveness. For any τ , if observations are launched after τ , there is a time after which all the observations return values greater than or equal to $z = F(\tau)$.

When considering distributed simulation programs, the safety property states a correct lower bound on the global simulation time, while the liveness property states that if the global simulation progresses then this progress can eventually be observed.

Adapt the algorithm of Fig. 14.13 so that it computes $F(\tau)$ and satisfies the previous safety and liveness properties.

• Considering the value domain {*active*, *passive*} with the total order *active* < *passive*, show that the problem of detecting the termination of a distributed computation consists in repeatedly computing $F(\tau)$ until $F(\tau) = passive$.

Solutions to all the previous questions in [87, 179].

6. Prove the dynamic termination detection algorithm described in Fig. 14.19. (This proof is close to that of the static termination detection algorithm presented in Fig. 14.16. In addition to the monotonicity of the predicate *fulfilled_i*(), the fact that the counters *sent_i*[*j*], *rec_i*[*j*] and *ap_sent_α*[*i*, *j*] are monotonically increasing has to be used.)
Solution in [64]

Solution in [64].

Chapter 15 Distributed Deadlock Detection

This chapter addresses the deadlock detection problem. After having introduced the AND deadlock model and the OR deadlock model, it presents distributed algorithms that detect their occurrence. Let us recall that the property "there is a deadlock" is a stable property (once deadlocked, a set of processes remain deadlocked until an external agent—the underlying system—resolves it). Hence, as seen in Sect. 6.5, algorithms computing global states of a computation can be used to detect deadlocks. Differently, the algorithms presented in this chapter are specific to deadlock detection. For simplicity, they all assume FIFO channels.

Keywords AND communication model · Cycle · Deadlock · Deadlock detection · Knot · One-at-a-time model · OR communication model · Probe-based algorithm · Resource vs. message · Stable property · Wait-for graph

15.1 The Deadlock Detection Problem

15.1.1 Wait-For Graph (WFG)

Waiting for Resources A process p_i becomes blocked when it starts waiting for a resource currently owned by another process p_j . This introduces a waiting relation between p_i and p_j . It is possible that a process p_i needs several resources simultaneously. If these resources are currently owned by several processes p_j , p_k , etc., the progress of p_i depends on each of these processes.

Waiting for Messages As seen in the previous chapter (Sect. 14.5), a receive statement can be on a message from a specific sender, or on a message from any sender of a specific set of senders. The specific sender, or set of possible senders, is defined in the receive statement. (While more general receive statements were introduced in Sect. 14.5, this chapter considers only the case of a receive statement with a specific sender or a specific set of senders.)

The important point is that, when a process p_i enters a receive statement, it starts waiting for a message from a predefined process p_j , or from any process from a predefined set of processes.

Fig. 15.1 Examples of wait-for graphs

Resource vs. Message After it has been used, a resource has to be released so that it can be used by another process. Let us observe that a message can be seen as a resource that is dynamically created by its sender and consumed by its destination processes. A receiver has to wait until a message is received. In that sense, a message can be seen as a consumable resource (the notion of release being then meaningless).

While a resource is shared among several processes and a message involves only its sender and its receiver, there is no conceptual difference between a process which is waiting for a resource and a process which is waiting for a message. In both cases, another process has to produce an action (release a resource, or send a message) in order that the waiting process be allowed to progress.

It follows that there is no fundamental difference between detection algorithms for deadlocks due to resources and detection algorithms for deadlocks due to messages.

Wait-For Graph The waiting relation between processes can be represented by a directed graph called a *wait-for* graph (WFG). Its vertices are the processes, and an edge from p_i to p_j means that p_i is blocked by p_j (or, equivalently, that p_j blocks p_i). This graph is not a static graph. Its structure evolves according to the behavior of the processes (that acquire and release resources, or send and receive messages).

A wait-for graph is a conceptual tool that allows us to capture blocking relations and reason on them. Deadlock detection algorithms are not required to explicitly build this graph.

Two examples of a wait-for graph are depicted in Fig. 15.1. (The graph on the right side is the same as the graph on the left side with an additional edge from p_5 to p_2 .) A given graph can be considered as capturing the blocking relations either in the resource model or in the communication model.

The arrow from p_3 to p_1 means that p_3 is blocked by p_1 . If the graph is a resource wait-for graph, p_3 is waiting for a resource owned by p_1 , and if the graph is a communication wait-for graph, it means that p_3 is waiting for a message from p_1 . A process can be blocked by several other processes. This is the case of p_1 , which is blocked by p_2 and p_5 . The meaning of the corresponding edges is explained below in Sect. 15.1.2.

Dependency Set Given a wait-for graph at some time τ , the *dependency set* of a process p_i , denoted *dep_set_i* (as in the previous chapter), is the set of all the processes p_j such that the directed edge (p_i, p_j) belongs to the graph at time τ . If

a process is not waiting for a resource (or a message, according to the model), its dependency set is empty. As the wait-for graph evolves with time, the dependency sets are not static sets.

When looking at Fig. 15.1, we have $dep_set_1 = \{2, 5\}$ in both graphs, $dep_set_5 = \emptyset$ in the graph on the left and $dep_set_5 = \{2\}$ in the graph on the right.

15.1.2 AND and OR Models Associated with Deadlock

AND (**Resource or Communication**) **Model** In the AND waiting model a process p_i which is blocked will be allowed to progress only when

• AND communication model:

It has received a message from each process that belongs to its current dependency set.

• AND resource model:

It has obtained the resources which are currently owned by the processes in its dependency set.

Let us observe that, while it is waiting for resources, the dependency set of a process p_i might change with time. This is due to the fact that, while p_i is waiting, resources that p_i wants to acquire can be granted to other processes. The wait-for graph and the dependency set of p_i are then modified accordingly.

OR (Resource or Communication) Model In the OR waiting model, a process is allowed to progress when

- OR communication model: It has received a message from a process in its dependency set.
- OR resource model: It has obtained a resource from a process in its dependency set.

One-at-a-Time (Resource or Communication) Model The *one-at-a-time* model captures the case where at any time a process is allowed to wait for at most one resource (resource model), or one message from a predetermined process specified in the receive statement (communication model).

Let us observe that both the AND model and the OR model include the one-at-atime model as their simplest instance. It is actually their intersection.

15.1.3 Deadlock in the AND Model

In the AND model, the progress of a process is stopped until it has received a message (or been granted a resource) by each process in its current dependency set. This means that a process is deadlocked when it belongs to a cycle of the current wait-for graph, or belongs to a path leading to a cycle of this graph.

Let us consider the wait-for graph on the left of Fig. 15.1. The processes p_1 , p_2 , and p_3 are deadlocked because, transitively, each of them depends on itself: p_2 is

blocked by p_3 , which is blocked by p_1 , which in turn is blocked p_2 , hence each of p_3 , p_1 , and p_2 is transitively blocked by itself. Process p_4 is blocked by p_2 (which is deadlocked) but, as it does not depend transitively on itself, it is not deadlocked according to the definition of "deadlocked process" (killing p_4 will not suppress the deadlock, while killing any of p_3 , p_1 , or p_2 , suppresses the deadlock). Finally, p_5 and the other processes (if any) are not blocked.

Hence, when considering the wait-for graph in the AND model, the occurrence of a deadlock is characterized by the presence of a cycle. Consequently, for an external observer that would always have an instantaneous view of the current wait-for graph, detecting a deadlock in the AND model, would consist in detecting a cycle in this graph.

15.1.4 Deadlock in the OR Model

In the OR model, a process is re-activated as soon as it receives a message from (or is granted a resource previously owned by) one of the processes in its dependency set. It follows that the existence of a cycle no longer reveals a deadlock.

Let us consider again the process p_1 in the wait-for graph on the left of Fig. 15.1. As it is waiting for a message (resource) either from p_2 or from p_5 , and p_5 is not blocked, it is possible that p_5 (before terminating its local computation), unblocks it in the future. Hence, despite the presence of a cycle in the wait-for graph, there is deadlock. Let us now consider the wait-for graph on the right of the figure. Each of p_1 , p_2 , p_3 , and p_5 , is blocked, and none of them can allow another one to progress in the future. This is because the progress of any of these processes depends on the progress of the others (moreover, p_4 is also deadlocked by transitivity). As we can see, such a graph structure is a knot. Let us recall (see Sect. 2.3) that a knot in a directed graph is a set S of vertices such that (a) there is a directed path from any vertex of S to any other vertex of S, and (b) there is no outgoing edge from a vertex in S to a vertex which is not in S (see Fig. 2.14).

Hence, when considering the wait-for graph in the OR model, the occurrence of a deadlock is characterized by the presence of a knot. Consequently, for an external observer that would always have an instantaneous view of the current wait-for graph, detecting a deadlock in the OR model would consist in detecting a knot in this graph.

15.1.5 The Deadlock Detection Problem

As for the other problems (e.g., resource allocation, communication, termination detection), the deadlock detection problem is defined by safety and liveness properties that any of its solutions has to satisfy. These properties are the following:

 Safety. If, at time τ, an observer claims that there is a deadlock, the process it is associated with is deadlocked at time τ. • Liveness. If a deadlock occurs at time τ , there is a finite time $\tau' \ge \tau$ such that, at time τ' , the observer of at least one of the deadlocked processes claims that its associated process is deadlocked.

The safety property states that the detection is consistent if there is no "false" deadlock detection (i.e., claim of a deadlock while there is none). The liveness property states that a deadlock will be discovered by at least one observer associated with a deadlocked process.

Remark When comparing deadlock detection algorithms with algorithms that allow a process to know if it belongs to a cycle, or a knot, of a given communication graph (see the algorithms presented in Sect. 2.3), the additional difficulty lies in the fact that the graphs explored by deadlock detection algorithms consider are dynamic. The waiting relation depends on the computation itself, and consequently the wait-for graph evolves with time.

Moreover, while the abstract wait-for graph is modified instantaneously for an external observer's point of view (i.e., when reasoning to obtain a characterization of deadlocks in terms of properties on a graph), at the operational level messages take time to inform processes about changes in the waiting relation. This creates an uncertainty on the view of the waiting relation as perceived by each process. The main issue of deadlock detection algorithms is to provide processes with an approximate view that allows them to correctly detect deadlocks that occur.

15.1.6 Structure of Deadlock Detection Algorithms

To detect the possible occurrence of deadlocks, an observer obs_i is associated with each application process p_i . As in termination detection, each observer has to locally observe the behavior of the process it is associated with, and observers have to cooperate among themselves to detect deadlocks. The global structure is the same as that described in Fig. 14.2.

A main difference between termination detection and deadlock detection lies in the fact that termination detection involves all the processes (and consequently all the observers have to permanently cooperate), while deadlock detection involves only a set of processes which is not known in advance (and consequently only the observers associated with blocked processes are required to cooperate).

15.2 Deadlock Detection in the One-at-a-Time Model

This section presents a simple algorithm that detects deadlock in the one-at-a-time model. Let us recall that, in this model, a process becomes blocked because it is waiting for a resource currently owned by a process p_k (resource model), or because it is waiting for a message from a predetermined process p_k (communication model). This algorithm is due to D.P. Mitchell and M.J. Merritt (1984).

15.2.1 Principle and Local Variables

Principle As we have seen, a deadlock in the one-at-a-time model corresponds to a cycle in the wait-for graph. The idea of the algorithm is to allow exactly one process in a cycle to detect the corresponding deadlock (if needed this process can then inform the other processes).

To that end, when a process observer suspects a deadlock, it suspects a cycle has formed in the wait-for graph. It then launches an election on this "assumed" cycle. (The election problem and election algorithms have been presented in Chap. 4.) If there is a cycle, one process in the cycle will win the election, proving thereby a deadlock occurrence.

The control messages used by the observers to discover a deadlock occurrence are sent along the edges of the wait-for graph but in the reverse order, i.e., if a process p_i is blocked by a process p_j , the observer obs_j sends messages to the observer obs_i .

Local Variables Two local control variables, denoted pub_i (for public) and $priv_i$ (for private) are associated with each process p_i . These variables are integers which can only increase. Moreover, the values of the private local variables are always distinct from one another, and the local public variables can be read by the other processes.

A simple way to ensure that no two private variables $(priv_i \text{ and } priv_j)$ have the same value consists in considering that the integer implementing a private variable $priv_i$ is obtained from the concatenation of an integer with the identity of the corresponding process p_i . The reading of the local variable pub_j by an observer obs_i can be easily realized by a query/response mechanism involving obs_i and obs_j .

Hence, the behavior of each observer obs_i consists in an appropriate management of the pair $(priv_i, pub_i)$ so that, if a cycle appears in the abstract wait-for graph, a single process in a cycle detects the cycle, and the processes which are not involved in a cycle never claim a deadlock.

15.2.2 A Detection Algorithm

When a process p_i becomes blocked because of a process p_j , its local observer obs_i (a), redefines the pair of its local variables $(priv_i, pub_i)$ so that both variables become equal $(priv_i = pub_i)$ and greater than pub_j , and (b) sends its new value pub_i to the observers of the processes blocked by p_i .

The value pub_i is then propagated from observer to observer along the reverse edges of the wait-for graph. If pub_i returns to obs_i , there is a cycle in the wait-for graph. In order that a single observer on a cycle detects the cycle, the greatest value pub_i that is propagated along a cycle succeeds in completing a full turn on the cycle (as done in ring-based election algorithms).

The behavior of an observer obs_i is consequently defined by the four following rules, where greater(a, b) returns a value that is greater than both a and b.

• R1 (Blocking rule).

When p_i becomes blocked due to p_j , obs_i resets the values of its local variables $priv_i$ and pub_i such that

 $priv_i = pub_i = v$, where $v = greater(pub_i, pub_j)$.

• R2 (Propagation rule).

When p_i is blocked by p_j , obs_i repeatedly reads the value of pub_j , and executes

if
$$(pub_i < pub_i)$$
 then $pub_i \leftarrow pub_i$ end if.

This means that, while p_i is blocked by p_j , obs_i discovers that the public value pub_j is greater than its own public value pub_i , it propagates the value of pub_j by assigning it to pub_i . Assuming that pub_k is the greatest public value in a path of the wait-for graph, this rule ensures that pub_k is propagated from p_k to the process p_ℓ blocked by p_k , then from p_ℓ to the process blocked by p_ℓ , etc.

• R3 (Activation rule).

Let p_j , p_k , etc., be the processes blocked by a process p_i . When p_i unblocks one of them (e,g., p_j), obs_i informs the observers of the other processes so that they re-execute rule R1. (This is due to the fact that these processes are now blocked by p_j .)

• R4 (Detect rule).

If after it has read the value of pub_j (where p_j is the process that blocks p_i), obs_i discovers that

 $priv_i = pub_i$,

it claims that there is a cycle in the wait-for graph, and it is consequently involved in a deadlock.

15.2.3 Proof of the Algorithm

Theorem 24 If a deadlock occurs, eventually a process involved in the associated cycle detects it. Moreover, no observer claims a deadlock if its associated process is not deadlocked.

Proof Proof of the liveness property. We have to prove that, if a deadlock occurs, a process involved in the associated cycle will detect it. Let us assume that there is a cycle in the wait-for graph. Let us observe that, as a deadlock defines a stable property, this cycle lasts forever.

It follows from rule R1 that, when it becomes blocked, each process p_x belonging to this cycle sets $priv_x$ and pub_x to a value greater than its previous value of pub_x and greater than the value pub_y of the process p_y that blocks it. Moreover, due to the definition of private values, no other process p_z sets $priv_z$ and pub_z to the same value as p_x . It follows that there is a process (say p_i) whose value $pub_i = v$ is the greatest among the values pub_x computed by the processes belonging to the cycle.

When the processes of the cycle execute rule R2, the value of v is propagated, in the opposite direction, along the edges of the wait-for graph. Hence, the process p_j that blocks p_i is eventually such that $pub_j = v$. There is consequently a finite time after which p_i reads v from pub_j and concludes that there is a cycle (rule R4). Moreover, as $v = priv_i$, v is a value that has necessarily been forged by p_i (no other process can have forged it). It follows that deadlock is claimed by a single process, which is a process involved in the corresponding cycle of the wait-for graph.

Proof of the safety property. Let us first observe that $\forall x : priv_x \le pub_x$ (this is initially true, and is kept invariant by the rules R1 and R2 executed thereafter). It follows from this invariant and R1 that, if p_x is blocked, $(priv_x < pub_x) \Rightarrow p_x$ has executed R2.

Let us assume that a process p_i , blocked by process p_{j1} , is such that $priv_i = pub_{j1} = v$. We have to show that p_i belongs to a cycle of the wait-for graph. This is proved in three steps.

- It follows from the rule R2 that the value v (which has been forged by obs_i) has been propagated from p_i to a process blocked by p_i , etc., until p_{j1} . Hence, there is a set of processes p_i , p_{j_k} , $p_{j_{k-1}}$, ..., p_{j_1} , such that the edges (p_{j_k}, p_i) , $(p_{j_{k-1}}, p_{j_k})$, ..., (p_{j_1}, p_i) have been, at some time, edges of the wait-for graph. The next two items show that all these edges exist simultaneously when p_i claims deadlock.
- The process p_i remained continuously blocked since the time it computed the value v. If it had become active and then blocked again, it would have executed again R1, and (due to the invariant $priv_i \le pub_i$ and the function greater()) we would consequently have $priv_i = v' > v$.
- All the other process p_{j_k} , $p_{j_{k-1}}$, ..., p_{j_1} remained continuously blocked since the time they have forwarded v. This follows from the following observation. Let us assume (by contradiction) that one of these processes, say p_{j_y} , became active after having transmitted v. This process has been unblocked by $p_{j_{y-1}}$, which has transmitted v before being unblocked by $p_{j_{y-2}}$, which in turn, etc., until p_{j_1} which has transmitted v to p_i before being unblocked by p_i . It follows that p_i has not been continuously passive since the time it computed the value v, which contradicts the previous item, and completes the proof.

15.3 Deadlock Detection in the AND Communication Model

As already indicated, in the AND model, a process is blocked by several other processes and each of them has to release a resource or send it a message in order to allow it to progress. This section presents a relatively simple deadlock detection algorithm for the communication AND model.

15.3.1 Model and Principle of the Algorithm

Model with Input Buffers As in the previous chapter, let *state_i* be a control variable whose value domain is {*active*, *passive*}; this variable is such that *state_i* = *passive* when p_i is blocked waiting for messages from a predefined set of processes whose identities define the set *dep_set_i*.

As a process p_i consumes simultaneously a message from each process in dep_set_i (and proceeds then to the state $state_i = active$), it is possible that messages from processes in dep_set_i have arrived and cannot be received and consumed by p_i because there is not yet a message from each process in dep_set_i . To take this into account, the communication model described in Fig. 14.15 is considered. This model allows a process p_i (or more precisely its observer obs_i) to look into its input buffers to know if messages have arrived and are ready to be consumed.

Principle of the Algorithm Let p_i be a process that is blocked (hence, $state_i = passive$), and arr_from_i be a set containing the identities of the processes from which messages have arrived at p_i and have not yet been consumed. This means that these messages can help unblock p_i .

When it suspects that p_i is deadlocked, its observer obs_i sends a control message PROBE() to each process p_j in $dep_set_i \setminus arr_from_i$. When such a process p_j receives this message, it discards the message if it is active. If it is passive, its observer obs_j forwards the message PROBE() to the observers obs_k such that $k \in dep_set_j \setminus arr_from_j$, and so on. If the observer obs_i that initiated the detection receives a message PROBE(), there is a cycle in the wait-for graph, and p_i belongs to a set of deadlocked processes.

15.3.2 A Detection Algorithm

Local Variables at a Process p_i In addition to the control variables *state_i*, *dep_set_i*, and *arr_from_i* (which is managed as in Sect. 14.5), a local observer manages the three following arrays, all initialized to [0, ..., 0]:

- $sn_i[1..n]$ is an array of sequence numbers; $sn_i[i]$ is used by obs_i to identify its successive messages PROBE(), while $sn_i[k]$ contains the highest sequence number received by obs_i in a message PROBE() whose sending has been initiated by p_k .
- *sent_i*[1..*n*] is an array of integers such that *sent_i*[*j*] counts the number of messages sent by *p_i* to *p_j*.
- $arr_i[1..n]$ is an array of integers such that $arr_i[j]$ counts the number of messages sent by p_j that have arrived to p_i (it is possible that, while they have arrived at p_i , some of these messages have not yet been consumed by p_i).

```
when p_i enters a receive statement do
(1) compute dep_set<sub>i</sub> from the receive statement;
(2) state<sub>i</sub> \leftarrow passive.
when p_i executes send(m) to p_i do
(3) sent_i[j] \leftarrow sent_i[j] + 1.
when a message from p<sub>i</sub> arrives do
(4) arr_i[j] \leftarrow arr_i[j] + 1.
when arr_from_i \subseteq dep_set_i do
     messages are withdrawn from their input buffers and given to p_i;
(5)
(6)
     state_i \leftarrow active.
when obs_i suspects that p_i is deadlocked do
       % we have then state_i = passive and arr_from_i \not\subseteq dep_set_i %
(7)
    sn_i[i] \leftarrow sn_i[i] + 1;
      for each j \in dep\_set_i \setminus arr\_from_i
(8)
           do send PROBE(i, sn_i[i], i, arr_i[j]) to obs_j
(9)
(10) end for.
when PROBE(k, seqnb, j, arrived) is received from obs_i do
(11) if (state_i = passive) \land (sent_i[j] = arrived) then
         if (k = i) then claim p_i is deadlocked
(12)
(13)
                    else if (seqnb > sn_i[k]) then
(14)
                             sn_i[k] \leftarrow segnb;
                             for each \ell \in dep\_set_i \setminus arr\_from_i
(15)
(16)
                               do send PROBE(k, seqnb, i, arr_i[\ell]) to obs_\ell
(17)
                             end for
(18)
                          end if
(19)
         end if
(20) end if.
```

Fig. 15.2 An algorithm for deadlock detection in the AND communication model

The Algorithm The algorithm is described in Fig. 15.2. All the sequences of statements prefixed by **when** are executed atomically. Lines 1–6 describe the behavior of obs_i as far as the observation of p_i is concerned.

When obs_i suspects p_i to be deadlocked, we have $state_i = passive$ and $arr_from_i \not\subseteq dep_set_i$. This suspicion can be activated by an internal timer, or any predicate internal to obs_i . When this occurs, obs_i increases $sn_i[i]$ (line 7), and sends a message PROBE() to each observer obs_j associated with a process p_j from which it is waiting for a message (lines 8–10).

A probe message is as follows: PROBE(k, seqnb, j, arrived). Let us consider an observer obs_i that receives such a message. The pair (k, seqnb) means that this probe has been initiated by obs_k and it is its the seqnbth probe launched by p_k ; j is the identity of the sender of the message (this parameter could be saved, as a receiver knows which observer sent this message; it appears as a message parameter for clarity). Finally, the integer arrived is the number of messages that have been sent by p_i to p_j and have arrived at p_j .

Fig. 15.4 PROBE () messages sent along a cycle (with no application messages in transit)

When obs_i receives a message PROBE(k, seqnb, j, arrived), it discards it (line 11), if p_i is active or there were messages in transit from p_i to p_j when obs_i sent this probe message. This is captured by the predicate $(send_i[j] \neq arrived)$ (let us recall that $arrived = arr_j[i]$ when obs_j sent this message, and channels are assumed to be FIFO, see Fig. 15.3).

If p_i is passive and there is no message in transit from p_i to p_j , obs_i checks first if it is the initiator of this probe (predicate k = i). If it is, it declares that p_i is deadlocked (line 12). If $k \neq i$ (i.e., the initiator of the probe identified (k, seqnb) is not obs_i), and this is a new probe launched by obs_k (line 13), obs_i updates $sn_i[k]$ (line 14) and propagates the probe by sending a control message PROBE $(k, seqnb, i, arr_i[\ell])$ to each observer obs_ℓ such that p_i is waiting for a message from p_ℓ .

15.3.3 Proof of the Algorithm

Theorem 25 If a deadlock occurs, eventually a process involved in the associated cycle detects it. Moreover, no observer claims a deadlock if its associated process is not deadlocked.

Proof Proof of the liveness property. Let us assume that a process p_i is deadlocked. This means that (a) there is a cycle of processes $p_{j_1}, p_{j_2}, \ldots, p_{j_k}, p_{j_1}$, where $i = j_1, j_2 \in dep_set_{j_1}, j_3 \in dep_set_{j_2}$, etc., $j_1 \in dep_set_{j_k}$, (b) there is no application message in transit from p_{j_2} to p_{j_1} , from p_{j_3} to p_{j_2} , etc., and from p_{j_1} to p_{j_k} , and (c) none of these processes can be re-activated from the content of its input buffer.

Let us consider the observer obs_i , which launches a probe after the cycle has been formed (see Fig. 15.4, where k = 3). The observer obs_i sends the message PROBE $(i, sn, i, arr_i[j_2])$ to obs_{j_2} (line 9). As the channel from p_{j_2} to

Fig. 15.5 Time instants in the proof of the safety property

 p_{j_1} is empty of application messages, the first time obs_{j_2} receives the message PROBE $(i, sn, i, arr_i[j_2])$, we have $sent_{j_2}[i] = arr_i[j_2]$, and obs_{j_2} executes lines 14–17. Consequently obs_{j_2} sends the message PROBE $(i, sn, j_2, arr_{j_2}[j_3])$ to obs_{j_3} . And so on, until obs_{j_k} which receives the message PROBE $(i, sn, j_{k-1}, arr_i[j_k])$ and sends the message PROBE $(i, sn, j_k, arr_{j_k}[i])$ to obs_i . As the channel from p_i to p_{j_k} is empty, it follows from line 12 that, when it receives this message, obs_i is such that $sent_i[j_k] = arr_{j_k}[i]$. Hence, obs_i claims that p_i is deadlocked, which proves the liveness property.

Proof of the safety property. Let us consider an observer obs_i that claims that p_i is deadlocked. We have to show that p_i belongs to a cycle $p_i = p_{j_1}, p_{j_2}, \ldots, p_{j_k}, p_{j_1}$, such that there is a time at which simultaneously (a) $j_2 \in dep_set_{j_1}$ and there is no message in transit from p_{j_2} to p_{j_1} , (b) $j_3 \in dep_set_{j_2}$ and there is no message in transit from p_{j_2} , (c) etc. until process p_{j_1} such that $j_1 \in dep_set_{j_k}$ and there is no message in transit from p_{j_1} to p_{j_k} .

As obs_{j_1} claims that p_{j_1} is deadlocked (line 12), there is a time τ at which obs_{j_1} received a message PROBE $(j_1, sn, j_k, arr_{j_k}[j_1])$ from some observer obs_{j_k} . Process p_{j_k} was passive when obs_{j_k} sent this message at some time $\tau_k < \tau$. Moreover, as obs_{j_1} did not discard this message when it received it (predicate $sent_{j_1}[j_k] = arrived = arr_{j_k}[j_1]$, line 11), the channel from p_{j_1} to p_{j_k} did not contain application messages between τ_k and τ . It follows that p_{j_k} remained continuously passive from the time τ_k to time τ . (See Fig. 15.5. The fact that there is no message in transit from one process to another is indicated by a crossed-out arrow.)

The same observation applies to obs_{j_k} . This local observer received at time τ_k a control message PROBE $(j_1, sn, j_{k-1}, arr_{j_{k-1}}[j_k])$, which was sent by an observer $obs_{j_{k-1}}$ at time τ_{k-1} . As obs_{j_k} did not discard this message, we have $sent_{j_k}[j_{k-1}] = arr_{j_{k-1}}[j_k]$ from which it follows that the channel from p_{j_k} to $p_{j_{k-1}}$ did not contain application messages between τ_{k-1} and τ_k . Moreover, as $j_k \in dep_set_{j_{k-1}} \setminus arr_from_{j_{k-1}}$, and p_k remained continuously passive from time τ_k to time τ , it follows that p_{k-1} remained continuously passive from time τ_{k-1} to time τ . This reasoning can be repeated until the sending by p_{j_1} of the message PROBE $(j_1, sn, j_1, arr_{j_1}[j_2])$, at time τ_1 , from which we conclude that p_{j_1} remained continuously passive from time τ_1 to time τ .

It follows that (a) the processes p_{j_1}, \ldots, p_{j_k} are passive at time τ , (b) the channel from p_{j_1} to p_{j_k} , the channel from p_{j_k} to $p_{j_{k-1}}$, etc., until the channel from p_{j_2} to p_{j_1} are empty at time τ , and (c) none of these processes can be re-activated from the messages in its input buffer. Consequently these processes are deadlocked (which means that the cycle is a cycle of the wait-for graph), which concludes the proof of the safety property.

15.4 Deadlock Detection in the OR Communication Model

As seen in Sect. 15.1, in the OR communication model, each receive statement specifies a set of processes, and the invoking process p_i waits for a message from any of these processes. This set of processes is the current dependence set of p_i , denoted dep_set_i . As soon as a message from a process of dep_set_i has arrived, p_i stops waiting and consumes it. This section presents an algorithm which detects deadlocks in this model. This algorithm is due to K.M. Chandy, J. Misra, and L.M. Haas (1983).

This algorithm considers the following slightly modified definition for a set of deadlocked processes, namely, a set D of processes is deadlocked if (a) all the processes of D are passive, (b) the dependency set of each of them is a subset of D, and (c) for each pair of processes $\{p_i, p_j\} \in D$ such that $j \in dep_set_i$, there is no message in transit from p_j to p_i . When compared to the definition given in Sect. 15.1.4, this definition includes the processes blocked by processes belonging to a knot of deadlocked processes. When considering the wait-for graph on the left of Fig. 15.1, this definition considers that p_4 is deadlocked, while the definition of Sect. 15.1.4

This algorithm assumes also that a process p_i is passive only when it is waiting for a message from a process belonging to its current dependency set dep_set_i , which means that processes do not terminate. The case where a process locally terminates (i.e., attains an "end" statement, after which it remains forever passive) is addressed in Problem 4.

15.4.1 Principle

Network Traversal with Feedback When the observer obs_i associated with a process p_i suspects that p_i is involved in a deadlock, it launches a parallel network traversal with feedback on the edges of the wait-for graph whose it is the origin, i.e., on the channels from p_i to p_j such that $j \in dep_set_i$. (A network traversal algorithm with feedback that builds a spanning tree has been presented in Sect. 1.2.4.) If such a process p_j is active, it discards the message and, consequently, stops the network traversal. If it is itself blocked, it propagates the network traversal to the processes which currently define its set dep_set_j . And so on. These control messages are used to build a spanning tree rooted at p_i .

Fig. 15.6 A directed communication graph

If the network traversal with feedback terminates (i.e., obs_i receives an answer from each process p_j in dep_set_i), the aim is to allow obs_i to conclude that p_i is deadlocked. If an observer obs_j has locally stopped the progress of the network traversal launched by obs_i , p_j is active and may send in the future a message to the process p_k that sent it a network traversal message. If re-activated, this process p_k may in turn re-activate a process p_ℓ such that $\ell \in dep_set_k$, etc. This chain of process re-activations can end in the re-activation of p_i .

The Difficulty in the Observation of a Distributed Computation The network traversal algorithms presented in Chap. 1 consider an underlying static network. Differently, the network defined by the wait relation (wait-for graph) is not static: it is modified by the computation. Hence the following problem: Can a network traversal algorithm designed for a static graph be used to do a consistent distributed observation of a graph that can be dynamically modified during its observation?

Network Traversal with Feedback on a Directed Static Communication Graph Let QUERY be the type of messages that implement the propagation of a network traversal on the wait-for graph, and ANSWER the type of the messages that implement the associated feedback. (These messages are typed GO and BACK, respectively, in the network traversal with feedback algorithm described in Fig. 1.7).

Let us consider a four-process computation such that, at the application level, the communication graph is the directed graph described in Fig. 15.6. At the underlying level, the channels are bidirectional for the control messages exchanged by the process observers. Let us consider the case where the local observer obs_1 launches a network traversal with feedback. This network traversal is described in Fig. 15.7, where the subscript (x, y) attached to a message means that this message is sent by obs_x to obs_y . First obs_1 sends a message QUERY() to both ob_2 and obs_3 (messages QUERY_{1,2}() and QUERY_{1,3}()), then obs_2 forwards the network traversal

Fig. 15.7 Network traversal with feedback on a static graph

and starts waiting for a message from p_4

Fig. 15.8 Modification in a wait-for graph

to obs_4 (message QUERY_{2,4}()), while obs_3 forwards it to obs_1 and obs_4 (messages QUERY_{3,1}() and QUERY_{3,4}()). As it cannot extend the traversal, obs_4 sends back a message ANSWER() each time it receives a query (messages ANSWER_{4,2}() and AN-SWER_{4,3}()). As it has already been visited by the network traversal, obs_1 sends by return the message ANSWER_{1,3}() when it receives QUERY_{3,1}(). When each of obs_2 and obs_3 has received all the answers matching its queries, it sends a message AN-SWER() to obs_1 . Finally, when obs_1 has received the answers from obs_2 and obs_3 , the network traversal with feedback terminates.

Network Traversal with Feedback on a Directed Dynamic Communication Graph Let us now consider that at time τ_1 , the directed graph on the left of Fig. 15.8 is the current wait-for graph of the corresponding four-process computation. This means that, at τ_1 , $dep_set_1 = \{2, 3\}$, $dep_set_2 = \{4\}$, $dep_set_3 = \{1, 4\}$, and $dep_set_4 = \emptyset$ (hence p_1 , p_2 and p_3 are blocked, while p_4 is active). Moreover, the channels are empty of application messages.

Let us consider the following scenario. Process p_4 first sends a message *m* to p_2 and then starts waiting for a message from p_2 . The message *m* will re-activate p_2 , and the wait-for graph (which is a conceptual tool) is instantaneously modified. This is depicted in Fig. 15.8, where the directed graph on the left side is wait-for graph at time τ_1 , i.e., just before p_4 sends a message to p_2 and starts waiting for a message from this process, while the graph on the right side is the wait-for graph at time τ_2 , just after p_4 has executed these statements.

After p_2 has been re-activated by the application message m, it sends a message m' to p_4 and starts waiting for a message from this process. Let τ_3 be the time instant just after this has been done. The corresponding modification of the wait-for graph is indicated at the bottom of Fig. 15.8.

Let us finally consider that obs_1 launches a network traversal with feedback at time τ_1 . This network traversal, which is depicted in Fig. 15.9, is exactly the same as that described in Fig. 15.7. Let us recall that, as indicated previously, an observer

Fig. 15.9 Inconsistent observation of a dynamic wait-for graph

 obs_i propagates a network traversal only if p_i is passive. In the scenario which is described, despite the application messages m and m' exchanged by p_4 and p_2 , the control messages are received by any observer obs_i while the process p_i it is associated with is passive. Hence, the network traversal with feedback terminates, and obs_1 concludes erroneously that p_1 is involved in a deadlock.

Observe if Processes Have Been Continuously Passive The erroneous observation comes from the fact that there is process activity in the back of the network traversal, and the network traversal misses it. Let us observe that the FIFO property of the channels is not sufficient to solve the problem (in Fig. 15.9 all channels behave as FIFO channels).

A simple way to solve this problem consists in requiring that each observer obs_i observes if its process p_i remained continuously passive between the time it was visited by the network traversal (reception of the first message QUERY() from an observer obs_j) and the time it sent a message ANSWER() to this observer obs_j . As demonstrated by the algorithm that follows, this observation Boolean value plus the fact that channels are FIFO allows for a consistent distributed observation of the computation.

As far as channels are concerned, let us notice that, if channels were not FIFO, erroneous observation could occur, despite the previous Boolean values. To see this, it is sufficient to consider the case where, in Fig. 15.9, the message *m* sent by p_4 to p_2 arrives after the control message ANSWER() sent by obs_4 to obs_2 .

15.4.2 A Detection Algorithm

Local Variables As in previous algorithms, each observer obs_i manages a local variable *state_i* that describes the current state of p_i (*active* or *passive*). The network whose traversal is launched by obs_i is dynamically defined according to the current

values of the sets dep_set_j . (By definition $dep_set_j = \emptyset$ if p_j is active.) The vertices of the corresponding directed graph are the observers in the set DP_i , which is recursively defined as follows

$$DP_i = \{i\} \bigcup_{x \in DP_i} dep_set_x,$$

and there is an edge from obs_x to obs_y if $y \in dep_set_x$.

To implement network traversals while ensuring a correct observation, each observer obs_i manages the following local arrays whose entry k concerns the last network traversal initiated by obs_k .

• $sn_i[1..n]$ is an array of sequence numbers, whose meaning is the same as in the algorithm of Fig. 15.2, namely, $sn_i[j]$ is the sequence number associated with the last network traversal initiated by obs_j and known by obs_i . Initially, $sn_i[1..n] = [0, ..., 0]$.

The last network traversal initiated by an observer obs_i is consequently identified by the pair $(i, sn_i[i])$.

- *parent_i*[1..*n*] is array such that *parent_i*[*j*] contains the parent of *obs_i* with respect to the last network traversal launched by *obs_i* and known by *obs_i*.
- *expected_aswr*_i[1..*n*] is array of non-negative integers such that *expected_aswr*_i[*j*] is the number of messages ANSWER() that *obs*_i has still to receive before sending an answer to its parent, when considering the network traversal identified (*j*, *sn*_i[*j*]).

The pair of local variables $(parent_i[j], expected_aswr_i[j])$ is related to the last network traversal initiated by obs_j . The set of variables $parent_i[j]$ implements a spanning tree rooted at obs_j , which is rebuilt during each network traversal launched by obs_j .

cont_passive_i[1..n] is an array of Boolean values. For any j, cont_passive_i[j] is used to register the fact that during the last visit of a network traversal initiated by obs_j, p_i did or did not remain continuously passive. This last visit started at the last modification of sn_i[j].

The Algorithm The deadlock detection algorithm for the OR communication model is described in Fig. 15.10. As in the previous algorithm, the sequences of statements prefixed by **when** are executed atomically.

When a process p_i enters a receive statement, obs_i computes the associated set dep_set_i and p_i becomes passive if there is no message from a process that belongs to dep_set_i , which has already arrived and can be consumed (lines 1–3). If there is such a message, p_i consumes it and continues its execution.

When a message arrives from a process p_j and $j \in dep_set_i$, p_j is re-activated, and the Boolean array $cont_passive_i[1..n]$ is reset to [false, ..., false] (lines 6–10).

When obs_i suspects that p_i is deadlocked (we have then necessarily $state_i = passive$), it increases $sn_i[i]$ and sends a query—identified as $(i, sn_i[i])$ —to the observers associated with the processes p_j such that $j \in dep_set_i$ (because only a message from one of these processes can re-activate p_i). It also assigns the value

```
when p_i enters a receive statement do
(1) compute dep\_set_i from the receive statement;
(2) if (\forall p_i \text{ such that } i \in dep\_set_i:
          there is no message arrived from p_i and not yet consumed)
(3)
        then state_i \leftarrow passive
        else consume a message received a process in dep_set<sub>i</sub>
(4)
(5) end if.
when a message arrives from p<sub>i</sub> do
(6)
     if (state<sub>i</sub> = passive) \land (j \in dep\_set_i)
         then for each j \in \{1, ..., n\} do cont_passive<sub>i</sub>[j] \leftarrow false end for;
(7)
(8)
               state_i \leftarrow active
(9)
        else keep the message in input buffer
(10) end if.
when obs_i suspects that p_i is deadlocked do % we have then state_i = passive %
(11) sn_i[i] \leftarrow sn_i[i] + 1;
(12) for each j \in dep\_set_i do send QUERY(i, sn_i[i]) to obs_i end for;
(13) expected\_aswr_i[i] \leftarrow |dep\_set_i|;
(14) cont_passive<sub>i</sub>[i] \leftarrow true.
when QUERY(k, seqnb) is received from obs_i do
(15) if (state<sub>i</sub> = passive)
         then if (seqnb > sn_i[k])
(16)
(17)
                 then sn_i[k] \leftarrow seqnb; parent_i[k] \leftarrow j;
(18)
                        for each j \in dep\_set_i do send QUERY(k, seqnb) to obs_i end for;
(19)
                        expected\_aswr_i[k] \leftarrow |dep\_set_i|;
(20)
                        cont_passive_i[k] \leftarrow true
(21)
                  else if (cont\_passive_i[k]) \land (seqnb = sn_i[k])
(22)
                          then send ANSWER(k, seqnb) to obs_i
(23)
                        end if
               end if
(24)
(25) end if.
when ANSWER(k, seqnb) is received from obs_i do
(26) if ((seqnb = sn_i[k]) \land cont\_passive_i[k])
(27)
         then expected_aswr<sub>i</sub>[k] \leftarrow expected_aswr<sub>i</sub>[k] - 1;
(28)
               if (expected\_aswr_i[k] = 0)
(29)
                  if (k = i) then claim p_i is deadlocked
(30)
                             else let x = parent_i[k]; send ANSWER(k, seqnb) to obs_x
(31)
                  end if
               end if
(32)
(33) end if.
```

Fig. 15.10 An algorithm for deadlock detection in the OR communication model

 $|dep_set_i|$ to $expected_aswr_i[i]$, and (because it starts a new observation period of p_i) it sets $cont_passive_i[i]$ to true (lines 11–14).

When obs_i receives a message QUERY(k, seqnb) from obs_j it discards the message if p_i is active (line 15). Hence, the network traversal launched by obs_k and

identified (k, seqnb) will not terminate, and consequently this network traversal will not allow obs_k to claim that p_i is deadlocked. If p_i is passive, there are two cases:

- If $seqnb > sn_i[k]$, obs_i discovers that this query concerns a new network traversal launched by obs_k . Consequently, it updates $sn_i[k]$ and defines obs_j as its parent in this network traversal (line 17). It then extends the network traversal by propagating the query message it has received to each observer of dep_set_i (line 18), updates accordingly *expected_aswr_i[i]* (line 19), and starts a new observation period of p_i (with respect to this network traversal) by setting $cont_passive_i[k]$ to true (line 20).
- If $seqnb \neq sn_i[k]$, obs_i stops the network traversal if it is an old one ($seqnb < sn_i[k]$), or if p_i has been re-activated since the beginning of the observation period (which started at the first reception of a message QUERY(k, seqnb)).

If the query concerns the last network traversal launched by p_k and p_i has not been re-activated since the start of the local observation period associated with this network traversal, obs_i sends by return the message ANSWER(k, *seqnb*) to obs_j (line 22). This is needed to allow the network traversal to return to its initiator (if no other observer stops it).

Finally, when an observer obs_i receives a message ANSWER(k, seqnb) it discards the message if this message is related to an old traversal, or if p_i did not remained continuously passive since the beginning of this network traversal. Hence, if $(seqnb = sn_i[k]) \land cont_passive_i[k]$, obs_i first decreases $expected_aswr_i[k]$ (line 27). Then, if $expected_aswr_i[k] = 0$, the network traversal with feedback can leave obs_i . To that end, if $k \neq i$, obs_i forwards the message ANSWER(k, seqnb) to its parent in the tree built by the first message QUERY(k, seqnb) it has received. If k = i, the network traversal has returned to obs_i , which claims that p_i is deadlocked.

15.4.3 Proof of the Algorithm

Theorem 26 If a deadlock occurs, eventually the observer of a deadlocked process detects it. Moreover, no observer claims a deadlock if its associated process is not deadlocked.

Proof Proof of the liveness property. Let *D* be a set of deadlocked processes, and p_i be one of these processes. Let us assume that, after the deadlock has occurred, obs_i launches a deadlock detection. We have to show that obs_i eventually claims that p_i is deadlocked.

As there is deadlock, there is no message in transit among the pairs of processes of *D* such that $i, j \in D$ and $j \in dep_set_i$. Let (i, sn) be the identity of the network traversal with feedback launched by obs_i after the deadlock occurred. The observer obs_i sends a message QUERY(i, sn) to each observer obs_j , such that $j \in dep_set_i$. When such an observer receives this message it sets $cont_passive_j[i]$ to true, and forwards QUERY(i, sn) to all the observers obs_k such that $k \in dep_set_j$, etc. As there

Fig. 15.11 Activation pattern for the safety proof

is no message in transit among the processes of D, and all the processes in D are passive, all the Boolean variables $cont_passive_x[i]$ of the processes in D are set to true and thereafter remain true forever. It follows that no message QUERY(*i*, *sn*) or ANSWER(*i*, *sn*) is discarded. Consequently, no observer stops the progress of the network traversal which returns at obs_i and terminates, which concludes the proof of the liveness of the detection algorithm.

Proof of the safety property. We have to show that no observer obs_i claims that p_i is deadlocked while it is not. Figure 15.11 is used to illustrate the proof.

Claim C Let obs_i be an observer that sends ANSWER() to obs_k where $parent_i = k$. Let us assume that, after this answer has been sent, p_i sends a message *m* to p_k at time τ_i . Then, there is an observer obs_j such that $j \in dep_set_i$, which received QUERY () from obs_i and, subsequently, obs_j sent an answer to obs_i at some time τ_j^a and p_j became active at some time τ_j such that $\tau_i^a < \tau_j < \tau_i$.

Proof of the Claim C In order for obs_i to send ANSWER() to its parent, it needs to have received an answer from each observer obs_j such that $j \in dep_set_i$ (lines 19, 27–28, and 30). Moreover, for p_i to become active and send a message *m* to p_k , it needs to have received an application message *m'* from a process belonging to dep_set_i (lines 6 and 8). Let p_i be this process.

As the channels are FIFO, and obs_j sent a message ANSWER() to obs_i , m' is not an old message still in transit; it has necessarily been sent after obs_j sent the answer message to obs_i . It follows that m' is received after the answer message and we have consequently, $\tau_j^a < \tau_j$. Finally, as the sending of m' by p_j occurs before its reception by p_i (which occurs after obs_i sent an answer to obs_k), it follows that p_j becomes active at some time τ_j such that $\tau_j < \tau_i$, and we obtain $\tau_j^a < \tau_j < \tau_i$. (End of the proof of the claim.)

Let *D* be the set of processes involved in the network traversal with feedback initiated by an observer obs_z which executes line 29 and claims that p_z is deadlocked. As the network traversal returns to its initiator obs_z , it follows that every observer

in *D* has received a matching answer for each query it has sent. Hence, every observer sent an answer message to its parent in the spanning tree built by the network traversal. Moreover, there is at least one cycle in the set *D* (otherwise, the network traversal will not have returned to obs_z).

Let us consider any of these cycles after obs_z has claimed a deadlock at some time τ . This cycle includes necessarily a process p_i that, when it receives a query from a process p_k of D defines p_k as its parent (line 17). Let us assume that such a process p_i is re-activated at some time $\tau_i > \tau$. It follows from the Claim C that there is a process p_j , such that $j \in dep_set_i$ and p_j sent to p_i a message m' such that $\tau_j^a < \tau_j < \tau_i$. When considering the pair (p_j, obs_j) , and applying again Claim C, it follows that there a process p_ℓ such that $\ell \in dep_set_j$ and p_ℓ sent to p_j a message m'' such that $\tau_\ell^a < \tau_\ell < \tau_j$. Hence, $\tau_\ell < \tau_i$.

Let p_i , p_j , p_ℓ , ..., p_x , p_i be the cycle. Using inductively the previous argument, it follows that $i \in dep_set_x$ and p_i sent to p_x a message m^x at some time τ'_i such that $\tau'_i < \tau_x$. Hence, we obtain $\tau'_i < \tau_x < \cdots < \tau_\ell < \tau_j < \tau_i$. But as (a) p_i remained continuously passive between the reception of QUERY() from p_x and the sending of the matching message ANSWER(), and (b) the channel from p_i to p_x is FIFO, it follows that $\tau'_i > \tau_i$, a contradiction.

As the previous reasoning is for any cycle in the set D, it follows that, for any pair $\{p_y, p_{y'}\} \in D$ such that $y \in dep_set_{y'}$, there is no message in transit from p_y to $p_{y'}$ at time τ , which concludes the proof of the safety property. \Box

15.5 Summary

A process becomes deadlocked when, while blocked, its progress depends transitively on itself. This chapter has presented two types of communication (or resource) models, which are the most often encountered. In the AND model, a process waits for messages from several processes (or for resources currently owned by other processes). In the OR model, it waits for one message (or resource) from several possible senders (several distinct resources). After an analysis of the deadlock phenomenon and its capture by the notion of a wait-for graph, the chapter presented three deadlock detection algorithms. The first one is suited to the one-at-a-time model, which is the simplest instance of both the AND and OR models, namely, a process waits for a single message from a given sender (or a single resource) at a time. The second algorithm allows for the detection of deadlocks in the AND communication model, while the third one allows for the detection of deadlocks in the OR communication model.

15.6 Bibliographic Notes

 The deadlock problem originated in resource allocation when the very first operating systems were designed and implemented in the 1960s and early 1970s (e.g., [97, 160, 165, 166, 188]). The deadlock problem has also been intensively studied in database systems (e.g., [218, 259, 287, 331]).

- The advent of distributed systems, distributed computing, and graph-based algorithms has given rise to a new impetus for deadlock detection, and many new algorithms have been designed (e.g., [61, 169, 216, 278] to cite a few).
- Algorithms to detect cycles and knots in static graphs are presented in [248, 264].
- The deadlock detection algorithm for the one-at-a-time model presented in Sect. 15.2 is due D.L. Mitchell and M. Merritt [266].
- The deadlock detection algorithm for the AND communication model presented in Sect. 15.3 is new. Another detection algorithm suited to this model is presented in [260], and a deadlock avoidance algorithm for the AND model is described in [389].
- The deadlock detection algorithm for the OR communication model presented in Sect. 15.4 is due to K.M. Chandy, J. Misra, and L.M. Haas [81]. This algorithm is based on the notion of a diffusing computation introduced by E.W. Dijkstra and C.S. Scholten in [115]. Another algorithm for the OR model is described in [379].
- A deadlock detection algorithm for a very general communication model including the AND model, the OR model, the *k*-out-of-*n* model, and their combination is described and proved correct in [65].
- Proof techniques for deadlock absence in networks of processes are addressed in [76] and an invariant-based verification method for a deadlock detection algorithm is investigated in [215].
- Deadlock detection algorithms for synchronous systems are described in [308, 391].
- Deadlock detection in transaction systems is addressed in [163].
- Introductory surveys on distributed deadlock detection can be found in [206, 346].

15.7 Exercises and Problems

1. Considering the deadlock detection algorithm presented in Sect. 15.2, let us replace the detection predicate $priv_i = pub_j$ by $pub_i = pub_j$, in order to eliminate the local control variable $priv_i$.

Is this predicate correct to ensure that each deadlock is detected, and is it detected by a single process, which is a process belonging to a cycle? To show the answer is "yes", a proof has to be designed. To show the answer is "no", a counterexample has to be produced. (To answer this question, one can investigate the particular case of the wait-for graph described in Fig. 15.12.)

2. Adapt the deadlock detection algorithm suited to the AND communication model presented in Sect. 15.3 to obtain an algorithm that works for the AND resource model.

Solution in [81].

3. Let us consider the general OR/AND receive statement defined in the previous chapter devoted to termination detection (Sect. 14.5). Using the predicate

Fig. 15.12 Another example of a wait-for graph

fulfilled(), design an algorithm which detects communication deadlocks in this very general communication model.

(Hint: the solution consists in an appropriate generalization of the termination detection algorithm presented in Fig. 14.16.) Solution in [65].

4. Considering the deadlock detection algorithm for the OR communication model described in Fig. 15.10, let us assume that, when a process p_i attains its "end" statement, obs_i (a) sets dep_set_i to \emptyset , and (b) for any pair (k, sn), sends systematically by return ANSWER(k, sn) each time it receives a message QUERY(k, sn). In that way, a locally terminated process never stops a network traversal with feedback.

Does this extension leave the detection algorithm correct? When a deadlock is detected by an observer obs_k , is it possible for obs_k to know which are the locally terminated processes involved in the deadlock?

Part VI Distributed Shared Memory

A distributed shared memory is an abstraction that hides the details of communicating by sending and receiving messages through a network. The processes cooperate to a common goal by using shared objects (also called concurrent objects). The most famous of these objects is the read/write register, which gives the illusion that the processes access a classical shared memory. Other concurrent objects are the usual objects such as queues, stacks, files, etc.

This part of the book is devoted to the implementation of a shared memory on top of a message-passing system. To that end it investigates two consistency conditions which can be associated with shared objects, namely, atomicity (also called linearizability), and sequential consistency. For a given object, or a set of objects, a consistency condition states which of its executions are the correct ones. As an example, for a read/write shared register, it states which are the values that must be returned by the invocations of the read operation.

This part of the book is made up of two chapters. After having presented the general problem of building a shared memory on top of a message-passing system, Chap. 16 addresses the atomicity (linearizability) consistency condition. It defines it, presents its main composability property, and describes distributed algorithms that implement it. Then, Chap. 17 considers the sequential consistency condition, explains its fundamental difference with respect to atomicity, and presents several implementations of it.

Chapter 16 Atomic Consistency (Linearizability)

This chapter is on the strongest consistency condition for concurrent objects. This condition is called *atomicity* when considering shared registers, and *linearizability* when considering more sophisticated types of objects. In the following, these two terms are considered as synonyms.

The chapter first introduces the notion of a distributed shared memory. It then defines formally the atomicity concept, and presents its main *composability* property, and several implementations on top of a message-passing system.

Keywords Atomicity · Composability · Concurrent object · Consistency condition · Distributed shared memory · Invalidation vs. update · Linearizability · Linearization point · Local property · Manager process · Object operation · Partial order on operations · Read/write register · Real time · Sequential specification · Server process · Shared memory abstraction · Total order broadcast abstraction

16.1 The Concept of a Distributed Shared Memory

Concurrent Objects and Sequential Specification An object is defined by a set of operations and a specification that defines the meaning of these operations. A concurrent object is an object which can be accessed (possibly concurrently) by several processes.

As an example, an unbounded stack *S* is defined by two operations denoted *S*.push() and *S*.pop(), and the following specification. An invocation of *S*.push(*v*) adds the value *v* to the stack object, and an invocation of *S*.pop() withdraws from the stack and returns the last value that has been added to the stack. If the stack is empty, *S*.pop() returns a predefined default value \perp (this default value is a value that cannot be added to the stack).

As we can see, this specification uses the term "last" and consequently assumes that the invocations of *S*.push() and *S*.pop() are totally ordered. Hence, it implicitly refers to some notion of time. More precisely, it is a sequential specification, i.e., a specification which defines the correct behaviors of an object by describing all the sequences of operation executions which are allowed.

Fig. 16.1 Structure of a distributed shared memory

All the concurrent objects considered in the following are assumed to be defined by a sequential specification.

Operations of a Register A register R is an object which can be accessed by two operations denoted R.read() and R.write(). Intuitively, a register is atomic if (a) each operation appears as if it has been executed instantaneously between its start event and its end event, (b) no two writes appear as being executed simultaneously, and (c) each read returns the value written by the last write which precedes it.

A formal specification of an atomic register is given below. A formal specification of a sequentially consistent register will be given in the next chapter. These definitions differ mainly in the underlying notion of time they use. Atomicity involves real time, while sequential consistency involves a logical time.

Shared Memory A shared memory is a set of concurrent objects. At the basic level of a centralized system these objects are the primitive read/write registers provided by the hardware. At a higher abstraction level, a shared memory can be made up of more sophisticated objects such as shared queues, stacks, sets, etc.

Distributed Shared Memory System A distributed shared memory system is a distributed algorithm that implements a shared memory abstraction on top of a message-passing system. To that end, the algorithm uses the local memories of the processes and the underlying message-passing system. The local memories are used to store the physical representation of the objects, and messages are used by the processes to cooperate in order to implement the operations on the objects so that their specification is never violated.

The structure of a distributed shared memory is represented in Fig. 16.1. As already indicated, according to the abstraction level which is realized, the shared memory can be composed of read/write registers, or objects of n higher abstraction level.

16.2 The Atomicity Consistency Condition

16.2.1 What Is the Issue?

Let us consider Fig. 16.2, which represents a computation involving two processes accessing a shared register R. The process p_w issues write operations, while the process p_r issues read operations (the notation $R.read() \leftarrow v$ means that the value returned by the corresponding read is v).

The question is: Which values v and v' can be returned for this register execution to be correct? As an example do v = 0 and v' = 2 define a correct execution? Or do v = 2 and v' = 1 define a correct execution? Are several correct executions possible or is a single one possible?

The aim of a consistency condition is to answer this question. Whatever the object (register, queue, etc.), there are several meaningful answers to this question, and atomicity is one of them.

16.2.2 An Execution Is a Partial Order on Operations

By a slight abuse of language, we use the term "operation" also for "execution of an operation on an object". Let *OP* be the set of all the operations issued by the processes.

A computation of a set of processes accessing a set of concurrent objects is a partial order on the set of operations issued by the processes. This partial order, denoted $\widehat{OP} = (OP, \stackrel{op}{\longrightarrow})$, is defined as follows. Let op_1 be any operation issued by a process p_i , and op_2 be any operation issued by a process p_j ; op_1 is on object X, while op_2 is on object Y (possibly i = j or X = Y). $op_1 \stackrel{op}{\longrightarrow} op_2$ if op_1 terminated before op_2 started.

The projection of \xrightarrow{op} on the operations issued by a process is called *process* order relation. As each process p_i is sequential, the *process* order relation defines n total orders (one per process). When op_1 and op_2 are operations on the same object X, the projection of \xrightarrow{op} on the operations on X is called the *object order* relation.

Two operations which are not ordered by \xrightarrow{op} are said to be *concurrent* or *overlapping*. Otherwise they are *non-overlapping*.

The relation \xrightarrow{op} associated with the computation described in Fig. 16.2 is depicted in Fig. 16.3. The first read operation issued by p_r is concurrent with the two

last write operations issued by p_w , while its last read operation is concurrent only with the last write operation.

The relation \xrightarrow{op} associated with the computation described in Fig. 16.2 is depicted in Fig. 16.3.

Remark Let us notice that this definition generalizes the definition of a messagepassing execution given in Sect. 6.1.2. A message-passing system is a system where any directed pair of processes (p_i, p_j) communicate by p_i depositing (sending) values (messages) in an object (the channel from p_i to p_j), and p_j withdrawing (receiving) values from this object. Moreover, the inescapable transit time of each message is captured by the fact that a value is always withdrawn after it has been deposited.

Sequential Computation, Equivalent Computations A computation \widehat{OP} is *sequential* if " $\stackrel{op}{\longrightarrow}$ " is a total order.

Let α be any object X or any process $p_i \cdot \widehat{OP} | \alpha$ (*OP* at α) denotes the projection of \widehat{OP} on α (i.e., the partial order involving only the operations accessing the object α if α is an object, or issued by α if α is a process). As each process p_i is sequential, let us observe that $\widehat{OP} | p_i$ is a total order (the trace of the operations issued by p_i).

Two computations $\widehat{OP_1}$ and $\widehat{OP_2}$ are *equivalent* if for any process p_i , $\widehat{OP_1}|p_i$ is the same as $\widehat{OP_2}|p_i$. This means that, when they are equivalent, no process can distinguish $\widehat{OP_1}$ from $\widehat{OP_2}$.

Legality A sequential history is *legal* if it meets the sequential specification of all its objects. This means that for any object X, $\widehat{OP}|X$ (i.e., the sequence of all the operations accessing X) is a sequence that belongs to the specification of X.

If X is a register, this means that no read returns an overwritten value. If X is a stack this means that each invocation of pop() returns the last value that has been added to the stack ("last" with respect to the order defined by the sequence $\widehat{OP}|X$), etc.

16.2.3 Atomicity: Formal Definition

Atomic Computation A computation \widehat{OP} is *atomic* (or *linearizable*) if there is a sequential computation \widehat{S} such that

- \widehat{OP} and \widehat{S} are equivalent (i.e., no process can distinguish \widehat{OP} and \widehat{S}),
- \widehat{S} is legal (i.e., the specification of each object is respected), and

• The total order defined by \widehat{S} respects the partial order defined by \widehat{OP} (i.e., whatever the processes that invoke them and the objects they access, any two operations ordered in \widehat{OP} are ordered the same way in \widehat{S} ; let us recall the order of non-overlapping operations in \widehat{OP} captures their real-time order).

This definition means that, for OP to be atomic, everything has to appear as if the computation was (a) sequential and legal with respect to each object X (X behaves as described by its sequential specification), (b) and in agreement with "real-time" (if an operation op₁ terminates before another operation op₂ starts, then op₁ has to appear before op₂ in \widehat{S}).

Such an \widehat{S} is a computation that could have been obtained by executing all the operations, one after the other, while respecting the occurrence order of all the non-overlapping operations.

Atomic Register A register X is *atomic* (or behaves atomically) in a computation \widehat{OP} if the computation $\widehat{OP}|X$ is atomic.

It follows from the definition of an atomic computation \widehat{OP} , and the definition of legality, that the sequential execution \widehat{S} is such that, for any object X, $\widehat{S}|X$ is legal. Hence, if a computation \widehat{OP} is atomic, so are all the objects involved in this computation.

Linearization and Linearization Point If computation \widehat{OP} is linearizable, a sequential execution such as the previous sequence \widehat{S} , is called a *linearization* of the computation \widehat{OP} .

The very existence of a linearization \widehat{S} means that, from an external observer point of view, each operation could have been executed at a point of the time line that lies between the time this operation starts and the time it ends. Such a point is called the *linearization point* of the corresponding operation.

Let us notice that proving that an algorithm implements atomic consistency amounts to identifying a linearization point for each of its operations, i.e., time instants that respect the occurrence order of non-overlapping operations and are in agreement with the sequential specification of each object.

An Example An execution of a read/write register accessed by three processes is described in Fig. 16.4. As we can see, the executions of the second read by p_i , the second write by p_j , and the write by p_k are overlapping. The line at the bottom of the figure represents the time line of an omniscient external observer. Two dotted arrows are associated with each operation. They meet at a point of the omniscient external observer's time line at which the corresponding operation could have been instantaneously executed.

The linearization points represented by bullets on the observer's time line describes a sequence \hat{S} that (a) respects the occurrence order of non-overlapping operations, and (b) belongs to the sequential specification of a register. It follows that, in this execution, the register behaves as an atomic register.

Another computation is described in Fig. 16.5. It differs from the previous one in the fact that the concurrent (overlapping) operations R.write(2) by p_j and

Fig. 16.4 An execution of an atomic register

Fig. 16.5 Another execution of an atomic register

R.write(3) by p_k are ordered in the reverse order. If the read operations issued by p_i and p_j return the value 3, the register is atomic. If one of them returns another value, it is not.

Let us finally notice that, as the second read by p_i , the operation R.write(2) by p_j , and the operation R.write(3) by p_k are all concurrent, it is possible that the execution be such that the second read by p_i appears as being linearized between R.write(2) by p_j and R.write(3) by p_k . In that case, for R to be atomic, the second read by p_i has to return the value 2.

16.3 Atomic Objects Compose for Free

The Notion of a Local Property Let P be any property defined on a set of objects. The property P is said to be *local* if the set of objects as a whole satisfies P whenever each object taken separately satisfies P.

Locality is an important concept that promotes modularity. Let us consider some local property P. To prove that an entire set of objects satisfy P, we have only to ensure that each object, independently from the others, satisfies P. As a consequence, the property P can be implemented for each object independently of the way it implemented for the other objects. At one extreme, it is even possible to design an implementation where each object has its own algorithm implementing P. At another extreme, all the objects (whatever their type) might use the same algorithm to implement P (each object using its own instance of the algorithm).

Atomicity Is a Local Property The following theorem, which is due to M. Herlihy and J. Wing (1990), shows that atomicity is a local property. Intuitively, the fact that atomicity is local comes from the fact that it involves the real-time occurrence order on non-overlapping operations whatever the objects and the processes concerned by these operations. This point appears clearly in the proof of the theorem.

Theorem 27 A computation \widehat{OP} is atomic (linearizable) if and only if each object *X* involved in \widehat{OP} is atomic (i.e., $\widehat{OP}|X$ is atomic/linearizable).

Proof The " \Rightarrow " direction (only if) is an immediate consequence of the definition of atomicity: If \widehat{OP} is linearizable then, for each object X involved in \widehat{OP} , $\widehat{OP}|X$ is linearizable. So, the rest of the proof is restricted to the " \Leftarrow " direction.

Given an object X, let $\widehat{S_X}$ be a linearization of $\widehat{OP}|X$. It follows from the definition of atomicity that $\widehat{S_X}$ defines a total order on the operations involving X. Let \rightarrow_X denote this total order. We construct an order relation \rightarrow defined on the whole set of operations of \widehat{OP} as follows:

1. For each object $X: \to_X \subseteq \to$, 2. $\xrightarrow{op} \subseteq \to$.

Basically, " \rightarrow " totally orders all operations on the same object *X*, according to \rightarrow_X (first item), while preserving \xrightarrow{op} , i.e., the real-time occurrence order on the operations (second item).

Claim " \rightarrow is acyclic". This claim means that \rightarrow defines a partial order on the set of all the operations of \widehat{OP} .

Assuming this claim (see its proof below), it is thus possible to construct a sequential history \widehat{S} including all operations of \widehat{OP} and respecting \rightarrow . We trivially have $\rightarrow \subseteq \rightarrow_S$, where \rightarrow_S is the total order (on the operations) defined from \widehat{S} . We have the three following conditions: (1) \widehat{OP} and \widehat{S} are equivalent (they contain the same operations, and the operations of each process are ordered the same way \widehat{OP} and \widehat{S}), (2) \widehat{S} is sequential (by construction) and legal (due to the first item stated above), and (3) $\xrightarrow{op} \subseteq \rightarrow_S$ (due to the second item stated above and the relation inclusion $\rightarrow \subseteq \rightarrow_S$). It follows that \widehat{OP} is linearizable.

Proof of the Claim We show (by contradiction) that \rightarrow is acyclic. Assume first that \rightarrow induces a cycle involving the operations on a single object X. Indeed, as \rightarrow_X is a total order, in particular transitive, there must be two operations op_i and op_j on X such that $op_i \rightarrow_X op_i$ and $op_i \xrightarrow{op} op_i$.

- As $op_i \rightarrow X op_j$ and X is linearizable (respects object order, i.e., respects realtime order), it follows that op_i started before op_j terminated (otherwise, we will have $op_i \rightarrow X op_i$). Let us denote this as *start*[op_i] < *term*[op_j].
- Similarly, it follows from the definition of \xrightarrow{op} that $op_j \xrightarrow{op} op_i \Rightarrow term[op_j] < start[op_i]$.

These two items contradict each other, from which we conclude that, if there is a cycle in \rightarrow , it cannot come from two operations op_i and op_j , and an object X such that $op_i \rightarrow X op_j$ and $op_j \xrightarrow{op} op_i$.

It follows that any cycle must involve at least two objects. To obtain a contradiction we show that, in this case, a cycle in \rightarrow implies a cycle in \rightarrow_H (which is acyclic). Let us examine the way the cycle could be obtained. If two consecutive edges of the cycle are due to just some \rightarrow_X or just $\stackrel{op}{\longrightarrow}$, then the cycle can be shortened, as any of these relations is transitive. Moreover, $op_i \rightarrow_X op_j \rightarrow_Y op_k$ is not possible for $X \neq Y$, as each operation is on only one object $(op_i \rightarrow_X op_j \rightarrow_Y op_k$ would imply that op_j is on both X and Y). So let us consider any sequence of edges of the cycle such that: $op_1 \stackrel{op}{\longrightarrow} op_2 \rightarrow_X op_3 \stackrel{op}{\longrightarrow} op_4$. We have:

- $\operatorname{op}_1 \xrightarrow{op} \operatorname{op}_2 \Rightarrow term[\operatorname{op}_1] < start[\operatorname{op}_2] \text{ (definition of } \xrightarrow{op}).$
- $op_2 \rightarrow_X op_3 \Rightarrow start[op_2] < term[op_3]$ (as X is linearizable).
- $\operatorname{op}_3 \xrightarrow{op} \operatorname{op}_4 \Rightarrow term[\operatorname{op}_3] < start[\operatorname{op}_4] \text{ (definition of } \xrightarrow{op} \text{)}.$

Combining these statements, we obtain $term[op_1] < start[op_4]$, from which we can conclude that $op_1 \xrightarrow{op} op_4$. It follows that any cycle in \rightarrow can be reduced to a cycle in \xrightarrow{op} , which is a contradiction as \xrightarrow{op} is an irreflexive partial order. (End of the proof of the claim.)

The Benefit of Locality Considering an execution of a set of processes that access concurrently a set of objects, atomicity allows the programmer to reason as if all the operations issued by the processes on the objects were executed one after the other. The previous theorem is fundamental. It states that, to reason about sequential processes that access concurrent atomic objects, one can reason on each object independently, without losing the atomicity property of the whole computation.

An Example Locality means that atomic objects compose for free. As an example, let us consider two atomic queue objects Q1 and Q2, each with its own implementation I1 and I2, respectively (hence, the implementations can use different algorithms).

Let us define the object Q as the composition of Q1 and Q2 defined as follows (Fig. 16.6). Q provides processes with the four following operations Q.enq1(),

Fig. 16.6 Atomicity allows objects to compose for free

Q.deq1(), Q.enq2(), and Q.deq2(), whose effect is the same as Q1.enq(), Q1.deq(), Q2.enq() and Q2.deq(), respectively.

Thanks to locality, an implementation of Q consists simply in piecing together I1 and I2 without any modification to their code. As we will see in the next chapter, sequential consistency is not a local property. Hence, the previous object composition property is no longer true for sequential consistency.

16.4 Message-Passing Implementations of Atomicity

As atomicity requires that non-overlapping operations be executed in their "realtime" occurrence order, its implementations require a strong cooperation among processes for the execution of each operation. This cooperation can be realized with an appropriate underlying communication abstraction (such total order broadcast), or the association of a "server" process with each atomic object. Such implementations are described in this section.

16.4.1 Atomicity Based on a Total Order Broadcast Abstraction

Principle The total order broadcast abstraction has been introduced in Sect. 7.1.4 (where we also presented an implementation of it based on scalar clocks), and in Sect. 12.4 (where coordinator-based and token-based implementations of it have been described and proved correct).

This abstraction provides the processes with two operations, denoted to_ broadcast() and to_deliver(), which allow them to broadcast messages and deliver these messages in the very same order. Let us recall that we then say that a process to-broadcasts and to-delivers a message.

An algorithm based on this communication abstraction, that implements an atomic object X, can be easily designed. Each process p_i maintains a copy x_i of the object X, and each time p_i invokes an operation X.oper(), it to-broadcasts a message describing this operation and waits until it to-delivers this message.

operation X.oper_{ℓ}(*param*) **is** (1) *result_i* $\leftarrow \perp$; (2) to_broadcast OPERATION(*i*, oper_{ℓ}, *param*); (3) **wait** (*result_i* $\neq \perp$); (4) return(*result_i*). **when a message** OPERATION(*j*, oper_{ℓ}, *param*) **is to-delivered do** (5) $r \leftarrow x_i$.oper_{ℓ}(*param*); (6) **if** (*i* = *j*) **then** *result_i* $\leftarrow r$ **end if**.

The Algorithm The corresponding algorithm is described in Fig. 16.7. Let $oper_1(), \ldots, oper_m()$ be the operations associated with the object X. If X is a read/write register, those are read() and write(). If X is a stack, they are push() and pop(), etc. It is assumed that each operation returns a result (which can be a default value for operations which have no data result such as write() or push()). Moreover, \perp is a default control value which cannot be returned by an operation.

When a process p_i invokes $X.oper_{\ell}(param)$, it to-broadcasts a message OPERA-TION() carrying the name of the operation, its input parameter, and the identity of the invoking process (line 2). Then, p_i is blocked until its operation has been applied to its local copy x_i of the object X (line 3). When this occurs, we have $result_i \neq \bot$, and p_i returns this value (line 4).

When p_i receives a message OPERATION(), it first applies the corresponding operation to its local copy x_i (line 5). Moreover, if it is the process that invoked this operation, it saves its result in *result*_i.

Theorem 28 *The object X implemented by the algorithm described in Fig.* 16.7 *is atomic.*

Proof Let \widehat{OP} be an execution involving the object X. Let us first observe that, due the to-order broadcast abstraction defines a total order on all the operations invoked by the processes. This total order defines a sequence \widehat{S} which is trivially (a) equivalent to \widehat{OP} , (b) respects its partial order on operation, and (c) is legal. As each copy x_i of X is applied this sequence \widehat{S} of operations, each is a correct implementation of X.

Remark on the Locality Property of Atomicity While the previous implementation has considered a single object X, it works for any number of objects. This is due to the fact that the atomicity consistency condition is a *local* property. Hence, if atomicity is implemented

- with the to-broadcast abstraction for some objects (possibly, each object being implemented with a specific implementation of to-broadcast),
- different approaches (such as those presented below) for the other objects,

then each object behaves atomically, and consequently the whole execution is atomic (Theorem 27).

Fig. 16.8 Why read operations have to be to-broadcast

The Case of Operations Which Do Not Modify the Objects Let us consider the particular case where the object is a read/write register R. One could wonder why, as the read operations do not modify the object and each process p_i has a local copy x_i of R, it is necessary to to-broadcast the invocations of read().

To answer this question, let us consider Fig. 16.8. The register R is initialized to the value 0. Process p_1 invokes R.write(1), and consequently issues an underlying to-broadcast of OPERATION(1, write_{ℓ}, 1). When a process p_i to-delivers this message, it assigns the new value 1 to x_i . After it has to-delivered the message OP-ERATION(1, write_{ℓ}, 1), p_3 invokes R.read() and, as $x_i = 1$, it returns the value 1. Differently, the message OPERATION(1, write_{ℓ}, 1) sent by p_1 to p_2 is slow, and p_2 invokes R.read() before this message has been to-delivered. This read consequently returns the current value of x_2 , i.e., the initial value 0.

As the invocation of *R*.read() by p_3 terminates before the invocation of *R*.read() by p_2 starts we have (*R*.read() by p_3) \xrightarrow{op} (*R*.read() by p_2), and consequently, the read by p_3 has to be ordered (in \widehat{S}) before the read by p_2 . But then, the sequence \widehat{S} cannot be legal. This is because the read by p_3 obtains the new value, while the read by p_2 (which occurs later with respect to real time as formally captured by \xrightarrow{op}) obtains the initial value, which has been overwritten (as witnessed by the read of p_3).

Preventing such incorrect executions requires all operations to be totally ordered with the to-broadcast abstraction. Hence, when implementing atomicity with tobroadcast, even the operations which do not modify the object have to participate in the to-broadcast.

16.4.2 Atomicity of Read/Write Objects Based on Server Processes

A way to implement atomic read/write registers without using an underlying total order broadcast consists in associating a server process (also called manager) with a set of registers. At one extreme, it is possible that a single server manages all the registers, and at the other extreme, it is possible to have an independent server per

Fig. 16.9 Invalidation-based implementation of atomicity: message flow

register. This is a consequence of the fact that atomicity is a local property: If X and Y are atomic, their implementations can be independent (i.e., the manager of X and the manager of Y never need to cooperate).

Hence, without loss of generality, we consider in the following that there is a single register X managed by a single server, denoted p_X . In addition to p_X , each process p_i has a local copy x_i of X. The local copy at p_X is sometimes called *primary copy*. To simplify the presentation (and again without loss of generality) we consider that the role of the server p_X is only to manage X (i.e., it does not involve operations on X).

The role of p_X is to ensure atomicity by managing the local copies so that (a) each read operation returns a correct value, and (b)—when possible—read operations are local, i.e., do not need to send or receive messages. To attain this goal, two approaches are possible.

- Invalidation. In this case, at each write of X, the manager p_X invalidates all the local copies of X.
- Update. In this case, at each write of X, the manager p_X updates all the local copies of X.

The next two sections develop each of these approaches.

16.4.3 Atomicity Based on a Server Process and Copy Invalidation

Principle and Flow of Messages The principle of an invalidation-based implementation of atomicity is described in Fig. 16.9.

When a process p_i invokes X.write(v), it sends a request message (WRITE_ REQ(v)) to the manager of X, which updates its local copy and forwards an invalidation message to the processes which have a copy of X. When a process receives this message, it invalidates its copy and sends by return to p_X an acknowledgment (message INV_ACK()). When it has received all the acknowledgments, p_X informs p_i that there are no more copies of the previous value and consequently the write operation can terminate (message WRITE_ACK()).

Moreover, during the period starting at the reception of the message WRITE_ REQ() and finishing at the sending of the corresponding WRITE_ACK(), p_X becomes locked with respect to X, which means that it delays the processing of all the message WRITE_REQ() and READ_REQ(). These messages can be processed only when p_X is not locked.

Finally, when the manager p_X receives a message READ_REQ() from a process p_j , it sends by return the current copy of X to p_j . When p_j receives it, it writes it in its copy x_j and, if it reads again X, it uses this value until it is invalidated. Hence, some read operations needs two messages, while others are purely local.

It is easy to see that the resulting register object X is atomic. All the write operations are totally ordered by p_X , and each read operation obtains the last written value. The fact that the meaning of "last" is with respect to real time (as captured by \xrightarrow{op}) follows from the following observation: When p_X stops being locked (time τ in Fig. 16.9), only the current writer and itself have the last value of X.

The Algorithm The invalidation-based algorithm is described in Fig. 16.10. This code is the direct operational translation of the previous principle. The manager p_X is such that x_X is initialized to the initial value of X.

The local array $hlv_X[1..n]$ (for hold last value) is such that $hlv_X[i]$ is true if and only if p_i has a copy of the last value that has been written. The initialization of this Boolean array is such that $hlv_X[i]$ is true if x_i is initially equal to x_X . If $hlv_X[i]$ is initially false, $x_i = \bot$, which locally means that p_i does not have the last value of X.

The messages WRITE_REQ() and READ_REQ() remain in their input buffer until they can be processed. It is assumed that every message is eventually processed (as p_X is the only process which receives these messages, this is easy to ensure).

16.4.4 Introducing the Notion of an Owner Process

The Notion of an Owner Process It is possible to enrich the previous algorithm by introducing the notion of a process owner. A process starts being the *owner* of a register when it terminates a write on this register and stops being the owner when this object is written or read by another process. This means that, when a process p_i owns a register X, it can issue several writes on X without contacting the manager of X. Only its last write is "meaningful" in the sense that this write overwrites the previous writes it has issued since it started being the current owner.

As we can see, as it is related to the pattern of read and write operations issued by the processes, this ownership notion is essentially dynamic. As soon as a process reads the object, there is no more owner until the next write operation. It is assumed that, initially, there is no owner process and only the manager p_X has the initial value of X.

```
========= on the side of process p_i, 1 \le i \le n ==
operation X.write(v) is
(1) x_i \leftarrow v;
(2)
     send WRITE_REQ(v) to p_X;
(3) wait WRITE_ACK() from p_X.
operation X.read() is
(4) if (x_i = \bot)
(5)
        then send READ_REQ() to p_X;
(6)
              wait READ_ACK(v) from p_X;
(7)
              x_i \leftarrow v
(8)
      end if:
(9)
      return(x_i).
when a message INV(X) is received from p_X do
(10) x_i \leftarrow \perp;
(11) send ACK_INV() to p_X.
    ====== on the side of the server p_X ==
when a message READ_REQ() is received from p_i do
(12) wait (\neg locked_X);
(13) send READ_ACK(x_X) to p_i;
(14) hlv_X[i] \leftarrow true.
when a message WRITE_REQ(v) is received from p_i do
(15) wait (\neg locked_X);
(16) locked_X \leftarrow true; x_X \leftarrow v;
(17) for each j such that hlv_X[j] do send INV() to p_i end for;
(18) wait (ACK_INV() received from each j such that hlv_X[j]);
(19) hlv_X[1..n] \leftarrow [false, \ldots, false]; hlv_X[i] \leftarrow true;
(20) send WRITE_ACK() to p_i;
(21) locked \chi \leftarrow false.
```

Fig. 16.10 Invalidation-based implementation of atomicity: algorithm

The Basic Pattern The basic pattern associated with the ownership notion is the following one:

- A process p_i writes X: It becomes the owner, which entails the invalidation of all the copies of the previous value of X. Moreover, p_i can continue to update its local copy of X, without informing p_X , until another process p_j invokes a read or a write operation.
- If the operation issued by p_j is a write, it becomes the new owner, and the situation is as in the previous item.
- If the operation issued by p_j is a read, the current owner p_i is demoted, and it is no longer the owner of X and is downgraded from the writing/reading mode to the reading mode only. It can continue reading its copy x_i (without passing through the manager p_X), but its next write operation will have to be managed by p_X . Moreover, p_i has to send the current value of x_i to p_X , and from now on p_X knows the last value of X.

```
operation X.write(v) is
(1) if (\neg owner_i)
        then send WRITE_REQ(v) to p_X;
(2)
(3)
              wait WRITE_ACK() from p_X;
(4)
              owner_i \leftarrow true
(5) end if;
(6) x_i \leftarrow v.
operation X.read() is
(7) if (x_i = \bot)
(8)
        then send READ_REQ() to p_X;
(9)
              wait READ_ACK(v) from p_X;
(10)
              x_i \leftarrow v
(11) end if:
(12) return(x_i).
when a message DOWNGRADE_REQ(type) is received from p_X do
(13) owner<sub>i</sub> \leftarrow false;
(14) if (type = w) then x_i \leftarrow \bot end if;
(15) send DOWNGRADE_ACK(x_i) to p_X.
```

Fig. 16.11 Invalidation and owner-based implementation of atomicity (code of p_i)

If another process p_k wants to read X, it can then obtain from p_X the last value of X, and keeps reading its new copy until a new write operation invalidates all copies.

The Read and Write Operations These operations are described in Fig. 16.11. Each process p_i manages an additional control variable, denoted *owner_i*, which is true if and only if p_i is the current owner of X.

If, when p_i invokes X.write(v), p_i is the current owner of X, it has only to update its local copy x_i (lines 1 and 6). Otherwise it becomes the new owner (line 4) and sends a message WRITE_REQ(v) to the manager p_X so that it downgrades the previous owner, if any (line 2). When this downgrading has been done (line 3), p_i writes v in its local copy x_i , and the write terminates.

The algorithm implementing the read operation is similar to the one implementing the write operation. If there is a local copy of X ($x_i \neq \bot$), p_i returns it. Otherwise, it sends a message READ_REQ() to p_X in order to obtain the last value written into X. This behavior is described by lines 7–12.

The lines 13–15 are related to the management of the ownership of *X*. When the manager p_X discovers that p_i is no longer the owner of *X*, p_X sent to p_i a message DOWNGRADE_REQ(*type*), where type = w if the downgrading is due to a write operation, and type = r if it is due to a read operation. Hence, when it receives DOWNGRADE_REQ(*type*), p_i first sets *owner_i* to false. Then it sends by return to p_X an acknowledgment carrying its value of x_i (which is the last value that has been written if type = r). when a message WRITE_REQ(v) is received from p_i do (16) wait $(\neg locked_X)$; (17) locked $\chi \leftarrow true$; (18) **let** send_to = {j such that $hlw_X[j]$ } \ {i}; (19) for each $j \in send_{to}$ do send DOWNGRADE_REQ(w) to p_j end for; (20) wait (DOWNGRADE_ACK() received from each p_i such that $j \in send_to$); (21) $x_X \leftarrow v$; $owner_X \leftarrow i$; (22) $hlv_X[1..n] \leftarrow [false, \ldots, false]; hlv_X[i] \leftarrow true;$ (23) send WRITE_ACK() to p_i ; (24) $locked_X \leftarrow false$. when a message READ_REQ() is received from p_i do (25) wait $(\neg locked_X)$; (26) locked $x \leftarrow true$; (27) **if** (*owner*_{*X*} $\neq \perp$) (28)let $k = owner_X$; (29)send DOWNGRADE_REQ(r) to p_k ; (30)wait (DOWNGRADE_ACK(v) received from p_k); (31) $x_X \leftarrow v$; owner_X $\leftarrow \bot$; (32) end if: (33) $hlv_X[i] \leftarrow true;$ (34) send READ_ACK(x_X) to p_i ; (35) $locked_X \leftarrow false$.

Fig. 16.12 Invalidation and owner-based implementation of atomicity (code of the manager p_X)

Behavior of the Manager p_X The process p_X manages an additional variable $owner_X$, which contains the identity of the current owner of X. If there is no current owner, then $owner_X = \bot$. The behavior of p_X is described in Fig. 16.12. As in the previous algorithm, the Boolean $locked_X$ is used to ensure that p_X processes one write or read operation at a time.

When p_X receives a message WRITE_REQ(v) from a process p_i , it first sends a message DOWNGRADE_REQ(w) to all the processes that have a copy of X, so that they invalidate their copies of X (lines 19–20). Moreover, as the invalidation is due to a write operation, the parameter *type* is set to w (because, in this case, no value has to be returned). Then, p_X updates its local context, namely, x_X , *owner*_x, and $hlw_X[1..n]$ (lines 21–22), before returning an acknowledgment to p_i , indicating the write has terminated (line 23).

Let us notice that, when $owner_X = \bot$, the local variable x_X of the manager p_X has the last value of X. Hence, when p_X receives a message READ_REQ() from a process p_i , it sends by return to p_i the value of x_X if $owner_X = \bot$, and updates $hlv_X[i]$ (lines 27 and 33–34). Differently, if $owner_X \neq \bot$, p_X has first to downgrade the current owner from the writing mode to the reading mode and obtains from it the last value of X (lines 27–32).

It is easy to see that the number of control messages (involved in read and write operations), which are sent consecutively, varies from 0 (the last value is in the local variable x_i of the invoking process) up to 4 (namely, the sequence

Fig. 16.13 Update-based implementation of atomicity

WRITE_REQ() - or READ_REQ() -, DOWNGRADE_REQ(), DOWNGRADE_ACK(), and WRITE_ACK() - or READ_ACK() -).

16.4.5 Atomicity Based on a Server Process and Copy Update

Principle The idea is very similar to the one used in the invalidation approach. It differs in the fact that, when the manager p_X learns a new value, instead of invalidating copies, it forwards the new value to the other processes.

To illustrate this principle, let us consider Fig. 16.13. When p_X receives a message WRITE_REQ(v), it forwards the value v to all the other processes, and (as previously) becomes locked until it has received all the corresponding acknowledgments, which means that it processes sequentially all write requests. When a process p_i receives a message UPDATE&LOCK(v), it updates x_i to v, sends an acknowledgment to p_X , and becomes locked. When p_X has received all the acknowledgments, it knows that all processes have the new value v. This time is denoted τ on the figure. When this occurs, p_X sends a message to all the processes to inform them that the write has terminated. When a process p_i receives this message, it becomes unlocked, which means that it can again issue read or write operations.

It follows that, differently from the invalidation approach, all reads are purely local in the update approach (they send and receive messages).

The Algorithm The code of the algorithm, described in Fig. 16.14, is similar to the previous one. This algorithm considers that there are several atomic objects X, Y, etc., each managed by its own server p_X , p_Y , etc. The local Boolean variable $locked_i[X]$ is used by p_i to control the accesses of p_i to X.

For each object X, the cooperation between the server p_X and the application processes p_i, p_j , etc., is locally managed by the Boolean variables *locked*_i[X], *locked*_j[X], etc. Thanks to this cooperation, the server p_X of each object X guarantees that X behaves atomically. As proved in Theorem 27, the set of servers p_X , p_Y , etc., do not have to coordinate to ensure that the whole execution is atomic.

```
======== on the side of process p_i, 1 \le i \le n =====
operation X.write(v) is
(1) wait (\neg locked_i[X]);
(2) x_i \leftarrow v;
(3) send WRITE_REQ(v) to p_X;
(4) wait WRITE_END() from p_X.
operation X.read() is
(5) wait (\neg locked_i[X]);
(6) return(x_i).
when a message UPDATE&LOCK(v) is received from p_X do
(7) x_i \leftarrow v;
(8) locked_i[X] \leftarrow true;
(9) send U&L_ACK() to p_X.
when a message WRITE_END() is received from p_X do
(10) locked_i[X] \leftarrow false.
======== on the side of the server p_X =====
when a message WRITE_REQ(v) is received from p_i do
(11) wait (\neg locked_X);
(12) locked _X \leftarrow true;
(13) for each j \in \{1, ..., n\} \setminus \{i\} do send UPDATE&LOCK(v) to p_i end for;
(14) wait (U&L_ACK() received from each j \in \{1, ..., n\} \setminus \{i\});
(15) for each j \in \{1, ..., n\} do send WRITE_END() to p_i end for;
(16) locked_X \leftarrow false.
```

Fig. 16.14 Update-based algorithm implementing atomicity

It is easy to see that, as in the invalidation-based algorithm, p_X serializes all write operations, and that no read operation obtains an overwritten value.

16.5 Summary

This chapter first introduced the concept of a distributed shared memory. It has then presented, both from intuitive and formal points of view, the atomicity consistency condition (also called linearizability). It then showed that atomicity is a consistency condition that allows objects to be composed for free (a set of objects is atomic if and only if each object is atomic). Then the chapter presented three message-passing algorithms that implement atomic objects: a first one based on a total order broadcast abstraction, a second one based on an invalidation technique, and a third one based on an update technique.

16.6 Bibliographic Notes

 Atomic consistency is the implicit consistency condition used for von Neumann machines. A formalization and an associated theory of atomicity are given by L. Lamport in [228, 229]. An axiomatic presentation of atomicity for asynchronous hardware is given by J. Misra in [262].

- The notion of linearizability, which generalizes atomicity to any type of object defined by a sequential specification, is due to M. Herlihy and J. Wing [183]. The theorem stating that atomic objects compose for free (i.e., atomicity is a local property, Theorem 27) is due to them.
- The invalidation-based algorithm that implements atomic consistency presented in Sect. 16.4.3 is a simplified version of an algorithm managing a distributed shared memory, which is due to K. Li and P. Hudak [234]. An early introductory survey on virtual memory systems can be found in [106].
- The update-based algorithm presented in Sect. 16.4.5, which implements atomic consistency, is from [32] (where it is used to implement data consistency in a programming language dedicated to distributed systems).
- Consistency conditions for objects have given rise to many proposals. They are connected to cache consistency protocols [5, 72, 119]. The interested reader will find introductory surveys on consistency conditions in [3, 4, 286, 301, 323].
- Numerous consistency conditions weaker than atomicity have been investigated: serializability [289], causal consistency [10], hybrid consistency [136], tuples space [69], normality [151], non-sequential consistency conditions [21], slow memory [194], lazy release consistency [204], timed consistency [371, 372], pipelined RAM (PRAM) consistency [237], to cite a few.
- Generic algorithms which implement several consistency conditions are described in [200, 212].
- Sequential consistency, which was introduced by L. Lamport [227], is (with atomicity) one of the most important consistency conditions. It is addressed in the next chapter. Its connection with linearizability is investigated in [23, 313].
- Analysis of strong consistency conditions and their implementations can be found in [157, 256].
- An object operation is *polyadic* if it is on several objects at the same time. As an example, the queue operation (Q, Q').add(), which adds Q' at the end of Q, is polyadic. Investigation of consistency conditions for objects whose operations are polyadic can be found in [267, 326].

16.7 Exercises and Problems

- 1. Design an algorithm that implements read/write atomic objects, and uses update (instead of invalidation) and the process ownership notion.
- Extend the algorithm described in Figs. 16.11 and 16.12, which implements atomicity with invalidation and the ownership notion, to obtain an algorithm that implements a distributed shared memory in which each atomic object is a page of a classical shared virtual memory. Solution in [234].

- 3. When considering the update-based implementation of atomicity described in Fig. 16.14, describe a scenario where a process p_i , which has issued a write operation, becomes locked because of a write operation issued by another process p_j . Which write operation is ordered first?
- 4. Let us consider a shared memory computation $\widehat{OP} = (OP, \xrightarrow{op})$. Does the problem of checking if \widehat{OP} is atomically consistent belong to the complexity class P or NP?

Chapter 17 Sequential Consistency

This chapter is on sequential consistency, a consistency condition for distributed shared memory, which is weaker than atomicity (linearizability). After having defined sequential consistency, this chapter shows that it is not a local property. Then, it presents two theorems which are of fundamental importance when one has to implement sequential consistency on top of asynchronous message-passing systems. Finally, the chapter presents and proves correct several distributed algorithms that implement sequential consistency. Sequential consistency was introduced by L. Lamport (1979).

Keywords Causal consistency · Concurrent object · Consistency condition · Distributed shared memory · Invalidation · Logical time · Manager process · OO constraint · Partial order on operations · Read/write register · Sequential consistency · Server processes · Shared memory abstraction · Total order broadcast abstraction · WW constraint

17.1 Sequential Consistency

17.1.1 Definition

Intuitive Definition Let us consider an execution of a set of processes accessing a set of concurrent objects. The resulting computation \widehat{OP} is sequentially consistent if it could have been produced (with the help of a scheduler) by executing it on a monoprocessor system. This means that, in a sequentially consistent execution, the operations of all the processes appear as if they have been executed in some sequential order, and the operations of each process appear in this total ordering in the order specified by its program.

Formal Definition: Sequentially Consistent Computation The formalism used below is the one that was introduced in Sect. 16.2.2, where it was shown that an execution of processes accessing concurrent objects is a partial order on the operations issued by these processes. The definition of sequential consistency is based on the "process order" relation that provides us with a formal statement that, each process being sequential, the operations it issued are totally ordered.

Fig. 17.1 A sequentially consistent computation (which is not atomic)

A computation \widehat{OP} is sequentially consistent if there exists a sequential computation \widehat{S} such that:

- \widehat{OP} and \widehat{S} are equivalent (i.e., no process can distinguish \widehat{OP} and \widehat{S}), and
- \widehat{S} is legal (the specification of each object is respected).

These two items are the same as for atomicity (which includes a third one related to real-time order). Atomicity is sequential consistency plus the fact that the operations that do not overlap (whatever the processes that issued them and the objects they access) are ordered in \hat{S} according to their real-time occurrence order. Trivially, any computation that is atomic is also sequentially consistent, while the reverse is not true.

This is illustrated in the example depicted in Fig. 17.1. The computation described in this figure involves two processes and two registers, R and R'. It is sequentially consistent because there is a sequence \hat{S} that respects (a) process order for each process, (b) the sequential specification of each register, and (c) is composed of the operations (parameter and result) as the "real" computation. The sequence \hat{S} consists of the execution of p_i followed by that of p_i , namely

$$R$$
.write $_i(1)$, R' .write $_i(5)$, R .read $_i() \rightarrow 1$, R .write $_i(2)$, R' .read $_i() \rightarrow 5$, R .read $_i() \rightarrow 2$.

As we can see, this "witness" execution \widehat{S} does not respect the real time occurrence order of the operations from different processes. Hence, it is not atomic.

The dotted arrow depicts what is called the *read-from* relation when the shared objects are read/write registers. It indicates, for each read operation, the write operation that wrote the value read. The read-from relation is the analog of the send/receive relation in message-passing systems, with two main differences: (1) not all values written are read, and (2) a value written can be read by several processes and several times by the same process.

An example of a computation which is not sequentially consistent is described in Fig. 17.2. Despite the fact that each value that is returned by a read operation has been previously written, it is not possible to build there a sequence \hat{S} which respects both process order and the sequential specification of each register.

Actually, determining whether a computation made up of processes accessing concurrent read/write registers is sequentially consistent is an NP-complete problem (Taylor, 1983). This result rules out the design of efficient algorithms that would

Fig. 17.2 A computation which is not sequentially consistent

implement sequential consistency and no more. As we will see, efficient algorithms for sequential consistency implement more than this condition. (As shown by the simple algorithms implementing atomicity, which is stronger than sequential consistency.)

Formal Definition: Sequentially Consistent Object Given a computation \widehat{OP} and an object X, this object is sequentially consistent in \widehat{OP} if the computation $\widehat{OP}|X$ is sequentially consistent. (Let us recall that $\widehat{OP}|X$ is \widehat{OP} from which have been suppressed all the operations which are not on X.)

17.1.2 Sequential Consistency Is Not a Local Property

While atomic consistency is a local property, and consequently atomic objects compose for free (see Sect. 16.3), this is no longer the case for sequentially consistent objects. The following counter-example proves this claim.

Let us consider a computation with two processes accessing queues. Each queue is accessed by the usual operations denoted enqueue(), which adds an item at the head of the queue, and dequeue(), which withdraws from the queue the item at its tail and returns it (\perp is returned if the queue is empty).

The computation described in Fig. 17.3, which involves one queue denoted Q, is sequentially consistent. This follows from the fact that the sequence

$$\widehat{S} = Q$$
.enqueue_i(b), Q.dequeue_i() $\rightarrow b$, Q.enqueue_i(b)

is legal and respects the order of the operations in each process. As this computation involves a single object, trivially Q is sequentially consistent.

Let us now consider the computation described in Fig. 17.4, which involves two queues, Q and Q'. It is easy to see that each queue is sequentially consistent. The existence of the previous sequence S proves it for Q, and the existence of the following sequence proves it for Q',

$$\widehat{S'} = Q'$$
.enqueue $_i(a'), \quad Q'$.dequeue $_i() \to a', \quad Q'$.enqueue $_i(b').$

But the computation as a whole is not sequentially consistent: it is not possible to order all the operations in such a way that the corresponding sequence \widehat{SEQ} would be such that (a) the operations appear in their process order, and (b) both Q and Q' satisfy their sequential specification. This is because, to produce such a sequence, we have to order first either Q.enqueue_i(a) or Q'.enqueue_i(a'), e.g., Q.enqueue_i(a). Then, whatever the second operation placed in the sequence, we need to have Q.dequeue_i(a), instead of Q.dequeue_i(b), for Q to behave correctly.

It follows that, even if each object is sequentially consistent, the whole computation is not, i.e., sequential consistency is not a local property. From an implementation point of view, this will clearly appear in the implementation where a specific manager is associated with each object (see Sect. 17.4). The managers are required to cooperate to ensure that the computation is sequentially consistent. (As we have seen in the previous chapter, atomic consistency does not need this cooperation.)

17.1.3 Partial Order for Sequential Consistency

Partial Order on Read and Write Operations As we have seen, differently from atomicity (linearizability), sequential consistency does not refer to the real-time order on the operations issued by processes.

Let us consider the case where the objects are read/write registers. Moreover, to simplify the presentation, and without loss of generality, it is assumed that there is an initial write on each register, and all the values written into a register are different.

Let $w_j(X, a)$ denotes the write of *a* into *X* by p_j , and $r_i(X)a$ denotes a read of *X* by p_i which returns the value *a*. When *X* and *a* are not relevant, these operations are denoted $w_i()$ and $r_i()$. As already indicated, this means that $r_i(X)a$ reads from $w_i(X, a)$. The set of all the "read from" pairs is captured by the relation denoted $\stackrel{rf}{\longrightarrow}$, i.e., if $r_i(X)a$ reads from $w_i(X, a)$, we have $w_i(X, a) \stackrel{rf}{\longrightarrow} r_i(X)a$.

 \rightarrow , i.e., if $i_i(X)a$ reads from $w_i(X, a)$, we have $w_i(X, a) \rightarrow i_i(X)a$. In such a context, the relation \xrightarrow{po} defining a read/write computation is defined

as follows: op_1 and op_2 being two operations on registers, $op_1 \xrightarrow{po} op_2$ if

- op₁ and op₂ have been issued by the same process with op₁ first (process order relation), or
- $op_1 = w_i(X, a)$ and $op_2 = r_i(X)a$ (read from relation), or
- $\exists op \text{ such that } op_1 \xrightarrow{po} op \text{ and } op \xrightarrow{po} op_2 \text{ (transitivity).}$

Let us recall that two operations op_1 and op_2 such that $\neg(op_1 \xrightarrow{po} op_2) \land \neg(op_2 \xrightarrow{po} op_1)$ are said to be *concurrent* or *independent*.

A Definition of Legality Customized for Read/Write Registers The notion of legality was introduced in the previous chapter to capture the fact a sequential computation satisfies the sequential specification of the objects it accesses. As we consider here read/write objects (registers), the notion of legality is extended to any computation (not only sequential computations) and reformulated in terms of read/write registers.

A read/write-based computation \widehat{OP} is *legal* if, for each read operation $r_i(X)a$, we have:

- $\exists w_i(X, a)$, and
- $\nexists \mathsf{w}_k(X,b)$ such that $[\mathsf{w}_i(X,a) \xrightarrow{op} \mathsf{w}_k(X,b)] \land [\mathsf{w}_k(X,b) \xrightarrow{op} \mathsf{r}_i(X)a].$

The first item states that any value returned by a read operation has previously been written, while the second item states that no read operation returns an overwritten value.

17.1.4 Two Theorems for Sequentially Consistent Read/Write Registers

Considering processes accessing concurrent objects which are read/write registers, this section states two theorems which are important when designing algorithms which implement sequential consistency. These theorems are due to M. Mizuno, M. Raynal, and J.Z. Zhou (1994).

Two Additional Constraints Since checking sequential consistency is an NPcomplete problem, the idea is to find additional constraints which can be (relatively easily) implemented and simplify the design of algorithms ensuring sequential consistency. Two such constraints have been identified.

- Write/write (WW) constraint. All write operations are totally ordered.
- Object-ordered (OO) constraint. Conflicting operations on each object are totally ordered. (A write operation conflicts with any read operation and any other write operation, while a read operation conflicts with any write operation.)

It is important to see that the constraint WW imposes an order on all write operations whatever the objects they are on, while the constraint OO on each object taken individually.

When considering an execution that satisfies the WW constraint, the total order relation created by WW is denoted \xrightarrow{ww} . Similarly, the order relation created by the constraint OO on an object *X* is denoted $\xrightarrow{oo(X)}$.

Theorem 29 Let \widehat{OP} be a computation that satisfies the WW constraint. If \widehat{OP} is legal, it is sequentially consistent.

Fig. 17.5 Part of the graph *G* used in the proof of Theorem 29

Proof Assuming that \widehat{OP} is legal and satisfies the constraint WW, let us consider the directed graph denoted G and defined as follows. Its vertices are the operations, and there is an edge from op₁ to op₂ if (a) op₁ \xrightarrow{ww} op₂, or (b) op₁ \xrightarrow{rf} op₂, or (c) op₁ and op₂ have been issued by the same process with op₁ first (process order at each p_i). As \widehat{OP} is acyclic, so is G. The proof consists of two steps.

First step. For each object X, we add edges to G so that all (conflicting) operations on X are ordered, and these additions preserve the acyclicity and legality of the modified graph G.

Let us consider a register *X*. As all write operations on *X* are totally ordered, we have only to order the read operations on *X* with respect to the write operations on *X*. Let $r_i(X)a$ be a read operation. As $r_i(X)a$ is legal (assumption), there exists $w_j(X)a$ such that $w_j(X)a \xrightarrow{r_f} r_i(X)a$. (See Fig. 17.5, where the label associated with an edge explains it.)

Let $w_k(X)$ be any write operation such that $w_j(X)a \xrightarrow{ww} w_k(X)$. For any such $w_k(X)$, let us add an edge from $r_i(X)a$ to $w_k(X)$ (dotted edge in the figure). This addition cannot create a cycle because, due to the legality of *G*, there is no path from $w_k(X)$ to $r_i(X)a$. Let us now show that this addition preserves the legality of *G*.

Legality can be violated if adding an edge creates a path from some write operation w_x to some read operation r_y . Hence, let us assume that the addition of the edge from $r_i(X)a$ to $w_k(X)$ creates a new path from w_x to r_y . It follows that, before adding the edge from $r_i(X)a$ to $w_k(X)$, there was a path from w_x to $r_i(X)a$ and a path from $w_k(X)$ to r_y . Due to the relation \xrightarrow{ww} , two cases have to be analyzed.

- $w_x = w_k(X)$ or $w_x \xrightarrow{ww} w_k(X)$. In this case, there is a path from w_x to r_y which does not use the edge from $r_i(X)a$ to $w_k(X)$. This path goes from w_x to $w_k(X)$ and then from $w_k(X)$ to r_y , and (by induction on the previous edges added to *G*) none of these paths violate legality.
- $w_k(X) \xrightarrow{ww} w_x$. This case implies that there is path from $w_k(X)$ to $r_i(X)a$ (this path goes from $w_k(X)$ to w_x and then from w_x) to $r_i(X)a$). But this path violates the assumption stating the graph *G* built before adding the edge from $r_i(X)a$ to $w_k(X)$ is legal. Hence, this case cannot occur.

It follows that the addition of the edge from $r_i(X)a$ to $w_k(X)$ does not violate the legality of the updated graph *G*.

Second step. The previous step is repeated until, for each object X, all read operations on X are ordered with respect to all write operations. When this is done, let us consider any topological sort \widehat{S} of the resulting acyclic graph. It is easy to see that \widehat{S} preserves process order and legality (i.e., no process reads an overwritten value). (Reminder: a topological sort of a directed acyclic graph is a sequence of all its vertices, which preserves their partial ordering.)

Theorem 30 Let \widehat{OP} be a computation that satisfies the OO constraint. If \widehat{OP} is legal, it is sequentially consistent.

The proof of this theorem is similar to the proof of the previous theorem. It is left to the reader.

17.1.5 From Theorems to Algorithms

Theorems 29 and 30 provide us with a simple methodology and two approaches to design algorithms implementing sequential consistency.

On the approach side, an algorithm is based on the WW constraint or the OO constraint. On the methodology side, an algorithm has first to ensure the WW constraint or the OO constraint, and then to only guarantee the legality of the read operations. This modularity favors the understanding of what we are doing, and both the design and the proof of algorithms.

The algorithms implementing sequential consistency, which are described in the rest of this chapter, follow this modular approach.

17.2 Sequential Consistency from Total Order Broadcast

The common principle the algorithms described in this section rely on, which is due to H. Attiya and J.L. Welch (1994), consists in using the total order broadcast abstraction to implement the WW constraint. Due to Theorem 29, these algorithms have then to ensure only that the computation is legal.

17.2.1 A Fast Read Algorithm for Read/Write Objects

Total Order on Write Operations This algorithm uses the total order broadcast abstraction to order all write operations. Moreover, as we are about to see, the legality of the read operations is obtained for free with a reading of the local copy of the register X at p_i , hence the name *fast read* algorithm.

Fig. 17.6 Fast read algorithm implementing sequential consistency (code for p_i)

operation X.write(v) **is** (1) to_broadcast SEQ_CONS(i, X, v); (2) received_i \leftarrow false; **wait** (received_i); (3) return(). **operation** X.read() **is** (4) return(x_i). **when** SEQ_CONS(j, Y, v) **is to-delivered do** (5) $y_i \leftarrow v$; (6) **if** (j = i) **then** received_i \leftarrow true **end if**.

The Fast Read Algorithm Each process p_i maintains a copy x_i of each read/write register X. When process p_i invokes X.write(v) it uses an underlying tobroadcast algorithm to send the value v to all the processes (including itself). It then waits until it is to-delivered its own message. When process p_i invokes X.read(), it returns the current value of its local copy x_i of X. The text of the algorithm is described in Fig. 17.6.

Theorem 31 The fast read algorithm implements sequential consistency.

Proof Let us first observe that, thanks to the to-broadcast of all the values which are written, the algorithm satisfies the WW constraint. Hence, due to Theorem 29, it only remains to show that no read operation obtains an overwritten value.

To that end, let us construct a sequence \widehat{S} by enriching the total order on write operations $(\stackrel{ww}{\longrightarrow})$ as follows. Let SEQ_CONS(j, X, v) and SEQ_CONS(k, Y, v') be the messages associated with any two write operations which are consecutive in $\stackrel{ww}{\longrightarrow}$. Due to the to-broadcast abstraction, any process to-delivers first SEQ_CONS(j, X, v) and then SEQ_CONS(k, Y, v'). For any process p_i let us add (while respecting the process order defined by p_i) all the read operations issued by p_i between the time it has been to-delivered SEQ_CONS(j, X, v) and the time it has been to-delivered SEQ_CONS(j, X, v) and the time it has been to-delivered SEQ_CONS(k, Y, v'). It follows from the algorithms that all these read operations obtain the last value written in each register X, Y, etc., where the meaning of last is with respect to the total order $\stackrel{ww}{\longrightarrow}$. It follows that, with respect to this total order, no read operation obtains an overwritten value, which concludes the proof of the theorem.

Remark This implementation of sequential consistency shows an important difference between this consistency condition and atomicity. Both consistency conditions rely on a time notion to order the read and write operations. This time notion has to be in agreement with both process order and object order for atomicity, while it has to be in agreement only with each process order (taken individually) for sequential consistency.

The previous algorithm, which is based on a total order on all the write operations, does more than required. it would be sufficient to respect only process order and ensure legality. Ordering all write operations allows for a simpler algorithm, which ensures more than sequential consistency but less than atomicity.

17.2.2 A Fast Write Algorithm for Read/Write Objects

Non-blocking Write Operations It appears that, instead of forcing a write operation issued by a process p_i to locally terminate only when p_i has to-delivered the corresponding SEQ_CONS() message, it is possible to have a fast write implementation in which write operations are never blocked. The synchronization price to obtain sequential consistency has then to be paid by the read operations.

The corresponding fast write algorithm and the previous fast read algorithm are dual algorithms. This duality offers a choice when one has to implement sequentially consistent applications. The fast write algorithm is more appropriate for write-intensive applications, while the fast read algorithm is more appropriate for read-intensive applications.

The Fast Write Algorithm As previously, each process p_i maintains a copy x_i of each read/write register X. Moreover, each process p_i maintains a count of the number of messages SEQ_CONS() it has to-broadcast and that are not yet to-delivered. This value is kept in the local variable nb_write_i (which is initialized to 0). A read invoked by p_i is allowed to terminate only when p_i has to-delivered all the messages it has sent. When this occurs, the values written by p_i are in its past, and consequently (as in the fast read algorithm) p_i sees all its writes.

Theorem 32 The fast write algorithm implements sequential consistency.

Proof As before, due to Theorem 29, we have only to show that no read operation obtains an overwritten value. To that end, let $r_i(X)a$ be a read operation and $w_i(X, a)$ be the corresponding write operation. We have to show that

$$\nexists \mathsf{w}_k(X,b) \quad \text{such that} \left[\mathsf{w}_j(X,a) \xrightarrow{op} \mathsf{w}_k(X,b) \right] \land \left[\mathsf{w}_k(X,b) \xrightarrow{op} \mathsf{r}_i(X)a \right].$$

Let us assume by contradiction that such an operation $w_k(X, b)$ exists. There are two cases.

- k = i, i.e., $w_k(X, b)$ and $r_i(X)a$ have been issued by the same process p_i . It follows from the read algorithm that $nb_write_i = 0$ when $r_i(X)a$ is executed. As $w_k(X, b) \xrightarrow{op} r_i(X)a$, this means that x_i has been updated to the value *b* and due to total order broadcast, this occurs after x_i has been assigned the value *a*. It follows that p_i cannot return the value *a*, a contradiction.
- $k \neq i$, i.e., $w_k(X, b)$ and $r_i(X)a$ have been issued by different processes.

Since $w_k(X, b) \xrightarrow{op} r_i(X)a$ and $a \neq b$, there is an operation $oper_i()$ (issued by p_i) such that $w_k(X, b) \xrightarrow{op} oper_i() \xrightarrow{op} r_i(X)a$ (otherwise, p_i would have read b). There are two subcases according to the fact that $oper_i()$ is a read or a write operation. **Fig. 17.7** Fast write algorithm implementing sequential consistency (code for p_i)

operation X.write(v) is (1) $nb_write_i \leftarrow nb_write_i + 1;$ to_broadcast SEQ_CONS(i, X, v); (2)(3) return(). operation X.read() is wait $(nb_write_i = 0);$ (4) (5) return (x_i) . when $SEQ_CONS(j, Y, v)$ is to-delivered do (6) $v_i \leftarrow v;$ if (j = i) then $nb_write_i \leftarrow nb_write_i - 1$ end if. (7)

- oper_i() is a write operation. In this case, due to the variable nb_write_i , p_i has to wait for this write to locally terminate before executing $r_i(X)a$. As $w_k(X, b) \xrightarrow{op} oper_i$, it follows from the total order broadcast that x_i has been assigned the value *b* before oper_i terminates, and due to $w_j(X, a) \xrightarrow{op} w_k(X, b)$, this value overwrites *a*. Hence, $r_i(X)$ cannot return *a*, which is a contradiction.
- $\operatorname{oper}_i()$ is a read operation. As $w_k(X, b) \xrightarrow{op} \operatorname{oper}_i$, if oper_i is a read of X, it cannot return a, a contradiction. Otherwise oper_i is a read of another object Y. But, this implies again that x_i has been updated to b before being read by p_i , a contradiction as p_i returns a.

17.2.3 A Fast Enqueue Algorithm for Queue Objects

An interesting property of the previous total order-based fast read and fast write algorithms lies in the fact that their skeleton (namely, total order broadcast and a fast operation) can be used to design an algorithm implementing a fast enqueue sequentially consistent queue. Such an implementation is presented in Fig. 17.8.

The algorithm implementing the operation Q.enqueue(v) is similar to that of the fast write algorithm of Fig. 17.7, while the algorithm implementing the operation Q.dequeue() is similar to that of the corresponding read algorithm. The algorithm assumes that the default value \perp can neither be enqueued, nor represent the empty stack.

17.3 Sequential Consistency from a Single Server

17.3.1 The Single Server Is a Process

Principle Another way to ensure the WW constraint consists in using a dedicated server process which plays the role of the whole shared memory. Let p_{sm} be this

process. It manages all the objects. Moreover, each process p_i manages a copy of each object, and its object copies behave as a cache memory. As previously, for any object Y (capital letter), y_i (lowercase letter) denotes its local copy at p_i .

When it invokes X.write(a), a process contact p_{sm} , which thereby defines a total order on all the write operations. It also contacts p_{sm} when it invokes a read operation Y.read() and its local copy of Y is not up to date (i.e., $y_i = \bot$).

The object manager process p_{sm} keeps track of which processes have the last value of each object. In that way, when p_{sm} answers a request from a process p_i , p_{sm} can inform p_i on which of its local copies are no longer up to date.

Local Variables Managed by p_{sm} In addition of a copy x_{sm} of each read/write register object *X*, the manager p_{sm} maintains a Boolean array $hlv_{sm}[1..n, [X, Y, ...]]$ whose meaning is the following:

 $hlv_{sm}[i, X] \equiv (p_i \text{ has the last value of } X).$

The Algorithm The algorithm is described in Fig. 17.9. When p_i invokes *X*.write(*v*) it sends a request message to p_{sm} and waits for an acknowledgment (lines 1–2). The acknowledgment message WRITE_ACK() informs p_i on which of its object copies are obsolete. Consequently, when it receives this acknowledgment, p_i invalidates them (line 3), updates x_i (line 4), and terminates the write operation.

When p_i invokes X.read(), it returns the value of its current copy (line 11) if this copy is up to date, which is captured by the predicate $x_i \neq \bot$ (line 15). If this copy is not up to date ($x_i = \bot$), p_i behaves as in the write operation (lines 6–9 are nearly the same as lines 1–4). It contacts the manager p_{sm} to obtain the last value of X and, as already indicated, p_{sm} benefits from the acknowledgment message to inform it on its object copies which do not contain the last written value.

The behavior of p_{sm} is simple. When it receives a message WRITE_REQ(X, v) from a process p_i , it saves the value v in x_i (line 12), and updates accordingly the entries of the array hlv_{sm} (lines 13–14). It then computes the set (*inval*) of objects for

Fig 170 Dood/write	
Fig. 17.9 Read/write	=====================================
sequentially consistent registers from a central manager	operation X .write (v) is
	(1) send WRITE REO(X, v) to p_{sm} :
	(2) wait (WRITE ACK (<i>inval</i>) from p_{om}):
	(1) for each $Y \in inval$ do $v_i \leftarrow \bot$ end for:
	(3) for each $r \in m$ at do $y_l < \pm$ end for, (4) $r_i \leftarrow v$
	operation X.read() is
	(5) if $(x_i = \bot)$
	(6) then send READ REO(X) to p_{sm} :
	(7) wait (READ ACK(<i>inval. v</i>) from p_{sm}):
	(8) for each $Y \in inval do y_i \leftarrow 1$ end for:
	$\begin{array}{ccc} (0) & & \text{for each } i \in \mathbb{N} \text{ and } u \in \mathcal{Y}_i & = \text{end } i \in \mathbb{N}, \\ (9) & & x_i \leftarrow v \end{array}$
	(10) end if:
	(10) entry, (11) return $(r_{\rm c})$
	(11) roun(x_l).
	======================================
	when WRITE_REQ(X, v) is received from p_i do
	(12) $x_{sm} \leftarrow v;$
	(13) $hlw_{sm}[1n, X] \leftarrow [false, \ldots, false];$
	(14) $hlw_{sm}[i, X] \leftarrow true;$
	(15) $inval \leftarrow \{Y \mid \neg hlw_{sm}[i, Y]\};$
	(16) send WRITE_ACK(<i>inval</i>) to p_i .
	when $READ_REQ(X)$ is received from p_i do
	(17) $hlw_{sm}[i, X] \leftarrow true;$
	(18) $inval \leftarrow \{Y \mid \neg hlw_{sm}[i, Y]\};$
	(19) send READ_ACK(<i>inval</i> , x_{sm}) to p_i .

which p_i has not the last value, and sends this set to p_i (lines 15–16). The behavior of p_{sm} when it receives READ_REQ(X) is similar.

Theorem 33 The algorithm described in Fig. 17.9 implements a sequentially consistent shared memory made up of read/write registers.

Proof Let us consider a computation of a set of processes cooperating through read/write registers whose accesses are all under the control of the algorithm of Fig. 17.9. We have to show that there is an equivalent sequential execution which is legal.

As the manager process p_{sm} trivially orders all the write operations, the constraint WW is satisfied. It follows from Theorem 29 that we have only to show that the computation is legal, i.e., no read operation of a process obtains an overwritten value.

To that end, considering a process p_i , let op_1 be one of its (read or write) operations which entails communication with p_{sm} , and op_2 its next (read or write) operation entailing again communication with p_{sm} . It follows from the algorithm that, between op_1 and op_2 , p_i has executed only read operations, and these operations were local (they entailed no communication with p_{sm}). Moreover, the value of a register X read by p_i between op_1 and op_2 is the value of x_i when op_1 terminates,

Fig. 17.10 Pattern of read/write accesses used in the proof of Theorem 33

which is the value of x_{sm} when p_{sm} sent an acknowledgment to p_i to terminate op₁. This is illustrated in Fig. 17.10.

It follows that all the read operations of p_i that occurred between op_1 and op_2 appear as having occurred after op_1 and before the first operation processed by p_{sm} after op_1 (these read operations are inside an ellipsis and an arrow shows the point at which—from the "read from" relation point of view—these operations seem to have logically occurred). Hence, no read operation returns an overwritten value, and the computation is legal, which concludes the proof of the theorem.

17.3.2 The Single Server Is a Navigating Token

Ensuring the WW Constraint and the Legality of Read Operations The process p_{sm} used in the previous algorithm is static and each p_i sends (receives) messages to (from) it. The key point is that p_{sm} orders all write operations. Another way to order all write operations consists in using a dynamic approach, namely a navigating token (see Chap. 5). To write a value in a register, a process has first to acquire the token. As there is a single token, this generates a total order on all the write operations.

The legality of read operations can be ensured by requiring the token to carry the same Boolean array hlv[1..n, [X, Y, ...]] as the one used in the algorithm of Fig. 17.9. Moreover, as the current owner of the token is the only process that can read and write this array, the current owner can use it to provide the process p_j to which it sends the token with up to date values.

The Token-Based Algorithm The resulting algorithm is described in Fig. 17.11. As the fast read algorithm (Fig. 17.6) and the fast write algorithm (Fig. 17.7) based on the total order broadcast abstraction, it never invalidates object copies at a process. As only the write operations require the token, it is consequently a fast read algorithm.

To execute a write operation on a register, the invoking process p_i needs the token (line 1). When p_i has obtained the token, op_i first updates its object copies which have been modified since the last visit of the token. The corresponding pairs (Y, w) are recorded in the set *new_values* carried by the token (lines 2–3). Then, p_i

```
operation X.write(v) is
(1)
      acquire_token();
(2)
      let (hlv, new_values) be the pair carried by the token;
(3) for each (Y, w) \in new\_values) do y_i \leftarrow w; hlv[i, Y] \leftarrow true end for;
(4) hlw[1..n, X] \leftarrow [false, \dots, false];
(5) x_i \leftarrow v; hlv[i, X] \leftarrow true;
(6) let p_i be the process to which the token is sent;
(7) let new_values = {(Y, y_i) | \neg hlv[j, Y]};
(8)
      add the pair (hlv, new_values) to the token;
      realese_token() % for p_i %.
(9)
operation X.read() is
(10) return(x_i).
```


writes the new values of X into x_i and updates accordingly hlv[i, X] and the other entries hlv[j, X] such that $j \neq i$ (lines 4–5).

On the token side, p_i then computes, with the help of the vector hlv[i, [X, Y, ...]], the set of pairs (Y, y_i) for which the next process p_j that will have the token does not have the last values (lines 6–7). After it has added this set of pairs to the token (line 8), p_i releases the token, which is sent to p_j (line 9). Finally the read operation are purely local (line 10).

Let us notice that, when it has the token, a process can issue several write operations on the same or several registers. The only requirement is that a process that wants to write eventually must acquire the token.

On the Moves of the Token The algorithm assumes that when a process releases the token, it knows the next user of the token. This can be easily implemented by having the token move on a ring. In this case, the token acts as an object used to update the local memories of the processes with the last values written. Between two consecutive visits of the token, a process reads its local copies. The consistency argument is the same as the one depicted in Fig. 17.10.

17.4 Sequential Consistency with a Server per Object

While the previous section presented algorithms based on the WW constraint, this section presents an algorithm based on the OO constraint.

17.4.1 Structural View

The structural view is described in Fig. 17.12. There is a manager process p_X per object X, and the set of managers $\{p_A, \ldots, p_Z\}$ implements, in a distributed way, the whole shared memory.

Fig. 17.12 Architectural view associated with the OO constraint

Fig. 17.13 Why the object managers must cooperate

There is a bidirectional channel for every pair made up of an application process and a manager process. This is because we are interested in a genuine OO-based implementation of sequential consistency: at the application level, there is no notion of a channel and the application processes are assumed to communicate only by reading and writing shared registers.

Moreover, there is a channel connecting any pair of manager processes. As we will see, this is required because, differently from atomicity, sequential consistency is not a local property. The object managers have to cooperate to ensure that there is a legal sequential sequence of operations that is equivalent to the real computation. Such a cooperation exists but does not appear explicitly in the algorithm based on a single process p_{sm} managing all the objects (such as the one presented in Sect. 17.3.1).

17.4.2 The Object Managers Must Cooperate

Let us consider the computation described in Fig. 17.13, where X and Y are initialized to 0, in which the last read by p_2 is missing. As it is equivalent to the following legal sequence \hat{S} ,

Y.write₂(1), X.write₂(2), X.read₁() \rightarrow 2, Y.write₁(3), X.read₁() \rightarrow 2, X.write₂(4),

this computation is sequentially consistent.

The full computation (including *Y*.read₂() \rightarrow 1), is not sequentially consistent: There is no way to order all the operations while respecting both the process order relation and the sequential specification of both *X* and *Y*. This is due to the fact that, as the second read of p_1 returns 2, the operation *X*.write₂(4) has to appear after it in a sequence (otherwise p_1 could not have obtained the value 2). But, then this write has to appear after the operation *X*.write₂(4) issued by p_1 , and consequently the read by p_2 should return 3 for the computation to be sequentially consistent.

This means that when p_2 executes X.write₂(4), its local copy of Y, namely $y_2 = 0$, no longer ensures the legality of its next read of this object Y. The manager of X has to cooperate with the manager of X to discover it, so that p_4 invalidate its local copy of Y.

17.4.3 An Algorithm Based on the OO Constraint

An algorithm based on the OO constraint is described in Fig. 17.14 (application process part) and Fig. 17.15 (object manager part).

On an Application Process Side The algorithms implementing the operations *X*.write(v) and *X*.read() are nearly the same as those of Fig. 17.9 which are for a single object (or a system where all the objects are managed by the same process p_{sm}).

The only difference lies in the fact that a process p_i adds to its request message (WRITE_REQ() sent at line 2, and READ_REQ() sent at line 8), the set of objects for which its local copies are valid (i.e., reading them before the current read or write operation would not violate sequential consistency). This information will help the manager of X (the object currently read or written by p_i) to help it invalidate its local copies whose future read would not be legal with their previous values.

```
when WRITE_REQ(X, v, valid) is received from p_i do
(14) x_X \leftarrow v;
 (15) hlw_X[1..n] \leftarrow [false, \ldots, false];
(16) hlw_X[i] \leftarrow true;
(17) inval \leftarrow check_legality(X, i, valid);
(18) send WRITE_ACK(inval) to p_i.
when READ_REQ(X, valid) is received from p_i do
(19) hlw_X[i] \leftarrow true;
(20) inval \leftarrow check_legality(X, i, valid);
(21) send READ_ACK(inval, x_X) to p_i.
procedure check_legality(X, i, valid) is
(22) inval_set \leftarrow \emptyset;
(23) for each Y \in valid \setminus \{X\} do send VALID_REQ(i) to p_Y end for;
 (24) for each Y \in valid \setminus \{X\} do
 (25)
          receive VALID_ACK(rep) from p_Y;
(26)
          if rep = no then inval\_set \leftarrow inval\_set \cup \{Y\} end if
 (27) end for;
(28) return(inval_set).
when VALID_REQ(j) is received from p_Y do
(29) if ((p_X \text{ is processing a write request}) \lor \neg hlv_X[j])
(30)
          then r \leftarrow no else r \leftarrow yes
 (31) end if;
 (32) send VALID_ACK(r) to p_Y.
```

Fig. 17.15 Sequential consistency with a manager per object: manager side

On an Object Manager Side The behavior of the process p_X managing the object X is described in Fig. 17.15. This manager maintains a Boolean vector $hlv_X[1..n]$ such that $hlv_X[i]$ is true if and only if p_i has the last value of X.

The code of the algorithms associated with the reception of a message WRITE_ REQ(X, v, valid) or the reception of a message READ_REQ(X, valid) is similar to its counterpart of Fig. 17.9 (where all objects are managed by the same process p_{sm}). The difference lies in the way the legality of the objects is ensured. The matrix $hlv_{sm}[1..n, [X, Y, ...]]$ used by the centralized manager p_{sm} is now distributed on all the object managers as follows: The vector $hlv_{sm}[1..n, X]$ is now managed only by p_X , which records it in its local vector $hlv_X[1..n]$.

The read or write operation currently invoked by p_i may entail the invalidation of its local copy of some objects, e.g., the object Y. This means that the computation, by p_X , of the set *inval* associated with this read or write operation requires that p_X cooperates with other object managers. This cooperation is realized by the local procedure denoted check_legality(X, *i*, *valid*).

As only the objects belonging to the current set *valid* transmitted by p_i can be invalidated, p_X sends a message VALID_REQ(*i*) to each manager p_Y such that $Y \in valid$ (line 23). It then waits for an answer for each of these messages (line 24), each carrying the answer *no* or *yes*. The answer *yes* means that p_Y claims that the current

Fig. 17.16 Cooperation between managers is required by the OO constraint

copy of Y at p_i is still valid (its future reads by p_i will still be legal). The answer *no* means that the copy of Y at p_i must be invalidated.

The behavior of a manager p_Y , when it receives a message VALID_REQ(*i*) from a manager p_X , is described in Fig. 17.16. When this occurs, p_Y (conservatively) asks p_X to invalidate the copy of Y at p_i if it knows that this copy is no longer up to date. This is the case if $hlw_Y[i]$, or if p_Y is currently processing a write (which, by construction is a write of Y). When this occurs, p_Y answers *no*. Otherwise, the copy of Y at p_i is still valid, and p_Y answers *yes* to p_X .

Sequential Consistency vs. Atomicity/Linearizability The previous OO-based implementation shows clearly the price that has to be paid to implement sequential consistency, namely, when each object is managed by a single process, the object managers must cooperate to guarantee a correct implementation.

As seen in Sect. 16.4.3, this was not the case in the algorithm implementing atomicity (see the algorithm in Fig. 16.10). This has a very simple explanation: atomicity (linearizability) is a local property (Theorem 27), while sequential consistency is not (see Sect. 17.1.2).

17.5 A Weaker Consistency Condition: Causal Consistency

17.5.1 Definition

Underlying Intuition Causal consistency is a consistency condition for read/write objects which is strictly weaker than sequential consistency. Its essence is to capture only the causality relation defined by the read-from relation. To that end, it does not require that all the processes agree on the very same legal sequential history \hat{S} .

Two processes are not required to agree on the write operations which are concurrent; they can see them in different orders. Read operations are, however, required to be legal.

Fig. 17.17 An example of a causally consistent computation

Remark The notion of a *sequential observation* of a distributed message-passing computation was introduced in Sect. 6.3.3. A sequential observation of a distributed execution is a sequence including all its events, respecting their partial ordering. Hence, distinct observations differ in the way they order concurrent events.

The notion of causal consistency is a similar notion applied to read/write objects.

Definition The set of operations that may affect a process p_i are its read and write operations, plus the write operations issued by the other processes. Given a computation \widehat{OP} , let $\widehat{OP_i}$ be the computation from which all the read operations not issued by p_i have been removed.

A computation \widehat{OP} is *causally consistent* if, for any process p_i , there is a legal sequential computation $\widehat{H_i}$ that is equivalent to $\widehat{OP_i}$.

While this means that, for each process p_i , $\widehat{OP_i}$ is sequentially consistent, it does not mean that \widehat{OP} is sequentially consistent. (This type of consistency condition is oriented toward cooperative work.)

Example 1 Let us first consider the computation described in Fig. 17.2. The following sequential computation \widehat{H}_i and \widehat{H}_j can be associated with p_i and p_j , respectively:

$$\begin{split} \widehat{H_i} &\equiv R'. \text{write}_j(0), \quad R'. \text{read}_i(0), \quad R'. \text{write}_j(2), \quad R'. \text{read}_i(2), \\ \widehat{H_i} &\equiv R. \text{write}_i(0), \quad R. \text{read}_i(0), \quad R. \text{write}_i(1), \quad R. \text{read}_i(1). \end{split}$$

As both $\widehat{H_i}$ and $\widehat{H_j}$ are legal, the computation is causally consistent.

Example 2 A second example is described in Fig. 17.17, where it is assumed that the write operations are independent. It follows that p_1 and p_2 can order these write operations in any order, and consequently as the sequences

$$\widehat{H_1} \equiv R.$$
write₄(1), $R.$ write₃(2), $R.$ read₁() $\rightarrow 2$, and
 $\widehat{H_2} \equiv R.$ write₄(2), $R.$ write₃(1), $R.$ read₂() $\rightarrow 1$

are legal, the computation is causally consistent.

Fig. 17.18 Another example of a causally consistent computation

Let us now assume that $R.write_4(1) \xrightarrow{op} R.write_3(2)$. In this case, both \widehat{H}_1 and \widehat{H}_2 must order $R.write_4(1)$ before $R.write_3(2)$, and for the computation to be causally consistent, both read operations have to return the value 2. Let us observe that, in this case, this computation is also atomic.

Example 3 A second example is described in Fig. 17.18, where the computation is made up of three processes accessing the registers R and R'. Moreover, as before, the operations R.write₁(1) and R.write₂(2) are concurrent.

If a = 2 (value returned from the read of *R* by p_3), the computation is causally consistent. This is due to the two following sequences which (a) respect the relation \xrightarrow{op} and (b) are legal:

$$\begin{split} \widehat{H_1} &\equiv R.\text{write}_1(1), R.\text{write}_2(2), R.\text{read}_1() \rightarrow 2, R'.\text{write}_1(3), \\ \widehat{H_2} &\equiv R.\text{write}_2(2), \text{ and} \\ \widehat{H_3} &\equiv R.\text{write}_1(1), R.\text{write}_2(2), R'.\text{write}_1(3), R'.\text{read}_3() \rightarrow 3, R.\text{read}_3() \rightarrow 2 \end{split}$$

Let us notice that, in this case, the computation is also sequentially consistent.

If a = 1 the computation is still causally consistent, but is no longer sequentially consistent. In this case p_3 orders the concurrent write operations of R in the reverse order, i.e., we have

 $\widehat{H_3} \equiv R.\mathsf{write}_2(2), R.\mathsf{write}_1(1), R'.\mathsf{write}_1(3), R'.\mathsf{read}_3() \rightarrow 3, R.\mathsf{read}_3() \rightarrow 2.$

17.5.2 A Simple Algorithm

Causal Consistency and Causal Message Delivery It is easy to see that, for read/write registers, causal consistency is analogous to causal broadcast on message deliveries. The notion of causal message delivery was introduced in Sect. 12.1, and its broadcast instance was developed in Sect. 12.3. It states that no message m can be delivered to a process before the messages broadcast in the causal past of m.

```
Fig. 17.19operation X.write(v) isA simple algorithm(1) co_broadcast CAUSAL_CONS(X, x_i);(2) x_i \leftarrow v.(2) x_i \leftarrow v.operation X.read() is(3) return(x_i);when CAUSAL_CONS(Y, v) is co-delivered do(4) y_i \leftarrow v.
```

For causal consistency, the causal past is defined with respect to the relation \xrightarrow{op} , a write operation corresponds to the broadcast of a message, while a read operation corresponds to a message reception (with the difference that a value written can never be read, and the same value can be read several times).

A Simple Algorithm It follows from the previous discussion that a simple way to implement causal consistency lies in using an underlying causal broadcast algorithm. Several algorithms were presented in Sect. 12.3; they provide the processes with the operations co_broadcast() and co_deliver(). We consider here the causal broadcast algorithm presented in Fig. 12.10.

The algorithm is described in Fig. 17.19. Each process manages a copy x_i of every register object X. It is easy to see that both the read operation and the write operation are fast. This is due to the fact that, as causality involves only the causal past, no process coordination is required.

17.5.3 The Case of a Single Object

A Simple Algorithm This section presents a very simple algorithm that implements causal consistency when there is a single object X. This algorithm is based on scalar clocks (these logical clocks were introduced in Sect. 7.1.1).

The algorithm is described in Fig. 17.20. The scalar clock of p_i is denoted $clock_i$ and is initialized to 0.

```
operation X.write(v) is

(1) clock_i \leftarrow clock_i + 1;

(2) x_i \leftarrow v;

(3) for each j \in \{1, ..., n\} \setminus \{i\} do send CAUSAL_CONS(v, clock_i) to p_j end for.

operation X.read() is

(4) return(x_i);

when CAUSAL_CONS(v, lw\_date) is delivered do

(5) if (lw\_date > clock_i) then clock_i \leftarrow lw\_date; x_i \leftarrow v end if.
```


As before, the read and write operations are fast. When a process invokes a write operation it increases its local clock, associates the corresponding date with its write, and sends the message CAUSAL_CONS $(v, clock_i)$ to all the other processes. The scalar clocks establish a total order on the write operations which are causally dependent.

Write operations with the same date w_{date} are concurrent. Only the first of them that is received by a process p_i is taken into account by p_i . The algorithm considers that, from the receiver p_i 's point of view, the other ones are overwritten by the first one. Hence, two processes p_i and p_j can order differently concurrent write operations.

From Causal Consistency to Sequential Consistency This algorithm can be easily enriched if one wants to obtain sequential consistency instead of causal consistency. To that end, logical clocks have to be replaced by timestamps (see Sect. 7.1.2). Moreover, each process p_i manages two additional local variables, denoted *last_writer_i* and *lw_date_i*. To p_i 's knowledge, *last_writer_i* contains the identity of the last process that has written into X, and *lw_date_i* contains the date associated with this write. The pair $\langle lw_date_i, last_writer_i \rangle$ constitutes the timestamp of the last write of X known by p_i . The modifications of the algorithm are as follows:

- Instead of sending the message CAUSAL_CONS(v, clock_i) (line 3), a process p_i sends now the message CAUSAL_CONS(v, (clock_i, i)).
- When it receives a message CAUSAL_CONS(v, ⟨*lw_date*, *j*⟩), a process *p_i* takes it into account only if ⟨*lw_date*, *j*⟩ > ⟨*lw_date_i*, *last_writer_i*⟩. It then updates *x_i* to *v* and ⟨*lw_date_i*, *last_writer_i*⟩ to ⟨*lw_date*, *j*⟩.

In that way, their timestamps define a total order on all the write operations, and no two processes order two write operations differently. The writes discarded by a process correspond to values that it sees as overwritten values.

17.6 A Hierarchy of Consistency Conditions

Atomicity (linearizability), sequential consistency, causal consistency, and FIFO consistency (presented in Problem 5), define a strict hierarchy of consistency conditions. This hierarchy is described in Fig. 17.21.

17.7 Summary

This chapter introduced sequential consistency and causal consistency, and presented several algorithms which implement them. As far as sequential consistency is concerned, it presented two properties (denoted WW and OO) which simplify the design of algorithms implementing this consistency condition.

17.8 Bibliographic Notes

- Sequential consistency was introduced by L. Lamport [227].
- Analysis of sequential consistency and its relation with atomicity can be found in [23, 313]. It is shown in [364] that checking if a computation is sequentially consistent is an NP-complete problem.
- Detection of violation of sequential consistency is addressed in [156].
- A lower bound on the time cost to ensure sequential consistency of read/write registers is proved in [23]. Considering that the transit time of each message is upper bounded by δ , it is shown that, whatever the algorithm, the sum of the delays for a read operation and a write operation is at most δ . The fast read (resp., write) algorithm corresponds to the case where the read (resp., write) operation cost 0 time units, while the write (resp., read) operation can cost up to δ time units.
- Both the WW constraint and the OO constraint, Theorems 29 and 30, are due to M. Mizuno, M. Raynal, and J.Z. Zhou [269]. The constraint-based approach is due to T. Ibaraki, T. Kameda, and T. Minoura [196].
- The three algorithms based on the total order broadcast abstraction (fast read algorithm, Sect. 17.2.1, fast write algorithm, Sect. 17.2.2, and fast enqueue algorithm, Sect. 17.2.3) are due to H. Attiya and J.L. Welch [23]. Formal proofs of these algorithms can be found in that paper.
- The algorithm described in Sect. 17.3.1 (sequential consistency with a single server for all the objects) and the algorithm described in Sect. 17.4 (sequential consistency with a server per object) are due to M. Mizuno, M. Raynal, and J.Z. Zhou [269].
- The token-based algorithm implementing sequential consistency is due to M. Raynal [314].
- An optimistic algorithm for sequential consistency is described in [268]. Other algorithms implementing sequential consistency can be found in [320, 322].
- The implementation of sequential consistency when objects are accessed by multiobject operations is addressed in [326].
- Causal consistency was introduced by M. Ahamad, G. Neiger, J.E. Burns, P.W. Hutto, and P. Kohli [10].
- Algorithms implementing causal consistency can be found in [10, 11, 92, 318]. An algorithm which allows processes to dynamically switch from sequential consistency to causal consistency, and vice-versa, is described in [369].

- Other consistency conditions weaker than sequential consistency have been proposed, e.g., slow memory [194], lazy release consistency [204], and PRAM consistency [237] (to cite a few). See [323] for a short introductory survey.
- Normality is a consistency condition which considers process order and object order [151]. When operations are on a single object, it is equivalent to sequential consistency.
- Very general algorithms, which can be instantiated with one of many consistency conditions, are described in [200, 212].

17.9 Exercises and Problems

- 1. Considering a concurrent stack defined by the classical operations push() and pop(), describe an execution where the stack behaves atomically. Design then an execution where the stack is sequentially consistent but not atomic.
- 2. Give a proof of Theorem 30.
- 3. Prove that the fast enqueue algorithm described in Fig. 17.8 implements a sequentially consistent queue.
- 4. Considering the fast write algorithm described in Sect. 17.2.2, let us replace the variable nb_write_i by an array $nb_write_i[X, Y, Z, ...]$, where $nb_write_i[X]$ counts the number write into X issued by p_i and not yet to-delivered to p_i .

When p_i invokes X.read(), is it possible to replace the predicate $(nb_write_i = 0)$ used at line 4 by the predicate $nb_write_i[X] = 0$? If the answer is "yes", prove the corresponding algorithm. If the answer is "no", give a counterexample.

5. FIFO consistency requires that the write operations issued by each process p_i are seen by each process in the order in which they have been issued by p_i . There is no constraint on the write operations issued by different processes.

Describe an algorithm implementing FIFO consistency. Show that this consistency condition is weaker than causal consistency.

6. Show that causal consistency plus the WW constraint provide sequential consistency.

Solution in [322].

- 7. Extend the algorithm described in Sect. 17.3.1 so that it benefits from the notion of an owner process introduced in Sect. 16.4.4. (A process owns an object X from the time it writes it until the next read or write operation that will be applied to X by another process. As during this period no other process accesses X, p_i can write it several times without having to inform the manager process.)
- 8. Extend the algorithms described Fig. 17.14 (application process algorithm) and Fig. 17.15 (manager algorithm) so that they benefit from the notion of an owner process.

Solution in [313].

 Design an algorithm that implements causal consistency, where each process manages copies of only a subset of the objects. Solution in [318].

Afterword

The Aim of This Book

The practice of sequential computing has greatly benefited from the results of the theory of sequential computing that were captured in the study of formal languages and automata theory. Everyone knows what can be computed (computability) and what can be computed efficiently (complexity). All these results constitute the foundations of sequential computing, which, thanks to them, has become a *science*. These theoretical results and algorithmic principles have been described in many books from which students can learn basic results, algorithms, and principles of sequential computing (e.g., [99, 107, 148, 189, 205, 219, 258, 270, 351] to cite a few).

Since Lamport's seminal paper "*Time, clocks, and the ordering of events in a distributed system*", which appeared in 1978 [226], distributed computing is no longer a set of tricks or recipes, but a domain of computing science with its own concepts, methods, and applications. The world is distributed, and today the major part of applications are distributed. This means that message-passing algorithms are now an important part of any computing science or computing engineering curriculum.

Thanks to appropriate curricula—and good associated books—students have a good background in the theory and practice of sequential computing. In the same spirit, an aim of this book is to try to provide them with an appropriate background when they have to solve distributed computing problems.

Technology is what makes everyday life easier. Science is what allows us to transcend it, and capture the deep nature of the objects we are manipulating. To that end, it provides us with the right concepts to master and understand what we are doing. Considering failure-free asynchronous distributed computing, an ambition of this book is to be a step in this direction.

Most Important Concepts, Notions, and Mechanisms Presented in This Book

- Chapter 1: Asynchronous/synchronous system, breadth-first traversal, broadcast, convergecast, depth-first traversal, distributed algorithm, forward/discard principle, initial knowledge, local algorithm, parallel traversal, spanning tree, unidirectional logical ring.
- Chapter 2: Distributed graph algorithm, cycle detection, graph coloring, knot detection, maximal independent set, problem reduction, shortest path computation.
- Chapter 3: Cut vertex, de Bruijn's graph, determination of cut vertices, global function, message filtering, regular communication graph, round-based framework.
- Chapter 4: Anonymous network, election, message complexity, process identity, ring network, time complexity, unidirectional versus bidirectional ring.
- Chapter 5: Adaptive algorithm, distributed queuing, edge/link reversal, mobile object, mutual exclusion, network navigation, object consistency, routing, scalability, spanning tree, starvation-freedom, token.
- Chapter 6: Event, causal dependence relation, causal future, causal path, causal past, concurrent (independent) events, causal precedence relation, consistent global state, cut, global state, happened before relation, lattice of global states, observation, marker message, nondeterminism, partial order on events, partial order on local states, process history, process local state, sequential observation.
- Chapter 7: Adaptive communication layer, approximate causality relation, causal precedence, causality tracking, conjunction of stable local predicates, detection of a global state property, discarding old data, Hasse diagram, immediate predecessor, linear (scalar) time (clock), logical time, matrix time (clock), message stability, partial (total) order, relevant event, *k*-restricted vector clock, sequential observation, size of a vector clock, timestamp, time propagation, total order broadcast, vector time (clock).
- Chapter 8: Causal path, causal precedence, communication-induced checkpointing, interval (of events), local checkpoint, forced local checkpoint, global checkpoint, hidden dependency, recovery, rollback-dependency trackability, scalar clock, spontaneous local checkpoint, uncoordinated checkpoint, useless checkpoint, vector clock, Z-dependence, zigzag cycle, zigzag pattern, zigzag path, zigzag prevention.
- Chapter 9: Asynchronous system, bounded delay network, complexity, graph covering structure, physical clock drift, pulse-based programming, synchronizer, synchronous algorithm.
- Chapter 10: Adaptive algorithm, arbiter permission, bounded algorithm, deadlockfreedom, directed acyclic graph, extended mutex, adaptive algorithm, grid quorum, individual permission, liveness property, mutual exclusion (mutex), preemption, quorum, readers/writers problem, safety property, starvation-freedom, timestamp, vote.

- Chapter 11: Conflict graph, deadlock prevention, graph coloring, incremental requests, k-out-of-M problem, permission, resource allocation, resource graph, resource type, resource instance, simultaneous requests, static/dynamic (resource) session, timestamp, total order, waiting chain, wait-for graph.
- Chapter 12: Asynchronous system, bounded lifetime message, causal barrier, causal broadcast, causal message delivery order, circulating token, client/server broadcast, coordinator process, delivery condition, first in first out (FIFO) channel, order properties on a channel, size of control information, synchronous system.
- Chapter 13: Asynchronous system, client-server hierarchy, communication initiative, communicating sequential processes, crown, deadline-constrained interaction, deterministic vs. nondeterministic context, logically instantaneous communication, planned vs. forced interaction, rendezvous, multiparty interaction, synchronous communication, synchronous system, token.
- Chapter 14: AND receive, asynchronous system, atomic model, counting, diffusing computation, distributed iteration, global state, *k*-out-of-*n* receive statement, loop invariant, message arrival vs. message reception, network traversal, nondeterministic statement, OR receive statement, reasoned construction, receive statement, ring, spanning tree, stable property, termination detection, wave.
- Chapter 15: AND communication model, cycle, deadlock, deadlock detection, knot, one-at-a-time model, OR communication model, probe-based algorithm, resource vs. message, stable property, wait-for graph.
- Chapter 16: Atomicity, composability, concurrent object, consistency condition, distributed shared memory, invalidation vs. update, linearizability, linearization point, local property, manager process, object operation, partial order on operations, read/write register, real time, sequential specification, server process, shared memory abstraction, total order broadcast abstraction.
- Chapter 17: Causal consistency, concurrent object, consistency condition, distributed shared memory, invalidation, logical time, manager process, OO constraint, partial order on operations, read/write register, sequential consistency, server processes, shared memory abstraction, total order broadcast abstraction, WW constraint.

How to Use This Book

This section presents two courses on distributed computing which can benefit from the concepts, algorithms and principles presented in this book. Each course is a one-semester course, and they are designed to be sequential (a full year at the undergraduate level, or split, with the first course at the undergraduate level and the second at the beginning of the graduate level).

• A first one-semester course on distributed computing could first focus on Part I, which is devoted to graph algorithms. Then, the course could address (a) distributed mutual exclusion (Chap. 10), (b) causal message delivery and total order

broadcast (Chap. 12), and (c) distributed termination detection (Chap. 14), if time permits.

The spirit of this course is to be an introductory course, giving students a correct intuition of what distributed algorithms are (they are not simple "extensions" of sequential algorithms), and show them that there are problems which are specific to distributed computing.

• A second one-semester course on distributed computing could first address the concept of a global state (Chap. 6). The aim is here to give the student a precise view of what a distributed execution is and introduce the notion of a global state. Then, the course could develop and illustrate the different notions of logical times (Chap. 7).

Distributed checkpointing (Chap. 8), synchronizers (Chap. 9), resource allocation (Chap. 11), rendezvous communication (Chap. 13), and deadlock detection (Chap. 15), can be used to illustrate the previous notions.

Finally, the meaning and the implementation of a distributed shared memory (Part VI) could be presented to introduce the notion of a consistency condition, which is a fundamental notion of distributed computing.

Of course, this book can also be used by engineers and researchers who work on distributed applications to better understand the concepts and mechanisms that underlie their work.

From Failure-Free Systems to Failure-Prone Systems

This book was devoted to algorithms for failure-free asynchronous distributed applications and systems. Once the fundamental notions, concepts, and algorithms of failure-free distributed computing are mastered, one can focus on more specific topics of failure-prone distributed systems. In such a context, the combined effect of asynchrony and failures create *uncertainty* that algorithms have to cope with. The reader interested in the net effect of asynchrony and failure on the design of distributed algorithms is invited to consult the following books: [24, 67, 150, 155, 219, 242, 315, 316] (to cite a few).

A Series of Books

This book completes a series of four books, written by the author, devoted to concurrent and distributed computing [315–317]. More precisely, we have the following.

- As has been seen, this book is on elementary distributed computing for *failure-free asynchronous* systems.
- The book [317] is on algorithms in *asynchronous* shared memory systems where processes can commit *crash failures*. It focuses on the construction of reliable concurrent objects in the presence of process crashes.

- The book [316] is on *asynchronous message-passing systems* where processes are prone to *crash failures*. It presents communication and agreement abstractions for fault-tolerant asynchronous distributed systems. Failure detectors are used to circumvent impossibility results encountered in pure asynchronous systems.
- The book [315] is on *synchronous* message-passing systems, where the processes are prone to *crash failures, omission failures, or Byzantine failures*. It focuses on the following distributed agreement problems: consensus, interactive consistency, and non-blocking atomic commit.

Enseigner, c'est réfléchir à voix haute devant les étudiants. Henri-Léon Lebesgue (1875–1941)

Make everything as simple as possible, but not simpler. Albert Einstein (1879–1955)

References

- A. Acharya, B.R. Badrinath, Recording distributed snapshot based on causal order of message delivery. Inf. Process. Lett. 44, 317–321 (1992)
- A. Acharya, B.R. Badrinath, Checkpointing distributed application on mobile computers, in 3rd Int'l Conference on Parallel and Distributed Information Systems (IEEE Press, New York, 1994), pp. 73–80
- S. Adve, K. Gharachorloo, Shared memory consistency models. IEEE Comput. 29(12), 66– 76 (1996)
- S. Adve, M. Mill, A unified formalization of four shared memory models. IEEE Trans. Parallel Distrib. Syst. 4(6), 613–624 (1993)
- Y. Afek, G.M. Brown, M. Merritt, Lazy caching. ACM Trans. Program. Lang. Syst. 15(1), 182–205 (1993)
- A. Agarwal, V.K. Garg, Efficient dependency tracking for relevant events in concurrent systems. Distrib. Comput. 19(3), 163–183 (2007)
- 7. D. Agrawal, A. El Abbadi, An efficient and fault-tolerant solution for distributed mutual exclusion. ACM Trans. Comput. Syst. **9**(1), 1–20 (1991)
- D. Agrawal, A. Malpini, Efficient dissemination of information in computer networks. Comput. J. 34(6), 534–541 (1991)
- M. Ahamad, M.H. Ammar, S.Y. Cheung, Multidimensional voting. ACM Trans. Comput. Syst. 9(4), 399–431 (1991)
- M. Ahamad, G. Neiger, J.E. Burns, P.W. Hutto, P. Kohli, Causal memory: definitions, implementation and programming. Distrib. Comput. 9, 37–49 (1995)
- M. Ahamad, M. Raynal, G. Thia-Kime, An adaptive protocol for implementing causally consistent distributed services, in *Proc. 18th Int'l Conference on Distributed Computing Systems* (*ICDCS'98*) (IEEE Press, New York, 1998), pp. 86–93
- 12. M. Ahuja, Flush primitives for asynchronous distributed systems. Inf. Process. Lett. **34**, 5–12 (1990)
- M. Ahuja, M. Raynal, An implementation of global flush primitives using counters. Parallel Process. Lett. 5(2), 171–178 (1995)
- 14. S. Alagar, S. Venkatesan, An optimal algorithm for distributed snapshots with message causal ordering. Inf. Process. Lett. **50**, 310–316 (1994)
- A. Alvarez, S. Arévalo, V. Cholvi, A. Fernández, E. Jiménez, On the interconnection of message passing systems. Inf. Process. Lett. 105(6), 249–254 (2008)
- L. Alvisi, K. Marzullo, Message logging: pessimistic, optimistic, and causal. IEEE Trans. Softw. Eng. 24(2), 149–159 (1998)
- E. Anceaume, J.-M. Hélary, M. Raynal, Tracking immediate predecessors in distributed computations, in *Proc. 14th Annual ACM Symposium on Parallel Algorithms and Architectures* (SPAA'002) (ACM Press, New York, 2002), pp. 210–219

M. Raynal, *Distributed Algorithms for Message-Passing Systems*, DOI 10.1007/978-3-642-38123-2, © Springer-Verlag Berlin Heidelberg 2013

- E. Anceaume, J.-M. Hélary, M. Raynal, A note on the determination of the immediate predecessors in a distributed computation. Int. J. Found. Comput. Sci. 13(6), 865–872 (2002)
- D. Angluin, Local and global properties in networks of processors, in *Proc. 12th ACM Symposium on Theory of Computation (STOC'81)* (ACM Press, New York, 1981), pp. 82–93
- I. Arrieta, F. Fariña, J.-R. Mendívil, M. Raynal, Leader election: from Higham-Przytycka's algorithm to a gracefully degrading algorithm, in *Proc. 6th Int'l Conference on Complex, Intelligent, and Software Intensive Systems (CISIS'12)* (IEEE Press, New York, 2012), pp. 225–232
- H. Attiya, S. Chaudhuri, R. Friedman, J.L. Welch, Non-sequential consistency conditions for shared memory, in *Proc. 5th ACM Symposium on Parallel Algorithms and Architectures* (SPAA'93) (ACM Press, New York, 1993), pp. 241–250
- H. Attiya, M. Snir, M. Warmuth, Computing on an anonymous ring. J. ACM 35(4), 845–876 (1988)
- H. Attiya, J.L. Welch, Sequential consistency versus linearizability. ACM Trans. Comput. Syst. 12(2), 91–122 (1994)
- H. Attiya, J.L. Welch, Distributed Computing: Fundamentals, Simulations and Advanced Topics, 2nd edn. (Wiley-Interscience, New York, 2004). 414 pages. ISBN 0-471-45324-2
- B. Awerbuch, A new distributed depth-first search algorithm. Inf. Process. Lett. 20(3), 147– 150 (1985)
- 26. B. Awerbuch, Reducing complexities of the distributed max-flow and breadth-first algorithms by means of network synchronization. Networks **15**, 425–437 (1985)
- 27. B. Awerbuch, Complexity of network synchronization. J. ACM 4, 804-823 (1985)
- O. Babaoğlu, E. Fromentin, M. Raynal, A unified framework for the specification and the run-time detection of dynamic properties in distributed executions. J. Syst. Softw. 33, 287– 298 (1996)
- O. Babaoğlu, K. Marzullo, Consistent global states of distributed systems: fundamental concepts and mechanisms, in *Distributed Systems* (ACM/Addison-Wesley Press, New York, 1993), pp. 55–93. Chap. 4
- R. Bagrodia, Process synchronization: design and performance evaluation for distributed algorithms. IEEE Trans. Softw. Eng. SE15(9), 1053–1065 (1989)
- R. Bagrodia, Synchronization of asynchronous processes in CSP. ACM Trans. Program. Lang. Syst. 11(4), 585–597 (1989)
- H.E. Bal, F. Kaashoek, A. Tanenbaum, Orca: a language for parallel programming of distributed systems. IEEE Trans. Softw. Eng. 18(3), 180–205 (1992)
- R. Baldoni, J.M. Hélary, A. Mostéfaoui, M. Raynal, Impossibility of scalar clock-based communication-induced checkpointing protocols ensuring the RDT property. Inf. Process. Lett. 80(2), 105–111 (2001)
- R. Baldoni, J.M. Hélary, A. Mostéfaoui, M. Raynal, A communication-induced checkpointing protocol that ensures rollback-dependency trackability, in *Proc. 27th IEEE Symposium* on *Fault-Tolerant Computing (FTCS-27)* (IEEE Press, New York, 1997), pp. 68–77
- R. Baldoni, J.-M. Hélary, M. Raynal, Consistent records in asynchronous computations. Acta Inform. 35(6), 441–455 (1998)
- R. Baldoni, J.M. Hélary, M. Raynal, Rollback-dependency trackability: a minimal characterization and its protocol. Inf. Comput. 165(2), 144–173 (2001)
- R. Baldoni, G. Melideo, k-dependency vectors: a scalable causality-tracking protocol, in Proc. 11th Euromicro Workshop on Parallel, Distributed and Network-Based Processing (PDP'03) (2003), pp. 219–226
- R. Baldoni, A. Mostéfaoui, M. Raynal, Causal delivery of messages with real-time data in unreliable networks. Real-Time Syst. 10(3), 245–262 (1996)
- R. Baldoni, R. Prakash, M. Raynal, M. Singhal, Efficient delta-causal broadcasting. Comput. Syst. Sci. Eng. 13(5), 263–270 (1998)
- R. Baldoni, M. Raynal, Fundamentals of distributed computing: a practical tour of vector clock systems. IEEE Distrib. Syst. Online 3(2), 1–18 (2002)

- D. Barbara, H. Garcia Molina, Mutual exclusion in partitioned distributed systems. Distrib. Comput. 1(2), 119–132 (1986)
- D. Barbara, H. Garcia Molina, A. Spauster, Increasing availability under mutual exclusion constraints with dynamic vote assignments. ACM Trans. Comput. Syst. 7(7), 394–426 (1989)
- L. Barenboim, M. Elkin, Deterministic distributed vertex coloring in polylogarithmic time. J. ACM 58(5), 23 (2011), 25 pages
- 44. R. Bellman, Dynamic Programming (Princeton University Press, Princeton, 1957)
- J.-C. Bermond, C. Delorme, J.-J. Quisquater, Strategies for interconnection networks: some methods from graph theory. J. Parallel Distrib. Comput. 3(4), 433–449 (1986)
- 46. J.-C. Bermond, J.-C. König, General and efficient decentralized consensus protocols II, in Proc. Int'l Workshop on Parallel and Distributed Algorithms, ed. by M. Cosnard, P. Quinton, M. Raynal, Y. Robert (North-Holland, Amsterdam, 1989), pp. 199–210
- J.-C. Bermond, J.-C. König, Un protocole distribué pour la 2-connexité. TSI. Tech. Sci. Inform. 10(4), 269–274 (1991)
- J.-C. Bermond, J.-C. König, M. Raynal, General and efficient decentralized consensus protocols, in *Proc. 2nd Int'l Workshop on Distributed Algorithms (WDAG'87)*. LNCS, vol. 312 (Springer, Berlin, 1987), pp. 41–56
- J.-C. Bermond, C. Peyrat, de Bruijn and Kautz networks: a competitor for the hypercube? in *Proc. Int'l Conference on Hypercube and Distributed Computers* (North-Holland, Amsterdam, 1989), pp. 279–284
- J.M. Bernabéu-Aubán, M. Ahamad, Applying a path-compression technique to obtain an effective distributed mutual exclusion algorithm, in *Proc. 3rd Int'l Workshop on Distributed Algorithms (WDAG'89)*. LNCS, vol. 392 (Springer, Berlin, 1989), pp. 33–44
- A.J. Bernstein, Output guards and non-determinism in "communicating sequential processes". ACM Trans. Program. Lang. Syst. 2(2), 234–238 (1980)
- B.K. Bhargava, S.-R. Lian, Independent checkpointing and concurrent rollback for recovery in distributed systems: an optimistic approach, in *Proc. 7th IEEE Symposium on Reliable Distributed Systems (SRDS'88)* (IEEE Press, New York, 1988), pp. 3–12
- K. Birman, T. Joseph, Reliable communication in the presence of failures. ACM Trans. Comput. Syst. 5(1), 47–76 (1987)
- A.D. Birell, B.J. Nelson, Implementing remote procedure calls. ACM Trans. Comput. Syst. 3, 39–59 (1984)
- 55. K.P. Birman, A. Schiper, P. Stephenson, Lightweight causal and atomic group multicast. ACM Trans. Comput. Syst. 9(3), 272–314 (1991)
- H.L. Bodlaender, Some lower bound results for decentralized extrema finding in ring of processors. J. Comput. Syst. Sci. 42, 97–118 (1991)
- L. Bougé, Repeated snapshots in distributed systems with synchronous communications and their implementation in CSP. Theor. Comput. Sci. 49, 145–169 (1987)
- L. Bougé, N. Francez, A compositional approach to super-imposition, in *Proc. 15th Annual* ACM Symposium on Principles of Programming Languages (POPL'88) (ACM Press, New York, 1988), pp. 240–249
- A. Boukerche, C. Tropper, A distributed graph algorithm for the detection of local cycles and knots. IEEE Trans. Parallel Distrib. Syst. 9(8), 748–757 (1998)
- Ch. Boulinier, F. Petit, V. Villain, Synchronous vs asynchronous unison. Algorithmica 51(1), 61–80 (2008)
- 61. G. Bracha, S. Toueg, Distributed deadlock detection. Distrib. Comput. 2(3), 127–138 (1987)
- D. Briatico, A. Ciuffoletti, L.A. Simoncini, Distributed domino-effect free recovery algorithm, in 4th IEEE Symposium on Reliability in Distributed Software and Database Systems (IEEE Press, New York, 1984), pp. 207–215
- 63. P. Brinch Hansen, Distributed processes: a concurrent programming concept. Commun. ACM **21**(11), 934–941 (1978)

- 64. J. Brzezinski, J.-M. Hélary, M. Raynal, Termination detection in a very general distributed computing model, in *Proc. 13th IEEE Int'l Conference on Distributed Computing Systems* (*ICDCS'93*) (IEEE Press, New York, 1993), pp. 374–381
- J. Brzezinski, J.-M. Hélary, M. Raynal, M. Singhal, Deadlock models and a general algorithm for distributed deadlock detection. J. Parallel Distrib. Comput. 31(2), 112–125 (1995) (Erratum printed in Journal of Parallel and Distributed Computing, 32(2), 232 (1996))
- G.N. Buckley, A. Silberschatz, An effective implementation for the generalized input-output construct of CSP. ACM Trans. Program. Lang. Syst. 5(2), 223–235 (1983)
- C. Cachin, R. Guerraoui, L. Rodrigues, *Introduction to Reliable and Secure Distributed Pro*gramming, 2nd edn. (Springer, Berlin, 2012), 367 pages. ISBN 978-3-642-15259-7
- G. Cao, M. Singhal, A delay-optimal quorum-based mutual exclusion algorithm for distributed systems. IEEE Trans. Parallel Distrib. Syst. 12(12), 1256–1268 (1991)
- N. Carriero, D. Gelernter, T.G. Mattson, A.H. Sherman, The Linda alternative to messagepassing systems. Parallel Comput. 20(4), 633–655 (1994)
- O. Carvalho, G. Roucairol, On the distribution of an assertion, in *Proc. First ACM Symposium* on *Principles of Distributed Computing (PODC'1982)* (ACM Press, New York, 1982), pp. 18–20
- O. Carvalho, G. Roucairol, On mutual exclusion in computer networks. Commun. ACM 26(2), 146–147 (1983)
- 72. L.M. Censier, P. Feautrier, A new solution to coherence problems in multicache systems. IEEE Trans. Comput. **C-27**(12), 112–118 (1978)
- P. Chandra, A.K. Kshemkalyani, Causality-based predicate detection across space and time. IEEE Trans. Comput. 54(11), 1438–1453 (2005)
- S. Chandrasekaran, S. Venkatesan, A message-optimal algorithm for distributed termination detection. J. Parallel Distrib. Comput. 8(3), 245–252 (1990)
- K.M. Chandy, L. Lamport, Distributed snapshots: determining global states of distributed systems. ACM Trans. Comput. Syst. 3(1), 63–75 (1985)
- K.M. Chandy, J. Misra, Deadlock absence proof for networks of communicating processes. Inf. Process. Lett. 9(4), 185–189 (1979)
- K.M. Chandy, J. Misra, Distributed computation on graphs: shortest path algorithms. Commun. ACM 25(11), 833–837 (1982)
- K.M. Chandy, J. Misra, The drinking philosophers problem. ACM Trans. Program. Lang. Syst. 6(4), 632–646 (1984)
- K.M. Chandy, J. Misra, An example of stepwise refinement of distributed programs: quiescence detection. ACM Trans. Program. Lang. Syst. 8(3), 326–343 (1986)
- K.M. Chandy, J. Misra, *Parallel Program Design* (Addison-Wesley, Reading, 1988), 516 pages
- K.M. Chandy, J. Misra, L.M. Haas, Distributed deadlock detection. ACM Trans. Comput. Syst. 1(2), 144–156 (1983)
- E.J.H. Chang, Echo algorithms: depth-first algorithms on graphs. IEEE Trans. Softw. Eng. SE-8(4), 391–402 (1982)
- E.J.H. Chang, R. Roberts, An improved algorithm for decentralized extrema finding in circular configurations of processes. Commun. ACM 22(5), 281–283 (1979)
- J.-M. Chang, N.F. Maxemchuck, Reliable broadcast protocols. ACM Trans. Comput. Syst. 2(3), 251–273 (1984)
- A. Charlesworth, The multiway rendezvous. ACM Trans. Program. Lang. Syst. 9, 350–366 (1987)
- B. Charron-Bost, Concerning the size of logical clocks in distributed systems. Inf. Process. Lett. 39, 11–16 (1991)
- B. Charron-Bost, G. Tel, Calcul approché de la borne inférieure de valeurs réparties. Inform. Théor. Appl. 31(4), 305–330 (1997)
- B. Charron-Bost, G. Tel, F. Mattern, Synchronous, asynchronous, and causally ordered communications. Distrib. Comput. 9(4), 173–191 (1996)

- C. Chase, V.K. Garg, Detection of global predicates: techniques and their limitations. Distrib. Comput. 11(4), 191–201 (1998)
- D.R. Cheriton, D. Skeen, Understanding the limitations of causally and totally ordered communication, in *Proc. 14th ACM Symposium on Operating System Principles (SOSP'93)* (ACM Press, New York, 1993), pp. 44–57
- T.-Y. Cheung, Graph traversal techniques and the maximum flow problem in distributed computation. IEEE Trans. Softw. Eng. SE-9(4), 504–512 (1983)
- V. Cholvi, A. Fernández, E. Jiménez, P. Manzano, M. Raynal, A methodological construction of an efficient sequentially consistent distributed shared memory. Comput. J. 53(9), 1523– 1534 (2010)
- C.T. Chou, I. Cidon, I. Gopal, S. Zaks, Synchronizing asynchronous bounded delays networks, in *Proc. 2nd Int'l Workshop on Distributed Algorithms (WDAG'87)*. LNCS, vol. 312 (Springer, Berlin, 1987), pp. 212–218
- M. Choy, A.K. Singh, Efficient implementation of synchronous communication over asynchronous networks. J. Parallel Distrib. Comput. 26, 166–180 (1995)
- I. Cidon, Yet another distributed depth-first search algorithm. Inf. Process. Lett. 26(6), 301– 305 (1988)
- I. Cidon, An efficient knot detection algorithm. IEEE Trans. Softw. Eng. 15(5), 644–649 (1989)
- E.G. Coffman Jr., M.J. Elphick, A. Shoshani, System deadlocks. ACM Comput. Surv. 3(2), 67–78 (1971)
- R. Cooper, K. Marzullo, Consistent detection of global predicates, in *Proc. ACM/ONR Workshop on Parallel and Distributed Debugging* (ACM Press, New York, 1991), pp. 163–173
- 99. Th.H. Cormen, Ch.E. Leiserson, R.L. Rivest, *Introduction to Algorithms* (The MIT Press, Cambridge, 1998), 1028 pages
- J.-M. Couvreur, N. Francez, M. Gouda, Asynchronous unison, in *Proc. 12th IEEE Int'l Con*ference on Distributed Computing Systems (ICDCS'92) (IEEE Press, New York, 1992), pp. 486–493
- 101. F. Cristian, Probabilistic clock synchronization. Distrib. Comput. 3(3), 146–158 (1989)
- F. Cristian, H. Aghili, R. Strong, D. Dolev, Atomic broadcast: from simple message diffusion to Byzantine agreement. Inf. Comput. **118**(1), 158–179 (1995)
- 103. F. Cristian, F. Jahanian, A timestamping-based checkpointing protocol for long-lived distributed computations, in *Proc. 10th IEEE Symposium on Reliable Distributed Systems* (SRDS'91) (IEEE Press, New York, 1991), pp. 12–20
- O.P. Damani, Y.-M. Wang, V.K. Garg, Distributed recovery with k-optimistic logging. J. Parallel Distrib. Comput. 63(12), 1193–1218 (2003)
- M.J. Demmer, M. Herlihy, The arrow distributed directory protocol, in *Proc. 12th Int'l Symposium on Distributed Computing (DISC'98)*. LNCS, vol. 1499 (Springer, Berlin, 1998), pp. 119–133
- 106. P.J. Denning, Virtual memory. ACM Comput. Surv. 2(3), 153–189 (1970)
- P.J. Denning, J.B. Dennis, J.E. Qualitz, *Machines, Languages and Computation* (Prentice Hall, New York, 1978), 612 pages
- Cl. Diehl, Cl. Jard, Interval approximations of message causality in distributed executions, in *Proc. 9th Annual Symposium on Theoretical Aspects of Computer Science (STACS'92)*. LNCS, vol. 577 (Springer, Berlin, 1992), pp. 363–374
- E.W. Dijkstra, Solution of a problem in concurrent programming control. Commun. ACM 8(9), 569 (1965)
- 110. E.W. Dijkstra, The structure of "THE" multiprogramming system. Commun. ACM 11(5), 341–346 (1968)
- 111. E.W. Dijkstra, Hierarchical ordering of sequential processes. Acta Inform. 1, 115–138 (1971)
- 112. E.W. Dijkstra, Self stabilizing systems in spite of distributed control. Commun. ACM 17, 643–644 (1974)

- E.W. Dijkstra, Guarded commands, nondeterminacy, and formal derivation of programs. Commun. ACM 18(8), 453–457 (1979)
- 114. E.W. Dijkstra, W.H.J. Feijen, A.J.M. van Gasteren, Derivation of a termination detection algorithm for distributed computations. Inf. Process. Lett. **16**(5), 217–219 (1983)
- E.W.D. Dijkstra, C.S. Scholten, Termination detection for diffusing computations. Inf. Process. Lett. 11(1), 1–4 (1980)
- D. Dolev, J.Y. Halpern, H.R. Strong, On the possibility and impossibility of achieving clock synchronization. J. Comput. Syst. Sci. 33(2), 230–250 (1986)
- D. Dolev, M. Klawe, M. Rodeh, An O(n log n) unidirectional distributed algorithm for extrema finding in a circle. J. Algorithms 3, 245–260 (1982)
- 118. S. Dolev, Self-Stabilization (The MIT Press, Cambridge, 2000), 197 pages
- M. Dubois, C. Scheurich, Memory access dependencies in shared memory multiprocessors. IEEE Trans. Softw. Eng. 16(6), 660–673 (1990)
- E.N. Elnozahy, L. Alvisi, Y.-M. Wang, D.B. Johnson, A survey of rollback-recovery protocols in message-passing systems. ACM Comput. Surv. 34(3), 375–408 (2002)
- E. Evangelist, N. Francez, S. Katz, Multiparty interactions for interprocess communication and synchronization. IEEE Trans. Softw. Eng. 15(11), 1417–1426 (1989)
- 122. S. Even, *Graph Algorithms*, 2nd edn. (Cambridge University Press, Cambridge, 2011), 202 pages (edited by G. Even)
- 123. A. Fekete, N.A. Lynch, L. Shrira, A modular proof of correctness for a network synchronizer, in *Proc. 2nd Int'l Workshop on Distributed Algorithms (WDAG'87)*. LNCS, vol. 312 (Springer, Berlin, 1987), pp. 219–256
- 124. C.J. Fidge, Timestamp in message passing systems that preserves partial ordering, in *Proc. 11th Australian Computing Conference* (1988), pp. 56–66
- 125. C.J. Fidge, Logical time in distributed computing systems. IEEE Comput. 24(8), 28–33 (1991)
- C.J. Fidge, Limitation of vector timestamps for reconstructing distributed computations. Inf. Process. Lett. 68, 87–91 (1998)
- 127. M.J. Fischer, A. Michael, Sacrificing serializability to attain high availability of data, in *Proc. First ACM Symposium on Principles of Database Systems (PODS'82)* (ACM Press, New York, 1882), pp. 70–75
- 128. R.W. Floyd, Algorithm 97: shortest path. Commun. ACM 5(6), 345 (1962)
- 129. J. Fowler, W. Zwaenepoel, Causal distributed breakpoints, in Proc. 10th Int'l IEEE Conference on Distributed Computing Systems (ICDCS'90) (IEEE Press, New York, 1990), pp. 134–141
- 130. N. Francez, Distributed termination. ACM Trans. Program. Lang. Syst. 2(1), 42-55 (1980)
- N. Francez, B. Halpern, G. Taubenfeld, Script: a communication abstraction mechanism. Sci. Comput. Program. 6(1), 35–88 (1986)
- 132. N. Francez, M. Rodeh, Achieving distributed termination without freezing. IEEE Trans. Softw. Eng. 8(3), 287–292 (1982)
- N. Francez, S. Yemini, Symmetric intertask communication. ACM Trans. Program. Lang. Syst. 7(4), 622–636 (1985)
- W.R. Franklin, On an improved algorithm for decentralized extrema-finding in circular configurations of processors. Commun. ACM 25(5), 336–337 (1982)
- U. Fridzke, P. Ingels, A. Mostéfaoui, M. Raynal, Fault-tolerant consensus-based total order multicast. IEEE Trans. Parallel Distrib. Syst. 13(2), 147–157 (2001)
- R. Friedman, Implementing hybrid consistency with high-level synchronization operations, in *Proc. 12th Annual ACM Symposium on Principles of Distributed Computing (PODC'93)* (ACM Press, New York, 1993), pp. 229–240
- E. Fromentin, Cl. Jard, G.-V. Jourdan, M. Raynal, On-the-fly analysis of distributed computations. Inf. Process. Lett. 54(5), 267–274 (1995)
- E. Fromentin, M. Raynal, Shared global states in distributed computations. J. Comput. Syst. Sci. 55(3), 522–528 (1997)

- E. Fromentin, M. Raynal, V.K. Garg, A.I. Tomlinson, On the fly testing of regular patterns in distributed computations, in *Proc. Int'l Conference on Parallel Processing (ICPP'94)* (1994), pp. 73–76
- 140. R. Fujimoto, Parallel discrete event simulation. Commun. ACM 33(10), 31-53 (1990)
- 141. E. Gafni, D. Bertsekas, Distributed algorithms for generating loop-free routes in networks with frequently changing topologies. IEEE Trans. Commun. **C-29**(1), 11–18 (1981)
- 142. R.G. Gallager, Distributed minimum hop algorithms. Tech Report LIDS 1175, MIT, 1982
- 143. R.G. Gallager, P.A. Humblet, P.M. Spira, A distributed algorithm for minimum-weight spanning trees. ACM Trans. Program. Lang. Syst. 5(1), 66–77 (1983)
- 144. I.C. Garcia, E. Buzato, Progressive construction of consistent global checkpoints, in *Proc.* 19th Int'l Conference on Distributed Computing Systems (ICDCS'99) (IEEE Press, New York, 1999), pp. 55–62
- 145. I.C. Garcia, L.E. Buzato, On the minimal characterization of the rollback-dependency trackability property, in *Proc. 21st Int'l Conference on Distributed Computing Systems (ICDCS'01)* (IEEE Press, New York, 2001), pp. 342–349
- 146. I.C. Garcia, L.E. Buzato, An efficient checkpointing protocol for the minimal characterization of operational rollback-dependency trackability, in *Proc. 23rd Int'l Symposium on Reliable Distributed Systems (SRDS'04)* (IEEE Press, New York, 2004), pp. 126–135
- H. Garcia Molina, D. Barbara, How to assign votes in a distributed system. J. ACM 32(4), 841–860 (1985)
- M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness (Freeman, New York, 1979), 340 pages
- 149. V.K. Garg, *Principles of Distributed Systems* (Kluwer Academic, Dordrecht, 1996), 274 pages
- 150. V.K. Garg, *Elements of Distributed Computing* (Wiley-Interscience, New York, 2002), 423 pages
- 151. V.K. Garg, M. Raynal, Normality: a consistency condition for concurrent objects. Parallel Process. Lett. **9**(1), 123–134 (1999)
- V.K. Garg, S. Skawratananond, N. Mittal, Timestamping messages and events in a distributed system using synchronous communication. Distrib. Comput. 19(5–6), 387–402 (2007)
- V.K. Garg, B. Waldecker, Detection of weak unstable predicates in distributed programs. IEEE Trans. Parallel Distrib. Syst. 5(3), 299–307 (1994)
- 154. V.K. Garg, B. Waldecker, Detection of strong unstable predicates in distributed programs. IEEE Trans. Parallel Distrib. Syst. 7(12), 1323–1333 (1996)
- 155. Ch. Georgiou, A. Shvartsman, *Do-All Computing in Distributed Systems: Cooperation in the Presence of Adversity* (Springer, Berlin, 2008), 219 pages. ISBN 978-0-387-69045-2
- 156. K. Gharachorloo, P. Gibbons, Detecting violations of sequential consistency, in *Proc. 3rd ACM Symposium on Parallel Algorithms and Architectures (SPAA'91)* (ACM Press, New York, 1991), pp. 316–326
- 157. K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, J.L. Hennessy, Memory consistency and event ordering in scalable shared memory multiprocessors, in *Proc. 17th* ACM Int'l Symposium on Computer Architecture (ISCA'90) (1990), pp. 15–26
- 158. A. Gibbons, *Algorithmic Graph Theory* (Cambridge University Press, Cambridge, 1985), 260 pages
- D.K. Gifford, Weighted voting for replicated data, in Proc. 7th ACM Symposium on Operating System Principles (SOSP'79) (ACM Press, New York, 1979), pp. 150–172
- V.D. Gligor, S.H. Shattuck, Deadlock detection in distributed systems. IEEE Trans. Softw. Eng. SE-6(5), 435–440 (1980)
- 161. A.P. Goldberg, A. Gopal, A. Lowry, R. Strom, Restoring consistent global states of distributed computations, in *Proc. ACM/ONR Workshop on Parallel and Distributed Debugging* (ACM Press, New York, 1991), pp. 144–156
- 162. M. Gouda, T. Herman, Stabilizing unison. Inf. Process. Lett. 35(4), 171-175 (1990)
- D. Gray, A. Reuter, *Transaction Processing: Concepts and Techniques* (Morgan Kaufmann, San Mateo, 1993), 1060 pages. ISBN 1-55860-190-2

- 164. J.L. Gross, J. Yellen (eds.), Graph Theory (CRC Press, Boca Raton, 2004), 1167 pages
- 165. H.N. Haberman, Prevention of system deadlocks. Commun. ACM 12(7), 373–377 (1969)
- 166. J.W. Havender, Avoiding deadlocks in multitasking systems. IBM Syst. J. 13(3), 168–192 (1971)
- 167. J.-M. Hélary, Observing global states of asynchronous distributed applications, in *Proc. 3rd Int'l Workshop on Distributed Algorithms (WDAG'87)*. LNCS, vol. 392 (Springer, Berlin, 1987), pp. 124–135
- J.-M. Hélary, M. Hurfin, A. Mostéfaoui, M. Raynal, F. Tronel, Computing global functions in asynchronous distributed systems with perfect failure detectors. IEEE Trans. Parallel Distrib. Syst. 11(9), 897–909 (2000)
- J.-M. Hélary, C. Jard, N. Plouzeau, M. Raynal, Detection of stable properties in distributed systems, in *Proc. 6th ACM Symposium on Principles of Distributed Computing (PODC'87)* (ACM Press, New York, 1987), pp. 125–136
- J.-M. Hélary, A. Maddi, M. Raynal, Controlling information transfers in distributed applications, application to deadlock detection, in *Proc. Int'l IFIP WG 10.3 Conference on Parallel Processing* (North-Holland, Amsterdam, 1987), pp. 85–92
- J.-M. Hélary, A. Mostéfaoui, R.H.B. Netzer, M. Raynal, Communication-based prevention of useless checkpoints in distributed computations. Distrib. Comput. 13(1), 29–43 (2000)
- 172. J.-M. Hélary, A. Mostéfaoui, M. Raynal, A general scheme for token and tree-based distributed mutual exclusion algorithms. IEEE Trans. Parallel Distrib. Syst. 5(11), 1185–1196 (1994)
- 173. J.-M. Hélary, A. Mostéfaoui, M. Raynal, Communication-induced determination of consistent snapshots. IEEE Trans. Parallel Distrib. Syst. 10(9), 865–877 (1999)
- J.-M. Hélary, A. Mostéfaoui, M. Raynal, Interval consistency of asynchronous distributed computations. J. Comput. Syst. Sci. 64(2), 329–349 (2002)
- J.-M. Hélary, R.H.B. Netzer, M. Raynal, Consistency criteria for distributed checkpoints. IEEE Trans. Softw. Eng. 2(2), 274–281 (1999)
- J.-M. Hélary, N. Plouzeau, M. Raynal, A distributed algorithm for mutual exclusion in arbitrary networks. Comput. J. 31(4), 289–295 (1988)
- 177. J.-M. Hélary, M. Raynal, Depth-first traversal and virtual ring construction in distributed systems, in *Proc. IFIP WG 10.3 Conference on Parallel Processing* (North-Holland, Amsterdam, 1988), pp. 333–346
- J.-M. Hélary, M. Raynal, Vers la construction raisonnée d'algorithmes répartis: le cas de la terminaison. TSI. Tech. Sci. Inform. 10(3), 203–209 (1991)
- 179. J.-M. Hélary, M. Raynal, Synchronization and Control of Distributed Systems and Programs (Wiley, New York, 1991), 160 pages
- J.-M. Hélary, M. Raynal, Towards the construction of distributed detection programs with an application to distributed termination. Distrib. Comput. 7(3), 137–147 (1994)
- J.-M. Hélary, M. Raynal, G. Melideo, R. Baldoni, Efficient causality-tracking timestamping. IEEE Trans. Knowl. Data Eng. 15(5), 1239–1250 (2003)
- M. Herlihy, F. Kuhn, S. Tirthapura, R. Wattenhofer, Dynamic analysis of the arrow distributed protocol. Theory Comput. Syst. 39(6), 875–901 (2006)
- M. Herlihy, J. Wing, Linearizability: a correctness condition for concurrent objects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990)
- L. Higham, T. Przytycka, A simple efficient algorithm for maximum finding on rings. Inf. Process. Lett. 58(6), 319–324 (1996)
- D.S. Hirschberg, J.B. Sinclair, Decentralized extrema finding in circular configuration of processors. Commun. ACM 23, 627–628 (1980)
- 186. C.A.R. Hoare, Communicating sequential processes. Commun. ACM 21(8), 666–677 (1978)
- W. Hohberg, How to find biconnected components in distributed networks. J. Parallel Distrib. Comput. 9(4), 374–386 (1990)
- R.C. Holt, Comments on prevention of system deadlocks. Commun. ACM 14(1), 36–38 (1871)

- 189. J.E. Hopcroft, R. Motwani, J.D. Ullman, *Introduction to Automata Theory, Languages and Computation*, 2nd edn. (Addison-Wesley, Reading, 2001), 521 pages
- S.-T. Huang, Termination detection by using distributed snapshots. Inf. Process. Lett. 32(3), 113–119 (1989)
- 191. S.-T. Huang, Detecting termination of distributed computations by external agents, in *Proc.* 9th IEEE Int'l Conference on Distributed Computing Systems (ICDCS'89) (IEEE Press, New York, 1989), pp. 79–84
- 192. M. Hurfin, N. Plouzeau, M. Raynal, Detecting atomic sequences of predicates in distributed computations. SIGPLAN Not. 28(12), 32–42 (1993). Proc. ACM/ONR Workshop on Parallel and Distributed Debugging
- M. Hurfin, M. Mizuno, M. Raynal, S. Singhal, Efficient distributed detection of conjunctions of local predicates. IEEE Trans. Softw. Eng. 24(8), 664–677 (1998)
- 194. P. Hutto, M. Ahamad, Slow memory: weakening consistency to enhance concurrency in distributed shared memories, in *Proc. 10th IEEE Int'l Conference on Distributed Computing Systems (ICDCS'90)* (IEEE Press, New York, 1990), pp. 302–311
- T. Ibaraki, T. Kameda, A theory of coteries: mutual exclusion in distributed systems. J. Parallel Distrib. Comput. 4(7), 779–794 (1993)
- 196. T. Ibaraki, T. Kameda, T. Minoura, Serializability with constraints. ACM Trans. Database Syst. 12(3), 429–452 (1987)
- 197. R. Ingram, P. Shields, J.E. Walter, J.L. Welch, An asynchronous leader election algorithm for dynamic networks, in *Proc. 23rd Int'l IEEE Parallel and Distributed Processing Symposium* (*IPDPS'09*) (IEEE Press, New York, 2009), pp. 1–12
- Cl. Jard, G.-V. Jourdan, Incremental transitive dependency tracking in distributed computations. Parallel Process. Lett. 6(3), 427–435 (1996)
- 199. J. Jefferson, Virtual time. ACM Trans. Program. Lang. Syst. 7(3), 404–425 (1985)
- E. Jiménez, A. Fernández, V. Cholvi, A parameterized algorithm that implements sequential, causal, and cache memory consistencies. J. Syst. Softw. 81(1), 120–131 (2008)
- 201. Ö. Johansson, Simple distributed (Δ + 1)-coloring of graphs. Inf. Process. Lett. **70**(5), 229–232 (1999)
- D.B. Johnson, W. Zwaenepoel, Recovery in distributed systems using optimistic message logging and checkpointing. J. Algorithms 11(3), 462–491 (1990)
- S. Kanchi, D. Vineyard, An optimal distributed algorithm for all-pairs shortest-path. Int. J. Inf. Theories Appl. 11(2), 141–146 (2004)
- P. Keleher, A.L. Cox, W. Zwaenepoel, Lazy release consistency for software distributed shared memory, in *Proc. 19th ACM Int'l Symposium on Computer Architecture (ISCA'92)*, (1992), pp. 13–21
- 205. J. Kleinberg, E. Tardos, Algorithm Design (Addison-Wesley, Reading, 2005), 838 pages
- P. Knapp, Deadlock detection in distributed databases. ACM Comput. Surv. 19(4), 303–328 (1987)
- R. Koo, S. Toueg, Checkpointing and rollback-recovery for distributed systems. IEEE Trans. Softw. Eng. 13(1), 23–31 (1987)
- E. Korach, S. Moran, S. Zaks, Tight lower and upper bounds for some distributed algorithms for a complete network of processors, in *Proc. 4th ACM Symposium on Principles of Distributed Computing (PODC'84)* (ACM Press, New York, 1984), pp. 199–207
- E. Korach, S. Moran, S. Zaks, The optimality of distributive constructions of minimum weight and degree restricted spanning tree in complete networks of processes. SIAM J. Comput. 16(2), 231–236 (1987)
- E. Korach, D. Rotem, N. Santoro, Distributed algorithms for finding centers and medians in networks. ACM Trans. Program. Lang. Syst. 6(3), 380–401 (1984)
- E. Korach, G. Tel, S. Zaks, Optimal synchronization of ABD networks, in *Proc. Int'l Con*ference on Concurrency. LNCS, vol. 335 (Springer, Berlin, 1988), pp. 353–367
- R. Kordale, M. Ahamad, A scalable technique for implementing multiple consistency levels for distributed objects, in *Proc. 16th IEEE Int'l Conference on Distributed Computing Systems (ICDCS'96)* (IEEE Press, New York, 1996), pp. 369–376

- A.D. Kshemkalyani, Fast and message-efficient global snapshot algorithms for large-scale distributed systems. IEEE Trans. Parallel Distrib. Syst. 21(9), 1281–1289 (2010)
- A.D. Kshemkalyani, M. Raynal, M. Singhal, Global snapshots of a distributed systems. Distrib. Syst. Eng. 2(4), 224–233 (1995)
- A.D. Kshemkalyani, M. Singhal, Invariant-based verification of a distributed deadlock detection algorithm. IEEE Trans. Softw. Eng. 17(8), 789–799 (1991)
- A.D. Kshemkalyani, M. Singhal, Efficient detection and resolution of generalized distributed deadlocks. IEEE Trans. Softw. Eng. 20(1), 43–54 (1994)
- A.D. Kshemkalyani, M. Singhal, Necessary and sufficient conditions on information for causal message ordering and their optimal implementation. Distrib. Comput. 11(2), 91–111 (1998)
- A.D. Kshemkalyani, M. Singhal, A one-phase algorithm to detect distributed deadlocks in replicated databases. IEEE Trans. Knowl. Data Eng. 11(6), 880–895 (1999)
- A.D. Kshemkalyani, M. Singhal, *Distributed Computing: Principles, Algorithms and Systems* (Cambridge University Press, Cambridge, 2008), 736 pages
- A.D. Kshemkalyani, M. Singhal, Efficient distributed snapshots in an anonymous asynchronous message-passing system. J. Parallel Distrib. Comput. 73, 621–629 (2013)
- 221. T.-H. Lai, Termination detection for dynamically distributed systems with non-first-in-firstout communication. J. Parallel Distrib. Comput. **3**(4), 577–599 (1986)
- 222. T.H. Lai, T.H. Yang, On distributed snapshots. Inf. Process. Lett. 25, 153–158 (1987)
- T.V. Lakshman, A.K. Agrawala, Efficient decentralized consensus protocols. IEEE Trans. Softw. Eng. SE-12(5), 600–607 (1986)
- K.B. Lakshmanan, N. Meenakshi, K. Thulisaraman, A time-optimal message-efficient distributed algorithm for depth-first search. Inf. Process. Lett. 25, 103–109 (1987)
- 225. K.B. Lakshmanan, K. Thulisaraman, On the use of synchronizers for asynchronous communication networks, in *Proc. 2nd Int'l Workshop on Distributed Algorithms (WDAG'87)*. LNCS, vol. 312 (Springer, Berlin, 1987), pp. 257–267
- L. Lamport, Time, clocks, and the ordering of events in a distributed system. Commun. ACM 21(7), 558–565 (1978)
- L. Lamport, How to make a multiprocessor computer that correctly executes multiprocess programs. IEEE Trans. Comput. C-28(9), 690–691 (1979)
- L. Lamport, On inter-process communications, part I: basic formalism. Distrib. Comput. 1(2), 77–85 (1986)
- L. Lamport, On inter-process communications, part II: algorithms. Distrib. Comput. 1(2), 86–101 (1986)
- L. Lamport, P.M. Melliar-Smith, Synchronizing clocks in the presence of faults. J. ACM 32(1), 52–78 (1985)
- Y. Lavallée, G. Roucairol, A fully distributed minimal spanning tree algorithm. Inf. Process. Lett. 23(2), 55–62 (1986)
- 232. G. Le Lann, Distributed systems: towards a formal approach, in *IFIP World Congress*, (1977), pp. 155–160
- I. Lee, S.B. Davidson, Adding time to synchronous processes. IEEE Trans. Comput. C-36(8), 941–948 (1987)
- K. Li, K.P. Huda, Memory coherence in shared virtual memory systems. ACM Trans. Comput. Syst. 7(4), 321–359 (1989)
- T.F. Li, Th. Radhakrishnan, K. Venkatesh, Global state detection in non-FIFO networks, in *Proc. 7th Int'l Conference on Distributed Computing Systems (ICDCS'87)* (IEEE Press, New York, 1987), pp. 364–370
- 236. N. Linial, Locality in distributed graph algorithms. SIAM J. Comput. 21(1), 193-201 (1992)
- R.J. Lipton, J.S. Sandberg, PRAM: a scalable shared memory. Tech Report CS-TR-180-88, Princeton University, 1988
- B. Liskov, R. Ladin, Highly available distributed services and fault-tolerant distributed garbage collection, in *Proc. 5th ACM Symposium on Principles of Distributed Computing* (*PODC*'86) (ACM Press, New York, 1986), pp. 29–39
- S. Lodha, A.D. Ksemkalyani, A fair distributed mutual exclusion algorithm. IEEE Trans. Parallel Distrib. Syst. 11(6), 537–549 (2000)
- M. Luby, A simple parallel algorithm for the maximal independent set problem. SIAM J. Comput. 15(4), 1036–1053 (1987)
- 241. N.A. Lynch, Upper bounds for static resource allocation in a distributed system. J. Comput. Syst. Sci. 23(2), 254–278 (1981)
- 242. N.A. Lynch, Distributed Algorithms (Morgan Kaufmann, San Francisco, 1996), 872 pages
- 243. M. Maekawa, A \sqrt{n} algorithm for mutual exclusion in decentralized systems. ACM Trans. Comput. Syst. **3**(2), 145–159 (1985)
- N. Malpani, J.L. Welch, N. Vaidya, Leader election algorithms for mobile ad hoc networks, in Proc. 4th Int'l ACM Workshop on Discrete Algorithms and Methods for Mobile Computing and Communications (DIAL-M'00) (ACM Press, New York, 2000), pp. 96–103
- 245. Y. Manabe, R. Baldoni, M. Raynal, S. Aoyagi, *k*-arbiter: a safe and general scheme for *h*-out of-*k* mutual exclusion. Theor. Comput. Sci. **193**(1–2), 97–112 (1998)
- D. Manivannan, R.H.B. Netzer, M. Singhal, Finding consistent global checkpoints in a distributed computation. IEEE Trans. Parallel Distrib. Syst. 8(6), 623–627 (1997)
- D. Manivannan, M. Singhal, A low overhead recovery technique using quasi-synchronous checkpointing, in *Proc. 16th IEEE Int'l Conference on Distributed Computing Systems* (*ICDCS'96*) (IEEE Press, New York, 1996), pp. 100–107
- 248. D. Manivannan, M. Singhal, An efficient distributed algorithm for detection of knots and cycles in a distributed graph. IEEE Trans. Parallel Distrib. Syst. **14**(10), 961–972 (2003)
- 249. F. Mattern, Algorithms for distributed termination detection. Distrib. Comput. **2**(3), 161–175 (1987)
- F. Mattern, Virtual time and global states of distributed systems, in *Proc. Parallel and Distributed Algorithms Conference*, ed. by M. Cosnard, P. Quinton, M. Raynal, Y. Robert (North-Holland, Amsterdam, 1988), pp. 215–226
- F. Mattern, Global quiescence detection based on credit distribution and recovery. Inf. Process. Lett. 30(4), 195–200 (1989)
- 252. F. Mattern, An efficient distributed termination test. Inf. Process. Lett. 31(4), 203–208 (1989)
- F. Mattern, Efficient algorithms for distributed snapshots and global virtual time approximation. J. Parallel Distrib. Comput. 18, 423–434 (1993)
- 254. F. Mattern, Distributed algorithms and causally consistent observations, in *Proc. 16th Int'l Conference on Application and Theory of Petri Nets, (Invited Paper)*. LNCS, vol. 935 (Springer, Berlin, 1995), pp. 21–22
- 255. F. Mattern, S. Fünfrocken, A non-blocking lightweight implementation of causal order message delivery, in *Proc. Int'l Dagstuhl Workshop on Theory and Practice in Distributed Systems.* LNCS, vol. 938 (Springer, Berlin, 1995), pp. 197–213
- M. Mavronicolas, D. Roth, Efficient, strong consistent implementations of shared memory, in *Proc. 6th Int'l Workshop on Distributed Algorithms (WDAG'92)*. LNCS, vol. 647 (Springer, Berlin, 1992), pp. 346–361
- 257. J. Mayo, Ph. Kearns, Efficient distributed termination detection with roughly synchronized clocks. Inf. Process. Lett. **52**(2), 105–108 (1994)
- 258. K. Mehlhorn, P. Sanders, Algorithms and Data Structures (Springer, Berlin, 2008), 300 pages
- D. Menasce, R. Muntz, Locking and deadlock detection in distributed database. IEEE Trans. Softw. Eng. SE-5(3), 195–202 (1979)
- J.R. Mendívil, F. Fariña, C.F. Garitagoitia, C.F. Alastruey, J.M. Barnabeu-Auban, A distributed deadlock resolution algorithm for the AND model. IEEE Trans. Parallel Distrib. Syst. 10(5), 433–447 (1999)
- J. Misra, Detecting termination of distributed computations using markers, in *Proc. 2nd ACM Symposium on Principles of Distributed Computing (PODC'83)* (ACM Press, New York, 1983), pp. 290–294
- J. Misra, Axioms for memory access in asynchronous hardware systems. ACM Trans. Program. Lang. Syst. 8(1), 142–153 (1986)

- 263. J. Misra, Distributed discrete event simulation. ACM Comput. Surv. 18(1), 39-65 (1986)
- J. Misra, K.M. Chandy, A distributed graph algorithm: knot detection. ACM Trans. Program. Lang. Syst. 4(4), 678–686 (1982)
- J. Misra, K.M. Chandy, Termination detection of diffusing computations in communicating sequential processes. ACM Trans. Program. Lang. Syst. 4(1), 37–43 (1982)
- 266. D.P. Mitchell, M. Merritt, A distributed algorithm for deadlock detection and resolution, in Proc. 3rd ACM Symposium on Principles of Distributed Computing (PODC'84) (ACM Press, New York, 1984), pp. 282–284
- N. Mittal, V.K. Garg, Consistency conditions for multi-objects operations, in *Proc. 18th IEEE Int'l Conference on Distributed Computing Systems (ICDCS'98)* (IEEE Press, New York, 1998), pp. 582–589
- M. Mizuno, M.L. Nielsen, M. Raynal, An optimistic protocol for a linearizable distributed shared memory service. Parallel Process. Lett. 6(2), 265–278 (1996)
- M. Mizuno, M. Raynal, J.Z. Zhou, Sequential consistency in distributed systems, in *Int'l Dagstuhl Workshop on the Theory and Practice in Distributed Systems*. LNCS, vol. 938 (Springer, Berlin, 1994), pp. 224–241
- 270. B. Moret, The Theory of Computation (Addison-Wesley, Reading, 1998), 453 pages
- A. Mostéfaoui, M. Raynal, Efficient message logging for uncoordinated checkpointing protocols, in *Proc. 2nd European Dependable Computing Conference (EDCC'96)*. LNCS, vol. 1150 (Springer, Berlin, 1996), pp. 353–364
- 272. A. Mostéfaoui, M. Raynal, P. Veríssimo, Logically instantaneous communication on top of distributed memory parallel machines, in *Proc. 5th Int'l Conference on Parallel Computing Technologies (PACT'99)*. LNCS, vol. 1662 (Springer, Berlin, 1999), pp. 258–270
- 273. V.V. Murty, V.K. Garg, An algorithm to guarantee synchronous ordering of messages, in Proc. 2nd Int'l IEEE Symposium on Autonomous Decentralized Systems (IEEE Press, New York, 1995), pp. 208–214
- 274. V.V. Murty, V.K. Garg, Characterization of message ordering specifications and protocols, in Proc. 7th Int'l Conference on Distributed Computer Systems (ICDCS'97) (IEEE Press, New York, 1997), pp. 492–499
- 275. M. Naimi, M. Trehel, An improvement of the log n distributed algorithm for mutual exclusion, in *Proc. 7th Int'l IEEE Conference on Distributed Computing Systems (ICDCS'87)* (IEEE Press, New York, 1987), pp. 371–375
- M. Naimi, M. Trehel, A. Arnold, A log(n) distributed mutual exclusion algorithm based on path reversal. J. Parallel Distrib. Comput. 34(1), 1–13 (1996)
- M. Naor, A. Wool, The load, capacity and availability of quorums systems. SIAM J. Comput. 27(2), 423–447 (2008)
- N. Nararajan, A distributed scheme for detecting communication deadlocks. IEEE Trans. Softw. Eng. 12(4), 531–537 (1986)
- 279. M.L. Neilsen, M. Mizuno, A DAG-based algorithm for distributed mutual exclusion, in *Proc.* 11th IEEE Int'l IEEE Conference on Distributed Computing Systems (ICDCS'91) (IEEE Press, New York, 1991), pp. 354–360
- M.L. Neilsen, M. Masaaki, Nondominated k-coteries for multiple mutual exclusion. Inf. Process. Lett. 50(5), 247–252 (1994)
- M.L. Neilsen, M. Masaaki, M. Raynal, A general method to define quorums, in *Proc. 12th Int'l IEEE Conference on Distributed Computing Systems (ICDCS'92)* (IEEE Press, New York, 1992), pp. 657–664
- M. Nesterenko, M. Mizuno, A quorum-based self-stabilizing distributed mutual exclusion algorithm. J. Parallel Distrib. Comput. 62(2), 284–305 (2002)
- R.H.B. Netzer, J. Xu, Necessary and sufficient conditions for consistent global snapshots. IEEE Trans. Parallel Distrib. Syst. 6(2), 165–169 (1995)
- N. Neves, W.K. Fuchs, Adaptive recovery for mobile environments. Commun. ACM 40(1), 68–74 (1997)
- S. Nishio, K.F. Li, F.G. Manning, A resilient distributed mutual exclusion algorithm for computer networks. IEEE Trans. Parallel Distrib. Syst. 1(3), 344–356 (1990)

- B. Nitzberg, V. Lo, Distributed shared memory: a survey of issues and algorithms. IEEE Comput. 24(8), 52–60 (1991)
- R. Obermarck, Distributed deadlock detection algorithm. ACM Trans. Database Syst. 7(2), 197–208 (1982)
- J.K. Pachl, E. Korach, D. Rotem, Lower bounds for distributed maximum-finding algorithms. J. ACM 31(4), 905–918 (1984)
- Ch.H. Papadimitriou, The serializability of concurrent database updates. J. ACM 26(4), 631– 653 (1979)
- D.S. Parker, G.L. Popek, G. Rudisin, L. Stoughton, B.J. Walker, E. Walton, J.M. Chow, D.A. Edwards, S. Kiser, C.S. Kline, Detection of mutual inconsistency in distributed systems. IEEE Trans. Softw. Eng. SE9(3), 240–246 (1983)
- 291. B. Patt-Shamir, S. Rajsbaum, A theory of clock synchronization, in *Proc. 26th Annual ACM Symposium on Theory of Computing (STOC'94)* (ACM Press, New York, 1994), pp. 810–819
- 292. D. Peleg, *Distributed Computing: A Locally-Sensitive Approach*. SIAM Monographs on Discrete Mathematics and Applications (2000), 343 pages
- 293. D. Peleg, J.D. Ullman, An optimal synchronizer for the hypercube. SIAM J. Comput. 18, 740–747 (1989)
- 294. D. Peleg, A. Wool, Crumbling walls: a class of practical and efficient quorum systems. Distrib. Comput. **10**(2), 87–97 (1997)
- 295. G.L. Peterson, An $O(n \log n)$ unidirectional algorithm for the circular extrema problem. ACM Trans. Program. Lang. Syst. **4**(4), 758–762 (1982)
- L.L. Peterson, N.C. Bucholz, R.D. Schlichting, Preserving and using context information in interprocess communication. ACM Trans. Comput. Syst. 7(3), 217–246 (1989)
- 297. S.E. Pomares Hernadez, J.R. Perez Cruz, M. Raynal, From the happened before relation to the causal ordered set abstraction. J. Parallel Distrib. Comput. 72, 791–795 (2012)
- R. Prakash, M. Raynal, M. Singhal, An adaptive causal ordering algorithm suited to mobile computing environments. J. Parallel Distrib. Comput. 41(1), 190–204 (1997)
- R. Prakash, M. Singhal, Low-cost checkpointing and failure recovery in mobile computing systems. IEEE Trans. Parallel Distrib. Syst. 7(10), 1035–1048 (1996)
- 300. R. Prakash, M. Singhal, Dependency sequences and hierarchical clocks: efficient alternatives to vector clocks for mobile computing systems. Wirel. Netw. **3**(5), 349–360 (1997)
- J. Protic, M. Tomasevic, Distributed shared memory: concepts and systems. IEEE Concurr. 4(2), 63–79 (1996)
- S.P. Rana, A distributed solution of the distributed termination problem. Inf. Process. Lett. 17(1), 43–46 (1983)
- B. Randell, System structure for software fault-tolerance. IEEE Trans. Softw. Eng. SE1(2), 220–232 (1975)
- K. Raymond, A tree-based algorithm for distributed mutual exclusion. ACM Trans. Comput. Syst. 7(1), 61–77 (1989)
- K. Raymond, A distributed algorithm for multiple entries to a critical section. Inf. Process. Lett. 30(4), 189–193 (1989)
- M. Raynal, Algorithms for Mutual Exclusion (The MIT Press, Cambridge, 1986), 107 pages. ISBN 0-262-18119-3
- M. Raynal, A distributed algorithm to prevent mutual drift between *n* logical clocks. Inf. Process. Lett. 24, 199–202 (1987)
- M. Raynal, Networks and Distributed Computation: Concepts, Tools and Algorithms (The MIT Press, Cambridge, 1987), 168 pages. ISBN 0-262-18130-4
- M. Raynal, Prime numbers as a tool to design distributed algorithms. Inf. Process. Lett. 33, 53–58 (1989)
- M. Raynal, A simple taxonomy of distributed mutual exclusion algorithms. Oper. Syst. Rev. 25(2), 47–50 (1991)

- 311. M. Raynal, A distributed solution to the k-out of-M resource allocation problem, in Proc. Int'l Conference on Computing and Information. LNCS, vol. 497 (Springer, Berlin, 1991), pp. 509–518
- 312. M. Raynal, Illustrating the use of vector clocks in property detection: an example and a counter-example, in *Proc. 5th European Conference on Parallelism (EUROPAR'99)*. LNCS, vol. 1685 (Springer, Berlin, 1999), pp. 806–814
- M. Raynal, Sequential consistency as lazy linearizability, in Proc. 14th ACM Symposium on Parallel Algorithms and Architectures (SPAA'02) (ACM Press, New York, 2002), pp. 151– 152
- 314. M. Raynal, Token-based sequential consistency. Comput. Syst. Sci. Eng. 17(6), 359–365 (2002)
- M. Raynal, Fault-Tolerant Agreement in Synchronous Distributed Systems (Morgan & Claypool, San Francisco, 2010), 167 pages. ISBN 9781608455256
- 316. M. Raynal, Communication and Agreement Abstractions for Fault-Tolerant Asynchronous Distributed Systems (Morgan & Claypool, San Francisco, 2010), 251 pages. ISBN 9781608452934
- M. Raynal, Concurrent Programming: Algorithms, Principles, and Foundations (Springer, Berlin, 2012), 500 pages. ISBN 978-3-642-32026-2
- M. Raynal, M. Ahamad, Exploiting write semantics in implementing partially replicated causal objects, in *Proc. 6th EUROMICRO Conference on Parallel and Distributed Processing* (*PDP*'98) (IEEE Press, New York, 1998), pp. 157–163
- M. Raynal, J.-M. Hélary, Synchronization and Control of Distributed Systems and Programs. Wiley Series in Parallel Computing (1991), 126 pages. ISBN 0-471-92453-9
- 320. M. Raynal, M. Roy, C. Tutu, A simple protocol offering both atomic consistent read operations and sequentially consistent read operations, in *Proc. 19th Int'l Conference on Advanced Information Networking and Applications (AINA'05)* (IEEE Press, New York, 2005), pp. 961–966
- 321. M. Raynal, G. Rubino, An algorithm to detect token loss on a logical ring and to regenerate lost tokens, in *Int'l Conference on Parallel Processing and Applications* (North-Holland, Amsterdam, 1987), pp. 457–467
- 322. M. Raynal, A. Schiper, From causal consistency to sequential consistency in shared memory systems, in *Proc. 15th Int'l Conference on Foundations of Software Technology and Theoretical Computer Science (FST&TCS'95).* LNCS, vol. 1026 (Springer, Berlin, 1995), pp. 180–194
- 323. M. Raynal, A. Schiper, A suite of formal definitions for consistency criteria in distributed shared memories, in *Proc. 9th Int'l IEEE Conference on Parallel and Distributed Computing Systems (PDCS'96)* (IEEE Press, New York, 1996), pp. 125–131
- 324. M. Raynal, A. Schiper, S. Toueg, The causal ordering abstraction and a simple way to implement. Inf. Process. Lett. **39**(6), 343–350 (1991)
- M. Raynal, S. Singhal, Logical time: capturing causality in distributed systems. IEEE Comput. 29(2), 49–57 (1996)
- 326. M. Raynal, K. Vidyasankar, A distributed implementation of sequential consistency with multi-object operations, in *Proc. 24th IEEE Int'l Conference on Distributed Computing Systems (ICDCS'04)* (IEEE Press, New York, 2004), pp. 544–551
- G. Ricart, A.K. Agrawala, An optimal algorithm for mutual exclusion in computer networks. Commun. ACM 24(1), 9–17 (1981)
- G. Ricart, A.K. Agrawala, Author response to "on mutual exclusion in computer networks" by Carvalho and Roucairol. Commun. ACM 26(2), 147–148 (1983)
- R. Righter, J.C. Walrand, Distributed simulation of discrete event systems. Proc. IEEE 77(1), 99–113 (1989)
- S. Ronn, H. Saikkonen, Distributed termination detection with counters. Inf. Process. Lett. 34(5), 223–227 (1990)
- D.J. Rosenkrantz, R.E. Stearns, P.M. Lewis, System level concurrency control in distributed databases. ACM Trans. Database Syst. 3(2), 178–198 (1978)

- D.L. Russell, State restoration in systems of communicating processes. IEEE Trans. Softw. Eng. SE6(2), 183–194 (1980)
- B. Sanders, The information structure of distributed mutual exclusion algorithms. ACM Trans. Comput. Syst. 5(3), 284–299 (1987)
- 334. S.K. Sarin, N.A. Lynch, Discarding obsolete information in a replicated database system. IEEE Trans. Softw. Eng. 13(1), 39–46 (1987)
- 335. N. Santoro, *Design and Analysis of Distributed Algorithms* (Wiley, New York, 2007), 589 pages
- 336. A. Schiper, J. Eggli, A. Sandoz, A new algorithm to implement causal ordering, in *Proc. 3rd Int'l Workshop on Distributed Algorithms (WDAG'89)*. LNCS, vol. 392 (Springer, Berlin, 1989), pp. 219–232
- 337. R. Schmid, I.C. Garcia, F. Pedone, L.E. Buzato, Optimal asynchronous garbage collection for RDT checkpointing protocols, in *Proc. 25th Int'l Conference on Distributed Computing Systems (ICDCS'01)* (IEEE Press, New York, 2005), pp. 167–176
- 338. F. Schmuck, The use of efficient broadcast in asynchronous distributed systems. Doctoral Dissertation, Tech. Report TR88-928, Dept of Computer Science, Cornell University, 124 pages, 1988
- F.B. Schneider, Implementing fault-tolerant services using the state machine approach. ACM Comput. Surv. 22(4), 299–319 (1990)
- 340. R. Schwarz, F. Mattern, Detecting causal relationships in distributed computations: in search of the Holy Grail. Distrib. Comput. **7**, 149–174 (1994)
- 341. A. Segall, Distributed network protocols. IEEE Trans. Inf. Theory 29(1), 23–35 (1983)
- 342. N. Shavit, N. Francez, A new approach to detection of locally indicative stability, in 13th Int'l Colloquium on Automata, Languages and Programming (ICALP'86). LNCS, vol. 226 (Springer, Berlin, 1986), pp. 344–358
- 343. A. Silberschatz, Synchronization and communication in distributed systems. IEEE Trans. Softw. Eng. **SE5**(6), 542–546 (1979)
- L.M. Silva, J.G. Silva, Global checkpoints for distributed programs, in *Proc. 11th Symposium* on *Reliable Distributed Systems (SRDS'92)* (IEEE Press, New York, 1992), pp. 155–162
- 345. M. Singhal, A heuristically-aided algorithm for mutual exclusion in distributed systems. IEEE Trans. Comput. **38**(5), 651–662 (1989)
- 346. M. Singhal, Deadlock detection in distributed systems. IEEE Comput. 22(11), 37–48 (1989)
- M. Singhal, A class of deadlock-free Maekawa-type algorithms for mutual exclusion in distributed systems. Distrib. Comput. 4(3), 131–138 (1991)
- M. Singhal, A dynamic information-structure mutual exclusion algorithm for distributed systems. IEEE Trans. Parallel Distrib. Syst. 3(1), 121–125 (1992)
- M. Singhal, A taxonomy of distributed mutual exclusion. J. Parallel Distrib. Comput. 18(1), 94–101 (1993)
- M. Singhal, A.D. Kshemkalyani, An efficient implementation of vector clocks. Inf. Process. Lett. 43, 47–52 (1992)
- 351. M. Sipser, Introduction to the Theory of Computation (PWS, Boston, 1996), 396 pages
- 352. A.P. Sistla, J.L. Welch, Efficient distributed recovery using message logging, in *Proc. 8th ACM Symposium on Principles of Distributed Computing (PODC'89)* (ACM Press, New York, 1989), pp. 223–238
- 353. D. Skeen, A quorum-based commit protocol, in *Proc. 6th Berkeley Workshop on Distributed Data Management and Computer Networks* (1982), pp. 69–80
- 354. J.L.A. van de Snepscheut, Synchronous communication between asynchronous components. Inf. Process. Lett. **13**(3), 127–130 (1981)
- 355. J.L.A. van de Snepscheut, Fair mutual exclusion on a graph of processes. Distrib. Comput. 2(2), 113–115 (1987)
- T. Soneoka, T. Ibaraki, Logically instantaneous message passing in asynchronous distributed systems. IEEE Trans. Comput. 43(5), 513–527 (1994)
- 357. M. Spezialetti, Ph. Kearns, Efficient distributed snapshots, in Proc. 6th Int'l Conference on Distributed Computing Systems (ICDCS'86) (IEEE Press, New York, 1986), pp. 382–388

- 358. T.K. Srikanth, S. Toueg, Optimal clock synchronization. J. ACM 34(3), 626–645 (1987)
- 359. M. van Steen, *Graph Theory and Complex Networks: An Introduction* (2011), 285 pages. ISBN 978-90-815406-1-2
- R.E. Strom, S. Yemini, Optimistic recovery in distributed systems. ACM Trans. Comput. Syst. 3(3), 204–226 (1985)
- I. Suzuki, T. Kasami, A distributed mutual exclusion algorithm. ACM Trans. Comput. Syst. 3(4), 344–349 (1985)
- G. Taubenfeld, Synchronization Algorithms and Concurrent Programming (Pearson Prentice-Hall, Upper Saddle River, 2006), 423 pages. ISBN 0-131-97259-6
- 363. K. Taylor, The role of inhibition in asynchronous consistent-cut protocols, in *Proc. 3rd Int'l Workshop on Distributed Algorithms (WDAG'87)*. LNCS, vol. 392 (Springer, Berlin, 1987), pp. 280–291
- R.N. Taylor, Complexity of analyzing the synchronization structure of concurrent programs. Acta Inform. 19(1), 57–84 (1983)
- G. Tel, Introduction to Distributed Algorithms, 2nd edn. (Cambridge University Press, Cambridge, 2000), 596 pages. ISBN 0-521-79483-8
- 366. G. Tel, F. Mattern, The derivation of distributed termination detection algorithms from garbage collection schemes. ACM Trans. Program. Lang. Syst. 15(1), 1–35 (1993)
- 367. G. Tel, R.B. Tan, J. van Leeuwen, The derivation of graph-marking algorithms from distributed termination detection protocols. Sci. Comput. Program. 10(1), 107–137 (1988)
- R.H. Thomas, A majority consensus approach to concurrency control for multiple copy databases. ACM Trans. Database Syst. 4(2), 180–209 (1979)
- O. Theel, M. Raynal, Static and dynamic adaptation of transactional consistency, in *Proc.* 30th Hawaï, Int'l Conference on Systems Sciences (HICSS-30), vol. I (1997), pp. 533–542
- F.J. Torres-Rojas, M. Ahamad, Plausible clocks: constant size logical clocks for distributed systems. Distrib. Comput. 12(4), 179–195 (1999)
- 371. F. Torres-Rojas, M. Ahamad, M. Raynal, Lifetime-based consistency protocols for distributed objects, in *Proc. 12th Int'l Symposium on Distributed Computing (DISC'98)*. LNCS, vol. 1499 (Springer, Berlin, 1998), pp. 378–392
- 372. F. Torres-Rojas, M. Ahamad, M. Raynal, Timed consistency for shared distributed objects, in *Proc. 18th Annual ACM Symposium on Principles of Distributed Computing (PODC'99)* (ACM Press, New York, 1999), pp. 163–172
- S. Toueg, An all-pairs shortest paths distributed algorithm. IBM Technical Report RC 8327, 1980
- 374. M. Trehel, M. Naimi, Un algorithme distribué d'exclusion mutuelle en log n. TSI. Tech. Sci. Inform. 6(2), 141–150 (1987)
- J. Tsai, S.-Y. Kuo, Y.-M. Wang, Theoretical analysis for communication-induced checkpointing protocols with rollback-dependency trackability. IEEE Trans. Parallel Distrib. Syst. 9(10), 963–971 (1998)
- J. Tsai, Y.-M. Wang, S.-Y. Kuo, Evaluations of domino-free communication-induced checkpointing protocols. Inf. Process. Lett. 69(1), 31–37 (1999)
- 377. S. Venkatesan, Message optimal incremental snapshots, in *Proc. 9th Int'l Conference on Distributed Computing Systems (ICDCS'89)* (IEEE Press, New York, 1989), pp. 53–60
- S. Venkatesan, B. Dathan, Testing and debugging distributed programs using global predicates. IEEE Trans. Softw. Eng. 21(2), 163–177 (1995)
- 379. J. Villadangos, F. Fariña, J.R. Mendívil, C.F. Garitagoitia, A. Cordoba, A safe algorithm for resolving OR deadlocks. IEEE Trans. Softw. Eng. 29(7), 608–622 (2003)
- M. Vukolić, Quorum Systems with Applications to Storage and Consensus (Morgan & Claypool, San Francisco, 2012), 130 pages. ISBN 798-1-60845-683-3
- Y.-M. Wang, Consistent global checkpoints that contain a given set of local checkpoints. IEEE Trans. Comput. 46(4), 456–468 (1997)
- Y.-M. Wang, P.Y. Chung, I.J. Lin, W.K. Fuchs, Checkpointing space reclamation for uncoordinated checkpointing in message-passing systems. IEEE Trans. Parallel Distrib. Syst. 6(5), 546–554 (1995)

- 383. Y.-M. Wang, W.K. Fuchs, Optimistic message logging for independent checkpointing in message-passing systems, in *Proc. 11th Symposium on Reliable Distributed Systems* (SRDS'92) (IEEE Press, New York, 1992), pp. 147–154
- 384. S. Warshall, A theorem on Boolean matrices. J. ACM 9(1), 11–12 (1962)
- 385. J.L. Welch, Simulating synchronous processors. Inf. Comput. 74, 159–171 (1987)
- J.L. Welch, N.A. Lynch, A new fault-tolerance algorithm for clock synchronization. Inf. Comput. 77(1), 1–36 (1988)
- J.L. Welch, N.A. Lynch, A modular drinking philosophers algorithm. Distrib. Comput. 6(4), 233–244 (1993)
- J.L. Welch, J.E. Walter, *Link Reversal Algorithms* (Morgan & Claypool, San Francisco, 2011), 93 pages. ISBN 9781608450411
- H. Wu, W.-N. Chin, J. Jaffar, An efficient distributed deadlock avoidance algorithm for the AND model. IEEE Trans. Softw. Eng. 28(1), 18–29 (2002)
- 390. G.T.J. Wuu, A.J. Bernstein, Efficient solutions to the replicated log and dictionary problems, in *Proc. 3rd Annual ACM Symposium on Principles of Distributed Computing (PODC'84)* (ACM Press, New York, 1984), pp. 233–242
- G.T.J. Wuu, A.J. Bernstein, False deadlock detection in distributed systems. IEEE Trans. Softw. Eng. SE-11(8), 820–821 (1985)
- M. Yamashita, T. Kameda, Computing on anonymous networks, part I: characterizing the solvable cases. IEEE Trans. Parallel Distrib. Syst. 7(1), 69–89 (1996)
- M. Yamashita, T. Kameda, Computing on anonymous networks, part II: decision and membership problems. IEEE Trans. Parallel Distrib. Syst. 7(1), 90–96 (1996)
- L.-Y. Yen, T.-L. Huang, Resetting vector clocks in distributed systems. J. Parallel Distrib. Comput. 43, 15–20 (1997)
- 395. Y. Zhu, C.-T. Cheung, A new distributed breadth-first search algorithm. Inf. Process. Lett. 25(5), 329–333 (1987)

Index

A

Abstraction Checkpointing, 196 Adaptive algorithm, 108 Bounded mutual exclusion, 259 Causal order, 312 Mutual exclusion, 256 AND model Deadlock detection, 403 Receive statement, 386 Anonymous systems, 78 Antiquorum, 267 Arbiter process, 264 Asynchronous atomic model, 370 Asynchronous system, 5 Atomicity Definition, 430 From copy invalidation, 438 From copy update, 443 From server processes, 437 From total order broadcast, 435 Is a local property, 433 Linearization point, 431

B

Bounded delay network Definition, 236 Local clock drift, 240 Breadth-first spanning-tree Built with centralized control, 20 Built without centralized control, 17 Broadcast Definition, 9 On a rooted spanning tree, 10

С

Causal future, 124

Causal order Bounded lifetime message, 317 Broadcast, 313 Broadcast causal barrier, 315 Causality-based characterization, 305 Definition, 304 Point-to-point, 306 Point-to-point delivery condition, 307 Reduce the size of control information, 310 Causal past, 124 Causal path, 123 Causal precedence, 123 Center of graph, 60 Channel, 4 FIFO, 4 FIFO in leader election, 89 Four delivery properties, 328 State, 132, 368 Checkpoint and communication pattern, 189 Checkpointing Classes of algorithms, 198 Consistent abstractions, 196 Domino effect, 196 Recovery algorithm, 214 Rollback-dependency trackability, 197 Stable storage, 211 Uncoordinated, 211 Z-cycle-freedom, 196 Communication Deterministic context, 341 Nondeterministic context, 342 Communication graph, 6 Concurrency set, 124 Conflict graph, 286 Consistency condition, 425

Atomicity, 430 Causal consistency, 464

M. Raynal, *Distributed Algorithms for Message-Passing Systems*, DOI 10.1007/978-3-642-38123-2, © Springer-Verlag Berlin Heidelberg 2013 Consistency condition (cont.) FIFO consistency, 470 Hierarchy, 468 Sequential consistency, 447 What is the issue, 429 Continuously passive process In deadlock detection, 416 In termination detection, 382 Convergecast Definition, 9 On a rooted spanning tree, 10 Crown structure, 339 Crumbling wall, 268 Cut Consistent, 125 Definition, 125 Cut vertex of graph Definition, 60, 66 Determination, 67

D

De Bruijn graph Computing, 74 Definition, 73 Deadlock detection AND model, 403 Definition, 404 Dependency set, 402 One-at-a-time model, 403 OR model. 404 Resource vs. message, 402 Structure of algorithms, 405 Wait-for graph, 402 What is the difficulty, 414 Deadlock detection in the AND model, 408 Deadlock detection in the one-at-a-time model, 405 Deadlock detection in the OR model, 413 Degree of a vertex, 42 Delivery condition Associated with a channel, 331 Causal barrier, 315 For bounded lifetime messages, 319 For message causal order, 307 Dependency set Deadlock detection, 402 Termination detection, 385 Depth-first network traversal, 24 Diameter of a graph, 60 Diffusing computation Definition. 376 Termination detection, 377 Dining philosophers, 290

Distributed algorithm, 4 Asynchronous, 5 Synchronous, 4 Distributed computation: definition, 123 Distributed cycle detection, 50 Distributed knot detection, 50 Distributed shared memory, 427 Distributed shortest paths Bellman-Ford, 35 Floyd-Warshall, 38 Domino effect, 196 Drinking philosophers, 295 Dynamic programming principle, 36 Dynamic termination Detection algorithm, 394 Locally evaluable predicate, 393

E

Eccentricity of a vertex, 60 Event Definition, 122 Immediate predecessor, 170 Partial order, 123 Relevant event, 170

F

Fast read algorithm (sequential consistency), 453, 456, 459 Fast write algorithm (sequential consistency), 455 Finite projective planes, 266 Flooding algorithm, 10 Forward/discard principle, 6 Fully connected network, 4

G

Global checkpoint, 189, see Global state Global function, 59 Global state Consistency, 129, 134 Consistency wrt. channel states, 133 Definition, 129 Detection of a conjunction of local predicates, 166 In termination detection, 375 Including channel states, 132 Lattice structure, 129 On-the-fly determination, 135 Reachability, 129 vs. cut, 134 Global state computation Definition, 136 Meaning of the result, 136

Index

Graph algorithms Distributed cycle detection, 50 Distributed knot detection, 50 Distributed shortest paths, 35 Distributed vertex coloring, 42 Maximal independent set, 46 Graph topology vs. round numbers, 72 Grid quorum, 267

H

Happened before relation, 123

I

Immediate predecessor Event, 170 Tracking problem, 170 Incremental requests, 287 Interaction, *see* Rendezvous communication Invariance wrt. real time, 125

K

k-out-of-*M* problem Case k = 1, 278Definition, 277 General case, 280 *k*-out-of-*M* receive statement, 387

L

Lattice of global states, 129 Leader election Impossibility in anonymous rings, 78 In bidirectional rings, 83 In unidirectional rings, 79 Optimality in unidirectional rings, 86 Problem definition, 77 Linear time Basic algorithm, 150 Definition, 150 Properties, 151 wrt. sequential observation, 152 Linearizability, see Atomicity Linearization point, 431 Liveness property Deadlock detection, 405 Mutual exclusion, 248 Navigating object, 94 Observation of a monotonous computation, 399 Rendezvous communication, 337 Termination detection, 369 Total order broadcast, 321 Local checkpoint, 189, see Local state Forced vs. spontaneous, 198 Useless, 195

Local clock drift, 240 Local property, 432 Sequential consistency is not a, 449 Local state Definition, 127 Logical instantaneity, *see* Rendezvous Logical ring construction, 27 Loop invariant and progress condition in termination detection, 383

М

Matrix clock Basic algorithm, 183 Definition, 182 Properties, 184 Matrix time, 182 Maximal independent set, 46 Message, 4 Arrival vs. reception, 385 As a point, 336 As an interval. 336 Bounded lifetime, 317 Causal order, 304 Crown, 339 Delivery condition, 307 Filtering, 69 In transit, 133 Internal vs. external, 7 Logging, 211 Logical instantaneity, 335 Marker, 138 Orphan, 133 Relation, 123 Rendezvous, 336 Sense of transfer, 336 Stability, 155 Unspecified reception, 387 Message complexity Leader election, 81, 85, 89 Message delivery: hierarchy, 306 Message logging, 211 Mobile object, 93 Monotonous computation Definition. 398 Observation, 399 Multicast, 9 Mutex, 247 Mutual exclusion Adaptive algorithm, 256 Based on a token, 94, 249 Based on arbiter permissions, 264 Based on individual permissions, 249 Bounded adaptive algorithm, 259 Definition. 247

Mutual exclusion (*cont.*) Process states, 248 To readers/writers, 255 vs. election, 248 vs. total order broadcast, 323 With multiples entries, 278 wrt. neighbors, 293

N

Navigating token for sequential consistency, 459 Navigation algorithm Adaptive, 108 Based on a complete network, 96 Based on a spanning tree, 100 Network Bounded delay, 236 Fully connected, 4 Object navigation, 93 Ring. 4 Tree. 4 Network traversal Breadth-first, 16, 17, 20 Depth-first, 24 In deadlock detection, 413 Synchronous breadth-first, 220 Nondeterminism, 136 Communication, 342 Communication choice, 358 Nondeterministic receive statement, 385 Solving, 345

0

Object computation Equivalent computations, 430 Legal computation, 430 Partial order, 429 OO constraint, 451 OR model Deadlock detection, 403 Receive statement, 386 Owner process, 439

Р

Partial order On events, 123 On local states, 127 On object operations, 429 Peripheral vertex of graph, 60 Permission-based algorithms, 249 Arbiter permission, 249 Individual permission, 249 Preemption, 270 Quorum-based permission, 268 Port, 9 Preemption (permission), 270 Process, 3 Arbiter, 264 Continuously passive, 382, 416 History, 122 Initial knowledge, 5 Notion of a proxy, 101 Owner, 439 Safe, 224 State, 368 Proxy process, 101 Pulse model, 220

Q

Quorum Antiquorum, 267 Construction, 266 Crumbling wall, 268 Definition, 265 Grid, 267 Vote-based, 268

R

Radius of a graph, 60 Receive statement AND model, 386 Disjunctive k-out-of-m model, 387 k-out-of-m model, 387 OR model, 386 Regular graph, 72 Computing on a De Bruijn graph, 74 De Bruijn graph, 73 Relevant event, 170 Rendezvous communication Client-server algorithm, 342 Crown-based characterization, 339 Definition, 336 n-way with deadlines, 360 Nondeterministic forced interactions, 350 Nondeterministic planned, 341 Token-based algorithm, 345 With deadline, 354 wrt. causal order. 338 Resource allocation, 277 Conflict graph, 286 Dynamic session, 293 Graph coloring, 291 Incremental requests, 287 Reduce waiting chains, 290 Resources with several instances, 295 Static session, 292 Resources with a single instance, 286 Restricted vector clock, 181

Index

Ring network, 4 Rollback-dependency trackability Algorithms, 203 BHMR predicate, 208 Definition, 197 FDAS strategy, 206 Rooted spanning tree Breadth-first construction, 16 Construction, 12 Definition, 11 For broadcast, 10 For convergecast, 10 Round numbers vs. graph topology, 72 Round-based algorithm As a distributed iteration, 65 Global function computation, 61 Maximal independent set, 46 Shortest paths, 35 Vertex coloring, 43 Routing tables From a global function, 62 From Bellman-Ford, 35 From Floyd–Warshall, 38 Rubber band transformation, 143

S

Safety property Deadlock detection, 404 Mutual exclusion, 248 Navigating object, 94 Observation of a monotonous computation, 399 Rendezvous communication, 337 Termination detection, 369 Total order broadcast, 320 Scalar time, see Linear time Sequential consistency Based on the OO-constraint, 462 Definition. 447 Fast enqueue, 456 Fast read algorithm, 453 Fast write algorithm, 455 From a navigating token, 459 From a server per object, 460 From a single server, 456 From total order broadcast, 453 Is not a local property, 449 Object managers must cooperate, 461 OO constraint, 451 Partial order for read/write objects, 450 Two theorems, 451 WW constraint, 451 Sequential observation Definition. 131

Snapshot, 121 Space/time diagram Equivalent executions, 125 Synchronous vs. asynchronous, 5 Spanner, 234 Stable property Computation, 137 Definition, 137 Static termination Detection algorithm, 390 Locally evaluable predicate, 390 Superimposition, 141 Synchronizer Basic principle, 223 Definition, 222 Notion of a safe process, 224 Synchronizer α , 224 Synchronizer β (tree-based), 227 Synchronizer δ (spanner-based), 234 Synchronizer γ (overlay-based), 230 Synchronizer μ , 239 Synchronizer λ , 238 Synchronous breadth-first traversal, 220 Synchronous communication, see Rendezvous communication Synchronous system, 4, 219 For rendezvous with deadlines, 354 Pulse model. 220

Т

Termination Graph computation algorithm, 8 Local vs. global, 23 Predicate, 368 Shortest path algorithm, 37 Termination detection Atomic model, 370 Dynamic termination, 389 Four-counter algorithm, 371 General model, 378 General predicate fulfilled(), 387 Global states and cuts, 375 In diffusing computation, 376 Loop invariant and progress condition, 383 Problem, 369 Reasoned detection in a general model, 381 Static termination, 389 Static vs. dynamic termination, 388 Static/dynamic vs. classical termination, 389 Type of algorithms, 369 Vector counting algorithm, 373 Very general model, 385

Timestamp Definition, 152 wrt. sequential observation, 152 Token, 94 Total order broadcast Based on inquiries, 324 Circulating token, 322 Coordinator-based, 322 Definition, 154, 320 For sequential consistency, 453 In a synchronous system, 326 Informal definition, 153 Strong, 320 Timestamp-based implementation, 156 To implement atomicity, 435 vs. mutual exclusion, 323 Weak, 321 Tree invariant, 101 Tree network, 4

U

Uncoordinated checkpointing, 211 Unspecified message reception, 387

V

Vector clock Adaptive communication layer, 180 Approximation, 181 Basic algorithm, 160 Definition, 160 Efficient implementation, 176 *k*-restricted, 181 Lower bound on the size, 174 Properties, 162 Vector time Definition, 159 Detection of a conjunction of local predicates, 166 Development, 163 wrt. global states, 165 Vertex coloring, 42 Vote, 268

W

Wait-for graph, 402
Waiting

Due to messages, 401
Due to resources, 401

Wave and sequence of waves

Definition, 379
Ring-based implementation, 380
Tree-based implementation, 380

Wave-based algorithm

Spanning tree construction, 17
Termination detection, 381, 390, 394

WW constraint, 451

Z

Z-cycle-freedom Algorithms, 201 Dating system, 199 Definition, 196 Notion of an optimal algorithm, 203 Operational characterization, 199
Z-dependency relation, 190
Zigzag path, 190
Zigzag pattern, 191