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Preface

This report contains the lecture notes used by Nancy Lynch�s graduate course in Distributed

Algorithms� during fall semester� ����� The notes were prepared by Nancy Lynch and

Teaching Assistant Boaz Patt�Shamir�

The main part of this report is detailed lectures notes for the �� regular class meetings�

We think the reader will �nd these to be reasonably well polished� and we would very much

appreciate comments about any errors� or suggestions on the presentation� Following these

notes are the homework assignments� Finally� we included an appendix that contains notes

for three additional lectures that were given after the regular term was over� The extra

lectures cover material that did not �t into the scheduled number of class hours� These

notes are in a very rough shape�

Many thanks go to the students who took the course this semester	 they contributed

many useful comments and suggestions on the technical content� and also had a very strong

in
uence on the pace and level of the presentation� If these notes are understandable to other

audiences� it is largely because of the feedback provided by this �rst audience� Thanks also

go to George Varghese for contributing an excellent lecture on self�stabilizing algorithms�

We would also like to acknowledge the work of Ken Goldman and Isaac Saias in preparing

earlier versions ����� and ���� respectively� of the notes for this course� We were able to

reuse much of their work� The students who took the course during those two years worked

hard to prepare those earlier lecture notes� and also deserve a lot of thanks� Jennifer Welch

and Mark Tuttle also contributed to earlier versions of the course� Finally� we would like to

thank Joanne Talbot for her invaluable help�

Nancy Lynch� lynch�theory�lcs�mit�edu

Boaz Patt�Shamir� boaz�theory�lcs�mit�edu

January� ����

�



�



Contents

LECTURES ��

Lecture �� September ��� ���� ��

��� Introduction to the Course � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� The Subject Matter � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Style � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Overview of the Course � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Synchronous Network Algorithms � � � � � � � � � � � � � � � � � � � � � � � � �

����� Problem Example� Leader Election in a Ring � � � � � � � � � � � � � ��

����� Algorithm �� LeLann� Chang�Roberts � � � � � � � � � � � � � � � � � � ��

Lecture �� September ��� ���� ��

��� Leader Election on a Ring �cont�� � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Algorithm �� Hirshberg�Sinclair � � � � � � � � � � � � � � � � � � � � � ��

����� Counterexample Algorithms � � � � � � � � � � � � � � � � � � � � � � � ��

����� Lower Bound on Comparison�Based Protocols � � � � � � � � � � � � � ��

��� Leader Election in a General Network � � � � � � � � � � � � � � � � � � � � � � ��

��� Breadth�First Search � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Extensions � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

Lecture �� September ��� ���� �	

��� Shortest Paths� Unweighted and Weighted � � � � � � � � � � � � � � � � � � � ��

��� Minimum Spanning Tree � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Maximal Independent Set � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

Lecture 
� September ��� ���� 
	

��� Link Failures � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� The Coordinated Attack Problem � � � � � � � � � � � � � � � � � � � � ��

����� Randomized Consensus � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Faulty Processors � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

�



����� Stop Failures � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

Lecture �� September �
� ���� ��

��� Byzantine Failures � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Reducing the Communication Cost � � � � � � � � � � � � � � � � � � � � � � � ��

����� Stopping Faults � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� The Byzantine Case � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� The Turpin�Coan Algorithm � � � � � � � � � � � � � � � � � � � � � � � ��

Lecture 	� September ��� ���� 	�

��� Number of Processes for Byzantine Agreement � � � � � � � � � � � � � � � � � ��

��� Byzantine Agreement in General Graphs � � � � � � � � � � � � � � � � � � � � ��

��� Weak Byzantine Agreement � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Number of Rounds with Stopping Faults � � � � � � � � � � � � � � � � � � � � ��

Lecture �� October �� ���� ��

��� Number of Rounds With Stopping Failures �cont�� � � � � � � � � � � � � � � � ��

��� The Commit Problem � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Two Phase Commit ��PC� � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Three�phase Commit ��PC� � � � � � � � � � � � � � � � � � � � � � � � ��

����� Lower Bound on the Number of Messages � � � � � � � � � � � � � � � ��

Lecture �� October 	� ���� ��

��� Asynchronous Shared Memory � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Informal Model � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Mutual Exclusion Problem � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Dijkstra�s Mutual Exclusion Algorithm � � � � � � � � � � � � � � � � � � � � � ��

����� A Correctness Argument � � � � � � � � � � � � � � � � � � � � � � � � � ��

Lecture �� October �� ���� ���

��� Dijkstra�s Mutual Exclusion Algorithm �cont�� � � � � � � � � � � � � � � � � � ��

����� An Assertional Proof � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Running Time � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Improved Mutual Exclusion Algorithms � � � � � � � � � � � � � � � � � � � � � ��

����� No�Starvation Requirements � � � � � � � � � � � � � � � � � � � � � � � ��

����� Peterson�s Two�Process Algorithm � � � � � � � � � � � � � � � � � � � ��

����� Tournament Algorithm � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Iterative Algorithm � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

�



Lecture ��� October ��� ���� ���

��� Atomic Objects � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

����� Example� Read�Write Object � � � � � � � � � � � � � � � � � � � � � � ���

����� De�nition � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

��� Atomic Snapshots � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

����� Problem Statement � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

����� Unbounded Algorithm � � � � � � � � � � � � � � � � � � � � � � � � � � ���

����� Bounded Register Algorithm � � � � � � � � � � � � � � � � � � � � � � � ��

Lecture ��� October ��� ���� ���

���� Burns� Mutual Exclusion Algorithm � � � � � � � � � � � � � � � � � � � � � � � ���

���� Lamport�s Bakery Algorithm � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

������ Analysis � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

���� The Number of Registers for Mutual Exclusion � � � � � � � � � � � � � � � � � ��

������ Two Processes and One Variable � � � � � � � � � � � � � � � � � � � � ���

������ Three processes and Two Variables � � � � � � � � � � � � � � � � � � � ���

������ The General Case � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

Lecture ��� October ��� ���� ��	

���� Consensus Using Read�Write Shared Memory � � � � � � � � � � � � � � � � � ���

������ Impossibility for Arbitrary Stopping Faults � � � � � � � � � � � � � � � ���

������ Impossibility for a Single Stopping Fault � � � � � � � � � � � � � � � � ��

���� Modeling and Modularity for Shared Memory Systems � � � � � � � � � � � � ���

������ The Basic Input�Output Automaton Model � � � � � � � � � � � � � � ���

Lecture ��� October ��� ���� ���

���� I�O Automata �cont�� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

������ Problem Speci�cation � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

������ Proof Techniques � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

���� Shared Memory Systems as I�O Automata � � � � � � � � � � � � � � � � � � � ���

������ Instantaneous Memory Access � � � � � � � � � � � � � � � � � � � � � � ���

������ Object Model � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

���� Modularity Results � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

������ Transforming from Instantaneous to Atomic Objects � � � � � � � � � ���

������ Composition in the Object Model � � � � � � � � � � � � � � � � � � � � ���

�



Lecture �
� October ��� ���� �	�

���� Modularity �cont�� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

������ Wait�freedom � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

���� Concurrent Timestamp Systems � � � � � � � � � � � � � � � � � � � � � � � � � ���

������ De�nition of CTS Objects � � � � � � � � � � � � � � � � � � � � � � � � ���

������ Bounded Label Implementation � � � � � � � � � � � � � � � � � � � � � ���

������ Correctness Proof � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

������ Application to Lamport�s Bakery Algorithm � � � � � � � � � � � � � � ���

Lecture ��� November �� ���� ���

���� Multi�Writer Register Implementation Using CTS � � � � � � � � � � � � � � � ���

������ The Algorithm � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

������ A Lemma for Showing Atomicity � � � � � � � � � � � � � � � � � � � � ��

������ Proof of the Multi�writer Algorithm � � � � � � � � � � � � � � � � � � � ���

���� Algorithms in the Read�Modify�Write Model � � � � � � � � � � � � � � � � � � ���

������ Consensus � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

������ Mutual Exclusion � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

Lecture �	� November �� ���� ���

���� Read�Modify�Write Algorithms �cont�� � � � � � � � � � � � � � � � � � � � � � ���

������ Mutual Exclusion �cont�� � � � � � � � � � � � � � � � � � � � � � � � � � ���

������ Other Resource Allocation Problems � � � � � � � � � � � � � � � � � � ���

���� Safe and Regular Registers � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

������ De�nitions � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

������ Implementation Relationships for Registers � � � � � � � � � � � � � � � ��

������ Register Constructions � � � � � � � � � � � � � � � � � � � � � � � � � � ��

Lecture ��� November ��� ���� ���

���� Register Constructions �cont�� � � � � � � � � � � � � � � � � � � � � � � � � � � ��

������ Construction �� Binary Regular Register from Binary Safe Register � ��

������ Construction �� K�ary Regular Register from Binary Regular Register ��

������ Construction �� ��Reader K�ary Atomic Register from Regular Register���

������ Multi�Reader Atomic Registers � � � � � � � � � � � � � � � � � � � � � ���

���� Lamport�s Bakery Revisited � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

���� Asynchronous Network Algorithms � � � � � � � � � � � � � � � � � � � � � � � ���

������ Leader Election � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

�



Lecture ��� November ��� ���� ���

���� Leader Election in Asynchronous Rings �cont�� � � � � � � � � � � � � � � � � � ��

������ The LeLann�Chang Algorithm �cont�� � � � � � � � � � � � � � � � � � � ��

������ The Hirshberg�Sinclair Algorithm � � � � � � � � � � � � � � � � � � � � ���

������ The Peterson Algorithm � � � � � � � � � � � � � � � � � � � � � � � � � ���

������ Burns� Lower Bound Result � � � � � � � � � � � � � � � � � � � � � � � ���

���� Problems in General Asynchronous Networks � � � � � � � � � � � � � � � � � � ���

������ Network Leader Election � � � � � � � � � � � � � � � � � � � � � � � � � ���

������ Breadth��rst Search and Shortest Paths � � � � � � � � � � � � � � � � ���

Lecture ��� November ��� ���� ���

���� Asynchronous Broadcast�Convergecast � � � � � � � � � � � � � � � � � � � � � ���

���� Minimum Spanning Tree � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

������ Problem Statement � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

������ Connections Between MST and Other Problems � � � � � � � � � � � � ���

������ The Synchronous Algorithm� Review � � � � � � � � � � � � � � � � � � ���

������ The Gallager�Humblet�Spira Algorithm� Outline � � � � � � � � � � � � ���

������ In More Detail � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

������ A Summary of the Code in the GHS Algorithm � � � � � � � � � � � � ���

������ Complexity Analysis � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

������ Proving Correctness for the GHS Algorithm � � � � � � � � � � � � � � ���

Lecture ��� November ��� ���� ���

��� Minimum Spanning Tree �cont�� � � � � � � � � � � � � � � � � � � � � � � � � � ���

����� Simpler �Synchronous� Strategy � � � � � � � � � � � � � � � � � � � � � ���

��� Synchronizers � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

����� Synchronous Model � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

����� High�Level Implementation Using a Synchronizer � � � � � � � � � � � ���

����� Synchronizer Implementations � � � � � � � � � � � � � � � � � � � � � � ���

����� Hybrid Implementation � � � � � � � � � � � � � � � � � � � � � � � � � � ���

����� Applications � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

��� Lower Bound for Synchronizers � � � � � � � � � � � � � � � � � � � � � � � � � ��

Lecture ��� November �
� ���� �	


���� Time� Clocks� etc� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

������ Logical Time � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

������ Algorithms � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

�



������ Applications � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

���� Simulating Shared Memory � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

���� Mutual Exclusion and Resource Allocation � � � � � � � � � � � � � � � � � � � ���

������ Problem De�nition � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

������ Mutual Exclusion Algorithms � � � � � � � � � � � � � � � � � � � � � � ���

Lecture ��� December �� ���� ���

���� Mutual Exclusion �cont�� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

������ Ricart � Agrawala ������ � � � � � � � � � � � � � � � � � � � � � � � � ���

������ Carvalho � Roucairol ������ � � � � � � � � � � � � � � � � � � � � � � � ��

���� General Resource Allocation � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

������ Burns�Lynch Algorithm � � � � � � � � � � � � � � � � � � � � � � � � � ��

������ Drinking Philosophers � � � � � � � � � � � � � � � � � � � � � � � � � � ���

���� Stable Property Detection � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

������ Termination for Di�using Computations � � � � � � � � � � � � � � � � ���

������ Snapshots � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

Lecture ��� December �� ���� ���

���� The Concept of Self�Stabilization � � � � � � � � � � � � � � � � � � � � � � � � ���

������ Door Closing and Domain Restriction � � � � � � � � � � � � � � � � � � ���

������ Self�Stabilization is attractive for Networks � � � � � � � � � � � � � � � ��

������ Criticisms of Self�Stabilization � � � � � � � � � � � � � � � � � � � � � � ��

���� De�nitions of Stabilization � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

������ Execution De�nitions � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

������ De�nitions of Stabilization based on External Behavior � � � � � � � � ��

������ Discussion on the Stabilization De�nitions � � � � � � � � � � � � � � � ��

���� Examples from Dijkstra�s Shared Memory Model � � � � � � � � � � � � � � � ��

������ Dijkstra�s Shared Memory Model and IOA � � � � � � � � � � � � � � � ��

������ Dijkstra�s Second Example as Local Checking and Correction � � � � ��

������ Dijkstra�s �rst example as Counter Flushing � � � � � � � � � � � � � � ��

���� Message Passing Model � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

������ Modeling the Topology � � � � � � � � � � � � � � � � � � � � � � � � � � ���

������ Modeling Links � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

������ Modeling Network Nodes and Networks � � � � � � � � � � � � � � � � � ���

������ Implementing the Model in Real Networks � � � � � � � � � � � � � � � ���

���� Local Checking and Correction in our Message Passing Model � � � � � � � � ���

������ Link Subsystems and Local Predicates � � � � � � � � � � � � � � � � � ���

�



������ Local Checkability � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

������ Local Correctability � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

���� Local Correction Theorem � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

������ Theorem Statement � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

������ Overview of the Transformation Code � � � � � � � � � � � � � � � � � � ���

���� Intuitive Proof of Local Correction Theorem � � � � � � � � � � � � � � � � � � ���

������ Intuition Behind Local Snapshots � � � � � � � � � � � � � � � � � � � � ���

������ Intuition Behind Local Resets � � � � � � � � � � � � � � � � � � � � � � ���

������ Intuition Behind Local Correction Theorem � � � � � � � � � � � � � � ���

���� Implementing Local Checking in Real Networks� Timer Flushing � � � � � � � ���

���� Summary � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

Lecture �
� December �� ���� ���

���� Self�Stabilization and Termination � � � � � � � � � � � � � � � � � � � � � � � � ���

���� Self�Stabilization and Finite State � � � � � � � � � � � � � � � � � � � � � � � � ���

���� Self�stabilizing Reset Protocol � � � � � � � � � � � � � � � � � � � � � � � � � � ���

������ Problem statement � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

������ Unbounded�registers Reset � � � � � � � � � � � � � � � � � � � � � � � � ���

������ Example� Link Reset � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

������ Reset Protocol � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

������ Analysis � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

������ Comments � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

���� Application� Network Synchronization � � � � � � � � � � � � � � � � � � � � � ���

������ Implementation with Bounded Pulse Numbers � � � � � � � � � � � � � ���

Lecture ��� December ��� ���� �
�

���� Fischer�Lynch�Paterson Impossibility Result � � � � � � � � � � � � � � � � � � ���

���� Ben�Or Randomized Protocol for Consensus � � � � � � � � � � � � � � � � � � ���

������ Correctness � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

���� Parliament of Paxos � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

HOMEWORK ASSIGNMENTS ���
Homework Assignment � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

Homework Assignment � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

Homework Assignment � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

Homework Assignment � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

Homework Assignment � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

�



Homework Assignment � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

Homework Assignment � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

Homework Assignment � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

Homework Assignment � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

Homework Assignment � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

Homework Assignment �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

APPENDIX ���

Lecture �	� January �� ���� ���

A�� Implementing Reliable Point�to�Point Communication in terms of Unreliable

Channels � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

A���� Stenning�s Protocol � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

A���� Alternating Bit Protocol � � � � � � � � � � � � � � � � � � � � � � � � � ���

A���� Bounded�Header Protocols Tolerating Reordering � � � � � � � � � � � ���

Lecture ��� January ��� ���� ���

B�� Reliable Communication Using Unreliable Channels � � � � � � � � � � � � � � ���

B���� Bounded�Header Protocols Tolerating Reordering � � � � � � � � � � � ���

B���� Tolerating Node Crashes � � � � � � � � � � � � � � � � � � � � � � � � � ��

B�� ��packet Handshake Internet Protocol � � � � � � � � � � � � � � � � � � � � � � ��

Lecture ��� January �	� ���� 
��

C�� MMT Model De�nition � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

C���� Timed Automata � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

C�� Simple Mutual Exclusion Example � � � � � � � � � � � � � � � � � � � � � � � ���

C�� Basic Proof Methods � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

C�� Consensus � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

C�� More Mutual Exclusion � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

C�� Clock Synchronization � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

BIBLIOGRAPHY ���
D�� Introduction � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

D�� Models and Proof Methods � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

D���� Automata � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

D���� Invariants � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

�



D���� Mapping Methods � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

D���� Shared Memory Models � � � � � � � � � � � � � � � � � � � � � � � � � ��

D���� I�O Automata � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

D���� Temporal Logic � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

D���� Timed Models � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

D���� Algebra � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

D�� Synchronous Message�Passing Systems � � � � � � � � � � � � � � � � � � � � � ���

D���� Computing in a Ring � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

D���� Network Protocols � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

D���� Consensus � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

D�� Asynchronous Shared Memory Systems � � � � � � � � � � � � � � � � � � � � � ���

D���� Mutual Exclusion � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

D���� Resource Allocation � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

D���� Atomic Registers � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

D���� Snapshots � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

D���� Timestamp Systems � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

D���� Consensus � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

D���� Shared Memory for Multiprocessors � � � � � � � � � � � � � � � � � � � ���

D�� Asynchronous Message�Passage Systems � � � � � � � � � � � � � � � � � � � � ��

D���� Computing in Static Networks � � � � � � � � � � � � � � � � � � � � � � ��

D���� Network Synchronization � � � � � � � � � � � � � � � � � � � � � � � � � ���

D���� Simulating Asynchronous Shared Memory � � � � � � � � � � � � � � � ���

D���� Resource Allocation � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

D���� Delecting Stable Properties � � � � � � � � � � � � � � � � � � � � � � � ���

D���� Deadlock Detection � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

D���� Consensus � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

D���� Datalink � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

D���� Special�Purpose Network Building Blocks � � � � � � � � � � � � � � � � ���

D���� Self�Stabilization � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

D����� Knowledge � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

D�� Timing�Based Systems � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

D���� Resource Allocation � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

D���� Shared Memory for Multiprocessors � � � � � � � � � � � � � � � � � � � ���

D���� Consensus � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

D���� Communication � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

D���� Clock Synchronization � � � � � � � � � � � � � � � � � � � � � � � � � � ���

��



D���� Applications of Synchronized Clocks � � � � � � � � � � � � � � � � � � ���

��



�����J�������J Distributed Algorithms September �� ����
Lecturer� Nancy Lynch

Lecture �

��� Introduction to the Course

����� The Subject Matter

This course is about �distributed algorithms�� Distributed algorithms include a wide range

of parallel algorithms� which can be classi�ed by a variety of attributes�

� Interprocess Communication �IPC� method� shared memory� message�passing� data
ow�

� Timing Model� synchronous� asynchronous� partially synchronous�

� Failure Model� reliable system� faulty links� faulty processors�

� Problems addressed� resource allocation� communication� agreement� database concur�

rency control� deadlock detection� and many more�

Some of the major intended application areas of distributed algorithms are

� communication systems�

� shared�memory multiprocessor computation�

� distributed operating systems�

� distributed database systems�

� digital circuits� and

� real�time process�control systems�

Some kinds of parallel algorithms are studied in other courses and will not be covered

in this course� e�g�� PRAM algorithms and algorithms for �xed�connection networks such as

Butter
y� The algorithms to be studied in this course are distinguished by having a higher

degree of uncertainty� and more independence of activities� Some of the types of uncertainty

that we will consider are�
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� unknown number of processors�

� unknown shape of network�

� independent inputs at di�erent locations�

� several programs executing at once� starting at di�erent times� going at di�erent speeds�

� nondeterministic processors�

� uncertain message delivery times�

� unknown message ordering�

� failures� processor �stopping� transient omission� Byzantine�	 link �message loss� dupli�

cation� reordering�

Because of all this uncertainty� no component of a distributed system �knows� the entire

system state� Luckily� not all the algorithms we consider will have to contend with all of

these types of uncertainty�

Distributed algorithms can be extremely complex� at least in their details� and can be

quite di�cult to understand� Even though the actual �code� may be short� the fact that

many processors are executing the code in parallel� with steps interleaved in some undeter�

mined way� implies that there can be prohibitively many di�erent executions� even for the

same inputs� This implies that it is nearly impossible to understand everything about the

executions of distributed algorithms� This can be contrasted with other kinds of parallel

algorithms such as PRAM algorithms� for which one might hope to understand exactly what

the �well�de�ned� state looks like at each given point in time� Therefore� instead of trying

to understand all the details of the execution� one tends to assert certain properties of the

execution� and just understand and prove these properties�

����� Style

The general 
avor of the work to be studied is as follows�

� Identify problems of major signi�cance in �practical� distributed computing and de�ne

abstract versions of the problems for mathematical study�

� Give precise problem statements�

� Describe algorithms precisely�
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� Prove rigorously that the algorithms solve the problems�

� Analyze the complexity of the algorithms�

� Prove corresponding impossibility results�

Note the emphasis on rigor	 this is important in this area� because of the subtle compli�

cations that arise� A rigorous approach seems necessary to be sure that the problems are

meaningful� the algorithms are correct� the impossibility results are true and meaningful�

and the interfaces are su�ciently well�de�ned to allow system building�

However� because of the many complications� rigor is hard to achieve� In fact� the devel�

opment of good formal methods for describing and reasoning about distributed algorithms

is the subject of a good deal of recent research� Speci�cally� there has been much serious

work in de�ning appropriate formal mathematical models� both for describing the algorithms

and for describing the problems they are supposed to solve	 a considerable amount of work

has also been devoted to proof methods� One di�culty in carrying out a rigorous approach

is that� unlike in many other areas of theoretical computer science� there is no any single

accepted formal model to cover all the settings and problems that arise in this area� This

phenomenon is unavoidable� because there are so many very di�erent settings to be studied

�consider the di�erence between shared memory and message�passing�� and each of them has

its own suitable formal models�

So� rigor is a goal to be striven for� rather than one that we will achieve entirely in this

course� Due to time limitations� and �sometimes� the di�culty of making formal presenta�

tions intuitively understandable� the presentation in class will be a mixture of rigorous and

intuitive�

����� Overview of the Course

There are many di�erent orders in which this material could be presented� In this course� we

divide it up �rst according to timing assumptions� since that seems to be the most important

model distinction� The timing models to be considered are the following�

synchronous� This is the simplest model� We assume that components take steps simulta�

neously� i�e�� the execution proceeds in synchronous rounds�

asynchronous� Here we assume that the separate components take steps in arbitrary order�

partially synchronous �timing�based�� This is an �in�between� model � there are some

restrictions on relative timing of events� but execution is not completely lock�step�
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The next division is by the IPC mechanism� shared memory vs� message�passing� Then

we subdivide by the problem studied� And �nally� each model and problem can be considered

with various failure assumptions�

We now go over the bibliographical list and the tentative schedule �Handouts � and ���

The bibliographical list doesn�t completely correspond to the order of topics to be covered	

the di�erence is that the material on models will be spread throughout the course as needed�

General references� These include the previous course notes� and some related books�

There is not really much in the way of textbooks on this material�

Introduction� The chapter on distributed computing in the handbook on Theoretical

Computer Science is a sketchy overview of some of the modeling and algorithmic ideas�

Models and Proof Methods� We shall not study this as an isolated topic in the course

� rather� it is distributed through the various units� The basic models used are automata�

theoretic� starting with a basic state�machine model with little structure� These state ma�

chines need not necessarily be �nite�state� Invariant assertions are often proved about

automaton states� by induction� Sometimes we use one automaton to represent the problem

being solved� and another to represent the solution	 then a correctness proof boils down

to establishing a correspondence that preserves the desired external behavior� In this case�

proving the correspondence is often done using a mapping or simulation method� Specially

tailored state machine models have been designed for some special purposes� e�g�� for shared

memory models �where the structure consists of processes and shared variables�� Another

model is the I�O automaton model for reactive systems� i�e�� systems that interact with an

external environment in an ongoing fashion� This model can model systems based on shared

variables� but is more appropriate for message�passing systems� One of the key features of

this model is that it has good compositionality properties� e�g�� that the correctness of a com�

pound automaton can be proved using the correctness of its components� Temporal logic is

an example of a special set of methods �language� logic� mainly designed for proving liveness

properties �e�g�� something eventually happens�� Timed models are mainly newer research

work� Typically� these are specially�tailored models for talking about timing�based systems

� e�g�� those whose components have access to system clocks� can use timeouts� etc� Alge�

braic methods are an important research subarea �but we will not have time for this�� The

algebraic methods describe concurrent processes and systems using algebraic expressions�

then use equations involving these expressions to prove equivalences and implementation

relationships among the processes�
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Synchronous MessagePassing� As noted� the material is organized �rst by timing

model� The simplest model �i�e�� the one with the least uncertainty� is the synchronous

model� in which all the processes take steps in synchronous rounds� The shared�memory

version of this model is the PRAM� Since it is studied in other courses� we shall skip this

subject� and start with synchronous networks�

We spend the �rst two weeks or so of the course on problems in synchronous networks

that are typical of the distributed setting� In the network setting we have the processors

at the nodes of a graph G� communicating with their neighbors via messages in the edges�

We start with a simple toy example� involving ring computation� The problem is to elect a

unique leader in a simple network of processors� which are assumed to be identical except for

Unique Identi�ers �UID�s�� The uncertainty is that the size of network� and the set of ID�s

of processors� are unknown �although it is known that the UID�s are indeed unique�� The

main application for this problem is a token ring� where there is a single token circulating�

and sometimes it it necessary to regenerate a lost token� We shall see some details of the

modeling� and some typical complexity measures will be studied� For example� we shall

show upper and lower bounds for the time and the amount of communication �i�e�� number

of messages� required� We shall also study some other problems in this simple setting�

Next� we�ll go through a brief survey of some protocols in more general networks� We

shall see some protocols used in unknown synchronous networks of processes to solve some

basic problems like �nding shortest paths� de�ning a minimum spanning tree� computing a

maximal independent set� etc�

Then we turn to the problem of reaching consensus� This refers to the problem of

reaching agreement on some abstract fact� where there are initial di�erences of opinion�

The uncertainty here stems not only from di�erent initial opinions� but also from processor

failures� We consider failures of di�erent types� stopping� where a processor suddenly stops

executing its local protocol	 omission� where messages may be lost en route	 and Byzantine�

where a faulty processor is completely unrestricted� This has been an active research area

in the past few years� and there are many interesting results� so we shall spend a couple of

lectures on this problem� We shall see some interesting bounds on the number of tolerable

faults� time� and communication�

Asynchronous Shared Memory� After �warming up� with synchronous algorithms �in

which there is only a little uncertainty�� we move into the more characteristic �and possibly

more interesting� part of the course� on asynchronous algorithms� Here� processors are no

longer assumed to take steps in lock�step synchrony� but rather can interleave their steps in

arbitrary order� with no bound on individual process speeds� Typically� the interactions with

the external world �i�e�� input�output� are ongoing� rather than just initial input and �nal
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output� The results in this setting have quite a di�erent 
avor from those for synchronous

networks�

The �rst problem we deal with is mutual exclusion This is one of the fundamental �and

historically �rst� problems in this area� and consequently� much work has been dedicated

to exploring it� Essentially� the problem involves arbitrating access to a single� indivisible�

exclusive�use resource� The uncertainty here is about who is going to request access and

when� We�ll sketch some of the important algorithms� starting with the original algorithm

of Dijkstra� Many important concepts for this �eld will be illustrated in this context� in�

cluding progress� fairness� fault�tolerance� and time analysis for asynchronous algorithms�

We shall see upper bounds on the amount of shared memory� corresponding lower bounds�

and impossibility results� We shall also discuss generalizations of mutual exclusion to more

general resource allocation problems� For example� we will consider the Dining Philosophers

problem � a prototypical resource allocation problem�

Next� we shall study the concept of atomic registers� so far� we have been assuming indi�

visible access to shared memory� But how can one implement this on simpler architectures�

We shall look at several algorithms that solve this problem in terms of weaker primitives� An

interesting new property that appears here is wait�freeness� which means that any operation

on the register must complete regardless of the failure of other concurrent operations�

An atomic snapshot is a convenient primitive for shared read�write memory� Roughly

speaking� the objective is to take an instantaneous snapshot of all the memory locations at

once� An atomic snapshot is a useful primitive to have for building more powerful systems�

We shall see how to implement it�

A concurrent timestamp system is another nice primitive� This is a system that issues�

upon request� timestamps that can be used by programs to establish a consistent order

among their operations� The twist here is how to implement such systems with bounded�

memory� It turns out out such bounded timestamp systems can be built in terms of atomic

snapshots� Also� a concurrent timestamp system can be used to build more powerful forms

of shared memory� such as multi�writer multi�reader memory�

We shall also reconsider the consensus problem in the asynchronous shared memory

model� and prove the interesting fact it is impossible to solve in this setting�

A possible new topic this time is shared memory for multiprocessors� Much recent research

is aimed at identifying di�erent types of memory abstractions that are used� or might be

useful� for real systems� Systems architects who develop such types of memory frequently do

not give precise statements of what their memory guarantees �especially in the presence of

concurrent accesses and failures�� So recently� theoreticians have started trying to do this�
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Asynchronous MessagePassing Systems� This section deals with algorithms that op�

erate in asynchronous networks� Again� the system is modeled as a graph with processors at

nodes� and communication links are represented by the edges� but now the system does not

operate in rounds� In particular� messages can arrive at arbitrary times� and the processors

can take steps at arbitrary speeds� One might say that we now have �looser coupling� of

the components of the system� we have more independence and uncertainty�

Computing in static graphs� The simplest type of setting here is computation in a �xed

�unknown� graph in which the inputs arrive at the beginning� and there is a single output

to be produced� Some examples are leader election in ring� and minimum spanning tree

computation�

Network synchronization� At this point� we could plunge into a study the many special�

purpose algorithms designed expressly for asynchronous distributed networks� But instead�

we shall �rst try to impose some structure on such algorithms by considering �algorithm

transformations� that can be used to run algorithms designed for a simpler computation

model on a a complex asynchronous network�

The �rst example here arises in the very important paper by Lamport� where he shows

a simple method of assigning consistent logical times to events in a distributed network�

This can be used to allow an asynchronous network to simulate one in which the nodes

have access to perfectly synchronized real�time clocks� The second example is Awerbuch�s

synchronizer� which allows an asynchronous network to simulate the lock�step synchronous

networks discussed in the �rst part of the course �at least� those without failures�� and to

do so e�ciently� We shall contrast this simulation result with an interesting lower bound

that seems to say that any such simulation must be ine�cient �the apparent contradiction

turns out to depend on the kind of problem being solved�� Third� we shall see that an

synchronous network can simulate a centralized �non�distributed� state machine� And fourth�

an asynchronous network can be used to simulate asynchronous shared memory� Any of these

simulations can be used to run algorithms from simpler models in the general asynchronous

network model�

Next� we shall look at some speci�c problems� such as resource allocation� We shall see

how to solve mutual exclusion� dining philosophers etc� in networks�

Detection of stable properties refers to a class of problems with a similar 
avor and a

common solution� Suppose that there is a separate algorithm running� and we want to

design another algorithm to �monitor� the �rst� To monitors here might mean� for instance�

to detect when it terminates or deadlocks� or to take a �consistent snapshot� of its state�

We shall also revisit the consensus problem in the context of networks� The problem is

easy without faults� but with faults� it is mostly impossible �even for very simple types of
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faults such as just stopping��

Datalink protocols involve the implementation of a reliable communication link in terms

of unreliable underlying channels� We shall see the basic Alternating Bit Protocol �the

standard case study for concurrent algorithm veri�cation papers�� There have been many

new algorithms and impossibility results for this problem�

Special�Purpose Network Building Blocks� Some special problems that arise in commu�

nication networks have special solutions that seem able to combine with others� Major

examples are the protocols of broadcast�convergecast� reset� end�to�end�

Self�stabilization� Informally� a protocol is said to be self�stabilizing if its speci�cation

does not require a certain �initial con�guration� to be imposed on the system to ensure cor�

rect behavior of the protocol� The idea is that a self�stabilizing protocol is highly resilient� it

can recover from any transient error� We shall see some of the basic self�stabilizing protocols�

and survey some of the recent results�

Timingbased Systems� These systems lie between synchronous and asynchronous� so

they have somewhat less uncertainty than the latter� They are put at the end of the course

because they are a subject of newer research� and since they are less well understood� In

these systems� processors have some knowledge of time� for example� access to real time� or

approximate real time� or some timeout facility� Another possible assumption is that the

processor step time� or message delivery time is within some known bounds� Time adds

some extra structure and complication to state machine models� but it can be handled in the

same general framework� In terms of the various time parameters� one can get upper and

lower bounds for various interesting problems� such as mutual exclusion� resource allocation�

consensus� and communication�

We may have time to look at some popular clock synchronization algorithms� and perhaps

some of their applications�

��� Synchronous Network Algorithms

We start with the synchronous network algorithms� Our computation model is de�ned as

follows� We are given a collection of nodes� organized into a directed graph G � �V�E�� We

shall denote n � jV j� We assume the existence of some message alphabet M � and let null

denote the absence of a message� Each node i � V has

states�i� � a set of states

start�i� � a subset of states�i�

msgs�i� � mapping states�i�� out�nbrs�i� to elements of M or null
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trans�i� � mapping states�i� and a vector of messages in M � fnullg�
one per in�neighbor of i� to states�i�

Execution begins with all the nodes in some start states� and all channels empty� Then

the nodes� in lock step� repeatedly execute the following procedure called round�

�� Apply message generation function to generate messages for out�neighbors�

�� Put them in the channels�

�� Apply transition function to the incoming messages and the state to get the new state�

Remarks� Note the following points� First� the inputs are assumed to be encoded in the

start states� Second� the model presented here is deterministic � the transitions and the

messages are functions� i�e�� single�valued�

����� Problem Example	 Leader Election in a Ring

Consider a graph that is a ring� plus �a technicality for the problem de�nition� an extra

dummy node representing the outside world� The ring is assumed to be unidirectional �mes�

sages can be sent only clockwise�� The ring is of arbitrary size� unknown to the processors

�i�e�� size information is not built into their states�� The requirement is that eventually�

exactly one process outputs a leader message on its dummy outgoing channel�

A �rst easy observation is that if all the nodes are identical then this problem is impossible

to solve in this model�

Proposition � If all the nodes in the ring have identical state sets� start states� message

functions and transition functions� then they do not solve the leader election problem for

n � ��

Proof� It is straightforward to verify� by induction on the number of rounds� that all the

processors are in identical states� after any number of rounds� Therefore� if any processor

ever sends a leader message� then they all do so at the same time� violating the problem

requirement�

As indicated by Proposition �� the only way to solve the leader election problem is to

break the symmetry somehow� A reasonable assumption from practice is that the nodes are

identical except for a unique identi�er �UID�� chosen from some large totally ordered set

�e�g�� the integers�� We are guaranteed that each node�s UID is di�erent from each other�s in

the ring� though there is no constraint on which ID�s actually appear in the given ring� �E�g��

they don�t have to be consecutive integers�� We exploit this assumption in the solutions we

present�
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����� Algorithm �	 LeLann
 Chang�Roberts

We �rst describe the algorithm informally� The idea is that each process sends its identi�er

around the ring	 when a node receives an incoming identi�er� it compares that identi�er to

its own� If the incoming identi�er is greater than its own� it keeps passing the identi�er	

if it�s less than its own� it discards the incoming identi�er	 and if it�s equal to its own� the

process declares itself the leader� Intuitively� it seems clear that the process with the largest

ID will be the one that outputs a leader message� In order to make this intuition precise� we

give a more careful description of the system�

The message alphabet M consists of the UID�s plus the special message leader �

The state set state�i� consists of the following components�

� own� of type UID� initially i�s UID

� send � of type UID or null � initially i�s UID

� status� with values in funknown � chosen � reportedg� initially unknown

The start state start�i� is de�ned by the initializations above�

The messages function msgs�i� is de�ned as follows� Send message m� a UID� to clockwise

neighbor exactly if m is the current value of send � Send leader to dummy node exactly if

status � chosen �

The transition function is de�ned by the following pseudo�code�

Suppose new message is m�

send �� null

If status � chosen then status �� reported

Case�

m � own then

send �� m

m � own then

status �� chosen

send �� null

else no�op

Endcase

Although the description is in a fairly convenient programming�language style� note that

it has a direct translation into a state machine �e�g�� each state consists of a value for each

of the variables�� We do not� in general� place restrictions on the amount of computation

needed to go from one state to another� Also note the relative scarcity of 
ow of control
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statements� This phenomenon is pretty typical for distributed algorithms� The presence of

such statements would make the translation from program to state machine less transparent�

How do we go about proving that the algorithm is correct� Correctness means that

exactly one process ever does leader output� Let imax denote the index �where indices are

arranged consecutively around the ring� of the processor with the maximum UID� It su�ces

to show that ��� imax does a leader output at round n � �� and ��� no other processor ever

does such an output� We prove these properties� respectively� in the following two lemmas�

Lemma � Node imax outputs leader message at round n � ��

Proof� Let vmax be the own value of imax � Note that own values never change �by the

code�� that they are all distinct �by assumption�� and that imax has the largest �by de�nition

of imax �� By the code� it su�ces to show that after n rounds�

status�imax � � chosen �

This can be proved �as things of this sort are typically proved� by induction on the number

of computation steps� here the number of rounds� We need to strengthen the statement to

be able to prove it by induction	 we make the following assertion�

For  � r � n� �� after r rounds � send �imax � r� � vmax

�Addition is modulo n�� In words� the assertion is that the maximum value appears at the

position r away from imax � Now this assertion is straightforward to prove by induction�

The key step is that every node other than imax admits the maximum value into its send

component� since vmax is greater than all the other values�

Lemma � No process other than imax ever sends a leader message�

It su�ces to show that all other processes always have status � unknown � Again� it

helps to have an invariant� Let  a� b� denote the set of positions fa� a � �� � � � � b� �g� where

addition is modulo n� The following invariant asserts that only the maximum value appear

between the maximum and the owner in the ring�

If i �� imax and j �  imax � i� � then own�i� �� send �j� �

Again� it is straightforward to prove the assertion by induction �the key step is that a non�

maximum value does not get past the maximum�� Obviously� we use the fact that vmax is

greater than all the others�

Termination� As written� this algorithm never terminates� in the sense of all the processors

reaching some designated �nal state� We could augment the model to include the concept
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of a �nal state� For this algorithm� to have everyone terminate� we could have the elected

leader start a report message around the ring� and anyone who receives it can halt�

Note that �nal states do not play the same role� i�e�� that of accepting state for distributed

algorithms as they do for �nite�state automata � normally� no notion of acceptance is used

here�

Complexity analysis� The time complexity is n � � rounds� for a ring of size n� until a

leader is announced� The communication complexity is O�n�� messages�
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��� Leader Election on a Ring �cont��

Last time we considered the LeLann�Chang�Roberts algorithm� We showed that its time

complexity is n�� time units �rounds�� and its communication complexity is O�n�� messages�

The presentation of the algorithm was made fairly formally� and the proofs were sketched�

Today we shall use less formal descriptions of three other algorithms�

����� Algorithm �	 Hirshberg�Sinclair

The time complexity of the LCR algorithm is �ne� The number of messages� however�

looks excessive� The �rst algorithm to reduce the worst�case complexity to O�n log n� was

that of Hirshberg�Sinclair� Again� we assume that the ring size is unknown� but now we

use bidirectional communication� As in LCR� this algorithm elects the process with the

maximum UID�

The idea is that every process� instead of sending messages all the way around the ring

as in the LCR algorithm� will send messages that �turn around� and come back to the

originating process� The algorithm proceeds as follows�

Each process sends out messages �in both directions� that go distances that are

successively larger powers of � and then return to their origin �see Figure �����

When UID vi is sent out by process i� other processes on vi�s path compare vi to

their own UID� For such a process j whose UID is vj� there are two possibilities�

If vi � vj� then rather than pass along the original message� j sends back a

message to i telling i to stop initiating messages� Otherwise� vi � vj� In that

case� j relays vi� and since j can deduce that it cannot win� it will not initiate any

new messages� Finally� if a process receives its own message before that message

has �turned around�� then that process is the winner�
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Figure ���� Successive message�sends in the Hirshberg�Sinclair algorithm

Analysis� A process initiates a message along a path of length �i only if it has not been

defeated by another process within distance �i�� in either direction along the ring� This

means that within any group of �i�� � � consecutive processes along the ring� at most one

will go on to initiate messages along paths of length �i� This can be used to show that at

most �
n

�i�� � �

�

in total will initiate messages along paths of length �i�

The total number of messages sent out is then bounded by

�
�
�� � n� � �� �

�
n

�

�
� � �� �

�
n

�

�
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The factor of � in this expression is derived from the fact that each round of message�

sending for a given process occurs in both directions � clockwise and counterclockwise �

and that each outgoing message must turn around and return� �For example� in the �rst

round of messages� each process sends out two messages � one in each direction � a distance

of one each	 and then each outgoing message returns a distance of one� for a net total of four

messages sent�� Each term in the large parenthesized expression is the number of messages

sent out around the ring at a given pass �counting only messages sent in one direction� and

along the outgoing path�� Thus� the �rst term� �� � n�� indicates that all n processes send

out messages for an outgoing distance of ��

Each term in the large parenthesized expression is less than or equal to �n� and there are

at most � � dlog ne terms in the expression� so the total number of messages is O�n log n��

with a constant factor of approximately ��

The time complexity for this algorithm is just O�n�� as can be seen by considering the

time taken for the eventual winner� The winning process will send out messages that take
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time �� �� �� and so forth to go out and return	 and it will �nish after sending out the

dlog neth message� If n is an exact power of �� then the time taken by the winning process

is approximately �n� and if not the time taken is at most �n�

����� Counterexample Algorithms

Now we consider the question of whether it is possible to elect a leader with fewer !�n log n�

messages� The answer to this problem� as we shall demonstrate shortly with an impossibility

result� is negative� That result� however� is valid only in a restricted model �comparison�

based protocols� which are de�ned in De�nition � below�� For the general case� the following

counterexample algorithms can be used to show that no such impossibility result can be

proved� We use the term �counterexample algorithm� for an algorithm that isn�t interesting

by itself� e�g�� neither practical nor particularly elegant from a mathematical viewpoint�

However� it serves to show that an impossibility result cannot be proved�

Algorithm �� We now suppose that the model is simpler� with only little uncertainty�

Speci�cally� we assume the following�

� n is known to all processes�

� The communication is unidirectional�

� The ID�s are positive integers�

� All processes start algorithm at the same time�

In this setting� the following simple algorithm works� �

In the �rst n rounds� only a message marked with UID ��� can travel around�

If a processor with UID ���does exists� then this message is relayed throughout

the ring� Otherwise� the �rst n rounds are idle� In general� the rounds in the

range kn� �� kn� �� � � � � �k� ��n are reserved for UID k � �� Thus� the minimal

UID eventually gets all the way around� which causes its originating process to

get distinguished�

If it is desired to have the maximum elected instead of the minimum� simply let the minimum

send a special message around at the end to determine the maximum�

�Actually� algorithm � isn�t entirely a counterexample algorithm � it has really been used in some systems�
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The nice property of the algorithm is that the total number of messages is n� Unfor�

tunately� the time is about n �M � where M is the value of the minimum ID	 this value is

unbounded for a �xed size ring� Note how heavily this algorithm uses the synchrony� quite

di�erently from the �rst two algorithms�

Algorithm 
� FredericksonLynch� We now present an algorithm that achieves the

O�n� message bound in the case of unknown ring size �all other assumptions as for algorithm

��� The cost is time complexity which is even worse than algorithm � ���� speci�callyO�n��M ��

where M is the minimum UID� Clearly� no one would even think of using this algorithm� It

serves here just as a counterexample algorithm�

Each process spawns a message which moves around the ring� carrying the UID

of the original process� Identi�ers that originate at di�erent processes are trans�

mitted at di�erent rates� In particular� UID v travel at the rate of � message

transmission every �v clock pulses� Any slow identi�er that is overtaken by a

faster identi�er is deleted �since it has a larger identi�er�� Also� identi�er v ar�

riving at process w will be deleted if w � v� If an identi�er gets back to the

originator� the originator is elected�

This strategy guarantees that the process with the smallest identi�er gets all the way around

before the next smaller gets half�way� etc�� and therefore �up to the time of election� would

use more messages than all the others combined� Therefore total number of messages �up

to the time of election� is less than �n� The time complexity� as mentioned above� is n � �M �

Also� note that by the time the minimum gets all the way around� all other transmissions

have died out� and thus �n is an upper bound on the number of messages that are ever sent

by the algorithm �even after the �leader� message is output��

We remark that algorithms �� � and � can also be used with the processors waking up

at di�erent times� The �rst two algorithms require no modi�cation� but algorithm � needs

some work in order to maintain the desired complexities�

����� Lower Bound on Comparison�Based Protocols

We have seen several algorithms for leader election on a ring� Algorithm � was comparison�

based� and had the complexity of O�n log n� messages and O�n� time� Algorithms � and

� were non�comparison�based� and had O�n� messages� with huge running time� To gain

further understanding of the problem� we now show a lower bound of !�n log n� messages for

comparison�based algorithms  Frederickson�Lynch� Attiya�Snir�Warmuth"� This lower bound

holds even if we assume that n is known to the processors�
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The result is based on the di�culty of breaking symmetry� Recall the impossibility proof

from last time� where we showed that because of the symmetry� it is impossible to elect a

leader without identi�ers� The main idea in the argument that we shall use below is that

symmetry is possible with identi�ers also � now it is possible to break it� but it must require

much communication�

Before we state the main results� we need some de�nitions�

De�nition � We call a distributed protocol comparison�based algorithm if the nodes are

identical except for UID�s� and the only way that UID�s can be manipulated is to copy them�

and to compare them for f�����g �the results of the comparisons are used to make choices

within the state machine�� UIDs can be sent in messages� perhaps combined with other

information�

Intuitively� the decisions made by the state machines depend only on the relative ranks

of the UIDs� rather than their value�

The following concept will be central in the proof�

De�nition � Let X � �x�� x�� � � � � xr� and Y � �y�� y�� � � � � yr�� be two strings of UIDs� We

say that X is order equivalent to Y if� for all � � i� j � r� we have xi � xj if and only if

yi � yj�

Notice that two strings of UIDs are order equivalent if and only if the corresponding

strings of relative ranks of their UIDs are identical�

The following de�nitions are technical�

De�nition � A computation round is called an active round if at least one �non�null� mes�

sage is sent in it�

De�nition 
 The k�neighborhood of process p in ring of size n� where k � bn��c� is de�ned
to consist of the �k � � processes at distance at most k from p�

The following concept is a key concept in the argument�

De�nition � We say that two states s and t correspond with respect to strings X �

�x�� x�� � � � � xr� and Y � �y�� y�� � � � � yr�� if all of the UID�s in s are chosen from X� and

t is identical to s except for substituting each occurrence of any xi in s� by yi in t� for all

� � i � r�

Corresponding messages are de�ned analogously�

We can now start proving our lower bound�

Lemma � Let p and q be two distinct processes executing a comparison�based algorithm�

Suppose that p and q have order�equivalent k�neighborhoods� Then at any point after at most

k active rounds� p and q are in corresponding states� with respect to their k�neighborhoods�
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Figure ���� scenario in the proof of Lemma �

Proof� By induction on the number r of rounds in the computation� Notice that possibly

r � k� For each r� we prove the lemma for all k�

Basis� r � � By De�nition �� the initial states of p and q are identical except for

their UIDs� and hence they are in corresponding initial states� with respect to their �

neighborhoods �consisting of nothing but their own UID�s��

Inductive step� Assume that the lemma holds for all r� � r� Let p� and p� be the

respective counterclockwise and clockwise neighbors of p� and similarly q� and q� for q�

We proceed by case analysis�

�� Suppose that neither p nor q receives a message from either neighbor at round r� Then�

by the induction hypothesis �on r� using same k�� p and q are in corresponding states

before r� and since they have no new input� they make corresponding transitions and

end up in corresponding states after r�

�� Suppose now that at round r� p receives a message from p� but no message from p��

Then round r is active� By induction� p� and q� are in corresponding states with respect

to their �k � ���neighborhoods� just before round r� Hence� q� also sends a message

to q in round r� and it corresponds to the message sent by p�� �with respect to the

�k� ���neighborhoods of p� and q�� and therefore with respect to the k�neighborhoods

of p and q�� Similarly� p� and q� are in corresponding states with respect to their

k � ��neighborhoods� just before round r� and therefore q� does not send a message

to q at round r� Also� by induction� p and q are in corresponding states with respect

to their k � ��neighborhoods� and hence with respect to their k�neighborhoods� just

before round r� So after they receive the corresponding messages� they remain in

corresponding states with respect to their k�neighborhoods�

�� Finally� suppose p receives a message from p�� We use the same argument as in the

previous case to argue that lemma holds in the two subcases �either p� send a message

at round r or not��

Lemma � tells us that many active rounds are necessary to break symmetry� if there

are large order�equivalent neighborhoods� We now de�ne particular rings with the special

property that they have many order�equivalent neighborhoods of various sizes�
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position=2, ID=010 (2)

Figure ���� Bit�reversal assignment has ����symmetry

De�nition 	 Let c � � be a constant� and let R be a ring of size n� R is said to have

c�symmetry if for every ��
p
n � � � n� and for every segment S of R of length �� there are

at least cn
�
segments in R that are order�equivalent to S �counting S itself��

Remark � the square root is a technicality�

Example� For n a power of �� we shall show that the bit�reversal ring of size n has ����

symmetry� Speci�cally� suppose n � �a� We assign to each process i the integer in the range

 � n� �" whose a�bit binary representation is the reverse of the a�bit binary representation

of i�

For instance� for n � �� we have a � �� and the assignment is in Figure ����

The bit�reversal ring is highly symmetric� as we now claim�

Claim � The bit�reversal ring is ����symmetric�

Proof� Left as an exercise�

We remark that for the bit�reversal ring� there is even no need for the square root caveat�

For other values of n� non�powers of �� there is a more complicated construction that can

yield c�symmetry for some smaller constant c� The construction is complicated since simply

adding a few extra processors could break the symmetry�

Now� suppose we have a ring R of size n with c�symmetry� The following lemma states

that this implies many active rounds�

Lemma � Suppose that algorithm A elects a leader in a c�symmetric ring� and let k be such

that
p
n � �k � � � n and cn

�k�� � �� Then A has more than k active rounds�

Proof� By contradiction� suppose A elects a leader� say p� in at most k active rounds� Let

S be the k�neighborhood of p �S is a segment of length �k � ��� Since R is c�symmetric�

there must be at least one other segment in R which is order�equivalent to S	 let q be the

midpoint of that segment� Now� by Lemma �� p and q remain in equivalent states throughout

the execution� up to the election point� We conclude that q also gets elected� a contradiction�
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Now we can prove the lower bound�

Theorem 
 All comparison�based leader election algorithms for rings of size n send !�n log n�

messages before termination�

Proof� De�ne

K � � � max
�
k �

p
n � �k � � � n and

cn

�k � �
� �

�
�

Note that K 	 cn
� �

By Lemma � there are at least K active rounds� Consider the rth active round� where

� � r � K� Since the round is active� there is some processor p that sends a message in

round r� Let S be the �r � ���neighborhood of p� Since R is c�symmetric� there are at

least cn
�r�� segments in R that are equivalent to S �provided

p
n � r � ��� By Lemma ��

at the point just before the rth active round� the midpoints of all these segments are in

corresponding states� so they all send messages�

Thus� the total number of messages is at least
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integral approximation of the sum

� !�n log n� �

Remark � The paper by Attiya� Snir and Warmuth contains other related results about

limitations of computing power in synchronous rings�

��� Leader Election in a General Network

So far� we considered only a very special kind of networks� namely rings� We now turn to

consider more general networks� in the same synchronized model� We shall start with leader

election�

Let us �rst state the problem in the general framework� Consider arbitrary� unknown�

strongly connected network digraph G � �V�E�� We assume that the nodes communicate

only over the directed edges�� Again� nodes have UIDs� but the set of actual UIDs is unknown�

The goal is� as before� to elect a leader�

To solve the problem� we use a generalization of the idea in the LCR algorithm as follows�

�In the BFS example below we will remove this restriction and allow two�way communication even when

the edges are ��way�
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Every node maintains a record of the maximum UID it has seen so far �initially

its own�� At each round� node propagates this maximum on all its outgoing

edges�

Clearly� the processor with the maximum UID is the only one that will keep its own UID

forever as the maximum� But how does the processor with the maximum �know� that it

is the maximum� so it can do an elected output� In LCR� it was enough that a processor

received its own UID on an incoming link� but that was particular to the ring network

topology� and cannot work in general� One possible idea is to wait for su�ciently long time�

until the process is guaranteed that it would have received any larger value� if one existed�

It can be easily seen that this time is exactly the maximum distance from any node in the

graph to any other� i�e�� the diameter� Hence� this strategy requires some built�in information

about the graph� Speci�cally� every node must have an upper bound on the diameter��

We now specify the above algorithm formally� We describe process i�

state�i� consists of components�

own� of type UID� initially i�s UID

max�id� of type UID� initially i�s UID

status� with values in funknown � chosen� reportedg� initially unknown

rounds� integer� initially �

msgs�i�� Send message m� a UID� to clockwise neighbor exactly if m is the

current value of max�id�

Send leader to dummy node exactly if status � chosen �

trans�i��

Suppose new message from each neighbor j is m�j��

If status � chosen then status �� reported

rounds �� rounds � �

max�id �� max�fmax�idg � fm�j� � j � in�nbrs�i�g�
If rounds � diam and max�id � own and status � unknown then status �� chosen

Complexity� it is straightforward to observe that the time complexity is diam rounds�

and that the number of messages is diam � jEj�
�It is possible to design a general algorithm for strongly connected digraphs that doesn�t use this diameter

information� it is left as an exercise�
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��� Breadth�First Search

The next problem we consider is doing BFS in a network with the same assumptions as above�

More precisely� suppose there is a distinguished source node i�� A breadth��rst spanning tree

of a graph is de�ned to have a parent pointer at each node� such that the parent of any node

at distance d from i� is a node at distance d� � from i�� The distinguished node i� has a nil

pointer� i�e�� i� is a root� The goal in computing a BFS tree is that each node will eventually

output the name of its parent in a breadth��rst spanning tree of the network� rooted at i��

The motivation for constructing such a tree comes from the desire to have a convenient

communication structure� e�g�� for a distributed network graph� The BFS tree minimizes the

maximum communication time to the distinguished node�

The basic idea for the algorithm is the same as for the sequential algorithm�

At any point� there is some set of nodes that is �marked�� initially just i�� Other

nodes get marked when they �rst receive report messages� The �rst round after

a node gets marked� it announces its parent to the outside world� and sends a

report to all its outgoing neighbors� except for all the edges from which the report

message was received� Whenever an unmarked node receives a report� it marks

itself� and chooses one node from which the report has come as its parent�

Due to the synchrony� this algorithm produces a BFS tree� as can be proved by induction

on the number of rounds�

Complexity� the time complexity diam rounds �actually� this could be re�ned a little� to

the maximum distance from i� to any node�� The number of messages is jEj � each edge

transmits a report message exactly once�

����� Extensions

The BFS algorithm is very basic in distributed computing� It can be augmented to execute

some useful other tasks� Below� we list two of them� As mentioned earlier� we shall assume

that communication is bidirectional on all links �even though the graph we compute for might

have directed edges��

Message broadcast� Suppose that a processor has a message that it wants to communi�

cate to all the processors in the network� The way to do it is to �piggyback� the message on

the report messages� when establishing a BFS tree� Another possibility is to �rst produce

a BFS tree� and then use it to broadcast� Notice that for this� the pointers go opposite to
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the direction of the links� We can augment the algorithm by letting a node that discovers a

parent communicate with it so it knows which are its children�

Broadcastconvergecast� Sometimes it is desirable to collect information from through�

out the network� For example� let us consider the problem in which each node has some

initial input value� and we wish to �nd to global sum of the inputs� This is easily �and

e�ciently� done as follows� First� establish a BFS tree� which includes two�way pointers so

parents know their children� Then starting from the leaves� �fan in� the results� each leaf

sends its value to its parent	 each parent waits until it gets the values from all its children�

adds them �and its input value�� and then sends the sum to its own parent� When the root

does its sum� the �nal answer is obtained� The complexity of this scheme is O�diam� time

�we can re�ne as before�	 the number of messages is jEj to establish the tree� and then an

extra O�n� to establish the child pointers and fan in the results�

We remark that funny things happen to the time when the broadcast�convergecast is run

asynchronously� We will revisit this as well as the other algorithms later� when we study

asynchronous systems�
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��� Shortest Paths� Unweighted and Weighted

Today we continue studying synchronous protocols� We begin with a generalization of the

BFS problem� Suppose we want to �nd a shortest paths from a distinguished node i� � V

�which we sometimes refer to as the root�� to each node in V � Now we require that each

node should not only know its parent on a shortest path� but also the distance�

If all edges are of equal weights� then a trivial modi�cation of the simple BFS tree

construction can be made to produce the distance information as well� But what if there are

weights assigned to edges�

This problem arises naturally in communication networks� since in many cases we have

some associated cost� for instance� monetary cost� to traverse the link�

Speci�cally� for each edge �i� j�� let weight �i� j� denote its weight� Assume that every node

�knows� the weight of all its incident edges� i�e�� the weight of an edge appears in special

variables at both its endpoint nodes� As in the case of BFS� we are given a distinguished

node i� and the goal is to have� at each node� the weighted distance from i�� The way to

solve it is as follows�

Each node keeps track of the best�dist it knows from i�� Initially� best�dist�i�� � 

and best�dist�j� � 
 for j �� i�� At each round� each node sends its best�dist to all

its neighbors� Each recipient node i updates its best�dist by a �relaxation step��

where it takes the minimum of its previous best�dist value� and of best�dist�j� �

weight �j� i� for each incoming neighbor j�

It can be proven that� eventually� the best�dist values will converge to the correct best

distance values� The only subtle point is when this occurs� It is no longer su�cient to wait

diam time � see� for example� Figure ���� However� n� � time units are su�cient� In fact�

the way to argue the correctness of the above algorithm �which is a variant of the well known

Bellman�Ford algorithm�� is by induction on the number of links in the best paths from i��

This seems to imply that a bound on the number of nodes must be known� but this

information can easily be computed�
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Figure ���� the correct shortest paths from the root stabilize only after � time units� even though

all nodes are reachable in one step�

��� Minimum Spanning Tree

We shall now modify our model slightly� and assume that the communication graph is undi�

rected� i�e�� if there is an edge between nodes i and j� then i and j can exchange messages in

both directions� The edges� as in the previous algorithm� are assumed to have weights which

are known at their endpoints� We continue to assume that nodes have UIDs�

Before we de�ne the problem� let us de�ne a few standard graph�theoretic notions� A

spanning tree for a graph G � �V�E� is a graph T � �V�E��� where E� � E� such that T is

connected and acyclic	 if T is acyclic �but not necessarily connected�� T is called a spanning

forest� The weight of a graph is the sum of the weights of its edges�

The Minimum Spanning Tree �MST� problem is to �nd a spanning tree of minimal

weight� In the distributed setting� the output is a �marked� set of edges � each node will

mark those edges adjacent to it that are in the MST� This problem arises naturally in the

context of communication networks� since similarly to the BF tree� the MST is a convenient

communication structure� The MST minimizes the cost of broadcast �i�e�� when a node

wishes to communicate a message to all the nodes in the network��

All known MST algorithms are based on the same simple theory� Notice that any acyclic

set of edges �i�e�� a forest� can be augmented to a spanning tree� The following lemma

indicates which edges can be in a minimum spanning tree�

Lemma � Let G � �V�E� be an undirected graph� and let f�Vi� Ei� � � � i � kg be any

spanning forest for G� where each �Vi� Ei� is connected� Fix any i� � � i � k� Let e be an

edge of lowest cost in in the set��
e� � e� � E ��

j

Ej and exactly one endpoint of e� is in Vi

��
� �

Then there is a spanning tree for G that includes
S
j Ej� and e� and this tree is of as low a

cost as any spanning tree for G that includes
S
j Ej�

Proof� By contradiction� Suppose the claim is false � i�e�� that there exists a spanning

tree T that contains
S
j Ej � does not contain e� and is of strictly lower cost than any other
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Figure ���� the circles represent components� If the components choose MWOE as depicted by

the arrows� a cycle would be created�

spanning tree which contains feg �Sj Ej� Now� consider the graph T � obtained by adding e

to T � Clearly� T � contains a cycle� which has one more edge e� �� e which is outgoing from

Vi�

By the choice of e� we know that weight �e�� � weight�e�� Now� consider T � constructed

by deleting e� from T �� T � is spanning tree for G� it contains feg � Sj Ej� and it has weight

no greater than that of T � a contradiction�

The lemma above suggests a simple strategy for constructing a spanning tree� start with

the trivial spanning forest that contains no edges	 then� for some connected component� add

the minimal�weight outgoing edge �MWOE�� The claim that we have just proven guarantees

that we are safe in adding these edges� there is an MST that contains them� We can repeat

this procedure until there is only one connected component� which is an MST� This principle

forms the basis for well�known sequential MST algorithms� The Prim�Dijkstra algorithm�

for instance� starts with one node and successively adds the smallest�weight outgoing edge

from the current �partial� tree until a complete spanning tree has been obtained� The

Kruskal algorithm� as another example� starts with all nodes as �fragments� �i�e�� connected

components of the spanning forest� and successively extends each fragment with the minimun

weight outgoing edge� thus combining fragments until there is only one fragment� which is

the �nal tree� More generally� we could use the following basic strategy� start with all nodes

as fragments and successively extend an arbitrary fragment with its MWOE� combining

fragments where possible�

It is not readily clear whether we can do this in parallel� The answer� in general� is

negative� Consider� for example� the graph in Figure ����

However� if all the edges have distinct weights� then there is no problem� as implied by

following lemma�

Lemma � If all edges of a graph G have distinct weights� then there is exactly one MST for

G�

Proof� Similar to the proof of Lemma �	 left as an exercise�

By Lemma �� if we have a forest all of whose edges are in the unique MST� then all
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Figure ���� arrows represent MWOEs� Exactly one edge is chosen twice in each new component�

MWOE�s for all components are also in the unique MST� So we can add them all in at once�

in parallel� and there is no danger of creating a cycle� So all we have to worry about is

making the edge weights unique� this is easily done using the UIDs� The weight of an edge

�i� j� will� for our purposes� be the triplet �weight � vi� vj�� where vi � vj� and vi �resp�� vj�

denotes the UID of node i �resp�� j�� The order relation among the edges is determined by

the lexicographical order among the triplets�

Using Lemma � and the UIDs as described above� we can now sketch an algorithm for

distributed construction of MST� The algorithm builds the component in parallel� in �levels�

as follows� It is based on the asynchronous algorithm of Gallager� Humblet and Spira�

Start with Level  components consisting of individual nodes� and no edges�

Suppose inductively that we have Level i components� each with its own spanning

tree of edges established� and with a known leader within the component� To

get the Level i � � components� each Level i component will conduct a search

along its spanning tree nodes� for the MWOE of the component� Speci�cally� the

leader broadcasts search requests along tree edges� Each node must �nd its own

MWOE � this is done by broadcasting along all non�tree edges to see whether

the other end is in same component or not� �This can be checked by comparing

the leader�s UID� which is used at all the nodes of a component as the component

UID�� Then� the nodes convergecast the responses toward the leader� while taking

minimums along the way�

When all components have found their MWOE�s� the fragments are merged by

adding the MWOE�s in � the leader can communicate with the source of the

MWOE to tell it to mark the edge� Finally� a new leader must be chosen� This

can be done as follows� It is easy to see that for each new connected component�

there is a unique new edge that is MWOE of both endpoint components �this

is the edge with the least weight among all the new edges�� See Figure ��� for

example� We can let new leader be the larger UID endpoint of this edge�
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Note that it is crucial to keep the levels synchronized� so when a node inquires if the

other endpoint of a candidate edge is in the same component or not� the other endpoint has

up�to�date information� If the UID at the other end is di�erent� we want to be sure that

the other end is really in a di�erent component� and not just that it hasn�t received the

component UID yet�

Therefore� we execute the levels synchronously� one at a time� To be sure we have

completed a level before going on to the next� we must allow an overestimate of time �which�

unfortunately� can be big�� The time for a level can be #�n�� in the worst case� �Not O�diam�

� the paths on which communication takes place are not necessarily minimum in terms of

number of links�� The number of levels is bounded by log n� since number of components is

reduced by at least a half at each level�

We conclude that the time complexity is O�n log n�� The message complexity is O��n �

E� � log n�� since in each level O�n� messages are sent along all the tree edges� and O�E�

additional messages are required to do the exploration for local MWOE�s�

Remark � The number of messages can be reduced to O�n log n � jEj� by being more

clever about the local MWOE search strategy� The optimization makes the time increase

by at most O�n� time units� The idea is as follows� Each node marks the edges when they

are known to be in same component � there is no need to �explore� them again� Also� the

edges are explored in order� one at a time� starting from the lightest� This way each edge

is either marked or discovered to be the local MWOE� For the message complexity analysis�

we note that the number of messages sent over tree edges is� as before� O�n log n�� Let us

apportion the cost of explore messages� Each edge gets explored and rejected at most once

in each direction� for a total of O�jEj�� There can be repeated exploration of edges that get

locally accepted �i�e�� are found to be outgoing�� but there is at most one such exploration

per node in each level� summing up for a total of O�n log n��

��� Maximal Independent Set

So far� we saw a collection of basic synchronous network algorithms� motivated by graph

theory and practical communications� We shall now see one more example� before going

to study models with failures� that of �nding a Maximal Independent Set of the nodes of a

graph�

This problem can be motivated by resource allocation problems in a network� The neigh�

bors in the graph represent processes than cannot simultaneously perform some activity

involving a shared resource �such as radio broadcast�� It is undesirable to have a process

blocked if no neighbors are broadcasting� hence the maximality requirement�
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The following algorithm� due to Luby� is particularly interesting because is simple and

basic� and because it introduces the use of randomization�

Problem Statement� Let G � �V�E� be a undirected graph� A set I � V of nodes is

independent if for all nodes i� j � I� �i� j� �� E� An independent set I is maximal if any set I �

which strictly contains I is not independent� Our goal is to compute a maximal independent

set of G� The output is done by each member of I eventually sending a special message in�I�

We assume that a bound B on n� the number of nodes� is known to all the nodes� We

do not need to assume the existence of UID�s � i�e�� we assume an �anonymous� network�

The Algorithm� The basic underlying strategy is based on the following iterative scheme�

Let G � �V�E� be the initial graph�

I �� �

while V �� � do

choose a set I � � V that is independent in G

I �� I � I �

G �� induced subgraph of G on V � I � � nbrs�I ��

end while

This scheme always produces a maximal independent set� by construction� I is indepen�

dent� and we throw out neighbors of G any element put into I	 maximality is also easy� since

the only nodes that are removed from consideration are neighbors of nodes inserted into I�

The key question in implementing this general �skeleton� algorithm is how to choose I �

at each iteration� We employ a new powerful idea here� namely randomization� Speci�cally�

in each iteration� each node i chooses an integer val �i� in the range f�� � � � � B�g at random�

using the uniform distribution� �Here� we require the nodes to know B�� The upper bound

B� was chosen to be su�ciently large so that with high probability� all nodes choose distinct

values� Having chosen these values� we de�ne I � to consist of all the nodes i such that

val �i� � val �j� for all nodes j neighbors of i� This obviously yields an independent set� since

two neighbors cannot simultaneously be greater than each other�

Formal Modeling� When we come to describe formally this synchronous algorithm� we

encounter a problem� it doesn�t quite �t the model we have already de�ned� We need to

augment the model with some extra steps for the random choices� The option we adopt here

is to introduce a new �function�� in addition to the message generation and transition func�

tions� to represent the random choice steps� Formally� we add an int ��internal transition��
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component to the automaton description� where for each state s� int�s� is a probability dis�

tribution over the set of states� Each execution step will now proceed by �rst using int to

pick a new �random� state� and then apply msgs and trans as usual�

For the MIS algorithm� we �rst outline the code in words� The algorithm works in phases�

where each phase consists of three rounds�

�� In the �rst round of a phase� the nodes choose their respective val �s� and send them to

their neighbors� By the end of the �rst round� when all the values have been received�

the winners discover they are in I ��

�� In the second round of a phase� the winners announce they are in I �� By the end of

this round� each node learns whether it has a neighbor in I ��

�� In the third round� each node with a neighbor in I � tells all its neighbors� and then

all the involved nodes� the winners� their neighbors� and the neighbors of winners�

neighbors� remove the appropriate nodes and edges from the graph� Speci�cally� this

means the winners and their neighbors discontinue participation after this phase�and

the neighbors of neighbors will remove all the edges that are incident on the newly�

removed neighbors�

Let us now describe the algorithm formally in our model�

State�

phase� integer� initially �

round� in f�� �� �g� initially �

val � in f�� � � �B�g�
nbrs� set of vertices� initially the neighbors in the original graph G

awake� Boolean� initially true

winner � Boolean� initially false

neighbor � Boolean� initially false

int�i�� �the global int is described by independent choices at all the nodes�

if awake and round � � then val �� rand �from uniform distribution�

msgs�i�� if awake � true and

if round � ��

send val �i� to all nodes in nbrs

if round � ��
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if winner � true then

send in�I to dummy node

send winner to all nodes in nbrs

if round � ��

if neighbor � true then

send neighbor to all nodes in nbrs

Below� we use the notation m�val to denote the particular component of the message�

trans�i�� if awake � true then

case�

round � ��

if val � m�j��val for all j � nbrs then winner �� true

round � ��

if some winner message arrives then neighbor �� true

round � ��

if winner � neighbor then awake �� false

nbrs �� nbrs � fj � a neighbor message arrives from jg
endcase

round �� �round mod �� � �

Analysis� Complete analysis can be found in the original paper by Luby� Here� we just

sketch the proof�

We �rst state� without proof� a technical lemma which we need�

Lemma � Let G � �V�E�� and de�ne for an arbitrary node i � V �

sum�i� �
X

j�nbrs�i�

�

d�j�
�

where d�j� is the degree of j in G� Let I � be de�ned as in the algorithm above� Then

Pr i � nbrs�I ��" � �

�
min�sum�i�� ���

Informally� the idea in proving Lemma � is that since the random choices made by the

di�erent nodes are independent identically distributed �iid� random variables� the probability

of a given node i with d�i� neighbors to be a local maximum is approximately ��d�i�� Since

we are dealing with overlapping events� the inclusion�exclusion principle is used to obtain

the bound in the lemma�

The next lemma is the main lemma in proving an upper bound on the expected number

of phases of the algorithm�
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Lemma 
 Let G � �V�E�� The expected number of edges removed from G in a single phase

of the algorithm is at least jEj���
Proof� By the algorithm� all the edges with at least one endpoint in nbrs�I �� are removed�

and hence� the expected number of edges removed in a phase is at least

�

�

X
i�V

d�i� � Pr i � nbrs�I ��"

This is since each vertex i has the given probability of having a neighbor in I � and if

this event occurs� then it is certainly removed� and thereby it causes the deletion of d�i�

edges� The �
�

is included to take account of possible overcounting� since an edge can have

two endpoints that may cause its deletion�

We now plug in the bound from Lemma ��

�

�

X
i�V

d�i� �min�sum�i�� �� �

Breaking this up according to which term of the �min� is less� this equals

�

�

�
� X
sum�i���

d�i� � sum�i� �
X

sum�i���
d�i�

�
A

Now expand the de�nition of sum�i� and write d�i� as sum of ��

�

�

�
� X
i	sum�i���

X
j�nbrs�i�

d�i�

d�j�
�

X
i	sum�i���

X
j�nbrs�i�

�

�
A

Next� we make the sum over edges � for each edge� we have two endpoints for which the

above expression adds in the indicated terms� and so the preceding expression is equal to

�

�

�
BBB�

X
i	sum�i���
j	sum�j���

�
d�i�

d�j�
�
d�j�

d�i�

�
�

X
i	sum�i���
j	sum�j���

�
d�i�

d�j�
� �

�
�

X
i	sum�i���
sum�j���

�� � ��

�
CCCA �

Now each of the expressions within the summation terms is greater than �� so the total

is at least �

jEj�

Using Lemma �� it is straightforward to prove a bound on the expected number of phases

in Luby�s algorithm�

Theorem � The expected number of phases of the MIS algorithm is O�log n��

Proof� By Lemma �� ��� of the edges of the current graph are removed in each phase�

Therefore� the total expected running time is O�log jEj� � O�log n��

Remark� Actually� a slightly stronger result holds� the number of phases in the MIS

algorithm can be proven to be O�log n� with high probability�
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Discussion� Randomization is a technique that seems frequently very useful in distributed

algorithms� It can be used to break symmetry� �e�g�� it can be used for the leader election

problem	 cf� homework problem�� However� when designing randomized algorithms� one

thing that we must be careful about is that there is some possibility that things will go

wrong� We have to make sure that such anomalies do not cause serious problems� In MIS

algorithms� for example� probabilistic anomalies may result in outputting a set which is not

independent� or not maximal� Fortunately� Luby�s algorithm always produces an MIS� The

performance of the algorithm� however� depends crucially on the random choices � it can

take more rounds if we are unlucky and �bad� choices are made� This is generally considered

to be acceptable for randomized algorithms� Even so� there is something worse here � it is

possible to have equal choices made repeatedly for neighbors� which means that there is a

possibility �which occurs with zero probability� that the algorithm never terminates� This

is less acceptable�

��



�����J�������J Distributed Algorithms September ��� ����
Lecturer� Nancy Lynch

Lecture �

Our next topic is the major example we shall study in the synchronous model� namely�

consensus algorithms� We shall spend some ��� lectures on this subject� The consensus

problem is a basic problem for distributed networks which is of interest in various applica�

tions� In studying this problem� we extend our model to include a new source of uncertainty�

failures of communication links and processors�

��� Link Failures

����� The Coordinated Attack Problem

The problem we will describe now is an abstraction of a common problem arising in dis�

tributed database applications� Informally� the problem is that at the end of processing

a given database transaction� all the participants are supposed to agree about whether to

commit �i�e�� accept the results of� the transaction or to abort it� We assume that the par�

ticipants can have di�erent �opinions� initially� as to whether to commit or abort� e�g�� due

to local problems in their part of the computation�

Let us state the problem more precisely� cast in terms of generals	 the abstraction is due

to Gray�

Several �sometimes only two� generals are planning to attack �from di�erent

directions� against a common objective� It is known that the only way for the

attack to succeed� is if all the generals attack� If only some of the generals

attack� their armies will be destroyed� There may be some reasons why one of

the generals cannot attack � e�g�� insu�cient supplies� The generals are located in

di�erent places� and can communicate only via messengers� However� messengers

can be caught� and their messages may be lost en route�

Notice that if messages are guaranteed to arrive at their destinations� then all the generals

could send messengers to all the others� saying if they are willing to attack �in our previous

terminology� all the nodes will broadcast their inputs�� After su�ciently many rounds� all the
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inputs will propagate to all the participants �in the graph setting� this requires knowledge of

an upper bound on the diameter�� Having propagated all the inputs� virtually any rule can

be used� in our case� the rule is �attack if there is no objection�� Since all the participants

apply the same rule to the same set of input values� they will all decide identically�

In a model with more uncertainty� in which messages may be lost� this simplistic algorithm

fails� It turns out that this is not just a problem with this algorithm	 we shall prove that

there is no algorithm that always solves this problem correctly�

Before we go on to prove the impossibility result� we state the problem a bit more

carefully� We consider the following model� Consider processes i� for � � i � n� arranged

in an undirected graph G� We assume that all processes start with initial binary values

�encoded in their states�� We use the same synchronous model we have been working with

so far� except that� during the course of execution� any number of messages might be lost�

The goal is to reach consensus �i�e�� identical decisions� in a �xed number� say r� of rounds�

We represent the decision by a special value encoded in the processes� states at the end of

the last round� �Alternatively� we can require that the decision value will be output using

special messages	 the di�erence is simply one more round��

We impose two conditions on the decisions made by the processes as follows�

Agreement� All processes decide on the same value�

Validity� If all processes start with � then the decision value is 	 and if all processes start

with � and all messages are delivered� then the decision value is ��

The agreement requirement is natural� we would certainly like to be consistent� The

validity requirement is one possible formalization of the natural idea that the value decided

upon should be �reasonable�� For instance� the trivial protocol that always decides  is ruled

out by the validity requirement� We comment that the validity condition above is quite weak�

if even one message is lost� the protocol is allowed to decide on any value� Nevertheless� it

turns out that even this weak requirement is impossible to satisfy in any nontrivial graph

�i�e�� a graph with more than one node�� To see this� it su�ces to consider the special case

of two nodes connected by one edge �cf� homework problem��

We shall need the following standard de�nition�

De�nition � Let � and � be two executions� We say that � is indistinguishable from �

with respect to a process i� denoted �
i �� if in both � and �� i has the same initial state

and receives exactly the same messages at the same rounds�

The basic fact for any distributed protocol� is that if �
i �� then i behaves the same in

� and �� This simple observation is the key in the proof of the following theorem�
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Figure ���� Pattern of message exchanges between p� and p�

Theorem � There is no algorithm that solves the coordinated attack problem on a graph

with two nodes connected by an edge�

Proof� By contradiction� Suppose a solution exists� say for r rounds� Without loss of

generality� we may assume that the algorithm always sends messages in both directions at

every round� since we can always send dummy messages� We shall now construct a series of

executions� such that each of them will be indistinguishable from its predecessor with respect

to one of the processes� and hence all these executions must have the same decision value�

Speci�cally� let �� be the execution that results when both processes � and � start with

value �� and all messages are delivered� By validity� both must decide � at the end of ���

Now let �� be the execution that is the same as ��� except that the last message from process

� to � is not delivered� Note that although process � may go to a di�erent state at the last

round� ��
� ��� and therefore� process � decides � in ��� By agreement� process � must also

decide � in ��� Next� let �� be the same as �� except that the last message from process �

to � is lost� Since ��
� ��� process � decides � in ��� and by agreement� so does process ��

Continuing in this way� by alternately removing messages� eventually we get down to an

execution �� in which both processes start with � and no messages are delivered� As before�

both processes are forced to decide � in this case�

But now consider the execution in which process � starts with � but process � starts with

� and no messages are delivered� This execution is indistinguishable from �� with respect

to process �� and hence process � will still decide �� and so will process �� by agreement� But

this execution is indistinguishable from the execution in which they both start with  with

restpect to process �� in which validity requires that they both decide � a contradiction�

Theorem � tells us� in simple words� that there is very little that we can do in distributed

networks if the communication may be faulty� and the correctness requirements are strict�

This result is considered to re
ect a fundamental limitation of the power of distributed
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networks�

However� something close to this problem must be solved in real systems� Recall the

database commit problem� There� we had even a stronger condition for validity� namely�

if anyone starts with � then the decision value must be � How can we cope with the

impossibility indicated by Theorem �� We must relax our requirements� One possible idea is

to use randomization in the algorithm� and allow some probability of violating the agreement

and�or validity condition� Another approach is to allow some chance of nontermination� We

will return to nonterminating commit protocols in a lecture or two�

����� Randomized Consensus

In this section we discuss some properties of randomized protocols for consensus� We shall

consider� as above� processes in an arbitrary connected graph� Our model will allow ran�

domized processes� as for the MIS �Maximal Independent Set� problem�

In this section we weaken the problem requirement� and we allow for some small proba�

bility 	 of error� Consider a protocol that works in a �xed number r of rounds� Our main

results in this section  VargheseL��"� are bounds on the �liveness probability� that an algo�

rithm can guarantee in terms of 	 and r� that is� for the probability that all the participants

attack in the case where both start with � and all messages are delivered�

We shall give an upper bound on the liveness probability� �Note that here an �upper

bound� is a negative result� no algorithm will decide to attack in this case with too high

probability�� We shall also see an algorithm that �nearly� achieves this probability�

Formal Modeling� We must be careful about the probabilistic statements in this setting�

since it is more complicated than for the MIS case� The complication is that the execution

that unfolds depends not only on the random choices� but also on the choices of which

messages are lost� These are not random� Rather� we want to imagine they are under the

control of some �adversary�� and we want to evaluate the algorithm by taking the worst case

over all adversaries�

Formally� an adversary is �here� an arbitrary choice of

� initial values for all processes� and

� subset of f�i� j� k� � �i� j� is an edge� and � � k � r is a round numberg�

The latter represents which messages are delivered� �i� j� k� means that the message cross�

ing �i� j� at round k gets through� Given any particular adversary� the random choices made

by the processes induce a probability distribution on the executions� Using this probability
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space� we can express the probability of events such as agreeing� etc� To emphasize this fact�

we shall use the notation PrA for the probability function induced by a given adversary A�

Let us now restate the generals problem in this probabilistic setting� We state it in terms

of two given parameters� 	 and L�

Agreement� For every adversary A�

PrA some process decides  and some process decides �" � 	

Validity�

�� If all processes start with � then  is the only possible decision value�

�� If A is the adversary in which all processes start with � and all messages get

through� then PrA all decide �" � L�

We stress that we demand the �rst validity requirement unconditionally � in the database

context� for example� one cannot tolerate any probability of error in this respect�

Our goal is� given 	� a bound on the probability of disagreement� and r� a bound on the

time to termination� we would like to design an algorithm with the largest possible L�

Example Protocol� �two processes�� We start with a description of a simple protocol

for two processes that will prove insightful in the sequel� The protocol proceeds in r rounds

as follows�

In the �rst round� process � chooses an integer key � uniformly at random from the range

f�� � � � � rg� The main idea of the algorithm is that this key will serve as a �threshold� for the

number of rounds of communication that must be completed successfully� or otherwise the

processors will resort to the default value� � Speci�cally� at each round the processes send

messages with the following contents�

� their initial values�

� �from process � only� the value of key � and

� a color� green or red�

Intuitively� a message colored red signi�es that some message was lost in the past� More

precisely� round � messages are colored green� and process i�s round k message is colored

green provided that it has received all the messages at all previous rounds� and they were

all colored green	 otherwise� it is colored red�

We complete the speci�cation of the protocol by the following attack rule�
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A process attacks exactly if it �knows� that at least one process started with ��

it �knows� the value of key � and it has received green messages in all the �rst

key rounds�

Let us make a small digression here to formally de�ne what does it mean for a process

to �know� the value of some variable�

De�nition � A process i is said to know at time k the value of a variable v if either of the

following holds�

� v is a local variable of i� or

� by time k� � k� i receives a message from a process that knows v at time k� � ��

The de�nition is simpli�ed since we consider only variables whose values are set before

any message is sent� and never changed afterwards� It is straightforward to extend the

de�nition to the general case�

Another way to view the �knowledge� of a process is to think of the execution graph

de�ned as follows� The execution graph is a directed graph� with a node �i� k� for each process

i and for each round k� and a directed edge for each delivered message� i�e�� ��i� k�� �i�� k����

is an edge i� a message is sent from i to i� at round k and is delivered by round k � �� With

this abstraction� De�nition � says that a process i knows at time k everything about the

nodes from which �i� k� is reachable� Notice that in e�ect we assume that a node tells �all it

knows� in every message�

Analysis� Let 	 � �
r
� and let L � �� Validity is easy� a process decides � only if there is

some ��input	 if all messages are delivered� and all inputs are �� then the protocol will decide

�� The more interesting part here is agreement� Fix a particular adversary� If all messages

are delivered� then the protocol will have all processes decide on the same value� We now

focus on the case that some message is not delivered� and let k denote the �rst round at

which a message is lost�

Claim � The only case in which there is disagreement is where key � k�

Proof� We use the fact that if either process receives green messages for at least l rounds�

then the other does for at least l� � rounds�

If k � key � then one process fails to receive a green message at some round strictly before

the kth round� Consequently� the other fails to do so by round k � � � key� and by the

protocol� neither attacks�

If k � key then both get at least key green messages� Also� since this means k � �� both

know value of key � and both know same initial values� and thus they decide on the same

value�
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Corollary � Let A be any adversary� and let r be the number of rounds� Then

PrA disagreement" � �

r

An Upper Bound on the Liveness� An obvious question that arises after the ��processor

algorithm is can we do better�

Before giving an answer� we observe that the algorithm above has the unpleasant property

that if just one �rst�round message gets lost� then we are very likely not to attack� We

might be interested in improving the probability of attacking as a function of the number

of messages that get through� aiming at a more re�ned liveness claim� Another direction

of improvement is to extend the algorithm to arbitrary graphs� since the ��round di�erence

claimed above does not always hold in general graphs� Therefore� the answer to the question

above is yes� we can give a modi�cation for more general graphs that has provably better

liveness bounds for partial message loss� On the other hand� however� an almost�matching

upper bound for the liveness we prove below shows we cannot do signi�cantly better�

We start with a de�nition of a notion that is important the impossibility proof and in the

extended algorithm we shall describe later� We de�ne the �information level� of a process

at a given time�point� This notion will be used instead of the simple count of the number of

consecutive messages received�

De�nition � Let i � V be a process� and let k be a round number� Fix an adversary A� We

de�ne HA�i� k�� the set of heights of i at round k inductively as follows�

	�  is an element of HA�i� k��


� � is an element of HA�i� k� if at round k� process i knows about some initial value of 	�

�� h � � is an element of HA�i� k� if at round k� for all processes j �� i� process i knows

that h� � � HA�j� l� for some l�

Finally� de�ne level A�i� k� � maxHA�i� k��

Intuitively� level A�i� k� � h means that at round k� processor i knows that all processors

know that all processors know ��� �h times� ��� that there exists an input value �� As it turns

out� this level plays a key role in the randomized consensus probability bounds�

We can now prove the upper bound on the liveness�

Theorem 
 Any r�round protocol for the generals problem with probability of disagreement

at most 	 and probability of attack �when no message is lost� at least L satis�es

L � 	�r � �� �
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We prove Theorem � using the following more general lemma�

Lemma � Let A be any adversary� and let i � V be any node� Then

PrA i decides 	" � 	 � levelA�i� r�

We �rst show how the lemma implies the theorem�

Proof� �of Theorem ���

For the liveness condition� we need to consider the adversary A in which all processors have

input � and no messages are lost� The probability that all processors decide � is at most the

probability that any of them decides �� which is� by Lemma �� at most 	 � levelA�i� r�� and

since by the de�nition of A� levelA�i� r� � r � �� we are done�

We now prove the lemma�

Proof� �of Lemma ���

First� based on A� we de�ne another adversary A� as follows� A� is the adversary in which

the only initial values of � and the only messages delivered� are those that i knows about in

A� Put in the execution graph language� A� is obtained from A by modifying the execution

as follows� We remove all the edges �i�e�� messages� which are not on a path leading to any

node associated with process i	 we also change the inputs in the initial states from � to 

for all the initial states from which there is no path to any node associated with i� The idea

in A� is to change all the � inputs that are �hidden� from i in A to � while preserving the

�view� from process i�s standpoint�

Now we can prove the lemma by induction on the value of levelA�i� r��

Base� Suppose levelA�i� r� � � Then in A� i doesn�t know about any initial � value� and

hence in A�� all the initial values are � By validity� i must decide � and since A
i A�� we

conclude that i decides  in A as well�

Inductive step� Suppose level A�i� r� � l � � and suppose the lemma holds for all levels

less than l� Consider the adversary A� de�ned above� Notice that there must exist some j

such that level A��j� r� � l � �� otherwise� we would have levelA�i� r� � l� a contradiction�

Now� by the inductive hypothesis�

PrA�  j decides �" � 	 � level A��j� r�

and hence

PrA�  j decides �" � 	�l � ��

But by the agreement bound� we must have

PrA�  i decides �" � PrA�  j decides �" � 	
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and thus

PrA�  i decides �" � 	 � l

and since A
i A�� we may conclude that

PrA i decides �" � 	 � l

Extended Algorithm� The proof of Theorem � actually suggests a modi�ed algorithm�

which works in arbitrary connected graphs� Roughly speaking� the processes will compute

their information levels explicitly� and will use this information level in place of the number

of consecutive message deliveries in a threshold�based algorithm� As in the basic algorithm�

process � still needs to choose key at the �rst round� to be used as a threshold for the level

reached� To get any desired �� 	 probability of agreement� we now let key be a real chosen

uniformly from the interval  � ��	"�

We extend the de�nition of level slightly to incorporate knowledge of the key � as follows�

De�nition 
 Let i � V be a process� and let k be a round number� Fix an adversary A� We

de�ne H �
A�i� k�� the set of heights of i at round k inductively as follows�

	�  is an element of H �
A�i� k��


� � is an element of H �
A�i� k� if at round k� process i knows about some initial ��value�

and knows key�

�� h � � is an element of H �
A�i� k� if at round k� for all processes j �� i� process i knows

that h� � � HA�j� l� for some l�

De�ne the modi�ed level by mlevelA�i� k� � maxH �
A�i� k��

The di�erence from De�nition � is in ��� � we require that the knowledge contain

the value of key also� It is not hard to show that mlevel is always within one of level �cf�

homework problem�� The idea in the protocol is simply to calculate the value of mlevelA�i� k�

explicitly�

Each process maintains a variable mlevel � which is broadcast in every round�

The processes update mlevel according to De�nition �� After r rounds� a process

decides � exactly if it knows the value of key � and its calculated mlevel is at least

key �
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Analysis� For simplicity� we will just carry out the analysis assuming that the graph G

is complete� Modi�cations for other graphs are left as an exercise�

First� consider the validity condition� If all processes start with � then mlevel remains 

at all processors throughout the execution� and so they all decide �

Lemma 	 Assume the graph is complete� If all processes start with � and no message is

lost� then

Pr attack" � min��� 	r�

Proof� If all processes start with � and no message is lost� then by the end of the algo�

rithm mlevel � r everywhere� and the probability L of all attacking is at least equal to the

probability that r � key� If r � �
�
� then Pr attack" � �� If r � �

�
� then Pr attack" � r

�
�

� r	�

We remark that it is possible to get a more re�ned result� for intermediate adversaries�

for any given adversary A� de�ne L�A� to be the probability of attack under A� and mlevelA

to be the minimum value of mlevelA�i� r�� i�e�� the minimum value of the mlevel at the end

of the protocol� taken over all the processes� Then L�A� � min��� 	 �mlevelA�� The proof is

left as a simple exercise�

We now analyze the agreement achieved by the protocol� �This does not depend on the

graph being complete��

Lemma � Let A be any adversary� Then the probability of disagreement under A is no more

than 	�

Proof� By the protocol� if mlevelA � key then all processes will attack� and if mlevelA �

key � � then all processes will refrain from attacking� This follows from the fact that the

�nal mlevel values are within � of each other� Hence� disagreement is possible only when

mlevelA � key � mlevel A ��� The probability of this event is �
��� � 	� since mlevel A is �xed�

and key is uniformly distributed in  � ��	"�

��� Faulty Processors

In this section we continue our treatment of the consensus problem� but now we consider

another situation� where processors fail� rather than links� We shall investigate two cases�

stopping failures� where processors may experience �sudden death�� and Byzantine failures�

where a faulty process may exhibit absolutely unconstrained behavior	 the former aims at

modelling unpredictable crashes� and the latter may model buggy programs�

In both cases� we assume that the number of failures is bounded in advance� Even though

this assumption is realistic in the sense that it may be highly unlikely for a larger number
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of failures to occur� there is a serious drawback to these models� if the number of failures is

already quite high� then it is likely in practice that we will have more failures� More precisely�

assuming a bound on the number of failures implicitly implies that the failures are negatively

correlated� It is arguable that failures are independent� or even positively correlated�

����� Stop Failures

We �rst consider the simple case where they fail by stopping only� That is� at some point

during the algorithm� a processor may stop taking steps altogether� In particular� a processor

can stop in the middle of the message sending step at some round� i�e�� at the round in which

the processor stops� only a subset of the messages it �should have� sent may actually be

sent� We assume that the links are perfectly reliable � all the messages that are sent are

delivered� For simplicity� we assume that the communication graph is complete� As before�

we assume that the n processors start with initial values�

Now the problem is as follows� Suppose that at most f processors fail� We want all the

nonfaulty processors to eventually decide� subject to�

Agreement� all values that are decided upon agree�

Validity� if all processors have initial value v� then the only possible decision value is v�

We shall now describe a simple algorithm that solves the problem� In the algorithm� each

processor maintains a labeled tree that represents the �complete knowledge� of the processor

as follows� The tree has f � � levels� ranging from  �the root�� to f � � �the leaves�� Each

node at level k�  � k � f � has n� k children� The nodes are labeled by strings as follows�

The root is labeled by the empty string 
� and each node with label i� � � � ik has n�k children

with labels i� � � � ikj� where j ranges over all the elements of f�� � � � � ng � fi�� � � � � ikg� See

Figure ��� for an illustration�

The processes �ll the tree in the course of computation� where the meaning of a value v

at a node labeled i� � � � ik is informally � ik knows that ik�� knows ��� that i� knows that the

value of i� is v�� The algorithm now simply involves �lling in all the entries in the tree� and

after f � � rounds� deciding according to some rule we shall describe later�

More precisely� each process i �lls in its own initial value for the root� value i�
�� in the

start state� Then in round �� process i broadcasts this value to all the other processes	 for

simplicity of presentation� we also pretend that process i sends the value to itself �though

in our model� this is simulated by local computation�� At each round k� � � k � f � ��

process i broadcasts all the values from all the level k � � nodes in its tree whose labels do

not contain i� to all the processes� The recipients record this information in the appropriate
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Figure ���� the tree used for the stop�failures algorithm

node at level k of their tree� the value sent by process j associated with its node i�i� � � � ik��
is associated with the node i�i�� � � � ik��j� This is value i�i�i� � � � ik��j�� In this way the trees

are �lled up layer by layer�

Thus� in general� a value v associated with node labeled i�i� � � � ik at a process j means

that ik told j that ik�� told ik that � � � i� told i� that v was i��s initial value�

Lastly� we specify a decision rule� Each process that has not yet failed de�nes W to be

the set of values that appear anywhere in its tree� If W is a singleton set� then choose the

unique element of W 	 otherwise� choose a pre�speci�ed default value�

We shall now argue that the above algorithm satis�es the requirements�

Claim � �Validity� If all the initial values are v� then the only possible decision value is v�

Proof� Trivial	 if all start with v� then the only possible value at any node in anyone�s tree

is v� and hence� by the decision rule� only v can be decided upon�

Claim � �Agreement� All the values decided upon are identical�

Proof� Let Wi be the set of values in the tree of processor i� By the decision rule� it su�ces

to show that Wi � Wj for any two processors i and j that decide �i�e�� that complete the

algorithm�� We prove that if v � Wi then v � Wj� Suppose v � Wi� Then v � value i�p� for

some label p that does not contain i� �Convince yourself of this�� If jpj � f � then jpij � f���

so process i relays value v to process j at round jpij� and v � value j�pi�� and thus� v � Wj�

On the other hand� if jpj � f � �� then there is some nonfaulty process l appearing in the

label p� so that p � qlr� where q and r are strings� Then at round jqlj� processor l succeeds

in sending to j� and therefore v is relayed to j �since that�s the value relayed further by the

processes in r�� Thus� v � value j�ql�� and hence v � Wj�

By the same argument� if v � Wj then v � Wi� and we conclude that Wi � Wj�

One can easily see that the number of bits communicated in the execution of the protocol

is prohibitively large �O�nf���� and deem this protocol impractical� The important thing
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we learned from the above algorithm� however� is that the consensus problem is solvable for

�this simple kind of� processor failures� This� of course� should be contrasted with Theorem

� which states that the problem is unsolvable in the case of communication failures� In the

next lecture we shall see how can the number of communicated bits be reduced dramatically�
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	�� Byzantine Failures

Last time� we considered the consensus problem for stopping failures� Now suppose that we

allow a worse kind of processor failure �cf� Lamport et al�� Dolev�Strong� Bar�Noy et al���

the processors might not only fail by stopping� but could exhibit arbitrary behavior� Such

failures are known as �Byzantine� failures� because of the bad reputation of the Byzantine

Generals� It must be understood that in this model� a failed process can send arbitrary

messages and do arbitrary state transitions� The only limitation on the behavior of a failed

process is that it can only �mess up� the things that it controls locally� namely its own

outgoing messages and its own state�

In order for the consensus problem to make sense in this setting� its statement must be

modi�ed slightly� As before� we want all the nonfaulty processes to decide� But now the

agreement and validity conditions are as follows�

Agreement� All values that are decided upon by nonfaulty processes agree�

Validity� If all nonfaulty processes begin with v� then the only possible decision value by

a nonfaulty process is v�

It is intuitively clear the now the situation is somewhat harder than for stopping faults�

In fact� we shall show that there is a bound on the number of faults that can be tolerated�

Speci�cally� we will see that n � �f processes are needed to tolerate f faults� To gain some

intuition as to the nature of the problem� let us consider the following example�

What might go wrong with too few processes� Consider three processes� i� j� k� and

suppose they are to solve consensus tolerating one Byzantine fault� Let us see why it is

impossible for them to decide in two rounds �See Figure �����

Scenario 	� Processes i and k are nonfaulty and start with � Process j is faulty� In the

�rst round� processes i and k report their values truthfully� and process j tells both i and k

that its value is �� Consider the viewpoint of process i� In the second round� process k tells
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Figure ���� possible con�gurations for three processors� The shaded circles represent faulty pro�

cesses� Con�gurations �a�� �b� and �c� depict Scenarios �� � and 	 respectively�

i �truthfully� that j said �� and process j tells i �falsely� that k said �� In this situation� the

problem constraints require that i and k decide �

Scenario 
� Dual to Scenario �� Processes j and k are nonfaulty and start with �� Process

i is faulty� In the �rst round� processes j and k report their values truthfully� and process

i tells both others that its value is � Consider the view of process j� In the second round�

process k tells j that i said  and i tells j that k said � In this situation� the problem

constraints require that j and k decide ��

Scenario �� Now suppose that processes i and j are nonfaulty� and start with  and ��

respectively� Process k is faulty� but sends the same messages to i that it does in Scenario �

and sends the same messages to j that it is in Scenario �� In this case� i will send the same

messages to j as it does in Scenario �� and j will send the same messages to i as it does in

Scenario �� Then i and j must follow the same behavior they exhibited in Scenarios � and

�� namely� decide  and �� respectively� thereby violating agreement�

Note that i can tell that someone is faulty in Scenario �� since k tells i � and j tells i that

k said �� But process i doesn�t know which of j and k is faulty� We remark that although

the protocol could have more rounds� the same kind of argument will carry over� We shall

see later a rigorous proof for the necessity of n � �f �

An Algorithm� We shall now describe an algorithm� assuming n � �f processes� Recall

the �full information protocol� described in last lecture for stopping faults� The basic idea

in the Byzantine case is based on the same tree and propagation strategy as for the stopping

faults case� but now we shall use a di�erent decision rule� It is no longer the case that we

want to accept any value for insertion into the set of �good� values� just because it appears

somewhere in the tree� Now we must beware of liars� We use the following easy fact�

Lemma � If i� j and k are all nonfaulty� then value i�p� � value j�p� for every label p ending

in k�
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Proof� Follows from the simple fact that since k is nonfaulty� it sends the same thing to

everyone�

Now we can specify a decision rule�

If a value is missing at a node� it is set to some pre�speci�ed default� To determine

the decision for a given tree� we work from the leaves up� computing a new value

newvalue for each node as follows� For the leaves� newvalue i�p� �� value i�p�� For

each node� newvalue is de�ned to be the majority value of the newvalue �s of the

children� If no majority value exists� we set newvalue �� default � The decision is

newvalue i�root��

We now start proving the correctness of the algorithm� First we prove a general lemma�

Lemma � Suppose that p is a label ending with the index of a nonfaulty process� Then there

is a value v such that value i�p� � newvalue i�p� � v for all nonfaulty processes i�

Proof� By induction on the tree labels� working from the leaves on up�

Base case� Suppose p is a leaf� Then� by Lemma �� all nonfaulty processes i have the

same value i�p�	 which is the desired value v� by the de�nition of newvalue for leaves�

Inductive step� Suppose jpj � k�  � k � f � Then Lemma � implies that all nonfaulty

processes i have the same value value i�p�	 call this value v� Therefore� all the nonfaulty

processes l send the same value v for pl to all processes� So for all nonfaulty i and l� we

have value i�pl� � v� By the inductive hypothesis� we have that newvalue i�pl� � v for all

nonfaulty processes i and l� for some value v�

We now claim that a majority of the child labels of p end in nonfaulty process indices�

This is true because the number of children is n� k � n� f � �f � and since at most f may

be faulty� we have that there always is a �honest� majority� �Note this is where we use the

bound on the number of processes��

The induction is complete once we observe that since for any nonfaulty i� v � newvalue i�pl�

for a majority of the children pl� newvalue i�p� � v by the algorithm�

We now argue validity�

Corollary � Suppose all nonfaulty processes begin with the same value v� Then all nonfaulty

processes decide v�

Proof� If all nonfaulty processes begin with v� then all nonfaulty processes send v at the

�rst round� and therefore value i�j� � v for all nonfaulty processes i� j� Lemma � implies

that newvalue i�j� � v for all nonfaulty i and j� and therefore� newvalue i�root� � v for all

nonfaulty i�

Before we show agreement� we need a couple of additional de�nitions�
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De�nition � Consider an execution of the algorithm� A tree node p is said to be common

in the given execution if� at the end of the execution� all the nonfaulty processes have the

same newvalue �p��

De�nition � Consider a rooted tree T � A subset of the tree�nodes C is a path covering of

T if every path from a leaf to the root contains at least one node from C� A path covering is

common if it consists entirely of common nodes�

Lemma 
 There exits a common path covering of the tree�

Proof� Consider any path� Each of the f � � nodes on the path ends with a distinct index�

and therefore there exists a node on the path� say p� with a label that ends in a nonfaulty

index� Then Lemma � implies that p is common�

Lemma � Let p be a node� If there is a common path covering of the subtree rooted at p�

then p is common�

Proof� By induction on p� starting at the leaves and working up�

Base case� If p is a leaf� there is nothing to prove�

Inductive step� Suppose p is at level k� Assume that there is a common path covering C

of p�s subtree� If p itself is in C� then p is common and we are done� so suppose p �� C�

Consider any child pl of p� C induces a common path covering for the subtree rooted at

pl� Hence� by the inductive hypothesis� pl is common� Since pl was an arbitrary child of p�

all the children of p are common� which in turn implies that p is common by the de�nition

of newvalue�

We can now conclude that the algorithm satis�es the validity requirement�

Corollary 	 The root is common�

Proof� By Lemmas � and ��

Authentication� The original paper of Lamport� Pease and Shostak� and a later paper

of Dolev and Strong� present algorithms that work in the presence of Byzantine failures�

but where the nodes have the extra power of authentication based on digital signatures�

Informally� this means that no one can claim that another process said something unless in

fact it did� There is no nice formal characterization given for this model� The interesting

fact is that the algorithm is much like the stopping fault algorithm� rather than the full

Byzantine algorithm above� In particular� it works for any number of processes� even when

n � �f �

��



	�� Reducing the Communication Cost

A major drawback of the algorithms presented above is that they require an excessive amount

of communication � speci�cally� the number of messages communicated in the tree algo�

rithms is exponential in f � �Here� we are counting the separate values being sent as separate

messages� though in terms of the formal model� many would be packaged into a single mes�

sage� The bound would be better expressed in terms of the number of bits of communication��

In this section we discuss some methods to cut down this cost�

����� Stopping Faults

We start by reducing the number of messages communicated in the stopping faults algorithm

to polynomial in f � Let us examine the algorithm described in the previous lecture more

closely� In that algorithm� we have everyone broadcasting everything to everyone� However�

in the end� each process only looks to see whether the number of distinct values it has received

is exactly �� Consider a process which has already relayed � distinct values to everyone� We

claim that this process doesn�t need to relay anything else� since every other process already

has received at least two values� Thus� the algorithm boils down to following rule�

Use the �regular� algorithm� but each process prunes the messages it relays so

that it sends out only the �rst two messages containing distinct values�

The complexity analysis of the above algorithm is easy� the number of rounds in is the

same as before �f ���� but the number of messages is only O�n��� since in total� each process

sends at most two messages to each other process�

What is a bit more involved is proving the correctness of the above algorithm� In what

follows we only sketch a proof for the correctness of the optimized algorithm� The main

interest lies in the proof technique we employ below�

Let O denote this optimized algorithm� and U the unoptimized version� We prove cor�

rectness of O by relating it to U � First we need the following property�

Lemma � In either algorithm O or algorithm U � after any number k of rounds� for any

process index i and for any value v� the following is true� If v appears in i�s tree� then it

appears in the tree at some node for which the index i is not in the label�

Lemma � is true because there are only stopping failures� so i can only relay a value� and

others claim i relayed it� if i in fact originally had it�

De�ne valuesO�i� k��  � k � f��� to be the set of values that appear in levels f� � � � � kg
of process i�s tree in O� We de�ne valuesU �i� k� analogously� The following lemma is imme�

diate from the speci�cation of algorithm U �

��



Lemma � In algorithm U � suppose that i sends a round k � � message to j� and j receives

and processes it� Then valuesU�i� k� � valuesU�j� k � ���

The key pruning property of O is captured by the following lemma�

Lemma � In algorithm O� suppose that i sends a round k � � message to j� and j receives

and processes it�

	� If jvaluesO�i� k�j � �� then valuesO�i� k� � valuesO�j� k � ���


� If jvaluesO�i� k�j � �� then jvaluesO�j� k � ��j � ��

Note that Lemma � is required to prove Lemma ��

Now to see that O is correct� imagine running the two algorithms side�by�side� O� the

new optimized algorithm� and U � the original unoptimized version� with the same initial

values� and with failures occurring at the same processes at exactly the same times� �If a

process fails at the middle sending in one algorithm� it should fail at the same point in the

other algorithm�� We state �invariants� relating the states of the two algorithms�

Lemma �� After any number of rounds k�  � k � f � �� valuesO�i� k� � valuesU �i� k��

Lemma �� After any number of rounds k�  � k � f � ��

	� If jvaluesU �i� k�j � � then valuesO�i� k� � valuesB�i� k��


� If jvaluesU �i� k�j � � then jvaluesO�i� k�j � ��

Proof� By induction� Base case is immediate� Assume now that the lemma holds for k�

We show it holds for k � ��

�� Suppose jvaluesU�i� k � ��j � �� It follows that jvaluesU�i� k�j � �� so by inductive

hypothesis� we have valuesO�i� k� � valuesU�i� k�� By Lemma �� it su�ces to show

that valuesU�i� k � �� � valuesO�i� k � ���

Let v � valuesU�i� k���� If v � valuesU �i� k� then v � valuesO�i� k� � valuesO�i� k����

So now assume that v �� valuesU�i� k � ��� Suppose v arrives at i in a round k � � in

a message from some process j� where v � valuesU �j� k�� Since jvaluesU�i� k � ��j � ��

Lemma � implies that jvaluesU�j� k�j � �� By inductive hypothesis� valuesO�j� k� �

valuesU �j� k�� and so jvaluesO�j� k�j � �� By Lemma �� valuesO�j� k� � valuesO�i� k����

and hence v � valuesO�i� k � ��� as needed�

�� Suppose jvaluesU �i� k� ��j � �� If jvaluesU �i� k�j � � then by inductive hypothesis� we

have jvaluesO�i� k�j � �� which implies the result� So assume that jvaluesU �i� k�j � ��

By the inductive hypothesis� we have valuesO�i� k� � valuesU�i� k�� We consider two

subcases�

��



�a� For all j from which i receives a round k � � message� jvaluesB�j� k� � �j�
In this case� for all such j� we have by inductive hypothesis that valuesA�j� k� �

valuesB�j� k�� Lemma � then implies that for all such j� valuesU �j� k� � valuesO�i� k�

��� It follows that valuesO�i� k��� � valuesU �i� k���� which is su�cient to prove

the inductive step�

�b� There exists j from which i receives a round k�� message such that jvaluesU�j� k�j �
��

By the inductive hypothesis� jvaluesO�j� k�j � �� By Lemma �� jvaluesA�i� k �

��j � �� as needed�

The truth of Lemma �� for k � f � �� and the fact that Wi � Wj for nonfaulty i and j

in U � together imply that i and j decide in the same way in algorithm O� this follows from

considering the two cases in which Wi and Wj in U are singletons or have more than one

value �Wi �� �� since the root always gets a value��

Note� The proof technique of running two algorithms side by side and showing that they

have corresponding executions is very important� In particular� in cases where one algorithm

is an optimization of another� it is often much easier to show the correspondence than it is to

show directly that the optimized algorithm is correct� This is a special case of the simulation

proof method �cf� Model Section in the bibliographical list��

����� The Byzantine Case

In the Byzantine model� it does not seem so easy to obtain an optimized� pruned algorithm

with a polynomial number of messages� We only summarize results in this section�

Polynomial communication and �f � k rounds �for constant k�� assuming n � �f � �

processes� was achieved by a fairly complex algorithm by Dolev� Fischer� Fowler� Lynch� and

Strong  DolevFFLS��"�

Essentially this algorithm was expressed in a more structured fashion by Srikanth and

Toueg  SrikanthT��"� Their structure involved substituting an authentication protocol for

the assumed signature scheme in an e�cient authenticated BA algorithm �used one by Dolev

and Strong�� Using this authentication protocol requires twice the number of rounds as does

the Dolev�Strong protocol� and also needs �f � � processes� The basic idea is that whenever

a message was sent in the Dolev�Strong algorithm� Srikanth and Toueg run a protocol to

send and accept the message�

An improvement on the �f rounds required by the above algorithms was achieved by Coan

 Coan��"� who presented a family of algorithms requiring f�	f rounds� where  � 	 � �� The
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message complexity is polynomial� but as 	 approaches zero� the degree of the polynomial

increases� An important consequence of this result is that no lower bound larger than

f � � rounds can be proved for polynomial algorithms� although no �xed degree polynomial

algorithm is actually given for f �� rounds� A paper by Bar Noy� Dolev� Dwork� and Strong

 BarNoyDDS��" presents similar ideas in a di�erent way� We remark that they introduced

the tree idea used above to present the consensus algorithms�

Moses and Waarts achieve f � � rounds with polynomial communication  MosesW��"�

The protocol looks pretty complicated� with many involved strategies for pruning the tree�

Also� it does not work for �f �� processors as does the exponential communication protocol�

but rather for

Berman and Garay use a di�erent approach to solve the same problem as MW� They

achieve �f � � processors and r � � rounds� Their algorithm is still fairly complicated�

����� The Turpin�Coan Algorithm

It is hard to cut down the amount of communication for general Byzantine agreement� We

close this topic with an interesting trick that helps somewhat� though it does not reduce

the communication from exponential to polynomial� The problem addressed here is how to

reduce BA for a multivalued domain to binary�valued BA� In other words� the algorithm we

present uses binary BA as a subroutine� If the domain is large� the savings can be substantial�

In the Turpin�Coan algorithm we assume that n � �f � �� and that default value is

known initially by all non�faulty processes� For each process� a local variable x is initialized

to the input value for that process�

Below� we describe the Turpin�Coan algorithm� This time� the style is changed a little

bit� Namely� the code for each round is written explicitly� Implicitly� we assume that the

code will be executed for rounds �� �� � � � in sequence� Of course� in the underlying state

machine model� this convention is expanded into manipulation of an explicit round variable�

which gets read to determine which code to perform� and gets incremented at every round�

Round ��

�� Broadcast x to all other processes�

�� In the set of messages received� if there are � n� f for a particular value� v� then

x �� v� otherwise x� nil �

Round ��

�� Broadcast x to all other processes�
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�� Let vmax be the value� other than nil� that occurs most often among those values

received� with ties broken in some consistent way� Let num be the number of

occurrences of vmax �

�� if num � n � f then vote � � else vote � �

After round �� run the binary Byzantine agreement subroutine using vote as the input

value� If the bit decided upon is �� then decide vmax � otherwise decide the default value�

Claim �� At most one value v is sent in round 
 messages by correct processes�

Proof� Any process p sending a value v in round � must have received at least n�f round

� messages containing v� Since there are at most f faulty processes� this means that all other

processes received at least n � �f copies of v� Since the total number of messages received

is n� no process could have received n � f messages containing a value v� �� v in round ��

Therefore� the claim holds�

Theorem �� The Turpin�Coan algorithm solves multivalued Byzantine agreement when

given a Boolean Byzantine agreement algorithm as a subroutine�

Proof� It is easy to see that this algorithm terminates�

To show validity� we must prove that if all nonfaulty processes start with a value� w�

then all nonfaulty processes must decide w� After the �rst round� all nonfaulty processes

will have set x � w because at least n � f processes broadcast it reliably� Therefore� in

the second round� each nonfaulty process will have vmax � w and num � n � f � and will

therefore obtain vote � �� The binary agreement subroutine is therefore required to choose

�� and each nonfaulty process will choose w�

In showing agreement� we consider two cases� If the subroutine decides on vote � � then

the default value is chosen by all nonfaulty processes� so agreement holds� If the subroutine

decides on vote � �� then we must argue that the local variable vmax is the same for each

nonfaulty process� Note that for the subroutine to agree on vote � �� then some nonfaulty

process p must have started with vote � �� Therefore� process p must have received at

least n� f round � messages containing some particular value v� Since there are at most f

faulty processes� each other process must have received at least n� �f round two messages

with non�nil values from nonfaulty processes� By Claim ��� all of the non�nil messages from

nonfaulty processes must have the same value� namely v� Therefore� v must be the value

occurring most often� since there are at most f faulty processes and n� �f � f �

The proof method uses a bound on the number of faulty processes to obtain claims about

similarity between the views of di�erent processes in a fault�prone system� This is a useful

technique�
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We have seen algorithms for distributed agreement� even in the case of Byzantine faults�

The algorithm we saw used n � �f � � processes and f � � synchronous rounds of commu�

nication� In this lecture we will consider whether these bounds are necessary�


�� Number of Processes for Byzantine Agreement

It turns out that it is impossible to beat the �f �� upper bound on the number of processes�

i�e�� if n � �f � then there is no protocol that ensures agreement� The proof is neat� We �rst

prove that three processes cannot tolerate one fault� as suggested in an earlier example �last

lecture�� We then show why is it impossible to tolerate f � n�� faults for any n�

The �rst proof of this appeared in  PeaseSL�"	 the proof given here follows that in

 FischerLM��"�

Lemma � Three processes cannot solve Byzantine agreement in the presence of one fault�

Proof� By contradiction� Assume there is a protocol P consisting of three processes� p�

q and r� such that P with arbitrary inputs will satisfy the Byzantine agreement conditions

even if one process malfunctions� We shall construct a new system S from �copies of� the

same processes� and show that S must exhibit contradictory behavior� It follows that P

cannot exist�

Take two copies of each process in P � and arrange them into a ��process system S as

shown in Figure ����

When con�gured in this way� the system appears to every process as if it is con�gured in

the original three�process system P � Notice that the processes are not required to produce

any speci�c output in S	 however� S with any particular input assignment does exhibit some

well�de�ned behavior� We shall see that no such well�de�ned behavior is possible�

Suppose that the processes in S are started with the input values indicated in Figure

���� Consider the processes p�q�r�p� in S with the given inputs� To q and r� it appears as if

they are running in the three process system P � in which p is faulty �i�e�� �pretending� it�s

running in a ��processor system�� This is an allowable behavior for Byzantine Agreement on

three processes� and the correctness conditions for BA imply that q and r must eventually
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Figure ���� The system S
 arrangement of processes in the proof of Lemma �

agree on  in the three�process system� Since the six�process system S appears identical to

q and r� both will eventually decide on  in S as well�

Next consider the processes r�p��q��r�� By similar reasoning� p� and q� will eventually agree

on � in S�

Finally consider the processes q�r�p��q�� To r and p�� it appears as if they are in a three�

process system with q faulty� Then r and p� must eventually agree in P �although there is

no requirement on what value they agree upon�� and so they agree in S� However this is

impossible since we just saw that r must decide  and p� must decide �� and we arrived to

the desired contradiction�

We now use Lemma � to show that Byzantine agreement requires n � �f � � processes

to tolerate f Byzantine faults  LamportPS��"� We will do this by showing how an n � �f

process solution that can tolerate f Byzantine failures implies the existence of a � process

solution which can tolerate a single Byzantine failure� This contradicts the above lemma�

Theorem � There is no solution to the Byzantine agreement problem on n processes in the

presence of f Byzantine failures� when � � n � �f �

Proof� Assume there is a solution for Byzantine agreement with � � n � �f � �For n � ��

there can be no agreement� if one process starts with  and the other with �� then each must

allow for the possibility that the other is lying and decide on its own value� But if neither

is lying� they this violates the agreement property�� Construct a three�process system with

each new process simulating approximately one�third of the original processes� Speci�cally�

partition the original processes into three nonempty subsets� P�� P�� and P�� each of size

at most f � Let the three new processes be p�� p�� and p�� and let each pi simulate the
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original processes in Pi as follows� Each process pi keeps track of the states of all the original

processes in Pi� assigns its own initial value to every member of Pi� and simulates the steps

of all the processes in Pi as well as the messages between the processes in Pi� Messages from

processes in Pi to processes in another subset are sent from pi to the process simulating that

subset� If any simulated process in Pi decides on a value v then pi can decide on the value v�

�If there is more than one such value� then pi will choose a particular one� chosen according

to some default��

To see that this is a correct ��process solution we reason as follows� At most one of p�� p��

p� is allowed to be faulty� and each simulates at most f original processes� so the simulation

contains no more than f simulated faults� �Designate the faulty processes in the simulated

system to be exactly those that are simulated by a nonfaulty actual process� regardless of

whether they actually exhibit a fault�� This is as required by the simulated solution� The

n�process simulated solution then guarantees that the simulated processes satisfy agreement�

validity� and termination�

Let us argue brie
y that the validity� agreement� and termination of the n�process simu�

lation carry over to the ��process system� Termination is easy� For validity� if all nonfaulty

actual processes begin with a value v� then all the nonfaulty simulated processes begin with

v� Validity for the simulated system implies that the only simulated decision value for a

simulated non�faulty process must be v� so the only actual decision value for an actual non�

faulty process is v� For agreement� suppose pi and pj are nonfaulty actual processes� They

they simulate only nonfaulty processes� Agreement for the simulated system implies that all

of these simulated processes agree� so pi and pj also agree�

We conclude that given a system that tolerates f � n�� faults� we can construct a

protocol for � processes that tolerates one faulty process� contradicting Lemma ��

Let us recap what assumptions have we used for this proof�

Locality� A process�s actions depend only on messages from its input channels and its initial

value�

Faultiness� A faulty process is allowed to exhibit any combination of behaviors on its

outgoing channels� �We could strengthen this assumption� and insist that the behavior

of each channel can arise in some system in which the process is acting correctly��

The locality assumption basically states that communication only takes place over the

edges of the graph� and thus it is only these inputs and a process� initial value that can a�ect

its behavior� Note that the nodes are allowed to have information about the network in which

they are supposed to run �e�g�� the three�process network above� built into them� but this

�



information is not changed �magically� if processes are assembled into an unexpected system

�e�g�� the six�process network above��

The strengthened version of the fault assumption expresses a masquerading capability

of faulty processes� We cannot determine if a particular edge leads to a correct process� or

to a faulty process simulating the behavior of a correct process over the edge� The fault

assumption gives faulty processes the ability to simulate the behaviors of di�erent correct

processes over di�erent edges�


�� Byzantine Agreement in General Graphs

We have shown that Byzantine agreement can be solved with n processes and f faults�

where n � �f � �� In proving this result� we assumed that any process could send a message

directly to any other process� We now consider the problem of Byzantine agreement in

general communication graphs  Dolev��"�

Consider a communication graph� G� where the nodes represent processes and an edge

exists between two processes if they can communicate� It is easy to see that if G is a tree� we

cannot accomplish Byzantine agreement with even one faulty process� Any faulty process

that is not a leaf would essentially cut o� one section of G from another� The nonfaulty

processes in di�erent components would not be able to communicate reliably� much less

reach agreement� Similarly� if removing f nodes can disconnect the graph� it should also be

impossible to reach agreement with f faulty processes� We formalize this intuition using the

following standard graph�theoretic concept�

De�nition � The connectivity of a graph G� conn�G�� is the minimum number of nodes

whose removal results in a disconnected graph or a trivial ��node graph� We say a graph G

is k�connected if conn�G� � k�

For example� a tree has connectivity �� and a complete graph with n nodes has connec�

tivity n� �� Figure ��� shows a graph with connectivity �� If q and s are removed� then we

are left with two disconnected pieces� p and r�

We remark that Menger�s Theorem states that a graph is k�connected if and only if every

pair of points is connected by at least k node�disjoint paths� We shall use this alternative

characterization of the connectivity in the sequel�

In the following theorem we relate the connectivity of a graph to the possibility of ex�

ecuting a Byzantine agreement protocol over it� The proof uses methods similar to those

used in our lower bound proof for the number of faulty processes�

Theorem � Byzantine agreement can be solved on a graph G with n nodes and f faults if

and only if
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	� n � �f � �� and


� conn�G� � �f � ��

Proof� We already know that n � �f � � processes are required for a fully connected

graph� It is easy to see that for an arbitrary communication graph� we still need n � �f � �

�since removing communication links does not �help� the protocols��

We now show the if direction� namely� that Byzantine agreement is possible if n � �f ��

and conn�G� � �f � �� Since we are assuming G is �f � ��connected� Menger�s Theorem

implies that there are at least �f � � node�disjoint paths between any two nodes� We can

simulate a direct connection between these nodes by sending the message along each of the

�f � � paths� Since only f processes are faulty� we are guaranteed that the value received in

the majority of these messages is correct� Therefore� simulation of a fully connected graph

can be accomplished� simulating each round of the protocol for a fully�connected graph by at

most n rounds of in G� We have already seen an algorithm that solve Byzantine agreement

in this situation�

We now prove the only if direction of the theorem� The argument that Byzantine agree�

ment is not possible if conn�G� � �f is a bit more intricate� We will only argue the case for

f � �� for simplicity�

Assume there exists a graph� G� with conn�G� � � in which consensus can be solved

in the presence of one fault� using protocol P � Then there are two nodes in G that either

disconnect the graph or reduce it to one node� But this latter case means that there are only

three nodes in the graph� and we already know that Byzantine agreement cannot be solved

in a ��node graph in the presence of � fault� So assume they disconnect the graph�

The picture is then as in Figure ���� where p and r are replaced by arbitrary connected

graphs �and there may be several edges from each of q and s to each of the two disconnected

groups�� Again for simplicity� however� we just consider p and r to be single nodes� We

construct a system S by �rewiring� two copies of P � as shown in Figure ���� Each process

in S behaves as if it was the same�named process in P � for the graph in Figure ����
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Now assume we start up system S with inputs corresponding to the subscripts� Consider

the behavior of the processes p�� q� and r� of S outlined in Figure ���� As before� it appears

to all three that they are in P with input � as in Figure ���� in an execution in which s is

a faulty process� By the locality assumption� the outlined processes will behave in the same

way in these two cases� By the validity property for P � these processes must all decide  in

P � and hence in S�
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Figure ���� A set of processes in S�

Now consider Figure ��� and the corresponding ��node situation of Figure ���� By the

same argument� all the outlined processes will decide � in S�

Finally� consider Figure ��� and its corresponding ��node situation of Figure ���� Since
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only q is faulty� the agreement condition requires that the outlined processes decide on the

same value in P � and hence in S�
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Figure ���� Yet another set of processes in S�
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Figure ���� The nonfaulty processes must agree� giving us a contradiction�

However� we have already shown that process p� must decide � and process r� must

decide � Thus� we have reached a contradiction� It follows that we cannot solve Byzantine

agreement for conn�G� � � and f � ��

To generalize the result to f � �� we use the same diagrams� with q and s replaced by

graphs of at most f nodes each and p and r by arbitrary graphs� Again� removing q and s

disconnects p and r� The edges of Figure ��� now represent bundles of all the edges between

the di�erent groups of nodes in p� q� r and s�
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�� Weak Byzantine Agreement

A slightly stronger result that can be obtained from the same proof method� Lamport

de�ned a weaker problem than Byzantine agreement� still in the case of Byzantine faults� by

changing the validity requirement�

� Validity� If all processes start with value v and no faults occur� then v is the only

allowable decision value�

Previously we required that even if there were faults� if all nonfaulty processes started

with v then all nonfaulty processes must decide v� Now they are only required to decide v

in the case of no failures� This weakened restriction is motivated loosely by the database

commit problem since we only require commitment in the case of no faults�

Lamport tried to get better algorithms for weak Byzantine agreement than for Byzantine

agreement� but failed� Instead he got an impossibility result� Note� In obtaining this result�

Lamport did not even need the assumption that the algorithm terminates in a �xed number

of rounds� but only that every execution eventually leads to termination for all nonfaulty

processes� In fact� the impossibility results proved so far in this lecture still work even with

this weakening of the termination requirement� For the present result� we will explicitly

assume the weaker termination requirement�

Theorem 
 n � �f �� processes and conn�G� � �f �� are needed even for weak Byzantine

agreement�

We will just show that three processes cannot solve weak Byzantine agreement with one

fault	 the rest of the proof follows as before�

Suppose there exist three processes p� q� and r that can solve weak Byzantine agreement

with one fault� Let P� be the execution in which all three processes start with � no failures

occur� and therefore all three processes decide � Let P� be the same for � instead of � Let k

be greater than or equal to the number of rounds in executions P� and P�� We now create a

new system S with at least �k� � nodes by pasting enough copies of the sequence p�q�r into

a ring� Let half the ring start with value  and the the other half start with � �see Figure

�����

By arguing as we did before� any two consecutive processes must agree	 therefore� all

processes in S must agree� Assume �without loss of generality� that they all decide ��

Now consider a block of at least �k � � consecutive processes that start with � For �

round� the middle �k�� processes in this block will all mimic their namesakes in P�� because

they do not receive any information from outside the block of �s� Likewise� for � rounds the

middle �k � � processes will behave as in P�� etc� Finally� the middle process of the group

will behave as in P� for k rounds� Therefore� it will decide � This is a contradiction�
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�� Number of Rounds with Stopping Faults

We now turn to the question of whether Byzantine agreement can be solved in fewer than

f � � rounds� Once again the answer is no� even if we require only the weakest validity

condition� namely� that processes must decide v only when all start with v� and no faults

occur� In fact� at least f � � rounds are required even to simply tolerate f stopping faults�

We assume the following model� The number of processes satis�es n � f � �� The

algorithm terminates in a �xed number of rounds� We also assume� for simplicity� that every

process sends to every other process at every round �until it fails�� As usual� we assume that

a process can fail in the middle of sending at any round� so that it can succeed in sending

any subset of the messages�

As for two�generals problem� it is useful to carry out the proof using the notion of

communication pattern�

De�ne a communication pattern to be an indication of which processes send to which other

processes in each round� A communication pattern does not tell us the actual information

sent but only �who sent to whom� in a round� A communication pattern can be depicted

graphically as shown in Figure ����� As before� a communication pattern is a subset of set

of �i� j� k� triples� where i and j are distinct processes and k is a round� However� in the

stopping�failure case� if a message from some process i fails to reach its destination in round

k� then no messages from i are delivered in any round after k�

In the �gure� p� does not send to p� in round �� Thus p� must have stopped and will

send nothing further in round � and all future rounds� Essentially� a communication pattern

depicts how processes fail in a run�

De�ne a run as an input assignment and a communication pattern� �This is identical to

what we called adversary in the section on two�generals�� Given any run �� we can de�ne
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1

4
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Figure ����� Example of a communication pattern� Process 	 stops before completing round ��

process � stops after completing round �� processes � and � are up throughout the execution�

an execution exec��� generated by �� This execution is an alternating sequence of vectors of

states� one per process� and matrices of messages� one per pair of processes� starting with

the initial states containing the given input values� These states and messages can be �lled

in using the deterministic message and transition functions� It is possible to infer when a

process fails by the �rst time� if any� when it fails to send a message� After such a failure�

it will not perform its state transition function� By convention� we say that a process that

sends all its messages at round k but none at round k � �� performs the transition of round

k in the execution exec����

A process is faulty in a run exactly if it stops sending somewhere in the communication

pattern� We will only consider runs with at most f faulty processes�

The Case of One Failure� First� for intuition� we will consider the special case of f � ��

We show that two rounds are required to handle a single stopping fault� We do this by

contradiction� so assume a ��round algorithm exists�

We construct a chain of executions� each with at most one fault� such that �i� weak

validity requires that the �rst execution must lead to a  decision and the last execution

must lead to a � decision� and �ii� any two consecutive executions in the chain look the

same to some process that is nonfaulty in both� This implies a contradiction� since if two

executions look the same to a nonfaulty process� that process must make the same decision

in both executions� and therefore� by the agreement requirement� both executions must have

the same decision value� Thus every execution in the chain must have the same decision
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value� which is impossible since the �rst execution must decide � and the last must decide

��

We start the chain with the execution exec���� determined from the run �� having all

 input values and the complete communication pattern� as in Figure ����� This execution

must decide �
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Figure ����� A run� ��� which must decide ��

Starting from execution exec����� form the next execution by removing the message from

p� to p�� These two executions look the same to all processes except p� and p�� Since

n � f �� � �� there is at least one such other process� and it is nonfaulty in both� and hence

must decide the same in both�

Next we remove the message from p� to p�	 these two look the same to all processes

except p� and p�� We continue in this manner removing one message at a time in such a way

that every consecutive pair of executions looks the same to some nonfaulty process�

Once we have removed all the messages from p�� we continue by changing p��s input value

from  to �� Of course these two executions will look the same to every process except p�

since p� sends no messages� Now we can add the messages back in one by one� and again

every consecutive pair of executions will look the same to some nonfaulty process� This

all yields exec����� where �� has � as input value for p��  for all the others� and complete

communication�

Next� we repeat this construction for p�� removing p��s messages one�by�one� changing

p��s input value from  to �� and then adding p��s messages back in� This yields ��� Repeating

this construction for p��� � � �pn� we end the chain with the execution exec��n�� where all start

with � and there is complete communication� This execution must decide �� Thus we have

produced a chain as claimed� and this is a contradiction�

The Case of Two Failures� Before moving to the general case� we will do one more

preliminary case� We will now show that two rounds are not su�cient to handle two stopping
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failures� Again� we proceed by contradiction� We form a chain as we did for the case of one

fault and one round� We start with the execution determined by all �s as input and the

complete ���round� communication pattern	 this execution must decide �

To form the chain we want again to work toward killing p� at the beginning� When we

were only dealing with one round we could kill messages from p� one�by�one� Now� if we

delete a �rst�round message from p� to q in one step of the chain� then it is no longer the

case that the two executions must look the same to some nonfaulty process� This is because

in the second round q could inform all other processes as to whether or not it received a

message from p� in the �rst round� so that at the end of the second round the two executions

can di�er for all non�faulty processes�

We solve this problem by using several steps to delete the �rst�round message from p�

to q� and by letting q be faulty too �we are allowed two faults�� We start with an execution

in which p� sends to q in the �rst round and q sends to every process in the second round�

Now we let q be faulty and remove second�round messages from q� one�by�one� until we have

an execution in which p� sends to q in the �rst round and q sends no messages in the second

round� Now we can remove the �rst�round message from p� to q� and these two executions

will only look di�erent to p� and q� Now we replace second�round messages from q one�by�

one until we have an execution in which p� does not send to q in the �rst round and q sends

to all in the second round� This achieves our goal of removing a �rst�round message from p�

to q while still letting each consecutive pair of executions look the same to some nonfaulty

process�

In this way� we can remove �rst�round messages from p� one�by�one until p� sends no

messages� Then we can change p��s input from  to � as before� and replace p��s messages

one�by�one� Repeating this for p��� � � �pn gives the desired chain�

The General Case� The preceding two examples contain the main ideas for the general

case� in which there are up to f faulty processes in a run� Suppose we have an f round

protocol for f faults�

A little notation may help� If � and �� are runs with p nonfaulty in both then we write

�
p �� to mean that exec��� and exec���� look the same to p through time f �same state

sequence and same messages received��

We write �  �� if there exists a process p that is nonfaulty in both � and �� such that

�
p ��� We write � 	 �� for the transitive closure of the  relation�

Every run � has a decision value denoted by dec���� If �  �� then dec��� � dec���� since

� and �� look the same to some nonfaulty process� Thus if � 	 �� then dec��� � dec�����

Now let F� be the set of failures in run ��

�



Lemma � Let � and �� be runs� Let p be a process� Let k be such that  � k � f � �� If

jF� � F��j � k � � and � and �� only di�er in p�s failure behavior after time k then � 	 ���

�This means that the patterns are the same� except for some di�erences in the existence

of some outgoing messages from p at rounds k � � or greater��

To get our result we need to use the case k �  in Lemma �� This says that if runs � and

�� have only one failure between them and di�er only in the failure behavior of one process

then � 	 ��� We use this as follows�

Let �� and ��� be two runs both starting with all �s as input	 in �� no process fails� and

in ���� process p� fails at the beginning and sends no messages� There is only one failure

between them and they only di�er in p��s failure behavior only� so by the lemma� �� 	 ����

Now let ���� be the same as ��� except p� has a � as input instead of � Since p� sends no

messages in ��� this change cannot be seen by any process except p�� so ���  ����� Now let ��

have the same input as ���� except there are no failures in ��� Again the lemma says ���� 	 ���

Therefore �� 	 ���

We continue this� letting �i be the execution with no failures and input de�ned by having

the �rst i processes get � as input and the others get � We have �i�� 	 �i� so �� 	 �n� and

therefore dec���� � dec��n�� But this is a contradiction since �� has all zeros as input with

no failures and hence must decide  whereas �n has all ones as input with no failures and

hence must decide ��

It remains to prove the lemma� This will be done in the next lecture�
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Lecture �

��� Number of Rounds With Stopping Failures �cont��

Last time� we were showing the lower bound of f � � rounds on consensus with stopping�

We had gotten it down to the following lemma� Today we will �nish by proving the lemma�

Lemma � Let � and �� be runs� Let p be a process� Let k be such that  � k � f � �� If

jF� � F��j � k � � and � and �� only di�er in p�s failure behavior after time k then � 	 ���

Intuitively� the lemma means that the patterns are the same� except for some di�erences

in the outgoing messages from p at round k � � or later�

Proof� We prove the lemma by reverse induction on k� i�e�� k goes from f � � down to �

Base case� Suppose k � f � �� In this case � and �� agree up to the end of round f � ��

Consider round f � If � and �� do not di�er at all then we are done� so suppose they di�er�

Then p is faulty in at least one of � or ��� and the total number of other processes that fail

in either � or �� is no more than f � �� Consider two processes� q and r� that are nonfaulty

in both � and ��� Note that such two processes exist since n � f � ��

Let �� be the same as �� except that p sends to q in round f of �� exactly if it does in ��

�see Figure ��� for example��

We have �
r �� and ��

q ��� so � 	 ���

Inductive step� We want to show that the lemma is true for k� where  � k � f � ��

assuming that it holds for k � �� Runs � and �� agree up to the end of round k� If they also

agree up to end of round k � � then we can apply the inductive hypothesis and we are done�

so assume process p fails in round k � �� and assume �without loss of generality� that p fails

in ��

Let �i� for � � i � n� be the same as � except that p sends to p��� � � �pi at round k � � of

�i exactly if it does in ���

Claim � For � � i � n� �i�� 	 �i �where �� � ���

Proof� Executions �i�� and �i di�er at most in what p sends to pi at round k � �� Let ��i
be the same as �i�� except that pi sends no messages after round k�� in ��i� Similarly let ���i
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Figure ���� Example of construction used to prove base case of Lemma ��

be the same as �i except that pi sends no messages after round k � � in ���i � This situation

is illustrated in Figure ����
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Figure ���� Example of construction used to prove inductive step of Lemma ��

Notice that each of �i� ��i� �
�
i has no more than k � � failures �since � has no more than

k � � failures�� Therefore� by the inductive hypothesis� we have �i�� 	 ��i and �i 	 ���i � Also

��i  ���i since both look the same to any nonfaulty process other than pi� Thus �i�� 	 �i�

From the claim� and by the transitivity of 	� we have � � �� 	 �n� and since �n and �� only

di�er in p�s failure behavior after time k � �� we can apply the inductive hypothesis once

again to get �n 	 ��� Thus we have � 	 ��� as needed�

Applying Lemma � with k � � we can summarize with the following theorem�

Theorem � Any agreement protocol that tolerates f stopping failures requires f �� rounds�
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��� The Commit Problem

The commit problem  Dwork� Skeen" is a variant of the consensus problem� and may be

described as follows� We assume that the communication is realized by a complete graph�

We assume reliable message delivery� but there may be any number of process stopping

faults�

Agreement� There is at most one decision value�

Validity�

�� If any process starts with � then  is the only possible decision value�

�� If all start with � and there are no failures� then � is the only possible decision

value�

Termination� This comes in two 
avors� The weak termination requirement is that termi�

nation is required only in the case where there are no failures	 the strong termination

requirement speci�es that all nonfaulty processes terminate�

The main di�erences between the between the commit problem and the consensus prob�

lem for stopping faults are� �rst� in the particular choice of validity condition� and second�

in the consideration of a weaker notion of termination�

����� Two Phase Commit ��PC

For weak termination� the standard algorithm in practice is two�phase commit� The protocol

consists of everyone sending their values to a distinguished process� say p�� p� deciding based

on whether or not anyone has an initial  value� and broadcasting the decision �see Figure

��� for illustration��

p
1

Figure ���� message pattern in two�phase�commit protocol

It is easy to see that �PC satis�es agreement� validity� and weak termination�
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However� �PC does not satisfy strong termination� because if p� fails� the other processes

never �nish� In practice� if p� fails� then the others can carry out some kind of communication

among themselves� and may sometimes manage to complete the protocol�

But this does not always lead to termination� since the other processes might not be able

to �gure out what a failed p� has already decided� yet they must not disagree with it� For

example� suppose that all processes except for p� start with �� but p� fails before sending

any messages to anyone else� Then no one else ever learns p��s initial value� so they cannot

decide �� But neither can they decide � since as far as they can tell� p� might have already

decided ��

This protocol takes only � rounds� The weaker termination condition� however� implies

that this does not violate the lower bound just proved on the number of rounds� �Note that

the earlier result could be modi�ed to use the commit validity condition��

����� Three�phase Commit ��PC

�PC can be augmented to ensure strong termination� The key is that p� does not decide to

commit unless everyone else knows that it intends to� This is implemented using an extra

�phase�� The algorithm proceeds in four rounds as follows �see also Figure �����

Round �� All processes send their values to p�� If p� receives any � or doesn�t hear from

some process� then p� decides � Otherwise� it doesn�t yet decide�

Round �� If p� decided � it broadcasts this decision� If not �that is� it has received ��s

from everyone�� then p� sends tentative 	 to all other processes� If a process pi� i �� ��

receives � it decides � If it receives tentative 	� it records this fact� thus removing its

uncertainty about the existence of any initial �s� and about p��s intended decision�

Round �� If a process pi� i �� � recorded a tentative �� it sends ack to p�� At the end of

this round� process p� decides � �whether or not it receives acks from all the others��

Note that p� knows that each process has either recorded the tentative �� or else has

failed without deciding and can therefore be ignored�

Round 
� If p� decided �� it broadcasts �� Anyone who receives � decides ��

Rounds � and � serve as an extra phase of informing everyone of the �intention to

commit�� and making sure they know this intention� before p� actually commits��

�Note that there is an apparent redundancy in this presentation� It appears that the acks� which arise

in the practical versions of the protocol� are ignored in this abstract version� So this version can apparently

be shortened to three rounds� eliminating the acks entirely� This remains to be worked out�
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Figure ���� message pattern in three�phase�commit protocol

This protocol does not guarantee strong termination yet� If p� doesn�t fail� every non�

faulty process will eventually decide� since p� never blocks waiting for the others� But if p�

fails� the others can be left waiting� either to receive the tentative � or the �nal �� They

must do something at the end of the four rounds if they haven�t decided yet�

At this point� the literature is a little messy � elaborate protocols have been described�

with many alternative versions� We give below the key ideas for the case where p� has failed�

After � rounds� every process p �� p�� even it has failed� is in one of the following states�

� decided �

� uncertain �hasn�t decided� and hasn�t received a round � �tentative �� message��

� ready �hasn�t decided� and has received a round � �tentative �� message�� or

� decided ��

The important property of �PC is stated in the following observation�

Observation � Let p be any process �failed or not� including p��� If p has decided � then

all nonfaulty processes �in fact� all processes� are either uncertain or have decided � and if

p has decided 	� then all nonfaulty processes are either ready or have decided 	�

Using this observation� the non�failed processes try to complete the protocol� For in�

stance� this could involve electing a new leader� One solution is to use p� �and if this fails� to

use p�� etc��� �This assumes that the processes know their indices�� The new leader collects

the status info from the non�failed processes� and uses the following termination rule�

�� If some process reports that it decided� the leader decides in the same way� and broad�

casts the decision�

�� If all processes report that they are uncertain� then the leader decides  and broadcasts

�
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�� Otherwise �i�e�� all are uncertain or ready� and at least one is ready�� the leader contin�

ues the work of the original protocol from the �middle� of round �� That is� it sends

tentative 	 messages to all that reported uncertain� waits� and decides �� �Notice that

this cannot cause a violation of the validity requirement� since the fact that someone

was ready implies that all started with initial value ���

Any process that receives a  or � message decides on that value�

����� Lower Bound on the Number of Messages

It is interesting to consider the number of messages that are sent in the protocol� In this

section we prove the following theorem  Dwork�Skeen"�

Theorem 
 Any protocol that solves the commit problem� even with weak termination� sends

at least �n � � messages in the failure�free run starting with all ��s�

Note that �PC uses �n � � messages in the failure�free case� and therefore the result is

tight�

The key idea in the lower bound is stated in the following lemma�

Lemma � Let � be the run where all processes start with �� and there are no failures� Then

there must be a path of messages from every node to every other node�

Before we prove Lemma �� let us consider a special case� Consider the failure�free execu�

tion � whose graph is depicted in Figure ���� Assume all processes start with � in ��

p
1

p4

ρ ρ ’

1

1

1

1

1

1

1

0

Figure ���� execution graphs for � and �� in the special case� Black square represents process

failure�

In �� there is no path from p� to p�� Consider now an alternative execution ��� in which

the initial value of p� is � and all processes stop when they �rst �hear� from p�� �In other

words� in ��� all the edges reachable from the node of p� at time  are removed�� It is

straightforward to show that �
p� �� regardless of the initial value of p�� However� validity

requires that p� decides � in �� and  in ��� a contradiction�

The general case proof uses the same argument�
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Proof� By example� In �� the decision of all processes must be �� by termination and

validity� If the lemma is false� then there is some pair of processes p� q such that there is no

path of messages from p to q in �� Thus in �� q never learns about p� Now construct �� by

failing every process exactly when it �rst learns about p� and changing p�s input to � The

resulting run looks the same to q� i�e�� � 	 ��� and therefore q decides � in ��� which violates

validity�

The proof of Theorem � is completed by the following graph�theoretic lemma�

Lemma 	 Let G be a communication graph for n processes� If each of i processes is con�

nected to each of all the n processes �by a chain of messages�� then there are at least n� i��

messages in the graph�

Proof� By induction on i�

Base case� i � �� The n � � follows from the fact that there must be some message to

each of the n� � processes other than the given process�

Inductive step� assume the lemma holds for i� Let S be the set of i � � processes that

are joined to all n� Without loss of generality� we can assume that in round �� at least one

of the processes in S sends a message� �If not� we can remove all the initial rounds in which

no process in S sends a message � what is left still joins S to all n�� Call some such process

p� Now consider the reduced graph� obtained by removing a single �rst�round message from

p to anyone� The remaining graph connects everyone in S � fpg to all n� By induction� it

must have at least n� i�� edges� So the whole graph has at least n� i���� edges� which

is n � �i � ��� �� as needed�
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Lecture �

��� Asynchronous Shared Memory

In this lecture we begin a new topic� which features a major switch in the 
avor of the

algorithms we study� Namely� we add the very important uncertainty of asynchrony � for

processes� variable process speeds� and for messages� variable message delay� We shall start

this part with shared memory rather than networks� These systems can be thought of as the

asynchronous analog of PRAMs� At �rst� as a simplifying assumption� we will not consider

failures� asynchrony is complicated enough to deal with�

Before we can express any algorithm� or make any meaningful statement� we need to

de�ne a new computation model� We �rst describe the model informally and consider an

example to gain some intuition	 only then will we come back to a more formal model�

����� Informal Model

The system is modeled as a collection of processes and shared memory cells� with external

interface �see Figure �����

Each process is a kind of state machine� with a set states of states and a subset start of

states indicating the initial states� as before� But now it also has labeled actions describing

activities it participates in� These are classi�ed as either input � output � or internal actions�

We further distinguish between two di�erent kinds of internal actions� those that involve the

shared memory� and those which involve strictly local computation�

There is no message generation function� since there are no messages in this model �all

communication is via the shared memory��

There is a transition relation trans� which is a set of �s� �� s�� triples� where � is the label

of an input� output� or local computation action� The triple �s� �� s�� � trans says that from a

state s� it is possible to go to state s� while performing action �� �Note that trans is a relation

rather than a function � this generality includes the convenience of nondeterminism��

We assume that input actions can always happen �technically� this is an input�enabling

model�� Formally� for every s and input action �� there exists s� such that �s� �� s�� � trans�
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Figure ���� shared memory system� Circles represent processes� squares represent shared memory

cells� and arrows represent the external interface �i�e�� the input and output actions��

In contrast� output and local computation steps might be enabled only in a subset of the

states� The intuition behind the input�enabling property is that we think of the input actions

as being controlled by an arbitrary external user� while the internal and output actions are

under the control of the system�

Shared memory access transitions are formalized di�erently� Speci�cally� the transitions

have the form ��s�m�� �� �s��m���� where s� s� are process states� and m�m� are shared memory

states� These describe changes to the state and the shared memory as a result of accessing

the shared memory from some state� A special condition that we impose here is that the

enabling of a shared memory access action should depend on the local process state only�

and not on the contents of shared memory	 however� the particular response� i�e�� the change

to the states of the process and of the shared memory� can depend on the shared memory

state� Formally� this property is captured by saying that if � is enabled in �s�m�� then for

all memory states m�� � is enabled in �s�m��� In particular cases� the accesses are further

constrained�

The most common restriction is to allow access only one location to be involved in a

single step� Another popular restriction is that all accesses should be of type read or write�

A read just involves copying the value of a shared memory location to a local variable� while

a write just involves writing a designated value to a shared memory location� overwriting

whatever was there before�

An execution is modeled very di�erently from before� Now processes are allowed to take

steps one at a time� in arbitrary order �rather than taking steps in synchronized rounds��
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This arbitrariness is the essence of asynchrony� More formally� an execution is an alternating

sequence s�� �� s�� � � �� consisting of system states �i�e�� the states of all the processes and of

the shared memory�� alternated with actions �each identi�ed with a particular process��

where successive �state� action� state� triples satisfy the transition relation� An execution

may be a �nite or an in�nite sequence�

There is one important exception to the arbitrariness� we don�t want to allow a process

to stop when it is supposed to be taking steps� This situation arises when the process is in

a state in which any locally controlled action �i�e�� non�input action� is enabled� �Recall that

input actions are always enabled	 however� we will not require that they actually occur�� A

possible solution is to require that if a process takes only �nitely many steps� its last step

takes it to a state in which no more locally controlled actions are enabled� But that is not

quite su�cient� we would like also to rule out another case� where a process does in�nitely

many steps but after some point all these steps are input steps� We want to make sure that

the process itself also gets turns� But we have to be careful in saying this� consider the

scenario in which in�nitely many inputs occur� and no locally�controlled actions� but in fact

no locally controlled actions are enabled� That seems OK� since vacuously� the process had

�chances� to take steps but simply had none it wanted to take� We account for all these

possibilities in the following de�nition� For each process i� either

�� the entire execution is �nite� and in the �nal state no locally controlled action of process

i is enabled� or

�� the execution is in�nite� and there are either in�nitely many places in the sequence

where i does a locally controlled action� or else in�nitely many places where no such

action is enabled�

We call this condition the fairness condition for this system�

We will normally consider the case where the execution is fair� However� at a later point

in the course �when we consider �wait�free objects� and other fault�tolerance issues�� we will

want to prove things about executions that are not necessarily fair�

��� Mutual Exclusion Problem

The problem of Mutual Exclusion involves allocating a single indivisible resource among n

processes p�� � � � � pn� Having the access to the resource is modeled by the process reaching

a critical region� which is simply a designated subset of its states� Normally� that is� when

it doesn�t want access to the resource� the process is said to be in the remainder region�

In order to gain access to the critical region� a process executes a trying protocol� while for
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symmetry� after the process is done with the resource� it executes an �often trivial� exit

protocol� This procedure can be repeated� and the behavior of each process is thus cyclic�

moving from the remainder region �R� to the trying region �T�� then to the critical region

�C�� and �nally to the exit region �E�� The cycle of regions that a process visits is shown in

Figure ���� In the diagram� self�loops indicate that a process can remain in these regions

after it performs a step� In contrast� we will abstract away steps done within the critical and

remainder regions� and not consider them here�

R

T

C

E

Figure ���� the cycle of regions of a single process

We will consider here only algorithms in which communication among processes is done

through shared memory� For starters� we will suppose that the memory is read�write only�

that is� in one step� a process can either read or write a single word of shared memory� To

match this up with the shared memory model discussed above� we have n process automata

accessing read�write shared memory� The two basic actions involving process pi and a shared

variable x are�

� pi reads x and uses the value read to modify the state of pi� and

� pi writes a value determined from pi�s state to x�

The inputs to processes are try i actions� modeling the rest of the program requesting

access to the resource� and exit i� modeling the rest of the program announcing it is done

with the resource� The output actions are crit i� which is interpreted as granting the resource�

and remi� which tells the rest of the program that it can continue� The processes inside the

diagram� then� are responsible for performing the trying and exit protocols�

It is sometimes useful to view the outside world as consisting of n users� which we model

as other state machines that communicate with their respective processes via the designated

actions� These users are assumed to execute some application programs� In between the

crit i and exit i action� user i is free to use the resource �see Figure �����

We will assume that each user obeys the cyclic behavior� that is� that each user is not

the �rst to violate the cyclic order of actions between itself and its process�
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crit

exit
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Figure ���� interface speci�cation for the user

A global picture of the system architecture appears in Figure ����

Within this setting� the protocol is itself supposed to preserve the cyclic behavior� and

moreover� to satisfy the following basic properties�

Mutual exclusion� There is no reachable state in which more than one process is in region

C�

DeadlockFreedom� If at any point in a fair execution� at least one process is in the trying

region and no process is in the critical region� then at some later point some process

enters the critical region� Similarly� if at any point in a fair execution� at least one

process is in the exit region �with no other condition here�� then at some later point

some process enters the critical region�

Note that deadlock�freedom presupposes fairness to all the processes� whereas we don�t

need to assume this for the other conditions� In the ensuing discussions of mutual exclusion�

we might sometimes neglect to specify that an execution is fair� but it should be clear that

we assume it throughout � until otherwise speci�ed �namely� when we consider faults��

Note that responsibility for the entire system continuing to make progress depends not

only on the protocol� but on the users as well� If a user gets the resource but never returns it

�via an exit i�� then the entire system will grind to a halt� But if the user returns the resource

every time� then the deadlock�freedom condition implies that the system continues to make

progress �unless everyone remains in its remainder region��

Note that the deadlock�freedom property does not imply that any particular process ever

succeeds in reaching its critical region� Rather� it is a global notion of progress� saying that

some process reaches the critical region� For instance� the following scenario does not violate

the deadlock�freedom condition� p� enters T � while p� cycles repeatedly through the regions

�the rest of the processes are in R�� The deadlock�freedom condition does not guarantee

that p� will ever enter C�
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Figure ���� Architecture for the mutual exclusion problem

There is one other constraint� a process can have a locally controlled action enabled only

when it is in T � E� This implies that the processes can actively execute the protocol only

when there are active requests� The motivation for this constraint is as follows� In the original

setting where this problem was studied� the processes did not have dedicated processors� they

were logically independent processes executed on a single time�shared processor� In this

setting� having special processes managing the mutual exclusion algorithm would involve

extra context�switching� i�e�� between the manager process and the active processes� In a

true multiprocessor environment� it is possible to avoid the context�switching by using a

dedicated processor to manage each resource	 however� such processors would be constantly

monitoring the shared memory� causing memory contention� Moreover� a processor dedicated

to managing a particular resource is unavailable for participation in other computational

tasks�
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��� Dijkstras Mutual Exclusion Algorithm

The �rst mutual exclusion algorithm for this setting was developed in ���� by Edsger Dijk�

stra� It was based on a prior two�process solution by Dekker� Until then� it was not even

clear if the problem is solvable�

We begin by looking at the code� though it will not be completely clear at �rst how this

code maps to the state�machine model� The code is given in Figure ����

The shared variables are �ag i"� � � i � n� one per process� each taking on values from

f� �� �g� initially � and turn� an integer in f�� � � � ng� Each �ag i" is a single�writer multi�

reader variable� writable only by process i but readable by everyone� The turn variable is

multi�writer multi�reader� both writable and readable by everyone�

We translate the code to our model as follows� The state of each process consists of the

values of its local variables� as usual� plus some other information that is not represented

explicitly in the code� including�

� Temporary variables needed to remember values of variables read�

� A program counter� to say where in the code the process is up to�

� Temporary variables introduced by the 
ow of control of the program �e�g�� the for

loop introduces a set to keep track of the indices already processed��

� A region designation� T � C� E or R�

The state of the entire system consists of process states plus values for all the shared

variables�

The initial state of the system consists of initial values for all local and shared variables�

and program counters in the remainder region� �Temporary variables can be unde�ned�� The

actions are tryi� crit i� exit i� remi� local computation steps� and the read�write accesses to the

shared variables� The steps just follow the code in the natural way� The code describes the

changes to the local and shared variables explicitly� but the implicit variables also need to

be changed by the steps� For example� when a try i action occurs� the region designation for

i becomes T � The program counter changes as it should� e�g�� when tryi occurs� it becomes

a pointer to the beginning of the trying region code�

This code is adapted from Dijkstra�s paper� Note that the code does not specify explicitly

exactly which portions of the code comprise indivisible steps� However� since the processes

are asynchronous� it is important to do this� For this algorithm� atomic actions are the

try i� etc�� plus the single reads from and writes to the shared variables� plus some local

computation steps� The code is rewritten in Figure ��� to make the indivisible steps more
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Shared variables�

� �ag � an array indexed by  ���n" of integers from f����g� initially all �

written by pi and read by all processes�

� turn � integer from f��� � � �ng� initially arbitrary�

written and read by all processes�

Code for pi�

$$ Remainder Region $$

try i

$$ begin �rst stage� trying to obtain turn $$

L� �ag i" � �

while turn �� i do

if �ag turn" �  then turn � i

end if

end while

$$ begin second stage� checking that no other processor has reached this stage $$

�ag i" � �

for j �� i do $$ Note� order of checks unimportant $$

if �ag j" � � then goto L

end if

end for

crit i

$$ Critical Region $$

exit i

�ag i" � 

remi

Figure ���� Dijkstra�s mutual exclusion algorithm
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explicit� The atomic actions are enclosed in pointy brackets� Note that the read of �ag turn"

does not take two atomic actions because turn was just read in the line above� and so a local

copy of turn can be used� The atomicity of local computation steps is not speci�ed � in

fact� it is unimportant� so any reasonable interpretation can be used�

����� A Correctness Argument

In this section we sketch a correctness argument for Dijkstra�s algorithm� Recall that for

the synchronous model� the nicest proofs resulted from invariants describing the state of

the system after some number of rounds� In the asynchronous setting� there is no notion of

round� so it may not be readily clear how to use assertional methods� It turns out that they

can still be used� and indeed are extremely useful� but typically it is a little harder to obtain

the invariants� The arguments must be applied at a �ner level of granularity� to make claims

about the system state after any number of individual process steps �rather than rounds��

Before presenting an assertional proof� however� we will sketch a �traditional� operational

argument� i�e�� an argument based directly on the executions of the algorithm�

In the following series of lemmas we show that the algorithm satis�es the requirements�

The �rst lemma is very each to verify�

Lemma � Dijkstra�s algorithm preserves cyclic region behavior for each i�

The second lemma is more interesting�

Lemma � Dijkstra�s algorithm satis�es mutual exclusion�

Proof� By contradiction� Assume pi and pj are both simultaneously in region C� in some

reachable state� where i �� j� Consider an execution that leads to this state� By the code�

both pi and pj set their �ag variables to � before entering their critical regions� Consider

the last such step in which each sets its �ag variable� Assume� without loss of generality�

that �ag i" is set to � �rst� Then� �ag i" remains � from that point until pi leaves C� which

must be after pj enters C� by the assumption that they both end up in C simultaneously�

So� �ag i" has the value � throughout the time from when pj sets �ag j" to � until pj enters

C �see Figure �����

But during this time� pj does a �nal test of �ag i" and �nds it unequal to �� a contradiction�

We will redo this argument using an invariant assertion proof later� But �rst� we proceed

with an argument for the deadlock�freedom property�

Lemma � Dijkstra�s algorithm is deadlock�free�

Proof� We again argue by contradiction� Suppose there is some fair execution � that

reaches a point where there is at least one process in T � and no process in C� and suppose
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Shared variables�

� �ag � an array indexed by  ���n" of integers from f����g initially all �

written by pi and read by all

� turn � integer from f������ng� initially arbitrary�

written and read by all

Code for pi

$$Remainder region$$

try i
L� h�ag i" � �i
while hturn �� ii do

if h�ag turn" � i then hturn � ii
end if

end while

h�ag i" � �i
for j �� i do

if h�ag j" � �i then goto L

end if

end for

crit i

$$Critical region$$

exit i

h�ag i" � i
remi

Figure ���� Dijkstra�s algorithm showing atomic actions
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t1 t2 t3

Figure ���� At time t�� pi sets �ag �i� to �� at time t� pj �nds that �ag�i� �� �� at time t	 pi exits

C�

that after this point� no process ever enters C� We begin by removing some complications�

Note that all processes in T�E continue taking steps in �� and hence� if some of the processes

are in E� then after one step they will be in R� So� after some point in �� all processes are

in T � R� Moreover� since there are only �nitely many processes� after some point no new

processes enter T � so after some point� no new processes enter T � That is� after some point

in �� all the processes are in T � R� and no process every changes region� Write � � �����

where in ��� there is a nonempty �xed group of processes continuing to take steps forever in

T � and no region changes occur� Call these processes contenders�

After at most a single step in ��� each contender i ensures that �ag i" � �� and it remains

� � for the rest of ��� So we can assume �without loss of generality� that this is the case for

all contenders� throughout ���

Clearly� if turn changes during ��� it is changed to a contender�s index� Moreover� we

have the following claim�

Claim 
 In ��� eventually turn acquires a contender�s index�

Proof� Suppose not� i�e�� the value of turn remains equal to the index of a non�contender

throughout ��� Then when any contender pi checks� it �nds that turn �� i and �ag turn" � 

and hence would set turn to i� There must exist an i for which this will happen� because all

contenders are either in the while loop or in the second stage� destined to fail and return to

the while loop �because� by assumption� we know they don�t reach C in ���� Thus� eventually

in ��� turn gets set to a contender�s index�

Once turn is set to a contender�s index� it remains equal to a contender�s index� although

the value may change to di�erent contenders� Then� any later reads of turn and �ag turn"

will yield �ag  turn" � � �since for all contenders i� �ag i" � ��� and turn will not be changed�

Therefore� eventually turn stabilizes to a �nal �contender�s� index� Let �� be a su�x of ��

in which the value of turn is stabilized at some contender�s index� say i�

Now we claim that in ��� any contender j �� i eventually ends up in the �rst while loop�

looping forever� This is because if it is ever in the second stage� then since it doesn�t succeed

in entering C� it must eventually return to L� But then it is stuck in stage �� because

turn � i �� j and �ag i" �� � throughout ��� So let �� be a su�x of �� in which all

contenders other than i loop forever in the �rst while loop� Note that this means that all

contenders other than i have their �ag variables equal to �� throughout ���
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We conclude the argument by claiming that in ��� process i has nothing to stand in its

way� This is true because when the while loop is completed� �ag i" is set to �� and no other

process has �ag � �� so pi succeeds in its second stage tests and enters C�

To complete the proof we remark that the argument for the exit region is straightforward�

since no one ever gets blocked there�
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��� Dijkstras Mutual Exclusion Algorithm �cont��

In this section we �nish our discussion of Dijkstra�s mutual exclusion algorithm with an

alternative proof of the mutual exclusion property of the algorithm� Last time we saw an

operational argument� Today we�ll sketch an assertional proof� using invariants� just as in

the synchronous case �See Goldman�Lynch  LICS��" for a more detailed proof��

����� An Assertional Proof

To prove mutual exclusion� we must show that

� ��pi� pj� j �i �� j� � �pi in C� � �pj in C�"

We would like to prove this proposition by induction on the number of steps in an

execution� But� as usual� the given statement is not strong enough to prove directly by

induction� We need to augment it with other conditions� which may involve all the state

components� namely shared variables� local variables� program counters� region designations�

and temporary variables�

We have to be a little more precise about the use of temporary variables� We de�ne� for

each process pi� a new local variable Si	 this variable is used by pi during execution of the

for loop� to keep track of the set of processes that it has already observed to have �ag �� ��

Initially Si � �� When the process �nds �ag  j" �� � during an iteration of the for loop� it

performs the assignment Si � Si � fjg� When Si � f�� � � � � ng � fig� the program counter

of pi moves to after the for loop� When �ag  i" is set to  or �� pi assigns Si � �� Figure ���

shows where these uses of S would appear in the code for pi� �Note that it becomes more

convenient to rewrite the for loop as an explicit while loop��

For a given system state� we de�ne the following sets of processes�

� before�C� processes whose program counter is right after the �nal loop�

� in�C� processes whose program counter is in region C�
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Shared variables�

� �ag � an array indexed by  ���n" of integers from f����g� initially all �

written by pi and read by all processes

� turn � integer from f��� � � �ng� initially arbitrary�

written and read by all processes

Code for pi

$$ Remainder Region $$

try i
L� Si � �
h�ag i" � �i
while hturn �� ii do

if h�ag turn" � i then hturn � ii
end if

end while

h�ag i" � �i
while Si �� f�� � � � � ng � fig do

choose j � f�� � � � � ng � fig � Si

if h�ag j" � �i then goto L

end if

Si � Si � fjg
end while

crit i

$$ Critical Region $$

exit i

Si � �
h�ag i" � i
remi

Figure ���� Dijkstra�s algorithm showing atomic actions and Si�
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�The actual entrance to C is a separate step from the last test in the loop��

Put in the above terms� we need to prove that jin�Cj � �� We actually prove a stronger

statement� namely that jin�Cj � jbefore�Cj � �� This is a consequence of the following two

claims�

�� � ��pi� pj� j �i �� j� � �i � Sj� � �j � Si�"

�� pi � �before�C � in�C� �� Si � f�� � � � � ng � fig

First a small lemma�

Lemma � If Si �� � then �ag i" � ��

Proof� From the de�nition of Si and the code for the algorithm�

Now the main nonexistence claim�

Lemma � � ��pi� pj� j �i �� j� � �i � Sj� � �j � Si�"�

Proof� By induction on the length of executions� The basis case is easy since� in the initial

state� all sets Si are empty� Now consider the case where j gets added to Si �the reader can

convince him�herself that this is actually the only case of interest�� This must occur when i

is in its �nal loop� testing �agj � Since j gets added to Si� it must be the case that �ag j" �� �

because otherwise� i would exit the loop� By the contrapositive of Lemma � then� Sj � ��
and so i �� Sj �

Now the second claim�

Lemma � pi � �before�C � in�C � �� Si � f�� � � � � ng � fig�
Proof� By induction on the length of the execution� In the basis case� all processes are

in region R� so the claim holds vacuously� For the inductive step� assume the claim holds

in any reachable state and consider the next step� The steps of interest are those where pi

exits the second loop normally �i�e�� doesn�t goto L�� or enters C� Clearly� if pi exits the

loop normally� Si contains all indices except i� since this is the termination condition for the

loop �when rewritten explicitly in terms of the S sets�� Upon entry to the critical region� Si

does not change� Thus the claim holds in the induction step�

We can now prove the main result by contradiction�

Lemma 
 jin�Cj� jbefore�Cj � ��

Proof� Assume� for contradiction� that in some state reachable in an execution jin�C j �

jbefore�C j � �� Then there exist two processes� pi and pj � i �� j� such that pi � �before�C �
in�C � and pj � �before�C � in�C �� By Lemma �� Si � f�� � � � � ng�fig and Sj � f�� � � � � ng�
fjg� But by Lemma �� either i �� Sj or j �� Si� a contradiction�
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����� Running Time

We would like to bound the time from any state in which there is some process in T and no

one in C� until someone enters C� In the asynchronous setting� however� it is not clear what

�time� should mean� For instance� unlike the synchronous case� there is no notion of rounds

to count in this model� The way to measure time in this model is as follows� We assume

that each step occurs at some real time point� and that the algorithm begins at time � We

impose upper bounds on step time for individual processes� denoted by s� and on maximum

time anyone uses the critical region� denoted by c� Using these bounds� we can deduce time

upper bounds for the time required for interesting activity to occur�

Theorem � In Dijkstra�s algorithm� suppose that at a particular time there is some process

in T and no process in C� Then within time O�sn�� some process enters C�

We remark that the constant involved in the big�O is independent of s� c and n�

Proof� We analyze the time along the same lines as we proved deadlock�freedom� Suppose

the contrary� and consider an execution in which� at some point� process pi is in T and no

process is in C� and in which no process enters C for time ksn� for some particular large k�

First we claim that the time elapsed from the starting point of the analysis until pi tests

turn is at most O�sn�� �We will assume that k has been chosen to be considerably larger

than the constant hidden by this big�O�� This is because pi can at worst spend this much

time before failing in the second stage and returning to L� We know that it must fail because

otherwise it would go to C� which we have assumed doesn�t happen this quickly�

Second� we claim that the additional time elapsed until turn equals a contender index is

at most O�s�� To see this� we need a small case analysis� If when pi tests turn� turn holds a

contender index� we�re done� so suppose that this is not the case	 speci�cally� suppose that

turn � j� where j is not a contender� Then within time O�s� after this test� pi will test

�ag�j�� If pi �nds �ag�j� � � then pi sets turn� to i� which is the index of a contender�

and we are again done� On the other hand� if it �nds �ag�j� �� � then it must be that in

between the test of turn by pi and the test of �ag�j�� process j entered the trying region and

became a contender� If turn has not changed in the interim� then turn is equal to the index

of a contender �j� and we are done� On the other hand� if turn has changed in the interim�

then it must have been set to the index of a contender� So again� we are done�

Then after an additional time O�s�� no process can ever reset turn �or enter the second

stage�� Then time O�sn� later� all others in the second stage will have left� since they don�t

succeed because it�s too soon� Then within an additional time O�sn�� i must succeed in

entering C�
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��� Improved Mutual Exclusion Algorithms

While Dijkstra�s algorithm guarantees mutual exclusion and deadlock�freedom� there are

other desirable properties that it does not have� Most importantly� it does not guarantee

any sort of fairness to individual processes	 that is� it is possible that one process will

continuously be granted access to its critical region� while other processes trying to gain

access are prevented from doing so� This situation is sometimes called process starvation�

Note that this is a di�erent kind of fairness from that discussed earlier� this is fairness to

the invoked operations� rather than fairness of process steps�

Another unattractive property of Dijkstra�s algorithm is that it uses a multi�reader�multi�

writer variable �for turn�� This may be di�cult or expensive to implement in certain kinds

of systems� Several algorithms that improve upon Dijkstra�s have been designed� We shall

look at some algorithm developed by Peterson� and by Peterson and Fischer�

����� No�Starvation Requirements

Before we look at alternative mutual exclusion algorithms� we consider what it means for an

algorithm to guarantee fairness� Depending upon the context in which the algorithm is used�

di�erent notions of fairness may be desirable� Speci�cally� we shall consider the following

three ideas that have been used to re�ne the requirements for mutual exclusion algorithms�

Lockoutfreedom� In a fair execution �with respect to processes� steps� of the algorithm

where the users always return the resource� any process in T eventually enters C� �Also�

in any fair execution� any process in E eventually enters R��

Time bound b� If the users always return the resource within time c of when it is granted�

and processes always take steps in T �E within time s� then any process in T enters C

within time b� �Note� b will typically be some function of s and c�� �Also� if processes

always take steps in T � E within time s� then any process in E enters R within time

b��

Number of bypasses b� Consider an interval of an execution throughout which some pro�

cess pi is in T �more speci�cally� has performed the �rst non�input step in T �� During

this interval� any other process pj � j �� i� can only enter C at most b times� �Also� the

same for bypass in E��

In each case above� we have stated fairness conditions for the exit region that are similar

to those for the trying region� However� all the exit regions we will consider are actually

trivial� and satisfy stronger properties �e�g�� are �wait�free���
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Some implications� There are some simple relations among the di�erent requirements

from mutual exclusion protocols�

Theorem 	 If an algorithm is lockout�free then it is deadlock�free�

Proof� Consider a point in a fair execution such that i is in T � no one is in C� and suppose

that no one ever enters C� Then this is a fair execution in which the user always returns the

resource� So the lockout�freedom condition implies that i eventually enters C� as needed for

deadlock�freedom�

Likewise� consider a point in a fair execution such that i is in E� By lockout�freedom� i

eventually enters R� as needed for deadlock�freedom�

Theorem � If an algorithm is deadlock�free and has a bypass bound� then the algorithm is

lockout�free�

Proof� Consider a point in a fair execution� Suppose that the users always return the

resource� and i is in T � Deadlock�freedom and the user returning all resources imply that

the system keeps making progress as long as anyone is in T � Hence� the only way to avoid

breaking the bypass bound� is that eventually i must reach C�

The argument for the exit region is similar�

Theorem � If an algorithm has any time bound then it is lockout�free�

Proof� Consider a point in a fair execution� Suppose the users always return the resource�

and i is in T � Associate times with the events in the execution in a monotone nondecreasing�

unbounded way� so that the times for steps of each process are at most s and the times for

all the critical regions are all at most c� By the assumption� i enters C in at most the time

bound� so in particular� i eventually enters C� as needed for lockout�freedom�

The argument for the exit region is similar�

In the following� we shall see some protocols that satisfy some of these more sophisticated

requirements�

����� Peterson�s Two�Process Algorithm

We begin with an algorithm that gives lockout�freedom� and a good time bound �with an

interesting analysis�� We start with a ��process solution� for processes p� and p�� We write

% for � � i� i�e�� the index of the other process� The code is given in Figure ����

We now argue that the algorithm is correct�

Theorem � Peterson�s two�process algorithm satis�es mutual exclusion�

Proof Sketch� It is easy to show by induction that

level �i� �  �� i �� �at�wait � before�C � in�C� � �����
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Shared variables�

� level � a Boolean array� indexed by  � �"� initially 

� turn � a Boolean variable� initial state arbitrary

Code for pi�

$$ Remainder Region $$

try i
level �i� �� �

turn �� i

wait for level �%� �  or turn �� i

crit i

$$ Critical Region $$

exit i

level �i� �� 

remi

Figure ���� Peterson�s algorithm for two processes

Using ������ we can show by induction that

i � �before�C � in�C� �� �% �� �at�wait � before�C � in�C�� � �turn �� i� � �����

There are three key steps to check� First� when i passes the wait test� then we have one of

the following� Either turn �� i and we are done� or else level �%� � � in which case we are

done by ������

Second� when % reaches at�wait� then it explicitly sets turn �� i� Third� when turn gets

set to i� then this must be a step of process pi� performed when it is not in the indicated

region�

Theorem �� Peterson�s two�process algorithm satis�es deadlock�freedom�

Proof Sketch� We prove deadlock�freedom by contradiction� That is� assume that at some

point� i � T � there is no process in C� and no one ever enters C later� We consider two cases�

If % eventually enters T � then both processes must get stuck at the wait statement since they

don�t enter C� But this cannot happen� since the value of turn must be favorable to one of

them�
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On the other hand� suppose that % never reaches T � In this case� we can show by induction

that level �%� eventually becomes and stays � contradicting the assumption that i is stuck in

its wait statement�

Theorem �� Peterson�s two�process algorithm satis�es lockout�freedom�

Proof Sketch� We show the stronger property of ��bounded bypass� Suppose the contrary�

i�e�� that i is in T after setting level �i� � �� and % enters C three times� By the code� in

the second and third time� % sets turn �� % and then must afterwards see turn � i� This

means that there are two occasions upon which i must set turn �� i �since only i can set

turn �� i�� But by our assumption� turn �� i is only performed once during one pass by

process i through the trying region� a contradiction�

����� Tournament Algorithm

We now extend the basic two�process algorithm to a more general number of processes� Here�

for simplicity� we assume that n is a power of �� The basic idea is to run a tournament� using

the ��process strategy�

In the following presentation� we take the Peterson�Fischer tournament algorithm� and

rephrase it using Peterson�s simpler ��process algorithm� We remark that the original

Peterson�Fischer algorithm is quite messy �at least too messy to prove formally here�� The

code given here seems simpler� but it still needs careful checking and proof� A disadvantage

of this code as compared to the Peterson�Fischer code is that this one involves multi�writer

variables� while the original protocol works with single�writer registers�

Before we give the algorithm� we need some notation� For � � i � n and � � k � log n

we de�ne the following notions�

� The �i� k��competition is the number given by the high�order �log n� k� bits of i� i�e��

comp�i� k� �
�
i

�k

�
�

� The �i� k��role is the �log n� k � ��st bit of the binary representation of i� i�e��

role�i� k� �
�
i

�k

�
mod � �

� The �i� k��opponents is the set of numbers with the same high�order �log n� k� bits as

i� and opposite �log n� k � ��st bit� i�e��

opponents�i� k� � fj � comp�j� k� � comp�i� k� and role�j� k� �� role�i� k�g �
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Shared variables�

� level� an array indexed by  ���n" of f� � � � � log ng� initially all 

� turn� a Boolean array indexed by all binary strings of length at most log n � ��

initial state arbitrary

Code for pi�

$$ Remainder Region $$

try i
for k �� � to log n do

level �i� �� k

turn�comp�i� k�� �� role�i� k�

wait for  �j � opponents�i� k� � level �j� � k" or  turn�comp�i� k�� �� role�i� k�"

end for

crit i

$$ Critical Region $$

exit i

level �i� �� 

remi

Figure ���� Peterson�s tournament algorithm

The code of the algorithm is given in Figure ���� We only sketch the correctness arguments

for the algorithm�

Theorem �� The tournament algorithm satis�es mutual exclusion�

Proof Sketch� The proof follows the same ideas as for two processes� This time� we must

show that at most one process from each subtree of a level k node reaches level k � � �or

�nishes� if k � log n�� This is proven using an invariant�

We think of the main loop of the algorithm unfolded� For � � k � log n� de�ne donek to

be the set of points in the code from right after the level k loop� until the end of C� Consider

the following invariant�

�k� � � k � log n  i � donek" �� opponents�i� k� � �waitk � donek� � �
or turn�comp�i� k�� �� role�i� k� � �����
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We �rst show that ����� implies the result� if two processes i� j reach the critical section

together� consider their lowest common competition �that is� minl fcomp�i� l� � comp�j� l�g��
Suppose this competition is at level k� Then both i and j are in donek� and so they must

have con
icting settings of the role variable�

The inductive proof of ����� is roughly as follows� Fix a process i and level number k�

We need to verify the following key steps� �a� when i passes the level k test �this case is

easy�� �b� an opponent setting turn� and �c� a relative setting turn �i can�t� from where it is�

and others can�t reach there by inductive hypothesis� level k � ���

Theorem �� The tournament algorithm satis�es deadlock freedom�

Proof Sketch� Deadlock freedom follows from lockout freedom� which in turn follows from

a time bound� We show a time bound� Speci�cally� we claim that in O�s �n� � cn� time any

process in T enters C� We prove this bound using a recurrence as follows�

De�ne T �� to be the maximum time from when a process enters T until it enters C� For

� � k � log n� let T �k� be the maximum time it takes a process to enter C after winning

�completing the body of the loop� at level k� We wish to bound T ���

By the code� we have T �log n� � s� since only one step is needed to enter C after winning

at the top level� Now� in order to �nd T ��� we set up a recurrence for T �k� in terms of

T �k � ���

Suppose that pi has just won at level k� and advances to level k��� First� pi does a couple

of assignments �taking O�s� time�� and then it reaches the wait loop� Now we consider two

cases�

�� If pi �nds the wait condition to be true the �rst time it tests it� then pi immediately

wins at level k � �� Since the number of opponents at level k is �k� and since pi must

test the level of all its opponents� this fragment takes O�s � �k� time� The remaining

time till it reaches the critical region is at most T �k� ��� by de�nition� The total time

is� in this case� at most O�s � �k� � T �k � ���

�� If pi �nds the wait condition to be false the �rst time it tests it� then there is a

competitor �say pj� at a level � k � �� In this case� we claim that either pi or pj must

win at level k � � within time O�s � �k� of when pi reaches the wait condition� �In fact�

pj might have already won before pi reached the wait condition�� This is true because

within time O�s�� pj must reach its wait condition� and then one of the wait conditions

must be true �because of the value of turn�comp�i� k � ����� Within an additional

O�s � �k�� someone will discover the wait condition is true� and win� Now� if pi is the

winner� then it takes an additional T �k � �� until it reaches the critical region	 if pj is

the winner� then within additional time T �k � ��� pj reaches C� and within additional
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time c� it leaves C� After another O�s� time� it resets level �j� �� � Thereafter� we

claim that pi will soon win at level k � �� right after pj resets its level � all the level

values of opponents�i� k� are less than k� �� If they remain this way for time O�s � �k��
pi will �nd its condition true and win� If not� then within this time� some opponent of

i reaches level k � �� Then within additional time s� it sets turn to be favorable to i�

and within an additional O�s � �k�� pi will discover this fact and win�

The total time is thus at most the maximum of the two cases above� or

max
n

�s � �k� � T �k � �� � O�s � �k� � �T �k � �� � c
o

� O�s � �k� � �T �k � �� � c �

Thus we need to solve the following recurrence�

T �k� � �T �k � �� � O�s � �k� � c

T �log n� � s

Let a be the constant hidden by the big�O notation� We have

T �� � �T ��� � as�� � c

� ��T ��� � as��� � ��� � c��� � ���
���

� �kT �k� � as��� � �� � � � �� ��k��� � c��� � �� � � � �� �k���
���

� �lognT �log n� � as��� � �� � � � ����logn���� � c��� � �� � � � �� �logn���

� ns � O�s � n�� � O�cn�

� O�s � n� � cn�

Bounded Bypass� As a last remark� we point out the fact that Peterson�s algorithm does

not have any bound on the number of bypasses� To see this� consider an execution in which

one process i arrives at its leaf� and takes its steps with intervening times equal to the upper

bound s� and meanwhile� another process j arrives in the other half of the tree� going much

faster� Process j can reach all the way to the top and win� and in fact it can repeat this

arbitrarily many times� before i even wins at level �� This is due to the fact that is no lower

bound was assumed on process step times� Note that there is no contradiction between

unbounded bypass and a time upper bound� because the unbounded bypass can only occur

when some processes take steps very fast�
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Shared variables�

� level� an array indexed by  ���n" of f� � � � � n� �g� initially all 

� turn� an array indexed by  ���n� �" of f�� � � � � ng� initial state arbitrary

Code for pi�

$$ Remainder Region $$

try i
for k �� � to n� � do

level �i� �� k

turn�k� �� i

wait for  �j �� i � level �j� � k" or  turn�k� �� i"

end for

crit i

$$ Critical Region $$

exit i

level �i� �� 

remi

Figure ���� Peterson�s iterative algorithm

Remark� In the original Peterson�Fischer tournament algorithm �with single�writer vari�

ables�� the turn information is not kept in a centralized variables� but is rather distributed

around variables belonging to the separate processes� This leads to a complex system of

repeated reads of the variables� in order to obtain consistent readings�

����� Iterative Algorithm

In Peterson�s newer paper� there is another variant of the algorithm presented above� Instead

of a tournament� this one conducts only one competition for each level� and rather than

allowing only one winner for each competition� it makes sure there is at least one loser� In

this algorithm� all n processes can compete at the beginning� but at most n � � can have

won at level � at any particular time� and in general� at most n� k can have won at level k�

Thus� after n� � levels� get only one winner� The code is given in Figure ����
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�����J�������J Distributed Algorithms October ��� ����
Lecturer� Boaz Patt�Shamir

Lecture �	

���� Atomic Objects

In the past couple of lectures� we have been considering the mutual exclusion problem in the

asynchronous shared�memory model� Today we shall consider a new problem in the same

model� The new problem is the implementation of an interesting programming language

primitive� a kind of data object called an atomic object� Atomic objects have recently been

proposed as the basis for a general approach to solving problems in the asynchronous shared

memory model� This approach can be thought of as �object�oriented� style of constructing

asynchronous concurrent systems�

The system architecture is the same as before �see Figure �����

interface
line

process

shared
memory
cell

Figure ���� shared memory system

Before giving a formal de�nition of atomic objects� we give a simple example�
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������ Example	 Read�Write Object

The read�write object is somewhat similar to a shared read�write variable� but with separate

invocation and response actions� More speci�cally� it has two types of input actions� read i�

where i is a process� and write i�v�� where i is a process and v a value to be written� A read i

is supposed to return a value� The �return� event is represented by a separate output action

which we call read�respondi�v�� For uniformity� also give the write i a corresponding response

action write�respondi� The write�respondi is merely an ack� whose meaning is that the write i

action is done�

The separation of actions �which can be viewed as giving a �ner atomicity� makes this

kind of object a little di�erent from a shared read�write register� In particular� it permits

concurrent access to the object from di�erent users�

The read�write object is one of the simplest useful objects� We can easily de�ne other�

fancier objects	 for example

� queues �with insert and delete actions��

� read�modify�write objects �to be discussed later��

� snapshot objects �to be considered next��

and more� Each object has its own characteristic interface� with inputs being invocations of

operations and outputs being responses�

������ De�nition

In this section we give an elaborate de�nition of the requirements from an atomic object�

First� recall the cyclic discipline for invocations and responses for the �mutual exclusion

object�� Something similar is required from any atomic object� we de�ne a generalized notion

of well�formedness at the interface� Here� this says that for each process i �whose connection

with the external environment is called line i�� the invocations and responses alternate�

starting with an invocation� We stress that not everything needs to alternate in this way�

only the invocations and responses on any particular line� There can be concurrency among

the invocations on di�erent lines� We think of the object when it is used in combination

with user programs that preserve �i�e�� are not the �rst to violate� this well�formedness

condition� and the �rst requirement on an object implementation is that it also preserve

well�formedness�

Property 	� Preserves well�formedness

���



Also� as before� we make a restriction on when our processes can take steps� Namely� in

well�formed executions� process i is only permitted to take steps in between an invocation

and a response at i �that is� while an invocation is active at i��

The next correctness condition involves the correctness of the responses� This correctness

is de�ned in terms of a related serial speci�cation� A serial speci�cation describes the correct

responses to a sequence of operation invocations� when they are executed sequentially �i�e�

without concurrent invocations�� For instance� for a read�write object having initial value �

the correct sequences include the following �subscripts denote processes�line numbers��

read�� read�respond����write�����write�respond�� read�� read�respond����

Usually� these sequences are speci�ed by a simple state machine in which each operation

causes a change of state and a possible return value� We remark that this serial speci�cation

is now standard in theory of data types�

So let S be a serial speci�cation for a particular set of operation types �e�g�� read� write�

etc��� An atomic object corresponding to S has the same interface as S� In addition to the

well�formedness condition above� we require something about the contents of the sequences�

Property 
� Atomicity

We want to say that any well�formed execution must �look like� a sequence in the serial

speci�cation S� The way of saying this is a little complicated� since we want a condition

that also makes sense for executions in which some of the operations don�t return� That is�

even if for some of the lines i� the �nal operation gets invoked and does not return� we would

like that the execution obey some rules� Speci�cally� we require� for a ��nite or in�nite�

well�formed execution of the object� that it be possible to select the following�

�� For each completed operation� a serialization point within the active interval�

�� An arbitrary subset T of the incomplete operations �i�e�� those having an invocation

but no response�� such that for each operation in T we can select a serialization point

sometime after the invocation� and a response action�

The points should be selected in a way such that if we move the invocation and response

actions for all the completed operations� and all the operations in T � so that they 
ank their

respective serialization points �i�e�� if we �shrink� the completed operations and all the oper�

ations in T to contain only their respective serialization points�� then the resulting sequence

of invocations and responses is in S �i�e�� is correct according to the serial speci�cation��

So� the atomicity condition essentially stipulates that an execution looks as if the opera�

tions that were completed �and some of the incomplete ones� were performed instantaneously
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at some time in their intervals� Figure ��� shows a few scenarios involving a two�process

read�write object�

read

write(8)

read−respond(0)

write−respond

Time
process 1

process 2

read

write(8)

read−respond(8)

write−respond

read

write(8)

read−respond(0) read read−respond(8)

(a)

(b)

read

write(8)

read−respond(8)

(c)

read

write(8)

read−respond(0) read read−respond(0)

(e)

(d)

Figure ���� possible executions of a read�write object with two processes� The arrows repre�

sent serialization points� In the scenario �e�� there are in�nitely many reads that return �� and

consequently the incomplete write does not get a serialization point�

Property �� Liveness

This property is simple� we require that in every well�formed fair execution� every invo�

cation receives a response� This rules out� for example� the �dead object� that never returns

responses�

Notice that here� we are using the underlying fairness notion for the model � i�e�� that

processes continue to take steps when those are enabled� In this case� the statement of

Property � could be simpli�ed� The reason we have given the more complicated statement

of Property � is that in the sequel� we shall consider non�fair executions of atomic object

implementations� This will be when we are discussing resiliency� and wait�freedom�� Note

that Property � �so far� only makes sense in the particular model we are using� with processes

to which it makes sense to be �fair��

Discussion� Intuitively� we can say that an atomic object is a �concurrent version� of a

corresponding serial speci�cation� It is appropriate to ask what good is this concept� The

�In the literature� wait�freedom is sometimes referred to as �wait�freeness	�
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important feature we get is that we can use an atomic object in modular construction of sys�

tems� suppose that we design a system to use instantaneous objects �e�g�� read�write� queues�

or something more interesting�� but we don�t actually have such instantaneous objects� If

we have atomic versions of them� then we can �plug� those implementations in� and� as we

will later see� under certain circumstances� the resulting system �behaves the same�� as far

as a user can tell� We shall return to this discussion later�

���� Atomic Snapshots

We shall now see how can simple atomic objects be used to implement �seemingly� much

more powerful objects� Speci�cally� we�ll see how to implement atomic snapshot object�

using atomic registers� We follow the general ideas of  Afek Attiya et al"� We start with

a description of the the problem� and then give a simple solution that uses registers of

unbounded size� Finally� we re�ne the construction to work with bounded registers�

������ Problem Statement

Atomic snapshot object models an entire memory� divided into n words� It has n update and

n snap lines �see Figure ����� The updatei�v� writes v into word i� and the snap returns the

vector of all the latest values�

As usual � the atomic version of this object has the same responses as if shrunk to a point

in the interval�

update

snap

i

i
n lines

n lines

Figure ���� schematic interface of an atomic snapshot object

The model of computation we assume is that of ��writer n�reader atomic registers�

������ Unbounded Algorithm

Suppose that each update writes into its register in a way such that each value can be veri�ed

to be new� A simple way to do it is to attach a �sequence number� to each value	 whenever
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a newer value is written� it is written with an incremented sequence number� For this rule�

we have the following simple property�

Suppose every update leaves a unique mark in its register� If two consecutive

global reads return identical values� then the values returned are consistent� i�e��

they constitute a true snapshot�

The observation above immediately gives rise to the following simplistic algorithm� each

update increments the local sequence number	 each snap collects repeatedly all the values�

until two identical consecutive sets of collected values are seen �a successful double collect��

This common set is returned by the snap�respond�

This algorithm always returns correct answers� but it su�ers from the problem that a

snap may never return� if there are updates invoked concurrently�

For this problem� however� we have the following observation �see Figure �����

If a snap sees a value being updated � times� then the updater executes a complete

update operation within the interval of the snap�

Snap

1st value

2nd value

3rd value

Figure ���� a complete update must be contained in the interval containing three changes of a

single value� Notice the embedded snap in the middle update�

The observation above leads us to the main idea of the algorithm� which can be informally

stated as If you want to write� then read �rst� Speci�cally� we extend the algorithm such

that before an update process writes� it must take a snap action� and save the result of this

internal snap somewhere accessible to all others� We shall use the term embedded snap for

the snaps activated by updates�

We can now describe the unbounded algorithm� The system structure is depicted in

Figure ���� First� we describe the state variables�

For each update i we have a register which is a record with the following �elds�

� value vi
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� sequence number si

� view �i�e�� a vector of values� Gi

update

snap

updatei

snapj

embedded
    snap

Figure ���� system structure for the algorithm

The code for snap i process is as follows�

Read all registers until either

see � equal sj for all j ��double collect��� or

see � distinct values of sk for some k�

In the �rst case� return the repeated vector of vjs�

In the second case� return the second Gk for that k ��borrowed view���

The code for update i�v� process is as follows�

Do snapi �embedded snap procedure��

Write �atomically��

incremented sequence number in si�

v in vi� and

the value returned by the snap in Gi

Correctness� The well�formedness condition is clearly maintained� The more interesting

parts are serializability and termination�

Theorem � The algorithm satis�es the atomicity condition�
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Proof� We construct explicit serialization points in the operations interval at which the

read or write can said to have occurred� Clearly� update must be serialized at the point of

write�

For the snap operation� the situation is a bit more complicated� Consider the sequence

of writes that occurs in any execution� At any point in time� there is a unique vector of

vis� Call these �acceptable vectors�� We show that only acceptable vectors are obtained by

snaps� We will construct serialization point for all snaps ��real� and embedded� as follows�

First� consider snaps that terminate with successful double collects� For these� we can

pick any point between the end of �rst collect and the beginning of second as a serialization

point� It is clear that the vector returned by snap�respond is exactly the acceptable vector

at this point� because there is no change in that interval� by the assumption that any change

e�ects the sequence numbers�

Second� consider snaps that terminate with borrowed view� We pick serialization points

for these by induction on their order of the completion� Base case is trivial �no such snaps��

For the inductive step� note that the borrowed view of the kth such snap is the result of

some other snap which is completely contained within the snap at hand� By induction� the

former was already assigned a point� We choose that same point for the snap at hand� This

point is in the bigger snap interval since it is in the smaller �see Figure �����

By the induction� we also have that the value returned is exactly the acceptable vector

at the serialization point�

Theorem � In a fair execution� each snap and update terminates in O�n�� memory access

steps�

Proof� For snap� it follows from the pigeon�hole principle� that after at most �n � � �col�

lects� of all the values� there must be a process with � changes� Since in each collect the snap

process reads n values� the O�n�� bound follows� For update� we have O�n�� too� because of

embedded snap �which is followed only by a single write��

������ Bounded Register Algorithm

The requirement of the previous algorithm to have unbounded registers is problematic� The�

oretically� this means that the algorithm needs unbounded space� The point is that the

correctness only required that a change is detectable	 having a sequence number gives us a

total order� which is far more than we need�

If we think of the algorithm a little� we can see that the purpose of the sequence numbers

was that snap processes could tell when update i produced a new value� This� however� can

be communicated explicitly using handshake bits� More speci�cally� the main idea is as

follows� Instead of keeping sequence numbers for update i� keep n pairs of handshake bits for
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communication between update i and snapj for all j �actually� �n � for real and embedded

snaps�� The handshake protocol is similar the Peterson�Fisher ��process mutual exclusion

algorithm� update i sets the bits to be unequal� and snapi sets them equal�

We use the following notation for the handshake bits� For each �update i� snapj� pair� we

have bits pij at i� and qji at j� with this notation� the handshake protocol is simply the

following�

�� When update i writes� pij � �qji�

�� Before snapj reads� qji � pij

The handshake protocol is �nearly� su�cient� As we shall see� it can be the case that

two consecutive values can be confused� To overcome this problem� each update i has an

additional toggle bit� toggle i� that it 
ips during each write� This ensures that each write

changes the register value�

We can now give a sketch of the code of the bounded algorithm� �The complete algorithm

can be found in page � of Handout ����

update i�

Read the handshake bits qji for all j

Snap

Write the value� borrowed view� the negated handshake bits� and negated toggle bit

snapj �

Repeat

Read handshake bits pij and set qji � pij for all i

Do two collect

If both collects are equal in all pij and toggle i� then return common vector

else record who has moved

Until someone moved � times

Return borrowed view

Correctness� The general idea is the same as for unbounded case� We serialize updates by

the writes� For snap� we can serialize snap that return borrowed view using the same induc�

tion� Not surprisingly� the problem now is correctness of snaps that return by double�collect�

The following argument shows that the same serialization rule �i�e�� any point between the

two collects��
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Claim � If a snap does a successful double collect� then no write occurs between the end of

the �rst and the beginning of the second�

Proof� By contradiction� Suppose two reads by snapj of ri produce pij equal to qji�s most

recent values and toggle bit� and assume a write by i occurs in between the � reads� Consider

the last such write i � it must write the same pij and toggle i read by snapj� Since during

update i� pij gets �qji� then the read must precede snapj�s most recent write of qji�

Thus we must have the situation depicted in Figure ����

read(q=−b)

write(q=b) read(p=b,toggle=t)

write(p=b,toggle=t)

read(p=b,toggle=t)

update process

snap process

Figure ���� scenario described in the proof of Claim 	� The shaded area represent the active

interval of the last update i before the second read of snapj �

The read i and write i are part of the same update i� so the two reads by snapj return

values written by the � successive update i writes� with identical toggle bits � contradicting

the code�

Before we conclude the discussion of the atomic snapshot algorithm� we remark that it

has the additional nice property of wait�freedom� Namely� in any execution� including those

that are not necessarily fair to all processes� but just to some subset subset P � any operation

of any i � P is guaranteed to terminate� Notice that processes not in P may even stop�

without a�ecting the progress of the processes in P � We will discuss this concept extensively

in future lectures�

���



�����J�������J Distributed Algorithms October �� ����
Lecturer� Nancy Lynch

Lecture ��

So far� we have been working within a model based on read�write shared memory� while

studying the mutual exclusion and atomic snapshot problems� We have digressed slightly

by jumping from the mutual exclusion problem to the atomic snapshot problem� Today� we

will return to the mutual exclusion problem once again� In the following lectures� we will

consider the consensus problem in read�write shared memory� and then consider atomic �and

other� objects once again�

���� Burns Mutual Exclusion Algorithm

Both of the algorithms we have studied so far �Dijkstra�s and Peterson�s� use multi�writer

variables �turn� along with a collection of single�writer variables ��ag�� Due to the fact that

it might be di�cult and ine�cient to implement �i�e�� physically build� multi�writer shared

variables in certain systems �in particular� in distributed systems�� algorithms that use only

single�writer variables are worth investigating� We shall see two single�writer algorithms� by

Burns and by Lamport�

The �rst algorithm� developed by Jim Burns� appears in Figure ����� It does not guar�

antee fairness� but only mutual exclusion and deadlock�freedom� Lamport�s algorithm is fair

also� but has the disadvantage of using unbounded variables�

Mutual exclusion� The proof that Burns� algorithm guarantees mutual exclusion is sim�

ilar to the proof for Dijkstra�s algorithm� except that the �ag variable is set to � where in

Dijkstra�s it is set to �� For example� consider an operational argument� If i and j both

reach C� then assume that i set �ag to � �rst� By the code� it keeps it � until it leaves C�

Also by the code� after j sets its �ag to �� j must check that �ag�i� �  before it can enter

C� The argument is completed by showing that at least one of the processes must notice

that the other has set it �ag� Speci�cally� if i � j� then j must return to L� and if i � j�

then i cannot proceed to the critical region�
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Shared variables�

� �ag � an array indexed by  ���n" of f� �g� initially all � where �ag i" is written

by pi and read by all

Code for pi

L�

�ag i" � 

for j � f�� � � � � i� �g do
if �ag  j" � � then goto L

end if

end for

�ag i" � �

for j � f�� � � � � i� �g do
if �ag  j" � � then goto L

end if

end for

M�

for j � fi � �� � � � � ng do
if �ag  j" � � then goto M

end if

end for

$$Critical region$$

�ag i" � 

$$Remainder region$$

Figure ����� Burns� Mutual Exclusion Algorithm
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Deadlockfreedom� This property can be argued by contradiction as follows� As for

Dijkstra�s algorithm� assume that there exists some execution in which all processes are in

either R or T � and their are no further region changes� Partition the processes into those

that ever reach label M and those that do not	 call the �rst set P and the second set Q�

Eventually� in this execution� there must exist a point where all processes in P have already

reached M � Note that they never thereafter drop back to any point prior to label M � Now

we claim that there is at least one process in P � speci�cally� the one with the lowest index

among all the contenders � that will reach P � Let i be the largest index of a process in

P � We claim that eventually after this point� any process j � Q such that j � i has �ag�j�

set permanently to � This is because if its �ag is �� it eventually detects the presence of a

smaller index active process and returns to L� where it sets its �ag to � and from that point

it can never progress far enough to set it back to �� Finally� we claim that pi will eventually

reach the critical region� a contradiction�

Remark� Burns� algorithm uses no multi�writer variables� but does use n shared �multi�

reader� variables to guarantee mutual exclusion and deadlock�freedom for n processes� Later

in this lecture we will see that this is optimal in terms of the number of registers� even if

unbounded multi�writer registers are available�

���� Lamports Bakery Algorithm

In this section we discuss Lamport�s bakery algorithm� It is a very basic and interesting

mutual exclusion algorithm	 it is practical� and its ideas reappear in many other places� In

the presentation here we assume for simplicity that the shared memory consists of �single�

writer� read�write shared variables�� The algorithm guarantees nice fairness behavior� it

features lockout�freedom� a good time bound� and bounded bypass� In fact� it has a stronger

property� FIFO after a wait�free �doorway� �to be de�ned below�� An unattractive property

it has� however� is that it uses unbounded size registers� The code is given in Figure �����

We remark that the code given here can be simpli�ed in the case of indivisible read�write

registers� The given code works also for the safe registers model�

In the algorithm� the trying region is broken up into two subregions� which we call the

doorway� and the rest of T � The doorway is the part from when the process enters until it

sets choosing  i" to � In the doorway� the process chooses a number that is greater than the

numbers that it sees that other processes have already chosen� While it does this� it sets

choosing  i" to �� to let the other processes know that it is currently choosing a number� Note

�The algorithm works also under a weaker model� called safe registers� in which the registers have much

less predictable behavior in the presence of concurrent accesses� We discuss this model later in the course�
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Shared variables�

� choosing � an array indexed by  ���n" of integers from f��g� initially all � where

choosing i" is written by pi and read by all

� number � an array indexed by  ���n" of integers from f���� � �g� initially all � where

number i" is written by pi and read by all

Code for pi

$$ beginning of doorway $$
try i
L��

choosing i" � �

number i" � � � maxfnumber �"� � � � �number n"g
choosing i" � 

$$ end of doorway $$

$$ beginning of bakery$$

for j � f�� � � � � ng do
L��

if choosing j" � � then goto L�

end if

L��

if number j" ��  and �number j"� j� � �number i"� i� then goto L�

end if

end for

crit i

$$ critical region$$

$$ end of bakery $$

exit i
number i" � 

remi

$$Remainder region$$

Figure ����� Lamport�s bakery mutual exclusion Algorithm
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that it is possible for two processes to be in the doorway concurrently� and thus two processes

may obtain the same number� To overcome this problem� the comparison is done between

�number � index � pairs lexicographically� and thus ties are broken in favor of the process with

the smaller index �this is really an arbitrary rule� but it is commonly used�� In the rest of

the trying region� the process waits for its �number � index � pair to be the lowest� and is also

waiting for any processes that are choosing�

The algorithm resembles the operation of a bakery� customers enter the doorway� where

they choose a number� then exit the doorway and wait in the store until their number is the

smallest�

������ Analysis

Basic Properties

Let D denote the doorway	 T �D is then the rest of the trying region� We �rst argue that

the algorithm does not violate the mutual exclusion property�

Claim � In any reachable state of the algorithm� if pi � C and for some j �� i we have

pj � �T �D� � C� then �number  i"� i� � �number  j"� j��

We give here an operational proof� since it can be extended more easily to the safe register

case later�

Proof� Process i had to read choosing  j" �  in L� before entering C� Thus� at the time of

that read� j was not in the �choosing region� �i�e�� in the doorway after setting choosing  j"

to ��� But since j is in �T �D� � C� j must have gone through the doorway at some point�

There are two cases to consider�

Case 	� j entered the choosing region after process i read that choosing  j" � � Then i�s

number was chosen before j started choosing� ensuring that j saw number  i" when it chose�

Therefore� when i is in C� we have number  j" � number  i"� which su�ces�

Case 
� j left the choosing region before i�s read� Then when i reaches L� and reads j�s

number� it gets the most recent value number  j"� Since i decided to enter C anyhow� it must

be that �number  i"� i� � �number  j"� j��

Corollary � The bakery algorithm satis�es mutual exclusion�

Proof� Suppose that two processes� i and j� are both in C� Then by Claim �� we must have

both �number  i"� i� � �number  j"� j� and �number  j"� j� � �number  i"� i�� a contradiction�

�Here� we are using the processes indices in much the same way as we previously used the UID�s� If

the processes did not know their indices� but had UID�s� we could use those here instead� This observation

holds also for Dijkstra�s algorithm� but not for Peterson�s� since there� the indices distinguish the roles the

processes play�
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Theorem � The algorithm satis�es deadlock�freedom�

Proof� Again� we argue by contradiction� Suppose that deadlock occurs� then eventually

a point is reached� after which a �xed set of processes are in T � and no new region changes

occur� Also� by the code� eventually all of the processes in T get out of the doorway and

into T �D� At this time point� the process with the lowest �number � index � is not blocked�

Theorem 
 The algorithm satis�es lockout�freedom�

Proof� Consider a particular process i � T � It eventually exits the doorway� Thereafter�

any new process that enters the doorway sees i�s number� and hence chooses a higher number�

Thus� if i doesn�t reach C� none of these new processes can reach C either� since they all see

that i has a smaller number� and by the code� they must wait �behind� i� But by Theorem

�� processes in T must continue to go to C� which means that i eventually goes�

Time Analysis

In this section we show that any process enters C at most O�n�� time units after it starts

executing T � We start by showing that the algorithm has bounded bypass after the doorway�

Lemma � The total number of times a processor pi enters the bakery while some processor

pj is continuously in the bakery is no more than 
�

Proof� It su�ces to show that any processor may exit the bakery at most once while pj is

in the bakery� While j is in the bakery� number �j� is unchanged� Hence� if a process i exits

the bakery� then when it enters the doorway again� number�i� will be assigned a number

strictly more than number �i�� and pi will not be able to proceed from L� from some state in

the fragment until pj exits C�

We now analyze the the time for an individual process to enter C� Consider an execution

fragment such that in the �rst state� some process pt is in L�� and in the last state pt is in

C� Our goal is to bound the time of any such execution fragment� Denote by Td�i� the time

a processor pi spends in the doorway� and by Tb�i� the time pi spends in the bakery �we

consider only the fragment in question�� We shall bound Td�t� � Tb�t�� We �rst bound the

time spent in the doorway�

Lemma 	 For any processor pi� Td�i� � O�sn��

Proof� The doorway consists of n reads and � writes�

By the above lemma� after O�sn� time� the process pt reaches the bakery� We now consider

only the su�x of the fragment� in which pt is in the bakery� Consider the if statements� They

can be described as �busy waiting� until some predicate holds� We call a test successful if

the next step is not another execution of the test �speci�cally� if the predicate in L� and L�
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was false�� The following lemma bounds the number of successful tests in the fragment we

consider�

Lemma � The total number of successful tests in the fragment is no more than O�n���

Proof� In all the Trying Region every processor makesO�n� successful tests� and by Lemma

�� any processor passes the Trying Region no more than twice�

We can now bound the total time of the fragment�

Theorem � The total time of the execution fragment in question is no more than Td�t� �

Tb�t� � O�sn�� � O�cn��

Proof� We know that in all states during the execution fragment� some processor can make

progress �or otherwise the liveness property is contradicted�� But this implies that either

some process is making progress in the doorway� or that some process makes a successful

comparison� or that some process makes progress in the C� The total amount of time in the

fragment during which some processor in the C is O�cn�� since by Lemma �� any processor

enters the C at most once� Also� the total amount of time in the fragment during which

any processor is in the doorway is O�sn��� by Lemmas � and �� Taking into account the

�successful test� steps from Lemma � we can conclude that

Tb�t� � O�sn�� � O�sn�� � O�cn� � O�sn�� � O�cn� �

The result is obtained when combining the above bound with Lemma ��

Additional Properties

The algorithm has some other desirable properties� For example� we have FIFO after a

doorway� This stronger fairness property says that if i �nishes the doorway before j enters

T � then i must precede j in entering C� This is an almost�FIFO property� it is not actually

FIFO based on time of entry to T � or even time of �rst non�input step in T �i could set its

choosing variable to �� then delay while others choose� so all the others could beat it��

It isn�t very useful to say �as a feature� that an algorithm is FIFO after a doorway�

since so far there are no constraints on where the doorway begins� We might even place the

doorway right at the entrance to C� But the doorway in this algorithm has a nice property�

it�s wait�free� which means that a process is guaranteed eventually to complete it� if that

process continues to take steps� regardless of what the other processes do �continue taking

steps or stop� in any combination� any speed��

The bakery algorithm has also some limited amount of fault�tolerance� Consider faults

in which a user can �abort� an execution at any time when it is not in R� by sending an

abort i input to its process� Process i handles this by setting its variables� local and shared�

back to initial values� A lag is allowed in resetting the shared variables� We can see that
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mutual exclusion is still preserved� Moreover� we still have some kind of deadlock�freedom�

suppose that at some point some process is in T and does not fail �abort�� and that there

are only �nitely many total failures� and that C is empty� Then the algorithm guarantees

that eventually some process enters C �even if all other processes fail��

���� The Number of Registers for Mutual Exclusion

We have seen several algorithms using read�write shared memory� for mutual exclusion� with

deadlock�freedom� and also various fairness properties� The question arises as to whether

the problem can be solved with fewer than n read�write variables�

If the variables are constrained to be single�writer� then the following lemma implies that

at least n variables are needed�

Claim � Suppose that an algorithm A solves mutual exclusion with deadlock�freedom for

n � � processes� using only read�write shared variables� Suppose that s is a reachable state

of A in which all processes are in the remainder region� Then any process i can go critical

on its own starting from s� and along the way� i must write some shared variable�

Proof� Deadlock�freedom implies that i can go critical on its own from s� Suppose that

it does not write any shared variable� Then consider any other process i�	 deadlock�freedom

also implies that i� can go critical on its own� starting from s� Now consider a third execution�

in which process i �rst behaves as it does in its solo execution� eventually entering C without

writing any shared variable� Since process i does not write any shared variable� the resulting

state s� �looks like� state s to process i�� �Here� we say that two states look alike to some

process if the state of that process and the values of all shared variables are the same in the

two states�� Therefore� i� is also able to go critical on its own starting from s�� This violates

the mutual exclusion requirement�

Claim � directly implies that if only single�writer registers are available� then the algo�

rithm must use at least n of them� But note that we have not even beaten this bound when

we used multi�writer variables� In this section we prove that this is not an accident� In fact�

we have the following lower bound�

Theorem �� If algorithm A solves mutual exclusion with deadlock�freedom for n � � pro�

cesses� using only read�write variables� then A must use at least n shared variables�

Note that this result holds regardless of the size of the shared variables� they can be as

small as a single bit� or even unbounded in size� Also note that no fairness assumption is

needed	 deadlock�freedom is su�cient to get the impossibility result�

To get some intuition� we start with two simple cases� We �rst consider the case of one

variable and two processes	 then we consider the case for two variables and three processes�
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and �nally we shall extend the ideas to the general case�

We shall use the following de�nition extensively�

De�nition � Suppose that at some global state s� the action enabled in some process p is

writing to a variable v �that is� the next time p takes a step� it writes to v�� In this case we

say that p covers v�

������ Two Processes and One Variable

Suppose that the system consists of two processes p� and p�� and only � variable� We

construct a run that violates mutual exclusion for this system� Claim � implies that there

is a solo run of p� that causes it to enter C� and to write the single shared variable v before

doing so� So now run p� just until the �rst time it is about to write to v� i�e�� until the �rst

time it covers v� We then run p� until it goes to C �since p� hasn�t written anything yet�

for p� the situation is indistinguishable from the state in which p� is in R� and hence p� will

behave as it does running solo�� Then let p� continue running� Now� the �rst thing p� does

is to write v� thereby overwriting anything that p� wrote and so eliminating all traces of p��s

execution� Thus� p� will run as if alone� and also go to C� contradicting the mutual exclusion

requirement�

������ Three processes and Two Variables

Now suppose that we have three processes p�� p�� p� and two variables v�� v�� Again� we shall

construct a run that violates mutual exclusion� using the following strategy� Starting from

an initial state� we will maneuver p� and p� alone so that each is covering a di�erent variable	

moreover� the resulting state� s� is indistinguishable to p� from another reachable state� s��

in which all three processes are in R� Then we run p� from s� and it must eventually go

to C� since it can�t tell that anyone else is there� Then we let p� and p� each take a step�

Since they are covering the two variables� the �rst thing they do is to overwrite all traces of

p��s execution� and so they will run as if they are alone� and by deadlock�freedom� one will

eventually go to C� yielding the desired violation of mutual exclusion�

It remains to show how we maneuver p� and p� to cover the two shared variables� We do

this as follows �see Figure ������

First� we run p� alone until it covers a shared variable for the �rst time� Call this point

t�� Then� we run p� alone until it enters C� then continues to E� R� back to T � and again

covers some variable for the �rst time� Call this point t�� We repeat this procedure to obtain

a third point t�� Notice that two of the three points t�� t� an t� must involve covering the
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t1 t2 t3

Critical Region

Remainder Region

Figure ����� solo run of p�� It covers a variable at each of t�� t�� and t�� and hence it covers the

same variable twice�

same variable �see Figure ������ Without loss of generality� suppose that in t� and t� p�

covers v� �the same argument holds for all the other cases��

Now consider the following execution� Run p� until point t�� Then let p� enter and run

alone� We claim that eventually p� enters C� since the state looks to p� as if it is in the solo

execution� Moreover� we claim that along the way p� must write the other variable� call it

v�� For otherwise� p� could go to C� then p� could immediately write v� and thus overwrite

all traces of p�� then go on and violate mutual exclusion�

Remainder Region

p1 p2

p1 covers v1 p2 covers v2 p1 covers v1p1 overwrites
v1

p1

Figure ����� Execution for � variables� By the end of this fragment� p� and p� cover both shared

variables� and the state is indistinguishable from the state in which p� and p� are in their last

remainder state�

So now we construct the required execution as follows �see Figure ������ Run p� until

point t�� when it covers v�� Then run p� until it �rst covers v�� Note that we are not done

yet� because p� could have written v� since last leaving R� But now� we can resume p� until

point t�� The �rst thing it does is write v�� thereby overwriting anything p� wrote� Then p�

and p� cover variables v� and v�� respectively� Moreover� by stopping p� and p� back in their

most recent remainder regions� the shared memory and state of p� would still be the same�

This completes the construction of the execution in which p� and p� cover the two shared
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variables� in a state that is indistinguishable for p� from the state in which both are in R�

By the argument above� we conclude that in this case� mutual exclusion can be violated�

������ The General Case

The proof for the general case extends the examples above with an inductive argument� We

call a state a global remainder state if all processes are in R in that state� We call a state

k�reachable from another if it is reachable using steps of processes p�� � � � � pk only�

We start with two preliminary lemmas�

Lemma �� Suppose A solves mutual exclusion with deadlock�freedom for n � � processes�

using only read�write variables� Let s and s� be reachable states of A� that are indistinguish�

able to pi� and suppose that s� is a global remainder state� Then pi can go� on its own� from

s to its critical region�

Proof� Process pi can do so in s�� by deadlock�freedom� Since s looks like s� to pi� it can

behave in the same way from s�

Lemma �� Suppose A solves mutual exclusion with deadlock�freedom for n � � processes�

using only read�write variables� Let s be a reachable state of A� Suppose that i goes from R

to C on its own starting from s� Then along the way� i must write to some variable that is

not covered in s�

Proof� If not� then after pi enters� can resume the others� who overwrite and hide it�

Using the above easy properties� we shall prove the following main lemma�

Lemma �� Let A be an n process algorithm solving mutual exclusion with deadlock�freedom�

using only read�write variables� Let s� be any reachable global remainder state� Suppose

� � k � n� Then there are two states s and s�� each k�reachable from s�� such that the

following properties hold�

	� k distinct variables are covered by p�� � � � � pk in s�


� s� is a global remainder state�

�� s looks like s� to pk��� � � � � pn�

Notice that applying this lemma for k � n yields the theorem�

Proof� By induction on k�

Base case� For k � �� we have the �rst example above� To get s� just run p� till it covers

a variable� In this case� we de�ne s� � s��

Inductive step� suppose the lemma holds for k	 we prove it holds for k � � � n� Starting

from s�� by induction� we run p�� � � � � pk until they reach a point where they cover k distinct
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variables� yet the state looks to pk��� � � � � pn like some global remainder state that is k�

reachable from s�� Then� we let p�� � � � � pk write in turn� overwriting the k variables� and

then let them progress to C� E� R� calling the resulting state s�� We apply the inductive

hypothesis again to reach another covering state s� that looks like a global remainder state

k�reachable from s�� We repeat this procedure
�
n
k

�
� � times� Now� by the Pigeonhole

Principle� among the
�
n
k

�
� � covering states that have been obtained� there must be two

that cover the same set of variables� Let t� be the �rst of these points in the execution� t�

the second� Let s� and s�� be the covering and global remainder states corresponding to t��

and likewise s� and s�� for t��

Consider running pk�� alone from t�� Since the state at t� looks to pk�� like a reachable

global remainder state� Lemma �� implies that pk�� will eventually enter C� Along the way�

by Lemma ��� it must write to some variable not in V �

Now we construct the needed execution to prove the lemma as follows �see Figure ������

First� run p�� � � � � pk until t�	 then let pk�� take steps until it �rst covers a variable not in V �

Next� let p�� � � � � pk resume and go to t��

t1 t’ t2

Critical Region

Remainder Region

1,...,k k+1 1,...,k

Figure ����� construction for the general case� In t�� processes p� � � � pk cover k variables of V � In

t�� pk�� covers some variable not in V � In t�� V and that variable are covered�

Call the resulting state s	 this is the s that is required in the statement of the lemma�

�This state s is the same as s�� with the state of pk�� changed to what it is when it stops��

Let s� � s���

We now show that the required properties hold� First� note that the entire construction

�including the uses of the inductive hypothesis�� only involves running p�� � � � � pk��� so both

s and s� are k � ��reachable from s�� Also� directly from the construction� we have k � �

variables covered in s� the k variables in V � and a new one covered by pk��� By inductive

hypothesis� s�� � s� is a global remainder state�

It remains only to show that s and s� look alike to pk��� � � � � pn� But this follows from the

facts that s� and s�� look alike to pk��� � � � � pn� and that s� and s look alike to all processes
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except pk���
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���� Consensus Using Read�Write Shared Memory

In this section� we focus on the consensus problem in the shared memory setting� We shall

work from papers by Herlihy	 Loui� Abu�Amara	 and Fischer� Lynch� Paterson� We �rst

de�ne the problem in this context� The architecture is the same architecture we considered

in the previous lectures� namely� read�write shared variables �allowing multi�reader� multi�

writer variables�� Here� we assume that the external interface consists of input action init i�v��

where v is the input value� and output action decide i�v�� where v is the decision value� Just

to keep consistent with the invocation�response style we are using for mutual exclusion and

atomic objects� we assume that the initial values arrive from the outside in input actions�

interface
line

process

shared
memory
cell

Figure ����� shared memory system

We require the following properties from any execution� fair or not�

Agreement� All decision values are identical�

���



Validity� If all processes start with the same value v� then v is the only possible decision�

In addition� we need some kind of termination condition� The simplest would be the follow�

ing�

Termination� If init events occur at all nodes and the execution is fair� then all processes

eventually decide�

This condition �which applies only when there are no faults�� has simple solutions� even

though there is asynchrony� So it is only interesting to consider the faulty case� In the

following requirement� we give the formulation of the requirement for stopping faults�

Termination� Suppose init events occur at all processes� and let i be any process� If i does

not fail �i�e�� the execution is fair to i� then eventually a decide i event occurs�

We remark that this condition is similar to wait�freedom�

������ Impossibility for Arbitrary Stopping Faults

Our �rst result in this section is the following�

Theorem � There is no algorithm for consensus that tolerates stopping faults�

Proof� Assume that A is a solution� Suppose for simplicity that the values in A are chosen

from f� �g� Without loss of generality� we can assume that the state�transition relation of

A is �process�deterministic�� i�e�� from any global state� if a process i is enabled to take a

non�input step� then there is a unique new global state that can result from its doing so�

Also� for any global state and any input� there is a unique resulting global state� This does

not restrict the generality since we could just prune out some of the transitions	 the problem

still has to be solved in the pruned algorithm�

We can further restrict attention to input��rst executions of A� in which inputs arrive

everywhere before anything else happens� in order of process index� That is� they have

a pre�x of the form init ��v��� init��v��� � � � initn�vn�� This is just a subset of the allowed

executions� Now consider any �nite input��rst execution � of A� We say that � is �valent

if the only value v that ever appears in a decide�v� event in � or any continuation of � is 	

analogously� we say that � is ��valent if the only such value v is �� We say that � is univalent

if it is either �valent or ��valent� and bivalent if both values appear in some extensions�

Note that this classi�cation is exhaustive� because any such � can be extended to a fair

�i�e�� failure�free� execution of A� in which everyone is required to eventually decide�

De�ne an initial execution of A to be an input��rst execution of length exactly n� That

is� it consists of exactly n init i actions� one for each i �in order of process index��
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Lemma � There exists an initial execution of A that is bivalent�

Proof� If not� then all initial executions are univalent� Note that the one in which all start

with  is �valent� and analogously for �� Now consider changing one  at a time to a ��

This creates a chain of initial executions� where any two consecutive initial executions in this

chain only di�er in one process� input� Since every initial execution in the chain is univalent�

by assumption� there must be two consecutive initial executions� � and ��� such that � is

�valent and �� is ��valent� Without loss of generality� suppose that � and �� only di�er

in the initial value of process i� Now consider any extension of � in which i fails right at

the beginning� and never takes a step� The rest of the processes must eventually decide� by

the termination condition� Since � is �valent� this decision must be � Now run the same

extension after ��� still having i fail at the beginning� Since i fails at the beginning� and �

and �� are the same except for process i� the other processes will behave in the same way�

and decide  in this case as well� But that contradicts the assumption that �� is ��valent�

Remark� Note� for later reference� that this lemma still holds for a more constrained

assumption about A� that it experiences at most a single fault� Technically� the lemma

holds under the same conditions as above� with the additional constraint in the termination

condition that there is at most one failure�

Next� we de�ne a decider to be an input��rst execution that is bivalent� but any one�step

extension of it is univalent� We have the following lemma�

Lemma � A has a decider�

Proof� Suppose not� Then any bivalent input��rst execution has a bivalent one�step ex�

tension� Then starting with a bivalent initial execution �as guaranteed by Lemma ��� we will

produce an in�nite �input��rst� execution all of whose pre�xes are bivalent� The construction

is extremely simple � at each stage� we start with a bivalent initial execution� and we extend

it by one step to another bivalent con�guration� Since any bivalent input��rst execution has

a bivalent one�step extension� we know we can do this� But this is a contradiction because

some process does not fail in this execution� so a decision is supposed to be reached by that

process�

Remark� Note that this lemma does require the full resiliency� assuming resiliency to a

single fault is not su�cient to guarantee the existence of a decider�

Now we can complete the proof of the theorem as follows� De�ne extension ��� i� to be

the execution obtained by extending execution � by a single step of i� By Lemma �� we

obtain a decider ��

Suppose that pi�s step leads to a �valent execution� and pj �s step leads to a ��valent

execution �see Figure ������ That is� extension ��� i� is �valent and extension ��� j� is ��

valent� Clearly� i �� j� �Note that by �process determinism� assumption� each process can
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α
i j

0−valent 1−valent

Figure ����� � is a decider� If i takes a step� then the resulting con�guration is ��valent� and if j

takes a step� the resulting con�guration is ��valent�

only lead to a unique extension of ���

We now proceed by case analysis� and get a contradiction for each possibility�

i
α

j

decide 1

β
j

decide 1

β

Figure ����� The extension � does not include steps of i� and therefore must result in decision

value � in both cases�

Case 	� pi�s step is a read step� Consider extending extension ��� j� in such a way that all

processes except for pi continue to take steps� Eventually� they must decide �� Now take the

same extension� beginning with the step of pj� and run it after extension ��� i� �see Figure

������ Since pi�s step is just a read� it does not leave any trace that would cause the other

processes to behave any di�erently� So in this case also� they all decide � contradicting the

assumption that extension��� i� is �valent�

Case 
� pj �s step is a read step� This case is symmetric to case �� and the same argument

applies�

Case �� pi�s and pj�s steps are both writes� We distinguish between the following sub�

cases�

Case �a� pi and pj write to di�erent variables� In this case� the result of running either

pi and then pj � or pj and then pi� after �� is exactly the same global state �see Figure ������
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Figure ����� If i and j write to di�erent variables� then applying j after i results in the same

con�guration as in applying i after j�

But then we have a common global state that can follow either a �valent or a ��valent

execution� If we run all the processes from this state� they must reach a decision� but either

decision will yield a contradiction� For instance� if a decision of  is reached� we have a

decision of  in an execution extending a ��valent pre�x�

Case �b� They are writes to the same variable� As in Figure ����� we can run all but pi

until they decide �� On the other hand� we can apply that extension also after extension��� i�

and obtain the same decision� because the very �rst step of the extension will overwrite the

value written by pi� and reach decision value � from a �valent state� a contradiction as in

Case ��

In summary� we have contradictions in all possible cases� and thus we conclude that no

such algorithm A can exist�

������ Impossibility for a Single Stopping Fault

We can strengthen Theorem � to show impossibility of even ��resilient consensus algorithm�

The stronger version is due to Loui� Abu�Amara� following the Fischer� Lynch� Paterson

proof for message�passing systems�

Theorem 
 There is no algorithm that solves consensus under the conditions above in the

presence of a single stopping fault�

Proof� As noted above� Lemma � holds also for the case of one stopping fault� and hence

we are still guaranteed that there exists a bivalent initial execution� However� our proof will

now proceed using a di�erent argument� Speci�cally� we now show the following lemma�

Lemma � For every bivalent input��rst execution �� and every process i� there is an exten�

sion �� of � such that extension���� i� is bivalent�

Before we turn to prove the lemma� we show how it implies the theorem� Lemma � allows us

to construct the following bad execution� in which no one fails� and yet no one ever decides�

We start with the given initial bivalent execution� and repeatedly extend it� including at

least one step of process � in the �rst extension� then at least one step of � in the second
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extension� etc�� in round�robin order� while keeping all pre�xes bivalent� The key step is

the extension for any particular process� but that is done by applying the lemma� In the

resulting execution� each process takes many steps� yet no process ever reaches a decision�

So it remains only to prove the lemma�

Proof� �of Lemma ��

By contradiction� suppose the lemma is false� Let us say what this means� we assume that

there exist some bivalent input��rst execution � and some process i� such that for every ex�

tension �� of �� extension ���� i� is univalent� This� in particular� implies that extension��� i�

is univalent	 suppose without loss of generality that it is �valent� Since � is bivalent� there

is some extension ��� of � leading to a decision of �� Now� we must have extension ����� i�

��valent� Consider applying i at all points along the path from � to ���� At the beginning�

we get �valence� and at the end� ��valence� At each intermediate step� we have univalence�

Therefore� it must be that there are two consecutive steps at which i is applied� in the �rst

of which it yields a �valent extension and in the second a ��valent extension� See Figure

�����

α

i

0−valent

1−valent

i

j

Figure ����� whenever we extend � with i� we get a ��valent con�guration�

Suppose that j is the process that takes the intervening step� We claim j �� i� This

is true because if j � i� we have one step of i leading to �valence while two steps lead to

��valence� contradicting the process�determinism� So we must have somewhere the con�gu�

ration depicted in Figure �����

We again proceed by case analysis� and obtain a contradiction for each case�

Case 	� i�s step is a read� In this case� after ji and ij� the values in all shared variables

and the states of all processes other than i� are identical� So from either of these states� run

all processes except i� and they will have to decide� But one of these positions is �valent

and the other ��valent� so we get a contradiction for any decision value�

Case 
� j�s step is a read� This case is similar to Case �� After i and ji� the values of

all shared variables and the states of all processes other than j are identical� and therefore�
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Figure ����� the point in the execution which we analyze by cases�

when we let all processes except j run from both states� we obtain the same contradiction

as above�

Case �� Both steps are writes�

Case �a� The writes are to di�erent variables� In this case we get a commutative scenario

depicted in Figure ����� which immediately implies a contradiction�

α
j

decide 1

decide 0

β

i

β

i

decide 0

Figure ����� case �b� Process j does not take steps in ��

Case �b� The writes are to the same variable� In this case� in a ji extension� the i step

overwrites the j step �see Figure ������ Thus� after i and ji� the values of all shared variables

and the states of all processes other than j are identical� and we obtain a contradiction as

before�

This completes the proof of Theorem ��
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���� Modeling andModularity for Shared Memory Sys�

tems

In this section we go back to considering the idea of atomic objects� and show how they might

be used to describe modular system designs� An atomic object is a concurrent �version� of a

corresponding serial speci�cation� We want to prove a theorem that says� roughly speaking�

that any algorithm written for the �instantaneous access� model we have already been using

can also run correctly in a variant of the model where all the shared variables are replaced

by corresponding atomic objects� This would allow us to decompose the task of solving a

problem into the task of solving it� assuming some kind of instantaneous access memory�

then separately implement atomic objects of the corresponding kind� This could be done

in a series of stages� if the problem being solved is itself that of building a �more powerful�

atomic object�

To make all of this precise� we should be a little more formal about the model we are

using�

Recall the model we have been assuming � state machines with input� output� local

computation and shared memory actions� where the latter have transitions of the form

��s�m�� �� �s��m���� So far� all accesses to shared memory have been by instantaneous

actions�

Now we would like to de�ne a slightly di�erent version of the model� where instead

of sharing memory with instantaneous actions� the processes communicate with separate

objects� The communication is no longer instantaneous� but involves separate invocations

and responses� We must say what kind of fairness we want here too�

It is helpful at this point to introduce a very general� simple and precise formal model

for asynchronous concurrent systems� I�O Automata� This model is useful as a general

foundation for the various kinds of asynchronous systems we will be studying� By adding

particular extra structure� it can be used to describe the �instantaneous access� shared mem�

ory systems we have been studying� It is also very natural for describing non�instantaneous

access shared memory systems� as well as message�passing systems� data
ow systems� etc�

Virtually� just about any asynchronous model�

������ The Basic Input�Output Automaton Model

In this section we give the basic de�nitions for the I�O Automaton model for asynchronous

concurrent computation� For the moment� these de�nitions do not include any notion of

fairness� In the subsequent sections� we de�ne composition of I�O automata and show that

it has the nice properties that it should� Then we introduce the notion of fairness and show
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how it interacts with the composition notions� We then describe some useful conventions

for stating problems to be solved by I�O automata� in terms of their external behavior�

and describe what it means for an I�O automaton to solve a problem� Finally� we describe

two important proof techniques for verifying systems described as I�O automata � based on

modular decomposition and on hierarchical decomposition� These notes are adapted from

the Lynch� Tuttle CWI paper�

Actions and Action Signatures

We assume a universal set of actions� Sequences of actions are used in this world� for

describing the behavior of modules in concurrent systems� Since the same action may occur

several times in a sequence� it is convenient to distinguish the di�erent occurrences� We refer

to a particular occurrence of an action in a sequence as an event�

The actions of each automaton are classi�ed as either &input�� &output�� or &internal�� The

distinctions are that input actions are not under the automaton�s control� output actions are

under the automaton�s control and externally observable� and internal actions are under the

automaton�s control but not externally observable� In order to describe this classi�cation�

each automaton comes equipped with an &action signature��

An action signature S is an ordered triple consisting of three disjoint sets of actions� We

write in�S�� out�S� and int�S� for the three components of S� and refer to the actions in the

three sets as the input actions� output actions and internal actions of S� respectively� We let

ext �S� �� �S� � out�S� and refer to the actions in ext�S� as the external actions of S� Also�

we let local�S� � out�S�� int�S�� and refer to the actions in local�S� as the locally�controlled

actions of S� Finally� we let acts�S� �� S � out�S� � int�S�� and refer to the actions in

acts�S� as the actions of S� An external action signature is an action signature consisting

entirely of external actions� that is� having no internal actions� If S is an action signature�

then the external action signature of S is the action signature extsig�S� � �� S� out�S�� ���

i�e�� the action signature that is obtained from S by removing the internal actions�

Input�Output Automata

Now we are ready to de�ne the basic component of our model� An input�output automaton

A �also called an I�O automaton or simply an automaton� consists of �ve components�

� an action signature sig�A��

� a set states�A� of states�

� a nonempty set start�A� � states�A� of start states�
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� a transition relation trans���A� � states�A�� acts�sig�A��� states�A�� with the prop�

erty that for every state s and input action � there is a transition �s� �� s�� in trans���A��

and

� an equivalence relation part�A� on local�sig�A��� having at most countably many equiv�

alence classes�

We refer to an element �s� �� s�� of trans�A� as a transition� or step of A� The transition

�s� �� s�� is called an input transition of A if � is an input action� Output transitions� internal

transitions� external transitions and locally�controlled transitions are de�ned analogously� If

�s� �� s�� is a transition of A� then � is said to be enabled in s� Since every input action is

enabled in every state� automata are said to be input�enabled� The input�enabling property

means that the automaton is not able to block input actions� The partition part�A� is

what was described in the introduction as an abstract description of the &components� of the

automaton� We shall use it to de�ne fairness later�

An execution fragment of A is a �nite sequence s�����s����������n�sn or an in�nite sequence

s�����s����������n�sn���� of alternating states and actions of A such that �si��i���si��� is a

transition of A for every i� An execution fragment beginning with a start state is called an

execution� We denote the set of executions of A by execs �A�� and the set of �nite executions

of A by it �nexecs�A�� A state is said to be reachable in A if it is the �nal state of a �nite

execution of A�

The schedule of an execution fragment � of A is the subsequence of � consisting of

actions� and is denoted by sched���� We say that � is a schedule of A if � is the schedule of

an execution of A� We denote the set of schedules of A by scheds�A� and the set of �nite

schedules of A by �nscheds�A�� The behavior of an execution or schedule � of A is the

subsequence of � consisting of external actions� and is denoted by beh���� We say that � is

a behavior of A if � is the behavior of an execution of A� We denote the set of behaviors of

A by behs�A� and the set of �nite behaviors of A by �nbehs�A��

Composition

For motivation� consider the composition of user automata and a shared memory system

automaton�

Generally speaking� we can construct an automaton modeling a complex system by com�

posing automata modeling the simpler system components� The essence of this composition

is quite simple� when we compose a collection of automata� we identify an output action �

of one automaton with the input action � of each automaton having � as an input action�

Consequently� when one automaton having � as an output action performs � � all automata
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having � as an input action perform � simultaneously �automata not having � as an action

do nothing��

We impose certain restrictions on the composition of automata� Since internal actions

of an automaton A are intended to be unobservable by any other automaton B� we cannot

allow A to be composed with B unless the internal actions of A are disjoint from the actions

of B� since otherwise one of A�s internal actions could force B to take a step� Furthermore�

in keeping with our philosophy that at most one system component controls the performance

of any given action� we cannot allow A and B to be composed unless the output actions of

A and B form disjoint sets� Finally� since we do not preclude the possibility of composing

a countable collection of automata� each action of a composition must be an action of only

�nitely many of the composition�s components� Note that with in�nite products we can

handle systems that can create processes dynamically�

Since the action signature of a composition �the composition�s interface with its environ�

ment� is determined uniquely by the action signatures of its components� it is convenient

to de�ne a composition of action signatures before de�ning the composition of automata�

The preceding discussion motivates the following de�nition� A countable collection Sii�I of

action signatures is said to be strongly compatible if for all i� j � I satisfying i �� j we have

�� out�Si� � out�Sj� � ��

�� int�Si� � acts�Sj� � �� and

�� no action is contained in in�nitely many sets acts�Si��

We say that a collection of automata are strongly compatible if their action signatures are

strongly compatible�

When we compose a collection of automata� internal actions of the components become

internal actions of the composition� output actions become output actions� and all other

actions �each of which can only an input action of a component� become input actions�

As motivation for this decision� consider one automaton A having � as an output action

and two automata B� and B� having � as an input action� Notice that � is essentially a

broadcast from A to B� and B� in the composition A �B� �B� of the three automata� Notice�

however� that if we hide communication� then the composition �A � B�� � B� would not be

the same as the composition A � B� � B� since � would be made internal to A � B� before

composing with B�� and hence � would no longer be a broadcast to both B� and B�� This

is problematic if we want to reason about the system A �B� � B� in a modular way by �rst

reasoning about A �B� and then reasoning about A �B� �B�� We will de�ne another operation

to hide such communication actions explicitly�
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The preceding discussion motivates the following de�nitions� The composition S �Q
i�I Si of a countable collection of strongly compatible action signatures fSigi�I is de�ned

to be the action signature with

� in�S� � �i�I in�Si�� �i�Iout�Si��

� out�S� � �i�Iout�Si�� and

� int�S� � �i�Iint �Si��

Illustration� users and shared memory system automaton� List the various actions� show

signatures are compatible�

The composition A �
Q

i�I Ai of a countable collection of strongly compatible automata

fAigi�I is the automaton de�ned as follows�


� sig�A� �
Q

i�I sig�Ai��

� states�A� �
Q

i�I states�Ai��

� start�A� �
Q

i�I start�Ai��

� trans�A� is the set of triples ��s�� �� �s�� such that� for all i � I� if � � acts�Ai� then

��s� i"� �� �s� i"� � trans�Ai�� and if � �� acts�Ai� then �s� i" � �s� i"� and

� part�A� � �i�Ipart�Ai��

When I is the �nite set �� ���� n� we often denote
Q

i�I Ai by A� � � � � �An�

Notice that since the automata Ai are input�enabled� so is their composition� The par�

tition of the composition�s locally�controlled actions is formed by taking the union of the

components� partitions �that is� each equivalence class of each component becomes an equiv�

alence class of the composition��

Three basic results relate the executions� schedules� and behaviors of a composition to

those of the composition�s components� The �rst says� for example� that an execution of

a composition induces executions of the component automata� Given an execution � �

�s����s� � � � of A� let �jAi be the sequence obtained by deleting �j �sj when �j is not an action

of Ai and replacing the remaining �sj by �sj i"�

Proposition 	 Let fAigi�I be a strongly compatible collection of automata and let A �Q
i�I Ai� If � � execs�A� then �jAi � execs �Ai� for every i � I� Moreover� the same result

holds if execs is replaced by it �nexecs � scheds� �nscheds� behs� or �nbehs�

	Here start
A� and states
A� are de�ned in terms of the ordinary Cartesian product� while sig
A� is

de�ned in terms of the composition of actions signatures just de�ned� Also� we use the notation �si� to

denote the ith component of the state vector �s�
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Certain converses of the preceding proposition are also true� The following proposition

says that executions of component automata can often be pasted together to form an exe�

cution of the composition�

Proposition � Let fAigi�I be a strongly compatible collection of automata and let A �Q
i�I Ai� Suppose �i is an execution of Ai for every i � I� and suppose � is a sequence of

actions in acts�A� such that �jAi � sched��i� for every i � I� Then there is an execution �

of A such that � � sched��� and �i � �jAi for every i � I� Moreover� the same result holds

when acts and sched are replaced by ext and beh� respectively�

As a corollary� schedules and behaviors of component automata can also be pasted together

to form schedules and behaviors of the composition�

Proposition � Let fAigi�I be a strongly compatible collection of automata and let A �Q
i�I Ai� Let � be a sequence of actions in acts�A�� If �jAi � scheds�Ai� for every i � I�

then � � scheds�A�� Moreover� the same result holds when acts and scheds are replaced by

ext and behs� respectively�

As promised� we now de�ne an operation that &hides� actions of an automaton by con�

verting them to internal actions� This operation is useful for rede�ning what the external

actions of a composition are� We begin with a hiding operation for action signatures� if

S is an action signature and ' � acts�S�� then hide�S � S� where in�S�� � in�S� � '�

out�S�� � out�S� � ' and int�S�� � int�S� � '� We now de�ne a hiding operation for au�

tomata� if A is an automaton and ' � acts�A�� then hide�A is the automaton A� obtained

from A by replacing sig�A� with sig�A�� � hide�sig�A��

Fairness

We are in general only interested in the executions of a composition in which all components

are treated fairly� While what it means for a component to be treated fairly may vary from

context to context� it seems that any reasonable de�nition should have the property that

in�nitely often the component is given the opportunity to perform one of its locally�controlled

actions� In this section we de�ne such a notion of fairness�

As we have mentioned� the partition of an automaton�s locally�controlled actions is in�

tended to capture some of the structure of the system the automaton is modeling� Each

class of actions is intended to represent the set of locally�controlled actions of some system

component�

The de�nition of automaton composition guarantees that an equivalence class of a compo�

nent automaton becomes an equivalence class of a composition� and hence that composition

retains the essential structure of the system�s primitive components�� In our model� therefore�


It might be argued that retaining this partition is a bad thing to do since it destroys some aspects of
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being fair to each component means being fair to each equivalence class of locally�controlled

actions� This motivates the following de�nition�

A fair execution of an automaton A is de�ned to be an execution � of A such that the

following conditions hold for each class C of part�A��

�� If � is �nite� then no action of C is enabled in the �nal state of ��

�� If � is in�nite� then either � contains in�nitely many events from C� or � contains

in�nitely many occurrences of states in which no action of C is enabled�

This says that a fair execution gives fair turns to each class C of part�A�� and therefore to

each component of the system being modeled� In�nitely often the automaton attempts to

perform an action from the class C� On each attempt� either an action of C is performed� or

no action from C can be performed since no action from C is enabled� For example� we may

view a �nite fair execution as an execution at the end of which the automaton repeatedly

cycles through the classes in round�robin order attempting to perform an action from each

class� but failing each time since no action is enabled from the �nal state�

We denote the set of fair executions of A by fairexecs�A�� We say that � is a fair schedule

of A if � is the schedule of a fair execution of A� and we denote the set of fair schedules

of A by fairscheds�A�� We say that � is a fair behavior of A if � is the behavior of a fair

execution of A� and we denote the set of fair behaviors of A by fairbehs�A��

We can prove the following analogues to Propositions ��� in the preceding section�

Proposition � Let fAigi�I be a strongly compatible collection of automata and let A �Q
i�I Ai� If � � fairexecs�A� then �jAi � fairexecs�Ai� for every i � I� Moreover� the same

result holds if fairexecs is replaced by fairscheds or fairbehs�

Proposition �� Let fAigi�I be a strongly compatible collection of automata and let A �Q
i�I Ai� Suppose �i is a fair execution of Ai for every i � I� and suppose � is a sequence of

actions in acts�A� such that �jAi � sched��i� for every i � I� Then there is a fair execution

� of A such that � � sched��� and �i � �jAi for every i � I� Moreover� the same result

holds when acts and sched are replaced by ext and beh� respectively�

Proposition �� Let fAigi�I be a strongly compatible collection of automata and let A �Q
i�I Ai� Let � be a sequence of actions in acts�A�� If �jAi � fairscheds�Ai� for every i � I�

then � � fairscheds�A�� Moreover� the same result holds when acts�� and fairscheds�� are

replaced by ext and fairbehs� respectively�

abstraction� Notice� however� that any reasonable de�nition of fairness must lead to some breakdown of

abstraction since being fair means being fair to the primitive components which must somehow be modeled�
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We state these results because analogous results often do not hold in other models� As we

will see in the following section� the fact that the fair behavior of a composition is uniquely

determined by the fair behavior of the components makes it possible to reason about the

fair behavior of a system in a modular way�
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���� I�O Automata �cont��

������ Problem Speci�cation

We want to say that a problem speci�cation is simply a set of allowable &behaviors�� and

that an automaton solves the speci�cation if each of its &behaviors� is contained in this

set� The automaton solves the problem in the sense that every &behavior� it exhibits is a

&behavior� allowed by the problem speci�cation �but notice that there is no single &behavior�

the automaton is required to exhibit�� The appropriate notion of &behavior� �e�g�� �nite

behavior� arbitrary behavior� fair behavior� etc�� used in such a de�nition depends to some

extent on the nature of the problem speci�cation� In addition to a set of allowable behaviors�

however� a problem speci�cation must specify the required interface between a solution and

its environment� That is� we want a problem speci�cation to be a set of behaviors together

with an action signature�

We therefore de�ne a schedule module H to consist of two components�

� an action signature sig�H�� and

� a set scheds�H� of schedules�

Each schedule in scheds�H� is a �nite or in�nite sequence of actions of H� We denote

by �nscheds�H� the set of �nite schedules of H� The behavior of a schedule � of H is

the subsequence of � consisting of external actions� and is denoted by beh���� We say

that � is a behavior of H if � is the behavior of a schedule of H� We denote the set of

behaviors of H by behs�H� and the set of �nite behaviors of H by �nbehs�H�� We extend

the de�nitions of fair schedules and fair behaviors to schedule modules in a trivial way� letting

fairscheds�H� � scheds�H� and fairbehs�H� � behs�H�� We will use the term module to

refer to either an automaton or a schedule module�

There are several natural schedule modules that we often wish to associate with an

automaton� They correspond to the automaton�s schedules� �nite schedules� fair sched�

ules� behaviors� �nite behaviors and fair behaviors� For each automaton A� let Scheds�A��
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Finscheds�A� and Fairscheds�A� be the schedule modules having action signature sig�A�

and having schedules scheds�A�� �nscheds�A� and fairscheds�A�� respectively� Also� for

each module M �either an automaton or schedule module�� let Behs�M�� Finbehs�M� and

Fairbehs�M� be the schedule modules having the external action signature extsig �M� and

having schedules behs�M�� �nbehs�M� and fairbehs�M�� respectively� �Here and elsewhere�

we follow the convention of denoting sets of schedules with lower case names and correspond�

ing schedule modules with corresponding upper case names��

It is convenient to de�ne two operations for schedule modules� Corresponding to our

composition operation for automata� we de�ne the composition of a countable collection

of strongly compatible schedule modules fHigi�I to be the schedule module H �
Q

i�I Hi

where�

� sig�H� �
Q

i�I sig�Hi��

� scheds�H� is the set of sequences � of actions of H such that �jHi is a schedule of Hi

for every i � I�

The following proposition shows how composition of schedule modules corresponds to com�

position of automata�

Proposition � Let fAigi�I be a strongly compatible collection of automata and let A �Q
i�I Ai� Then Scheds�A� �

Q
i�I Scheds�Ai�� Fairscheds�A� �

Q
i�I Fairscheds�Ai�� Behs�A� �Q

i�I Behs�Ai� and Fairbehs�A� �
Q

i�I Fairbehs�Ai��

Corresponding to our hiding operation for automata� we de�ne hide hide�H to be the sched�

ule module H � obtained from H by replacing sig�H� with sig�H �� � hide�sig�H��

Finally� we are ready to de�ne a problem speci�cation and what it means for an automa�

ton to satisfy a speci�cation� A problem is simply a schedule module P � An automaton A

solves�� a problem P if A and P have the same external action signature and fairbehs�A� �
fairbehs�P �� An automaton A implements a problem P if A and P have the same external

action signature �that is� the same external interface� and �nbehs�A� � �nbehs�P �� No�

tice that if A solves P � then A cannot be a trivial solution of P since the fact that A is

input�enabled ensures that fairbehs�A� contains a response by A to every possible sequence

of input actions� For analogous reasons� the same is true if A implements P �

Since we may want to carry out correctness proofs hierarchically in several stages� it is

convenient to state the de�nitions of &solves� and &implements� more generally� For example�

we may want to prove that one automaton solves a problem by showing that the automaton

&solves� another automaton� which in turn &solves� another automaton� and so on� until

some �nal automaton solves the original problem� Therefore� let M and M � be modules

��This concept is sometimes called satisfying�
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�either automata or schedule modules� with the same external action signature� We say that

M solves M � if fairbehs�M� � fairbehs�M �� and that M implements M � if �nbehs�M� �
�nbehs�M ���

As we have seen� there are many ways to argue that an automaton A solves a problem

P � We now turn our attention to two more general techniques�

������ Proof Techniques

Modular Decomposition

One common technique for reasoning about the behavior of an automaton is modular de�

composition� in which we reason about the behavior of a composition by reasoning about the

behavior of the component automata individually�

It is often the case that an automaton behaves correctly only in the context of certain

restrictions on its input� These restrictions may be guaranteed in the context of the compo�

sition with other automata comprising the remainder of the system� or may be restrictions

de�ned by a problem statement describing conditions under which a solution is required to

behave correctly� A useful notion for discussing such restrictions is that of a module &pre�

serving� a property of behaviors� as long as the environment does not violate this property�

neither does the module�

In practice� this notion is of most interest when the property is pre�x�closed� and when

the property does not concern the module�s internal actions� A set of sequences P is said to

be pre�x�closed if � � P whenever both � is a pre�x of � and � � P� A module M �either

an automaton or schedule module� is said to be pre�x�closed provided that �nbehs�M� is

pre�x�closed�

Let M be a pre�x�closed module and let P be a nonempty� pre�x�closed set of sequences

of actions from a set ( satisfying ( � int �M� � �� We say that M preserves P if ��j( � P
whenever �j( � P� � � out�M�� and ��jM � �nbehs�M��

In general� if a module preserves a property P� then the module is not the �rst to violate

P� as long as the environment only provides inputs such that the cumulative behavior

satis�es P� the module will only perform outputs such that the cumulative behavior satis�es

P� This de�nition� however� deserves closer inspection� First� notice that we consider only

sequences � with the property that ��jM � �nbehs�M�� This implies that we consider only

sequences � that contain no internal actions of M � Second� notice that we require sequences

� to satisfy only �j( � P rather than the stronger property � � P� Suppose� for example�

that P is a property of the actions ( at one of two interfaces to the module M � In this case�

it may be that for no � � P and � � out�M� is it the case that ��jM � �nbehs�M�� since
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all �nite behaviors of M containing outputs include activity at both interfaces to M � By

considering � satisfying only �j( � P� we consider all sequences determining �nite behaviors

of M that� at the interface concerning P� do not violate the property P�

One can prove that a composition preserves a property by showing that each of the

component automata preserves the property�

Proposition � Let fAigi�I be a strongly compatible collection of automata and let A �Q
i�I Ai� If Ai preserves P for every i � I� then A preserves P�

In fact� we can prove a slightly stronger result� An automaton is said to be closed if it

has no input actions� In other words� it models a closed system that does not interact with

its environment�

Proposition � Let A be a closed automaton� Let P be a set of sequences over (� If A

preserves P� then �nbehs�A�j( � P�
In the special case that ( is the set of external actions of A� the conclusion of this

proposition reduces to the fact that �nbehs�A� � P� The proof of the proposition depends

on the fact that ( does not contain any of A�s input actions� and hence that if the property

P is violated then it is not an input action of A committing the violation� In fact� this

proposition follows as a corollary from the following slightly more general statement� If A

preserves P and in�A� � ( � �� then �nbehs�A�j( � P�

Combining Propositions � and �� we have the following technique for proving that an

automaton implements a problem�

Corollary 
 Let fAigi�I be a strongly compatible collection of automata with the property

that A �
Q

i�I Ai is a closed automaton� Let P be a problem with the external action signature

of A� If Ai preserves �nbehs�P � for all i � I� then A implements P �

That is� if we can prove that each component Ai preserves the external behavior re�

quired by the problem P � then we will have shown that the composition A preserves the

desired external behavior	 and since A has no input actions that could be responsible for vi�

olating the behavior required by P � it follows that all �nite behaviors of A are behaviors of P �

Hierarchical Decomposition

A second common technique for proving that an automaton solves a problem is hierarchical

decomposition in which we prove that the given automaton solves a second� that the second

solves a third� and so on until the �nal automaton solves the given problem� One way of

proving that one automaton A solves another automaton B is to establish a relationship

between the states of A and B and use this relationship to argue that the fair behaviors of A

are fair behaviors of B� In order to establish such a relationship in between two automata we
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can use a �simulation� relation f � Below� for binary relation f � we use the notation u � f�s�

as an alternative way of writing �s� u� � f �

De�nition � Suppose A and B are input�output automata with the same external action

signature� and suppose f is a binary relation from states�A� to states�B�� Then f is a

forward simulation from A to B provided that both of the following are true�

	� If s � start�A� then f�s� � start�B� �� ��


� If s is a reachable state of A� u � f�s� is a reachable state of B� and �s� �� s�� is a step

of A� then there is an �extended step� �u� �� u�� such that u� � f�s�� and �jext�B� �

�jext�A��

An extended step of an automaton A is a triple of the form �s� �� s��� where s and s� are

states of A� � is a �nite sequence of actions of A� and there is an execution fragment of A

having s as its �rst state� s� as its last state� and � as its schedule� The following theorem

gives the key property of forward simulations�

Theorem � If there is a forward simulation from A to B� then behs�A� � behs�B��

���� Shared Memory Systems as I�O Automata

������ Instantaneous Memory Access

As a case study� we consider a mutual exclusion system� In this section we model the users as

IO automata� Speci�cally� each user i is an IOA� with inputs crit i and remi� and outputs try i
and exit i� The user automata have arbitrary internal actions� states sets and start states�

There is only one constraint � that any such automaton �preserves� the cyclic behavior�

i�e�� if the system is not the �rst to violate it� the user does not violate it� �The formal

de�nition of �preserves� is given in the notes above��

The following example shows a particular user IOA� Note the language that is used to

describe the automaton� We �rst describe the IOA intuitively� The �example user� chooses

an arbitrary number from � to �� and then makes exactly that many requests for the resource

in succession�

In the precondition�e�ects language� the user is described as follows�

states� As before� we can write it as consisting of components� Here we have the following�

� region� values in fR�T�C�Eg� initially R

� count � a number from � to � or nil � initially arbitrary
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� chosen � a Boolean� initially false

start� Given by the initializations�

acts � The external actions are described above� Also� there is an internal action choose�

part� we have only one class that contains all the non�input actions�

trans� We describe the allowed triples �s� �� s�� by organizing them according to action�

choose i

Precondition�

s�chosen � false

E�ect�

s��chosen � true

s��count � f�� �� �g

tryi

Precondition�

s�chosen � true

s�region � R

s�count � �

E�ect�

s��region � T

s��count � s�count � �

criti

E�ect�

s��region � C

exit i

Precondition�

s�region � C

E�ect�

s��region � E

remi

E�ect�

s��region � R

Note that the automaton is input�enabled� i�e�� it can accommodate unexpected inputs �which

do not necessarily induce interesting behavior in this case� though��

Here� we are describing the transitions of the form �s� �� s�� using explicit mentions of

the pre� and post� states s and s�� The e�ect is described in terms of equations relating the

two� We remark that this notation is very similar to that used by Lamport in his language

TLA �Temporal Logic of Actions�� An alternative notation that is also popular suppresses

explicit mention of the states� and describes the e�ect using assignment statements� This is

the syntax used in Ken Goldman�s Spectrum system� for instance�
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Fair Executions� Consider the executions in which the system does not violate the cyclic

behavior� All these executions must involve �rst doing choose� this action is enabled� nothing

else is enabled� and the fairness requires that the execution can�t stop if something is enabled�

By the code� the next step must be tryi� Then the execution can stop� if no crit i ever occurs�

But if crit i occurs� a later exit i must occur� Again� at this point the execution can stop� but

if a later remi occurs� then the automaton stops if it chose �� else the execution continues�

That is� have fair executions �omitting states that are determined��

choose� �� try

choose� �� try� crit � exit

choose� �� try� crit � exit � rem

choose� �� try� crit � exit � rem� try�

etc�

There are also some fair executions in which the system violates the cyclic behavior� e�g��

choose� �� crit

But� for instance� the following is not fair�

choose� �� try� crit � exit � rem

Note that for the automaton above� all the fair executions with correct cyclic behavior are

�nite�

To model the rest of the shared memory system� we use one big IOA to model all the

processes and the memory together� The outputs are the crit and rem actions� The internal

actions are any local computation actions and the shared memory actions� The states set

consists of the states of all the processes plus the state of the shared memory� The partition

is de�ned by having one class per process� which contains all the non�input actions belonging

to that process� The IOA fairness condition captures exactly our requirement on fairness of

process execution in the shared memory system� Of course� there are extra constraints that

are not implied by the general model� e�g�� types of memory �read�write� etc��� and locality

of process action �i�e�� that it can only a�ect its own state� only access one variable at a time�

etc���

������ Object Model

In this section we de�ne formally an alternative way to model shared memory systems� the

object model� which was discussed brie
y in Lecture �� We will use this model for the

next few lectures� In the object model� each process is a separate IOA �usually with only

one fairness class�� and each shared memory object is also an IOA� Thus� for example� a
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read�write object is an IOA with inputs of the form read i�x� where i is a process and x an

object name� and write i�x�v�� where i is a process� x is an object and v is a value to be

written� Now� note that a read is supposed to return a value� Since this is an IOA� this

will be a separate output action read�respondi�x�v�� For uniformity� also give the write a

write�respondi�x� The write�respondi�x action serves only as an �ack�� saying that the write

activation has terminated�

This is essentially the same interface that we have already described for atomic read�write

objects � the only di�erence is that now we are adding an identi�er for the speci�c object

into all the actions� �This is because IOA�s have a �global naming scheme� for actions��

Of course� we could also have other objects� queue� read�modify�write registers� and

snapshot objects� as discussed earlier� Each has its own characteristic interface� with inputs

being invocations of operations and outputs being responses�

The processes are automata with inputs as before� plus the responses to their data oper�

ations� e�g�� read�respondi�x�v� is an input to process i� The outputs of the processes now also

contain the invocations of their data operations� e�g�� read i�x� Usually� each process would

have only one fairness class	 that is� we think of it as a sequential process� �But we would

like to be able to generalize this when convenient��

For the objects� we usually don�t want to consider just any automata with the given

interface � we want some extra conditions on the correctness of the responses� For example�

the atomic object conditions de�ned earlier are an important example� We recall these

conditions below �see notes of Lecture � for more complete speci�cation��

�� Preserving well�formedness� Recall that �preserves� has a formal de�nition for IOA�s�

�� Giving �atomic� responses based on serialization points� in all executions� �Recall that

it is required that all complete operations and an arbitrary subset of the incomplete

operations have serialization points��

�� In fair executions� every invocation has a response� Note that this now makes sense

for automata that have some organization other than the process�variable architecture

we have been studying� because IOA�s in general have a notion of fairness�

After composing the process automata and the object automata� we hide the communi�

cation actions between them�

���� Modularity Results

Now that we have described the two kinds of models� instantaneous access and atomic

objects� more�or�less precisely in terms of IOA�s� we can state our modularity results�
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������ Transforming from Instantaneous to Atomic Objects

In this section we discuss how to transform algorithms which are speci�ed for instanta�

neous objects to work with atomic versions of the objects� Let A be an algorithm in the

instantaneous shared memory model satisfying the following conditions�

� Each process can only access one shared variable at a time �this is the usual restriction��

� For each user i of A� suppose that there is a notion of user well�formedness� consisting

of a subset of alternating sequences of input and output actions� We require that A

preserve user well�formedness�

� Suppose that pi�s states are classi�ed as �input states� and �output states�� based on

which is supposed to happen next in a well�formed execution �initially� only �input�

actions are enabled�� We require that non�input steps of pi are only enabled in �output�

states�

We remark that this is the case for all the examples we have considered� For mutual

exclusion algorithms� the output states are the T � E states� which occur between try and

crit actions� and between exit and rem actions� respectively� For snapshot implementations�

the output states are just those while an invocation of update or snap is active� For consensus

algorithms� the output states are those between the init and decide�

Assuming A satis�es the above conditions� we can now transform A into a new algorithm

T �A�� designed for the atomic object model� T �A� includes an atomic object for each shared

memory location� Each access to an object is expanded to an invocation and a response�

After the invocation� the process waits until the response occurs� doing nothing else in the

meantime� When the response comes in� the process resumes as in A�

Lemma 	

T �A� preserves user well�formedness for each user i�

	�
� If � is any �not necessarily fair� user well�formed execution of T �A�� then there is a

user well�formed execution �� of A such that beh��� � beh�����

�� If � is any fair user well�formed execution of T �A� �i�e�� both the processes and the

atomic objects have fair executions�� then there is a fair user well�formed execution ��

of A such that beh��� � beh�����

Proof Sketch� Here is a sketch of the argument� We start with � and modify it to get

�� as follows� First� by the de�nition� we have the serialization points within the operation

intervals� for all the invocations of the atomic objects� Now consider the execution obtained
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by moving the invocation and response actions to the serialization points� and adjusting the

states accordingly� In the case of incomplete operation intervals� there are two cases� If there

is a serialization point for the interval� then put the invocation from �� together with a newly

manufactured response event� at the serialization point �the response event should be the

one whose existence is asserted by the atomic object de�nition�� If there is no serialization

point� then just remove the invocation�

We now claim that we can move all the events we have moved without changing the order

of any events of a particular process pi� This follows from two facts� First� by construction�

pi does no locally�controlled actions while waiting for a response from an operation� Second�

when pi invokes an operation� it is in an output state� and by assumption� no inputs will

come in when pi is in an output state� Similarly� we can remove the invocations we have

removed and add the responses we have added without a�ecting the external behavior� since

a process with an incomplete invocation does not do anything afterwards anyway �it doesn�t

matter if it stops just before issuing the invocation� while waiting for the response� or just

after receiving the response��

In the resulting execution� all the invocations and responses occur in consecutive pairs�

We can replace those pairs by instantaneous access steps� thus obtaining an execution �

of the instantaneous access system A� Thus � and �� have the same behavior at the user

interface� proving Part ��

For Part �� notice that if � is fair� then all embedded executions of the atomic objects

always respond to all invocations� Coupling this with the fairness assumption for processes�

yields fairness for the simulated algorithm A �i�e�� that the simulated processes continue

taking steps��

So� Lemma � says that any algorithm for the instantaneous shared memory model can be

used �in a transformed version� in the atomic object shared memory model� and no external

user of the algorithm could ever tell the di�erence�

In the special case where A itself is an atomic object implementation �in the instantaneous

shared memory model�� this lemma implies that T �A� is also an atomic object implemen�

tation� To see this� note that Property � �preserving well�formedness� follows immediately

from Part � of Lemma �	 Property � follows from Part � of Lemma � and the fact that A is

an atomic object �property � of the atomic object de�nition for A�	 and Property � follows

from Part � of Lemma � and the fact that A is an atomic object �Property � of the atomic

object de�nition for A�� Therefore� we can build atomic objects hierarchically�
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������ Composition in the Object Model

Now we want to consider building objects that are not necessarily atomic hierarchically� To

do this� we have to generalize the notion of an object speci�cation to include other kinds of

objects� Later in the course we shall see some examples for such objects� including safe and

regular objects� and the special concurrent timestamp object to be considered next time�

Object Speci�cations

We de�ne the general notion of an object speci�cation� generalizing the speci�cation for

atomic objects� Formally� an object speci�cation consists of the following�

�� An external signature consisting of input actions� called invocations� and output ac�

tions� called responses� There is also a �xed binary relation that relates responses

�syntactically� to corresponding invocations�

�� A set of sequences of external actions	 all sequences in the set are �well�formed�� i�e��

they contain alternating invocations and �corresponding� responses on each of the lines

�with invocation �rst�� The set is pre�x�closed�

This is a very general notion� Basically� this is an arbitrary behavior speci�cation at the

object boundary� The behavior speci�cation for atomic objects is a special case�

An IOA with the appropriate interface is said to satisfy� or implement� this speci�cation

if the following conditions hold�

�� It preserves well�formedness�

�� All its well�formed behaviors are in the set�

�� All its fair behaviors include responses to all invocations�

Compositionality of Object Implementations

Suppose that we start with a system A in the object speci�cation model� using a particular

set of object speci�cations for its objects� We need to be a little more careful about what this

means� The executions of this system are the executions of the processes that get responses

allowed by the object speci�cations� The fair executions of the system are then de�ned to

be those executions that are fair to all the processes and in which all invocations to the

object speci�cations eventually return� We also assume that each process of A preserves

well�formedness for each object speci�cation�
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Suppose that A itself satis�es another� �higher�level� object speci�cation� Consider the

result of replacing all the object speci�cations of A with object IOA�s that satisfy the cor�

responding speci�cations �in the object speci�cation model�� We claim that the resulting

system still implements the external object speci�cation�

interface
line

process

object

line

combined
process

Figure ����� On the left we see an object composed of smaller objects� All the shaded processes

are associated with the same external interface line� On the right we see the combined process for

fairness purposes�

Note that fairness of the composed implementation refers to fair execution of all the

processes� high�level and low�level� plus the object speci�cation liveness condition for the

low level objects�

Note that the resulting architecture is di�erent from the model we have been using� It

doesn�t have one process per line� but rather a distributed collection of processes� We can

convert this to a system in the usual architecture by composing some of these processes to

give the processes we want� as follows �see �gure ������ Compose the distributed processes

that operate on behalf of any particular line i � the high�level process plus� for every line of

the intermediate�level objects that it uses� the corresponding low�level process �or processes�

if one high�level process invokes several di�erent operation types on a single object�� Call

this composition qi� Let the composed processes qi be the processes of the composed imple�

mentation� �Notice that they have several fairness classes each� this is why we didn�t want

to rule this out earlier��

Remark� We can get similar result composing a system that uses object speci�cations with

object implementations that use instantaneous memory� getting a composed implementation

that uses instantaneous memory�
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������ Wait�freedom

In this section we consider the wait�freedom property� We de�ne this property only for

implementations in some special forms as follows�

�� In the instantaneous shared memory model� wait�freedom deals with an intermediate

notion between ordinary IOA fairness �fairness to all processes� and no fairness� namely�

fairness to particular processes� For this setting� the wait freedom condition is that if

an execution is fair to any particular process i� then any invocation of i eventually gets

a response�

�� In the object speci�cation model� where in place of the objects we have object speci�ca�

tions� the wait freedom condition is that if an execution is fair to any particular process

i� and all invocations to memory objects by process i return� then any invocation of i

eventually gets a response�

Let us consider the compositionality of wait�free implementations� To be speci�c� suppose

that we start with a system A in the object spec model� that by itself satis�es some object

spec� using a particular set of object specs for its objects� Suppose that each process of A

preserve well�formedness for each object� Assume also that A is wait�free� Suppose we then

replace all the object specs used by A with wait�free objects that satisfy the corresponding

specs	 again� these are required to be expressed in the object spec model� We already know

how to get the composition� and we also know that the result satis�es the external object

spec� We now want to claim that the resulting system is also wait�free� We argue that as

follows� Let � be an execution of the composed system� in which qi does not fail� and in

which all invocations by qi on low�level objects return� In �� the high�level pi does not fail�

since by assumption� qi doesn�t fail� Also� any invocation by pi on the intermediate�level

object must return� by the wait�freedom of the implementation of the intermediate objects�
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Therefore� by the wait�freedom of the high�level implementation� any invocation on line i

eventually returns�

Remark� We can get a similar result about composing a wait�free implementation that

uses object specs� with wait�free object implementations that use instantaneous memory�

getting a wait�free composed implementation that uses instantaneous memory�

���� Concurrent Timestamp Systems

Today we shall go through some constructions to show how we could build some powerful

objects out of others� We shall do this hierarchically� We have already seen �in Lecture

�� how we can get a wait�free implementation of an atomic snapshot object� in terms of

instantaneous access single�writer multi�reader read�write objects� In this section we show

how to get a wait�free implementation of another type of object� called concurrent timestamp

object �CTS�� in terms of instantaneous snapshot objects� By the compositionality results

above� we can combine these and get a wait�free implementation of a concurrent timestamp

object in terms of instantaneous access single�writer multi�reader read�write variables�

We shall then see how we can use a CTS object as a building block for other tasks�

Speci�cally� we give an improvement to Lamport�s bakery algorithm� and an implementation

of a wait�free multi�writer multi�reader register� CTS objects can also be use for other tasks�

e�g�� resource allocation systems�

������ De�nition of CTS Objects

A concurrent timestamp system object has two operations�

� label i�v�� always gets the response �OK��

� scan i� gets a response that describes a total ordering of the n processes� together with

an associated value for each process�

The rough idea is that each newly arrived process gets an associated label of some kind�

and we require that later labels can be detected as �larger� than earlier labels� The scan

operation is supposed to return a reasonable ordering of the processes� based on the order

of their most recent labels �i�e�� the approximate order of their most recent arrivals�� And�

for good measure� it also returns the values associated with those labels�

Note that this is not an atomic object	 it has a more general kind of object spec� In

the literature �see Gawlick�s thesis� and Dolev�Shavit�� the precise requirements are given

by a set of axioms about the well�formed behaviors� These look a little too complicated to
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present in class� so instead we de�ne the correct behaviors as the well�formed behaviors of a

fairly simple algorithm� given in Figures ���� and �����

This �spec algorithm� uses a di�erent programming notation from what we have previ�

ously used �e�g�� for mutual exclusion�� The notation presented here describes I�O automata

more directly� each action is speci�ed separately� with an explicit description of the states

in which it can occur� and the changes it causes to the process state� Note also the explicit

manipulation of the program counter �pc�� This notation is very similar to that used in the

previous lecture to describe a user automaton	 the main di�erences are that here we use

assignment statements rather than equations and leave the pre� and post�states implicit�

The �begin� and �end� actions just move the pc and transmit the results� The real work

is done by embedded snap and update actions� In the scan� the process does a snap to get

an instantaneous snapshot of everyone�s latest label and value� Then it returns the order

determined by the labels� with the associated values� In the label � the process �rst does

a snap to collect everyone�s labels� Then if the process does not already have the max� it

chooses some larger value �this could be the integer one greater than the max� as in Lamport�s

bakery� or it could be some more general real value�� Finally� it does an instantaneous update

to write the new label and value in the shared memory�

A straightforward observation is that the algorithm is wait�free� The most interesting

property of the algorithm� however� is that it can be implemented using a bounded domain for

the labels� This property will allow us to obtain bounded versions for bakery�style mutual

exclusion algorithm� and a wait�free implementation of multi�writer multi�reader atomic

objects in terms of single�writer multi�reader �which uses three levels of implementation�

snapshot in terms of single�writer objects� CTS object in terms of snapshot� and multi�writer

registers in terms of CTS object��

������ Bounded Label Implementation

We start with a bounded label implementation� First� we recall what this means� We are

using the program above �Figures ���������� as an object speci�cation� It describes the

interface� and gives a well�de�ned set of well�formed behaviors �whatever they are�� To get

an implementation of this spec� we need to design another algorithm that also preserves

well�formedness� that has the required liveness properties� and whose well�formed behaviors

are a subset of those of this algorithm�

The algorithm we use is very close to the unbounded algorithm above given by the spec�

The only di�erence is in the label domain � for the bounded case we shall use a �nite domain

of size �n��� The new domain has a binary relation de�ned for the purpose of determining

order of labels� maximum� etc�� only now it can�t be a total order because elements have
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Shared variables A snapshot object� whose value is a vector of pairs� �label� value�� with one

component for each �labeler process i� The labels are positive real numbers� and the domain

of value is arbitrary�

scani process

Local state�

� pc
 program counter

� �snaplabel� snapvalue�
 to hold values returned by a snap

� order 
 to hold an ordering of processes to be returned

Actions�

beginscani

E�ect


pc � snap

snapi

Precondition


pc � snap

E�ect


�snaplabel� snapvalue�� �label� value�

pc � de�ne�response

de�ne�responsei

Precondition


pc � de�ne�response

E�ect


order � the total order on indices where j appears

before k i� �snaplabelj � j� � �snaplabelk� k�

pc � endscan

endscani�o� v�

Precondition


pc � endscan

o � order

v � snapvalue

E�ect


pc � beginscan

Figure ����� Speci�cation algorithm for timestamp system� part I
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label i process

Local state�

� pc

� �snaplabel� snapvalue�� to hold values returned by a snap�

� newlabel � to hold the newly�chosen label

Actions�

beginlabeli

E�ect


pc � snap

snapi

Precondition


pc � snap

E�ect


�snaplabel� snapvalue�� label � value

if �j� �snaplabel�j�� j�� �snaplabel�i�� i� then

newlabel � snaplabel�i�

else newlabel � max �snaplabel� � r� where r

is any positive real �nondeterministic�

pc � update

update i

Precondition


pc � update

E�ect


label �i�� newlabel

pc � endlabel

endlabel i

Precondition


pc � endlabel

E�ect


pc � beginscan

Figure ����� Speci�cation algorithm for timestamp system� part II
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to be reused� The algorithm will ensure� however� that the labels that are in use at any

particular time are totally ordered by the given relation�

The only changes in the code are in the actions� de�ne�response of scan� in particular�

where the order of indices is determined from the scanned labels� and snap of label � in

particular� in determining if the process executing the step has the maximum label� and in

determining the next label to choose�

Atomic Labels and Scans

To motivate the value domain chosen� �rst suppose that each label and scan operation is

done atomically� Consider two processes� We use the label domain consisting of f�� �� �g�
with relation given by the arrows� see Figure �����

1

2

3

Figure ����� 	�element domain for two processes� a� b indicates that a � b�

That is� order relation ��� is f��� ��� ��� ��� ��� ��g� Suppose that the two processes� p

and q� initially both have label � � �ties are broken by process index�� If p does a label

operation� it sees that q has the maximum �assuming that p � q�� so when p chooses a new

label� it gets the �next label�� which is �� Now if q does a label � it sees that the maximum

is �� and therefore chooses the next label� which is now �� The two� if they take turns� just

chase each other around the circle in a leapfrog fashion� It is important to see that the e�ect

is just as if they were continuing to choose from an unbounded space�

What about three processes� We can�t simply extend this to a ring of a larger size�

consider the following scenario� Suppose one of the processes� say p� retains label � and does

no new label operations� while the other two processes� say q and r� �leapfrog� around the

ring� This can yield quite di�erent behavior from the unbounded algorithm� when eventually�

q and r bump into p� In fact� we don�t even have a de�nition of how to compare nonadjacent

labels in this ring�

A valid solution for the � processes case is given in the recursive label structure depicted

in Figure ����� In this domain� we have three �main� level � components� where each of

them is constructed from three level � components� In each level� the ordering is given by the

arrows� A label now consists of a string of two �sub�labels�� one for each level� The ordering
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Figure ����� ��element domain for three processes� Each element has a label that consists of two

strings of f�� �� 	g� and the relation is taken to be lexicographical�

is determined lexicographically� To get a feeling why this construction works� consider again

the three�process scenario described above� If p keeps the initial label ���� q will choose ���

next� But then r will not wrap around and choose ���� because the ���component� of level

� is already �full� �i�e�� it contains � processes�� So instead� it goes to ���� starting in the

next component� Thus� the total order of processes is p� q� r� since the given relation relates

all three of the pairs of labels involved here �we have ����� ���� ����� ����� and ����� ���� in the

relation�� In the next step� q would choose ���� Then r could choose ��� �� and still maintain

the total order property �because the component is not considered full if the � processes it

contains include the one now choosing�� This can go on forever� since now q and r alone

would just cycle within component � without violating the requirement�

It is now quite easy to extend this scheme for the general case of n processes� We will have

a domain of size �n��� where each label is a length n� � string of f�� �� �g� that corresponds

to a depth n � � nesting of ��cycles� We say that a level k component� � � k � n � �� is

�full� if it contains at least n� k processes� An invariant can be proved saying that for any

cycle� at any level� at most two of the components are �occupied�� which su�ces to yield a

total order �cf� homework problem��
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The following rule is used to pick a new value� If the choosing process is the maximum

�i�e�� it dominates all the others in the given relation�� it keeps its old value� If it is not the

maximum� then it looks at the current maximum value� It �nds the �rst level k� � � k �
n� �� such that the level k component of the maximum is full �i�e�� contains at least n � k

processes� values� excluding the process currently choosing�� The chosen value is the �rst

label �according to the relation� in the next component at level k�

Note that there must be some full level� since fullness at level n�� just means that there

is a process �i�e�� the maximum itself� in the lowest�level component �viz�� the single node

containing the maximum value��

It is perhaps helpful to trace this procedure for n � � processes� with � levels of nesting

�see Figure ������

If the max�s level � component is full� it means that it contains all � other processes� so

we can choose the next level � component� since we are guaranteed that no one has a value

outside the max�s level � component� If the max�s level � component is not full� then there

are at most � processes in that component� We then look in the level � component of the

max� If it is full� it contains � processes� values� so that means there are none left for the

other two level � components� and hence it�s safe to choose there� Else� there are at most �

process in the level � component� We can repeat the argument for this case to see that is OK

to choose the next element within the level � component� i�e�� the next level � component�

Nonatomic Labels

The �recursive triangles� construction above doesn�t quite give us what we want� The

problems arise when we consider concurrent execution of the label operations� Consider the

�� structure with � processes� Suppose that we get to the point where p� q and r have labels

���� ��� and ���� respectively �see Figure ������

Suppose that both p and q initiate label operations� First� both do their embedded snap

steps� discovering that the max label in use is ���� They both choose label ���� Process p

writes its new label ���� but process q delays writing� Now processes p and r can leapfrog

within the � component� eventually reaching a point where the occupied labels are ��� and

���� So far so good� but now let q perform its delayed write� This will make all three labels

in component � occupied� which will break the total ordering�

In order to handle such race conditions when processes �rst enter a component� the size

� ring is modi�ed by adding a �gateway� �see Figure ������ The labels for n processes are

obtained by nesting recursively to depth n�� as before �see Figure �����	 again� we say that

a level k component� � � k � n� �� is �full� if it contains at least n � k processes� We use

the same choice rule as before� looking for the �rst level at which the max�s component is
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Figure ����� ���elements domain for four processes�

full� Now we claim that this construction works in the concurrent case also�

For intuition� re�consider the previous example� now with the gateway� Suppose that we

manage to get the processes to the point where p and q have ��� and ���� resp�� and r has

��� �see Figure ������

Processes p and q can choose ��� concurrently� Now let p write� and delay q as before� If

p and r now leapfrog around the � component� they do so around the cycle� But this means

that they never get back to the position ���� and thus� when q eventually writes there� it will

be ordered earlier than the �leapfrogging� processes� and the total order will be preserved�

Note that there are now � processes in the � component� i�e�� it is �overfull�� But that isn�t

too harmful� since there are only � within the cycle� If q now picks another label� it will
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Figure ����� initial con�guration for counter�example in the concurrent case�

observe that component � is already full� and will choose ����

For general n� we claim that although components can become overfull� �i�e�� for a level

� � k � n��� a component could have more than n�k processes�� the cycle of level k never

contains more than n� k processes� For general n� we can prove the invariant that in every

cycle at every level� at most two of the three subcomponents are occupied� which implies a

total ordering of the labels� We remark that the precise statements of the invariants are a

little trickier than this �see below��

������ Correctness Proof

Gawlick� Lynch and Shavit have carried out an invariant proof for the CTS algorithm� The

following invariants are used�

Invariant � Let L be any set of n labels obtained by choosing� for each i� exactly one of

label i and newlabel i� Then L is totally ordered by the label order relation�

Note that Invariant � says not only that the written labels are totally ordered� but also

that so are all the pending ones� and any combination of the two kinds� Given this� we can

de�ne lmax to be the max label value� and imax to be the largest index of a process having
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Figure ����� initial con�guration for concurrent case�

label lmax �

Invariant � If i � imax then newlabel i � label i�

Invariant � says that any pending label from the known max is the same as its old label

�it would never have had any reason to increase its label if it�s the max��

The following invariant describes a property that any pending label that�s greater than

the current known max must satisfy� De�ne the nextlabel function to yield the very next

value at the indicated level�

Invariant � If lmax � newlabel i then newlabel i � nextlabel �lmax � k� for some k� � � k �
n� ��

The previous three invariants� �� �� and �� are su�cient to complete the proof� The

others are just used to make the induction go through� However� in order to prove these

three invariants by induction� we require three additional technical invariants� Thus� for all

levels k� � � k � n � �� we have the following three technical claims� First� we have one

about �old� pending labels	 it constrains how di�erent these pending labels can be from the

corresponding actual labels�
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Invariant 
 If newlabel i � lmax and label i is in the same level k component as lmax � then

so is newlabel i�

The next invariant describes some more constraints on the newlabel values� based on the

corresponding actual labels� This time� the constraint refers to newlabel values in the cycle

of a component containing the max label�

Invariant � If newlabel i is in the cycle of the level k component containing lmax � then label i

is in that level k component�

And �nally� we have an invariant saying that it is sometimes possible to deduce that the

component containing the max label contains lots of processes�

Invariant 	

	� If newlabel i � nextlabel �lmax � k� then there are at least n � k processes excluding i

whose label values are in the same k � � component as lmax �


� If lmax is not in level k component numbered �� then there are at least n � k � �

processes whose label values are in the same k � � component as lmax �

This invariants are proved by induction� as usual� We remark that the proofs are not

short � they are fairly long� detailed case analyses�

The upshot of the invariants is that we have the total ordering property preserved� but

this doesn�t exactly show that we have behavior inclusion�

Recall that we need to show that all well�formed behaviors of the bounded object are also

well�formed behaviors of the unbounded object� The right way to show this is to give a formal

correspondence between the two objects� Recall the case of the stopping�failure synchronous

consensus algorithm� where we showed a formal correspondence between an ine�cient but

understandable algorithm and an optimized version� We did this using invariants relating

the states of the two algorithms when they run using the same inputs and failure pattern�

We are going to do essentially the same thing here� Now� however� we don�t have any

convenient notion analogous to the ��inputs� failure�pattern�� pair to determine the course

of the execution� We are in a setting in which there is much more nondeterminism� both in

the order in which various actions occur� and in what state changes happen when a particular

action happens �consider the choice of the new label in the unbounded object�� But note

that now� we don�t have to show an equivalence� saying that everything that either algorithm

does the other does also� Rather� we only need a one�directional relationship� showing that

everything that the bounded algorithm does� the unbounded can also do �this is exactly

inclusion of external behaviors��

We shall use the notion of forward simulation relation de�ned in a Lecture �� applying it

to get a simulation from B� the bounded object� to U � the unbounded object� Incidentally� in
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this case we don�t need to use the well�formedness restriction � the correspondence between

the objects also holds in the non�well�formed case �although it is not so interesting in that

case�� We remark that if we only wanted to consider inclusion in the restricted case� say for

some other implementation that didn�t work in the case of non�well�formed executions� we

could just enlarge the system by explicit composition with a �most general� well�formed�

preserving environment and prove inclusion for the resulting composed systems�

It turns out that the forward simulation mapping f is quite simple� �Note the similarity

in style to the earlier proof for synchronous consensus� with invariants about the pair of

states�� We de�ne u � f�s� provided that the following hold for all i� j� where i �� j�

�� s�pci � u�pci

��

s�label i � s�label j �� u�label i � u�label j

s�label i � s�newlabel j �� u�label i � u�newlabel j

s�newlabel i � s�label j �� u�newlabel i � u�label j

s�newlabel i � s�newlabel j �� u�newlabel i � u�newlabel j

�� s�order i � u�order i

�� s�value i � u�value i

�� s�snapvalue i � u�snapvalue i

In other words� everything is exactly the same except for the two kinds of label values�

and in these cases� the ordering relationship is the same� Now we need to show that this

correspondence is preserved� Formally� we have to show the conditions of the de�nition of

a simulation relation� To help us� we use Invariants �� �� and �� The interesting step is

the snap step embedded in a label operation� since it is the one that has the potential to

violate the nice ordering relationships by choosing newlabel� So consider a snapi step within

a label operation� If i detects itself to be the max �based on the label values that it reads

in the snapshot�� it doesn�t make any changes in either algorithm� so the correspondence is

preserved� So suppose that it doesn�t detect itself to be the max �which is same in both��

So a particular label is chosen in B� We must de�ne some corresponding label in U � which

should satisfy the same ordering conditions� We know that this new label will be strictly

greater than all the label s in B� so we might be tempted to just choose one plus the max of

those� for use in U � But we have to also preserve the relative order of this newlabel and all

the other newlabel s� There are scenarios in which this new one might not be greater than
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all the others� in fact� it possibly could be strictly less than some� But Invariant � implies

that we don�t have to worry about the newlabel s that are not greater than the maximum

label in B� and Invariant � characterizes the form of the newlabel �s that are greater than

the maximum label in B� Now it is easy to see how the new label now being chosen �ts in

relative to these� and we can choose a new label in U in the same way�

������ Application to Lamport�s Bakery Algorithm

We can use a CTS algorithm to provide a bounded�register variant of the Lamport�s bakery

algorithm� We describe the algorithm in Figure ���� below in a sort of pseudocode� roughly

similar to the original Lamport algorithm� rather than precondition�e�ects notation�

The invocations of label and scan are written as single statements� but they denote pairs

of invocation and response actions to the CTS object� e�g�� beginlabel i and endlabel i�

Let us go over the di�erences from the original bakery algorithm� First� instead of

explicitly reading all the variables and taking the maximum� we just do a label operation

to establish the order �everything is hidden within the CTS object�� Second� the structure

of the checks is changed a little� Instead of looping through the processes one at a time�

the modi�ed algorithm �rst checks that no one is choosing� and then checks the priorities�

Note that the algorithm is not sensitive to this di�erence� Third� in the loop where we check

the priorities� instead of reading the numbers� the modi�ed algorithm at process i does scan

to obtain the order� and then looks for i to be ahead of everyone else� Note that in this

variant� we only check for i to be ahead of those that are currently competing	 in the prior

algorithm� the number was explicitly set back to  when a process left� but now we no longer

have su�cient explicit control to assign those numbers� So instead� we leave the order as it

is� but explicitly discount those that aren�t competing�

To understand the above algorithm� consider it �rst when the unbounded CTS algorithm

is employed� We claim that in this case� similar arguments to those used in the correctness

proof for the original bakery algorithm show the same properties� i�e�� mutual exclusion�

deadlock�freedom� lockout�freedom� and FIFO after a wait�free doorway �now the doorway

is the portion of the code from entry to the trying region until the process sets its �ag to

��� The unbounded variant is more complicated� has worse time complexity� and so far� does

not seem to be better than the original algorithm� But now note that we can replace the

unbounded CTS object within this algorithm by the bounded CTS object� Since every well�

formed behavior of the bounded algorithm is also a well�formed behavior of the unbounded

algorithm� we obtained an algorithm that uses bounded�size registers� and still works cor�

rectly� Recall that the bounded algorithm is based on snapshot� based on single�writer

registers� And the only values that need to be written in the registers are the timestamps�
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chosen from the bounded domain� Note that this application did not use the value part of

the CTS	 only the ordering part is used�
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Shared variables�

� �ag � an array indexed by  ���n" of integers from f��g� initially all � where �ag i"

is written by pi and read by all

� CTS � a concurrent timestamp object

Code for pi

try i
L��

�ag i" � �

label i

�ag i" � �

L��

for j � f�� � � � � ng do
if �ag j" � � then goto L�

end if

end for

L��

scan i���

for j � f�� � � � � ng do
if j � i and �ag j" � � then goto L�

end if

end for

crit i

$$Critical region$$

exit i

�ag i" � 

remi

$$Remainder region$$

Figure ����� the bakery algorithm with concurrent timestamps

���



�����J�������J Distributed Algorithms November �� ����
Lecturer� Nancy Lynch

Lecture ��

�	�� Multi�Writer Register Implementation Using CTS

In this section we show another simple and interesting application of CTS� namely imple�

menting multi�writer multi�reader registers from single�writer multi�reader registers� In this

application� we use the value part of the CTS as well as the ordering part�

������ The Algorithm

The code is very simple�

read i process� scan i�o� %v�� and return vj� where j is the maximum index in o�

write i�v� process� label i�v��

The algorithm is straightforward� a write simply inserts the new value as part of a label

action� while read returns the latest value� as determined by the order returned by an embed�

ded scan� In fact� the algorithm is easier to understand by considering the high level code and

the CTS level code together �but keeping the snapshot abstraction instantaneous�� In this

more elaborate description� the low�level memory consists of a vector of �value � timestamp�

pairs� The write action snaps all of memory instantaneously� chooses a timestamp bigger

than the biggest timestamp already existing in the memory �with the exception that if it

already is the biggest� it keeps its value�� and �in a separate step� writes back the new value

with that new timestamp� The read process snaps all of memory instantaneously� and returns

the value that is associated with the biggest timestamp�

Note that if the algorithm works correctly using the unbounded CTS algorithm� then

it will also work using the bounded algorithm� which can be implemented using bounded

space� Thus� it is su�cient to prove that the algorithm works correctly using unbounded

timestamps�

It is easy to see that the algorithm has the nice properties of wait�freeness� fairness�

and well�formedness� The interesting thing here is to show the existence of the needed

serialization points� We do it by �rst proving the following lemma�
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������ A Lemma for Showing Atomicity

Lemma � Let � be a well�formed sequence of invocations and responses for a read�write

register� Let T be any subset of the incomplete operations in �� Let S be the union of the

complete operations and T � Suppose that � is a partial ordering of all the operations in S�

satisfying the following properties�

	� Let i be a write operation in S� and let j be any operation in S� Then we have i � j

or j � i� In other words� � totally orders all the write operations� and orders all the

read operations with respect to the write operations�


� The value returned by each complete read operation in S is the value written by the last

preceding write operation according to � �or the initial value� if none��

�� If i is a complete operation and end i precedes beginj in �� then it cannot be the case

that j � i�

�� For any operation i� there are only �nitely many operations j such that j � i�

Then � is an atomic read�write register behavior �i�e�� satis�es the atomicity condition��

Proof� We construct serialization points for all the operations in S as follows� We insert

each serialization point �i immediately after the later of begin i and all beginj such that j � i�

�Note that Condition � ensures that the position is well de�ned�� For consecutive ��s� order

them in any way that is consistent with �� Also� for each �incomplete� read in T � assign a

return value equal to the value of the last write operation in S that is ordered before it by

� �or the initial value� if none��

To prove that this serialization satis�es the requirements� we have to show that

�� the serialization points are all within the respective operation intervals� and

�� each read i returns the value of the write whose serialization point is the last one before

�i �or the initial value� if none��

For the �rst claim� consider the �i serialization point� By construction� it must be after

begin i� If i is a complete operation� it is also before end i� if not� then end i precedes begin j

for some j having j � i� contradicting Condition ��

For the second claim� consider read operation i� By Condition � for complete reads� and

the de�nition for incomplete reads� the value returned by read i is the value written by the

last write operation in S that is ordered before op i by � �or the initial value� if none��

Condition � says that � orders all the writes with respect to all other writes and all reads�

To show that read i returns the value of the write whose serialization point is the last one
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before �i �or the initial value� if none�� it is su�cient to show that the �total� order of the

serialization points is consistent with �� i�e�� if i � j then �i precedes �j� This is true since

by de�nition� �i occurs after the last of begin i and all begink� for k � i� while �j occurs after

the last of beginj and all begink where k � j� Thus� if i � j then for all k such that k � i we

have k � j� and hence �j occurs after �i�

������ Proof of the Multi�writer Algorithm

We now continue verifying the implementation of multi�writer registers� We de�ne an or�

dering on all the completed operations and T � where T is the set of all the incomplete write

operations that get far enough to perform their embedded update steps� Namely� order all

the write operations in order of the timestamps they choose� with ties broken by process

index as usual� Also� if two operations have the same timestamp and the same process in�

dex� then we order them in order of their occurrence � this can be done since one must

totally precede the other� Order each complete read operation after the write whose value

it returns� �or before all the writes� if it returns the initial value�� Note that this can be

determined by examining the execution� To complete the proof� we need to check that this

ordering satis�es the four conditions� It is immediate from the de�nitions that Conditions �

and � are satis�ed� Condition � is left to the reader � we remark only that it follows from

the fact that any write in T eventually performs its update� and so after that time� other

new write operations will see it and choose bigger timestamps�

The interesting one is Condition �� We must show that if i is a complete operation� and

end i precedes beginj� then it is not the case that j � i�

First� note that for any particular process� the timestamps written in the vector location

for that process are monotone nondecreasing� This is because each process sees the times�

tamp written by the previous one� and hence chooses a larger timestamp �or the same� if it�s

the maximum�� We proceed by case analysis� based on the types of the operations involved�

Case 	� Two writes� First suppose that i and j are performed by di�erent processes�

Then in the snap step� j sees the update performed by i �or something with a timestamp at

least as big�� and hence j chooses a larger timestamp than i�s� and gets ordered after i by

��

Now suppose that i and j are performed by the same process� Then since j sees the

update performed by i� j chooses either the same or a larger timestamp then i� If it chooses

a larger timestamp� then as before� j gets ordered after i by �� On the other hand� if it

chooses the same timestamp� then the explicit tie�breaking convention says that the two

writes are ordered by � in order of occurrence� i�e�� with j after i�

Case 
� Two reads� If read i �nishes before read j starts� then by the monotonicity above�
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j sees at least as large timestamps for all the processes as i does� This means that read j

returns a value associated with a �timestamp� index � pair at least as great as that of i� and

so j does not get ordered before i�

Case �� read i� write j� Since i completes before j begins� the maximum�timestamp� index �

pair that j sees is at least as great as the maximum one that i sees�

First suppose that j does not see its own process with the maximum pair� In this case�

j chooses a new timestamp that is strictly larger than the maximum timestamp it sees� so

strictly larger than the maximum timestamp that i sees� Now� i gets ordered right after the

write whose value it gets� which is by de�nition the maximum pair write that it sees� Since

this pair has a smaller timestamp than that of j� it must be that i is ordered before j�

On the other hand� suppose that j sees its own process with the maximum pair� In this

case� j chooses the same timestamp that it sees� The resulting pair is either greater than or

equal to the maximum pair that i sees� If it is greater� then as above� i is ordered before j�

If it is equal� then the explicit tie�breaking rule for the same pair implies that write j gets

ordered by � after the write whose value i gets� and hence after the read by i� This again

implies that i gets ordered before j�

Case �� write i� read j� Since i completes before j begins� j sees a timestamp for i�s

process that is at least as great as that of operation i� and hence the value that j returns

comes from a write operation that has at least as great a �timestamp� index � pair as does i�

So again i is ordered before j�

This sort of case analysis is useful for other read�write register algorithms� Before we con�

clude the discussion on implementing multi�writer registers from single�writer registers� we

remark that this problem has a rich history of of complicated�incorrect algorithms� including

papers by Peterson and Burns� by Scha�er� and by Li� Tromp and Vitanyi�

�	�� Algorithms in the Read�Modify�Write Model

In this section we consider shared memory with a di�erent memory access primitive� called

read�modify�write� Our model is the instantaneous shared memory model� only now the

variables are accessible by a more powerful operation� Intuitively� the idea is that a process

should be able� in one instantaneous step� to access a shared variable� to use the variable�s

value and the process� state to determine the new value for the variable� and the new process

state� We can formulate this in the invocation�response style by using apply�f� to describe

the information needed to update the variable� and the old value v comes back as a response

�cf� Homework ��� The response value can be used to an update the state� since input to

the process can trigger an arbitrary state change�
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In its full generality� this is a very powerful type of shared memory� since it allows

arbitrary computation based on the state and shared memory values� It is not exactly clear

how this would be implemented � remember that the basic model implies fair turns to all

the processes� which means fair access to the shared memory� So it seems that in this model

we are implicitly assuming some low�level arbitration mechanism to manage access to these

variables� Still� we might be able to implement the fair access with high probability � if

accesses are fast� for example� then interference is unlikely� and by repeated retry� maybe

with some backo� mechanism� we would eventually gain access to the variable�

In what follows� we shall consider various problems in this model� including consensus�

mutual exclusion� and other resource allocation problems�

������ Consensus

It is very easy to implement wait�free consensus using a single read�modify�write shared

variable as follows� The variable starts out with the value �unde�ned�� All processes access

the variable	 if a process sees �unde�ned�� it changes the value to its own initial value� and

decides on this value� If a process sees  or �� it does not change the value written there�

but instead accepts the written value as the decision value� It is easy to verify correctness

and wait�freedom for this scheme�

Let us formulate the idea using the apply�f� style� Each process uses f� or f�� depending

on its initial value� where

fb�x� �

��
 b� if x � unde�ned

x� otherwise

An input �i�e�� return value� of �unde�ned� causes decision to be set to the initial value� and

an input of b causes it to be set to b�

Another style for writing this algorithm is describing 
ow of control� with explicit brackets

indicating the beginning and ending of steps �involving the shared memory and the local

state�� Since arbitrarily complicated computations can be done in one step� there can be

many steps of code within one pair of brackets� There shouldn�t be nonterminating loops�

however� since a step must always end� The code is given in this style in Figure ����� and in

the precondition�e�ect style in Figure �����

In a result by Herlihy� it is proven that it is impossible to obtain a wait�free implementa�

tion of atomic read�modify�write objects in the instantaneous shared memory model� where

the memory is read�write� This can now be seen easily as follows� If we could solve wait�free

consensus in this model� then by using transitivity� applied to the simple solution above for

the read�modify�write model and the claimed implementation of read�modify�write objects�
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init i�b�

value � b

lock

if x � unde�ned then

x� b

decision � b

else decision � x

unlock

decide i�d�

Figure ����� Consensus in the lock�unlock memory style

we could solve wait�free consensus in the instantaneous read�write model� which we have al�

ready shown to be impossible� Also� a similar argument implies that we can�t get a wait�free

implementation of atomic read�modify�write objects in the atomic read�write object model�

������ Mutual Exclusion

Consider the mutual exclusion problem with the more powerful read�modify�write memory�

In some sense� this seems almost paradoxical� it sounds as if we�re assuming a solution to

a very similar problem � fair exclusive access to a shared variable � in order to get fair

exclusive access to the critical region� This seems likely to make the problem trivial� And

indeed� it does simplify things considerably� but not completely� In particular� we shall see

some nontrivial lower bounds�

DeadlockFreedom

Recall that for read�write registers� we needed n variables to guarantee only the weak proper�

ties of mutual exclusion and deadlock�freedom� To see how di�erent read�modify�write model

is from read�write� consider the trivial ��variable algorithm in Figure ����� It is straight�

forward to see that the algorithm guarantees both mutual exclusion and deadlock�freedom�
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State�

� pc� with values finit� access� decide� doneg
� value

� decision

Actions�

init i�b�

E�ect� value � b

pc � access

access i

Precondition� pc � access

E�ect� if x � unde�ned then

x� value

decision � value

else decision � x

pc � decide

decide i�d�

Precondition� pc � decide � and decision � d

E�ect� pc � done

Figure ����� Consensus algorithm in the precondition�e�ect language
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Shared variables� shared variable v� values f� �g� initially 

Local variables� �for process i� pc� values in fR�T�� T�� C�E�� E�g� initially R

Code for process i�

try i
E�ect� pc � T�

test i

Precondition� pc � T�

E�ect� if v �  then

v � �

pc � T�

crit i

Precondition� pc � T�

E�ect� pc � C

exit i

E�ect� pc � E�

returni

Precondition� pc � E�

E�ect� v � 

pc � E�

remi

Precondition� pc � E�

E�ect� pc � R

Figure ����� Mutual exclusion algorithm for the read�modify�write model
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Bounded Bypass

The simple algorithm of Figure ���� does not guarantee any fairness� But we could even

get FIFO order �based on the �rst locally controlled step of a process in the trying region��

e�g�� by maintaining a queue of process indices in the shared variable� An entering process

adds itself to the end of the queue	 when a process is at the beginning of the queue� it can

go critical� and when it exits� it deletes itself from the queue� This is simple� fast� and only

uses one variable� but it is space�consuming� there are more than n� di�erent queues of at

most n indices� and so the variable would need to be able to assume more than n� di�erent

values� i�e�� !�n log n� bits� One might try to cut down the size of the shared variable� The

interesting question is how many states we need in order to guarantee fairness� Can we do

it in constant number of values� Linear�

We can achieve fairness with n� values �� log n bits� by keeping only two numbers in

the �single� shared variable� the next �ticket� to be given out� and the number of the

�ticket� that has permission to enter the critical region� �This can be viewed as a distributed

implementation of the queue from the previous algorithm�� Initially� the value of the shared

variable is ��� ��� When a process enters� it �takes a ticket� �i�e�� copies and increments the

�rst component�� If a process� ticket is equal to the second component� it goes to critical

region� When a process exits� it increments the second component� This algorithm is also

FIFO �based on the �rst non�input step in trying region�� We can allow the tickets to be

incremented mod n� with a total of n� values�

The obvious question now is whether we can do better� The following theorem gives

the answer for the case of bounded bypass �which is a stronger requirement than lockout�

freedom��

Theorem � Let A be an n�process mutual exclusion algorithm with deadlock�freedom and

bounded bypass� using a single read�modify�write shared variable� Then the number of distinct

values the variable can take on is at least n�

Proof� By contradiction� we shall construct an execution in which some process will be

bypassed arbitrarily �but �nitely� many times� We start by de�ning a sequence of �nite

executions� where each execution is an extension of the previous one� as follows� The �rst

execution �� is obtained by letting process p� run alone from the start state until it enters C�

In the second execution ��� after �� we let p� enter the trying region and take one non�input

step� �Obviously� p� remains in the trying region�� And �i� for � � i � n� is de�ned by

starting after the end of �i��� then letting pi enter the trying region and take one non�input

step�

De�ne vi to be the value of the shared variable just after �i� � � i � n� We �rst claim

that vi �� vj for i �� j� For assume the contrary� i�e�� that vi � vj� and without loss of
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generality� assume i � j� Then the state after �i looks like the state after �j to p�� p�� � � � � pi�

since the value of the shared variable and all these processes� states are the same in both�

Now� there is a fair continuation of �i involving p�� � � � � pi only� that causes some process to

enter C in�nitely many times� This follows from the deadlock�freedom assumption �which

only applies in fair executions��

The same continuation can be applied after �j � with the same e�ect� But note that now

the continuation is not fair� pi��� � � � � pj are not taking any steps� although they are in T �

However� running a su�ciently large �but �nite� portion of this extension after �j is enough

to violate the bounded bypass assumption � pj will get bypassed arbitrarily many times by

some process�

Is this lower bound tight� or can it be raised� say to !�n��� Another result in  BFJLP"

shows that it can�t� This is demonstrated by a counterexample algorithm that needs only

n � c values for bounded�bypass �where the bound is around �� mutual exclusion with

deadlock�freedom�

The main idea of the algorithm is as follows� The processes in the trying region are

divided into two sets� called bu�er and main� When processes enter the trying region� they

go into bu�er � where they lose their relative order� At some time� when main is empty� all

processes in bu�er go to main� thereby emptying bu�er � Then processes are chosen one at

a time� in an arbitrary order� to go to the critical region�

The implementation of this idea needs some communication mechanisms� to tell processes

when to change regions� We�ll sketch the ideas here� and leave the details to the reader�

Assume� for a start� that we have a supervisor process that is always enabled �regardless of

user inputs�� and that can tell processes when to change regions and go critical� Clearly� the

supervisor does not �t within the rules of our models	 we�ll see how to get rid of it later�

With such a supervisor� we have the following strategy� First� let the variable have �

components� one for a count � � � � � n and one to hold any of a �nite set of messages� This is

cn values� but we can optimize to n� c by employing a priority scheme to allow preemption

of the variable for di�erent purposes� The supervisor keeps counts of number of processes

it knows about in the bu�er and main regions� When a process enters� it increments the

count in the shared variable to inform the supervisor that someone new has entered� and

then waits in bu�er � The supervisor� whenever it sees a count in the variable� absorbs it

in its local bu�er�count and resets the variable count to � Thus� the supervisor can �gure

out when to move processes to main� This is done �sequentially� by putting messages in the

message component of the shared variable� We have the following messages�

� ENTER�MAIN� the �rst process in bu�er that sees this message can �pick it up�� and

be thereby told to go to main�
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� ACK� process response�

� ENTER�CRIT� can be picked up by anyone in main� The process that picks it up can

go to the critical region�

� ACK� process response�

� BYE� the process in the critical region says it�s done and leaves�

Let�s see brie
y how can we reuse the variable� We need the variable for two purposes�

counting� and message delivery� Note that message communication proceeds more or less

sequentially �see Figure ���� for example��

enter−main

main−ack

enter−main

main−ack

enter−crit

main−ack

supervisor process

Figure ����� A typical communication fragment through the shared variable�

We have an implicit �control thread� here� If this thread is ever �broken� by overwriting

a message with a count increase� the rest of the system will eventually quiesce� the supervisor

will eventually absorb all counts� and count will become � At that point� the over�written

message could be replaced �count �  will be default if message is there�� More speci�cally�

the following occurs� When a process that enters the system sees a message in the variable�

it picks it up and puts down a count of � to announce its presence� This process holds the

message until count is  again� and then replaces the message it is holding in the shared

variable�

Now we turn back to our model� in which there is no supervisor� The idea is to have a

�virtual supervisor� simulated by the processes� E�g�� at any time� the process that controls C

will be the �designated supervisor�� and it must pass responsibility on when it leaves C� This

involves passing on its state information� and we need to use the variable to communicate this
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too� This can be done by using the variable as a message channel� where we again optimize

multiple uses of message channel as before� Note that if ever there�s no other process to

pass it to� it means that no one is waiting� But then there�s no interesting information in

the state anyway� so there is no problem in �abandoning responsibility�� when the process

leaves and puts an indicator in the variable�

LockoutFreedom

The lower bound of Theorem � can be beefed up to get a similar lower bound for lockout�

freedom  BFJLP"� This is harder� because lockout freedom� unlike bounded bypass� is a

property of �possibly in�nite� fair executions� and not only �nite executions� The bad exe�

cutions that are constructed must be fair�

We can get a lower bound of n��� by a complicated construction with an extra assumption�

that processes don�t remember anything when they return to their remainder regions� Some

tries were made to raise the bound to n� since it seems as if an algorithm has to have

su�ciently many di�erent values of the variable to record any number of entering processes�

But the search for a lower bound was halted by another clever counterexample algorithm�

giving lockout�freedom using only n�� � c values�

The idea that algorithm is as follows� Similarly to the n�c value algorithm� the algorithm

has incoming processes increment a count� which now only takes on values � � � � � n��� and

then wraps around back to � The count is absorbed by a �conceptual� supervisor� as before�

If it wraps around to � it seems like a group of n�� processes is hidden� But this is not quite

the case� there�s someone who knows about them � called the �executive� � the one that

did the transition from n�� to � The executive can send SLEEP messages to �an arbitrary

set of� n�� processes in bu�er � to put them to sleep� It doesn�t matter which processes

in bu�er go to sleep� Then� having removed n�� from the fray� the executive reenters the

system� Now the algorithm runs exactly as the bounded bypass algorithm� since it can�t

over
ow �but it only gets up to count n���� When the executive reaches C� it can take care

of the sleepers by sending them messages to awaken� and telling the supervisor about them�

Again� we must share the variable� now with a more complicated priority scheme�

Note� we can�t have � executives overlapping and confusing their sleepers� because it�s

not possible for that many to enter while the others are asleep�
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�� Read�Modify�Write Algorithms �cont��

������ Mutual Exclusion �cont�

Last time� we described read�modify�write algorithms for mutual exclusion with bounded

bypass� and mutual exclusion with lockout�freedom� We showed that we can get algorithms

that use a linear number of values for either� Today� we conclude this topic with one more

lower bound result�

Though we will not give here the full n�� lower bound for lockout�freedom� �too compli�

cated��� we will show the kinds of ideas that are needed for such a proof� We shall only sketch

a weaker lower bound for lockout�freedom� of approximately
p
n� Speci�cally� we prove the

following theorem�

Theorem � Any system of n � k��k
�

� � or more processes satisfying mutual exclusion and

lockout�freedom requires at least k values of the shared variable�

Proof� By induction on k� The base case k � � is trivial� Assume now that theorem

holds for k	 we show that it holds for k � �� Suppose n � �k������k���
�

� �� and suppose for

contradiction that number of shared values is no more than k� From the inductive hypothesis�

it follows that the number of values is exactly k� We now construct a bad execution to derive

a contradiction�

De�ne an execution �� by running p� alone until it enters C� De�ne further an execution

�� by running p� after ��� until p� reaches a state with shared variable value v�� such that

p� can run on its own� causing v� to recur in�nitely many times� Such a state must exist

since x can assume only �nitely many values� Likewise� get �i� for � � i � n� by running

pi after �i�� until it reaches a point where it could� on its own� cause the current value of

the shared variable x to recur in�nitely many times� Let vi be the value corresponding to

�i� Since there are only k values for x� by the pigeonhole principle� there must exist i and

j� where n� k � i � j � n� such that vi � vj�

Now� processes p�� � � � � pi comprise a system with at least k��k
� � � processes� solving

mutual exclusion with lockout�freedom� Thus� by induction� they must use all k values of
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shared memory� More speci�cally� for every global state s that is i�reachable from the state

qi just after �i� and every value v of x� there is a global state reachable from s in which

the value of x is v� �If not� then we could run the system to global state s� then starting

from there we have a reduced system with fewer than k values� contradicting the induction

hypothesis�� This implies that there exists a fair of execution of processes p�� � � � � pi that

starts from qi� such that all k values of shared memory recur in�nitely many times�

Now we can construct the bad execution as follows� First run p�� � � � � pj through �j � to

state qj� which looks like qi to p�� � � � � pi� Then run p�� � � � � pi as above� now from qj instead

of qi� in the execution in which each shared value recurs in�nitely often� Now recall that in

qj� each process pi��� � � � � pj is able to cause the value it sees to recur in�nitely many times�

So intersperse steps of the main run of p�� � � � � pi with steps of pi��� � � � � pj as follows� each

time the shared variable is set to some vl� i�� � l � j� run pl for enough steps �at least one�

to let it return the value to vl� This yields an in�nite execution that is fair to all processes

and that locks out� for example� pj�

The key idea to remember in the above proof is the construction of bad fair executions

by splicing together fair executions� Also� note the apparent paradox� there is a nontrivial

inherent cost to lockout�free mutual exclusion� even though we are assuming fair exclusive

access to a shared variable� which seems very close�

������ Other Resource Allocation Problems

Mutual exclusion is only one kind of resource allocation problem� modeling access to a single

shared resource� In this section we generalize the problem� There are two ways to describe

the generalizations� The �rst is exclusion problems� and the second is resource problems�

We start with the new de�nitions�

De�nitions

In the �rst variant� we describe exclusion problems� Formally� we describe these problems

by a collection E of �con
icting sets of processes� that are not allowed to coexist in C� E
could be any collection of sets of processes that is closed under containment� i�e�� if S � E
and S� � S then S� � E� For example� the mutual exclusion problem is characterized by

E � fS � jSj � �g �
A common generalization is the k�exclusion problem� modeling k shared resources� where

at most k processes may be in the critical region at any given time� In our language� the

problem is de�ned by

E � fS � jSj � k � �g �
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Clearly� we can be more arbitrary� e�g�� say E is de�ned to contain f�� �g� f�� �g� f�� �g� f�� �g
and other containing subsets� But note that in this case� � doesn�t exclude �� and � doesn�t

exclude ��

This leads us to the second variant of the de�nition� in terms of resources� In this case�

we have a set of explicit resources in the problem statement� and for each pi� we give a list

of requirements� in the form of a monotone Boolean formula� e�g�� �R� � R�� � �R� � R���

where the Ri�s are resources� Intuitively� the meaning of the example is that pi �needs�

either R� or R�� and either R� or R� in order to go critical� More formally� a set of resources

is acceptable for a process to go critical i� the setting all the corresponding variables to true

yields a satisfying assignment for the formula�

Let�s consider another simple example to illustrate this style of formulation� Suppose p�

wants resources R� and R�� p� wants R� and R�� p� wants R� and R�� and p� wants R� and

R�� In this example� the corresponding formulae have only a single clause �i�e� there are no

options here��

Note that any resource problem gives rise to an exclusion problem� where the combina�

tions excluded by the formulas cannot be simultaneously satis�ed� E�g�� for the example

above� we get an equivalent formulation by

E � fS � S � f�� �g� f�� �g� f�� �g� f�� �g� f�� �gg

It is also true that every exclusion condition can be expressed as a resource problem� and

thus these formulations are equivalent�

For stating a general problem to be solved in concurrent systems� we again assume the

cyclic behavior of the requests as before� The mutual exclusion condition is now replaced by

a general exclusion requirement� The de�nitions of progress and lockout�freedom remain the

same as before� We actually want to require something more� since there are some trivial

solutions that satisfy the requirements listed so far� any solution to mutual exclusion is a

fortiori a solution to more general exclusion� But there�s something wrong with this � we

want to insist that more concurrency is somehow possible� We don�t know what is the best

way to express this intuitive notion� We give here a slightly stronger condition in terms of

the resource formulation as follows�

Consider any reachable state in which process i is in T � and every process that

has any of the same�named resources in its resource requirement formula is in

R� Then if all the con
icting processes stay in R and i continues to take steps�

eventually i proceeds to C� �Note� We allow for other processes to halt��

Dijkstra had originally de�ned a special case� called the Dining Philosophers problem�

described below as a resource problem�
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Figure ����� The dining philosophers problem for n � ��

In the traditional scenario �see Figure ������ we have �ve �say� philosophers at a table�

usually thinking �i�e�� in R�� From time to time� each philosopher wants to eat �i�e�� to enter

C�� which requires two forks �representing the resources�	 we assume that each philosopher

can only take the forks adjacent to him �or her�� Thus� the formula for pi is Fi�� � Fi

�counting mod ��� We can represent this as an exclusion problem� namely�

E � fS � S � fFi� Fi��g for some  � i � �g �

We assume that there is a shared variable associated with each fork� and the access model

for the variables is read�modify�write� If the processes are all identical and they don�t use

their indices� then we have the same kind of symmetry problem we saw in electing a leader

in a ring� which cannot be solved� To be concrete� suppose they all try to pick up their left

fork �rst� and then their right� This satis�es the exclusion condition� but it can deadlock� if

all wake up at the same time and grab their left forks� then no one can proceed �this is worse

than a deadlocking execution � the system actually wedges�� Thus� we must use some kind

of symmetry breaking technique� and here we make the assumption that the process indices

�i�e�� locations� are known to the processes�

Dijkstra�s original solution requires simultaneous locking of the two adjacent forks� a

centralized shared read�modify�write variable� and has no fairness� We�ll see a better solution

below�

The LeftRight Algorithm

This algorithm appeared in Burns paper� but it is generally considered as �folklore�� This

algorithm ensures exclusion� deadlock�freedom �in the stronger version stated above�� and

lockout�freedom� Also� it has a good time bound� independent of the size of the ring�

This is a simple style of algorithm based on running around and collecting the forks� one

at a time� We have to be careful about the order in which this is done� For instance� if the
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order is arbitrary� then we risk deadlock as above� Even if there is no danger of deadlock� we

might be doing very poorly in terms of time performance� E�g�� if everyone gets their forks

in numerical order of forks� then although they don�t deadlock� this might result in a long

waiting chain� To see this� consider the following scenario� In Figure ���� above� suppose

that p� gets both forks� then p� gets its right fork� then waits for its left� p� gets its right

fork� then waits for its left� p� gets its right fork� then waits for its left� and p� waits for its

right fork� �See Figure ���� for �nal con�guration��

p2p3

p4

p0

p1

F4 F0

F1

F2

F3

Figure ����� A con�guration with long waiting chain� Arrows indicate possession of forks�

In the last state we have a chain where p� waits for p�� which waits for p�� which waits

for p�� which waits for p�� The processes in the waiting chain can go into the critical region

only sequentially� In general� this means that time can be at least linear in the size of the

ring�

In contrast� the Burns algorithm has a constant bound� independent of the size of the

ring� The algorithm accomplishes this by avoiding long waiting chains� We describe the

algorithm here for n even� The variant for odd n is similar� and is left as an exercise� The

algorithm is based on the following simple rule� even numbered processes pick up their left

forks �rst� and odd numbered processes get their right forks �rst� Thus� the asymmetry

here is the knowledge of the parity� Variables correspond to the forks� as before� Now� each

variable contains a queue of processes waiting for the fork� of length at most �� The �rst

process on the queue is assumed to own the fork� The code is given in Figure �����

Properties� Mutual exclusion is straightforward� Deadlock�freedom follows from lockout�

freedom� which in turn follows from a time bound� which we prove now� Assume as usual

that the step time at most s� and that the critical region time at most c� De�ne T �n� to

be the worst time from entry to trying region until entry to critical region �in an n�process

ring�� Our goal is to bound T �n�� As an auxiliary quantity� we de�ne S�n� to be the worst

time from when a process has its �rst fork until entry to critical region�
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try i

E�ect
 pc � look�left

look�left

Precondition
 pc � look�left

E�ect
 if i is not on xi�queue then add i to end

else if i is �rst on xi�queue then pc � look�right

look�right

Precondition
 pc � look�right

E�ect
 if i is not on xi���queue then add i to end

else if i is �rst on xi���queue then pc � before�C

crit i

Precondition
 pc � before�C

E�ect
 pc � C

exit i

E�ect
 return � set � fL�Rg

pc � return

return�left

Precondition
 pc � return

L � return�set

E�ect
 return�set� return�set� fLg

remove i from xi�queue

return�right

Precondition
 pc � return

R � return�set

E�ect
 return�set� return�set� fRg

remove i from xi���queue

remi

Precondition
 pc � return

return�set � �

E�ect
 pc � rem

Figure ����� Left�right dining philosophers algorithm� code for process pi� i even�
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Let us start by bounding T �n� in terms of S�n�� pi tests its �rst fork within time s of

when it enters T � When pi �rst tries� either it gets its �rst fork immediately or not� If so�

then S�n� time later� it goes critical� If not� then the other process has the �rst fork� At

worst� that other process just got the fork� so it takes at most S�n� � c� �s until it gets to

C� �nishes C� and returns both forks� Then since pi recorded its index in the queue for its

�rst fork� within additional time s� pi will re�test the �rst fork and succeed in getting it� and

then in additional S�n� time pi reaches C� This analysis says that

T �n� � s�maxfS�n�� S�n� � c� �s � s� S�n�g 	 
s � c� �S�n� � ����
�

We now bound S�n�� pi tests its second fork within time s of when it gets the �rst fork�

Again we need to consider two cases� If it gets the second fork immediately� then within an

additional time s� pi goes critical� If not� then the other process has it� and because of the

arrangement� since its pis second fork� it must be its neighbors second fork also� So within

time at most s� c��s� the neighbor gets to C� leaves� and returns both forks� Then within

additional time s� pi will retest the second fork and succeed in getting it� Then additional

time s will take pi to C� This analysis says that

S�n� � s�maxfs� s� c� �s� s� sg 	 �s� c � ������

Putting Eq� ����
� and ������ together� we conclude that

T �n� � 
s � c� ���s � c� 	 ��s � �c �

Note that the bound is independent of n� This is a very nice property for a distributed

algorithm to have� It expresses a strong kind of locality� or �network transparency��

Extension to More General Resource Problems

Due to the nice features of the Left�Right algorithm� it is natural to ask whether can we

extend this alternating left�right idea to more general resource allocation problems� In this

section we show an extension that is not completely general� but rather applies only to

conjunctive problems� where the resource requirement of a process is exactly one particular

set� �This case does not cover k�exclusion� for example� which is a disjunctive problem� with

more than one alternative allowed��

Again� for each resource we have an associated variable� shared by all processes that use

that resource� The variable contains a FIFO queue to record whos waiting �as before�� As

before� the processes will wait for the resources one at a time� To avoid deadlock� we arrange

resources in some global total ordering� and let each process seek resources in order according

to this ordering� smallest to largest� It is easy to see that this prevents deadlock� if process
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i waits for process j� then j holds a resource which is strictly larger than the one for which i

is waiting� and hence the process holding the largest�numbered resource can always advance�

The FIFO nature of the queues also prevents lockout�

However� the time performance of this strategy is not very good� in general� There is no

limit on the length of waiting chains �except for the number of processes�� and so the time

bounds can be linearly dependent on the number of nodes in the network� We saw such an

example above� for rings� So we must re�ne the ordering scheme by giving a way to choose a

good total ordering� i�e�� one that doesnt permit long waiting chains� We use the following

strategy for selecting a good total order� De�ne the resource problem graph� where the nodes

represent the resources� and we have an edge from one node to another if there is a user that

needs both corresponding resources� See Figure ���
 for an example of Dining Philosophers

with � nodes�

F0 F1

F2

F3F4

F5

p0

p1

p2

p3

p4

p5

Figure ���
� Resource graph for six dining philosophers�

Now color the nodes of the graph so that no two adjacent nodes have the same color�

We can try to minimize the number of colors� �nding minimal coloring is NP�hard� but a

greedy algorithm is guranteed to color the graph in no more than m� � colors�

Now totally order the colors� This only partially orders the resources� but it does totally

order the resources needed by any single process� See Figure ���� for an example�

Now each process accesses the forks in increasing order according to the color ordering�

�Equivalently� take any topological ordering of the given partial ordering� and let all processes

follow that total ordering in the earlier strategy�� Carrying on with our example� this boils

down to the alternating left�right strategy�

It is easy to see that the length of waiting chains is bounded by the number of colors�

This is true since a process can be waiting for a resource of minimum color� which another

process has� That process could only be waiting for a resource of �larger� color� etc�

The algorithm has the nice property that the worst�case time is not directly dependent
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Figure ����� coloring�

on the total number of processes and resources� Rather� let s be an upper bound on step

time� and c an upper bound on critical section time� as before� Let k be the number of colors�

and let m be the maximal number of users for a single resource� We show that the worst

case time bound is O
�
�mk�c� �kmk�s

�
� That is� time depends only on �local� parameters�

�We can make a reasonable case that in a realistic distributed network� these parameters are

actually local� not dependent on the size of the network�� Note that this a big bound � it

is exponential in k� so complexity is not proportional to the length of the waiting chain� but

is actually more complicated� There are some complex interleavings that get close to this

bound�

To prove the upper bound� we use the same strategy is as before� De�ne Ti�j� for � � i � k

indicating colors� and � � j � m indicating positions on a queue� to be the worst�case time

from when a process reaches position j on any queue of a resource with color i� until it

reaches C� Then set up inequalities as for the Left�Right algorithm� The base case is when

the process already has the last resource�

Tk�� � s ������

Also� when a process is �rst on any queue� within time s it will be at worst at position m

on the next higher queue�

Ti�� � s� Ti���m for all i � k ������

And lastly� when a process in in position j � � on queue i� it only has to wait for its

predecessor on the queue to get the resource and give it up� and then it gets the resource�

Ti�j � Ti�j�� � c� ks� Ti�� for all i and for all j � � ������

The claimed bound follows from solving for T��m �after adding an extra s��
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Cutting Down the Time Bound This result shows that a very general class of resource

allocation problems can have time independent of global network parameters� But it would

be nice to cut down the time bound from exponential to linear in the number of colors� There

are some preliminary results by Awerbuch�Saks� and Choy�Singh� But there is probably still

more work to be done�

���� Safe and Regular Registers

In this section we switch from the very powerful read�modify�write shared memory model to

some much weaker variants� We start with some de�nitions�

������ De�nitions

We now focus on read�write objects �registers� again� and consider generalizations of the

notion of an atomic read�write register� safe and regular registers� These variants are weaker

than atomic registers� but can still be used to solve interesting problems� They �t our general

object de�nition� in particular� inputs are read i�x and write i�x�v�� with outputs as before� The

registers are modeled as I�O automata as in Figure �����

write(v)

write−respond

read

read−respond(v)

X

Figure ����� Concurrent Read�Write Register X� Subscripts mentioned in the text are

omitted from the diagram�

As before� the index i on the read and write operations corresponds to a particular line

on which a process can access the register� Also as before� we assume that operations on each

line are invoked sequentially� i�e�� no new operations are invoked on a line until all previous

operations invoked on that line have returned� But otherwise� operations can overlap�

Recall the de�nition of atomic registers� An atomic register has three properties� it

preserves well�formedness� it satis�es the atomicity condition� and fairness implies that op�

���



erations complete� Also� depending on the architecture of the implementation� we can have

a wait�free condition� Now we generalize the second �atomicity� condition� without changing

the other conditions� This still �ts the general object spec model� so the modularity results

hold� this allows us to build objects hierarchically� even preserving the wait�free property�

For these weaker conditions� we only consider single�writer registers� This means that

writes never overlap one another� We require in all cases that any read that doesnt overlap

a write gets the value of the closest preceding write �or the initial value if none�� This is

what would happen in an atomic register� The de�nitions di�er from atomic registers in

allowing for more possibilities when a read does overlap a write�

The weakest possibility is a safe register� in which a read that overlaps a write can return

an arbitrary value� The other possibility is a regular register� which falls somewhere in

between safe and atomic registers� As above� a read operation on a regular register returns

the correct value if it does not overlap any write operations� However� if a read overlaps one

or more writes� it has to return the value of the register either before or after any of the

writes it overlaps�

W0

W1

W2

W3

W4

R1 R2

Figure ����� Read Overlapping Writes

For example� consider the scenario in Figure ����� The set of feasible writes for R�

is fW��W��W��W��W�g because it is allowed to return a value written by any of these

write operations� Similarly� the set of feasible writes for R� is fW��W��W�g� The important

di�erence between regular and atomic registers is that for regular registers� consecutive reads
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can return values in inverted order�

������ Implementation Relationships for Registers

Suppose we only have safe registers because thats all our hardware provides� and we would

like to have atomic registers� We shall show that in fact� we can start with safe� single�reader

single�writer� binary registers� and build all the way up to atomic� multi�reader multi�writer�

k�ary registers for arbitrary k� Lamport carries out a series of wait�free constructions� starting

with the simplest registers and ending up with single�reader single�writer k�ary registers�

Others have completed the remaining constructions� We have already seen how to get multi�

writer multi�reader registers from single�writer multi�reader registers �although there is room

for improved e�ciency�� Also� Singh� Anderson� and Gouda have given an implementation

of single�writer multi�reader registers from single�writer single�reader registers�

In this general development� some of the algorithms are logically complex and�or time�

consuming� so there is some question about their practicality�

The general development we consider here can be formalized in the object spec model�

So we get transitivity as discussed earlier� Recall the architecture�

RP

WP1

WP2

x1

x2

reader line

writer 1 line

writer 2 line

Figure ����� Example� Implementing a ��writer ��reader register with two ��writer ��reader

registers

In Figure ���� we see a particular implementation of a ��writer ��reader register in terms

of two ��writer ��reader registers� There is a process for each line of the register being

implemented� i�e�� for each of the high�level writers and the high�level reader� These processes
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are connected to the low�level registers in such a way that each line of a low�level register is

connected to only one process�

In general� we call the high�level registers logical registers and the low�level registers

physical registers� In all of the constructions we will consider� a logical register is constructed

from one or more physical registers� Each input line to the logical register is connected to a

process� These processes in turn are connected to one or more of the physical registers using

internal lines� Exactly one process is connected to any internal line of a physical register�

This permits the processes to guarantee sequentiality on each line� Processes connected to

external write lines are called write processes� and processes connected to external read lines

are called read processes� Note that nothing prevents a read process from being connected

to an internal write line of a physical register� and vice versa�

We follow Lamports development� We have safe vs� regular vs� atomic� single�reader

vs� multi�reader� and binary vs� k�ary registers� We thus consider the twelve di�erent kinds

of registers this classi�cation gives rise to� and see which register types can be used to

implement which other types� The implementation relationships in Figure ���� should be

obvious� because they indicate types of registers that are special cases of other types�
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Figure ����� Obvious implementation relationships between register types� An arrow from

type A to type B means that B can be implemented using A

�

������ Register Constructions

Lamport presents �ve constructions to show other implementation relationships� In the

following constructions� actions on external lines are always speci�ed in upper�case� whereas
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actions on internal lines are speci�ed in lower�case� For example�WRITE and READ denote

external operations whereas write and read denote internal operations�

N�Reader Registers from Single�Reader Registers

The following construction �Construction � in the paper� implements an n�reader safe register

from n single�reader safe registers� The same algorithm also implements an n�reader regular

register from n single�reader regular registers� The write process is connected to the write

lines of all n internal registers as in Figure ������
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Figure ������ N �Reader Registers from n ��Reader Registers

Read process i is connected to the read line of the ith physical register� Thus� the write

process writes all the physical registers� while each read process only reads one physical

register� The code is as follows�

WRITE�v�� For all i in f�� � � � � ng� invoke write�v� on xi� Wait for acks from all xi and then

do ACK� �The writes can be done in any order��

READ i� Invoke read on xi� Wait for return�v� and then do RETURN �v��

Claim � If x�� � � � � xn are safe registers� then so is the logical register�

Proof� Within each WRITE� exactly one write is performed on each particular register xi�

Therefore� since WRITE operations occur sequentially� write operations for each particular

xi are also sequential� Likewise� read operations for a particular xi are also sequential�
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Therefore� each physical register has the required sequentiality of accesses� This means that

the physical registers return values according to their second conditions �behavior specs��

Now if a READ� say by RPi� does not overlap any WRITE� then its contained read does

not overlap any write to xi� Therefore� the correctness of xi assures that the read operation

gets the value written by the last completed write to xi� This is the same value as written by

the last completed WRITE� and since RPi returns this value� this READ returns the value

of the last completed WRITE�

Claim � If x�� � � � � xn are regular registers� then so is the logical register�

Proof� We can �reuse� the preceding proof to get the required sequentiality of accesses to

each physical register� and to prove that any READ that does not overlap a WRITE returns

the correct value� Therefore� we only need to show that if a READ process R overlaps some

WRITE operations� then it returns the value written by a feasible WRITE� Since the read r

for R falls somewhere inside the interval of R� the set of feasible writes for r corresponds to

a subset of the feasible WRITES for R�

Therefore� regularity of the physical register xi implies that r gets one of the values

written by the set of feasible writes� and hence R gets one of the values written by the set

of feasible WRITES�

Consider two READs done sequentially at di�erent processes� bracketed within a single

WRITE� They can obtain out�of�order results� if the �rst sees the result of the WRITE

but the later one does not �since WRITE isnt done atomically�� This implies that the

construction does not make the logical register atomic even if the xi are atomic�

With this construction� Figure ���� reduces to Figure ������

Wait�freedom� The previous construction guarantees that all logical operations terminate

in a bounded number of steps of the given process� regardless of what the other processes

do� Therefore� the implementation is wait�free� In fact� the property satis�ed is stronger�

since it mentions a bounded number of steps� Sometimes in the literature� wait�freedom is

formulated in terms of such a bound�

K�ary Safe Registers from Binary Safe Registers

If k 	
j
�l
k
� then we can implement a k�ary safe register using l binary safe registers �Con�

struction � in the paper�� We do this by storing the ith bit of the value in binary register xi�

The logical register will allow the same number of readers as the physical registers do �see

Figure �������

The code for this construction is as follows�

WRITE�v�� For i in f�� � � � � lg �in any order�� write bit i of the value to register xi�
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READ i� For i in f�� � � � � lg �in any order�� read bit i of value v from register xi� Then

RETURN�v��

Note that unlike the Construction �� this construction works for safe registers only� i�e�� a

k�ary regular register cannot be constructed from a binary regular register using this method�

With this construction� Figure ����� reduces to Figure ������
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Lecture ��

���� Register Constructions �cont��

We continue investigating the implementation relationships among the di�erent register mod�

els� In the last lecture� we saw Constructions � and �� and we have consequently reduced

the relationship to the one described in Figure �����
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������ Construction �� Binary Regular Register from Binary Safe

Register

A binary regular register can easily be implemented using just one binary safe register �see

Figure ������

Recall that a read from a binary safe register may return any value from its domain the

read overlaps a write� For binary registers� the domain consists of only � and �� Notice that

since a binary regular register is only required to return a feasible value� it su�ces to ensure
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that all writes done on the low�level register actually change the value � because in this

case either value is feasible�

The basic idea is that the write process� WP� keeps track of the contents of register x�

�This is easy because WP is the only writer of x�� WP does a low�level write only when it

is performing a WRITE that would actually change the value of the register� If the WRITE

is just rewriting the old value� then WP �nishes the operation right away without touching

x� Therefore� all low level writes toggle the value of the register� Speci�cally� the �code� is

as follows�

write�v�� if v is the last recorded value� then do WRITE�RESPOND� else do write�v�� and

upon receiving write�respond do WRITE�RESPOND�

read� do read� upon receiving read�respond�x�� do READ�RESPOND�x��

Now consider what happens when a READ is overlapped by a WRITE� If the correspond�

ing write is not performed �i�e�� the value is unchanged�� then register x will just return the

old value� and this READ will be correct� If the corresponding write is performed� x may

return either � or �� However� both � and � are in the feasible value set of this READ because

the overlapping WRITE is toggling the value of the register� Therefore� the READ will be

correct�

The implementation relations of Figure ���� now reduce to Figure �����
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������ Construction �� K	ary Regular Register from Binary Reg	

ular Register

We can implement a k�ary regular register using k binary regular registers arranged as in

Figure ���
� Here� we assume that the k values of the register are encoded as �� �� � � � � k� ��

We will use a unary encoding of these values� and the idea �which has appeared in other

papers� by Lamport and by Peterson� of writing a sequence of bits in one order� and reading

them in the opposite order� We remark that Lamport also gives an improved implementation

for binary representation� thus reducing the space requirement logarithmically�

If the initial value of the logical register is v�� then initially xv� is �� and the other physical

registers are all � �using unary representation�� The code is as follows�

WRITE�v�� First� write � in xv� Then� in order� write � in xv��� � � � � x��

READ� Do read x�� x�� � � � � xk�� in order� until xv 	 � is found for some v� Then RETURN

v�

Note that RP i is guaranteed to �nd a non�zero xv because whenever a physical register

is zeroed out� there is already a � written in a higher index register� �Alternatively� we could

initialize the system so that xk�� 	 �� and then we would have xk�� always equal to ��� We

now prove the correctness of Construction 
 formally�

Claim � If a READ R sees � in xv� then v must have been written by a WRITE that is

feasible for R�
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Proof� By contradiction� Suppose R sees xv 	 �� and neither an overlapping nor an

immediately preceding WRITE wrote v to the logical register� Then v was written either

sometime in the past� say by WRITE W�� or v is the initial value� We analyze below the

former case� the initial value case can be treated similarly�

So let W� be the last WRITE completely preceding R that wrote v� Since v is not a

feasible value for R� there must be another WRITE W� after W� which completely precedes

R� Any such W� �i�e�� a WRITE that follows W� and completely precedes R� can write only

values strictly smaller than v� because if it wrote a value more than v� it would set xv 	 �

before R could see xv 	 �� and it cannot write v by the choice of W�� Note that if such a W�

writes value v�� then the contained write��� to xv� completely precedes the read of xv� in R�

So� consider the latest write��� to a register xv� such that v� � v� and such that the

write��� follows W� and completely precedes the read of xv� in R� By the above arguments�

there is at least one such write� We now proceed with case analysis�

Since R reads the registers in order x�� � � � � xk��� and it returns value v � v�� R must see

xv� 	 �� But we have just identi�ed a place where xv� is set to �� Therefore� there exists

some write��� to xv� which follows the write��� to xv� and either precedes or overlaps the

read of v� in R� This can only happen if there is an intervening write��� to some xv�� such

that v�� � v�� As above� in this case we must have v�� � v� �If not� then before doing the

write��� to xv�� the enclosing WRITE would overwrite the � in xv� and so R could not get

���



it�� But then this is a contradiction to the choice of the write of v� as the latest� �Note the

write��� to xv�� completely precedes the read of xv�� in R� because the write��� to xv� either

precedes or overlaps the read of xv� in R� and v�� � v���

The implementation relationships now collapse as shown in Figure �����
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������ Construction 
� �	Reader K	ary Atomic Register from Reg	

ular Register

We now show how to construct a ��writer� ��reader k�ary atomic register from two ��writer�

��reader k�ary regular registers arranged as in Figure ����� The code is given in Figure �����

The cases in the code are designed to decide whether to return the new or the old value

read� Intuitively� if x��num 	 �� it means that there has been much progress in the write �or

it may be �nished�� so it is reasonable to return the new value� At the same time� it is useful

to remember that the new value has already been returned� in the new�returned variable�

This is because a later read of x that overlaps a write could get an earlier version of the

variable� with num 	 � �because x is a regular register� and not an atomic register�� Notice

that it couldnt get num 	 �� The second case covers the situation in which the previous

read could have already returned the value of a write that overlaps both� The conditions look

a little ad hoc� Unfortunately� we cant give a correctness proof in class� For the correctness

proof� we refer the reader to �Lamport���� This is not the sort of proof that can be done in

any obvious way using invariants� because the underlying registers are not atomic� Instead�
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Lamport developed an alternative theory of concurrency� based on actions with duration�

overlapping or totally preceding each other� Another approach to prove the correctness is

to use the Lemma presented in Lecture ���

The implementation relations now collapse as in Figure ����� This concludes Lamports

constructions�

������ Multi	Reader Atomic Registers

Notice that the constructions thus far still leave a gap between the n�reader� ��writer atomic

registers and the ��reader� ��writer atomic registers� This gap has been closed in a couple of

other papers� �SinghAG���� �NewmanW����� We remark that these algorithms are somewhat

complicated� It is also not clear if they are practical� since their time complexity is high�

Singh�Anderson�Gouda have a reasonable construction� related to Lamports Construction

��

���� Lamport�s Bakery Revisited

We now show that the original Lamport bakery algorithm presented in class still works if

the underlying registers are only safe� The explanation is as follows�

� A read of the choosing variable while it is being written will be guaranteed to get

either � or �� since these are the only possible values� But those correspond to either

the point before or after the write step�

� If a number is read by a chooser while it is being written� the chooser can get an

arbitrary value� When the chooser takes the maximum of this arbitrary value with
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Shared Variables� �regular registers�

� x� stores tuples of �old �new �num� color�� where old �new are from the value do�

main of the atomic register� and num � f�� �� �g� Initially x 	 �v�� v�� �� red��

� y� stores values from fred� blueg� Initially y 	 blue �

Code for write�v��

newcolor � �y

oldvalue � x�new �record value of x locally� no need to read it�

for i � f�� �� �g do

x� �oldvalue � v� i�newcolor�

Code for read�

�remember last two reads in x� and x���

x�� � x�

x� � x

y � x��color �

case

x��num 	 ��

new�returned� true

return x��new

x��num � � and x��num � �x���num � �� and new�returned and x��color 	 x���color �

return x��new

otherwise�

new�returned� false

return x��old

end case

Figure ����� Code for constructing single�read k�ary atomic register from regular registers
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the others� the result is that the chooser is guaranteed to choose something bigger

than all the values it sees without overlap� but there is no guarantee it will choose

something bigger than a concurrent writer� However� the concurrent writer is choosing

concurrently� and the algorithm didnt need any particular relation between values

chosen concurrently�

� In L�� suppose someone reads a number while its being written� If the test succeeds�

the writer is back at the point of choosing its value� and everything is �ne� �That is�

it must be that the reader at L� saw the writer before it begin choosing its number�

so the writer is guaranteed to choose a larger number�� The problem is if the writers

value comes back as very small� which can delay the reader� However� it cannot delay

the reader forever�

���� Asynchronous Network Algorithms

Now we make another major switch in the model we consider� Namely� we switch from asyn�

chronous shared memory to asynchronous networks� As in synchronous networks� we assume

a graph �or a digraph� G� with processes at the nodes� and communication over �directed�

edges� But now� instead of synchronous rounds of communication� we have asynchrony in

the communication as well as the process steps�

We model each process as an IOA� generally with some inputs and outputs connecting it

with the outside world� �This is the boundary where the problems will usually be stated�� In

addition� process i has outputs of the form send i�j�m�� where j is an outgoing neighbor� and

m is a message �element of some message alphabet M�� and inputs of the form receivej�i�m��

for j an incoming neighbor� Except for these interface restrictions� the process can be an

arbitrary IOA� �We sometimes restrict the number of classes� or the number of states� etc��
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to obtain complexity results��

To model communication� we give a behavior speci�cation for the allowable sequences of

send �i� j� and receive�i� j� actions� for each edge �i� j�� This can be done in two ways� by a

list of properties or axioms� or by giving an IOA whose fair behaviors are exactly the desired

sequences� The advantage of giving an explicit IOA is that in this case� the entire system

is described simply as a composition� and we have information about the state of the entire

system to use in invariants and simulation proofs� But sometimes its necessary to do some

unnatural programming to specify the desired behavior as an IOA � especially when we want

to describe liveness constraints� Let us now make a short digression to de�ne the important

notions of safety and liveness�

Let S and L be properties �i�e�� sets� of sequences over a given action alphabet� S is a

safety property if the following conditions hold�

�� S is nonempty �i�e�� there is some sequence that satis�es S��

�� S is pre�x�closed �i�e�� if a sequence satis�es S� then all its pre�xes satisfy S�� and

�� S is limit�closed �i�e�� if every �nite pre�x of an in�nite sequence satis�es S� then the

in�nite sequence satis�es S��

L is a liveness property if for every �nite sequence� there is some extension that satis�es

L� Informally� safety properties are appropriate for expressing the idea that �nothing bad

ever happens� � if nothing bad has happened in a �nite sequence� then nothing bad has

happened in any pre�x either� moreover� if something bad happens� it happens at a �nite

point in time� Liveness� on the other hand� is most often used to express the idea that

�something good eventually happens��

We now return to the asynchronous message passing model� The most common commu�

nication channel studied in the research literature is a reliable FIFO channel� Formally� this

is an IOA with the appropriate interface� whose state is a queue of messages� The send �i� j�

action puts its argument at the end of the queue� The receive i�j�m� action is enabled if m is

at the head of the queue� and its e�ect is to remove the message from the queue� Of course�

it also delivers the message to the recipient process �which should handle it somehow�� But

that is a part of the process job� not of the channels� The right division of responsibilities

is obtained by the IOA composition de�nition� The fairness partition here can put all the

locally controlled actions in a single class�

To gain some experience with asynchronous network algorithms �within this model�� we

go back to the beginning of the course and reconsider some of the examples we previously

considered in synchronous networks�
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������ Leader Election

Recall the algorithms we considered earlier� First� the graph is a ring� with UIDs built into

the initial states of the processors as before� In the action signature there are no inputs from

the outside world� and the only output actions are leader i� one for each process i�

LeLann�Chang Algorithm

In this algorithm� each process sends its ID around the �unidirectional� ring� When a node

receives an incoming identi�er� it compares that identi�er to its own� if the incoming identi�er

is greater than its own� it keeps passing the identi�er� if it is less than its own� then the

identi�er is discarded� and if it is equal� it outputs the leader action� This idea still works

in an asynchronous system� Figure ���� gives the code for the algorithm�

Essentially� the behavior of the algorithm is the same as in the synchronous� but �skewed�

in time� We might prove it correct by relating it to the synchronous algorithm� but the

relationship would not be a forward simulation� since things happen here in di�erent orders�

We need a more complex correspondence� Instead of pursuing that idea� well discuss a more

common style of verifying such algorithms� namely� direct use of invariants and induction�

Invariant proofs for asynchronous systems work �ne� The induction is now on individual

processes steps� whereas the induction in the synchronous model was on global system steps�

Here� as in the synchronous case� we must show two things�

�� that no one except the maximum ever outputs leader � and

�� that a leader output eventually occurs�

Note that ��� is a safety property �asserting the fact that no violation ever occurs�� and ���

is a liveness property�

Safety properties can be proved using invariants� Here� we use a similar invariant to the

one we stated for the synchronous case�

Invariant � If i �	 imax and j � �imax � i� then own�i� �� send �j��

We want to prove this invariant by induction again� similar to the synchronous case�

�Recall a homework problem about this�� But now� due to the introduction of the message

channels with their own states� we need to add another property to make the induction go

through�

Invariant � If i �	 imax and j � �imax � i� then own�i� �� queue �j� j � ���

With these two statements together� the induction works much as before� More specif�

ically� we proceed by case analysis based on one process at a time performing an action�
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The key step� as before� is where i gets pruned out by process imax � This proves the safety

property�

We now turn to the liveness property� namely that a leader i action eventually occurs�

For this property� things are quite di�erent from the synchronous case� Recall that in the

synchronous case� we used a very strong invariant� which characterized exactly where the

maximum value had reached after k rounds� Now there is no notion of round� so the proof

must be di�erent� We cant give such a precise characterization of what happens in the

computation� since there is now so much more uncertainty� So we need to use a di�erent

method� based on making progress toward a goal� Here� we show inductively on k� for

� � k � n � �� that eventually� imax winds up in send imax�k� We then apply this to n � ��

and show that imax eventually gets put into the �imax � �� imax � channel� and then that imax

message eventually is received at imax � and therefore eventually leader imax action gets done�

All these �eventually� arguments depend on using the IOA fairness de�nition�

For example� suppose that there is a state s appearing in some fair execution �� where

a message m appears at the head of a send queue in s� We want to show that eventually

send �m� must occur� Suppose not� By examination of the allowable transitions� we conclude

that m remains at the head of the send queue forever� This means that the send class stays

enabled forever� By the IOA fairness� some send must eventually occur� But m is the only

one at the head of the queue� so the only one for which an action can be enabled� so send�m�

must eventually occur�

Likewise� ifm appears in the kth position in the send queue� we can prove that eventually

send �m� occurs� This is proven by induction on k� with the base case above� The inductive

step says that something in position k eventually gets to position k� �� and this is based on

the head eventually getting removed�

We remark that this type of argument can be formalized within temporal logic� using

statements of the form P � �Q �see Manna and Pnueli��
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State of process i�

� own � type UID� initially is UID

� send � type queue of UIDs� initially containing only is UID

� status � takes values from funknown � chosen� reportedg� initially unknown�

Actions of process i�

send i�i���m�

Precondition� m is �rst on send

E�ect� Remove �rst element of send

receive i���i�m�

E�ect� case

m � own� add m to end of send

m 	 own� status � chosen

otherwise� do nothing

endcase

leader i

Precondition� status 	 chosen

E�ect� status � reported

Fairness partition classes� For any process� all send actions are in one class� and the

leader action in another �singleton� class�

Figure ����� LeLann�Chang algorithm for leader election in asynchronous rings
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�	�� Leader Election in Asynchronous Rings �cont��

������ The LeLann	Chang Algorithm �cont�

We conclude our discussion of this algorithm with time analysis� In the synchronous case�

we had an easy way to measure time � by counting the number of synchronous rounds� for

the synchronous version of this algorithm� we got about n� In the asynchronous case� we

have to use a real time measure similar to what we used for asynchronous shared memory

algorithms�

At this point� we pause and generalize this time measure to arbitrary IOAs� This turns

out to be straightforward � thinking of the fairness classes as representing separate tasks�

we can just associate a positive real upper bound with each class� This generalizes what

we did for shared memory in a natural way� there� we had upper bounds for each process�

and for each user� �Recall that we could model the user as a separate I�O automaton�� In

specializing version to the reliable network model� we put an upper bound of l on each class

of each process� and an upper bound of d on time for the message queue to do a step �that

is� the time to deliver the �rst message in the queue��

Using these de�nitions� we proceed with the analysis of the LeLann�Chang algorithm� A

naive approach �as in the CWI paper� gives an O�n�� bound� This is obtained by using the

progress argument from the last lecture� adding the time bounds in along the way� in the

worst case� it takesnl� nd time for the maximum UID to get from one node to the next �nl

time to send it� and then nd to receive it�� Note that in this analysis� we are allowing for the

maximum number of messages �n� to delay the message of interest in all the queues� The

overall time complexity is thus O�n��l� d���

But it is possible to carry out a more re�ned analysis� thus obtaining a better upper

bound� The key idea is that although the queues can grow to size at worst n and incur nd

time to deliver everything� this cannot happen everywhere� More speci�cally� in order for

a long queue to form� some messages must have been traveling faster than the worst�case

upper bound� Using this intuition� we can carry out an analysis that yields an O�n�l � d��
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upper bound on time� Informally� the idea is to associate a progress measure with each state�

giving an upper bound on the time from any point when the algorithm is in that state until

the leader is reported� Formally� we prove the following claim�

Claim � Given a state in an execution of the algorithm� consider the distance around the

ring of a token �i�e�� message� i from its current position to its home node i� Let k be the

maximum of these distances� Then within k�l � d� � l time� a leader event occurs�

Applying this claim to the initial state yields an upper bound for the algorithm of n�l�

d� � l� as desired�

Proof� By induction on k�

Base case� k 	 �� i�e�� the imax token has already arrived at node imax � in this case� within

l time units the leader will occur�

Inductive step� Suppose the claim holds true for k� �� and prove it holds for k� Suppose

that k is the maximum of the indicated distances� Consider any token that is at distance

greater than k � �� By de�nition of k� no token is in distance strictly greater than k� This

means that the token is either in the send queue at distance k� or in the channels queue

from distance k to k � �� We now argue that this token is not �blocked� by any other

token� i�e�� that it is the only token in the combination of this send bu�er or this queue �

To see this� notice that if another token were there also� then that other token would be at

distance strictly greater than k from its goal� a contradiction to the assumption that k is the

maximum such value� So within time at most l� d� the token on which we focus gets to the

next node� i�e�� to within distance k � � of its goal� and then� by the inductive hypothesis�

in additional time �k� ���l� d�� l� a leader event occurs� This proves the inductive step�

������ The Hirshberg	Sinclair Algorithm

Recall the Hirshberg�Sinclair algorithm� which used the idea of two�directional exploration

as successively doubled distances� It is straightforward to see that this algorithm still works

�ne in the asynchronous setting� with the same time and communication upper bounds�

O�n log n��

������ The Peterson Algorithm

Hirshberg and Sinclair� in their original paper� conjectured that in order to get O�n log n�

worst case message performance� a leader election algorithmwould have to allow bidirectional

message passing� Peterson� however� constructed an algorithm disproving this conjecture�

More speci�cally� the assumptions used by the Peterson algorithm are the following�

� The number of nodes in the ring is unknown�
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� Unidirectional channels�

� Asynchronous model�

� Unbounded identi�er set�

� Any node may be elected as the leader �not necessarily the maximum��

The Peterson algorithm not only has O�n log n� worst case performance� but in fact the

constant factor is low� it is easy to show an upper bound of � 	 n log n� and Peterson used

a trickier� optimized construction to get a worst case performance of ��

 	 n log n� �The

constant has been brought even further down by other researchers��

The reason we didnt introduce this algorithm earlier in the course is that synchrony

doesnt help in this case� it seems like a �naturally asynchronous� algorithm�

In Petersons algorithm� processes are designated as being either in an active mode or

relay mode� all processes are initially active� We can consider the active processes as the

ones �doing the real work� of the algorithm � the processes still participating in the leader�

election process� The relay processes� in contrast� just pass messages along�

The Peterson algorithm is divided into �asynchronously determined� phases� In each

phase� the number of active processes is divided at least in half� so there are at most log n

phases�

In the �rst phase of the algorithm� each process sends its UID two steps clockwise� Thus�

everyone can compare its own UID to those of its two counterclockwise neighbors� When it

receives the UIDs of its two counterclockwise neighbors� each process checks to see whether

it is in a con�guration such that the immediate counterclockwise neighbor has the highest

UID of the three� i�e�� process i�� checks if id i � id i�� and id i � id i��� If process i�� �nds

that this condition is satis�ed� it remains �active�� adopting as a �temporary UID� the UID

of its immediate counterclockwise neighbor� i�e�� process i� Any process for which the above

condition does not hold becomes a �relay� for the remainder of the execution� The job of a

�relay� is only to forward messages to active processes�

Subsequent phases proceed in much the same way� among active processors� only those

whose immediate �active� counterclockwise neighbor has the highest �temporary� UID of the

three will remain active for the next phase� A process that remains active after a given phase

will adopt a new temporary UID for the subsequent phase� this new UID will be that of its

immediate active counterclockwise neighbor from the just�completed phase� The formal code

for Petersons algorithm is given in Figures ���� and �����

It is clear that in any given phase� there will be at least one process that �nds itself in a

con�guration allowing it to remain active �unless only one process participates in the phase�
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State of process i�

� mode� taking values from factive� relayg� initially active

� status� taking values from funknown� elected� reportedg� initially unknown

� id�j�� where j � f�� �� �g� type UID or nil� initially id��� � i�s UID� and id��� � id��� �

nil 	

� send � queue of UID�s� initially containing i�s UID

� receive� queue of UID�s

Actions of process i�

get�second�uidi

Precondition� mode � active

receive �� �

id��� � nil

E
ect� id���� head�receive�

remove head of receive

add id��� to end of send

if id��� � id��� then status � elected

get�third�uidi

Precondition� mode � active

receive �� �

id��� �� nil

id��� � nil

E
ect� id���� head�receive�

remove head of receive

Figure ����� Petersons algorithm for leader election� part �
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Code for process i �cont���

advance�phasei

Precondition� mode � active

id��� �� nil

id��� � maxfid���� id���g

E
ect� id���� id���

id���� nil

id���� nil

add id��� to send

become�relayi

Precondition� mode � active

id��� �� nil

id��� � maxfid���� id���g

E
ect� mode � relay

relay i

Precondition� mode � relay

receive �� �

E
ect� move head of receive to tail of send

send messagei�m�

Precondition� head�send� � m

E
ect� delete head of send

receive messagei�m�

E
ect� add m to the tail of receive

Figure ����� Petersons algorithm for leader election� part �
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in which case the lone remaining process is declared the winner�� Moreover� at most half the

previously active processes can survive a given phase� since for every process that remains

active� there is an immediate counterclockwise active neighbor that must go into its relay

state� Thus� as stated above� the number of active processes is at least halved in each phase�

until only one active process remains�

Communication and Time Analysis� The total number of phases in Petersons algo�

rithm is at most blog nc� and during each phase each process in the ring sends and receives

exactly two messages� �This applies to both active and relay processes�� Thus� there are

at most �n blog nc messages sent in the entire algorithm� �Note that this a much better

constant factor than in the Hirshberg�Sinclair algorithm��

As for time performance� one might �rst estimate that the algorithm should takeO�n log n�

time� since there are log n phases� and each phase could involve a chain of message deliver�

ies �passing through relays� of total length O�n�� As it turns out� however� the algorithm

terminates in O�n� time� We give a brief sketch of the time analysis� Again� we may ne�

glect �pileups�� which seem not to matter for the same reason as in the analysis of LeLann�

This allows us to simplify the analysis by assuming that every node gets a chance to send

a message in between every two receives� For simplicity� we also assume that local process�

ing time is negligible compared to the message�transmission time d� so we just consider the

message�transmission time� Now� our plan is to trace backwards the longest sequential chain

of message�sends that had to be sent in order to produce a leader�

Let us denote the eventual winner by P�� In the �nal phase of the algorithm� P� had to

hear from two active counterclockwise neighbors� P� and P�� In the worst case� the chain

of messages sent from P� to P� is actually n in length� and P� 	 P�� as depicted in Figure

�����

Now� consider the previous phase� We wish to continue pursuing the dependency chain

backwards from P� �which might be the same node as P��� The key point is that� for

any two consecutive phases� it must be the case that between any two active processes in

the later phase� there is at least one active process in the previous phase� Thus� at the

next�to�last phase� there must have been an additional process in the interval starting from

P� counterclockwise to P�� and another additional process in the interval starting from P�

counterclockwise to P��

Thus� the chain of messages pursued backward from P� in the next�to�last phase� from

P� and P
� can at worst only extend as far as P� �i�e�� in the worst case� P� 	 P
�� as

depicted in Figure ���
� And there is an additional process Q� between P� and P��

At the phase preceding the next�to�last phase� P
 waits to hear from P� and P�� where

P� is at worst equal to Q�� also� there is an additional process Q� between Q� and P� �see
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P0=P2

P1

Figure ����� The last phase of the Peterson algorithm� P� is the winner�

P0

P1=P4

P3 Q1

Figure ���
� The next�to�last phase of the Peterson algorithm�

Figure ���
�� At the phase before this� P� waits to hear from P� and P�� etc� This analysis

can go on� but we never get back around to P�� and so the total length of the dependency

chain is at worst �n� We conclude therefore that the time is at most around � 	 nd�

������ Burns� Lower Bound Result

All the algorithms in the previous section are designed to minimize the number of messages�

and the best achieve O�n log n� communication� Recall that in the synchronous case� we had

a matching ��n log n� lower bound under the assumption that the algorithms are comparison

based� That carries over to the asynchronous model� since the synchronous model can be

formulated as a special case of the asynchronous model� Note that the algorithms to

which this lower bound applies are not allowed to use the UIDs in arbitrary ways� e�g�� for

counting� As we saw� if we lift this restriction� then we can get O�n� message algorithms in
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P0

P4

P3 P6=Q1

P5

Q2

Figure ����� The next preceding phase of the Peterson algorithm�

the synchronous model�

It turns out� however� that the asynchronous network model has enough extra uncertainty

so that the ��n log n� lower bound applies regardless of how the identi�ers are used� The

proof of this fact is completely di�erent proof from the synchronous case� now the asynchrony

is used heavily� We consider leader election algorithms with the following properties�

� The number of nodes in the ring is unknown�

� Bidirectional channels�

� Asynchronous model�

� Unbounded identi�er set�

� Any node may be elected as leader�

For this setting� Burns proved the following result�

Theorem � Any leader election algorithm with the properties listed above sends at least
�
�
n log n messages in the worst case� where n is the number of processes in the ring�

For simplicity� we assume that n is a power of �� �The proof can be extended to arbitrary

n� cf� homework�� We model each process as an I�O automaton� and stipulate that each

automaton is distinct �in essence� that each process has a unique identi�er�� The automaton

can be represented as in Figure ����� Each process has two output actions� send�right and

send�left� and two input actions� receive�right and receive�left�

Our job will ultimately be to see how a collection of automata of this type behave when

arranged into a ring� however� in the course of this exploration we would also like to see

how the automata behave when arranged not in a ring� but simply in a straight line� as in
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�	

�receive�left

send�left

send�right

receive�right

�

�

�

�

Figure ����� A process participating in a leader election algorithm�

�
��
�
��
�
��
�
��
�
��� � � � � �

� � � � � �

Figure ����� A line of leader�electing automata�

Figure ����� Formally� we can say that a line is a linear composition �using I�O automaton

composition� of distinct automata� chosen from the universal set of automata�

The executions of such a line of automata can be examined �in isolation�� where the

two terminal automata receive no input messages� in this case the line simply operates on

its own� Alternatively� we might choose to examine the executions of the line when certain

input messages are provided to the two terminal automata�

As an added bit of notation� we will say that two lines of automata are compatible when

they contain no common automaton between them� We will also de�ne a join operation on

two compatible lines which simply concatenates the lines� this operation interposes a new

message queue to connect the rightmost receive�right message of the �rst line with the

leftmost send�left message of the second� and likewise to connect the leftmost receive�left

message of the second line with the rightmost send�right message of the �rst� and then uses
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ordinary IOA composition� Finally� the ring operation on a single line interposes new queues

to connect the rightmost send�right and leftmost receive�left actions of the line� and the

rightmost receive�right and leftmost send�left actions� The ring and join operations are

depicted graphically in Figure �����

ring(L)

join(L,M)

L M

L

Figure ����� The join and ring operations�

We proceed with a proof that �
�
n log n messages are required to elect a leader in a bidi�

rectional asynchronous ring� where n is unknown to the processes and process identi�ers are

unbounded� For a system S �line or ring�� and an execution � of S� we de�ne the following

notions�

� COMM �S� �� is the number of messages sent in execution � of system S�

� COMM �S� 	 sup�COMM �S� ��� Here we consider the number of messages sent

during any execution of S� For lines� we only consider executions in which no messages

come in from the ends�

� A state q of a ring is quiescent if there is no execution fragment starting from q in

which any new message is sent�

� A state q of a line is quiescent if there is no execution fragment starting from q in which

no messages arrive on the incoming links at the ends� and in which any new message

is sent�

We now state and prove our key lemma�
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Lemma � For every i � �� there is an in�nite set of disjoint lines� Li� such that for all L

� Li� j L j	 �i and COMM �L� � � � �
�
i�i�

Proof� By induction on i�

Base case� For i 	 �� we need an in�nite set of di�erent processes such that each can

send at least � message without �rst receiving one� Suppose� for contradiction� that there

are � processes� p and q� such that neither can send a message without �rst receiving one�

Consider rings R�� R�� and R� as shown in Figure �����

qp

p

q

R1 R2 R3

Figure ����� Basis for proof of Lemma ����

In all three rings� no messages are ever sent� so each process proceeds independently�

Since R� solves election� p must elect itself� and similarly for R� and q� Then R� elects

two leaders� a contradiction� It follows that there is at most one process that cant send a

message before receiving one� If there is an in�nite number of processes� removing one leaves

an in�nite set of processes that will send a message without �rst receiving one� Let L� be

this set� which proves the basis�

Inductive step� Assume the lemma is true for i � �� Let n 	 �i� Let L� M � N be any �

lines from Li��� Consider all possible combinations of two of these lines into a line of double

size� LM � LN � ML� NL� MN � and NM � Since in�nitely many disjoint sets of three lines

can be chosen from Li��� the following claim implies the lemma�

Claim � At least one of the � lines can be made to send at least � � n
�
log n messages�

Proof� Assume that the claim is false� By the inductive hypothesis� there exists a �nite

execution �L of L for which COMM �L��L� � � � n
�
log n

�
� and in which no messages arrive

from the ends�

We can assume without loss of generality that the �nal con�guration of �L is quiescent�

since otherwise �L can be extended to generate more messages� until the number �� n
�
log n of

messages is reached� We can assume the same condition for �M and �N by similar reasoning�
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can know about join

ML

Figure ������ join�L�M�

Now consider any two of the lines� say L andM � Consider join�L�M�� Consider an execution

that starts by running �L on L and �M on M � but delays messages over the boundary�

In this execution there are at least ��� � n
�
log n

�
� messages� Now deliver the delayed

messages over the boundary� By the assumption that the claim is false� the entire line must

quiesce without sending more than n
�
additional messages� messages� for otherwise the total

exceeds ��� � n
�
log n

�
� � n

�
	 �� n

�
log n� This means that at most n

�
processes in join�L�M�

�know about� the join� and these are contiguous and adjacent to the boundary as shown in

Figure ������ These processes extend at most halfway into either segment� Let us call this

execution �LM � Similarly for �LN � etc�

R1

M

L N

p1

Figure ������ ring�join�L�M�N��� case �

In ring R� of Figure ������ consider an execution in which �L� �M � and �N occur �rst�

quiescing in three pieces separately� Then quiesce around boundaries as in �LM � �LN � and

�NL� Since the processes that know about each join extend at most half way into either

segment� these messages will be non�interfering� Similarly for R��

Each ofR� and R� elects a leader� say p� and p�� We can assume without loss of generality

that p� is between the midpoint of L and the midpoint of M as in Figure ������ We consider

cases based on the position of p� in R� �Figure ������ to get a contradiction�

If p� is between the midpoint of L and the midpoint of N as in Figure ������ then let

R� be assembled by joining just M and N � Consider an execution of R� in which the two
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R2

N

L M

p2

Figure ������ ring�join�L�N�M��

segments are �rst run to quiescence using �M and �N � and then quiescence occurs around

the boundaries� as in �MN and �NM �

R3

p3
M N

Figure ������ ring�join�M�N��� leader elected in the lower half

R2

N

L M

p2 p3

Figure ����
� ring�join�L�N�M��

By the problem de�nition� a leader must be elected in R�� say p�� First suppose it is

in lower half as in Figure ������ Then it also occurs in R� and gets elected there too as in
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Figure ����
� There are two leaders in this case which is a contradiction� If it is in the upper

half of R�� then we arrive at a similar contradiction in R��

If p� is between the midpoint of L and the midpoint of M � then we arrive at a similar

contradiction based on R�� again�

R4

L N

Figure ������ ring�join�L�N��

If p� is between the midpoint of M and the midpoint of N � then we arrive at a similar

contradiction based on R
� a ring containing LN as in Figure ������

The lemma follows from the claim�

Lemma � essentially proves Theorem �� let n be a power of �� Pick a line L of length

n with COMM �L� � � � n
�
log n� and paste it into a circle using the ring operator� Let the

processes in L behave exactly as they would if they were not connected� in the execution

that sends the large number of messages� and delay all messages across the pasted boundary

until all the large number of messages have been sent� This gives us the desired bound�

Note the crucial part played by the asynchrony in this argument�

�	�� Problems in General Asynchronous Networks

So far� we have revisited several synchronous ring leader election algorithms from the begin�

ning of the course� and have seen that they extend directly to the asynchronous setting� Now

we will reexamine the algorithms from more general synchronous networks� In the sequel we

shall assume that the underlying communication network is modeled by a general undirected

graph�

������ Network Leader Election

The synchronous algorithm we saw earlier for leader election in a general graph does not

extend directly to the asynchronous model� In the synchronous algorithm� every node main�
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tains a record of the maximum UID it has seen so far �initially its own�� At each round� the

node propagates this maximum on all its incident edges� The algorithm terminates after a

number of rounds equal to the diameter� if the process has its own ID as its known maximum�

then it announces itself as the leader�

In the asynchronous setting we dont have rounds� and we dont have any information

about time that would allow us to wait for enough time to hear from everyone� and so the

above idea doesnt extend� We could still follow the basic strategy of propagating maximum

UIDs asynchronously� whenever a process gets a new maximum� it propagates it sometime

later� The problem is now that we dont know when to stop� To overcome this problem� we

shall use other techniques�

������ Breadth	�rst Search and Shortest Paths

Reconsider the shortest paths algorithms� �Recall that breadth��rst search is a special case

of shortest paths� when all edges have weights ��� In these algorithms� we assume that we

are given an initiator node i�� and we want that each node �eventually� outputs a pointer to

a parent in a shortest�paths �or breadth��rst� tree� We can also output the distance on the

shortest path�

The algorithms we have presented earlier used the synchrony very heavily� E�g�� for

breadth��rst search� we marked nodes in layers� one layer for each synchronous round� This

was very e�cient� O�E� total messages� and time proportional to the diameter�

We cannot run that algorithm directly in an asynchronous network� since di�erent branches

of the tree can grow more quickly than others� More speci�cally� this means that a node can

get some information about one path �rst� then later �nd out about a shorter path� Thus�

we need to be able to adjust estimates downward when new information arrives� Recall that

the synchronous shortest�paths algorithm we saw earlier already did this kind of adjustment�

�We called it a �relaxation step���

This adjustment idea is used in a famous shortest�paths �and BFS� algorithm that imi�

tates the Bellman�Ford algorithm from sequential complexity theory� In fact� this algorithm

was the routing algorithm used in the ARPANET between ���� and ����� Note that this

will not be a terminating algorithm � the nodes will not know when they are done� We give

the speci�cation of this algorithm in precondition�e�ects style in Figure ������
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State variables�

best�dist� for i� this is initially �� for others 


parent� initially unde�ned

new�send� for i� initially neighbors�i��� for others initially �

�says whom they should send a newly�discovered distance to��

Signature� We assume that the weights are known a priori� so no inputs are needed from

the outside world� We need send and receive actions� as usual� the only message is a

distance value �nonnegative real�� There are no outputs �since not known when this

terminates��

Actions�

send i�j�m�

Precondition� j � new�send

m 	 best�dist

E�ect� new�send � new�send � fjg

receivej�i�m�

E�ect� if m� weight �j� i� � best�dist then

best�dist� m� weight �j� i�

new�send � neighbors�i�� fjg

parent � j

Figure ������ Bellman�Ford algorithm for shortest paths
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Analysis� If the algorithm were executed in synchronous rounds� then the time would be

O�n�� where n is the total number of nodes� and the number of messages would be O�njEj��

This does not seem too bad� But in asynchronous execution the time bound can be much

worse� in fact� we show below that the time and message complexity are exponential in n�

Claim 	 The algorithm sends ���n� messages in the worst case�

Proof� Consider the example illustrated in Figure ������

i0 i1 i2 ik i(k+1) i(k+2)0 0 0 0

2^(k−1) 2 12^k

Figure ������ Bad scenario for the Bellman�Ford Algorithm

The possible estimates that ik�� can have for its best�dist are �� �� �� �� � � � �k����� More�

over� we claim that it is possible for ik�� to acquire all of these estimates� in order from

the largest to the smallest� To see how� consider the following scenario� Suppose that the

messages on the upper paths all propagate �rst� giving ik�� the estimate �k��� �� Next� the

�alternative� message from ik arrives� giving ik�� the adjusted estimate of �k�� � �� Next�

the �alternative� message from ik�� to ik arrives at ik� cause ik to reduce its estimate by ��

It then propagates this revision on both paths� Again� suppose the message on the upper

path arrives �rst� etc�

Since ik�� gets �k�� distinct estimates� it is possible� if ik�� takes steps fast enough� for

ik�� to actually put all these values in the outgoing channel to ik��� This yields exponentially

many messages �actually� ���n����� Moreover� the time complexity is similarly bad� because

these messages all get delivered sequentially to ik���

We now consider upper bounds on the Bellman�Ford algorithm� First� we claim that

the number of messages is O��n � ��n 	 e� at most� This is because each node only sends

new messages out when it gets a new estimate� Now� each estimate is the total weight of

a simple path to that node from i�� and the bound follows from the fact that there are at

most �n���n such paths� �This may be a loose estimate�� Now consider any particular edge�

It only gets messages when one of its endpoints gets a new estimate� leading to a total of

��n � ��n messages on that edge�
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�
�� Asynchronous Broadcast�Convergecast

In an earlier lecture� we described a synchronous discipline for broadcasting and converge�

casting �sometimes called broadcast�with�echo�� using a breadth��rst spanning tree� In the

asynchronous setting� the breadth��rst spanning tree is not as usable� since we dont know

when the construction is complete� We can still do broadcast�convergecast reasonably e��

ciently� on an arbitrary �not necessarily breadth��rst� spanning tree�

First we consider how to construct an arbitrary spanning tree� The distinguished source

node i� begins by sending out report messages to all its neighbors� Any other node� upon

receipt of its �rst report message� marks itself as done� identi�es the sender j as its parent�

sends a parent i�j� announcement to the outside world� and sends out report messages on

its outgoing links� The node ignores additional report messages� This idea works �ne asyn�

chronously� nodes know when they are done� O�E� messages are used� and it takes O�diam�

time until termination� �There are no pileups on links since only two messages ever get sent

on each edge� one in each direction��

Now we proceed to the task of broadcasting a message to all nodes� We can construct an

arbitrary spanning tree as above� and then i� uses it to send messages over the tree links�

To do this� nodes need to be informed as to which other nodes are their children� and this

requires local communication from children to parents upon discovery� Note the interesting

timing anomaly here� tree paths could take ��n� time to traverse the second time� To avoid

that� we can send the message in the course of building the tree� by �piggybacking� the

message on all report messages�

We can also use an asynchronously�constructed spanning tree to �fan in� results of a

computation back to i�� as in the synchronous case� each node waits to hear from all its

children in the spanning tree� and then forwards a message to its parent�

This brings us to the task of broadcast and convergecast� Now suppose we want to

broadcast a message and collect acknowledgments �back at i�� that everyone has received it�

To solve this problem we do a combination of the asynchronous spanning tree construction
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above� followed �asynchronously� by fanning in results from the leaves�

In fact� if the tree is being constructed solely for the purpose of sending and getting

�acks� for a particular message� it is possible to delete the tree information after fanning in
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State�

� msg � for the value being broadcast� at i� initially the message it is sending� elsewhere

nil

� send � bu
er for outgoing messages� at i� initially contains �bcast� m� to all neighbors of

i�� elsewhere �

� parent � pointer for the parent edge� initially nil

� acked � a set to keep track of children that have acked� everywhere initially �

� done � Boolean �ag� initially false

Actions�

send action� as usual� just sends anything in send bu
er	

receivej�i�bcast� m�

E
ect� if msg � nil then

msg � m

parent � j

for all k � neighbors � fjg� put message �bcast� m� in send

acked � �

else put message �ack� to j in send

receivej�i�ack�

E
ect� acked � acked � fjg

�nishi �for i �� i��

Precondition� acked � neighbors � fparentg

done � false

E
ect� put ack message to parent in send

done � true

�nishi �for i � i��

Precondition� acked � neighbors

done � false

E
ect� output done message to outside world

done � true

Figure ����� Code for the broadcast�convergecast task� without deleting the tree
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the results back to the parent� However� we have to be careful that the node doesnt forget

everything � since if it later gets a report message from another part of the tree whose

processing is delayed� it should �know enough� to ignore it� In other words� we need to keep

some kind of �ag at each node saying that its done� The code is given in Figure �����

Analysis� Communication is simple� it takes O�E� messages to set up the tree� and after

the tree is set up� its only O�n� messages to do the broadcast�convergecast work� The time

analysis is trickier� One might think that in O�diam� time the algorithm terminates� since

thats how long it takes to do the broadcast� The convergecast� however� can take longer�

Speci�cally� we have the following timing anomaly� a message can travel fast along a long

network path� causing a node to become attached to the spanning tree on a long branch�

even though there is a shorter path to it� When the response travels back along the long

path� it may now take time proportional to the length of the path� which is ��n� for general

graphs� To �x this problem� we shall need new ideas� such as a synchronizer� which we shall

discuss next lecture�

Example� application to leader election� The broadcast�convergecast algorithm pro�

vides an easy solution to the leader election problem� Recall that the simple leader election

algorithm we mentioned above didnt terminate� Now� we could do an alternative leader

election algorithm as follows� Starting from every node� run broadcast�convergecast in par�

allel� while collecting the maximum ID in the convergecast on each tree� The node that �nds

that the maximum is equal to its own UID gets elected�

�
�� Minimum Spanning Tree

������ Problem Statement

Now we return to the problem of constructing a minimum�weight spanning tree �MST�� this

time in an asynchronous network� Let us recall the problem de�nition� We are given an

undirected graph G 	 �V�E� with weighted edges� such that each vertex is associated with

its own process� and processes are able to communicate with each other via messages sent

over edges� We wish to have the processes �vertices� cooperate to construct a minimum�

weight spanning tree for the graph G� That is� we want to construct a tree covering the

vertices in G� whose total edge weight is less than or equal to that of every other spanning

tree for G�

We assume that processes have unique identi�ers� and that each edge of the graph is

associated with a unique weight known to the vertices on each side of that edge� �The
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assumption of unique weights on edges is not a strong one� given that processes have unique

identi�ers� if edges had non�distinct weights� we could derive �virtual weights� for all edges

by appending the identi�er numbers of the end points onto the edge weights� and use them

as tie�breakers between the original weights�� We will also assume that a process does not

know the overall topology of the graph � only the weights of its incident edges � and that

it can learn non�local information only by sending messages to other processes over those

edges� The output of the algorithm will be a �marked� set of tree edges� every process will

mark those edges adjacent to it that are in the �nal MST�

There is one signi�cant piece of input to this algorithm� namely� that any number of nodes

will be �awakened� from the outside to begin computing the spanning tree� A process can

be awakened either by the �outside world� �asking that the process begin the spanning tree

computation�� or by another �already�awakened� process during the course of the algorithm�

The motivation for the MST problem comes mainly from the area of communications�

The weights of edges might be regarded as �message�sending costs� over the links between

processess� In this case� if we want to broadcast a message to every process� we would use

the MST to get the message to every process in the graph at minimum cost�

������ Connections Between MST and Other Problems

The MST problem has strong connections to two other problems� that of �nding any �undi�

rected� unrooted� spanning tree at all for a graph� and that of electing a leader in a graph�

If we are given an �undirected� unrooted� spanning tree� it is pretty easy to elect a leader�

this proceeds via a �convergecast� of messages from the leaves of the tree until the incoming

messages converge at some particular node� which can then be designated as the leader� �It

is possible that the messages converge at some edge rather than some node� in which case

one of the endpoints of this edge� say the one with the larger ID� can be chosen��

Conversely� if we are given a leader� it is easy to �nd an arbitrary spanning tree� as

discussed above �under broadcast�convergecast�� the leader just broadcasts messages along

each of its neighboring edges� and nodes designate as their parent in the tree that node

from which they �rst receive an incoming message �after which the nodes then broadcast

their own messages along their remaining neighboring edges�� So� modulo the costs of these

basic algorithms� the problems of leader election and �nding an arbitrary spanning tree are

equivalent�

A minimum spanning tree is of course a spanning tree� The converse problem� going from

an arbitrary spanning tree �or a leader� to a minimum spanning tree� is much harder�

One possible idea would be to have every node send information regarding its surrounding

edges to the leader� which then computes the MST centrally and distributes the information
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back to every other node in the graph� This centralized strategy requires a considerable

amount of local computation� and a fairly large amount of communication�

������ The Synchronous Algorithm� Review

Let us recall how the synchronous algorithm worked� It was based on two basic properties

of MSTs�

Property � Let G be an undirected graph with vertices V and weighted edges E� Let

�Vi� Ei� � � � i � k be any spanning forest for G� with k � �� Fix any i� � � i � k� Let e

be an edge of lowest cost in in the set fe� � e� � E �
S
j Ej and exactly one endpoint of e� is

in Vig� Then there is a spanning tree for G that includes feg � �
S
j Ej� and this tree is of as

low a cost as any spanning tree for G that includes
S
j Ej �

Property � If all edges of a connected graph have distinct weights� then the MST is unique�

These properties justify a basic strategy in which the MST is built up in fragments as

follows� At any point in the algorithm� each of a collection of fragments may independently

and concurrently �nd its own minimum�weight outgoing edge �MWOE�� knowing that all

such edges found must be included in the unique MST� �Note that if the edge weights were

not distinct� the fragments couldnt carry out this choice independently� since it would be

possible for them to form a cycle��

This was the basis of the synchronous algorithm� It worked in synchronous levels� where

in each level� all fragments found their MWOEs and combined using these� to form at most

half as many fragments�

If we try to run the given synchronous algorithm in an asynchronous network� we see

some problems�

Di	culty 
� In the synchronous case� when a node queries a neighbor to see if it is in the

same fragment� it knows that the neighbor node is up�to�date� at the same level� Therefore�

if the neighbor has a distinct fragment id� then this fact implies that the neighbor is not in

the same fragment� But in the asynchronous setting� it could be the case that the neighbor

has not yet heard that it is in the same fragment�

Di	culty �� The synchronous algorithm achieves a message cost of O�n log n�E�� based

on a balanced construction of the fragments� Asynchronously� there is danger of construct�

ing the fragments in an unbalanced way� leading to many more messages� The number of

messages sent by a fragment to �nd its MWOE will be proportional to the number of nodes

in the fragment� Under certain circumstances� one might imagine the algorithm proceeding

by having one large fragment that picks up a single node at a time� each time requiring ��f�

messages� where f is the number of nodes in the fragment �see Figure ����� � In such a

situation� the algorithm would require ��n�� messages to be sent overall�
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Figure ����� How do we avoid a big fragment growing by one node at a time�

������ The Gallager	Humblet	Spira Algorithm� Outline

These di�culties lead us to re�think the algorithm to modify it for use in an asynchronous

network� Luckily� the basic ideas are the same� The algorithm we shall see below is by

Gallager�Humblet�Spira� They focus on keeping the number of messages as small as possible�

and manage to achieve the same O��n log n� � E� message bound as in the synchronous

algorithm�

Before we continue� let us make a few preliminary remarks� First� consider the question

whether this is the minimumbound possible� Note that� at least for some graphs �e�g�� rings��

the n log n term is necessary � it comes from the lower bound on the number of messages

for leader election that we saw in Burns theorem� What about the E term� This seems

essential� In a work by Awerbuch�Goldreich�Peleg�Vainish� they show that the number of

bits of communication must be at least ��E log n�� If we assume that each message contains

only a constant number of ids� then this means that the number of messages is ��E�� If

the messages are allowed to be of arbitrary size� however� then it can be shown that O�n�

messages su�ce�

Another thing we would like to say about the Gallager�Humblet�Spira algorithm is that

not only is it interesting� but it is also extremely clever� as presented in their paper� it is

about two pages of tight� modular code� and there is a good reason for just about every line

in the algorithm� In fact� only one or two tiny optimizations have been advanced over the

original algorithm� The algorithm has been proven correct via some rather di�cult formal

proofs �see �WelchLL����� and it has been referenced and elaborated upon quite often in

subsequent research� It has become a sort of test case for algorithm proof techniques�

As in the synchronous algorithm we saw earlier� the central idea of the Gallager�Humblet�

Spira algorithm is that nodes form themselves into collections � i�e�� fragments � of increas�

ing size� �Initially� all nodes are considered to be in singleton fragments�� Each fragment

is itself connected by edges that form a MST for the nodes in the fragment� Within any

fragment� nodes cooperate in a distributed algorithm to �nd the MWOE for the entire frag�

ment �that is� the minimum weight edge that leads to a node outside the fragment�� The
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strategy for accomplishing this involves broadcasting over the edges of the fragment� asking

each node separately for its own MWOE leading outside the fragment� Once all these edges

have been found� the minimal edge among them will be selected as an edge to include in the

�eventual� MST�

Once an MWOE for a fragment is found� a message may be sent out over that edge to

the fragment on the other side� The two fragments may then combine into a new� larger

fragment� The new fragment then �nds its own MWOE� and the entire process is repeated

until all the nodes in the graph have combined themselves into one giant fragment �whose

edges are the �nal MST��

This is not the whole story� of course� there are still some problems to overcome� First�

how does a node know which of its edges lead outside its current fragment� A node in

fragment F can communicate over an outgoing edge� but the node at the other end needs

some way of telling whether it too is in F � We will therefore need some way of naming

fragments so that two nodes can determine whether they are in the same fragment� But the

issue is still more complicated� it may be� for example� that the other node �at the end of the

apparently outgoing edge� is in F but hasnt learned this fact yet� because of communication

delays� Thus� some sort of overall synchronization process is needed�some sort of strategy

that ensures that nodes wont search for outgoing edges until all nodes in the fragment have

been informed of their current fragment�

And there is also the second problem� discussed above� of the unbalanced merging be�

havior causing excessive message cost� This second problem should suggest a �balanced�tree

algorithm� solution� that is� the di�culty derives from the merging of data structures that

are very unequal in size� The strategy that we will use� therefore� is to merge fragments of

roughly equal size� Intuitively� if we can keep merging fragments of nearly equal size� we can

keep the number of total messages to O�n log n��

The trick we will use to keep the fragments at similar sizes is to associate a level number

with each fragment� We will ensure that if level �F � 	 l for a given fragment F � then the

number of nodes in F is greater than or equal to �l� Initially� all fragments are just singleton

nodes at level �� When two fragments at level l are merged together� the result is a new

fragment at level l � �� �This preserves the condition for level numbers� if two fragments of

size at least �l are merged� the result is a new fragment of size at least �l����

So far� this may look similar to the way the level numbers were used in the synchronous

algorithm� but it will actually be somewhat di�erent� E�g�� in the synchronous case� we could

merge some arbitrary number of level l fragments to get a new level l � � fragment�

The level numbers� as it turns out� will not only be useful in keeping things balanced�

but they will also provide some identi�er�like information helping to tell nodes whether they
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are in the same fragment�

�����
 In More Detail

There are two ways of combining fragments�

�� Merging� This combining rule is applied when we have two fragments F and F � with

the same level and the same minimum�weight outgoing edge�

level �F � 	 level �F �� 	 l

MWOE�F � 	 MWOE�F ��

The result of a merge is a new fragment at a level of l� ��

�� Absorbing� There is another case to consider� It might be that some nodes are forming

into huge fragments via merging� but isolated nodes �or small fragments� are lagging

behind at a low level� In this case� the small fragments may be absorbed into the

larger ones without determining the MWOE of the large fragment� Speci�cally� the

rule for absorbing is that if two fragments F and F � satisfy level �F � � level �F ��� and

the MWOE�F � leads to F �� then F can be absorbed into F � by combining them along

MWOE�F �� The larger fragment formed is still at the level of F �� In a sense� we dont

want to think of this as a �new� fragment� but rather as an augmented version of F ��

These two combining strategies are illustrated �in a rough way� by Figure ����� It is

worth stressing the fact that level�F �� level�F �� does not imply that fragment F is smaller

than F �� in fact� it could be larger� �Thus� the illustration of F as a �small� fragment in

Figure ���� is meant only to suggest the typical case��

Level numbers also serve� as mentioned above� as identifying information for fragments�

For fragments of level � or greater� however� the speci�c fragment identi�er is the core edge

of the fragment� The core edge is the edge along which the merge operation resulting in the

current fragment level took place� �Since level numbers for fragments are only incremented

by merge operations� any fragment of level � or greater must have had its level number

incremented by some previous merge along an edge�� The core edge also serves as the site

where the processing for the fragment originates and where information from the nodes of

the fragment is collected�

To summarize the way in which core edges are identi�ed for fragments�

� For a merge operation� core is the common MWOE of the two combining fragments�

� For an absorb operation� core is the core edge of the fragment with the larger level

number�
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Figure ����� Two fragments combine by merging� a fragment absorbs itself into another

Note that identifying a fragment by its core edge depends on the assumption that all

edges have unique identi�ers� Since we are assuming that the edges have unique weights�

the weights could be the identi�ers�

We now want to show that this strategy� of having fragments merge together and absorb

themselves into larger fragments� will in fact su�ce to combine all fragments into a MST for

the entire graph�

Claim � If we start from an initial situation in which each fragment consists of a single

node� and we apply any possible sequence of merge and absorb steps� then there is always

some applicable step to take until the result is a single fragment containing all the nodes�

Proof� We want to show that no matter what con�guration we arrive at in the course of

the algorithm� there is always some merge or absorb step that can be taken�

One way to see that this is true is to look at all the current fragments at some stage

in the running algorithm� Each of these fragments will identify its MWOE leading to some

other fragment� If we view the fragments as vertices in a �fragment�graph�� and draw the

MWOE for each fragment� we get a directed graph with an equal number of vertices and

edges �see Figure ���
�� Since we have k nodes and k edges �for some k�� such a directed

graph must have a cycle� and because the edges have distinct weights� only cycles of size

� �i�e�� cycles involving two fragments� may exist� Such a ��cycle represents two fragments

that share a single MWOE�

Now� it must be the case that the two fragments in any ��cycle can be combined� If the

two fragments in the cycle have the same level number� a merge operation can take place�

otherwise� the fragment with the smaller level number can absorb itself into the fragment
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Figure ���
� A collection of fragments and their minimum�weight outgoing edges�

with the larger one�

Lets return to the question of how the MWOE is found for a given fragment� The basic

strategy is as follows� Each node in the fragment is �nds its own MWOE leading outside

the fragment� then the information from each node is collected at a selected process� which

takes the minimum of all the edges suggested by the individual nodes�

This seems straightforward� but it re�opens the question of how a node knows that a

given edge is outgoing�that is� that the node at the other end of the edge lies outside the

current fragment� Suppose we have a node p that �looks across� an edge e to a node q at

the other end� How can p know if q is in a di�erent fragment or not�

A fragment name �or identi�er� may be thought of as a pair �core� level �� If qs fragment

name is the same as ps� then p certainly knows that q is in the same fragment as itself�

However� if qs fragment name is di�erent from that of p� then it is still possible that q and

p are indeed in the same fragment� but that q has not yet been informed of that fact� That

is to say� qs information regarding its own current fragment may be out of date�

However� there is an important fact to note� if qs fragment name has a core unequal to

that of p� and it has a level value at least as high as p� then q cant be in the fragment that

p is in currently� and never will be� This is so because in the course of the algorithm� a node

will only be in one fragment at any particular level� Thus� we have a general rule that q

can use in telling p whether both are in the same fragment� if the value of �core� level � for

q is the same as that of p then they are in the same fragment� and if the value for core is

di�erent for q and the value of level is at least as large as that of p then they are in di�erent

fragments�

The upshot of this is that MWOE�p� can be determined only if level �q� � level �p�� If q

has a lower level than p� it simply delays answering p until its own level is at least as great

as ps�
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Figure ����� Fragment F absorbs itself into F � while F � is still searching for its own MWOE�

However� notice that we now have to reconsider the progress argument� since this extra

precondition may cause progress to be blocked� Since a fragment can be delayed in �nding

its MWOE �since some individual nodes within the fragment are being delayed�� we might

ask whether it is possible for the algorithm to reach a state in which neither a merge or

absorb operation is possible� To see that this is not the case� we use essentially the same

argument as before� but this time we only consider those MWOEs found by fragments

with the lowest level in the graph �call this level l�� These succeed in all their individual

MWOE�p� calculations� so succeed in determining their MWOE for the entire fragment�

Then the argument is as before� If any fragment at level l �nds a MWOE to a higher�level

fragment� then an absorb operation is possible� and if every fragment at the level l has a

MWOE to some other fragment at level l� then we must have a ��cycle between two fragments

at level l� and a merge operation is possible� So again� even with the new preconditions� we

conclude that the algorithm must make progress until the complete MST is found�

Getting back to the algorithm� each fragment F will �nd its overall MWOE by taking a

minimum of the MWOE for each node in the fragment� This will be done by a �broadcast�

convergecast� algorithm starting from the core� emanating outward� and then collecting all

information back at the core�

This leads to yet another question� what happens if a �small� fragment F gets absorbed

into a larger one F � while F � is still in the course of looking for its own MWOE�

There are two cases to consider �consult Figure ���� for the labeling of nodes�� Suppose

�rst that the minimum edge leading outside the fragment F �� has not yet been determined�

In this case� we search for a MWOE for the newly�augmented fragment F � in F as well �there

is no reason it cannot be there��

On the other hand� suppose MWOE�F �� has already been found at the time that F

absorbs itself into F �� In that event� the MWOE for q cannot possibly be e� since the only
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way that the MWOE for q could be known is for that edge to lead to a fragment with a level

at least as great as F �� and we know that the level of F is smaller than that of F �� Moreover�

the fact that the MWOE for q is not e implies that the MWOE for the entire fragment

F � cannot possibly be in F � This is true because e is the MWOE for fragment F � and

thus there can be no edges leading out of F with a smaller cost than the already�discovered

MWOE for node q� Thus� we conclude that if MWOE�F �� is already known at the time the

absorb operation takes place� then fragment F � neednt look for its overall MWOE among

the newly�absorbed nodes� �This is fortunate� since if F � did in fact have to look for its

MWOE among the new nodes� it could be too late� by the time the absorb operation takes

place� q might have already reported its own MWOE� and fragment F � might already be

deciding on an overall MWOE without knowing about the newly�absorbed nodes��

������ A Summary of the Code in the GHS Algorithm

We have described intuitively the major ideas of the Gallager�Humblet�Spira algorithm� this

explanation above should be su�cient to guide the reader through the code presented in

their original paper�

Although the actual code in the paper is dense and complicated� the possibility of an

understandable high�level description turns out to be fairly typical for communications al�

gorithms� In fact� the high�level description that we have seen can serve as a basis for a

correctness proof for the algorithm� using simulations�

The following message types are employed in the actual code�

� INITIATE messages are broadcast outward on the edges of a fragment to tell nodes to

start �nding their MWOE�

� REPORT messages are the messages that carry the MWOE information back in�

�These are the convergecast response to the INITIATE broadcast messages��

� TEST messages are sent out by nodes when they search for their own MWOE�

� ACCEPT and REJECT messages are sent in response to TEST messages from nodes�

they inform the testing node whether the responding node is in a di�erent fragment

�ACCEPT� or is in the same fragment �REJECT��

� CHANGE�ROOT is a message sent toward a fragments MWOE once that edge is

found� The purpose of this message is to change the root of the �merging or currently�

being�absorbed� fragment to the appropriate new root�
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� CONNECT messages are sent across an edge when a fragment combines with another�

In the case of a merge operation� CONNECT messages are sent both ways along the

edge between the merging fragments� in the case of an absorb operation� a CONNECT

message is sent by the �smaller� fragment along its MWOE toward the �larger� frag�

ment�

In a bit more detail� INITIATE messages emanate outward from the designated �core

edge� to all the nodes of the fragment� these INITIATE messages not only signal the nodes

to look for their own MWOE �if that edge has not yet been found�� but they also carry

information about the fragment identity �the core edge and level number of the fragment��

As for the TEST�ACCEPT�REJECT protocol� theres a little bookkeeping that nodes have

to do� Every node� in order to avoid sending out redundant messages testing and re�testing

edges� keeps a list of its incident edges in the order of weights� The nodes classify these

incident edges in one of three categories�

� Branch edges are those edges designated as part of the building spanning tree�

� Basic edges are those edges that the node doesnt know anything about yet � they

may yet end up in the spanning tree� �Initially� of course� all the nodes edges are

classi�ed as basic��

� Rejected edges are edges that cannot be in the spanning tree �i�e�� they lead to another

node within the same fragment��

A fragment node searching for its MWOE need only send messages along basic edges�

The node tries each basic edge in order� lowest weight to highest� The protocol that the

node follows is to send a TEST message with the fragment level�number and core�edge

�represented by the unique weight of the core edge�� The recipient of the TEST message

then checks if its own identity is the same as the TESTer� if so� it sends back a REJECT

message� If the recipients identity �core edge� is di�erent and its level is greater than or

equal to that of the TESTer� it sends back an ACCEPT message� Finally� if the recipient

has a di�erent identity from the TESTer but has a lower level number� it delays responding

until such time as it can send back a de�nite REJECT or ACCEPT�

So each node �nds the MWOE if it exists� All of this information is sent back to the

nodes incident on the core edge via REPORT messages� who determine the MWOE for the

entire fragment� A CHANGEROOT message is then sent back towards the MWOE� and the

endpoint node sends a CONNECT message out over the MWOE�

When two CONNECT messages cross� this is the signal that a merge operation is taking

place� In this event� a new INITIATE broadcast emanates from the new core edge and the
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newly�formed fragment begins once more to look for its overall MWOE� If an absorbing

CONNECT occurs� from a lower�level to a higher�level fragment� then the node in the high�

level fragment knows whether it has found its own MWOE and thus whether to send back

an INITIATE message to be broadcast in the lower�level fragment�

������ Complexity Analysis

Message complexity� The analysis is similar to the synchronous case� giving the same bound

of O�n log n�E�� More speci�cally� in order to analyze the message complexity of the GHS

algorithm� we apportion the messages into two di�erent sets� resulting separately �as we will

see� in the O�n log n� term and the O�E� term�

The O�E� term arises from the fact that each edge in the graph must be tested at least

once� in particular� we know that TEST messages and associated REJECT messages can

occur at most once for each edge� this follows from the observation that once a REJECT

message has been sent over an edge� that edge will never be tested again�

All other messages sent in the course of the algorithm�the TEST�ACCEPT pairs that go

with the acceptances of edges� the INITIATE�REPORT broadcast�convergecast messages�

and the CHANGEROOT�CONNECT messages that occur when fragments combine�can

be considered as part of the overall process of �nding the MWOE for a given fragment� In

performing this task for a fragment� there will be at most one of these messages associated

with each node �each node receives at most one INITIATE and one ACCEPT� each sends

at most one successful TEST� one REPORT� and one of either CHANGEROOT or CON�

NECT�� Thus� the number of messages sent within a fragment in �nding the MWOE is O�m�

where m is the number of nodes in the fragment�

The total number of messages sent in the MWOE��nding process� therefore� is propor�

tional to�

X
all fragments F

number of nodes in F

which is

X
all level numbers L

� X
all fragments F of level L

number of nodes in F

�

Now� the total number of nodes in the inner sum at each level is at most n� since each

node appears in at most one fragment at a given level�number L� And since the biggest
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possible value of L is log n� the sum above is bounded by�

lognX
�

n 	 O�n log n�

Thus� the overall message complexity of the algorithm is O�E � �n log n���

Time Complexity� It can be shown by induction on l that the time for all the nodes to

reach level at least l is at most O�ln�� Hence� the time complexity of the GHS algorithm is

O�n log n��

������ Proving Correctness for the GHS Algorithm

A good deal of interesting work remains to be done in the �eld of proving correctness for

communication algorithms like the Gallager�Humblet�Spira algorithm� The level of complex�

ity of this code makes direct invariant assertion proofs quite di�cult to do� at least at the

detailed level of the code� Note that most of the discussion in this lecture has been at the

higher level of graphs� fragments� levels� MWOEs� etc� So it seems that a proof ought to

take advantage of this high�level structure�

One promising approach is to apply invariant�assertion and other techniques to prove

correctness for a high�level description of the algorithm and then prove independently that

the code in fact correctly simulates the high�level description �see �WelchLL�����

A proof can be formalized by describing the high�level algorithm as an I�O automaton

�in which the state consists of fragments� and actions include merge and absorb operations��

describing the low�level code as another I�O automaton� and then producing that there is a

simulation mapping between the two automata�
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������ Simpler �Synchronous� Strategy

Note that in the asynchronous algorithm we have complications we did not encounter in

the synchronous algorithm �e�g�� absorbing vs� merging� waiting for fragments to catch up��

Another idea to cope with these di�culties is to try to simulate the synchronous algorithm

more closely� somehow synchronizing the levels�

More speci�cally� we can design an algorithm based on combining fragments� where each

fragment has an associated level number� as follows� Each individual node starts as a single�

node fragment at level �� This time� fragments of level l can only be combined into fragments

of level l� �� as in the synchronous algorithm� Each node keeps a local�level variable� which

is the latest level it knows of the fragment it belongs to� so initially every nodes local�level is

�� and when it �nds out about its membership in a new fragment of level l� it raises its local

level to l� The basic idea is that a node at level l tries not to participate in the algorithm

for �nding its level l fragments MWOE until it knows that all the nodes in the system have

reached level at least l� Implementing this test requires global synchronization� �This is

barrier synchronization�� But in fact� some kind of a weaker local synchronization su�ces�

Namely� each node only tests that all of its neighbors have local�level at least l� This requires

each node to send a message on all of its incident edges every time its level is incremented�

This algorithm has the same time performance as before� i�e�� O�n log n�� The message

complexity gets worse� however� it is now O�E log n��

���� Synchronizers

The idea discussed above suggests a general strategy for running a synchronous algorithm in

an asynchronous network� This will only apply to a fault�free asynchronous algorithm �i�e��

no failed processes or messages being lost� duplicated� etc��� since� as we shall soon see� the

fault�tolerance capability is very di�erent in synchronous and asynchronous systems� We are
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working from Awerbuch� with some formalization and proofs done recently by Devarajan �a

student��

The strategy works for general synchronous algorithms �without faults�� the idea is to

synchronize at each round rather than every so often as in the MST algorithm sketched

above� Doing this every so often depends on special properties of the algorithm� e�g�� that

it works correctly if it is allowed to exhibit arbitrary interleavings of node behavior between

synchronization points� We shall only describe how to synchronize at every round�

������ Synchronous Model

Recall that in the synchronous model� each node had message generation and transition

functions� It is convenient to reformulate each node as an IOA with output actions synch�

send and input actions synch�receive� The node must alternate these actions� starting with

synch�send� At rounds at which the synchronous algorithm doesnt send anything� we assume

that a synch�send��� action occurs� We call such a node automaton a client automaton� The

client automaton may also have other external actions� interacting with the outside world�

The rest of the system can be described as a synchronous message system �called �synch�

sys� for short in the sequel�� which at each round� collects all the messages that are sent

at that round in synch�send actions� and then delivers them to all the client automata in

synch�receive actions� In particular� this system synchronizes globally� after all the synch�

send events and before all the synch�receive events of each round�

Note that this composition of IOAs is equivalent to the more tightly coupled synchronous

model described earlier� where the message system was not modeled explicitly�

We will describe how to �simulate� the synch�sys using an asynchronous network� so that

the client automata running at the network nodes cannot tell the di�erence between running

in the simulation system and running in a real synchronous system�

������ High	Level Implementation Using a Synchronizer

The basic idea discussed by Awerbuch is to separate out the processing of the actual messages

from the synchronization� He splits up the implementation into several pieces� a front�end

for each node� able to communicate with the front�ends of neighbors over special channels�

and a pure synchronizer S� The job of each front end is to process the messages received

from the local client in synch�send events� At a particular round� the front end collects all

the messages that are to be sent to neighbors �note that a node might send to some neighbors

and not to some others�� It actually sends those messages to the neighbors� along the special

channels� For each such message it sends� it waits to obtain an acknowledgment along the
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special channel� When it has received acks for all its messages� it is safe �using Awerbuchs

terminology  p� ��� of Awerbuch paper�� For a node to be safe means that it knows that

all its neighbors have received its messages� Meanwhile� while waiting for its own messages

to be acknowledged� it is collecting and acknowledging the messages of its neighbors�

When is it OK for the node front�end to deliver all the messages it has collected from its

neighbors to the client� Only when it knows that it wont receive any others� It is therefore

su�cient to determine that all the node�s neighbors are safe for that round �i�e�� that those

neighbors know that their messages for that round have all been delivered��

Thus� the job of the synchronizer is to tell front�ends when all their neighbors are safe�

To do this� the synchronizer has OK input actions� outputs from the front�ends� by which the

front ends tell the synchronizer that they are safe� The synchronizer S sends a GO message

to a front end when it has received an OK message from each of its neighbors�

For now� we are just writing an abstract spec for the S component� of course� this will

have to be implemented in the network� We claim that this combination �simulates� the

synchronous system �combination of clients and synch�sys�� Notice we did not say that it

�implements� the system� in the formal sense of behavior inclusion� In fact� it doesnt� this

simulation is local� in the sense that the rounds can be skewed at distances in the network�

Rounds are only kept close for neighbors� But in this architecture� where the client programs

do not have any means of communicating directly with each other �outside of the synch�sys�

this is enough to preserve the view of each client�

Theorem � If � is any execution of the implementation �clients� front ends� channels and

synchronizer� then there is an execution �� of the speci�cation �clients and synch�sys� such

that for all clients i� �jclient i 	 ��jclient i�

That is� as far as each client can tell� its running in a synchronous system� So the

behavior is the same � the same correctness conditions hold at the outside boundary of the

clients� subject to reordering at di�erent nodes�

Proof Sketch� We cannot do an implementation proof �as we did� for example� for the

CTSS algorithm�� since we are reordering the actions at di�erent nodes� Note that certain

events �depend on� other events to enable them� e�g�� an OK event depends on prior ack�

input events at the same front�end� and all events at one client automaton may depend

on each other� �This is a conservative assumption�� We de�ne this depends on relation D

formally as follows� For every schedule � of the implementation system� there is a partial�

order relation D� describing events occurring in � that depend on each other� The key

property of this relation D� is that for any schedule � of the implementation system� and

any permutation �� of � that preserves the partial order of events given by D�� we have

that �� is also a schedule of the implementation system� This says that the D relations are
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capturing enough about the dependencies in the schedule to ensure that any reordering that

preserves these dependencies is still a valid schedule of the implementation system�

Now� we start with any schedule � of the implementation� and reorder the events to make

the successive rounds �line up� globally� The goal is to make the reordered schedule look as

much as possible like a schedule of the synchronous system� We do this by explicitly putting

all the synch�receive�i� events after all the synch�send�i� events for the same i� We now claim

this new requirement is consistent with the dependency requirements in D� � since those

never require the reverse order� even when applied transitively� We get �� in this way� By

the key claim above� �� is also a schedule of the implementation system�

Were not done yet � although �� is fairly �synchronous�� it is still a schedule of the

implementation system� we want a schedule of the speci�cation system� In the next step�

we suppress the internal actions of the synch�sys� getting a �reduced� sequence ��� This still

looks the same to the clients as �� and now we claim that it is a schedule of the speci�cation

system� This claim can be proved by induction�

Note that the theorem started with an execution� not a schedule� To complete the proof�

we extract the schedule �� get �� as above� and then �ll in the states to get an execution of

the speci�cation system ��lling in the client states as in ���

Note that if we care about order of events at di�erent clients� then this simulation strategy

does not work�

������ Synchronizer Implementations

Now we are left with the job of implementing the synchronizer part of this implementation�

Its job is quite simple� it gets OK inputs from each node at each round� and for each

node� it can output GO when it knows that all its neighbors in the graph �strictly speaking�

including the node itself� have done input OK for that round� We want to implement this

by a distributed algorithm� one piece per node� using a message system as usual� There are

several ways to do this�

Synchronizer �� The � synchronizer works as follows� When a node gets an OK� it sends

this information to all its neighbors� When a node hears that all its neighbors are OK �and

it is OK�� it outputs GO� The correctness of this algorithm is fairly obvious� The complexity

is as follows� For every round� we generate O�E� messages �since all nodes send messages on

all edges at every round�� Also� each round takes constant time �measuring time from when

all the OKs at a round have happened until all the GOs for that round have happened��

We conclude that this algorithm is fast� but may be too communication�ine�cient for

some purposes� This brings us to the other extreme below�
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Synchronizer �� For this synchronizer� we assume that there is a rooted spanning tree in

G� The rule is now as follows� Convergecast all the OK info to the root� and then broadcast

permission to do the GO outputs� The cost of this algorithm is O�n� messages for every

round� but the time to complete a round is proportional to the height of the spanning tree

�which is ��n� in the worst case��

������ Hybrid Implementation

By combining synchronizer � and �� it is possible to get a hybrid algorithm that �depending

on the graph structure� might give �simultaneously� better time e�ciency than � and better

message e�ciency than �� The basic idea is to divide the graph up into clusters of nodes�

each with its own spanning tree� i�e�� a spanning forest� �We assume that this spanning

forest is constructed using some preprocessing�� The rule now will be to use synchronizer �

within each cluster�tree� and use � to synchronize between clusters� To see how this works�

we found it useful to describe a high�level decomposition �see Figure ������

front ends

Forest−synch

Cluster−
synch

Cluster−
synch

Cluster−
synch

Figure ����� Decomposition of the synchronization task to cluster�synch for intra�cluster

synchronization and forest�synch for inter�cluster synchronization�

The behavior of cluster�synch is to take OKs from all nodes in one particular cluster

�which is a connected subset of nodes in the graph�� and output a single �cluster�OK� to

forest�synch� Then� when a single cluster�GO is input from forest�synch� it produces a GO

for each node in the cluster� A possible way to implement this on the nodes of the given

cluster� of course� is just to use the idea of synchronizer �� doing convergecast to handle the
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OKs and broadcast to handle the GOs� both on a spanning tree of the cluster�

The other component is essentially �up to renaming� a synchronizer for the cluster graph

G� of G� where the nodes of G� correspond to the clusters of G� and there is an edge from

C to D in G� if in G there is an edge from some node in C to some node in D� Ignoring

for the moment the problem of how to implement this forest�synchronizer in a distributed

system based on G� let us �rst argue why this decomposition is correct� We need to show

that any GO that is output at any node i implies that OKs for i and all its neighbors in

G have occurred� First consider node i� The GO�i� action means that cluster�GO for is

cluster C has occurred� which means that cluster�OK for C has occurred� which means that

OK�i� has occurred� Now consider j � neighborsG�i�C� Same argument holds� cluster�OK

for C means that OK�j� has occurred� Finally� let j � neighborsG�i��C� The GO�i� action

means� as before� that cluster�GO for C has occurred� which implies that cluster�OK for D

has occurred� where D is the cluster containing j� �The clusters are neighbors in G� because

the nodes i and j are neighbors in G�� This implies as before that OK�j� has occurred�

Implementation of forest�synch� We can use any synchronizer to synchronize between the

clusters� Suppose we want to use synchronizer �� Note that we cant run � directly� because it

is supposed to run on nodes that correspond to the clusters� with edges directly connecting

these nodes �clusters�� we arent provided with such nodes and channels in a distributed

system� However� it is not hard to simulate them� We do this as follows� Assume we have a

leader node in each cluster� and let it run the node protocol of � for the entire cluster� �This

can�but doesnt have to�be the same node as is used as the root in the implementation

of � for the cluster� if the cluster is synchronized using ��� The next problem to solve is the

way two leaders in di�erent clusters can communicate� We simulate direct communication

using a path between them� Note that there must exist such a path� because the leaders

that need to communicate are in adjacent clusters �and each cluster is connected�� We need

some preprocessing to determine these paths� we ignore this issue for now�

We need also to specify� for the �nal implementation� where the cluster�OK action occurs�

This is done as an output from some node in the cluster�synch protocol� if synchronizer �

is used� it is an output of the root of the spanning tree of the cluster� It is also an input to

the leader node in the forest�synch for that same cluster� If these two are the same node�

then this action just becomes an internal action of the actual node in the distributed system�

�If these node are di�erent� then we need to have them communicate along some path� also

determined by some preprocessing� this requires an extra piece of the implementation��

The formal structure of this hybrid algorithm is quite nice� each node in the distributed

network is formally an IOA which is the composition of two other IOAs� one for each of the

two protocols �intra�cluster and inter�cluster synchronizers�� We can consider two orthogo�
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nal decompositions of the entire implementation� vertical �i�e�� to nodes and channels�� or

horizontal �i�e�� by the two algorithms� each distributed one piece per node��

Analysis� We shall consider the speci�c implementation where the cluster�synch is done

using �� and the forest�synch is done using �� and we assume that the leader for � within a

cluster is same node that serves as the root for ��

Consider one round� The number of messages is O�n� for the work within the clusters�

plusO�E��� whereE� is the number of edges on all the paths needed for communication among

the leaders� We remark that depending on the decomposition� E� could be signi�cantly

smaller than E� The time complexity is proportional to the maximum height of any cluster

spanning tree�

Thus� the optimal complexity of the hybrid algorithm boils down to the combinatorial

problem of �nding a graph decomposition such that both the sum of the path lengths and the

maximum height are small� Also� we need to establish this decomposition with a distributed

algorithm� We will not address these problems here�

�����
 Applications

We can use the synchronizers presented above to simulate any synchronous algorithm �in

the original model for synchronous systems presented earlier in the course� on an asyn�

chronous system� Note that the synchronizer doesnt work for fault�tolerant algorithms such

as Byzantine agreement� because it is not possible in this case to wait for all processes�

Ring leader election algorithms such as LeLann�Chang� Hirshberg�Sinclair� and Peterson

can thus be run in an asynchronous system� But note that the message complexity goes way

up if we do this� Since they already worked in an asynchronous system without any such

extra synchronization� this isnt interesting� The following applications are more interesting�

Network leader election� Using the synchronizer� the algorithm that propagates the max�

imal ID seen so far can work as in the synchronous setting� This means that it can count

rounds as before� waiting only diam rounds before terminating� It also means that the num�

ber of messages doesnt have to be excessive� its not necessary for nodes to send constantly�

since each node now knows exactly when it needs to send �once to each neighbor at each

asynchronous round�� Using synchronizer �� the complexity of the resulting algorithm is

O�diam� time� and O�E 	 diam� messages� which is better than the aforementioned naive

strategy of multiple spanning trees�

Breadth��rst search� For this problem� the synchronizer proves to be a big win� Recall

the horrendous performance of the Bellman�Ford algorithm in the asynchronous model� and

how simple the algorithm was in the synchronous setting� Now we can run the synchronous
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algorithm using� say synchronizer �� which leads to an O�E 	 diam� message� O�diam� time

algorithm� �Compare with the synchronous algorithm� which needed only O�E� messages��

Note� O�E 	 diam� might be considered excessive communication� We can give a direct

asynchronous algorithm based on building the BF tree in levels� doing broadcast�convergecast

at each level� adding in the new leaves for that level� and terminating when no new nodes are

discovered� For this algorithm� the time is then O�diam��� which is worse than the algorithm

based on the synchronizer� But the message complexity is only O�E � n 	 diam�� since each

edge is explored once� and tree edges are traversed at most a constant number of times for

each level� It is also possible to obtain a time�communication tradeo� by combining the two

strategies� More speci�cally� we can explore k levels in each phase using �� obtaining time

complexity of O�diam
�

k
� and communication complexity of O�E	k�n�diam

k
�� for � � k � diam�

Weighted Single�source Shortest Paths� Using the synchronous algorithm with synchro�

nizer � yields an algorithm with O�n� time complexity� and O�En� messages� We remark

that there is an algorithm with fewer messages and more time �cf� Gabow� as developed by

Awerbuch in his notes��

Maximal Independent Set� We can apply the synchronizer to a randomized synchronous

algorithm like MIS too� We omit details�

���� Lower Bound for Synchronizers

Awerbuchs synchronizer result suggests that a synchronous algorithm can be converted into

a corresponding asynchronous algorithm without too great an increase in costs� In particular�

by using synchronizer �� it is possible not to increase the time cost at all� The following

result by Arjomandi�Fischer�Lynch shows that this approach cannot be adopted universally�

In particular� it establishes a lower bound on time for an asynchronous algorithm to solve

a particular problem� Since there is a very fast synchronous algorithm for the problem�

this means that not every fast synchronous algorithm can be converted to an asynchronous

algorithm with the same time complexity� Note that the di�erence is not caused by requiring

any fault�tolerance� so the result may seem almost contradictory to the synchronizer results�

We start by de�ning the problem� Let G 	 �V�E� be a graph� Recall that diam�G�

denotes the maximum distance between two nodes in G� The systems external interface

consists of �ashi output actions� for all i � V � where �ash i is an output of the I�O automaton

at node i� As an illustration� imagine that the �ashi is a signal that node i has completed

some task� De�ne a session as a sequence of �ashes in which at least one �ashi occurs for

every i� We can now de�ne the k�session problem� we require simply that the algorithm

should perform at least k disjoint sessions�
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The original motivation for this setting was that the nodes were performing some kind

of coordinated calculation on external data� e�g�� a Boolean matrix transitive closure� in the

PRAM style� Each node �i� j� k� was responsible for writing a � in location �i� j�� in case

it ever saw �s in both locations �i� k� and �k� j�� Notice that for this problem� it doesnt

matter whether the nodes do excessive checking and writing� Correctness is guaranteed if

we have at least log n sessions �i�e�� if there is �enough� interleaving��

The reason the problem is stated this way is that it is a more general problem than the

simpler problem in which all processes do exactly one step in each session �so it strengthens

the impossibility result�� Note also that this is a weak problem statement� it doesnt even

require the nodes to know when k sessions have completed�

Before we turn to prove the lower bound result� let us make the problem statement

more precise� As usual� we model the processes as IOAs� connected by FIFO channels� For

simplicity� we let the node automata partition consist of a single�class �intuitively� the nodes

are executing sequential programs��

Our goal is to prove an inherent time complexity result� �Note that this is the �rst lower

bound on time that we are proving in this course�� We need to augment the model by

associating times� as usual� with the events� in a monotone nondecreasing way �approaching

in�nity in an in�nite fair execution�� Let l be a bound for local step time� and d be the bound

for delivery of �rst message in each channel� �This is a special case of the general notion of

time bounds for IOAs�� We assume that d � l� An execution with times associated with

events satisfying the given requirements is called a timed execution�

Next� we de�ne the time measure T �A� for algorithm A as follows� For each execution �

of the algorithm� de�ne T ��� to be the supremum of the times at which a �ash event occurs

in �� �There could be in�nitely many such events� hence we use a supremum here�� Finally�

we de�ne

T �A� 	 sup
�
�T ���� �

We can now state and prove our main result for this section

Theorem � Suppose A is an algorithm that solves the k�session problem on graph G� Then

T �A� � �k � �� 	 diam�G� 	 d�

Before we turn to prove the theorem� consider the k�session problem in the synchronous case�

We can get k sessions without the nodes ever communicating � each node just does a �ash

at every round� for k rounds� The time would be only kd �for a time measure normalized so

that each round counts for d time�� This discrepancy proves that the inherent multiplicative

overhead due to asynchrony for some problems is proportional to diam�G��

Proof Sketch� �of Theorem ��

By contradiction� Suppose that there exists an algorithmA with T �A� � �k���	diam�G�	d�
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Call a timed execution slow if all the actions take their maximum times� i�e�� if the deliveries

of the �rst messages in the channels always takes time d and the step times always take l�

Let � be any slow �fair� timed execution of the system� By the assumption that A is correct�

� contains k sessions� By the contradiction assumption� the time of the last �ash in � is

strictly less than �k � �� 	 diam�G� 	 d� So we can write � 	 ������ where the time of the

last event in �� is less than �k � �� 	 diam�G� 	 d� and where there are no �ash events in ����

Furthermore� because of the time bound� we can decompose �� 	 ���� � � � �k�� where each

of the �r has the di�erence between the times of its �rst and last events strictly less than

diam�G� 	 d�

We now construct another fair execution of the algorithm� � 	 ���� � � � �k���
��� This

will be an ordinary untimed fair execution� that is� we do not assign times to this one� The

execution � is constructed by reordering the actions in each �r �and removing the times� to

obtain �r� and by removing the times from ��� to get ���� �Of course� when we reorder events�

we will have to make some adjustments to the intervening states�� We will show that the

modi�ed execution contains fewer than k sessions� which contradicts the correctness of A�

The reordering must preserve certain dependencies in order to produce a valid execution of

A� Formally� we shall prove the following claim�

Claim � Let i� 	 i� 	 i� 	 	 	 	 	 i� and i� 	 i� 	 i� 	 	 	 	 	 j� where dist�i� j� 	 diam�G��

For all r 	 �� � � � � k � � there exists a reordering� �r 	 �r�r of �r �i�e�� the actions are

reordered� with the initial and �nal states unchanged�� such that the following properties

hold�


� The reordering preserves the following dependency partial order�

�a� The order of all actions of the same node�

�b� The order of each send i�j�m� event and its corresponding receive i�j�m� event�

�� �r contains no event of ir���

�� �r contains no event of ir�

Let us �rst show how to complete the proof of Theorem � using Claim �� Since the

reordering preserves the dependencies� this means that ���� � � � �k���
�� is a fair execution of

A� But we can show that this execution contains at most k�� sessions as follows� No session

can be entirely contained within ��� since �� contains no event of i�� Likewise� no session can

be entirely contained within �r���r� since this sequence contains no event of process ir���

This implies that each session must contain events on both sides of some �r�r boundary�

Since there are only k � � such boundaries� the theorem follows�
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It remains to prove Claim �� To do this� we produce the required reorderings� The

construction is done independently for each r� So �x some r� � � r � k � �� We consider

two cases�

Case 
� �r contains no event of ir��� In this case we de�ne �r 	 �r and �r is empty�

Case �� �r contains an event of ir��� Let 	 be the �rst event of ir�� in �r� Now we claim

that there is no step of ir in �r that depends on 	 �according to the dependency relation

de�ned in Claim ��� This is true since the time for a message to propagate from ir�� to ir in

a slow execution is at least diam 	d� whereas we have constructed �r so that the time between

its �rst and last events is strictly less than diam 	 d� Thus we can reorder �r so that all the

steps of ir precede 	� we keep the initial and �nal states the same� and mimic the local state

changes as in �r� This still yields allowable transitions of the algorithm� by a dependency

theorem similar to the one we used for the synchronizer construction �but simpler�� Let �r

be the part of the reordered sequence before 	� and �r the part of the sequence starting with

	� It is straightforward to verify that �r 	 �r�r has the properties required to prove Claim

��

Note that the reordered sequence is not a timed execution � if we were trying to preserve

the times somehow during the reordering� we would be stretching and shrinking some time

intervals� We would have to be careful to observe the upper bound requirements� We could

avoid these problems by making all the time intervals very small� but we dont need to worry

about this at all� since all we need to get the contradiction is an untimed fair execution�

Theorem � almost looks like a contradiction to the synchronizer result � recall that the

synchronizer gives a simulation with constant time overhead� This is not a contradiction�

however� because the synchronizer simulation doesnt preserve the total external behavior�

it only preserves the behavior at each node� while it may reorder the events at di�erent

nodes� We remark that for most purposes� we might not care about global reordering� but

sometimes� when there is some �out�of�band� communication� the order of events at di�erent

nodes might be important�
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���� Time Clocks etc�

The idea that it is OK to reorder events at di�erent nodes motivates Lamports important

notion of �logical time�� de�ned in his famous paper Time� Clocks� and the Ordering of

Events in a Distributed System�

������ Logical Time

The model assumed is the one we have been using� In this model� there is no built�in notion

of real�time �in particular� there are no clocks�� but it is possible to impose a logical notion of

time� namely Lamports logical time� Speci�cally� every event of the system �send or receive

of messages� external interface event� internal event of node� gets assigned a logical time�

an element of some �xed totally ordered set� Typically� this set is either the nonnegative

integers or the nonnegative reals �perhaps with tie�breakers�� These logical times dont have

to have any particular relationship to any notion of real time� However� they do need to

satisfy the following properties�

�� No two events get assigned the same logical time�

�� Events at each node obtain logical times that are strictly increasing� in the same order

as the events occur�

�� For any message� its send event gets a strictly smaller logical time than its receive

event�


� For any event� there are only �nitely many other events that get assigned logical times

that are smaller�

The important result about such an assignment is as follows� Suppose that we are given

an execution � of a network system of IO automata and a logical time assignment ltime

that satis�es the conditions above� Then there is another execution �� of the same system�
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which looks the same to each node �i�e�� �ji 	 ��ji for all i�� and in which the times from

the assignment ltime occur in increasing order in real time� In other words� we can have a

reordered execution� such that the logical time order of the original execution is the same as

the real time order in the reordered execution� So we can say that programming in terms of

logical time looks to all the users as if they are programming in terms of real time�

We can view this as another way to reduce the uncertainty of an asynchronous network

system� Roughly speaking� we can write asynchronous programs where we assume that each

node has �access to� real time� �Real time modeling doesnt �t the IOA model� which is

why this is rough� It will be done more carefully later in the course when we do timing�

based models�� In the basic model� the nodes dont have this access� Instead� we can have

them implement logical time somehow� and let them use the logical time in place of the real

time� The reordering result says that the resulting executions will look the same to all nodes

�separately��

One generalization is useful� suppose we want to augment the model to allow broadcast

actions� which serve to send the same message to all the other nodes� We can implement

this� of course� with a sequence of individual send actions� There is nothing too interesting

here thus far� But the important thing here is that we can allow a broadcast to have a

single logical time� and require that all the associated receives have larger logical times� The

reordering result still holds with this new action�

������ Algorithms

Lamport
s implementation� Lamport presents a simple algorithm for producing such

logical times� It involves each node process maintaining a local variable clock that it uses as

a local clock� The local clock gets incremented at each event �input� output or internal� that

occurs at that node� The logical time of the event is de�ned to be the value of the variable

clock � immediately after the event� paired with the process index as a tie�breaker�

This algorithm is easily seen to ensure Properties � and � above� In order to ensure

Property �� the following rule is observed� Whenever a node does a send �or broadcast�

event� it �rst increments its clock variable to get the logical time for the send event� and

it attaches that clock value to the message when it sends it out� When the receiver of the

message performs a receive event� it makes sure that it increments its clock variable to be

not only larger than its previous value� but also strictly larger than the clock value in the

message� As before� it is this new clock value that gets assigned to the receive event� To

ensure Property 
� it su�ces to allow each increase of a clock variable to increase the value

by some minimum amount �e�g�� ���
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Welch
s Implementation� In Welchs algorithm� as in Lamports� the logical time at

each node is maintained by a state variable named clock � which can take on nonnegative

integer or real values� But this time� we assume that there is an input action tick �t� that

is responsible for setting this variable� The node sets its clock variable to t when tick �t� is

received� We can imagine this input as arriving from a separate �clock� IOA� �The node

implements both this clock and the process IOA��

Now each non�tick action gets its logical time equal to the value of clock when it is

performed� with tie breakers� �rst� by the process index� and second� by execution order at

the same process� Note that the clock value does not change during the execution of this

action� Some additional careful handling is needed to ensure Property �� This time� we have

an extra FIFO receive�bu�er at each node� which holds messages whose clock values are at

least the clock value at the local node� Assuming that the local clock value keeps increasing

without bound� eventually it will be big enough so that it dominates the incoming messages

clock value� The rule is to wait for the time where the �rst message in the receive�bu�er has

an associated clock less than the local clock � Then this message can be processed as usual�

we de�ne the logical time of the receive event in terms of the local clock variable when this

simulated receive occurs�

The correctness of this algorithm is guaranteed by the following facts� Property � is

ensured by the the tie�breakers� Property � relies on the monotonicity of the local clocks plus

the tie�breakers� Property � is guaranteed by the bu�er discipline� and Property 
 requires

a special property of the clock automaton� namely that it must grow unboundedly��� This

could be achieved� e�g�� by having a positive lower bound on the tick increment� and having

the clock automaton execute fairly�

Note that this algorithm leads to bad performance when the local clocks get out of synch�

For this to work in practice� we need some synchronization among the clocks� which is nor

really possible in a purely asynchronous system� We could use a synchronizer for the local

clocks� but it is too expensive to do this at every step� Instead� we could use a synchronizer

every so often� say every ���� steps� Still� in a pure asynchronous system� the worst�case

behavior of this strategy will be poor� This algorithm makes more sense in a setting with

some notion of real�time�

������ Applications

It is not clear that the above algorithms can always be used to implement some ltime

abstraction� which then can be used as a �black box�� The problem is that the logical time

��In other words� we don�t allow Zeno behaviors� in which in�nite executions take a �nite amount of time�
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abstraction does not have a clear interface description� Rather� well consider uses of the

general idea of logical time� Before we go into more sophisticated applications� we remark

that both algorithms can be used to support logical time for a system containing broadcast

actions� as described above�

Banking system

Suppose we want to count the total amount of money in a banking system in which no new

money is added to or removed from the system� but it may be sent around and received �i�e��

the system satis�es conservation of money�� The system is modeled as some collection of

IOAs with no external actions� having the local amount of money encoded in the local state�

with send actions and receive actions that have money parameters� The architecture is �xed

in our model� the only variation is in the decision of when to send money� and how much�

Suppose this system somehow manages to associate a logical time with each event as

above� Imagine that each node now consists of an augmented automaton that �contains�

the original automaton� This augmented automaton is supposed to �know� the logical time

associated with each event of the basic automaton� In this case� in order to count the total

amount of money in the bank� it su�ces to do the following�

�� Fix some particular time t� known to all the nodes�

�� For each node� determine the amount of money in the state of the basic automaton

after processing all events with logical time less than or equal to t �and no later events��

�� For each channel� determine the amount of money in all the messages sent at a logical

time at most t but received at a logical time strictly greater than t�

Adding up all these amounts gives a correct total� This can be argued as follows� Consider

any execution � of the basic system� together with its logical time assignment� By the

reordering result� theres another execution �� of the same basic system as above and same

logical time assignment� that looks the same to all nodes� and all events occur in logical time

order� What this strategy does is �cut� execution �� immediately after time t� and record

the money in all the nodes� and the money in all the channels� This simple strategy is thus

giving an instantaneous snapshot of the system state� which gives the correct total amount

of money in the banking system�

Let us consider how to do this with a distributed algorithm� Each augmented automaton

i is responsible for overseeing the work of basic automaton i� Augmented automaton i is

assumed able to look inside basic automaton i to see the amount of money� �Note that this

is not ordinary IOA composition� the interface abstractions are violated by the coupling�� It
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is also assumed to know the logical time associated with each event of the basic automaton�

The augmented automaton i is responsible for determining the state of the basic automaton

at that node� plus the states of all the incoming channels�

The augmented automaton i attaches the logical time of each send event to the message

being sent� It records the basic automaton state as follows� Automaton i records the state

after each step� until it sees some logical time greater than t� Then it �backs up� one

step and returns the previous state� For recording the channel state� we need to know the

messages that are sent at a logical time �at the sender� at most t and received at a logical

time �at the receiver� strictly greater than t� So as soon as an event occurs with logical

time exceeding t �that is� when it records the node state�� it starts recording messages

coming in on the channel� It continues recording them as long as the attached timestamp

is no more than t� Note� to ensure termination� we need to assume that each basic node

continues sending messages every so often� so that its neighbors eventually get something

with timestamp strictly larger than t� Alternatively� the counting protocol itself could add

some extra messages to determine when all the senders messages with attached time at most

t have arrived�

We remark that the augmented algorithm has the nice property that it doesnt interfere

with the underlying operation of the basic system�

General Snapshot

This strategy above can� of course� be generalized beyond banks� to arbitrary asynchronous

systems� Suppose we want to take any such system that is running� and determine a global

state at some point in time� We cant actually do this without stopping everything in the

system at one time �or making duplicate copies of everything�� It is not practical in a real

distributed system �e�g�� one with thousands of nodes� to really stop everything� it could

even be impossible� But for some applications� it may be su�cient to get a state that just

�looks like� a correct global state� as far as the nodes can tell� �We shall see some such

applications later�� In this case� we can use the strategy described above�

Simulating a Single State Machine

Another use� mentioned but not emphasized in Lamports paper �but very much emphasized

by him in the ensuing years� is the use of logical time to allow a distributed system to

simulate a centralized state machine� i�e�� a single object� The notion of an object that

works here is a very simple one  essentially� it is an IO automaton with input actions only�

we require that there be only one initial value and that the new state be determined by the

old state and the input action� �This may not seem very useful at �rst glance� but it can be
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used to solve some interesting synchronization problems� e�g�� we will see how to use it to

solve mutual exclusion� Its also a model for a database with update operations��

Suppose now that there are n users supplying inputs �updates� at the n node processes of

the network� We would like them all to apply their updates to the same centralized object�

We can maintain one copy of this object in one centralized location� and send all the updates

there� But suppose that we would like all the nodes to have access to �i�e�� to be able to read�

the latest available state of the object� �E�g�� suppose that reads are more frequent than

writes� and we want to minimize the amount of communication�� This suggests a replicated

implementation of the object� where each node keeps a private copy� we can broadcast all

the updates to all the nodes� and let them all apply the updates to their copies� But they

need to update their copies in the same way� at least eventually� If we just broadcast the

updates� nothing can stop di�erent nodes from applying them in di�erent orders� We require

a total order of all the updates produced anywhere in the system� known to all the nodes�

so that they can all apply them in the same order� Moreover� there should only be �nitely

many updates ordered before any particular one� so that all can eventually be performed�

Also� a node needs to know when its safe to apply an update � this means that no further

updates that should have been applied before �i�e�� before the one about to be applied� will

ever arrive� We would like the property of monotonicity of successive updates submitted by

a particular node� in order to facilitate this property�

The answer to our problems is logical time� When a user submits an update� the associ�

ated process broadcasts it� and assigns it a timestamp� which is the logical time assigned to

the broadcast event for the update� �If a node stops getting local updates as inputs� it should

still continue to send some dummy messages out� just to keep propagating information about

its logical time�� Each node puts all the updates it receives� together with their timestamps�

in a �request queue�� not yet applying them to the object� �Note� this queue must include

all the updates the node receives in broadcasts by other nodes� plus those the node sends in

its own broadcasts�� The node applies update u if the following conditions are satis�ed�

�� Update u has the smallest timestamp of any request on the request queue�

�� The node has received a message �request or dummy� from every node with send time

at least equal to the timestamp of u�

Condition � and the FIFOness of the channels guarantee that the node will never receive

anything with smaller timestamp than this �rst update� Furthermore� any node eventually

succeeds in applying all updates� because logical time keeps increasing at all nodes� Note

that we didnt strictly need Property � of logical time �relating the times of message send

and receive� here for correctness� But something like that is important for performance�
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Example� Banking distributed database� Suppose each node is a bank branch� and

updates are things like deposit� withdraw� add�interest� withdraw�from�checking�if�su�cient�

funds�else�from�savings� etc� Note that in some of these cases� the order of the updates

matters� Also suppose that all the nodes want to keep a recent picture of all the bank

information �for reading� deciding on which later updates should be triggered at that branch�

etc��� We can use logical time as above to simulate a centralized state machine representing

the bank information�

Note that this algorithm is not very fault�tolerant� �Also� in general� it does not seem

very e�cient� But it can sometimes be reasonable � see the mutual exclusion algorithm

below��

���� Simulating Shared Memory

In this section we consider another simplifying strategy for asynchronous networks� We use

this strategy to simulate �instantaneous� shared memory algorithms�

The basic idea is simple� Locate each shared variable at some node� Each operation

gets sent to the appropriate node� and the sending process waits for a response� When the

operation arrives at the simulated location� it gets performed �possibly being queued up

before being performed�� and a response is sent back� When the response is received by

the sending process� it completes its step� If new inputs arrive from the outside world at a

process during a �waiting period�� the process only queues them� These pending inputs are

processed only when the anticipated response returns��� We now claim that this simulation is

correct� i�e�� that every external behavior is also an external behavior of the instantaneously

shared memory system being simulated� also� every fair behavior �of nodes and channels� is

also a fair behavior of the instantaneous shared memory system� also� some kind of wait�

freedom carries over� To prove this claim� we use the corresponding result for atomic shared

memory simulating instantaneous shared memory� and the observation that we are actually

simulating atomic objects using a centralized object and the delays in the message system�

We omit details�

The problem of where to put the shared variables depends on the characteristics of the

application at hand� E�g�� for a system based on single�writer multi�reader shared variables�

where writes are fairly frequent� we would expect to locate the variables at the writers node�

��Earlier in the course we had a restriction for the atomic shared memory simulation of instantaneous

shared memory� that no new inputs arrive at any node while the node process is waiting for an invocation

to return� The reason for this was to avoid introducing any new interleavings� It seems� however� that we

could have handled this by just forcing the process to queue up the inputs as above� and so remove the need

for this restriction�
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Note that the objects have to be simulated even while the nodes dont have active re�

quests�

There are other ways of simulating shared memory algorithms�

Caching� For single�writer multi�reader registers� note that someone who wants to repeat�

edly test the value of a register has� in the implementation described above� to send repeated

messages even though the variable is not changing� It is possible to develop an alternative

strategy by which writers notify readers before they change the value of the variable� so if

the readers havent heard about a modi�cation� they can just use their previous value� This

is the basic idea of caching�

Replicated copies� Caching is one example of a general style of implementation based on

data replication� Data can be replicated for many reasons� e�g�� fault�tolerance �which we

will discuss later�� But often it is done only for availability� Suppose we have a multi�writer

multi�reader shared register� in which writes are very infrequent� Then we can locate copies

of the register only at all the readers nodes �compare with the caching example�� A reader�

to read the register� can always look at its local copy� A writer� to write the register� needs to

write all the copies� Note that it needs to do this atomically �since one at a time may cause

out�of�order reads�� Therefore we need some extra protocol here to ensure that the copies

are written as if atomically� This requires techniques from the area of database concurrency

control�

���� Mutual Exclusion and Resource Allocation

In this section we consider the problem of resource allocation in a distributed message�passing

network�

������ Problem De�nition

We have the same interface as before� but now the inputs and outputs for user i occur at

a corresponding node i �see Figure ������ The processes� one for each i� communicate via

messages over FIFO channels�

Consider the resource requirement formulation of the problem �in terms of a monotone

Boolean formula involving the needed resources�� Each node i has a static ��xed� resource

requirement� Assume that any two nodes that have any common resource in their two

resource requirements are neighbors in the network graph� so they can communicate to

negotiate priority for the resources� We do not model the resources separately�

In this setting� we typically drop the restriction that nodes can perform locally�controlled

steps only when they are between requests and responses� This is because the algorithms
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try

crit

exit

rem

try

crit

exit

rem

try

crit

exit

rem

Figure ����� Interface speci�cation for resource allocation on a message passing system

will typically need to respond to requests by their neighbors for the resources�

Th correctness conditions are now as follows� As before� we require a solution to preserve

well�formedness �cyclic behavior�� and also mutual exclusion or a more general exclusion

condition�

We also require deadlock�freedom� i�e�� if there is any active request and no one in C�

then some request eventually gets granted� and if there is any active exit region then some

exit eventually occurs� This time the hypothesis is that all the node and channel automata

exhibit fair behavior �in the IOA sense� i�e�� all the nodes keep taking steps and all the

channels continue to deliver all messages��

The lockout�freedom condition is de�ned as before� under the hypothesis that all the node

and channel automata exhibit fair behavior�

For the concurrency property� suppose that a request is invoked at a node i� and all

neighbors are in R and remain in R� Suppose that execution proceeds so that i and all its
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neighbors continue to take steps fairly� and the connecting links continue to operate fairly�

�Note that other processes can remain in C forever�� Then the concurrency condition requires

that eventually i reach C�

We remark that this is analogous to the weak condition we had for shared memory

systems� only here we add fairness requirements on the neighbors and the links in between�

������ Mutual Exclusion Algorithms

Raynals book is a good reference �also for the shared memory mutual exclusive algorithms��

We have many possible approaches now�

Simulating Shared Memory

We have learned about several shared memory algorithms for mutual exclusion� We can

simply simulate one of these in a distributed system� E�g�� use the Peterson multi�writer

multi�reader shared register tournament algorithm �or the variant of this that we didnt have

time to cover�� or some version of the bakery algorithm �maybe with unbounded tickets��

LeLann

LeLann proposed the following simple solution� The processes are arranged in a logical ring

p�� p�� � � � � pn� p�� A token representing control of the resource is passed around the ring in

order� When process pi receives the token� it checks for an outstanding request for the

resource from user i� If there is no such request� the token is passed to the next process in

the ring� If there is an outstanding request� the resource is granted and the token is held

until the resource is returned and then passed to the next process�

The code for process pi is given in Figure �����

Let us go over the properties of LeLanns algorithm�

Mutual Exclusion is guaranteed in normal operation because there is only one token� and

only its holder can have any resource�

Deadlock�Freedom� in fair executions� when no one is in C� the process that holds the

token is either�

� in T � and then it can go to C� or

� in E �R� and then it has to pass the token to the next process�

Similarly� the deadlock�freedom for the exit region is satis�ed�

Lockout�Freedom is straightforward�
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Local variables�

� token � fnone� available � in use� usedg� initially available at p�� and none else�

where

� region � fR�T�C�Eg� initially R

Actions�

try i
E�ect� region � T

crit i

Precondition� region 	 T

token 	 avail

E�ect� region � C

token � in use

exit i

E�ect� region � E

remi

Precondition� region 	 E

E�ect� region � R

token � used

receive i���i�token�

E�ect� token � available

send i�i���token�

Precondition� token 	 used
W

�token 	 available
V

region �	 T �

E�ect� token � none

Figure ����� LeLann mutual exclusion algorithm for message passing systems
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Performance� First� lets consider the number of messages� It is not clear what to

measure� since the messages arent naturally apportioned to particular requests� E�g�� we

can measure the worst�case number of messages sent in between a try i and corresponding

crit i� but it seems more reasonable to try to do some kind of amortized analysis� Note that

each virtual link in the logical ring is really of unit length� since the graph is complete�

In the worst case� n messages are sent between tryi and criti� For the amortized cost� we

consider the case of �heavy load�� where there is always an active request at each node� in

this case there are only a constant number of messages per request� If a request comes in

alone� however� we still get n messages in the worst case� Also� it is hard to get a good

bound statement here� since messages are sent even in the absence of any requests at all�

For the time complexity� we assume worst�case bounds� Let c be the time spent in C� d

be the message delay for the �rst message in any channel� and s be the process step time�

The worst�case time is approximately �c� d�O�s�� 	 n� Note that� unfortunately� this time

bound has a d 	 n term� regardless of the load� and this might be big�

Resiliency� LeLann discusses various types of resiliency in his paper�

� Process failure� If a process stops and announces its failure� the rest of the processes can

recon�gure the ring to bypass the failed process� This requires a distributed protocol�

Note that a process that doesnt announce its failure cant be detected as failed� since

in an asynchronous system� there is no way for a process to distinguish a failed process

from one that is just going very slowly�

� Loss of token� When a token loss is detected �e�g�� by timeout�� a new one can be

generated by using a leader�election protocol� as studied earlier�

Lamport
s algorithm

Another solution uses Lamport logical time� In particular� the state machine simulation

approach is applied� The state machine here has as its state a queue of process indices�

which is initially empty� The operations are try i and exit i� where tryi has the e�ect of

adding i to the end of queue and exit i has the e�ect of removing i from queue � provided

it is at the front� When user i initiates a try i or exit i event� it is regarded as submitting

a corresponding �update� request� Then� as described above� the state machine approach

broadcasts the updates� waits to be able to perform them� i�e�� a node can perform an update

when that update has the smallest timestamp of any update in the request bu�er� and the

node knows it has all the smaller timestamp updates� When the node is able to perform the

update� it does so� The replicated object state is used as follows� When the queue at node

i gets i at the front� the process at node i is allowed to do a crit i� When the queue at node
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i gets i removed� the process at node i is allowed to do a remi�

Let us now argue that this algorithm guarantees mutual exclusion� Suppose not� say

pi and pj are simultaneously in C� and suppose� without loss of generality� that pi has the

smaller timestamp� Then when j was added to pj s queue� the state machine implementation

ensures that i must have already been there� ahead of j� But i has not been removed �since

it is still in C�� So j could not have done a crit i action� a contradiction�

It is a little hard to analyze the algorithm in this form� since it combines three protocols�

the logical time generation protocol� the replicated state machine protocol� and the extra

rules for when to do crit and rem actions� We can merge and �optimize� these protocols

somewhat as follows� Assume that the logical time generation is done according to Lamports

algorithm� based on the given messages� We combine the request�bu�er and the simulated

state machines state� Also� the ack messages below are used as the dummy messages

discussed in the general approach�

In this algorithm� every process pi maintains a local variable region as before� and for each

other process pj a local queue queue j� This queue j contains all the messages ever received

from pj �we remark that this can be optimized�� There are three types of messages�

� try�msg�i�� Broadcast by pi to announce that it is trying�

� exit�msg�i�� Broadcast by pi to announce that it is exiting�

� ack�i�� Sent by pi to pj � acknowledging the receipt of a try�msg�j� message�

The code is written so as to send all these messages at the indicated times� We assume

that the sending or broadcast logical times are piggybacked on the messages� and the queues

contain these logical times as well as the messages themselves� Also� the logical time of each

of the broadcast events �for try or exit requests� is used as the timestampof the corresponding

update�

This already tells what messages are sent and when� We wont have a separate application

step to apply the update to the queue� since we do not have an explicit representation of the

queue� All we need now is rules for pi telling when to perform crit i and remi actions� Below

we give these rules�

� pi � R � Can be done anytime after exit i occurs�

� pi � C � Must ensure that region 	 T and that the following conditions hold�

�� Mutual exclusion is preserved�

�� There is no other request pending with a smaller timestamp�
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Process pi can ensure that the above conditions are met by checking for each j �	 i�

�� Any try�msg in queue j with timestamp less than the timestamp of the current

try �msg of pi has an exit�msg in queue j with a larger timestamp than that of

js try�msg�

�� queue j contains some message �possibly an ack� with timestamp larger than the

timestamp of the current try�msg of pi

Lamports algorithm has the following properties�

Mutual Exclusion� This can be proven by contradiction as follows� Assume that two

processes� pi and pj � are in C at the same time� and �without loss of generality� that the

timestamp of pis request is smaller than the timestamp of pjs request� Then pj had to

check its queue i in order to enter C� The second test and FIFO behavior of channels imply

that pj had to see pis try�msg� so by the �rst test it had also to see an exit�msg from pi� so

pi must have already left C�

Lockout�freedom� This property results from servicing requests in timestamp order� Since

each event �in particular� request event� has a �nite number of predecessors� all requests will

eventually get serviced�

Complexity� Let us �rst deal with the number of messages� We shall use amortized

analysis here as follows� Every request involves sending try�msg� ack and exit�msg messages

between some process and all the others� thus ��n � �� messages are sent per request� For

the time complexity� note that when there is a single request in the system� the time is

�d�O�s�� where d is the communication delay and s is the local processing time� We assume

that the broadcast is done as one atomic step� if n� � messages are treated separately� the

processing costs are linear in n� but these costs are still presumed to be small compared

to the communication delay d� �Recall that� in contrast� the time complexity of Lelanns

algorithm had a dn term��
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���� Mutual Exclusion �cont��

Last time� we gave Lamports mutual exclusion algorithm based on his state�machine ap�

proach� Recall that we have try and exit messages as input to the state machine� and

ack messages to respond to try messages� The following two variants provide interesting

optimizations of this algorithm�

������ Ricart � Agrawala �����

Ricart and Agrawalas algorithm uses only ��n � �� messages per request� It improves

Lamports original algorithm by acknowledging requests in a careful manner that eliminates

the need for exit messages� This algorithm uses only two types of messages� try and OK�

Process pi sends try�i� as in Lamports algorithm� and can go critical after OK messages

have been received from all the others� So the interesting part is a rule for when to send

an OK message� The idea is to use a priority scheme� Speci�cally� in response to a try� a

process does the following�

� Replies with OK if it is not critical or trying�

� If it is critical� it defers the reply until it exits� and then immediately sends all the

deferred OKs�

� If it is trying� it compares the timestamp of its own request to the timestamp of the

incoming try� If its own is bigger� its own is interpreted as lower priority� and the process

sends OK immediately� else �having higher priority� the process defers acknowledging

the request until it �nishes with its own critical region�

In other words� when there is some con�ict� this strategy is to resolve it in favor of the

�earlier� request� as determined by the timestamps�
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Properties of the Ricart�Agrawala Algorithm�

Mutual Exclusion� Proved by contradiction� Assume that processes pi and pj are both

in C and �without loss of generality� that the timestamp of pis request is smaller than the

timestamp of pj s request� Then there must have been try and OK messages sent from each

to the other� prior to their entry to C� at each node� the receipt of the try precedes the

sending of the matching OK� But there are several possible orderings of the various events

�see Figure ������

try−i try−j

OK−i OK−j

Process i Process j

Figure ����� A possible scenario for the Ricart�Agrawala algorithm�

Now� the timestamp of i is less than that of j� and the logical time of the receipt of js

try by i is greater than the timestamp of js request �by the logical time property�� So it

must be that the receipt of pjs try message at i occurs after pi has broadcast its try� Then

at the time pi receives pj s try� it is either trying or critical� In either case� pis rules say it

has to defer the OK message� thus pj could not be in C� a contradiction�

Deadlock�freedom is also proved by contradiction� Assume some execution that reaches a

point after which no progress is achieved� That is� at that point all the processes are either

in R or T � none are in C� and from that point on� no process changes regions� By going

a little further out in the execution� we can also reach a point after which no messages are

ever in transit� Among all the processes in T after that point� let pi be the process having

the request message with the lowest timestamp� Then since pi is blocked forever it must be

because some other process pj has not returned an OK message to it� Process pj could only

have deferred the OK because it was either

� in C� but since pj eventually leaves C� it must eventually send the deferred OK�

� in T � in this case pj deferred the OK because the timestamp of its request was smaller

than pis� Since pis request has the smallest timestamp in T now� pj must have

completed� thus after exiting C it had to send the deferred OK�
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In either case we get a contradiction�

Fairness� it can be shown that the algorithm has lockout�freedom�

Complexity� it is easy to see that there are ��n � �� messages per request� The time

complexity is left as an exercise�

������ Carvalho � Roucairol �����

This algorithm improves on Ricart�Agrawala by giving a di�erent interpretation to the OK

message� When some process pi sends an OK to some other process pj � not only does it

approve pj s current request� but it also gives pj pis permission to re�enter C again and

again until pj sends an OK to pi in response to a try from pi�

This algorithm performs well under light load� When a single process is requesting again

and again� with no other process interested� it can go critical with no messages sent! Under

heavy load� however� it basically reduces to Ricart and Agrawalas algorithm�

This algorithm is closely related to �i�e�� is generalized by� the Chandy�Misra Dining

Philosophers algorithm�

���� General Resource Allocation

We now turn to consider more general resource allocation problems in asynchronous net�

works� as de�ned earlier�

������ Burns	Lynch Algorithm

This algorithm solves conjunctive resource problems� Recall the strategies studied in asyn�

chronous shared memory setting� involving seeking forks in order� and waiting for resources

one at a time� We can run the same strategies in asynchronous networks� The best way to do

this is not via a general simulation of the shared memory model in the network model� recall

that the algorithms involve busy�waiting on shared variables� if simulated� each busy�waiting

step would involve sending messages� Instead� we have each resource represented by its own

process �which must be located at some node�� The user process sends a message to the

resource process for the �rst resource it needs� the resource process puts the user index on

its queue� the user process then waits� When the user index reaches the front of the queue�

the resource process sends a message back to that user process� which then goes on to wait

for its next resource� etc� When a process gets all its resources� it tells its external user to

go critical� when exit occurs� the user process sends messages to all the resource processes

to remove its index from the queue�
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The analysis is similar to that done in the shared memory case� and depends only on

local parameters� The general case has exponential dependence on the number of colors�

There are some variations in the literature� to improve the running time� This is still a topic

of current research� see� e�g�� Styer�Peterson� Awerbuch�Saks� Choy�Singh�

������ Drinking Philosophers

This is a dynamic variant of the general �conjunctive� static resource allocation problem�

In this setting we have the same kind of graph as before� where a process is connected to

everyone with whom it might have a resource con�ict� But now� when a try request arrives

from the outside� it contains an extra parameter� a set B of resources� indicating which

resources the process actually needs this time� This set must be a subset of the static set for

that process � the twist is that now it neednt be the whole set�

As before� we want to get exclusion� but this time based on the actual resources being

requested� We would like to have also deadlock�freedom and lockout�freedom� The concur�

rency condition is now modi�ed as follows� Suppose that a request is invoked at node i� and

during the interval of this request� there are no �actual� con�icting requests� Suppose the

execution proceeds so that i and all its neighbors in the underlying graph continue to take

steps fairly� and the connecting links continue to operate fairly �note that some processes

might remain in C�� Then eventually i reaches C�

Chandy and Misra gave a solution to this� which was based on a particular �ine�cient�

Dining Philosophers algorithm� Welch and Lynch noticed that the Chandy�Misra algorithm

made almost�modular use of the underlying Dining Philosophers algorithm� and so they re�

did their result� with the implicitmodularitymade explicit� Then it was possible to substitute

a more e�cient Dining Philosophers algorithm for the original Chandy�Misra subroutine�

The proposed architecture is sketched in Figure ����� The Dining Philosophers subroutine

executes using its own messages� as usual� In addition� there are new messages for the

Drinking Philosophers algorithm�

We assume for simplicity here that each resource is shared between only two processes�

The heart of the algorithm is the Di automata� First we describe the algorithm informally�

and then present the Di automaton code�

When Di enters its trying region needing a certain set of resources� it sends requests

for those resources that it needs but lacks� A recipient Dj of a request satis�es the request

unless Dj currently also wants the resource or is already using it� In these two cases� Dj

defers the request so that it can satisfy it when it is �nished using the resource�

In order to prevent drinkers from deadlocking� a Dining Philosophers algorithm is used

as a subroutine� The �resources� manipulated by the Dining Philosophers subroutine are
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Dining Philosophers algorithm

User i

Di
Drinking
Philosophers
algorithm

T C E R

RECT

User j

Dj
Drinking
Philosophers
algorithm

T C E R

receive

send
T C E R

receive

send

Figure ����� Architecture for the Drinking Philosophers problem�

priorities for the �real resources� �there is one dining resource for each drinking resource��

As soon as Di is able to do so in its drinking trying region� it enters its dining trying region�

that is� it tries to gain priority for its maximum set of resources� If Di ever enters its dining

critical region while still in its drinking trying region� it sends demands for needed resources

that are still missing� A recipient Dj of a demand must satisfy it even if Dj wants the

resource� unless Dj is actually using the resource� In that case� Dj defers the demand and

satis�es it when Dj is through using the resource�

Once Di is in its dining critical region� we can show that it eventually receives all its

needed resources and never gives them up� Then it may enter its drinking critical region�

Once Di enters its drinking critical region� it may relinquish its dining critical region� since

the bene�ts of having the priorities are no longer needed� Doing so allows some extra con�

currency� even if Di stays in its drinking critical region forever� other drinkers can continue

to make progress�

A couple of points about the code deserve explanation� We can show that when a request

is received� the resource is always at the recipient� thus it is not necessary for the recipient

to check that it has the resource before satisfying or deferring the request� On the other

hand� it is possible for a demand for a missing resource to be received� so before satisfying

or deferring a demand� the recipient must check that it has the resource�

Another point concerns the questions when the actions of the dining subroutine should be

performed� Note that some drinkers could be locked out if Di never relinquishes the dining

critical region� The reason for this is that as long as Di is in its critical region� it has priority
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for the resources� Thus� if we are not careful� Di could cycle through its drinking critical

region in�nitely many times� while other drinkers wait� To avoid this situation� we keep

track �using variable current� of whether the dining critical region was entered on behalf

of the current drinking trying region �i�e�� whether the latest Ci occurred after the latest

Ti�B��� If it was� then Di may enter its drinking critical region �assuming it has all the

needed resources�� Otherwise� D�i� must wait until the current dining critical region has

been relinquished before continuing�

The full code is given in Figures ��������
 and �����

Correctness proof� Exclusion is straightforward� based on possession of the resources

�since we use explicit tokens�� Concurrency is also straightforward� To prove lockout�freedom

we need to rely on the Dining�Philosophers subroutine� The proof is a bit subtle� First�

we argue that the environment of the dining philosophers algorithm preserves dining�well�

formedness �this is proved by a straightforward explicit check of the code�� Therefore� every

execution of the system is dining�well�formed �since the dining subroutine also preserves

dining�well�formedness�� Therefore the dining subroutine provides its guarantees� dining

exclusion� and lockout�freedom for the dining subroutine in the context of the drinking

algorithm�

Next� we show the following lemma�

Lemma � In any fair drinking�well�formed execution� if drinking users always return the

resources� then dining users always return the resources�

Proof Sketch� Suppose that the dining resources are granted to Di� Then� Di sends

demands� Consider any recipientDj of a demand� If Dj has the resource and is not actually

using it� then it gives it to i� because by the exclusion property of the dining subroutine� Dj

cannot also be in its dining critical region� On the other hand� if Dj is using the resource�

then by the assumption that no drinker is stuck in its critical region� Dj eventually �nishes

and satis�es the demand� Thus� eventually� Di gets all the needed resources� and enters its

drinking critical region� after which �by the code� it returns the dining resources�

With this we can prove the following property�

Lemma � In any fair drinking�well�formed execution� if drinking users always return the

resources� then every drinking request is granted�

Proof Sketch� Once a drinking request occurs� say at node i� then �unless the grant occurs

immediately�� a subsequent dining request occurs at i� Then by dining lockout�freedom and

Lemma � eventually the dining subroutine grants at i� Again by Lemma �� eventually i

returns the dining resource� But note that i only returns the dining resource if in the interim

it has done a drinking grant� The formal proof is by a contradiction� as usual�
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State�

� drink�region� equals T if the most recent drinking action was Ti�B� �for some B�� C if

Ci�B�� etc	 Initially R	

� dine�region� equals T if the most recent dining action was Ti� C if Ci� etc	 Initially R	

� need� equals B� where the most recent drinking action had parameter B	 Initially

empty	

� bottles� set of tokens that have been received and not yet enqueued to be sent	 Initially

the token for a resource shared between Di and Dj is in the bottles variable of exactly

one of Di and Dj� with the choice being made arbitrarily	

� deferred� set of tokens in the set bottles for which a request or demand has been received

since the token was received	 Initially empty	

� current� Boolean indicating whether current dining critical region is on behalf of current

drinking trying region	 Initially false	

� msgs�j for all j �� i� FIFO queue of messages forDj enqueued but not yet sent	 Initially

empty	

Actions for process i�

try i�B� for all B � Bi

E
ect� drink�region � T

need � B

for all j �� i and b � �need 	 Bj� � bottles

enqueue request�b� in msgs�j

send i�m� j� for all j �� i� m � frequest�b�� token�b�� demand�b� � b � Bi 	Bjg

Precondition� m is at head of msgs�j

E
ect� dequeue m from msgs�j

try i

Precondition� dine�region � R

drink�region � T

E
ect� dine�region � T

Figure ����� Code for the modular drinking philosophers algorithm�part I�
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Actions for process i �cont���

Receivei�request�b�� j� for all j �� i� b � Bi 	Bj

E
ect� if �b � need� and �drink�region � fT� Cg� then

deferred � deferred �fbg

else

enqueue token�b� in msgs�j

bottles � bottles �fbg

crit i

E
ect� dine�region � C

if drink�region � T then

for all j �� i and b � �need 	 Bj� � bottles� enqueue demand�b�� in msgs�j

current � true

Receivei�demand�b�� j� for all j �� i� b � Bi 	Bj

E
ect� if �b � bottles� and ��b �� need� or �drink�region �� C�� then

enqueue token�b� in msgs�j

bottles � bottles �fbg

deferred � deferred �fbg

Receivei�token�b�� j� for all j �� i� b � Bi 	Bj

E
ect� bottles � bottles �fbg

crit i�B� for all B � Bi

Precondition� drink�region � T

B � need

need � bottles

if dine�region� C then current � true

E
ect� drink�region � C

current � false

exit i

Precondition� dine�region � C

if drink�region � T then current � false

E
ect� dine�region � E

Figure ���
� Code for the modular drinking philosophers algorithm�part II�
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Actions for process i �cont���

remi

E
ect� dine�region � R

exit i�B� for all B � Bi

E
ect� drink�region � E

for all j �� i and b � deferred 	 Bj �

enqueue token�b� in msgs�j

bottles � bottles � deferred

deferred � �

remi�B� for all B � Bi

Precondition� drink�region � E

B � need

E
ect� drink�region � R

Figure ����� Code for the modular drinking philosophers algorithm�part III�

We remark that the complexity bounds depend closely on the costs of the underlying

dining algorithm�

���� Stable Property Detection

In this section we consider a new problem� Suppose we have some system of I�O automata as

usual� and suppose we want to superimpose on this system another algorithm that �monitors�

the given algorithm somehow� For instance� the monitoring algorithm can

� detect when the given system has terminated execution�

� check for violation of some global invariants�

� detect some kind of deadlock where processes are waiting for each other �in a cycle� to

do something�

� compute some global quantity �e�g�� the total amount of money��

We shall see some powerful techniques to solve such problems�
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������ Termination for Di�using Computations

First� we consider the termination problem alone� Dijkstra�Scholten gave an e�cient algo�

rithm� for the special case where the computation originates at one node� In this kind of

computation� called di�using computation� all nodes are originally quiescent �de�ned here to

mean that they are not enabled to do any locally controlled actions�� The algorithm starts

with an input from the outside world at one of the nodes� and we assume that no further

inputs occur� According to the IOA de�nitions� once a node receives such a message� it can

change state in such a way that it now is enabled to do some locally�controlled actions� e�g��

to send messages to other nodes� �The nodes can also do various outputs to the outside

world�� When other nodes receive these messages� they in turn might also become enabled

to do some locally�controlled actions� and so on�

The termination detection problem is formulated as follows�

If the entire system ever reaches a quiescent state �i�e�� all the processes are

in quiescent states and there are no messages in transit�� then eventually the

originator node outputs a special message done�

Of course� the original algorithm does not have such an output� The new system con�

structed has to be an augmentation of the given system� where each node automaton is

obtained from the old automaton in some allowed way�

Below we state informally what is allowed to solve this problem� The precise de�nition

should be similar to the superposition de�nition described in Chandy and Misras Unity

work�

� We may add new state components� but the projection of the start states of the aug�

mented machine must be exactly the start states of the original machine�

� The action set can be augmented with new inputs� outputs and internal actions� The

old actions must remain with the same preconditions� but they may have new e�ects

on the new components� they might also have additional information piggybacked on

them� e�g�� send �m� now does send �m� c�� The old actions remain in the same classes�

� The new input actions a�ect the new components only�

� The new output and internal actions can be preconditioned on the entire state �old and

new components�� but they may only a�ect the new components� They get grouped

into new fairness classes�

The idea in the Dijkstra�Scholten termination detection algorithm is to superimpose a

kind of spanning�tree construction on the existing work of the underlying algorithm� Start�

ing from the initial node� every message of the underlying algorithm gets a tree message
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piggybacked upon it� Just as in the asynchronous algorithm for constructing a spanning

tree� each node records the �rst receipt of a tree message in its state� as its parent� Any sub�

sequent receipts of tree messages are immediately acknowledged �they are not discarded as

in the spanning tree protocol� explicit acknowledgment is sent back�� Only the �rst one gets

held and unacknowledged �for now�� Also� if the initial node ever receives a tree message� it

immediately acknowledges it� So as the messages circulate around the network� a spanning

tree of the nodes involved in the protocol gets set up�

Now� we are going to let this tree converge back upon itself �as in convergecast�� in order

to report termination back to the initial node� Speci�cally� each node looks for when both

of the following hold at the same time� �a� its underlying algorithm is in a quiescent state�

and �b� all its outgoing tree messages have been acknowledged� When it �nds this� it �closes

up the shop� � it sends an acknowledgment to its parent� and forgets everything about

this protocol� Note that this is di�erent from what had to happen for ordinary broadcast�

convergecast� There� we had to allow the nodes to remember that they had participated in

the algorithm� marking themselves as �done�� so they didnt participate another time� �If

we hadnt� the nodes would just continue broadcasting to each other repeatedly�� This time�

however� we do allow the nodes to participate any number of times� whether or not they do

so is controlled by where the messages of the underlying algorithm get sent�

Example� Suppose the nodes are �� �� �� �� and consider the following scenario �see Figure

���� for illustration�� �i� Node � wakes up� sends a message to � and sends a message to ��

�ii� Nodes � and � receive the messages� and set their parent pointers to point to node ��

Then they both wake up and send messages to each other� but since each node already has

a parent� it will just send an ack� Then both nodes send messages to �� �iii� Suppose �s

message gets to node � �rst� then � is set to be the parent of �� and therefore � acknowledges

� immediately� The four nodes continue for a while sending messages to each other� they

immediately acknowledge each message�

Now suppose the basic algorithm at � quiesces� Still� � does not close up because it has an

unacknowledged message to �� �iv� Suppose � now quiesces� it then is ready to acknowledge

to �� and it forgets it ever participated in the algorithm �actually� it forgets everything��

When � receives this ack� and since � is also done� it sends ack to � and forgets everything�

�v� Now suppose � sends out messages to � and �� When they receive these messages� they

wake up as at the beginning �continue carrying out the basic algorithm� and reset their

parent pointers� this time to ��

This execution can continue in this fashion inde�nitely� But if all the nodes ever qui�

esce� and there are no messages of the basic algorithm in transit� then the nodes will all

succeed in converging back to the initial node� in this case �� When � is quiesced and has
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Figure ����� Example of an execution of the termination detection algorithm� The arrows on

the edges indicate messages in transit� and the arrows parallel to the edges indicate parent

pointers�

acknowledgments for all its outgoing messages� it can announce termination�

Suppose the underlying algorithm is Ai� In Figures ���� and ���� we give code for the

superimposed version pi�

We have argued roughly above that if the basic algorithm terminates� this algorithm

eventually announces it� We can also argue that this algorithm never does announce termi�

nation unless the underlying system has actually terminated� We can prove this using the

following invariant �cf� homework��

Invariant � All non�idle nodes form a tree rooted at the node with status leader�� with the

tree edges given by parent� pointers�

Francez�Shavit have generalized this algorithm to the case where the computation can

initiate at several locations �the idea there is to use several trees� and wait for them all to

terminate��

Complexity� The number of messages is proportional to the number of messages of

underlying algorithm� A nice property of this algorithm is its �locality� � if the di�using

computation only operates for a short time in a small area of the network� the termination

protocol only incurs proportionately small costs� On the other hand� if the algorithm works

for a very long time before terminating� then the termination detection algorithm requires

considerable overhead�
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New state components�

� status � fidle� leader � non�leaderg� initially idle

� parent � a node or nil� initially nil

� for each neighbors j�

send�j�� a queue of messages� initially empty

de�cit�j�� an integer� initially �

Actions�

�� any input action of node i excluding a receive�

New E
ect�

status � leader

send i�j�m�

New E
ect� de�cit�j�� de�cit�j� � �

New action receivej�i�ack�

New E
ect� de�cit�j�� de�cit�j�� �

receivej�i�m�� where m a message of Ai

New E
ect� if status � idle then

status � non�leader

parent � j

else add ack to send�j�

New action close�up�shop�i�

Precondition� status � non�leader

j � parent�i�

send�k� � � for all k

de�cit�k� � � for all k

state of Ai is quiescent

E
ect� add ack to sendj

status � idle

parent � nil

Figure ����� Code for Dijkstra�Scholten termination detection algorithm � part I�
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Actions �cont���

New action send i�j�ack�

Precondition� ack �rst on send�j�

E
ect� remove �rst message from send�j�

New action done

Precondition� status � leader

send�k� � � for all k

de�cit�k� � � for all k

state of Ai is quiescent

E
ect� status � idle

Figure ����� Code for Dijkstra�Scholten termination detection algorithm � part II�

������ Snapshots

Problem Statement

The snapshot problem is to obtain a consistent global state of a running distributed algo�

rithm� By �global state� we mean a state for each process and each FIFO channel� The

�consistency�� roughly speaking� requires that the output is a global state that �could have�

occurred at a �xed moment in time�

We make the de�nition of the problem more precise using the notion of logical time

discussed in the last lecture� Recall the de�nition of logical time� it is possible to assign a

unique time to each event� in a way that is increasing at any given node� and such that sends

precede receives� and only �nitely many events precede any particular event� Clearly� a given

execution can get many logical time assignments� A consistent global state is one that arises

from any particular logical time assignment and a particular real time t� For this assignment

and this t� there is a well�de�ned notion of what has happened up through �and including�

time t� We want to include exactly this information in the snapshot� states of nodes after

the local events up through time t� and the states of channels at time t �i�e�� those messages

sent by time t and not received by time t� in the order of sending�� See Figure ���� for an

example�

We can stretch and shrink the execution to align corresponding times at di�erent nodes�

and the information in snapshot is just the states of nodes and channels at the t�cut�

Because we might have to shrink and stretch the execution� it is not necessarily true that

the state which is found actually occurs at any point in the execution� But� in a sense� this
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t

Figure ����� t is a logical time cut�

doesnt matter� it �could have� occurred� i�e�� no process can tell locally that it didnt occur�

Actually� we would like more than just any consistent global state � we would like one

that is fairly recent �e�g�� we want to rule out the trivial solution that always returns the

initial global state�� For instance� one might want a state that re�ects all the events that

have actually occurred �in real time� before the invocation of the snapshot algorithm� So we

suppose that the snapshot is initiated by the arrival of a snap input from the outside world

at some nonzero number of the nodes �but only once at each node�� �We do not impose the

restriction that the snapshot must originate at a single node as in the di�using computation

problem� Also� the underlying computation is not necessarily di�using��

Applications

A simple example is a banking system� where the goal is to count all the money exactly

once� More generally� we have the problem of stable property detection� Formally� we say

that a property of global states is stable if it persists� i�e�� if it holds in some state� then it

holds in any subsequent state� For instance� termination� the property of all the nodes being

in quiescent states and the channels being empty� is a stable property� Also� �unbreakable�

deadlock� where a cycle of nodes are in states where they are waiting for each other� is a

stable property�

The Algorithm

The architecture is similar to the one used above for the termination�detection algorithm

 the underlying Ai is augmented to give pi with certain additions that do not a�ect the

underlying automatons behavior�

We have already sketched one such algorithm� based on an explicit logical time assign�

ment� We now give another solution� by Chandy and Lamport� The algorithm is very much
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like the snapshot based on logical time� only it does away with the explicit logical time�

The idea is fairly simple� Each node is responsible for snapping its own state� plus the

states of the incoming channels� When a node �rst gets a snap input� it takes a snapshot of

the state of the underlying algorithm� Then it immediately puts a marker message in each

of its outgoing channels� and starts to record incoming messages in order to snap each of its

incoming channels� This marker indicates the dividing line between messages that were sent

out before the local snap and messages sent out after it� For example� if this is a banking

system� and the messages are money� the money before the marker was not included in the

local snap� but the money after the marker was�

A node that has already snapped just records these incoming messages� until it encounters

the marker� in which case it stops recording� Thus� the node has recorded all the messages

sent by the sender before the sender did its local snap� Returning to the banking system

example� in this case the recipient node has counted all the money that was sent out before

the sender did its snap and thus not counted by the sender�

There is one remaining situation to consider� suppose that a node receives a marker

message before it has done its own local snap �because it has not received a snap input��

Then immediately upon receiving the �rst marker � the recipient snaps its local state� sends

out its markers� and begins recording the incoming channels� The channel upon which it has

just received the marker is recorded as empty� however�

Modeling� It is not completely straightforward to model a snapshot system� The subtlety

is in the atomicity of the snapping and marker sending steps� To do this much atomically�

we seem to need to modify the underlying algorithm in slightly more complicated ways than

for the Dijkstra�Scholten algorithm  possibly by blocking some messages from being sent

by Ai while the markers are being put into the channels� This really means interfering with

the underlying algorithm� but� roughly speaking� we do not interfere by �too much��

The code is given in Figure ������

Correctness� We need to argue that the algorithm terminates� and that when it does� it

gives a consistent global state �corresponding to some �xed logical time��

Termination� We need strong connectivity to prove termination� As soon as the snap

input occurs� the recipient node does a local snapshot� and sends out markers� Every time

anyone gets a marker� it snaps its state if it hasnt already� The markers thus eventually

propagate everywhere� and everyone does a local snapshot� Also� eventually the nodes will

�nish collecting the messages on all channels �when they receive markers��

Consistency� We omit details� The idea is to assign a logical time to each event of the

underlying system� by means of such an assignment for the complete system� We do this in
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New state components�

� status � fstart � snapping� reportedg� initially start

� snap�state� a state of Ai or nil� initially nil

� for each neighbor j� channel�snapped�j�� a Boolean� initially false� and

send�j�� snap�channel�j�� FIFO queues of messages� initially empty	

Actions�

New action snap

E
ect� if status � start then

snap�state gets the state of Ai

status � snapping

for all j � neighbors� add marker to send�j�

Replace send i�j�m� actions of Ai with internal�send actions� which put m at the end of send�j�	

New action send i�j�m�

Precondition� m is �rst on send�j�

E
ect� remove �rst element of send�j�

receivej�i�m�� m a message of Ai

New E
ect� if status � snapping and channel � snapped�j� � false then

add m to snap�channel�j�

New action receivej�i�marker�

E
ect� if status � start then

snap�state gets the state of Ai

status � snapping

for all j � neighbors� add marker to send�j�

channel�snapped�j�� true

New action report�snapshot�s� C�� where s is a node state� and C is the states of incoming links

Precondition� status � snapping

for all j � neighbors� channel�snapped�j� � true

s � snap�state

for all j � neighbors� C�j� � snap�channel�j�

E
ect� status � reported

Figure ������ The snapshot algorithm� code for process i�
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such a way that the same time t �with ties broken by indices� is assigned to each event at

which a node snaps its local state� The fact that we can do this depends on the fact that

there is no message sent at one node after the local snap and arriving at another node before

its local snap� �If a message is sent after a local snap� it follows the marker on the channel�

then when the message arrives� the marker will have already arrived� and so the recipient

will have already done its snapshot�� It is obvious that what is returned by each node is

the state of the underlying algorithm up to time t� We must also check that the channel

recordings give exactly the messages �in transit at logical time t�� i�e�� the messages sent

after the senders snap and received before the receivers snap�

Some simple examples� We again use the bank setting� Consider a two�dollar� two�node

banking system� where initially each node� i and j� has one dollar� The underlying algorithm

has some program �it doesnt matter what it is� that determines when it sends out some

money� Consider the following execution �see Figure �������

1 1

#

0 1

1 #

1 0

1 # 

1 0

1

#

1 0

0

1

i j i j i j i j

i j

(1) (2) (3) (4)

Figure ������ Execution of a two�node bank system� The �nal snapshot is depicted below

the intermediate states�

�� snapi occurs� i records the state of the bank �"��� puts a marker in the bu�er to send

to j� and starts recording incoming messages

�� i puts its dollar in the bu�er to send to j� behind the marker�

�� j sends its dollar to i� i receives it and records it in its location for recording incoming

messages�


� j receives the marker from i� records its local bank state �"��� puts a marker in the

bu�er to send to i� and snaps the state of the incoming channel as empty�

�� i receives the marker� snaps the state of the channel as the sequence consisting of one

message� the dollar it received before the marker�
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Put together� the global snapshot obtained is one dollar at i� one dollar in channel from

j to i� and the other node and channel empty� This looks reasonable� in particular� the

correct total �"�� is obtained� But note that this global state never actually arose during the

computation� However� we can show a �reachability� relationship� Suppose that � is the

actual execution of the underlying bank algorithm� Then � can be partitioned into �������

where �� indicates the part before the snapshot starts and �� indicates the part after the

snapshot ends� Then the snapped state is reachable from the state at the end of ��� and the

state at the beginning of �� is reachable from the snapped state� So the state �could have

happened�� as far as anyone before or after the snapshot could tell�

In terms of Lamports partial order� consider the actual execution of the underlying

system depicted in Figure ����� �a�� We can reorder it� while preserving the partial order�

so that all the states recorded in the snapshot are aligned� as in Figure ����� �b��

Process i Process j Process i Process j

(a) (b)

logical
time−cut

time−cut

Figure ������ �a� is the actual execution of Figure ������ and �b� is a possible orderings of

it� where the logical time cut of �a� is a real time cut�

Applications revisited

Stable property detection�

A stable property is one that� if it is true of any state s of the underlying system� is

also true in all states reachable from s� Thus� if it ever becomes true� it stays true� The

following is a simple algorithm to detect the occurrence of a stable property P � First� the

algorithm does a global snapshot� and then either it collects the information somewhere and

returns P �result�� or else it does a distributed algorithm on the static information recorded

from the snapshot� to determine P �result�� The correctness conditions of the snapshot �the

reachability version of those conditions� that is� imply the following� If the output is true�
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then P is true in the real state of the underlying algorithm at the end of the snapshot� and

if the output is false� then P is false in the real state of the underlying algorithm at the

beginning of the snapshot� �There is some uncertainty about the interim��

Example� Termination detection� Assume a system of basic processes with no external

inputs� but the processes dont necessarily begin in quiescent states� This will execute on its

own for a while� and then might quiesce �terminate�� More precisely� quiescence refers to all

nodes being quiescent and no messages in transit anywhere� We want to be able to detect

this situation� since it means that the system will perform no further action �since there are

no inputs�� Quiescence of global states is a stable property �assuming no inputs�� So here

is a simple algorithm to detect it� do a snapshot� send the states somewhere and check if

anything is enabled or in transit� Actually� we dont need to send the whole state to one

process� we can have everyone check termination locally� and fan in �i�e�� convergecast� the

results to some leader along a spanning tree� �We only need to convergecast a bit saying if

the computation is done in the subtree�� It may be interesting to contrast this algorithm

to the Dijkstra�Scholten termination detection� the snapshot algorithm involves the whole

network� i�e�� it is not local at all� But on the other hand� if it only has to be executed once�

then the overhead is bounded regardless of how long the underlying algorithm has gone on

for�

Example� Deadlock detection� Now the basic algorithm involves processes that are �wait�

ing for� other processes� e�g�� it can be determined from the state of process Ai that it is

waiting for process Aj �say to release a resource�� The exact formulation varies in di�erent

situations� e�g�� a process might be waiting for resources owned by the other processes� etc�

In all formulations� however� deadlock essentially amounts to a waiting cycle� If we suppose

that every process that is waiting is stopped and while it is stopped it will never �release

resources� to allow anyone else to stop waiting� then deadlock is stable� Thus� we can detect

it by taking snapshots� sending the information to one place� then doing an ordinary cen�

tralized cycle�detection algorithm� Alternatively� after taking the snapshot� we can perform

some distributed algorithm to detect cycles� on the static data resulting from the snapshot�
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Designing network protocols is complicated by three issues� parallelism� asynchrony� and

fault�tolerance� This course has already covered techniques for making protocols robust

against Byzantine faults� The Byzantine fault model is attractive because it is general  the

model allows a faulty process to continue to behave arbitrarily� In this lecture� we will study

another general fault model  the self�stabilization model  which is attractive from both a

theoretical and practical viewpoint�

We will compare the two models a little later but for now lets just say that self�

stabilization allows an arbitrary number of faults that stop while Byzantine models allow a

limited number of faults that continue� Stabilizing solutions are also typically much cheaper

and have found their way into real networks� In this lecture we will describe self�stabilization

using two network models  an elegant shared memory model and a more practical network

model� We will also describe three general techniques for making protocols stabilizing  local

checking and correction� counter �ushing� and timer �ushing�

���� The Concept of Self�Stabilization

������ Door Closing and Domain Restriction

Today we will focus on the ability of network protocols to stabilize to �correct behavior�

after arbitrary initial perturbation� This property was called self�stabilization by Dijkstra

�Dijkstra�
�� The �self� emphasizes the ability of the system to stabilize by itself without

manual intervention�

A story illustrates the basic idea� Imagine that you live in a house in Alaska in the

middle of winter� You establish the following protocol �set of rules� for people who enter and

leave your house� Anybody who leaves or enters the house must shut the door after them� If

the door is initially shut� and nobody makes a mistake� then the door will eventually return

to the closed position� Suppose� however� that the door is initially open or that somebody

forgets to shut the door after they leave� Then the door will stay open until somebody passes

through again� This can be a problem if heating bills are expensive and if several hours can

go by before another person goes through the door� It is often a good idea to make the door
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STEP 1: ENTERING STEP 2: MIDDLE OF THE DOOR STEP 3: OUT AT LAST!

Figure ����� Exiting through a revolving door�

closing protocol self�stabilizing� This can be done by adding a spring �or automatic door

closer� that constantly restores the door to the closed position�

In some cases� it is possible to trivialize the problem by hardwiring relationships between

variables to avoid illegal states  such a technique is actually used in a revolving door! A

person enters the revolving door Figure ����� gets into the middle of the door� and �nally

leaves� It is physically impossible to leave the door open and yet there is a way to exit

through the door�

This technique� which we will call domain restriction� is often a simple but powerful

method for removing illegal states in computer systems that contain a single shared memory�

Consider two processes A and B that have access to a common memory as shown in the �rst

part of Figure ����� Suppose we want to implement mutual exclusion by passing a token

between A and B�

One way to implement this is to use two boolean variables tokenA and tokenB� To pass

the token� Process A sets tokenA to false and sets tokenB to true� In a self�stabilizing

setting� however� this is not a good implementation� For instance� the system will deadlock

if tokenA 	 tokenB 	 false in the initial state� The problem is that we have some extra and

useless states� The natural solution is to restrict the domain to a single bit called turn� such

that turn 	 � when A has the token and turn 	 � when B has the token� By using domain

restriction� �� we ensure that any possible state is also a legal state�

It is often feasible to use domain restriction to avoid illegal states within a single node

of a computer network� Domain restriction can be implemented in many ways� The most

��In this example� we are really changing the domain� However� we prefer the term domain restriction�
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Figure ����� Token passing among two processes

natural way is by restricting the number of bits allocated to a set of variables so that every

possible value assigned to the bits corresponds to a legal assignment of values to each of the

variables in the set� Another possibility is to modify the code that reads variables so that

only values within the speci�ed domain are read�

Unfortunately� domain restriction cannot solve all problems� Consider the same two pro�

cesses A and B that wish to achieve mutual exclusion� This time� however� �see Figure �����

Part �� A and B are at two di�erent nodes of a computer network� The only way they can

communicate is by sending token messages to each other� Thus we cannot use a single turn

variable that can be read by both processes� In fact� A must have at least two states� a state

in which A has the token� and a state in which A does not have the token� B must also have

two such states� Thus we need at least four combined states� of which two are illegal�

Thus domain restriction at each node cannot prevent illegal combinations across nodes�

We need other techniques to detect and correct illegal states of a network� It should be no

surprise that the title of Dijkstras pioneering paper on self�stabilization �Dijkstra�
� was

�Self�Stabilization in spite of Distributed Control��
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Figure ����� A typical mesh Network

������ Self	Stabilization is attractive for Networks

We will explore self�stabilization properties for computer networks and network protocols�

A computer network consists of nodes that are interconnected by communication channels�

The network topology �see Figure ����� is described by a graph� The vertices of the graph

represent the nodes and the edges represent the channels� Nodes communicate with their

neighbors by sending messages along channels� Many real networks such as the ARPANET�

DECNET and SNA can be modeled in this way�

A network protocol consists of a program for each network node� Each program consists

of code and inputs as well as local state� The global state of the network consists of the

local state of each node as well as the messages on network links� We de�ne a catastrophic

fault as a fault that arbitrarily corrupts the global network state� but not the program code

or the inputs from outside the network�

Self�stabilization formalizes the following intuitive goal for networks� despite a history

of catastrophic failures� once catastrophic failures stop� the system should stabilize to correct

behavior without manual intervention� Thus self�stabilization is an abstraction of a strong

fault�tolerance property for networks� It is an important property of real networks because�

� Catastrophic faults occur� Most network protocols are resilient to common failures

such as nodes and link crashes but not to memory corruption� But memory corruption

does happen from time to time� It is also hard to prevent a malfunctioning device from

sending out an incorrect message�

� Manual intervention has a high cost� In a large decentralized network� restoring

the network manually after a failure requires considerable coordination and expense�

Thus even if catastrophic faults occur rarely� �say once a year� there is considerable

incentive to make network protocols self�stabilizing� A reasonable guideline is that the

network should stabilize preferably before the user notices and at least before the user

logs a service call�

���



These issues are illustrated by the crash of the original ARPANET protocol ��Rosen���

�Perlman����� The protocol was carefully designed never to enter a state that contained

three con�icting updates a� b� and c� Unfortunately� a malfunctioning node injected three

such updates into the network and crashed� After this the network cycled continuously

between the three updates� It took days of detective work �Rosen��� before the problem was

diagnosed� With hindsight� the problem could have been avoided by making the protocol

self�stabilizing�

Self�stabilization is also attractive because a self�stabilizing program does not require

initialization� The concept of an initial state makes perfect sense for a single sequential

program� However� for a distributed program an initial state seems to be an arti�cial concept�

How was the distributed program placed in such an initial state� Did this require another

distributed program� Self�stabilization avoids these questions by eliminating the need for

distributed initialization�

������ Criticisms of Self	Stabilization

Despite the claims of the previous section� there are peculiar features of the self�stabilization

model that need justi�cation�

� The model allows network state to be corrupted but not program code� However�

program code can be protected against arbitrary corruption of memory by redundancy

since code is rarely modi�ed� On the other hand� the state of a program is constantly

being updated and it is not clear how one can prevent illegal operations on the memory

by using checksums� It is even harder to prevent a malfunctioning node from sending

out incorrect messages�

� The model only deals with catastrophic faults that stop� Byzantine models deal with

continuous faults� However� in Byzantine models� only a fraction of nodes are allowed

to exhibit arbitrary behavior� In the self�stabilization model� all nodes are permitted

to start with arbitrary initial states� Thus� the two models are orthogonal and can

even be combined�

� A self�stabilizing program P is is allowed to make initial mistakes� However� the

important stabilizing protocols that we know of are used for routing� scheduling� and

resource allocation tasks� For such tasks� initial errors only result in a temporary loss

of service�
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���� De�nitions of Stabilization

������ Execution De�nitions

All the existing de�nitions of stabilization are in terms of the states and executions of a

system� We will begin with a de�nition of stabilization that corresponds to the standard

de�nitions �for example� that of Katz and Perry �KP����� Next� we will describe another

de�nition of stabilization in terms of external behaviors� We believe that the de�nition of

behavior stabilization is appropriate for large systems that require modular proofs� However�

the de�nition of execution stabilization given below is essential in order to prove results about

behavior stabilization�

Suppose we de�ne the correctness of an automaton in terms of a set C of legal executions�

For example� for a token passing system� we can de�ne the legal executions to be those in

which there is exactly one token in every state� and in which every process periodically

receives a token�

What do we mean when we say that an automaton A stabilizes to the executions in set

C� Intuitively� we mean that eventually all executions of A begin to �look like� an execution

in set C� For example� suppose C is the set of legal executions of a token passing system�

Then in the initial state of A there may be zero or more tokens� However� the de�nition

requires that eventually there is some su�x of any execution of A in which there is exactly

one token in any state�

Formally�

De�nition � Let C be a set of executions� We say that automaton A stabilizes to the

executions in C if for every execution � of A there is some su	x of execution � that is in

C�

We can extend this de�nition in the natural way to de�ne what it means for an automaton

A to stabilize to the executions of another automaton B�

������ De�nitions of Stabilization based on External Behavior

In the I�O Automaton model� the correctness of an automaton is speci�ed in terms of its

external behaviors� Thus we specify the correctness of a token passing system without any

reference to the state of the system� We can do so by specifying the ways in which token

delivery and token return actions �to and from some external users of the token system� can

be interleaved

Thus it natural to look for a de�nition of stabilization in terms of external behaviors� We

would also hope that such a de�nition would allow us to modularly �compose� results about
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the stabilization of parts of a system to yield stabilization results about the whole system�

Now an IOA A is said to solve a problem P if the behaviors of A are contained in P � For

stabilization� however� it is reasonable to weaken this de�nition and ask only that an IOA

eventually exhibit correct behavior� Formally�

De�nition � Let P be a problem �i�e� a set of behaviors�� An IOA A stabilizes to the

behaviors in P if for every behavior � of A there is a su	x of � that is in P �

Similarly� we can specify that A stabilizes to the behaviors of some other automaton B

in the same way� The behavior stabilization de�nition used in this section and �V��� is a

special case of a de�nition suggested by Nancy Lynch�

Finally� we have a simple lemma that ties together the execution and behavior stabi�

lization de�nitions� It states that execution stabilization implies behavior stabilization� In

fact� the only method we know to prove a behavior stabilization result is to �rst prove a

corresponding execution stabilization result� and then use this lemma� Thus the behavior

and execution stabilization de�nitions complement each other in this thesis� the former is

typically used for speci�cation and the latter is often used for proofs�

Lemma � If IOA A stabilizes to the executions of IOA B then IOA A stabilizes to the

behaviors of B�

������ Discussion on the Stabilization De�nitions

First� notice that we have de�ned what it means for an arbitrary IOA to stabilize to some

target set or automaton� Typically� we will be interested in proving stabilization properties

only for a special kind of automata� unrestricted automata� An unrestricted IOA �UIOA� is

one in which all states of the IOA are also start states� Such an IOA models a system that

has been placed in an arbitrary initial state by an arbitrary initial fault�

A possible modi�cation �which is sometimes needed� is to only require �in De�nitions

� and �� that the su�x of a behavior �execution� be a su	x of a behavior �execution� of

the target set� One problem with this modi�ed de�nition is that we know of no good proof

technique to prove that the behaviors �executions� of an automaton are su	xes of a speci�ed

set of behaviors �executions��By contrast� it is much easier to prove that every behavior of an

automaton has a su�x that is in a speci�ed set� Thus we prefer to use the simpler de�nitions

for what follows�

���� Examples from Dijkstra�s Shared Memory Model

In Dijkstras �Dijkstra�
� model� a network protocol is modeled using a graph of �nite state

machines� In a single move� a single node is allowed to read the state of its neighbors�
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compute� and then possibly change its state� In a real distributed system such atomic

communication is impossible� Typically communication has to proceed through channels�

While Dijkstras original model is not very realistic� it is probably the simplest model of an

asynchronous distributed system� This simple model provided an ideal vehicle for introducing

�Dijkstra�
� the concept of stabilization without undue complexity� For this section� we will

use Dijkstras original model to introduce two important and general techniques for self�

stabilization� local checking and correction and counter �ushing� In the next section� we will

introduce a more realistic message passing model�

������ Dijkstra�s Shared Memory Model and IOA

How can we map Dijkstras model into the IOA model� Suppose each node in Dijkstras

model is a separate automaton� Then in the Input�Output automata model� it is not possible

to model the simultaneous reading of the state of neighboring nodes� The solution we use

is to dispense with modularity and model the entire network as a single automaton� All

actions� such as reading the state of neighbors and computing� are internal actions� The

asynchrony in the system� which Dijkstra modeled using a �demon�� is naturally a part of

the IOA model� Also� we will describe the correctness of Dijkstras systems in terms of

executions of the automaton�

Formally�

A shared memory network automaton N for graph G 	 �E� V � is an automaton in which�

� The state of N is the cross�product of a set of node states� Su�N �� one for each node

u � V � For any state s of N � we use sju to denote s projected onto Su� This is also

read as the state of node u in global state s�

� All actions of N are internal actions and are partitioned into sets� Au�N �� one for each

node u � V

� Suppose �s� 	� #s� is a transition of N and 	 belongs to Au�N �� Consider any state s�

of N such that s�ju 	 sju and s�jv 	 sjv for all neighbors v of u� Then there is some

transition �s�� 	� #s�� of N such that #s�jv 	 #sjv for u and all us neighbors in G�

� Suppose �s� 	� #s� is a transition of N and 	 belongs to Au�N �� Then sjv 	 #sjv for all

v �	 u�

Informally� the third condition requires that the transitions of a node u � V only depend

on the state of node u and the states of of the neighbors of u in G� The fourth condition

requires that the e�ect of a transition assigned to node u � V can only be to change the

state of u�
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Figure ���
� Dijktras protocol for token passing on a line

������ Dijkstra�s Second Example as Local Checking and Correc	

tion

In this section� we will begin by reconsidering the second example in �Dijkstra�
�� The

derivation here is based on some unpublished work I did with Anish Arora and Mohamed

Gouda at the University of Texas� This protocol is essentially a token passing protocol on a

line of nodes with process indices ranging from � to n � �� Imagine that the line is drawn

vertically so that process � is at the bottom of the line �and hence is called �bottom�� and

Process n� � is at the top of the line �and called �top��� This is shown in Figure ���
� The

down neighbor of Process i is Process i � � and the up neighbor is Process i � �� Process

n� � and Process � are not connected�

Dijkstra observed that it is impossible �without randomization� to solve mutual exclusion

in a stabilizing fashion if all processes have identical code� To break symmetry� he made the

code for the �top� and �bottom� processes di�erent from the code for the others�

Dijkstras second example is modeled by the automaton D� shown in Figure ����� Each

process i has a boolean variable upi� and a bit xi� Roughly� upi is a pointer at node i that

points in the direction of the token� and xi is a bit that is used to implement token passing�

Figure ���
 shows a state of this protocol when it is working correctly� First� there can be

at most two consecutive nodes whose up pointers di�er in value and the token is at one of

these two nodes� If the two bits at the two nodes are di�erent �as in the �gure� then the

token is at the upper node� else the token is at the lower node�
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The state of the system consists of a boolean variable

upi and a bit xi� one for every process in the line	

We will assume that up� � true and upn�� � false by de�nition

In the initial state xi � � for i � � � � �n � � and upi � false for i � � � � �n� �

Move Up� ��action for the bottom process only to move token up��

Precondition� x� � x� and up� � false

E
ect� x� ��
 x�

Move Downn�� ��action for top process only to move token down��

Precondition� xn�� �� xn��

E
ects�

xn�� �� xn���

Move Upi� � � i � n � � ��action for other processes to move token up��

Precondition� xi �� xi��

E
ects�

xi �� xi���

upi �� true� ��point upwards in direction token was passed��

Move Downi� � � i � n � � ��action for other processes to move token down��

Precondition� xi � xi�� and upi � true and upi�� � false

E
ect� upi �� false� ��point downwards in direction token was passed��

All actions are in a separate class	

Figure ����� Automaton D�� a version of Dijkstras second example with initial states� The

protocol does token passing on a line using nodes with at most 
 states�
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For the present� assume that all processes start with xi 	 �� Also� initially assume

that upi 	 false for all processes other than process �� We will remove the need for such

initialization below� We start by understanding the correct executions of this protocol when

it has been correctly initialized�

A process i is said to have the token when any action at Process i is enabled� As usual the

system is correct when there is at most one token in the system� Now� it is easy to see that

in the initial state onlyMove Up� is enabled� Once node � makes a move� thenMove Up�

is enabled followed by Move Up� and so on as the �token� travels up the line� Finally the

token reaches node n� �� and we reach a state s in which xi 	 xi�� for i 	 � � � � n � � and

xn�� �	 xn��� Also in state s� upi 	 true for i 	 � � � � n� � and upn�� 	 false� Thus in state

s� Move Downn�� is enabled and the token begins to move down the line by executing

Move Downn�� followed by Move Downn�� and so on until we reach the initial state

again� Then the cycle continues� Thus in correct executions� the �token� is passed up and

down the line�

We describe these �good states� of D� �that occur in correct executions� in terms of local

predicates� In the shared memory model� a local predicate is any predicate that only refers

to the state variables of a pair of neighbors� Thus in a good state of D� � two properties are

true for any Process i other than ��

� If upi�� 	 upi then xi�� 	 xi�

� If upi 	 true then upi�� 	 true�

First� we prove that if these two local predicates hold for all i 	 � � � � n � �� then there

is exactly one action enabled� Intuitively� since upn�� 	 false and up� 	 true� we can start

with process n � � and go down the line until we �nd a pair of nodes i and i � � such

that upi 	 false and upi�� 	 true� Consider the �rst such pair� Then the second predicate

guarantees us that there is exactly one such pair� The �rst predicate then guarantees that

all nodes j � i� � have xj 	 xi�� and all nodes k � i have xk 	 xi� Thus only one action is

enabled� If xi 	 xi�� and i� � �	 � then only Move Downi�� is enabled� If xi 	 xi�� and

i� � 	 � then only Move Up� is enabled� If xi �	 xi�� and i �	 n� � then only Move Upi

is enabled� If xi �	 xi�� and i 	 n� � then only Move Downn�� is enabled�

Similarly we can show that if exactly one action is enabled then all local predicates hold�

Thus if the system is in a bad state� some pair of neighbors will be able to detect this fact�

Hence we conclude that D� is locally checkable� However� we would like to go even further

and be able to correct the system to a good state by adding extra correction actions to each

node� If we can add correction actions so that all link predicates will eventually become true�
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then we say that the D� is also locally correctable� Adding local correction actions is tricky

because the correction actions of nodes may �interfere� and result in a form of �thrashing��

However� a line is a special case of a tree with �say� � as the root� each node i other than

�� can consider i�� to be its parent� The tree topology suggests a simple correction strategy�

For each node i �	 �� we can add a new action Correct Childi �which is a separate class for

each i�� Basically� Correct Childi checks whether the link predicate on the link between

i and its parent is true� If not� i changes its state such that the predicate becomes true�

Notice that Correct Childi leaves the state of is parent unchanged� Suppose j is the

parent of i and k is the parent of j� Then Correct Childi will leave the local predicate

on link �j� k� true if it was true in the previous state�

Thus we have an important stability property� correcting a link does not a�ect the

correctness of links above it in the tree� Using this it is easy to see that eventually all links

will be in a good state and so the system is in a good state� We will ignore the details of

this proof but the basic idea should be clear� Dijkstras actual code does not use an explicit

correction action� However� we feel that this way of understanding his example is clearer

and illustrates a general method� The general method of local checking and correction was

�rst introduced in �APV�����

������ Dijkstra�s �rst example as Counter Flushing

The counter �ushing paradigm described in this section is taken from �V����

Dijkstras �rst example is modeled by the automaton D� shown in Figure ����� As in

the previous example� the nodes �once again numbered from � to n � �� are arranged such

that node � has node � and node � as its neighbors and so on� However� in this case we

also assume that Process � and n� � are neighbors� In other words� by making � and n� �

adjacent we have made the line into a ring� For process i� let us call Process i�� �we assume

that all arithmetic on indices and counters is mod n� the counter�clockwise neighbor of i and

i� � the clockwise neighbor of i�

Each node has a counter counti in the range �� � � � n that is incremented mod n��� Once

again the easiest way to understand this protocol is to understand what happens when it

is properly initialized� Thus assume that initially Process � has its counter set to � while

all other processes have their counter set to �� Processes other than � are only allowed

to �move� �see Figure ����� when their counter di�ers in value from that of their counter�

clockwise neighbor� in this case� the process is allowed to make a move by setting its counter

to equal that of its counter�clockwise neighbor� Thus initially� only Process � can make a

move after which Process � has its counter equal to �� next� only Process � can move� after

which Process � sets its counter equal to �� and so on� until the value � moves clockwise
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The state of the system consists of an integer variable

counti � f�� � � �ng� one for every process in the ring	

We assume that Process � and n� � are neighbors

In the initial state counti � � for i � � � � �n � � and count� � �

Move� ��action for Process � only ��

Precondition� count� � countn�� ��equal to counter�clockwise neighbor���

E
ect� count� �� �count� � �� mod �n� �� ��increment counter��

Movei� � � i � n� � ��action for other processes��

Precondition� counti �� counti�� ��not equal to counter�clockwise neighbor���

E
ects�

counti �� counti�����set equal to counter�clockwise neighbor��

All actions are in a separate class

Figure ����� Automaton D�� a version of Dijkstras �rst example with initial states� The

protocol does token passing on a ring using nodes with n states�

around the ring until all processes have their counter equal to ��

Process � on the other hand cannot make a move until Process n�� has the same counter

value as Process �� Thus until Process � sets its counter to �� Process � cannot make a move�

However� when this happens� Process � increments its counter mod n � �� Then the cycle

repeats as now the value � begins to move across the ring �assuming n � �� and so on� Thus

after proper initialization� this system does perform a form of token passing on a ring� each

node is again considered to have the token� when the system is in a state in which the node

can take a move�

It is easy to see that the system is in a good state i� the following local predicates are

true�

� For i 	 � � � � n� �� either counti�� 	 counti or counti�� 	 counti � ��

� Either count� 	 countn�� or count� 	 countn�� � ��

The system is locally checkable but it does not appear to be locally correctable� However�

it does stabilize using a paradigm that we can call counter �ushing� Even if the counter values

are arbitrarily initialized �in the range �� � � � � n� the system will eventually begin executing

as some su�x of a properly initialized execution� We will prove this informally using three

claims�
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� In any execution Process � will eventually increment its counter� Suppose

not� Then since Process � is the only process that can �produce� new counter values�

the number of distinct counter values cannot increase� If there are two or more distinct

counter values� then moves by Processes other � will reduce the number of distinct

counter values to �� after which Process � will increment its counter�

� In any execution Process � will eventually reach a �fresh� counter value

that is not equal to the counter values of any other process� To see this� note

that that in the initial state there are at most n distinct counter values� Thus there

is some counter value say m that is not present in the initial state� Since� process �

keeps incrementing its counter� Process � will eventually reach m and in the interim

no other process can set their counter value to m�

� Any state in which Process � has a fresh counter value m is eventually followed by a

state in which all processes have counter value m� It is easy to see that the value m

moves clockwise around the ring ��ushing� any other counter values� while Process �

remains at m� This is why I call this paradigm counter �ushing�

The net e�ect is that any execution of D� eventually reaches a good state in which it

remains� The general counter �ushing paradigm can be stated roughly as follows�

� A sender �in our case� Process �� periodically sends a message to a set of responders�

after all responders have received the message the sender sends the next message �this

corresponds to one cycle around the ring in our case��

� To make the protocol stabilizing� the sender numbers each message with a counter�

The size of the counter must be greater than the maximum number of distinct counter

values that can be present in the network in any state� The sender increments its

counter after the message has reached all responders�

� The protocol must ensure that the sender counter value will always increment and

so eventually reach a �fresh� value not present in the network� A freshly numbered

messagem from the sender must guarantee that all old counter values will be ��ushed�

from the network before the sender sends the next message�

In Dijkstras �rst example� the �ushing property is guaranteed because the topology

consists of a ring of unidirectional links� Similar forms of counter �ushing can be used to

implement Data Links ��AfekB���� and token passing �DolevIM���unbound�� between a pair

of nodes� Counter �ushing is� however� not limited to rings or pair of nodes� Katz and Perry

���



�KatzP��� extend the use of counter �ushing to arbitrary networks in an ingenious way�

The stabilizing end�to�end protocol ��APV����� is obtained by �rst applying local correction

to the Slide protocol �AGR���slide� and then applying a variant of counter �ushing to the

Majority protocol of �AGR���slide��

���� Message Passing Model

Having understood the techniques of counter �ushing and local checking and correction in a

shared memory model� we move to a more realistic message passing model� The work in the

next three sections is based on �V���� which formalizes the ideas introduced in �APV����� To

model a network protocol� we will model the network topology� the links between nodes� and

the nodes themselves� Our model is essentially the standard asynchronous message passing

model except for two major di�erences�

� The major di�erence is that links are restricted to store at most one packet at a time�

� We assume that for every pair of neighbors� there is some a priori way of assigning one

of the two nodes as the �leader� of the pair�

We will argue that even with these di�erences our model can be implemented in real

networks�

������ Modeling the Topology

We will call a directed graph �V�E� symmetric if for every edge �u� v� � E there is an edge

�v� u� � E�

De�nition � A topology graph G 	 �V�E� l� is a symmetric� directed graph �V�E� together

with a leader function l such that for every edge �u� v� � E� l�u� v� 	 l�v� u� and either

l�u� v� 	 u or l�u� v� 	 v�

We use E�G� and V �G� to denote the set of edges and nodes in G� If it is clear what

graph we mean we sometimes simply say E and V � As usual� if �u� v� � E we will call v a

neighbor of u�

������ Modeling Links

Traditional models of a data link have used what we call Unbounded Storage Data Links that

can store an unbounded number of packets� Now� real physical links do have bounds on the
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Each p belongs to the packet alphabet P de�ned above	

The state of the automaton consists of a single variable Qu�v � P � nil	

Sendu�v�p� ��input action��

E
ect�

If Qu�v � nil then Qu�v �� p�

Freeu�v ��output action��

Precondition� Qu�v � nil

E
ect� None

Receiveu�v�p� ��output action��

Precondition� p � Qu�v �� nil

E
ect� Qu�v �� nil�

The Free and Receive actions are in separate classes

Figure ����� Unit Storage Data Link automaton

number of stored packets� However� the unbounded storage model is a useful abstraction in

a non�stabilizing context�

Unfortunately� this is no longer true in a stabilizing setting� If the link can store an

unbounded number of packets� it can have an unbounded number of bad� packets in the

initial state� It has been shown �DolevIM���unbound� that almost any non�trivial task is

impossible in such a setting� Thus in a stabilizing setting it is necessary to de�ne Data Links

that have bounded storage�

A network automaton for topology graph G consists of a node automaton for every vertex

in G and one channel automaton for every edge in G� We will restrict ourselves to a special

type of channel automaton� a unit storage data link or UDL for short� Intuitively� a UDL

can only store at most one packet at any instant� Node automata communicate by sending

packets to the UDLs that connect them� In the next section� we will argue that a UDL can

be implemented over real physical channels�

We �x a packet alphabet P � We assume that P 	 Pdata � Pcontrol consists of two disjoint

packet alphabets� These correspond to what we call data packets and control packets� The

speci�cation for a UDL will allow both data and control packets to be sent on a UDL�

De�nition � We say that Cu�v is the UDL corresponding to ordered pair �u� v� if Cu�v is the

IOA de�ned in Figure �����

Cu�v is a UIOA since we have not de�ned any start states for Cu�v� The external interface
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to Cu�v includes an action to send a packet at node u �Sendu�v�p��� an action to receive a

packet at node v �Receiveu�v�p��� and an action Freeu�v to tell the sender that the link is

ready to accept a new packet� The state of Cu�v is simply a single variable Qu�v that stores

a packet or has the default value of nil�

Notice two points about the speci�cation of a UDL� The �rst is that if the UDL has a

packet stored� then any new packet sent will be dropped� Second� the Free action is enabled

continuously whenever the UDL does not contain a packet�

������ Modeling Network Nodes and Networks

Next we specify node automata� We do so using a set that contains a node automaton for

every node in the topology graph� For every edge incident to a node u� a node automaton

Nu must have interfaces to send and receive packets on the channels corresponding to that

edge� However� we will go further and require that nodes obey a certain stylized convention

in order to receive feedback from and send packets on links�

In the speci�cation for a UDL if a packet p is sent when the UDL already has a packet

stored� then the new packet p is dropped� We will prevent packets from being dropped by

requiring that the sending node keep a corresponding free variable for the link that records

whether or not the link is free to accept new packets� The sender sets the free variable to

true whenever it receives a Free action from the link� We require that the sender only

send packets on the link when the free variable is true� Finally� whenever the sender sends

a packet on the link� the sender sets its free variable to false�

We wish the interface to a UDL to stabilize to �good behavior� even when the sender

and link begin in arbitrary states� Suppose the sender and the link begin in arbitrary states�

Then we can have two possible problems� First� if free 	 true but the UDL contains a packet�

then the �rst packet sent by the sender can be dropped� However� it is easy to see that all

subsequent packets will be accepted and delivered by the link� This is because after the �rst

packet is sent� the sender will never set free to true unless it receives a Free noti�cation

from the link� But a Free noti�cation is delivered to the sender only when the link is empty�

The second possible problem is deadlock� Suppose that initially free 	 false but the channel

does not contain a packet� To avoid deadlock� the UDL speci�cation ensures that the Free

action is enabled continuously whenever the link does not contain a packet�

A formal description of node automata can be found in �V���� We omit it here� Finally

a network automaton is the composition of a set of node and channel automata�
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queue

Data Link Sender Data Link Receiver

Physical Channel
SEND (p)

FREE

RECEIVE (p)

Figure ����� Implementing a UDL over a physical channel

������ Implementing the Model in Real Networks

In a real network implementation� the physical channel connecting any two neighboring nodes

would typically not be a UDL� For example� a telephone line connecting two nodes can often

store more than one packet� The physical channel may also not deliver a free signal� Instead�

an implementation can construct a Data Link protocol on top of the physical channel such

that the resulting Data Link protocol stabilizes to the behaviors of a UDL �e�g� �AfekB����

�S������

Figure ���� shows the structure of such a Data Link protocol over a physical link� The

sender end of the Data Link protocol has a queue that can contain a single packet� When

the queue is empty� the Free signal is enabled� When a Send�p� arrives and the queue is

empty� p is placed on the queue� if the queue is full� p is dropped� If there is a packet on the

queue� the sender end constantly attempts to send the packet� When the receiving end of

the Data Link receives a packet� the receiver sends an ack to the sender� When the sender

receives an ack for the packet currently in the queue� the sender removes the packet from

the queue�

If the physical channel is initially empty and the physical channel is FIFO �i�e�� does

not permute the order of packets�� then a standard stop and wait or alternating bit protocol

�BSW���� will implement a UDL� However� if the physical channel can initially store packets�

then the alternating bit protocol is not stabilizing �S����� There are two approaches to

creating a stabilizing stop and wait protocol� Suppose the physical channel can store at

most X packets in both directions� Then �AfekB��� suggest numbering packets using a

counter that has at least X � � values� Suppose instead that no packet can remain on the

physical channel for more than a bounded amount of time� �S���� exploits such a time bound

to build a stabilizing Data Link protocol� The main idea is to use either numbered packets

�counter �ushing� or timers �timer �ushing� to ��ush� the physical channel of stale packets�
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A stop and wait protocol is not very e�cient over physical channels that have a high

transmission speed and�or high latency� It is easy to generalize a UDL to a Bounded Storage

Data Link or BDL that can store more than one packet�

���� Local Checking and Correction in our Message

Passing Model

In this section� we introduce formal de�nitions of local checkability and local correctability�

The de�nitions for a message passing model will be slightly more complex than corresponding

ones for shared memory model because of the presence of channels between nodes�

���
�� Link Subsystems and Local Predicates

Consider a network automaton with graph G� Roughly speaking� a property is said to be

local to a subgraph G� of G if the truth of the property can be ascertained by examining

only the components speci�ed by G�� We will concentrate on link subsystems that consist

of a pair of neighboring nodes u and v and the channels between them� It is possible to

generalize our methods to arbitrary subsystems�

In the following de�nitions� we �x a network automaton N 	 Net�G�N��

De�nition 	 We de�ne the �u� v� link subsystem of N as the composition of Nu� Cu�v� Cv�u�

and Nv�

For any state s of N � sju denotes s projected on to node Nu and sj�u� v� denotes s

projected onto Cu�v� Thus when N is in state s� the state of the �u� v� subsystem is the


�tuple� �sju� sj�u� v�� sj�v� u�� sjv��

A predicate L of N is a subset of the states of N � Let �u� v� be some edge in graph G of

N � A local predicate Lu�v of N for edge �u� v� is a subset of the states of the �u� v� subsystem

in N � We use the word �local� because Lu�v is de�ned in terms of the �u� v� subsystem�

The following de�nition provides a useful abbreviation� It describes what it means for a

local property to hold in a state s of the entire automaton�

De�nition � We say that a state s of N satis�es a local predicate Lu�v of N i�

�sju� sj�u� v�� sj�v� u�� sjv� � Lu�v �

We will make frequent use of the concept of a closed predicate� Intuitively� a property is

closed if it remains true once it becomes true� In terms of local predicates�

De�nition � A local predicate Lu�v of network automaton N is closed if for all transitions

�s� 	� #s� of N � if s satis�es Lu�v then so does #s�
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The following de�nitions provide two more useful abbreviations� The �rst gives a name to

a collection of local predicates� one for each edge in the graph� The second� the conjunction

of a collection of �local properties�� is the property that is true when all local properties hold

at the same time� We will require that the conjunction of the local properties is non�trivial

 i�e�� there is some global state that satis�es all the local properties�

De�nition � L is a link predicate set for N 	 Net�G�N� if for each �u� v� � G there is

some Lu�v such that�

� If �a� b� c� d� � Lu�v then �d� c� b� a� � Lv�u� �i�e�� Lu�v and Lv�u are identical except for

the way the states are written down��

� L 	 fLu�v� �u� v� � Gg

� There is at least one state s of N such that s satis�es Lu�v for all Lu�v � L�

De�nition � The conjunction of a link predicate set L is the predicate fs � s satis�es Lu�v

for all Lu�v � Lg� We use Conj�L� to denote the conjunction of L�

Note that Conj�L� cannot be the null set by the de�nition of a link predicate set�

���
�� Local Checkability

Suppose we wish a network automaton N to satisfy some property� An example would be

the property �all nodes have the same color�� We can often specify a property of N formally

using a predicate L of N � Intuitively� N can be locally checked for L if we can ascertain

whether L holds by checking all link subsystems of N � The motivation for introducing this

notion is performance� in a distributed system we can check all link subsystems in parallel in

constant time� We formalize the intuitive notion of a locally checkable property as follows�

De�nition �� A network automaton N is locally checkable for predicate L using link pred�

icate set L if�

� L is a link predicate set for N and L � Conj�L��

� Each Lu�v � L is closed�

The �rst item in the de�nition requires that L holds if a collection of local properties all

hold� The second item is perhaps more surprising� It requires that each local property also

be closed�

We add this extra requirement because in an asynchronous distributed system it appears

to be impossible to check whether an arbitrary local predicate holds all the time� What

we can do is to �sample� the local subsystem periodically to see whether the local property
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holds� Suppose the network automaton consists of three nodes u� v and w and such that

v is the neighbor of both u and w� Suppose the property L that we wish to check is the

conjunction of two local predicates Lu�v and Lv�w� Suppose further that exactly one of the

two predicates is always false� and the predicate that is false is constantly changing� Then

whenever we �check� the �u� v� subsystem we might �nd Lu�v true� Similarly whenever we

�check� the �v�w� subsystem we might �nd Lv�w true� Then we may never detect the fact

that L does not hold in this execution� We avoid this problem by requiring that Lu�v and

Lv�w be closed�

���
�� Local Correctability

The motivation behind local checking was to e�ciently ensure that some property L holds

for network automaton N � We would also like to e	ciently correct N to make the property

true� We have already set up some plausible conditions for local checking� Can we �nd some

plausible conditions under which N can be locally corrected�

To this end we de�ne a local reset function f � This is a function with three arguments�

the �rst argument is a node say u� the second argument is any state of node automaton Nu�

and the second argument is a neighbor v of u� The function produces a state of the node

automaton corresponding to the �rst argument� Let s be a state of N � recall that sju is the

state of Nu� Then f�u� sju� v� is the state of Nu obtained by applying the local reset function

at u with respect to neighbor v� We will abuse notation by omitting the �rst argument when

it is clear what the �rst argument is� Thus we prefer to write f�sju� v� instead of the more

cumbersome f�u� sju� v��

We will insist that f meet two requirements so that f can be used for local correction

�De�nition ����

Assume that the property L holds if a local property Lu�v holds for every edge �u� v��

The �rst requirement is that if any �u� v� subsystem does not satisfy Lu�v� then applying f

to both u and v should result in making Lu�v hold� More precisely� let us assume that by

some magic we have the ability to simultaneously�

� Apply f to Nu with respect to v�

� Apply f to Nv with respect to u�

� Remove any packets stored in channels Cu�v and Cv�u�

Then the resulting state of the �u� v� subsystem should satisfy Lu�v� Of course� in a real

distributed system such simultaneous actions are clearly impossible� However� we will achieve
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essentially the same e�ect by applying a so�called �reset� protocol to the �u� v� subsystem�

We will describe a stabilizing local reset protocol for this purpose in the next section�

The �rst requirement allows nodes u and v to correct the �u� v� subsystem if Lu�v does not

hold� But other subsystems may be correcting at the same time! Since subsystems overlap�

correction of one subsystem may invalidate the correctness of an overlapping subsystem� For

example� the �u� v� and �v�w� subsystems overlap at v� If correcting the �u� v� subsystem

causes the �v�w� subsystem to be incorrect� then the correction process can �thrash�� To

prevent thrashing� we add a second requirement� In its simplest form� we might require that

correction of the �u� v� subsystem leaves the �v�w� subsystem correct if the �v�w� subsystem

was correct in the �rst place�

However� there is a more general de�nition of a reset function f that turns out to be useful�

Recall that we wanted to avoid thrashing that could be caused if correcting a subsystem

causes an adjacent subsystem to be incorrect� Informally� let us say that the �u� v� subsystem

depends on the �v�w� subsystem if correcting the �v�w� subsystem can invalidate the �u� v�

subsystem� If this dependency relation is cyclic� then thrashing can occur� On the other hand

if the dependency relation is acyclic then the correction process will eventually stabilize� Such

an acyclic dependency relation can be formalized using a partial order � on unordered pairs

of nodes� informally� the �u� v� subsystem depends on the �v�w� subsystem if fv�wg � fu� vg�

Using this notion of a partial order� we present the formal de�nition of a local reset

function�

De�nition �� We say f is a local reset function for network automaton N 	 net�G�N�

with respect to link predicate set L 	 fLu�vg and partial order �� if for any state s of N and

any edge �u� v� of G�

� Correction� �f�sju� v��nil�nil� f�sjv� u�� � Lu�v�

� Stability� For any neighbor w of v�

If �sju� sj�u� v�� sj�v� u�� sjv� � Lu�v and fv�wg �� fu� vg then

�sju� sj�u� v�� sj�v� u�� f�sjv�w�� � Lu�v�

Notice that in the special case where all the link subsystems are independent� no edge is

�less� than any other edge in the partial order�

Using the de�nition of a reset function� we can de�ne what it means to be locally cor�

rectable�

De�nition �� A network automaton N is locally correctable to L using link predicate set

L� local reset function f � and partial order � if�

� N is locally checkable for L using L�

���



� f is a local reset function for N with respect to L and ��

Intuitively� if we have a reset function f with partial order � we can expect the local

correction to stabilize in time proportional to the maximumchain length in the partial order�

Recall that a chain is a sequence a� � a� � a� � � � � � an� Thus the following piece of notation

is useful�

De�nition �� For any partial order �� height��� is the length of the maximum length chain

in ��

���� Local Correction Theorem

������ Theorem Statement

In the previous section� we set up plausible conditions under which a network automaton

can be locally corrected to achieve a property L� We claimed that these conditions could be

exploited to yield local correction� In this section we make these claims precise�

Intuitively� the result states that if N is locally correctable to L using local reset function

f and partial order �� then we can transform N into a new augmented automaton N� such

that N� satis�es the following property� eventually every behavior of N� will �look like� a

behavior of N in which L holds� We use the notation NjL to denote an automaton identical

to N except that the initial states of NjL are restricted to lie in set L�

Theorem � Local Correction� Consider any network automaton N 	 Net�G�N� that is

locally correctable to L using link predicate set L� local reset function f � and partial order

�� Then there exists some N� that is a UIOA and a network automaton such that N�

stabilizes to the behaviors of N �c�jL�

So far we have ignored time complexity� However� time complexity is of crucial impor�

tance to a protocol designer because nobody would be interested in a protocol that took

years to stabilize� Thus� �V���� uses a version of the timed automata model throughout and

uses this model to give a formal de�nition of stabilization time� However� intuitively� we

can measure time complexity as follows� We assume that it takes � time unit to send any

message on a link and to deliver a free action� we assume that node processing takes time

�� With this assumption� we can de�ne the stabilization time of a behavior to be time it

takes before the behavior has a su�x that belongs to the target set� We de�ne the overall

stabilization time as the worst case stabilization time across all behaviors�

Using this intuitive de�nition of stabilization time we can state a more re�ned version of

the Local Correction Theorem� The re�nement we add is that N� stabilizes to the behaviors

of N �c�jL in time proportional to height���� the height of the partial order�
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Figure ����� The structure of a single phase of the local snapshot�reset protocol

������ Overview of the Transformation Code

To transform N into N� we will add actions and states to N � These actions will be used

to send and receive snapshot packets �that will be used to do local checking on each link

subsystem� and reset packets �that will be used to do local correction on each link subsystem��

For every link �u� v�� the leader l�u� v� initiates the checking and correction of the �u� v�

subsystem� The idea is� of course� that the leader of each �u� v� subsystem will periodically

do a local snapshot to check if the �u� v� subsystem satis�es its predicates� if the leader

detects a violation� it tries to make the local predicate true by doing a local reset of the �u� v�

subsystem�

The structure of our local snapshot protocol is slightly di�erent from the Chandy�

Lamport snapshot protocol �ChandyL��� studied earlier in the course� It is possible to

show �V��� that the Chandy�Lamport scheme cannot be used without modi�cations over

unit storage links� �Prove this� it will help you understand the Chandy�Lamport scheme

better��

Our local snapshot�reset protocol works roughly as follows� Consider a �u� v� subsystem�

Assume that l�u� v� 	 u  i�e�� u is the leader on link �u� v�� A single snapshot or reset phase

has the structure shown in Fig �����

A single phase of either a snapshot or reset procedure consists of u sending a request

that is received by v� followed by v sending a response that is received by u� During a phase�

node u sets a �ag �checku�v�� to indicate that it is checking�correcting the �u� v� subsystem�

While this �ag is set� no packets other than request packets can be sent on link Cu�v� Since

a phase completes in constant time� this does not delay the data packets by more than a

constant factor�

In what follows� we will use the basic state at a node u to mean the part of the state at

u �corresponding� to automaton Nu� To do a snapshot� node u sends a snapshot request to
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Figure ������ Using counter �ushing to ensure that request�response matching will work

correctly within a small number of phases�

v� A snapshot request is identi�ed by a mode variable in the request packet that carries a

mode of snapshot� If v receives a request with a mode of snapshot� Node v then records its

basic state �say s� and sends s in a response to u�

When u receives the response� it records its basic state �say r�� Node u then records the

state of the �u� v� subsystem as x 	 �r�nil�nil� s�� If x �� Lu�v �i�e�� local property Lu�v does

not hold� then u initiates a reset�

To do a reset� node u sends a reset request to v� A reset request is identi�ed by a mode

variable in the request packet that carries a mode of reset� Recall that f denotes the local

reset function� After v receives the request� v changes its basic state to f�v� s� u�� where s is

the previous value of vs basic state� Node v then sends a response to u� When u receives

the response� u changes its basic state to f�u� r� v�� where r is the previous value of us basic

state�

Of course� the local snapshot and reset protocol must also be stabilizing� However� the

protocol we just described informally may fail if requests and responses are not properly

matched� This can happen� for instance� if there are spurious packets in the initial state

of N�� It is easy to see that both the local snapshot and reset procedures will only work

correctly if the response from v is sent following the receipt of the request at u� The diagram

on the left of Figure ����� shows a scenario in which requests are matched incorrectly to

�old� responses that were sent in previous phases� Thus we need each phase to eventually

follow the structure shown in the right of Figure ������

To make the snapshot and reset protocols stabilizing� we use counter �ushing� Thus we
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number all request and response packets� Thus each request and response packet carries a

number count� Also� the leader u keeps a variable countu�v� that u uses to number all requests

sent to v within a phase� At the end of the phase� u increments countu�v�� Similarly� the

responder v keeps a variable countv�u� in which v stores the number of the last request it has

received from u� Node v weeds out duplicates by only accepting requests whose number is

not equal countu�v��

Clearly the count values can be arbitrary in the initial state and the �rst few phases may

not work correctly� However� counter �ushing guarantees that in constant time a response

will be properly matched to the correct request� Because the links are unit storage� there

can be at most � distinct counter values �one in each link and one at the receiver� stored

in the link subsystem� Thus a space of 
 numbers is su�cient to guarantee that eventually

�more precisely within � phases� requests and responses are correctly matched�

Besides properly matching requests and responses� we must also avoid deadlock when

the local snapshot�reset protocol begins in an arbitrary state� To do so� when checku�v� is

true �i�e�� u is in the middle of a phase�� u continuously sends requests� Since v weeds out

duplicates this does no harm and also prevents deadlock� Similarly� v continuously sends

responses to the last request v has received� Once the responses begin to be properly matched

to requests� this does no harm� because u discards such duplicate responses�

���� Intuitive Proof of Local Correction Theorem

A formal proof of the Local Correction theorem can be found in �V���� In this section� we

provide the main intuition� We have already described how to transform a locally correctable

automaton N into an augmented automaton N� We have to prove that in time proportional

to the height of the partial order every behavior of N� is a behavior of N in which all local

predicates hold�

We have already described the intuition behind the use of a counter to ensure proper

request�response matching� We now describe the intuition behind the local snapshot and

reset procedures� The intuition behind the snapshot is very similar to the intuition behind

the snapshot procedure studied earlier in the course�

������ Intuition Behind Local Snapshots

The diagram on the left of Figure ����� shows why a snapshot works correctly if the response

from v is sent following the receipt of the request at u� Let a� and b be the state of nodes u

and v respectively just before the response is sent� Let a and b� be the state of nodes u and

v respectively just after the response is delivered� This is sketched in Figure ������

���



The snapshot protocol must guarantee that node u does not send any data packets to v

during a phase� Also v cannot send another data packet to u from the time the response is

sent until the response is delivered� This is because the link from v to u is a UDL that will

not give a free indication until the response is received� Recall that nil denotes the absence

of any packet on a link� Thus the state of the �u� v� subsystem just before the response is

sent is �a��nil�nil� b�� Similarly� the state of the �u� v� subsystem just after the response is

delivered is �a�nil�nil� b���

We claim that it is possible to construct some other execution of the �u� v� subsystem

which starts in state �a��nil�nil� b�� has an intermediate state equal to �a�nil�nil� b� and has a

�nal state equal to �a�nil�nil� b��� This is because we could have �rst applied all the actions

that changed the state of node u from a� to a� which would cause the �u� v� subsystem to

reach the intermediate state� Next� we could apply all the actions that changed the state of

node v from b to b�� which will cause the �u� v� subsystem to reach the �nal state� Note that

this construction is only possible because u and v do not send data packets to each other

between the time the response is sent and until the time the response is delivered�

Thus the state �a�nil�nil� b� recorded by the snapshot is a possible successor of the state of

�u� v� subsystem when the response is sent� The recorded state is also a a possible predecessor

of the state of �u� v� subsystem when the response is delivered� But Lu�v is a closed predicate

 it remains true once it is true� Thus if Lu�v was true just before the response was sent�

then the state recorded by the snapshot must also satisfy Lu�v� Similarly� if Lu�v is false just

after the response is delivered� then the state recorded by the snapshot does not satisfy Lu�v�

Thus the snapshot detection mechanism will not produce false alarms if the local predicate

holds at the start of the phase� Also the snapshot mechanism will detect a violation if the

the local predicate does not hold at the end of the phase�

������ Intuition Behind Local Resets

The diagram on the right of Figure ����� shows why a local reset works correctly if the

response from v is sent following the receipt of the request at u� Let b be the state of node v

just before the response is sent� Let a and b� be the state of nodes u and v respectively just

before the response is delivered� This is sketched in Figure ������

The code for an augmented automaton will ensure that just after the response is sent�

node v will locally reset its state to f�b� u�� Similarly� immediately after it receives the

response� node u will locally reset its state to f�a� v�� Using similar arguments to the ones

used for a snapshot� we can show that there is some execution of the �u� v� subsystem

which begins in the state �f�a� v��nil�nil� f�b� u�� and ends in the state �f�a� v��nil�nil� b���

But the latter state is the state of the �u� v� subsystem immediately after the response
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Figure ������ Local Snapshots and Resets work correctly if requests and responses are prop�

erly matched�

is delivered� But we know� from the correction property of a local reset function� that

�f�a� v��nil�nil� f�b� u�� satis�es Lu�v� Since Lu�v is a closed predicate� we conclude that Lu�v

holds at the end of the reset phase�

������ Intuition Behind Local Correction Theorem

We can now see intuitively why the augmented automaton will ensure that all local predicates

hold in time proportional to the height of the partial order� Consider a �u� v� subsystem

where fu� vg �� fw� xg for any pair of neighbors w� x  i�e�� fu� vg is a minimal element in the

partial order� Then� within � phases of the �u� v� subsystem the request�response matching

will begin to work correctly� If the sixth phase of the �u� v� subsystem is a snapshot phase�

then either Lu�v will hold at the end of the phase or the snapshot will detect a violation� But

in the latter case� the seventh phase will be a reset phase which will cause Lu�v to hold at

the end of the seventh phase�

But once Lu�v remains true� it remains true� This is because Lu�v is a closed predicate of

the original automatonN and the only extra actions we have added toN� that can a�ect Lu�v

are actions to locally reset a node using the reset function f � But by the stability property

of a local reset function� any applications of f at u with respect to some neighbor other than

v cannot a�ect Lu�v� Similarly� any applications of f at v with respect to some neighbor

other than u cannot a�ect Lu�v� Thus in constant time� the local predicates  corresponding

to link subsystems that are minimal elements in the partial order  will become and remain

true�
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Now suppose that the local predicates for all subsystems with height � i hold from some

state si onward� By similar arguments� we can show that in constant time after si� the

local predicates for all subsystems with height i � � become and remain true� Once again�

the argument depends crucially on the stability property of a local reset function� The

intuition is that applications of the local reset function to subsystems with height � i do not

occur after state si� But these are the only actions that can falsify the local predicates for

subsystems with height i� �� The net result is that all local predicates become and remain

true within time proportional to the height of the partial order ��

���	 Implementing Local Checking in Real Networks�

Timer Flushing

In the previous section� we made the snapshot�reset protocol stabilizing by numbering snap�

shot requests and responses� We also relied on the fact that each link was a UDL� In practice�

however� there is an even simpler way of making the snapshot�reset protocol stabilizing� This

can be done using timers�

Suppose there is a known bound on the length of time a packet can be stored in a link

and a known bound on the length of time between the delivery of a request packet and the

sending of a matching response packet� Then by controlling the interval between successive

snapshot�reset phases it is easily possible to obtain a stabilizing snapshot protocol� The

interval is chosen to be large enough such that all packets from the previous phase will have

disappeared at the end of the interval �APV���sigcomm�� We call the general method timer

�ushing�

The main idea in timer �ushing is to bound the lifetime of �old� state information in

the network� This is done by using node clocks that run at approximately the same rate

and by enforcing a maximum packet lifetime over every link� State information that is

not periodically refreshed is �timed out� by the nodes� Timer �ushing has been used in

the OSI Network Layer Protocol �Perlman��� and the IEEE ����� Spanning Tree protocol

�Perlman���� Spinelli �S���� uses timer �ushing to build �practical� stabilizing Data Link and

virtual circuit protocols�

In most real networks� each node sends �keep�alive� packets periodically on every link

in order to detect failures of adjacent links� If no keep�alive packet arrives before a local

timer expires� the link is assumed to have failed� Thus� it is common practice to assume time

bounds for the delivery and processing of packets� Note also that the snapshot and reset

packets used for local checking can be �piggy�backed� on these keep�alive packets without

any appreciable loss in e�ciency�
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���
 Summary

Self�stabilization was introduced by Dijkstra in a seminal paper �Dijkstra�
�� Dijkstras

shared memory model is enchanting in its simplicity and makes an ideal vehicle to describe

non�trivial examples of self�stabilization� We showed how to simulate Dijkstras model as one

big IOA with a few restrictions� We also used Dijkstras �rst two examples to introduce two

powerful methods for self�stabilization� counter �ushing and local checking and correction�

Next� we moved to a more realistic message passing model� We introduced a reasonable

model for bounded storage links� Using this model� we formally de�ned the notions of local

checkability and correctability and described the local correction theorem� This theorem

shows that any locally correctable protocol can be stabilized in time proportional to the

height of a partial order that underlies the de�nition of local correctability� Our proof of this

theorem was constructive� we showed how to do augment the original protocol with snapshot

and reset actions� We made the local snapshot and reset protocols stabilizing using counter

�ushing� While counter �ushing relies on bounding the number of packets that can be stored

on a link� we observed that a practical implementation would be based on bounding the time

that a message could stay on a link  we called this technique timer �ushing�

Together counter �ushing� timer �ushing� and local checking �with and without local

correction� can be used to explain a number of self�stabilizing protocols and can be used to

design new protocols� While these techniques cannot be used to solve every problem� there

are a large number of useful protocols that can be e�ciently stabilized using these notions�

In the next lecture� Boaz will provide an example of a reset protocol that  somewhat

surprisingly � is locally correctable using the trivial partial order� In other places we have used

local checking to provide solutions for mutual exclusion� the end�to�end problem� stabilizing

synchronizers� and spanning tree protocols� More detailed references can be be found in

�APV����� �V��� and AVarghese���

The messages used for local checking can be piggybacked on keepalive tra�c in real

networks without any appreciable loss of e�ciency� As a side bene�t� local checking also

provides a useful debugging tool� Any violations of local checking can be logged for further

examination� In a trial implementation of our reset procedure on the Autonet �Auto���� local

checking discovered bugs in the protocol code� In the same vein� local checking can provide

a record of catastrophic� transient faults that are otherwise hard to detect�
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���� Self�Stabilization and Termination

Can a self�stabilizing protocol terminate� This question has several possible answers� First�

consider the regular IO automata model� and the behavior stabilization de�nition� In this

setting� if the problem spec allows for �nite behaviors� then the trivial automaton that does

nothing is a self�stabilizing solution� This is clearly unsatisfactory� We shall use a di�erent

formulation of the model to see that no �interesting� problem admits a terminating self�

stabilizing protocol�

Consider the input�output relation speci�cation of problems� de�ned as follows� In each

process� there are special input and output registers� the problem is de�ned in terms of a

relation that speci�es for each input assignment what are the possible output assignments���

We also assume that some of the states are designated as �terminating�� i�e�� no action is

enabled in them� This is just another formulation of a non�reactive distributed task� We

saw quite a few such tasks� e�g�� MST� shortest�paths� leader election� etc�

In this setting� it is easy to see that a self�stabilizing protocol can have no terminating

states� if it satis�es the following non�locality condition�

There exist an input value v� an output value v�� a node j� and two input as�

signments I and I � such that v is assigned to j in both I and I �� v� is a possible

output value for I and is not a possible output value for I ��

Intuitively� the non�locality condition means that node j cannot tell locally that having v as

input and v� as output is correct or wrong� We remark that all interesting distributed tasks

have this property� any other task amounts to a collection of unrelated processes�

The moral of this obvious fact is that self�stabilizing algorithms must constantly verify

whether their output �or� more generally� their state� is �updated� with respect to the rest

of the system� and therefore they cannot terminate�

��This can be formalized in the IOA model by assuming that the input value is input to the system

in�nitely often� and that the output action that carries the output value is continuously enabled�
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���� Self�Stabilization and Finite State

Let us consider an issue which may seem unrelated to self�stabilization at �rst glance� namely

in�nite�state protocols� In particular� consider the idea of unbounded registers� We went

through a lot of di�culty �conceptually� and paid a signi�cant price �in terms of performance�

to get bounded�registers protocols �e�g�� applying CTS to Lamports bakery��

This approach is easy to criticize from the practical viewpoint� to be concrete� suppose

that the registers contain �
 bits� There is no system today that can hit the bound of �	�

in any practical application� However� note that this argument depends crucially on the

assumption that the registers are initialized properly� For instance� consider the case where�

as a result of a transient fault� the contents of the registers may be corrupted� Then no

matter how big we let the registers be� they may hit their bound very quickly� On the other

hand� any feasible system can have only �nitely many states� and in many cases it is desirable

to be able to withstand transient faults�

In short� unbounded registers are usually a convenient abstraction� given that the system

is initialized properly� while self�stabilizing protocols are useful only when they have �nitely

many states� This observation gives rise to two possible approaches� The �rst is to develop

only �nite�state self�stabilizing protocols� tailored to the speci�c applications� The second is

to have some kind of a general transformation that enables us to design abstract unbounded�

state protocols� using real�world� bounded�size registers� and whenever the physical limit is

hit� to reset the system�

The main tool required for the second approach is a self�stabilizing reset protocol� This

will be the focus of our lecture today�

���� Self�stabilizing Reset Protocol

������ Problem statement

Informally� the goal of the reset procedure is that whenever it is invoked� to create a fresh

�version� of the protocol� which should be free of any possible corruption in the past� For�

mally� we require the following�

We are given a user at each node �we sometimes identify the user with its node�� The

user has input action Receive�m� e� and output action Send�m� e�� where m is drawn from

some message alphabet $� and e is an incident link��� The meaning of these actions is the

natural one� m is received from e� and m is to be sent over e� respectively� In addition� the

��We distinguish between the actual link alphabet �� and the user message alphabet �� We assume that

�� comprises of � and the distinct Reset protocol messages�
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Figure �
��� Interface speci�cation for reset service�

user also has output action reset request and input action reset signal� The problem is to

design a protocol ��reset service��� such that if one of the nodes makes a reset request and

no node makes in�nitely many requests� then

�� In �nite time all the nodes in the connected component of a requesting node receive a

reset signal�

�� No node receives in�nitely many reset signals�

�� Let e 	 �u� v� be any link in the �nal topology of the network� Then the sequence

of Send�m� e� input at u after the last reset signal at u is identical to the sequence of

Receive e�m� output at v after the last reset signal at v�

Informally� ��� and ��� guarantee that every node gets a last reset signal� and ��� stipu�

lates that the last reset signal provides a consistent reference time�point for the nodes�

In order that the consistency condition ��� will be satis�able� it is assumed that all $�

messages from the user to the network and vice�versa are controlled by the reset protocol

�see Figure �
����
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������ Unbounded	registers Reset

The original problem requires us to run a new version of the users protocol� Consider the

following simple solution�

�� The reset protocol maintains a �version number��

�� All outgoing messages are stamped with the version number� and the numbers are

stripped before delivery of received messages�

�� Whenever a request occurs� version counter is incremented� and signal is output im�

mediately �all messages will be stamped with new value��


� Whenever a higher value is seen� it is adopted� and signal is output�

�� Messages with low values are ignored�

This protocol works �ne �for the nodes participating in the protocol�� Stabilization time

is O�diam� which is clearly optimal� What makes this protocol uninteresting� as discussed

above� is the need of unbounded version counter�

������ Example� Link Reset

Recall the local correction theorem� The basic mechanism there was applying some �local

correction� action which reset the nodes to some pre�speci�ed state� and reset the links to

empty� This matches the above spec for reset� This link reset can be implemented fairly

e�ciently � the details are a bit messy� however� �It requires the use identi�ers at nodes�

and a �ushing mechanism based on either a time bound on message delivery� or a bound on

the maximal capacity of the link��

Our goal� in the reset protocol� is to provide a network�wide reset� We could do it

using similar �ushing mechanisms �e�g�� global timeout used in DECNET�� However� global

bounds are usually very bad� as they need to accommodate simultaneous worst cases at all

the system� Thus were interested in enhancing the self�stabilization properties of the links

�as described by the local correction theorem� to all the network� without incurring the cost

of� say� a global timeout�

������ Reset Protocol

Let us �rst describe how the reset protocol should have worked �if it was initialized properly��

In the so�called Ready mode� the protocol relays� using bu�ers� $�messages between the

network and the user� When a reset request is made at some node� its mode is changed to
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Figure �
��� An example of the run of the reset protocol� In �a�� two nodes get reset request

from the user� In �b�� the nodes in Abort mode are colored black� The heavy arrows represent

parent pointers� and the dashed arrows represent messages in transit� In �c�� none of the

nodes is in Ready mode� In �d�� some of the nodes are in Ready mode� and some reset

signals are output�

Abort� it broadcasts Abort messages to all its neighbors� sets the Ack Pend bits to true

for all incident links� and waits until all the neighboring nodes send back Ack� If a node

receives Abort message while in Ready mode� it marks the link from which the message

arrived as its parent� broadcasts Abort� and waits for Acks to be received from all its

neighbors� If Abort message is received by a node not in a Ready mode� Ack is sent back

immediately� When a node receives Ack it sets the corresponding Ack Pend bit to false�

The action of a node when it receives the last anticipated Ack depends on the value of its

parent� If parent �	 nil� its mode is changed to Converge� and Ack is sent on parent�

If parent 	 nil� the mode is changed to Ready� the node broadcasts Ready messages�

and outputs a reset signal� A node that gets a Ready message on its parent link while in

Converge mode� changes its mode to Ready� makes its parent nil� outputs a reset signal�

���



and broadcasts Ready�

While the mode is not Ready� $�messages input by the user are discarded� and all $�

messages from a link e are queued on Buffer�e�� When Abort arrives on link e� Buffer�e�

is �ushed� While the mode is Ready� $�messages from the user to the network are put on

the output queue� and $�messages in Buffer are forwarded to the user� The size of Buffer

depends on the assumptions we make on the user�

The actual code is given in Figures �
�� �
��� A few remarks are in order�

�� In the self�stabilization model� we can deal with the assumption that the topology isnt

�xed in advance� This is done by assuming that links may be up or down� and the

nodes are constantly informed of the status of their incident links� As usual� we require

correctness only after the system has stabilized� We model this by assuming that the

maximal degree d is known �e�g�� the number of ports�� and that the state of the links

is maintained updated in the Edges array�

�� In the self�stabilization model� we tend to have as little variables as possible� less things

can get corrupted� See� for example� the de�nition for mode�u� in Figure �
���

The �rst step in making the above protocol self�stabilizing is to make it locally checkable�

A clear problem with the existing protocol is that it will deadlock if in the initial state some

parent edges form a cycle� We mend this �aw by maintaining distance variable at each

node� such that a nodes distance is one greater than that of its parent� Speci�cally�

distance is initialized to � upon reset request� and its accumulated value is appended to the

Abort messages� However� since all we care about is acyclicity� there is no need to update

distance when a link goes down�

Next� we list all the link predicates that are necessary to ensure correct operation of

the Reset protocol� It turns out that all the required link predicates are independently

stable� and hence the stabilization time would be one time unit �each subsystem needs to be

corrected at most once� independently�

Our last step is to design a local correction action for links �the f of the local correction

theorem��

The main di�culty about designing a correcting strategy is making it local� i�e�� to ensure

that when we correct a link we do not violate predicates of incident link�subsystems� For the

case of dynamic�topology network the solution is simple� emulate a link failure and recovery�

Of course� care must be exerted when writing the code for these events �see code for local

reset in Figure �
����

In the code� the detection and correction mechanism is written explicitly �Figure �
����

For every link� we have the ID of the node at the other endpoint� the node with the higher

���



State of process u�

Ack Pend� array of d Boolean �ags

parent� pointer� ranging over ����d� fnilg

distance� ranges over ����N � where N is a bound on the number of processes

Edges� set of operational incident links �maintained by the links protocol�

Queue� array of d send bu
ers

Buffer� array of d receive bu
ers

IDs� array of d node identi�ers

Timers� array of d timers

Check� array of d Boolean �ags

Snap Mode� array of d Boolean �ags

Shorthand for the code of process u�

mode�u� �

����
���

Abort� if �e such that Ack Pend�e � true

Converge� if parent �� nil and �e �Ack Pend�e � false�

Ready� if parent � nil and �e �Ack Pend�e � false�

Propagate�e� dist� 

if dist �� � then parent� e else parent� nil

distance� dist

for all edges e� � Edges do

Ack Pend�e�� true

enqueue Abort�distance� �� on Queue�e�

Local Reset�e� 

Buffer�e� �

Queue�e� �

D� � if �e��e� �� e and Ack Pend�e� � true� or �e �� parent and parent �� nil� then

if parent � e then parent� nil

if Ack Pend�e � true then

Ack Pend�e� false

if mode�u� � Converge then enqueue Ack in Queue�parent

D� � else if mode�u� �� Ready

Ack Pend�e� false

parent� nil

output reset signal

for all e� � Edges do enqueue Ready in Queue�e�

Figure �
��� Self�stabilizing reset protocol � part I���




Code for process u�

Whenever reset request and mode�u� � Ready

Q � Propagate�nil� ��

Whenever Abort�dist� on link e

A� � if mode�u� � Ready then

Propagate�e� dist�

A� � if �dist � �� or �mode �� Ready� enqueue Ack in Queue�e

Whenever Ack on link e and Ack Pend�e � true

Ack Pend�e� false

K� � if mode�u� � Converge then

enqueue Ack in Queue�parent

K� � else if mode�u� � Ready then

output reset signal

for all e� � Edges do

enqueue Ready in Queue�e�

Whenever Ready on link e and parent � e

R� if mode�u� � Converge then

parent� nil

output reset signal

for all edges e� � Edges do

enqueue Ready in Queue�e�

Whenever Send�m� e�

if mode�u� � Ready then

enqueue m in Queue�e

Whenever Queue�e �� �

send head�Queue�e� over e

delete head�Queue�e�

Figure �
�
� Self�stabilizing reset protocol � part II�
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Code for process u �cont���

Whenever m � � received from link e

if Check�e � true then

if Snap Mode�e � snap then

record m as part of snapshot state on link e

enqueue m in Buffer�e

else enqueue m in Buffer�e

Whenever Buffer�e �� � and mode�u� � Ready

output Receive�head�Buffer�e�� e�

delete head�Buffer�e�

Whenever Abort on e�

Buffer�e� �

Whenever Down on e�

execute Local Reset�e�

Whenever Timers�e expires for some link e�

if My ID � IDs�e then

Check�e� true

if Snap Mode�e � snap then

record local state

else execute Local Reset�e�

send Start Snap�Snap Mode�e�My ID� on e

Whenever Start Snap�b� id� on link e

IDs�e� id

if id �My ID then

if b � reset then

execute Local Reset�e�

send Response Snap�local state�

Whenever Response Snap�S� on link e

Check�e� false

if Snap Mode�e � snap and any invariant does not hold then

Snap Mode�e� reset

else execute Local Reset�e�

Figure �
��� Self�stabilizing reset protocol � part III�
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A� Ack Pendu�e � true i
 one of the following holds	

Abort�distanceu � �� � Queueu�e

mode�v� � Abort and parentv � e

Ack � Queuev�e

B� At most one of the following hold	

Abort�distanceu � �� � Queueu�e

mode�v� � Abortv and parentv � e

Ack � Queuev�e

C� parentu � e implies that mode�u� � Converge i
 one of the following holds	

Ack � Queueu�e

Ack Pendv�e � false and mode�v� �� Ready

Ready � Queuev�e

D� parentu � e implies that at most one of the following holds	

Ack � Queueu�e

Ack Pendv�e � false and mode�v� �� Ready

Ready � Queuev�e

R� tail�Queueu�e� � fReadyg � � implies

mode�u� � Ready

P� parentu � e implies

one of the following holds	

distanceu � distancev � �

Ready � Queuev�e

E � e �� Edgesu implies all the following	

Ack Pendu�e � false

parentu �� e

Queueu�e � �

Bufferu�e � �

Q� Queue�e is a subsequence of the following	

hAbort�Acki

hAck�Ready�Aborti

hAck�Ready���i

Figure �
��� Reset protocol part IV� link invariants for link e 	 �u� v�� The link �v� u� is

denoted e� ���



ID is assumed to be �responsible� for the correctness of the subsystem� This is done as

follows� Whenever the timer dedicated to that link expires� the node checks whether it is

�in charge� of that link� if so� it sends out a snapshot message that returns with the state

of the other node� Based on this state� its own state� and the messages received� it can �nd

out whether any of the invariants �Figure �
��� is violated� If this is the case� local reset is

executed in a coordinated way that resembles the way snapshots of the link are taken�

The invariants of Figure �
�� express simple properties that turn out to be su�cient to

ensure correct operation of the protocol� Invariants A and B capture the desired behavior af

abort messages� C and D deal with the converge messages analogously The ready message

is simpler �since we dont expect anything from a node in ready mode�� and is described by

invariant R� Invariant P is crucial to ensure stabilization� it guarantees that no cycles of the

parent pointers can survive checking and correction� Invariant E describes what is expected

from a non�existing edge� �The goal of local reset action brings the subsystem to that state��

The last invariant� Q� is a technicality� we need to consider the messages in the send queue

also�

�����
 Analysis

Well sketch the outlines of the proofs� just to show the ideas� Details are a bit messy�

We start with the statement of stabilization�

Theorem � Suppose that the links are bounded�delay links with delay time D� and suppose

that invariants are veri�ed by the manager at least every P time units� Then any execution

of the Reset protocol� regardless of the initial state� in all states from time O�D�P � onwards�

all the invariants hold for all the links�

This theorem is proven by showing that the invariants are stable� The argument is

induction on the actions� assuming that a given state is legal with respect to a given link

subsystem� we show that applying any action will not break any invariant in this subsystem�

Thus the proofs are basically a straightforward �somewhat tedious� case�analysis� Using the

local correction theorem� we can deduce that the protocol is self�stabilizing�

It is more interesting to analyze the executions of the algorithm� We need a few de�ni�

tions�

De�nition � Let �sk� ak� sk��� � � �� be an execution fragment� An interval �i� j� is a ready

interval at node u if


� mode�u� 	 Ready in all states sl for all i � l � j�

�� If i � k then mode�u� �	 Ready in si��� and if j �
 then mode�u� �	 Ready in sj���

���



Abort interval and converge interval are de�ned analogously�

For these mode intervals� we have the following lemma�

Lemma � Let �sn� an� sn�� � � �� be an execution fragment and let u be a node� Then at u�


� A ready interval may be followed only by an abort interval�

�� A converge interval may be followed only by a ready interval�

The proof is by straightforward inspection of the actions� Next we de�ne the concept of

parent graph�

De�nition � Let s be a state� The parent graph G�s� is de�ned by the parent and the

Queue variables as follows� The nodes of G�s� are the nodes of the network� and e 	 �u� v�

is an edge in G�s� i� parentu 	 e and Ready �� Queuev�e� in s�

From the distances invariant� we know that the parent graph is actually a forest in legal

states� We also de�ne a special kind of abort intervals� An abort interval �i� j� at node u is

a root interval if for some i � k � j� parentu 	 nil in sk�

The next step of the proof is to show that for any abort interval there exists a root

interval that contains it� This is done by induction on the depth of the node in the parent

graph� Using this fact� we bound the duration of abort intervals�

Lemma � Let s be a legal state� let u be a node� and suppose that no topological changes

occur after s� If mode�u� 	 Abort in s and depth�u� 	 k in G�s�� then there exists a state

s� in the following ��n� k� time units such that mode�u� �	 Abort in s��

This lemma is proven by showing that no Ack Pend bit is continuously true for more

than ��n�k� time units� This implies the lemma� since no Ack Pend bit is set to true while

the node is in a non�ready mode�

Similarly� we can prove by induction on depth�u� the following bound on the duration of

the converge intervals�

Lemma � Let s be a legal state at time t� let u be a node� and suppose that no topological

changes occur after time t� If mode�u� 	 Abort in s� and depth�u� 	 k in G�s�� then by

time t��n�depth�u�� an action occurs� in which mode�u� is changed to Ready� and Ready

messages are sent by u to all its neighbors�

It is easy to derive the following conclusion�

Theorem 	 Suppose that the links �including the link invariants� stabilize in C time units�

If the number of reset requests and topological changes is �nite� then in C � �n time units

after the last reset request�topological change� mode�u� 	 Ready at all nodes u�
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Proof� Consider the root intervals� Note that by the code� each such root interval can be

associated with an input request made at this node� or with a topological change� Since

each request can be associated with at most one root interval� and since each topological

change can be associated with at most two root intervals� the number of root intervals is

�nite� Furthermore� by Lemma 
� �n time units after the last reset request all root intervals

terminate� and Ready will be propagated� Since any non�root abort interval is contained

in some root interval� after �n time all abort intervals have terminated� and hence� �n time

units after the last reset request� the mode of all the nodes is Ready�

The following theorem states the liveness property of the Reset protocol�

Theorem � Suppose that the execution of the Reset protocol begins at time � at arbitrary

state� and suppose that the links �including the link invariants� stabilize in C time units� If

the last reset request�topological change occurs at time t � C � �n� then a RESET signal is

output at all the nodes by time t� �n�

Proof Sketch� The key property we need is that the time between successive ready inter�

vals is at most �n time units�

First� notice that it su�ces to show that for any node v� there is a time in the interval

�C� t� n� in which mode�v� �	 Ready�

Suppose now� for contradiction� that at time t � C � �n occurs a reset request at some

node w� and that there exists a node u whose mode is Ready in times �C� t� n�� Let v be

any node in the network� We show� by induction on the distance i between u and v� that

mode�i� 	 Ready in the time interval �C ��n� t� n� i�� This will complete the proof� since

the hypothesis implies that mode�w� �	 Ready at time t�

The base case follows from the assumption that mode�u� 	 Ready in the time interval

�C� t�n�� The inductive step follows from the fact that if for some node v�� in time t� � C��n

we have mode�v�� �	 Ready� then there occurs an action in the time interval �t� � �n� t�� in

which the mode of v� changed from Ready to Abort� and Abort messages were sent to all

the neighbors of v�� Hence� for each neighbor v of v�� there is a state in the time interval

�t� � �n� t� � �n � �� in which mode�v� �	 Ready�

Next� we prove the consistency of the Reset protocol� This property follows from the

simple Buffermechanism� There is a bu�er dedicated to each link� such that all $�messages

arriving from link e are stored in Buffer�e�� Buffer�e� is �ushed whenever a Abort message

arrives from e�

Theorem � Suppose no topological changes occurs after time C� and that the last reset

signals occur at two adjacent nodes u and v after time C��n� Then the sequence Send�m� e�

input by the user at u following the last reset signal at u� is identical to the sequence of

Receive�m� e� output to the user at v after the last reset signal at v�

�
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Proof� Consider the last non�ready intervals in u and v� Suppose that the last states in

which mode�u� �	 Ready and mode�v� �	 Ready are sju and sjv � respectively� and let siu and

siv be the �rst states in the last non�ready intervals� respectively �i�e�� for all iu � k � ju� in

sk mode�u� �	 Ready� and in siu��� mode�u� 	 Ready�� Note that since the last reset signal

is output after time C � �n� it follows that the states siu�� and siu�� indeed exist� Note

further that the change of mode to Abort is accompanied by broadcasting Abort messages

�by Propagate��

Consider Send�m� e� input at u after sju � We argue that m is delivered at v after siv�

suppose not� Then the mode of v is changed to Abort after sju � and v broadcasts Abort to

u� Hence there must be a state sk� k � ju� such that mode�u� �	 Ready in sk� contradicting

the assumption that ju is the last state in the last non�ready interval� Recalling that the

manager bu�ers $�messages until the mode is Ready� we conclude that the corresponding

Receive�m� e� is output to the user at v after sjv �

Consider Send�m� e� input at u before sju� Since the manager discards all $�messages

input while in non�ready mode� we need only to consider Send�m� e� input at u before siu�

Again� we argue that Receive�m� e� is not output at v after sjv � This follows from the fact

that there must be Abort message sent to u from v after m� that implies that the mode of

u is not Ready after sju � a contradiction�

������ Comments

The reset protocol is a powerful tool� but sometimes its an overkill� it doesnt seem reason�

able to reset the whole system whenever a minor but frequent fault occur �e�g�� a new node

joins� a link fails�� It seems that one of the best applications of reset is when it is combined

with unbounded�register protocols� the e�ect of the reset signal in this case can usually be

de�ned easily �e�g�� set counters to ���

Finally� we note that the time complexity actually is bounded by the length of the longest

simple path in the network �which is a more re�ned measure than just the number of nodes��

If the network is a tree� for instance� the protocol works in diameter time� which is clearly

optimal� The space complexity is logarithmic in the bound N � As typical for the local

correction method� the communication bandwidth required for stabilization is proportional

to the space� which is in our case logarithmic�

���� Application� Network Synchronization

Recall the network synchronization problem� The basic property there was that if a message

is sent in �local� round i� then no messages of rounds i�� or less will ever be received in that

�
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node� We abstract the synchronizer as a service module whose task is to provide the user

with pulse numbers at all times� If we associate with each node v its round�pulse number

P �v�� it can be easily seen that a state is legal only if no two adjacent nodes pulses di�er by

more than �� i�e�� for all nodes v

u � N �v� � jP �u�� P �v�j � � ����	�

�N �v� denotes the set of nodes adjacent to v�� Call the states satisfying Eq� ����	� legal�

Of course� we also want to keep progressing� This can be stated as asserting that for each

con
guration� there is some pulse number K� such that all nodes get all pulses K�K � �� � � �

If the system initialized in a legal state� we can use the following rule�

P �v� � min
u�N �v�

fP �u� � �g �������

The idea is that whenever the pulse number is changed� the node sends out all the

messages of previous rounds which havent been sent yet�

The rule above is stable� i�e�� if the con
guration is legal� then applying the rule arbitrarily

can yield only legal con
guration� Notice however� that if the state is not legal� then applying

the rule may cause pulse numbers to drop� This is a reason to be worried� since the regular

course of the algorithm requires pulse numbers only to grow� And indeed� the rule is not

self�stabilizing�
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Figure ����� An execution using rule ������ The node that moved in each step in marked�

One idea that can pop into mind to try to repair the above �aw is to never let pulse

numbers go down� Formally� the rule is the following�

P �v� � max

�
P �v�� min

u�N �v�
fP �u� � �g

�
�������

���



This rule can be proven to be self�stabilizing� However� it su�ers from a serious drawback

regarding its stabilization time� Consider the con
guration depicted below�

11 1000000

Figure ����� A pulse assignment for rule ������

A quick thought should su�ce to convince the reader that the stabilization time here is in

the order of ������� time units� which seems to be unsatisfactory for such a small network�

The next idea is to have a combination of rules� if the neighborhood is legal� then the

problem speci
cation requires the min�� rule is used� But if the neighborhood is not legal�

another rule can be used� The 
rst idea we consider is the following�

P �v� �

��
� minu�N �v� fP �u� � �g � if �u � N �v� � jP �v�� P �u�j � �

maxu�N �v� fP �u�g � otherwise
�������

It is fairly straightforward to show that if an atomic action consists of reading ones neigh�

bors and setting its own value �in particular� no neighbor changes its value in the meanwhile��

then the max rule above indeed converges to a legal con
guration� Unfortunately� this model�

traditionally called central demon model is not adequate for a truly distributed system� which

is based on loosely coordinated asynchronous processes� And as one might suspect� the max

rule does not work in a truly distributed system�

So here is a solution�

P �v� �

����
���

minu�N �v� fP �u� � �g � if �u � N �v� � jP �u�� P �v�j � �

maxu�N �v� fP �u�� �g � if �u � N �v� � P �u�� P �v� � �

P �v�� otherwise

�������

In words� the rule is to apply �minimum plus one� when the neighborhood seems to be

in a legal con
guration� and if the neighborhood seems to be illegal� to apply �maximum

minus one��

The intuition behind the modi
cation is that if nodes change their pulse numbers to be

the maximum of their neighbors� then �race condition� might evolve� where nodes with high

pulses can �run away� from nodes with low pulses� If the correction action takes the pulse

number to be one less than the maximum� then the high nodes are �locked�� in the sense

that they cannot increment their pulse counters until all their neighborhood have reached

their pulse number� This �locking� spreads automatically in all the �infected� area of the

network�
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We shall now prove that this rule indeed stabilizes in time proportional to the diameter

of the network� For this we shall need a few de
nitions�

De�nition � Let v be a node in the graph� The potential of v is denoted by ��v� and is

de�ned by

��v� � max
u�V

fP �u�� P �v�� dist�u� v�g �

Intuitively� ��v� is a measure of how much is v not synchronized� or alternatively the

size of the largest skew in the synchronization of v� corrected by the distance� Pictorially�

one can think that every node u is a point on a plane where the x�coordinate represents the

distance of u from v� and the y coordinate represents the pulse numbers �see Figure ���	

for an example�� In this representation� v is the only node on the y�axis� and ��v� is the

maximal vertical distance of any point �i�e�� node� above the ���degree line going through

��� P �v���
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Figure ���	� On the left is an example of a graph with pulse assignment �i�� Geometrical

representations of this con�guration are shown in �ii� and �iii�� The plane corresponding to

node c is in the middle �ii�� and the plane corresponding to node b is on the right �iii�� As

can be readily seen� ��c� � �� and ��b� � �� Also� ��c� � �� and ��b� � � �see De�nition

���

Let us start with some properties of � that follow immediately from the de
nition�

Lemma � For all nodes v � V � ��v� � ��

Lemma � A con�guration of the system is legal if and only if for all v � V � ��v� � ��

We now show the key property of the new rule� namely that the potential of the nodes

never increases under this rule�
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Lemma �� Let P be any pulse assignment� and suppose that node u changes its pulse

number by applying the rule� Denote the new pulse number of u by P ��u�� and the potential

of the nodes in the new con�guration by ��� Then for all nodes v � V � ���v� � ��v��

Proof� The 
rst easy case to consider is the potential of u itself� Since P ��u� � P �u�� we

have

���u� � max
w�V

fP �w� � P ��u�� dist�w� u�g

� max
w�V

fP �w� � P �u�� dist�w� u�g �������

� ��u� �

�Note� for later reference� that the inequality in ������� is strict if ��u� � ��� Now consider

v �� u� The only value that was changed in the set

fP �w� � P �v�� dist�w� v� j w � V g

is P �u��P �v��dist�u� v�� There are two cases to examine� If u changed its pulse by applying

the �min plus one� part of the rule� then there must be a node w which is a neighbor of u�

and is closer to v� i�e�� dist�u� v� � dist�w� v� � �� Also� since �min plus one� was applied�

we have P ��u� � P �w� � �� Now�

P ��u�� P �v�� dist�u� v� � �P �w� � �� � P �v�� �dist�w� v� � ��

� P �w�� P �v�� dist�w� v�

and hence the ��v� does not increase in this case� The second case to consider is when u

has changed its value by applying the �max minus one� part of the rule� The reasoning in

this case is similar� let w be a neighbor of u with P �w� � P ��u� � �� Clearly� dist�w� v� �

dist�u� v� � �� This implies that

P ��u�� P �v�� dist�u� v� � �P �w�� �� � P �v�� �dist�w� v�� ��

� P �w�� P �v�� dist�w� v�

and we are done�

As noted above� the inequality in ������� is strict if ��u� � �� In other words� each time

a node with positive potential changes its pulse number� its potential decreases� This fact�

when combined with Lemmas � and 	� immediately implies eventual stabilization� However�

using this argument leads to a proof that the stabilization time is bounded by the total

potential of the con
guration� which in turn depends on the initial pulse assignment� We

need a stronger argument in order to prove a bound on the stabilization time that depends

only on the topology� Toward this end� we de
ne the notion of �wavefront��
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De�nition � Let v be any node in the graph with potential ��v�� The wavefront of v� denoted

��v�� is de�ned by

��v� � min
u�V

fdist�u� v� j P �u�� P �v�� dist�u� v� � ��v�g �

In the graphical representation� the wavefront of a node is simply the distance to the

closest node of on the �potential line� �see Figure ���	 for an example�� Intuitively� one

can think of ��v� as the distance to the �closest largest trouble� of v� The importance of

the wavefront becomes apparent in Lemma �� below� but let us 
rst state an immediate

property it has�

Lemma �� Let v � V � Then ��v� � � if and only if ��v� � ��

Lemma �� Let v be any node with ��v� � �� and let ���v� be the wavefront of v after one

time unit� Then ���v� � ��v�� ��

Proof� Suppose ��v� � f � � at some state� Let u be any node such that P �u�� P �v��

dist�u� v� � ��v�� and dist�u� v� � f � Consider a neighbor w of u which is closer to v�

i�e�� dist�w� v� � f � � �it may be the case the w � v�� From the de
nition of ��v�� it

follows that P �w� � P �u�� �� Now consider the next time in which w applies Rule ������

If at that time ��v� � f � we are done� Otherwise� w must assign P �w� � P �u� � �� No

greater value can be assigned� or otherwise Lemma �� would be violated� At this time�

P �w�� P �v�� dist�w� v� � ��v� also� and hence ��v� � f � ��

Corollary �� Let v be any node� Then after ��v� time units� ��v� � ��

We can now prove the main theorem�

Theorem �� Let G � �V�E� be a graph with diameter d� and let P � V 	 N be a pulse

assignment� Applying Rule ����	 above results in a legal con�guration in d time units�

Proof� By Lemma 	� it su�ces to show that after d time units� ��v� � � for all v � V �

From Corollary �� above� we actually know that a slightly stronger fact holds� for all node

v � V � after ��v� time units� ��v� � �� The theorem follows from the facts that for all

v � V � ��v� � d� and by the fact that ��v� never increases� by Lemma ���

������ Implementation with Bounded Pulse Numbers

The optimal rule from above works only when the pulse numbers may grow unboundedly�

However� we can use the reset protocol to make is work with bounded�size registers� Suppose

that the registers dedicated to the pulse numbers may hold the values � � � � B� for some bound

B� Then the protocol would work by proceeding according to the unbounded rule �Eq� �������

and whenever a value should be incremented above B� reset is invoked� Notice that we must

require that B is su�ciently large� to enable propper operation of the protocol between
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resets� if B is less than the diameter of the network� for instance� then there is a possible

scenario in which the far nodes never get to participate in the protocol�
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�����J�������J Distributed Algorithms December ��� �		�
Lecturer� Nancy Lynch

Lecture ��

This is the last lecture of the course� we didnt have time to cover a lot of material

we intended to� Some of the main topics missing are fault�tolerant network algorithms and

timing�based computing� Well have several additional lectures in January to cover some of

this� for those who are interested� Today� well do one major result in fault�tolerant network

algorithms� namely the impossibility of fault�tolerant consensus in asynchronous networks�

Well also do two other results on ways to get around this limitation�

���� Fischer�Lynch�Paterson Impossibility Result

Recall the consensus problem from the shared memory work� The interface is de
ned by

the input actions init i�v�� and output actions decide i�v�� where i is a process and v is a

value� Here we shall consider the same init
decide interface� but the implementation is now

a distributed network algorithm� The message delivery is FIFO� and completely reliable� In

fact� we will assume that the nodes have reliable broadcast actions� so that when a node

sends a message� it is sent simultaneously to all the others� and because of the reliability of

message transmission� it will eventually get there� We consider solving this problem in the

face of processor faults� since we are giving an impossibility result� we consider only a very

simple kind of faulty behavior � at most one stopping failure� �Using such a weak kind of

fault makes the impossibility result stronger��

The impossibility of solving consensus in such a friendly environment is rather surprising�

The story is that Fischer� Lynch and Paterson worked on this problem for some while�

trying to get a positive result �i�e�� an algorithm�� Eventually� they realized that there was a

very fundamental limitation getting in the way� They discovered an inherent problem with

reaching agreement in an asynchronous system� in the presence of any faulty process�

The Model	 As in any impossibility result� it is very important to de
ne precisely the

assumptions made about the underlying model of computation� Here we assume that the

network graph is complete� and that the message system consists of fair FIFO queues� Each

process �node� i is an I�O automaton� There are inputs and outputs init i�v� and decide i�v��
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respectively� where i is a node and v is a value� There are also outputs broadcasti�v� and

inputs receivej�i�v�� where i and j are nodes and v is a value� The e�ect of a broadcast i�v�

action is to put �atomically� a v message in the channels leading to all the nodes �other than

i� in the system� With the broadcast action we actually dont need individual send actions�

We assume without loss of generality that each process has only one fairness class �i�e��

the processes are sequential�� and that the processes are deterministic� in the sense that ���

in each process state� there is at most one enabled locally controlled action� and ��� for each

state s and action �� there is at most one new state s� such that �s� �� s�� is a transition of the

protocol� In fact� we can assume furthermore �without loss of generality� that in each state

there is exactly one enabled locally controlled action �since we can always add in dummy

steps��

Correctness Requirement	 For the consensus problem we require that in any execution

such that exactly one init i occurs for each node i� we have the following conditions satis
ed�

Agreement� There are no two di�erent decision values�

Validity� If all the initial values are the same value v� then v is the only possible decision

value�

In addition� we need some termination conditions� First� we require that if there is

exactly one init i for each i and if the entire system �processes and queues� executes fairly�

then all processes should eventually decide� This condition is easy to satisfy �e�g�� just

exchange values and take majority�� But we require more� De
ne ��fair executions to be

those in which all but at most � process execute fairly� and all channels execute fairly�

We assume that a process that fails still does its input steps� but it can stop performing

locally�controlled actions even if such actions remain enabled� We require that in all ��fair

executions� all processes that dont stop eventually decide�

It seems as though it ought to be possible to solve the problem for ��fair executions

also� especially in view of the powerful broadcast primitive �you should try to design an

algorithm��� Our main result in this section� however� is the following theorem�

Theorem � There is no �
resilient consensus protocol�

Henceforth� we shall restrict our attention to the binary problem� where the input values

are only � and � � this is su�cient to prove impossibility�

Terminology	 De
ne A to be a �
resilient consensus protocol ���RCP� provided that it

satis
es agreement� validity� and termination in all its fair executions� De
ne A to be a
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�
resilient consensus protocol ���RCP� provided it is a ��resilient consensus protocol and if�

in addition� all non�stopped processes eventually decide in ��fair executions�

We call a 
nite execution � �
valent if � is the only decision value in all extensions of

�� �Note� the decision can occur anywhere in the extension� including the initial segment

��� Similarly� we de
ne �
valent 
nite executions� We say that � is univalent if it is either

��valent or ��valent� and we say that � is bivalent if it is not univalent �i�e�� � is bivalent

if there is one extension of � in which someone decides �� and another extension in which

someone decides ���

These �valency� concepts capture the idea that a decision may be determined� although

the actual decision action might not yet have occurred� As in the shared memory case�

we will restrict attention in the proof to input
�rst executions� i�e�� executions in which all

inputs arrive at the beginning� in round robin order of init events� for process �� �� � � � � n�

De
ne an initial execution to be an input�
rst execution of length exactly n� that is� an

initial execution just provides the initial values to all the processes�

We can now start proving the impossibility result� We begin with a statement about the

initial executions�

Lemma � In any �
RCP there is a bivalent initial execution�

Proof� The idea is the same as in the shared memory setting� Assume that the lemma is

false� i�e�� that all initial executions are univalent� By validity� the all�� input must lead to

decision of �� and all �s to decision of �� By assumption� any vector of �s and �s leads

to a unique decision� Hence there exist two input vectors with Hamming distance �� with

corresponding initial executions such that one is ��valent� and the other is ��valent� let ��

and �� be these two respective initial executions� Let i be the index of the unique process

in whose initial value they di�er�

The idea is that the rest of the system cant tell which of the vectors was input if i never

does anything� More formally� consider a ��fair execution ��� that extends initial execution

��� in which i fails right at the beginning� i�e�� it takes no locally�controlled steps� In ���

some process j eventually decides �� by the assumptions that �� is ��valent and that the

protocol is ��RCP�

But then we claim that there is another execution ��� that extends ��� that also leads to

decidej���� This is because the only di�erence between the states at the end of �� and ��

is in the state of process i� now allow the same processes to take the same steps in ��� as in

���� the same messages to get delivered� etc� �see Figure ������ The only di�erence in how

��� and ��� will unfold is in the state changes caused by the receipt of the same message by i

in the two executions � those states can be di�erent� but since i never performs any locally

controlled action in either� the rest of the system cannot tell the di�erence�
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Figure ����� In both extensions for �� and �� the same processes take the same actions� and

therefore �� cannot be ��valent�

Hence� process j must decide � in ��� too� contradicting the ��valence of ���

Examples� The majority protocol is a ��RCP� it has no bivalent initial execution� since

an initial execution can only lead to a decision of v in case the value v is the initial value of

a majority of the processes�

Another example of an ��RCP is a leader�based protocol� where everyone sends their

values to process �� and � decides on the 
rst value received and informs everyone else about

the decision� This does have bivalent initial executions � anything in which there are two

processes other than p� having di�erent initial values�

We now proceed with the de
nition of a decider �which is de
ned somewhat di�erently

from the way it was de
ned for the shared memory setting��

De�nition � A decider for an algorithm A consists of an input
�rst execution � of A and

a process index i such that the following conditions hold �see Figure ������

�� � is bivalent�

�� There exists a �
valent extension �� of � such that the sux after � consists of steps

of process i only� �These can be input� output or internal steps��

	� There exists a �
valent extension �� of � such that the sux after � consists of steps

of process i only�

Note that the �exibility in obtaining two di�erent executions here arises because of the

possible di�erent orders of interleaving between locally controlled steps and message�receipt
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Figure ����� schematic diagram of a decider ��� i��

steps on the various channels� Also� messages could arrive in di�erent orders in two di�erent

executions�

Let us now state a lemma about the existence of a decider�

Lemma � Let A be any �
RCP with a bivalent initial execution� Then there exists a decider

for A�

We shall prove this lemma later� Let us 
rst complete the impossibility proof� given

Lemma ��

Proof� �of Theorem ��� Suppose A is a ��RCP� Since A is also a ��RCP� and since it

has a bivalent initial pre
x� we can obtain� by Lemma �� a decider ��� i�� We now argue a

contradiction in a way that is similar to the argument for the initial case�

Consider a ��fair extension �� of � in which i takes no locally�controlled steps �i�e�� i

fails right after ��� Eventually in ��� some process j must decide� suppose without loss of

generality that the decision value is �� Also� we can suppose without loss of generality that

there are no message deliveries to i in the su�x of �� after � �if there are any� then omitting

them still leads to the same decision��

Now we claim that the there is another execution ��� that extends ��� and that also leads

to decidej��� �see Figure ������

This is because the only di�erences between the states at the end of � and �� are in �a�

the state of process i� �b� the last elements in the channels leaving process i �there can be

some extras after ���� and �c� the �rst elements in the channels entering process i can be

di�erent �there can be some messages missing after ���� Then we allow the same processes

to take the same steps in the su�x after �� as in ��� the same messages to get delivered� etc�

�Nothing that i has done will interfere with this� note that we never deliver any of the extra
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Figure ����� Contradiction derived from the existence of a decider ��

messages�� As before� the only di�erence in what happens is in the state changes caused by

the receipt of the same message by i in the two executions� those states can be di�erent� but

since i never performs any locally controlled action in either� the rest of the system cannot

tell the di�erence�

Hence� process j decides � by the end of ���� contradicting the ��valence of ���

It remains now to prove Lemma ��

Proof� �of Lemma 	�� Suppose there is no decider� Then starting from a bivalent initial

execution� we construct a fair execution �no failures at all� in which successive pre
xes are

all bivalent� thus violating the termination requirement�

We work in a round�robin fashion� at each phase� we either let one speci
ed process take

a locally controlled step or else we deliver the 
rst message in some channel� Visiting all

processes and all channels in the round robin order yields a fair execution �if a channel is

empty� we can bypass it in the order��

We have now reduced the proof to doing the following� We need to consider one step at

a time� where each step starts with a particular bivalent input�
rst execution and we need

to either

�� let a particular process i take a turn� or

�� deliver the oldest message in some channel�
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We must do this while keeping the result bivalent� We proceed by considering the possible

cases of the step at hand�

Case �� Deliver message m from j to i� where m is the �rst message in the channel from

i to j in the state after �� Consider the tree of all possible 
nite extensions of � in which

m is delivered to i just at the end �in the interim� arbitrary other steps can occur�� If any

of these �leaves� is bivalent� we are done with this stage� So assume all are univalent� As in

Loui�AbuAmara� assume without loss of generality that delivering the message immediately

after � leads to a ��valent state� Consider a 
nite extension of � that contains a decision of

�� this is possible because � is bivalent �see Figure ������

α

1

0−valent

m delivered

Figure ����� the delivery of m leads to a ��valent state�

We now use this to get a con
guration involving one step� such that if m is delivered

just before the step the result is a ��valent execution� whereas if it is delivered just after

the step� the result is a ��valent execution �see Figure ������ We show this must happen by

considering cases as follows�

0−valent

m delivered

1−valent

m delivered

s

Figure ����� the delivery of m before step s leads to a ��valent state� and the delivery of m

after step s leads to a ��valent state�
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If the extension leading to the decision of � does not contain a delivery of m� then

delivering m right at the end leads to a ��valent state� then since attaching it anywhere gives

univalence� there must be � consecutive positions along the chain where one gives ��valence

and one gives ��valence �see Figure ������

α

1

0−valent

m delivered

0−valent

m delivered

1−valent

m delivered

1−valent
m delivered

α

1

0−valent

m delivered

1−valent
1−valent

m delivered

Figure ����� Left� the delivery of m does not appear in the extension to a ��valent state�

Right� m is delivered in the extension of ��

On the other hand� if this extension does contain a delivery event for m� then consider the

place where this delivery occurs� Immediately after the delivery� we must have univalence�

which for consistency with the later decision in this execution must be ��valence� Then we

use the same argument between this position and the top�

Now� if the intervening step �step s in Figure ����� involves some process other than i�

then it is also possible to perform the same action after the delivery of m� and the resulting

global state is the same after either order of these two events �see Figure ������

0−valent

m delivered

1−valent

m delivered

s

s

Figure ����� if s does not involve i� then performing s before or after m contradicts valency�

But this is a contradiction� since one execution is supposed to be ��valent and the other
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��valent� So it must be that the intervening step involves process i�

But then this yields a decider� a contradiction to the assumption�

Case �� Process i take a locally
controlled step�

Essentially the same argument works in this case� we only sketch it� Consider the tree of


nite extensions in which anything happens not including a locally�controlled step of i� and

then i does a locally�controlled step� �Here we use the assumption that locally�controlled

steps are always possible�� Note that the tree can include message deliveries to i� but not

locally�controlled steps of i� except at the leaves�

This time� we get a con
guration involving one step� such that if i takes a locally�

controlled step just before this step� the result is a ��valent execution� whereas if i takes its

locally�controlled step just after the step� the result is a ��valent execution� Again� we get

this by cases� If the extension doesnt contain a locally�controlled step of i� we can attach it

at the end and proceed as in Case �� If it does� then choose the 
rst such in the extension

and proceed as in Case �� Then we complete the proof is as in Case �� by showing that

either commutativity holds or a decider exists�

���� Ben�Or Randomized Protocol for Consensus

Fischer� Lynch and Paterson show that consensus is impossible in an asynchronous system

even for simple stopping faults� However� this is only for deterministic algorithms� It turns

out that the problem can be solved in an asynchronous environment using randomization�

with probability � of eventually terminating� In fact� an algorithm can even be designed to

tolerate stronger types of process faults � Byzantine faults� where processes can move to

arbitrary states� and send arbitrary messages at any time�

The algorithm uses a large number of processes relative to the number of faults being

tolerated� e�g�� n � �f � �� �This can be reduced� but this version is easiest to see�� The

algorithm proceeds as follows� Each process starts with its initial value in variable x� The

algorithm works in asynchronous �phases�� where each phase consists of two rounds� Each

process sends messages of the form �rst�r� v� and second�r� v� where r is the phase number

and v is a value in the domain being considered� The code is given in Figure ���� for binary

values� We assume for simplicity that the nodes continue performing this algorithm forever�

even though they only decide once�

������ Correctness

Validity� If all the processes start with the same initial value v� then it is easy to see that

all nonfaulty processes decide on v in the 
rst phase� In the 
rst round of phase �� all the
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Initially� x is i�s initial value�

For each phase r do�

Round �� broadcast �rst�r� x�

wait for �n� f� messages of the form �rst�r� ��

if at least �n� �f� messages in this set have same value v

then x � v

else x � nil

Round �� broadcast second�r� x�

wait for �n� f� messages of the form second�r� ��

Let v be the value occurring most often �break ties arbitrarily��

and let m be the number of occurrences of v

if m � �n� �f�

then �DECIDE v� x � v�

else if m � �n� 	f�

then x � v

else x� random

Figure ����� Randomized Consensus Algorithm for Asynchronous Network� code for process

i�

nonfaulty processes broadcast �rst��� v� and receive �rst��� v� messages from at least n� �f

processes� Then in round � of phase �� all nonfaulty processes broadcast second��� v� and

again receive at least n� �f second��� v� messages�

Agreement� We show that the nonfaulty processes cannot disagree� We will also see that

all nonfaulty processes terminate quickly once one process decides� Suppose that process i

decides v at phase r� This can happen only if i receives at least n��f second�r� v� messages

for a particular r and v� which guarantees that each other nonfaulty process j receives at

least n� �f second �r� v� messages� This is true since although there can be some di�erence

in which processes messages are received by i and j� process j must receive messages from

at least n � �f of the n � �f senders of the second�r� v� messages received by i� Among

those senders� at least n� �f must be nonfaulty� so they send the same message to j as to

i� A similar counting argument shows that v must be the value occurring most often in pj s

set of messages �since n � �f�� Therefore� process j cannot decide on a di�erent value at

phase r� Moreover� j will set x� v at phase r� Since this holds for all nonfaulty processes

j� it follows �as in the argument for validity� that all nonfaulty processes that have not yet

decided will decide v in phase r � ��
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Termination� Now it remains to argue that the probability that someone eventually termi�

nates is �� So consider any phase r� We will argue that� regardless of what has happened at

prior rounds� with probability at least ��n �which is quite small� but nevertheless positive��

all nonfaulty processes will end up with the same value of x at the end of round r� In this

case� by the argument for agreement� all nonfaulty processes will decide by round r � ��

For this phase r� consider the 
rst time any nonfaulty process� say i� reaches the point of

having received at least n� f �rst�r� 
� messages� Let M be this set of messages� and let v

be the majority value of the set �de
ne v arbitrarily if there is no majority value�� We now

claim that for any second�r� w� message sent by a nonfaulty process� we must have w � v

or w � nil � To see that this is true� suppose w �� nil � Now� if second�r� w� is sent by a

nonfaulty process j� then j receives at least n� �f �rst�r� w� messages� Since �by counting�

at least n � �f �rst�r� w� messages appear in M � and since n � �f � �� this is a majority�

and so we have w � v�

Next� we claim that at any phase r� the only value that can be �forced upon� any

nonfaulty process as its choice is v� To see this� note that for a process to be forced to choose

w� the process must receive at least n��f second �r� w� messages� Since at least one of these

messages is from a nonfaulty process� it follows �from the previous claim� that w � v�

Now� note that the value v is determined at the 
rst point where a nonfaulty process has

received at least n� f �rst�r� 
� messages� Thus� �by the last claim� the only forcible value

for round r is determined at that point� But this point is before any nonfaulty process tosses

a coin for round r� and hence these coin tosses are independent of the choice of forcible value

for round r� Therefore� with probability at least ��n� all processes tossing coins will choose

v� agreeing with all those that do not toss coins� This gives the claimed decision for round

r�

The main interest in this result is that it shows a signi
cant di�erence between the

randomized and non�randomized models� in that the consensus problem can be solved in the

randomized model� The algorithm is not practical� however� because its expected termination

time is very high� We remark that cryptographic assumptions can be used to improve the

probability� but the algorithms and analysis are quite di�cult� �See �Feldman	� ��

���� Parliament of Paxos

In this section well see Lamports recent consensus algorithm� for deterministic� asyn�

chronous systems� Its advantage is that in practice� it is very tolerant to faults of the

following types� node stopping and recovery� lost� out�of�order� or duplicated messages� link

failure and recovery� However� its a little hard to state exactly what fault�tolerance proper�
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ties it has� so instead well present the algorithm and then describe its properties informally�

We remark that the protocol always satis
es agreement and validity� The only issue is

termination � under what circumstances nonfaulty processes are guaranteed to terminate�

The Protocol	 All or some of the participating nodes keep trying to conduct ballots� Each

ballot has an identi
er� which is a �timestamp� index � pair� where the timestamp neednt be

a logical time� but can just be an increasing number at each node� The originator of each

ballot tries �if it doesnt fail� to ��� associate a value with the ballot� and ��� get the ballot

accepted by a majority of the nodes� If it succeeds in doing so� the originator decides on the

value in the ballot and informs everyone else of the decision�

The protocol proceeds in 
ve rounds as follows�

�� The originator sends the identi
er �t� i� to all processes �including itself�� If a node

receives �t� i�� it commits itself to voting �NO� in all ballots with identi
er smaller

than �t� i� on which it has not yet voted�

�� Each process sends back to the originator of �t� i� the set of all pairs ��t�� i��� v�� indi�

cating those ballots with identi
er smaller than �t� i� on which the node has previously

voted �YES�� it also encloses the 
nal values associated with those ballots� If the

originator receives this information from a majority� it chooses as the 
nal value of the

ballot the value v associated with the largest �t�� i�� � �t� i� that arrives in any of these

messages� If there is no such value reported by anyone in the majority� the originator

chooses its own initial value as the value of the ballot�

�� The originator sends out ��t� i�� v�� where v is the chosen value from round ��

�� Each process that hasnt already voted �NO� on ballot �t� i� votes �YES� and sends

its vote back to the originator� If the originator receives �YES� votes from a majority

of the nodes� it decides on the value v�

�� The originator sends out the decision value to all the nodes� Any node that receives it

also decides�

We 
rst claim that this protocol satis
es agreement and validity� Termination will need

some more discussion�

Validity� Obvious� since a node can only decide on a value that is some nodes initial value�
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Agreement� We prove agreement by contradiction� suppose there is disagreement� Let b be

the smallest ballot on which some process decides� and say that the associated value is v� By

the protocol� some majority� say M � of the processes vote �YES� on b� We 
rst claim that

v is the only value that gets associated with any ballot strictly greater than b� For suppose

not� and let b� be the smallest ballot greater than b that has a di�erent value� say v� �� v�

In order to 
x the value of ballot b�� the originator has to hear from a majority� say M ��

of the processes� M � must contain at least one process� say i� that is also in M � i�e�� that

votes �YES� on b� Now� it cannot be the case that i sends its information �round �� for b�

before it votes �YES� �round �� on b� for at the time it sends this information� it commits

itself to voting �NO� on all smaller ballots� Therefore� i votes �YES� on b before sending

its information for b�� This in turn means that �b� v� is included in the information i sends

for b�� So the originator of b� sees a �YES� for ballot b� By the choice of b�� the originator

cannot see any value other than v for any ballot between b and b�� So it must be the case

that the originator chooses v� a contradiction�

Termination� Note that it is possible for two processes to keep starting ballots and prevent

each other from 
nishing� Termination can be guaranteed if there exists a �su�ciently long

time� during which there is only one originator trying to start ballots �in practice� processes

could drop out if they see someone with a smaller index originating ballots� but this is

problematic in a purely asynchronous system�� and during which time a majority of the

processes and the intervening links all remain operative�

The reason for the Paxos name is that the entire algorithm is couched in terms of a


ctitious Greek parliament� in which legislators keep trying to pass bills� Probably the

cutest part of the paper is the names of the legislators�
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�����J�������J Distributed Algorithms Handout � September ��� �		�

Homework Assignment �

Due� Thursday
 September ��

Reading

Lamport�Lynch survey paper�

Exercises

�� Carry out careful inductive proofs of correctness for the LeLann�Chang�Roberts �LCR�

algorithm outlined in class�

�� For the LCR algorithm�

�a� Give a UID assignment for which !�n�� messages are sent�

�b� Give a UID assignment for which only O�n� messages are sent�

�c� Show that the average number of messages sent is O�n log n�� where this average

is taken over all the possible orderings of the elements on the ring� each assumed

to be equally likely�

�� Write �code� for a state machine to express the Hirschberg�Sinclair algorithm� in the

same style as the code given in class for the LCR algorithm�

�� Show that the Frederickson�Lynch counterexample algorithm doesnt necessarily have

the desired O�n� message complexity if processors can wake up at di�erent times�

Brie�y describe a modi
cation to the algorithm that would restore this bound�

�� Prove the best lower bound you can for the number of rounds required� in the worst

case� to elect leader in a ring of size n� Be sure to state your assumptions carefully�
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�����J�������J Distributed Algorithms Handout � September ��� �		�

Homework Assignment �

Due� Thursday
 September ��

Reading

The Byzantine generals problem� by Lamport� Shostak and Pease�

Exercises

�� Prove the best lower bound you can for the number of rounds required� in the worst

case� to elect leader in a ring of size n� Be sure to state your assumptions carefully�

�� Recall the proof of the lower bound on the number of messages for electing a reader in

a synchronous ring� Prove that the bit�reversal ring described in class for n � �k for

any positive integer k� is �
�
�symmetric�

�� Consider a synchronous bidirectional ring of unknown size n� in which processes have

UIDs� Give upper and lower bounds on the number of messages required for all the

processors to compute n mod � �output is via a special message��

�� Write pseudocode for the simple algorithm discussed in class� for determining shortest

paths from a single source i�� in a weighted graph� Give an invariant assertion proof

of correctness�

�� Design an algorithm for electing a leader in an arbitrary strongly connected directed

graph network� assuming that the processes have UIDs but that they have no knowl�

edge of the size or shape of the network� Analyze its time and message complexity�

�� Prove the following lemma� If all the edges of a connected weighted graph have distinct

weights� then the minimum spanning tree is unique�

�� Consider the following variant of the generals problem� Assume that the network is a

complete graph of n � � participants� and that the system is deterministic �i�e�� non�

randomized�� The validity requirement is the same as described in class� However�

suppose the agreement requirement is weakened to say that �if any general decides �
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then there are at least two that decide ��� That is� we want to rule out the case where

one general attacks alone�

Is this problem solvable or unsolvable" Prove�
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�����J�������J Distributed Algorithms Handout 	 September ��� �		�

Homework Assignment �

Due� Thursday
 October �

Exercises

�� Show that the generals problem �with link failures� is unsolvable in any nontrivial

connected graph�

�� Consider the generals problem with link failures for two processes� in a setting where

each message has an independent probability p of getting delivered successfully� �As�

sume that each process can send only one message per round�� For this setting� design

an algorithm that guarantees termination� has �low probability� � of disagreement �for

any pair of inputs�� and has �high probability� L of attacking in case both inputs are

� and there are no failures� Determine � and L in terms of p for your algorithm�

�� In the proofs of bounds for randomized generals algorithms� we used two de
nitions of

information level� level A�i� k�� and mlevelA�i� k�� Prove that for any A� i and k� these

two are always within � of each other�

�� Be the Adversary�

�a� Consider the algorithm given in class for consensus in the presence of processor

stopping faults �based on a labeled tree�� Suppose that instead of running for

f � � rounds� the algorithm only runs for f rounds� with the same decision rule�

Describe a particular execution in which the correctness requirements are violated�

�Hint� a process may stop �in the middle� of a round� before completing sending

all its messages��

�b� Now consider the algorithm given for consensus in the presence of Byzantine

faults� Construct an execution to show that the algorithm gives a wrong result if

it is run with either �i� � nodes� � faults� and � rounds� or �ii� � nodes� � faults�

and � rounds�

�� Using the stopping fault consensus algorithm as a starting point� modify the correctness

conditions� algorithm and proof as necessary to obtain a consensus algorithm that is

resilient to Byzantine faults� assuming that authentication of messages is available�

���



�� �optional� Consider the optimized version of the stopping fault consensus algorithm�

where only the 
rst two messages containing distinct values are relayed� In this algo�

rithm it isnt really necessary to keep all the tree information around� Can you reduce

the information kept in the state while still preserving the correctness of the algorithm"

You should sketch a proof of why your �optimized� algorithm works�
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�����J�������J Distributed Algorithms Handout �� October �� �		�

Homework Assignment �

Due� Thursday
 October �

Reading

Lynch and Tuttle� An Introduction to Input�Output Automata� CWI�Quarterly� ����� �	�	�

Exercises

�� Consider the network graph G depicted in Figure ���	�

a

b

c

d

e

f

g

Figure ���	� the graph G is a 
�node� ��connected communication graph

Show directly �i�e�� not by quoting the connectivity bound stated in class� but by a

proof speci
c to this graph� that Byzantine agreement cannot be solved in G when �

processors are faulty�

�� In class� a recursive argument was used to show impossibility of f �round consensus

in the presence of f stopping failures� If the recursion is unwound� the argument

essentially constructs a long chain of runs� where each two consecutive runs in the

chain look the same to some process� How long is the chain of runs"

Optional� Can you shorten this chain using Byzantine faults rather than stopping

faults"

�� Write �code� for a correct ��phase commit protocol�

�� Fill in more details in the inductive proof of mutual exclusion� for Dijkstras algorithm�

�� Describe an execution of Dijkstras algorithm in which a particular process is locked

out forever�
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�����J�������J Distributed Algorithms Handout �� October ��� �		�

Homework Assignment �

Due� Thursday
 October ��

Exercises

�� Consider the Burns mutual exclusion algorithm�

�a� Exhibit a fair execution in which some process is locked out�

�b� Do a time analysis for deadlock�freedom� That is� assume that each step outside

the remainder region takes at most � time unit� and give upper and lower bounds

on the length of the time interval in which there is some process in T and no

process in C ��upper bound� means analysis that applies to all schedules� �lower

bound� means a particular schedule of long duration��

�� Why does the Lamport bakery algorithm fail if the integers are replaced by the integers

mod B� for some very large value of B" Describe a speci
c scenario�

�� Design a mutual exclusion algorithm for a slightly di�erent model in which there is

one extra process� a supervisor process� that can always take steps� The model should

use single�writer�multi�reader shared variables� Analyze its complexity�

�� Design an atomic read�modify�write object� based on lower�level multi�writer multi�

reader read�write memory� The object should support one operation� apply�f�� where

f is a function� In the serial speci
cation� the e�ect of apply�f� on an object with value

v is that the value of the object becomes f�v�� and the original value v is returned to

the user� The executions can assumed to be fair�

�� Consider the following variant of the unbounded�registers atomic snapshot object� In

this variant� the sequence number is also incremented each time a snap is completed

�rather than only in update�� Does this variant preserve the correctness of the original

algorithm"
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�����J�������J Distributed Algorithms Handout �	 October ��� �		�

Homework Assignment �

Due� Thursday
 October ��

Exercises

�� Why does the Lamport bakery algorithm fail if the integers are replaced by the integers

mod B� for some very large value of B" Describe a speci
c scenario�

�� Programmers at the Flaky Computer Corporation designed the following protocol for

n�process mutual exclusion with deadlock�freedom�

Shared variables� x� y� Initially y � ��

Code for pi�

## Remainder Region ##

try i
L �

x �� i

if y �� � then goto L

y �� �

x �� i

if x �� i then goto L

crit i

## Critical Region ##

exit i

y �� �

remi

Does this protocol satisfy the two claimed properties" Sketch why it does� or show

that it doesnt� �If you quote an impossibility result to say that it doesnt satisfy the

properties� then you must still go further and actually exhibit executions in which the

properties are violated��

���



�� Reconsider the consensus problem using read�write shared memory� This time suppose

that the types of faults being considered are more constrained than general stopping

failures� in particular� that the only kind of failure is stopping right at the beginning

�never performing any non�input steps�� Is the consensus problem solvable" Give an

algorithm or an impossibility proof�

�� Let A be any I�O automaton� and suppose that � is a 
nite execution of A� �a� Prove

that there is a fair execution ��� of A �i�e�� an extension of ��� �b� If � is any 
nite or

in
nite sequence of input actions of A� prove that there is a fair execution ���� of A�

such that the sequnce of input actions of beh����� is identical to ��
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�����J�������J Distributed Algorithms Handout �� October �	� �		�

Homework Assignment �

Due� Thursday
 November �

Exercises

�� Let A be any I�O automaton� Show that there is another I�O automaton B with only a

single partition class that �implements� or �solves� A� in the sense that fairbehs�B� �

fairbehs�A��

�� Rewrite the Lamport bakery algorithm as an I�O automaton in precondition�e�ects

notation� While doing this� generalize the algorithm slightly by introducing as much

nondeterminism in the order of execution of actions as you can� �The precondition�

e�ects notation makes it easier to express nondeterministic order of actions than does

the usual �ow�of�control notation��

�� �Warning� We havent entirely worked this one out�� Consider a sequential timestamp

object based on the sequential timestamp system discussed informally in class �the

one with the �n�� values�� This is an I�O automaton that has a big shared variable

label containing the latest labels �you can ignore the values� for all processes� and that

has two indivisible actions involving the label vector� ��� An action that indivisibly

looks at the entire label vector� chooses a new label according to the rule based on

full components� and writes it in the label vector� This is all done indivisibly� ��� An

action that just snaps the entire label vector�

�a� Write this as an IOA�

�b� Prove the following invariant� For any cycle� at any level� at most two of three

components are occupied�

�c� Describe a similar sequential timestamp system based on unbounded real number

timestamps�

�d� Use a possibilities mapping to show that your algorithm of �a� implements your

algorithm of �c��

�Plenty of partial credit will be given for good attempts��
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�����J�������J Distributed Algorithms Handout �� November �� �		�

Homework Assignment 	

Due� Thursday
 November ��

Exercises

�� Give example executions to show that the multiwriter multireader register implementa�

tion given in class �based on a concurrent timestamp object� is not correctly serialized

by serialization points placed as follows�

�a� For a read� at the point of the embedded snap operation� For a write� at the

point of the embedded update operation�

�b� For all operations� at the point of the embedded snap operation�

Note that the embedded snap and update operations are embedded inside the atomic

snapshot out of which the concurrent timestamp object is built�

�� Consider the following simple �majority�voting� algorithm for implementing a multi�

writer multireader register� in majority snapshot shared memory model� In this model�

the memory consists of a single vector object� one position per writer process� with each

position containing a pair consisting of a value v and a positive integer timestamp t�

Each read operation instantaneously reads any majority of the memory locations� and

returns the value associated with the largest timestamp� Each write operation instanta


neously reads any majority of the memory locations� determines the largest timestamp

t� and writes the new value to any majority of the memory locations� accompanied by

timestamp t � ��

Use the lemma proved in class �Lecture ��� to sketch a proof that this is a correct

implementation of an atomic multiwriter multireader register�

�� Show that every exclusion problem can be expressed as a resource problem�

�� Show that Lamports Construction �� when applied to atomic registers� does not nec�

essarily give rise to an atomic register�
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�����J�������J Distributed Algorithms Handout �	 November ��� �		�

Homework Assignment 


Due� Thursday
 November ��

Exercises

�� Give an explicit I�O automaton with a single�writer multi�reader user interface� that

preserves user well�formedness �alternation of requests and responses�� whose fair well�

formed behaviors contain responses for all invocations� and whose well�formed external

behaviors are exactly those that are legal for a regular read�write register� Do this also

for a safe read�write register�

�� Extend the Burns lower bound on the number of messages needed to elect a leader in

an asynchronous ring so that it applies to rings whose sizes are not powers of two�

�� Give an explicit algorithm that allows a distinguished leader node i� in an arbitrary

connected network graph G to calculate the exact total number of nodes in G� Sketch

a proof that it works correctly�

�� Consider a �banking system� in which each node of a network keeps a number in�

dicating an amount of money� We assume� for simplicity� that there are no external

deposits or withdrawals� but messages travel between nodes at arbitrary times� con�

taining money that is being �transferred� from one node to another� The channels

preserve FIFO order� Design a distributed network algorithm that allows each node

to decide on �i�e�� output� its own balance� so that the total of all the balances is the

correct amount of money in the system� To rule out trivial cases� we suppose that the

initial state of the system is not necessarily �quiescent�� i�e�� there can be messages in

transit initially�

The algorithm should not halt or delay transfers �unnecessarily�� Give a convincing

argument that your algorithm works�
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�����J�������J Distributed Algorithms Handout �� November �	� �		�

Homework Assignment ��

Due� Thursday
 December �

Exercises

�� �This question is open ended� and we havent worked it out entirely�� Compare the

operation of the Gallager�Humblet�Spira spanning tree algorithm to that of the syn�

chronous version discussed earlier in the course� E�g�� is there any relationship between

the fragments produced in the two cases" �Perhaps such a connection can be used in

a formal proof��

�� Design �outline� an asynchronous algorithm for a network with a leader node i�� that

allows i� to discover and output the maximum distance d from itself to the furthest

node in the network� The algorithm should work in time O�d�� What is the message

complexity"

�� Consider a square grid graph G� consisting of n � n nodes� Consider a partition Pk

into k� equal�sized clusters� obtained by dividing each side into k equal intervals� In

terms of n and k� what are the time and message complexities of synchronizer 	 based

on partition Pk"

�� Obtain the best upper bound you can for an asynchronous solution to the k�session

problem�
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�����J�������J Distributed Algorithms Handout �� December �� �		�

Homework Assignment ��

Due� Thursday
 December ��

Exercises

�� Develop a way of simulating single�writer multi�reader shared memory algorithms in an

asynchronous network� your method should be based on caching� where readers keep

local copies of all the variables and just read their local copies �if possible�� The writer�

however� needs to carry out a more complicated protocol in order to write� Describe

appropriate protocols for the writer �and also for the reader� if the local copy is not

available�� in order to simulate instantaneous read�write shared memory� Be sure to

guarantee that each process invocations eventually terminate�

Outline why your algorithm works correctly�

�� �Optimize� the mutual exclusion algorithm described in class� based on Lamports

state machine simulation strategy� in order not to keep all the messages ever received

from all other processes�

�� Prove the following invariant for the Dijkstra�Scholten termination detection algorithm�

All non
idle nodes form a tree rooted at the node with status leader� where the tree

edges are given by parent pointers�

�� In the shortest paths problem� we are given a graph G � �V�E�� with weights w�e� � �

for all e � E� and a distiguished node i� � V � The objective is to compute� at each node�

its weighted distance from i�� Consider the Bellman�Ford algorithm for synchronous

networks de
ned as follows� Each node i maintains a non�negative distance i variable�

The algorithm proceeds in rounds as follows� At each round� all the nodes send to

their neighbors the value of their distance variable� The distinguished node i� has

distance � � 
xed� and all other nodes i assign� at each round�

distance i � min
�j�i��E

fdistancej � w�j� i�g �

Assume that the state of a node consists only of its distance variable� Prove that this

algorithm is self�stabilizing�
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Appendix

Notes for extra lectures

�����J�������J Distributed Algorithms January �� �		�
Lecturer� Nancy Lynch

Lecture ��

A�� Implementing Reliable Point�to�Point Communi�

cation in terms of Unreliable Channels

In our treatment of asynchronous networks� we have mostly dealt with

the fault�free case�

Exceptions� self�stabilization �single arbitrary failure�

processor stopping faults and Byzantine faults� for consensus

Now emphasize failures� but in a very special case � a two�node

network�

The problem to be considered is reliable communication between users

at two nodes�

Messages are sent by some user at one node� and are supposed to be

delivered to a user at the other�

Generally want this delivery to be reliable � FIFO� exactly once each�

The sender and receiver nodes are I�O automata�

The two channels inside are generally not our usual reliable channels�

however�

They may have some unreliability properties� e�g��

loss of packets

duplication

reordering�

However� we dont normally allow worse faults such as manufacturing of

completely bogus messages�

���



We also dont allow total packet loss � e�g�� have a liveness

assumption that says something like�

�If in
nitely many packets are sent� then in
nitely many of

them are delivered��

Have to be careful to state this right � since we are considering

duplication of packets� its not enough just to say that in
nitely

many sends imply in
nitely many receives � we want in
nitely many

of the di�erent send events to have �corresponding� receive events�

�We dont want in
nitely many receives of some early

message� while in
nitely many new messages keep being inserted��

Can usually formalize the channels as I�O automata� �using IOA fairness

to express the liveness condition� but it may be more natural

just to specify their allowable external behavior

�in the form of a �cause� function from packet receipt events to

packet send events satisfying certain properties��

Later� we will want to generalize the conditions to utilize a

�port structure�� and say that the channel exhibits FIFO behavior

and liveness with respect to each port separately� Amounts to a

composition of channels� one for each pair of matching ports�

A���� Stenning�s Protocol

The sender places incoming messages in a bu�er� bu�er s�

It tags the messages in its bu�er with successively larger integers

�no gaps�� starting from ��

The receiver assembles a bu�er� bu�er r� also containing

messages with tags starting from ��

As the bu�er gets 
lled in� the receiver can deliver the

initial messages in order�

�Alternative modeling choice� eliminate the senders bu�er in favor of a

handshake protocol with the user telling it when it can submit the next

message��

Other than the basic liveness condition described earlier� this

protocol can tolerate a lot of unreliable behavior on the

���



part of the channel� loss� duplication and reordering�

Note that only one direction of underlying channel is required�

strictly speaking� although in this case� the sender never knows to

stop sending any particular message�

If we would like to eventually stop sending each message after it has

been delivered� need to also add an acknowledgement protocol in the

receiver�to�sender direction�

The protocol can send lots of messages concurrently� but just to be

speci
c �and simple�� we describe a �sequential� version of the

protocol� in which the sender waits to know that the previous

message has been delivered to the receiver before starting to send

the next version�

Code� �see Figures A�� and A����

Correctness proof�

Can give a high�level spec that is basically a queue� MQ� with

single state component mqueue �

A send�message action puts a message on the end and a receive�message

removes it from the front�

Same as our earlier channel spec�

The liveness condition is then the same as we used before for

individual channels in our reliable network model � eventual delivery

of the 
rst message �easy spec as an IOA��

The implementation consists of IOAs for the sender and receiver� but

it is natural to use a more general model for the

underlying channels�

However� I dont want to just use axioms for external behavior�

To do a mapping proof�

it is still convenient to have a state machine� even though the

fairness condition needed isnt so easily speci
ed using IOA

fairness�

State machine has as its state a set� send puts element into the set�

can deliver a packet any number of times if its in the set �never

gets removed from the set��

���



Interface�

Input�

send msg�m��m �M

receive pktrt�i�� i a nonnegative integer

Output�

send pkt
tr�m� i��m �M� i a nonnegative integer

State�

bu�er � a 
nite queue of elements of M � initially empty� and

integer � a nonnegative integer� initially ��

Steps�

send msg�m��m �M

E�ect�

add m to bu�er �

send pkt tr�m� i��m �M� i a nonnegative integer

Precondition�

m is 
rst on bu�er �

i � integer

E�ect�

None�

receive pkt rt�i�� i a nonnegative integer

E�ect�

if i � integer then

�remove 
rst element �if any� from bu�er �

integer �� integer � � 

Partition�

all send pkt tr actions are in one class�

Figure A��� Stenning Sender As
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Interface�

Input�

receive pkt tr�m� i�� n � M� i a nonnegative integer

Output�

receive msg�m��m �M

send pkt
rt�i�� i a nonnegative integer

State�

bu�er � a 
nite queue of elements of M � initially empty� and

integer � a nonnegative integer� initially ��

Steps�

receive msg�m��m �M

Precondition�

m is 
rst on bu�er �

E�ect�

remove 
rst element from bu�er �

receive pkt tr�m� i��m �M� i a nonnegative integer

E�ect�

if i � integer � � then

�add m to bu�er �

integer �� integer � � 

send pkt rt�i�� i a nonnegative integer

Precondition�

i � integer

E�ect�

None�

Partition�

all send pkt rt actions

all receive msg actions

Figure A��� Stenning Receiver Ar
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Liveness � i�e�� the in
nite�send�in
nite�receive condition �

is speci
ed as an additional condition �a �liveness predicate���

In order to prove that this works� it is useful to have some invariants�

Lemma � The following are true about every reachable state of Stenning�s

protocol�

�� integer r � integer s � integer r � ��

�� All packets in queue sr have integer tag at most equal to

integer s�

	� All packets in queue sr with integer tag equal to

integer s have their message components equal to the �rst

message of bu�er s�

�� All packets in queue rs have integer tag at most equal to

integer r�

�� If integer s appears anywhere other than the sender�s

state� then bu�er s is nonempty�

To show the safety property� show that every behavior of the

implementation is also a behavior of the spec�

Do this by using a forward simulation � actually� a re
nement�

Speci
cally�

If s and u are states of the implementation and speci
cation

respectively� then we de
ne u � r�s� provided that

u�queue is determined as follows�

�� If s�integer s � s�integer r� then u�queue

is obtained by 
rst removing the 
rst element of s�bu�er s and

then concatenating s�bu�er r and the �reduced�

bu�er s�

�Invariant implies that s�bu�er s is nonempty��

�� Otherwise� u�queue is just the concatenation of

s�bu�er r and s�bu�er s�

Now we show that r is a re
nement�

The correspondence of initial states is easy because all queues are empty�

Inductive step�
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Given �s� �� s��� and u � r�s�� we consider the following cases�

�� send msg�m��

Let u� � r�s���

We must show that �u� �� u�� is a step of MQ�

This is true because the send msg event modi
es both queues in the same way�

receive msg�m��

Let u� � r�s��� We must show �u� �� u�� is a step of MQ� Since

� is enabled in s� m is 
rst on s�bu�er r� so m

is also 
rst on u�queue r� so � is also enabled in u�

Both queues are modi
ed in the same way�

�� send pkt �

Then we must show that u � r�s���

This is true because the action doesnt change the virtual queue�

�� receive pkt tr�m� i��

We show that u � r�s���

The only case of interest is if the packet is accepted�

This means i � s�integer r � �� so by Lemma

�� in state s� integer s � integer r � ��

so r�s� � u is the concatenation of s�bu�er r and

s�bu�er s�

Then in s�� the integers are equal� and m is added to the end of

bu�er r�

So r�s�� is determined by removing the 
rst element of

s��bu�er s
and then concatenating with s��bu�er r�

Then in order to see that r�s�� is the same as u� it su�ces to note

that m is the same as the 
rst element in s�bu�er s�

But Lemma � implies that i � s�integer s�

and that m is the same as the 
rst element in s�bu�er s� as needed�

�� receive pkt rt�i��

Again we show that u � r�s���

The only case of interest is if the packet is accepted�

This means i � s�integer s� which implies by Lemma
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� that s�integer s � s�integer r�

This means that r�s� is the concatenation of

s�bu�er r and s�bu�er s� with the 
rst element of

s�bu�er s removed�

Then s��integer s � s��integer r � �� so r�s�� is just

the concatenation of s��bu�er s and s��bu�er r�

But s��bu�er s is obtained from s�bu�er s by removing

the 
rst element� so that r�s�� � u�

Since r is a re
nement� all behaviors of Stennings protocol are

also behaviors of the speci
cation automaton� and so satisfy the

safety property that the sequence of messages in receive msg events is

consistent with the sequence of messages in send msg events�

In particular� the fair behaviors of Stennings protocol satisfy this safety

property�

Liveness�

The basic idea is that we 
rst show a correspondence between an

execution of the impl and of the spec MQ�

We can get this by noticing that forward simulation actually yields a

stronger relationship than just behavior inclusion � execution

correspondence lemma gives a correspondence between states and

external actions throughout the execution�

Then suppose that the liveness condition of the speci
cation is

violated�

That is� the abstract queue is nonempty from some point in the

execution� but no receive�message events ever occur�

We consider what this means in the implementation execution�

If the bu�er r is ever nonempty� then eventually deliver

message� contradiction� so can assume that bu�er r is always empty�

Then bu�er s must be nonempty throughout the execution�

sender keeps sending packets for the 
rst message on bu�er s�

gets delivered to receiver by channel fairness� then put

in bu�er r� which is a contradiction�
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A���� Alternating Bit Protocol

Optimized version of Stennings protocol that doesnt use sequence

numbers� but only Boolean values�

These get associated with successive messages in an alternating

fashion�

This only works for channels with stronger reliability conditions�

assume channels exhibit loss and duplication� but no reordering�

Liveness again says that in
nitely many sends lead to receives of

in
nitely many of the sent packets�

Sender keeps trying to send a message with a bit attached�

When it gets an ack with the same bit� it switches to the opposite bit

to send the next message�

Receiver is also always looking for a particular bit�

Code� �see Figures A���A����

Correctness Proof�

Model the sender and receiver as IOAs� just as before�

Again� the channels are not quite IOAs� because of the fairness

conditions being di�erent from usual IOA fairness�

But it is again convenient to have a state machine with a liveness

restriction�

This time� the channel state machine has as its state a queue�

A send puts a copy of the packet at the end of the queue�

and a receive can access any element of the queue� when it

does� it throws away all the preceding elements� but not the

element that is delivered�

This allows for message loss and duplication�

Again� need a liveness condition to say that any packet that is sent

in
nitely many times is also delivered in
nitely many times�

A convenient correctness proof can be based on a forward simulation �this

one is multi�valued� to a restricted version of Stennings protocol�

which we call FIFO�Stenning�

This restricted version is correct because the less restricted version is�
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Interface�

Input�

send msg�m��m �M

receive pktrt�b�� b a Boolean

Output�

send pkt
tr�m� b��m �M� b a Boolean

The state consists of the following components�

bu�er � a 
nite queue of elements of M � initially empty� and

�ag� a Boolean� initially ��

The steps are�

send msg�m��m �M

E�ect�

add m to bu�er �

send pkt tr�m� b��m �M� b a Boolean

Precondition�

m is 
rst on bu�er �

b � �ag

E�ect�

None�

receive pkt rt�b�� b a Boolean

E�ect�

if b � �ag then

�remove 
rst element �if any� from bu�er �

�ag �� �ag � �mod � 

Partition�

all send pkt tr actions are in one class�

Figure A��� ABP Sender As
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Interface�

Input�

receive pkt tr�m� b�� n �M� b a Boolean

Output�

receive msg�m��m �M

send pkt
rt�b�� b a Boolean

State�

bu�er � a 
nite queue of elements of M � initially empty� and

�ag� a Boolean� initially ��

Steps�

receive msg�m��m �M

Precondition�

m is 
rst on bu�er �

E�ect�

remove 
rst element from bu�er �

receive pkt tr�m� b��m �M� b a Boolean

E�ect�

if b �� �ag then

�add m to bu�er �

�ag �� �ag � �mod � 

send pkt rt�b�� b a Boolean

Precondition�

b � �ag

E�ect�

None�

Partition�

all send pkt rt actions are in one class� and

all receive msg actions are in another class�

Figure A��� ABP Receiver Ar
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The restricted version is based on the FIFO channels described above

instead of arbitrary channels�

Use an additional invariant about this restricted version of the

algorithm�

Lemma � The following is true about every reachable state of the FIFO
Stenning

protocol�

Consider the sequence consisting of the indices in queue rs
�in order from �rst to last on the queue��

followed by integer r�

followed by the indices in queue sr�

followed by integer s� �In other words� the sequence

starting at queue rs� and tracing the indices all the way

back to the sender automaton��

The indices in this sequence are nondecreasing� furthermore� the di�erence

between the �rst and last index in this sequence is at most ��

Proof� The proof proceeds by induction on the number of steps in the 
nite

execution leading to the given reachable state�

The base case is where there are no steps� which means we have to show

this to be true in the initial state�

In the initial state� the channels are empty� integer s � � and

integer r � ��

Thus� the speci
ed sequence is �� �� which has the required properties�

For the inductive step� suppose that the condition is true in state s�

and consider a step �s� �� s�� of the algorithm�

We consider cases� based on ��

�� � is a send msg or receive msg event�

Then none of the components involved in the stated condition is changed

by the step� so the condition is true after the step�

�� � is a send pkt tr�m� i� event� for some m�

Then queue sr is the only one of the four relevant components of

the global state that can change�

We have s��queue sr equal to s�queue sr with the addition

of �m� i��

But i � s�integer s by the preconditions of the action�
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Since the new i is placed consecutively in the concatenated sequence with

s��integer s � i� the properties are all preserved�

�� � is a receive pkt rt�i� event�

If i �� s�integer s then the only change is to remove some elements

in the concatenated sequence� so all properties are preserved�

On the other hand� if i � s�integer s then the inductive hypothesis

implies that the entire concatenated

sequence in state s must consist of is�

The only changes are to remove some elements from the beginning of the

sequence and add one i� � to the end �since s��integer s � i � ��

by the e�ect of the action�� Thus� the new sequence consists of

all is followed by one i � �� so the property is satis
ed�

�� � is a send pkt rt event�

Similar to the case for send pkt tr�

�� � is a receive pkt tr�m� i� event�

If i �� s�integer r � � then the only change is to remove some

elements from the concatenated sequence� so all properties are preserved�

On the other hand� if i � s�integer r � �

then the inductive hypothesis implies that the entire concatenated

sequence in state s must consist of i� �s up to and including

s�integer r� followed entirely by is�

The only changes are to remove some elements from the sequence and

change the value of integer r from i� �

to i� by the e�ect of the action� this still has the required properties�

Now we will show that the ABP is correct

by demonstrating a mapping from ABP to FIFO�Stenning�

This mapping will be a multivalued �possibilities mapping�� i�e�� a

forward simulation�

In particular� it will 
ll in the integer values of tags only working

from bits�

More precisely� we say that a state u of FIFO�Stenning is in f�s�

for state s of ABP provided that the following conditions hold�

���



�� s�bu�er s � u�bu�er s
and s�bu�er r � u�bu�er r�

�� s��ags � u�integer s mod �

and s��agr � u�integer r mod ��

�� queue sr has the same number of packets in s and u�

Moreover� for any j� if �m� i� is the jth packet in

queuesr in u�

then �m� i mod �� is the jth packet in queue sr in s�

Also� queue rs has the same number of packets in s and u�

Moreover� for any j� if i is the jth packet in

queue rs in u�

then i mod � is the jth packet in queue rs in s�

Theorem � f above is a forward simulation�

Proof� By induction�

For the base� let s be the start state of ABP and u the start state

of FIFO�Stenning�

First� all the bu�ers are empty�

Second� s��ags � � � u�integer s mod�

and s��agr � � and u�integer r � �� which is as needed�

Third� both channels are empty�

This su�ces�

Now show the inductive step�

Suppose �s� �� s�� is a step of ABP and u � f�s��

We consider cases based on ��

�� � � send msg�m�

Choose u� to be the unique state such that �u� �� u�� is a step of

FIFO�Stenning�

We must show that u� � f�s���

The only condition that is a�ected by the step is the 
rst� for the

bu�er s component�

However� the action a�ects both s�bu�er s and u�bu�er s
in the same way� so the correspondence holds�
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�� � � receive msg�m�

Since � is enabled in s� m is the 
rst value on s�bu�er r�

Since u � f�s�� m is also the 
rst value on u�bu�er r�

which implies that � is enabled in u�

Now choose u� to be the unique state such that �u� �� u�� is a step of

FIFO�Stenning�

All conditions are una�ected except for the 
rst for bu�er r� and

bu�er r is changed

in the same way in both algorithms� so the correspondence holds�

�� � � send pkt tr�m� b�

Since � is enabled in s�

b � s��ags and m is the 
rst element on s�bu�er s�

Let i � u�integer s�

Since u � f�s�� m is also the 
rst element on u�bu�er s�

It follows that $� � send pkt tr�m� i� is enabled in u�

Now choose u� so that �u� $�� u�� is a step of FIFO�Stenning�

We must show that u� � f�s���

The only interesting condition is the third� for Csr�

By inductive hypothesis and the fact that the two steps each insert

one packet� it is easy to see that

Csr has the same number of packets in s� and u��

Moreover� the new packet gets added with tag i in state u� and with

tag b in state s��

since u � f�s�� we have s��ags � u�integer s mod ��

i�e�� b � i mod ��

which implies the result�

�� � � receive pkt tr�m� b�

Since � is enabled in s� �m� b� appears in Csr in s�

Since u � g�s�� �m� i� appears in the corresponding position in

Csr in u�

for some integer i with b � i mod ��

Let $� � receive pkt tr�m� i�� then $� is enabled in u�

Let u� be the state such that �u� $�� u�� is a step of
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FIFO�Stenning� and such that the same number of packets is removed

from the queue�

We must show that u� � f�s���

It is easy to see that the third condition is preserved�

since each of � and

$� removes the same number of packets from Csr�

Suppose 
rst that b � s��agr�

Then the e�ects of � imply that the receiver state in s� is identical

to that in s�

Now� since u � f�s�� s��agr � u�integer r mod ��

since b � i mod �� this case must have

i �� u�integer r � ��

Then the e�ects of $� imply that the receiver state in u� is

identical to that in u�

It is immediate that the 
rst and second conditions hold�

So now suppose that b �� s��agr�

The invariant above for FIFO�Stenning implies that either i � u�integer r
or i � u�integer r � ��

Since b � i mod � and

�since u � f�s�� s��agr � u�integer r mod ��

this case must have i � u�integer r � ��

Then by the e�ect of the action� u��integer r � u�integer r � �

and s���agr � � � s��agr�

preserving the second condition�

Also� bu�er r is modi
ed in both cases by adding the entry m

at the end� therefore� the 
rst condition is preserved�

�� � � send pkt rt�b�

Similar to send pkt tr�m� b��

�� � � receive pkt rt�b�

Since � is enabled in s� b is in Crs in s�

Since u � f�s�� i is the corresponding position in Crs in u�

for some integer i with b � i mod ��
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Let $� � receive pkt rt�i�� then $� is enabled in u�

Let u� be the state such that �u� $�� u�� is a step of

FIFO�Stenning� and such that the same number of packets are removed�

We must show that u� � f�s���

It is easy to see that the third condition is preserved�

since each of � and

$� removes the same number of messages from Crs�

Suppose 
rst that b �� s��ags�

Then the e�ects of � imply that the sender state in s�

is identical to that in s�

Now� since u � f�s�� s��ags � u�integer s mod ��

since b � i mod �� this case must have

i �� u�integer s�

Then the e�ects of $� imply that the sender state in u� is

identical to that in u�

It is immediate that the 
rst and second conditions hold for this situation�

So now suppose that b � s��ags�

The invariant above for FIFO�Stenning implies that either i � u�integer s � �

or i � u�integer s�

Since b � i mod � and

�since u � f�s�� s��ags � u�integer s mod ��

this case must have i � u�integer s�

Then the e�ect of the action implies that

u��integer s � u�integer s � �

and s���ags � �� s��ags� preserving the second condition�

Also� bu�er s is modi
ed in the same way in both cases�

so the 
rst condition is preserved�

Remark�

Consider the structure of the forward simulation f of this example�

In going from FIFO�Stenning to ABP �

integer tags are condensed to their low�order bits�

The multiple values of the mapping f essentially �replace� this

information�
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In this example� the correspondence between ABP and FIFO�Stenning

can be described

in terms of a mapping in the opposite direction � a �single�valued�

projection from the state of FIFO�Stenning to that of ABP that

removes information�

Then f maps a state s of ABP to

the set of states of FIFO�Stenning whose projections are equal to s�

While this formulation su�ces to describe many interesting examples�

it does not always work�

�Consider garbage collection examples��

Machine assistance should be useful in verifying �and maybe producing�

such proofs�

Liveness�

As before� the forward simulation yields a close correspondence

between executions of the two systems�

Given any live execution � of ABP � construct a �corresponding�

execution �� of FIFO�Stenning �needs formalizing��

Show that �� is a live execution of FIFO�Stenning�

Includes conditions of IOA fairness for the sender and receiver�

If not live in this sense� then some IOA class is enabled forever but no

action in that class occurs � easily yields the same situation in

� �if the correspondence is stated strongly enough�� which

contradicts the fairness of the sender and receiver in ��

Also includes the channel liveness conditions � in
nitely many

sends imply in
nitely many receives�

Again� this carries over from ABP�

So far� we see that we can tolerate all types of channel faults using

Stenning� with unbounded �headers� for messages�

With �bounded headers� as in ABP� can tolerate loss and duplication�

but not reordering�

A���� Bounded�Header Protocols Tolerating Reordering

This leads us to the question of whether we can use bounded headers
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and tolerate any reordering�

Consider what goes wrong with the ABP� for example� if we attempt to

use it with channels that reorder packets�

The recipient can get fooled into accepting an old packet with the

same bit as the one expected�

This could cause duplicate acceptance of the same message�

Here we consider the question of whether there exists a protocol that

uses bounded headers� and tolerates reordering�

Wang�Zuck �	 prove that there is no bounded�header protocol that tolerates

duplication and reordering� and consequently none that tolerates all

three types of faulty behavior�

In contrast� AAFFLMWZ produce a bounded�header protocol that tolerates

loss and reordering� but not duplication�

That paper also contains an impossibility result for �e�cient�

bounded�header protocols tolerating loss and reordering�

Formalize the notion of bounded�header by assuming that the external

message alphabet is 
nite and requiring that the packet alphabet

also be 
nite�

WangZuck ReoDup Impossibility

Suppose there is an implementation�

Starting from an initial state� run the system to send�

systematically� copies of as many di�erent packets as possible�

yielding execution ��

That is� there is no extension of � in which any packet is sent

that isnt also sent in ��

Suppose there are n send�message events in ��

Let �� be a live extension of � that contains exactly one

additional send�message event�

By the correcteness condition� all messages in �� get delivered�

Now we construct a 
nite execution ���

that looks like �� to the receiver� just up to the point

where the n � �st message delivery to the user occurs�
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but in which the additional send�message event never occurs�

Namely� delay the sender immediately after � �also dont allow

the new send�message event��

But let the receiver do the same thing that it does in �� �

receive the same packets� send the same packets� deliver the same

messages to the user�

It can receive the same packets� even though the sender doesnt send

them� because the earlier packets in � can be duplicated �

nothing new can be sent that doesnt appear already in ��

Then as in ��� it delivers n � � messages to the user�

even though only n send�message events have occurred�

To complete the contradiction� extend ��� to a live execution

of the system� without any new send�message events�

This has more receive�message events than send�message events� a

contradiction�

AAFFLMWZ BoundedHeader Protocol Tolerating Loss and Reordering

It turns out that it is possible to tolerate reordering

and also loss of messages� with bounded headers�

This assumes that duplication does not occur�

It is not at all obvious how to do this� however� it was a conjecture

for a while that this was impossible � that tolerating reordering

and loss would require unbounded headers�

This algorithm is NOT a practical algorithm � just a counterexample

algorithm to show that an impossibility result cannot be proved�

The algorithm can most easily be presented in two pieces�

The underlying channels are at least guaranteed not to duplicate

anything�

So 
rst� use the no�dup channels to implement channels that do not

reorder messages �but can lose or duplicate them��

Then� use the resulting FIFO channels to implement reliable

communication�

Note that pasting these two together requires each underlying channel

to be used for two separate purposes � to simulate channels in two
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di�erent protocols� one yielding FIFO communication in either

direction�

This means that the underlying channels need to be fair to each

protocol separately � need the port structure mentioned earlier�

The second task can easily be done using bounded headers � e�g�� use

the ABP�

The 
rst is much less obvious�

The sender sends a value to the receiver only in response to an

explicit query packet from the receiver�

The value that it sends is always the most recent message that was

given to it� saved in latest �

To ensure that it answers each query exactly once� the

sender keeps a variable unanswered which is incremented

whenever a new query is received� and decremented whenever a

value is sent�

The receiver continuously sends querys to the sender� keeping

track� in pending � of the number of unanswered queries�

The receiver counts� in count �m � the number of copies of each

value m received since the last time it delivered a message

�or since the beginning of the run if no message has yet been put on

that bu�er��

At the beginning� and whenever a new message is delivered� the receiver

sets old to pending �

When count �m � old � the receiver knows that m was the

value of latest at some time after the receiver

performed its last receive event�

It can therefore safely output m�

The 
niteness of the message alphabet� the fact that the sender

will always respond to query messages� and the liveness of the

channels� together imply that the receiver will output in
nitely

many values �unless there is no send event at all��

Code�

Sender�
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Variables�

latest � an element of M or nil � initially nil

unanswered � a nonnegative integer� initially �

send �m�

E�ect�

latest �� m

rcv � pkt �query�

E�ect�

unanswered �� unanswered � �

send � pkt�m�

Precondition�

unanswered � �

m � latest �� nil

E�ect�

unanswered �� unanswered � �

Receiver�

Variables�

pending � a nonnegative integer� initially ��

old � a nonnegative integer� initially ��

for each m �M � count �m � a nonnegative integer�

initially �

receive�m�

Precondition�

count �m � old

E�ect�

count �n �� � for all n �M

old �� pending

send � pkt�query�

E�ect�

pending �� pending � �

rcv � pkt �m�

E�ect�
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pending �� pending � �

count �m �� count �m � �
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B���� Bounded�Header Protocols Tolerating Reordering

We began considering bounded�header protocols tolerating reordering�

We gave a simple impossibility result for reordering in combination

with duplication� and then showed the AAFFLMWZ protocol that

tolerates reordering in combination with loss �but no duplication��

Today we start with an impossibility result saying that its not

possible to tolerate reordering and loss with an e�cient protocol�

AAFFLMWZ Impossibility Result

Again consider the case of channels Csr and Crs

that cannot duplicate messages but can lose and reorder them�

Again� if in
nitely many packets are sent� in
nitely many of these packets

are required to be delivered�

�The impossibility proof will still work if we generalize this condition to a

corresponding port�based condition��

As above� we can get a protocol for this setting�

that protocol was very ine�cient in the sense that more and more

packets are required to send individual messages�

Now we will show that this is inherent� such a protocol cannot be

e�cient in that it must send more and more messages�

Again assume 
nite message alphabet and 
nite packet alphabet�
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To capture the ine�ciency� need a de
nition to capture the number

of packets needed to send a message�

First� a 
nite execution is valid

if the number of send
msg

actions is equal to the number of rec
msg actions�

�This means that the datalink protocol succeeded in sending all the

messages m provided by the user i�e��all the messages m for which

an action send
msg�m� occurred��

The following de
nition expresses the notion that� in order to successfully

deliver any message the datalink protocol only needs �in the best case�

to send a bounded number of packets over the channels�

De�nition � If � is a valid execution� an extension �� is a

k
extension if�

�� In �� the user actions are exactly the two actions

send�msg�m�

and rec�msg�m� for some given message m�

�This means that exactly one message has been sent successfully

by the protocol��

�� All packets received in � are sent in � �i�e��no old

packets are received��

	� The number of rec�pktsr actions in �

is less than or equal to k�

A protocol is k�bounded if there is a k
extension of � for

every message m and every valid execution ��

Theorem � There is no k
bounded datalink protocol�

Assume there is such a protocol and look for a contradiction�

Suppose that there is a multiset T of packets� a 
nite execution

�� and a k�extension �� such that�
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 every packet in T is in transit from the s to r

after the execution � �i�e��T is a multiset of �old� packets��

 the multiset of packets received by the receiver in � is a

submultiset of T �

We could then derive a contradiction�

Consider an alternative execution that begins similarly with ��

but that contains no send
msg event�

All the packets in T cause the receiver to behave as in the

k�extension �� and hence to generate an incorrect

rec
msg action�

In other words� the receiver is confused by the presence of old

packets in the channel� which were left in transit in the channel in

� and are equivalent to those sent in ��

At the end of the alternative execution� a message has been received

without its being sent� and the algorithm fails�

�Note that we are here assuming a universal channel � one that

can actually exhibit all the behavior that is theoretically allowed

by the channel spec� Such universal channels exist��

So it remains to manufacture this bad situation�

We need one further de
nition�

De�nition � T�
k
T � if

 T � T � �This inclusion is among multisets of packets��

 � packet p s�t� mult�p� T � � mult�p� T �� � k�

�mult�p� T � denotes the multiplicity of p within the multiset T ��

Lemma � If � is valid� and T is a multiset of packets in transit after

�� then either
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�� there exists a k
extension �� such that the

multiset of packets

received by Ar in � is a submultiset of T � or

�� there exists a valid execution �� � �� such that

�a� all packets received in � are sent in �� and

�b� � a new multiset T � of packets in transit

after �� such that

T�
k
T ��

Suppose that this lemma is true�

We then show that there is some valid ��� and a multiset

T� of packets in transit after

�� such that case � holds�

As we already argued� the existence of such �� and

T� leads to the desired contradiction�

For this we de
ne two sequences �i and Ti with

�� equal to the empty sequence and T� empty�

If condition � does not hold for �� and T� �i�e��for i � ��

we are in the situation of case ��

We then set �� � �� and T� � T ��

In general� assuming that case � does not hold for �i and

Ti� we are then in case � and derive a valid extension

�i�� of �i and a multiset Ti�� of packets in

transit after �i��

�Ti �
k
Ti����

But� by de
nition of the

�
k

relation�

the sequence T��
k
T��

k
� � ��

k
Ti�

k
� � �

can have at most kjP j terms�

Its last term is the T� we are looking for�

�jP j is the number of di�erent possible packets� which is 
nite

because we assumed that the packet alphabet and the size of the

headers are bounded��
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Proof� �of Lemma ��

Pick any m� and get a k�extension �� for m� by

the k�boundedness condition�

If the multiset of packets received by Ar is included in T we

are in case �a��

Otherwise there is some packet p for which the multiplicity

of rec
pkt�p� actions in � is bigger then

mult�p� T ��

We then set T � � T � fpg�

Since the extension is k�bounded� the number of

of these rec
pkt�p� is at most k so that

mult�p� T �� � k�

We now want to get a valid extension �� of �

leaving the packets from T � in transit�

We know that there is a send
pkt�p� action in �

�since all packets received in � were sent in ���

Consider then a pre
x �	 of �� ending with the


rst such send
pkt�p�� �See Figure B����

α β

send(p) rec(p)

α γ

Figure B��� An extension of � with a send� pkt�p� action

After �	 all packets from T � are still in transit�

We want to extend �	 to a valid execution without

delivering any packet from T ��

There are three cases�

First� suppose that both the send�message and receive�message events

from � appear in 	� then �	 itself su�ces�
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Second� suppose that only the send�message� but not the

receive�message event appears in 	�

To get validity we need to deliver m� which is the only

undelivered message� without delivering a packet from T ��

We can achieve this because of a basic property of live executions in

this architecture� for any 
nite execution� there is a live

extension that contains no new send�message events and that does not

deliver any old packets�

Because of the correctness condition� this must eventually deliver

m�

The needed sequence stops just after the receive�message event�

Third and 
nally� suppose that neither the send�message nor the

receive�message event appears in 	�

Then add a new send�message event just after �	� and

extend this just as in the previous case to get the needed valid extension�

B���� Tolerating Node Crashes

The results above settle pretty much all the cases for reliable nodes�

Now we add consideration of faulty nodes�

This time� we consider node crashes that lose information�

We give two impossibility results� then show a practical algorithm

used in the internet�

Impossibility Results

Consider the case where each node has an input action crash�

and a corresponding output recover �

When a crash occurs� a special crash �ag just gets set� and no

locally controlled actions other than recover can be enabled�

At some later time� a corresponding recover action is supposed

to occur� when this happens� the state of the node goes back to an

arbitrary initial state�

Thus� the crash causes all information to be lost�
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In such a model� it is not hard to see that we cant solve the

reliable communication problem� even if the underlying channels are

completely reliable �FIFO� no loss or duplication��

Proof�

Consider any live execution � in which a single

send�m� event occurs but no crashes�

Then correctness implies that there is a later receive�m��

Let �� be the pre
x ending just before this receive�m��

Now consider �� followed by the events crashrrecover r�

By basic properties of the model�

this can be extended to a live execution ��� in which no

further send�message events or crashes occur�

Since �� must also satisfy the correctness conditions� it must

be that �� contains a receive�m� event corresponding

to the given send�m� event� sometime after the given crash�

Now take the portion of �� after the crash�recover�

and splice it at the end of the 
nite execution

��receive�m�crashrrecoverr �

Claim that the result is another live execution�

But this execution has two receive�m� events� a contradiction to the

correctness conditions�

Thus� the key idea is that the system cannot tell whether a receiver crash

occurred before or after the delivery of a message�

Note that a key fact that makes this result work is the separation

between the receive�m� event and any other e�ect such as

sending an acknowledgement�

We could argue that the problem statement is too strong for the case

of crashes�

Now we weaken the problem statement quite a lot� but still obtain an

impossibility result �though its harder to prove��

We continue to forbid duplication�

We allow reordering� however�

And� most importantly� we now allow loss of messages sent before the

last recover action�

Messages sent after the last recover must be delivered� however�
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We describe the underlying channels in as strong a way as possible�

Thus� we insist that they are FIFO and dont duplicate�

All they can do is lose messages�

The only constraint on losing messages is the liveness constraint�

in
nitely many sends lead to in
nitely many receives�

�or a port version of this��

Now it makes sense to talk about a sequence of packets being

�in transit� on a channel�

By this we mean that the sequence is a subsequence of all the packets

in the channel �sent after the sending of the last packet delivered��

Notation�

If � is an execution� x � fs� rg� � � k � j�j�

then de
ne�

in��� x� k� to be the sequence of packets received by Ax

during the 
rst k steps of ��

out��� x� k� to be the sequence of packets sent by Ax

during the 
rst k steps of ��

state��� x� k� to be the state of Ax after exactly k

steps of �� and

ext ��� x� k� to be the sequence of external actions of Ax

occurring during the 
rst k steps of ��

De
ne $x to be the opposite node to x�

Lemma � Let � be any crash
free �nite execution� of length n� Let x be either node� and let

� � k � n� Suppose that either k � � or else the kth action in � is an action of Ax� Then

there is a �nite execution �� �possibly containing crashes� that ends in a state in which�

�� the state of x is state��� x� k��

�� the state of $x is state��� $x� k�� and

	� the sequence out��� x� k� is in transit from x�

Proof� Proceed by induction on k�

k � � is immediate � use the initial con
guration only�

Inductive step�
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Suppose true for all values smaller than k � � and prove for k�

Case �� The 
rst k steps in � are all steps of Ax�

Then the 
rst k steps of � su�ce�

Case �� The 
rst k steps in � include at least one step of

A�x�

Then let j be the greatest integer � k such that the kth

step is a step of A�x�

Note that in fact j � k since we have assumed the kth step is a

step of Ax�

Then in��� x� k� is a subsequence of

out��� $x� j�� and

state��� $x� k� � state��� $x� j��

By inductive hypothesis� we get an execution �� that leads the

two nodes to state��� x� j� and

state��� $x� j�� respectively� and that has

out��� $x� j� in transit from $x to x�

This already has $x in the needed state�

Now run Ax alone � let it 
rst crash and recover� going back to

its initial state in ��

Now let it run on its own� using the messages in

in��� x� k�� which are available in the incoming channel since

they are a subsequence of out��� $x� j��

This brings x to the needed state and puts the needed messages in

the outgoing channel�

Now we 
nish the proof�

Choose � �length n� to be a crash�free execution containing one

send�m� and its corresponding receive�m� �must exist��

Now use � to construct an execution whose 
nal node states are

those of ��

and that has a send as the last external action�

How to do this�

Let k be the last step of � occurring at the receiver �must

exist one� since there is a receive event in ��
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Then Lemma yields an execution �� ending in the node states

after k steps� and with out��� r� k� in transit�

Note that state��� r� k� � state��� r� n��

Now crash and recover the sender� and then have it run again from

the beginning� using the inputs in in��� s� n�� which are a

subsequence of the available sequence out��� r� k��

This lets it reach state��� s� n��

Also� there is a send step� but no other external step� in

this su�x�

This is as needed�

Now we get a contradiction�

Let �� be the execution obtained above� whose 
nal node

states are those of ��

and that has a send as the last external action�

Now lose all the messages in transit in both channels� then extend

�� to a live execution containing no further send or crash

events�

By the correctness� this extension must eventually deliver the last

message�

Now claim we can attach this su�x at the end of �� and it

will again deliver the message�

But � alread had an equal number of sends and receives �one of

each�� so this extra receive violates correctness�

QED

This says that we cant even solve a weak version of the problem� when

we have to contend with crashes that lose all state information�

B�� ��packet Handshake Internet Protocol

But note that it is important in practice to have a message delivery

protocol that can tolerate node crashes�

Here we give one important example� the ��packet handshake protocol of

Belsnes �used in the Internet��

This does tolerates node crashes�
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It uses a small amount of stable storage in the form of unique IDs �

think of this as stable storage because even after a crash� the system

�remembers� not to reuse any ID�

Underlying channels can reorder� duplicate �but only 
nitely many

times�� and lose�

Yields no reordering� no duplication �ever�� and always delivers

messages sent after the last recovery�

The 
ve�packet handshake protocol of Belsnes is one of a batch

he designed� getting successively more reliability out of successively

more messages� Used in practice�

For each message that the sender wishes to send�

there is an initial exchange of packets between the

sender and receiver to establish a commonly�agreed�upon message

identi
er�

That is� the sender sends a new unique identi
er �called jd � to the

receiver� which the receiver then pairs with another new unique

identi
er �called id��

It sends this pair back to the sender� who knows that the new

id is recent because it was paired with its current jd �

The identi
er jd isnt needed any longer� but id is

used for the actual message communication�

The sender then associates this identi
er id with the message�

The receiver uses the associated identi
er to decide whether or not

to accept a received message � it will accept a

message provided the associated identi
er id is equal to the

receivers current id �

The receiver also sends an acknowledgement�

Additional packets are required in order to tell the receiver when it

can throw away a current identi
er�
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Variable Type Initially Description

modes acked�

needid�

send� rec

acked Senders mode�

buf s M list empty Senders list of messages to send�

jd s JD or nil nil jd chosen for current message by

sender�

jd � used s S JD set empty Includes all jds ever used by sender�

id s D or nil nil id received from receiver�

current �msgs M or nil nil Message about to be sent to receiver�

current � ack s Boolean false Ack from receiver�

acked � buf s D list empty List of ids for which the sender will is�

sue acked message�

moder idle�

accept�

rcvd� ack�

rec

idle Receivers mode�

buf r M list empty Receivers list of messages to deliver�

jd r JD or nil nil jd received from sender�

id r D or nil nil id chosen for received jd by receiver�

last r D or nil nil Last id the receiver remembers

accepting�

issued r S D set empty Includes all ids ever issued by receiver�

nack � buf r D list empty List of ids for which receiver will issue

negative acks�

Sender Actions�
Input�

send msg�m�� m �M

receive pktrs�p�� p � P

crashs

Output�

Ack�b�� b a Boolean

send pktsr �p�� p � P

recovers

Internal�

choose jd

grow � jd � used
s
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Input�

receive pktsr �p�� p � P

crashr

Output�

receive msg�m�� m �M

send pktrs �p�� p � P

recoverr

Internal�

grow � issued
r

send msg�m�

E�ect�

if modes �� rec then

add m to buf
s

choose jd

Precondition�

modes � acked

buf
s
nonempty

jd �� jd � used
s

E�ect�

modes �� needid

current �msg
s
�� head �buf

s
�

remove head �buf
s
�

jd
s
�� jd

add jd to jd � used
s

send pktsr �needid� jd�

Precondition�

modes � needid

jd
s
� jd

E�ect�

none

receive pktsr �needid� jd�

E�ect�

if modes � idle then

moder �� accept

choose an id not in issuedr

jd
r
�� jd

idr �� id

add id to issuedr

receive pktrs�accept� jd� id�

E�ect�

if modes �� rec then

if modes � needid

and jd
s
� jd then

modes �� send

ids �� id

else if ids �� id then

add id to acked � buf
s

send pktrs�accept� jd� id�

Precondition�

moder � accept

jd
r
� jd �

idr � id

E�ect�

none
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send pktsr �send�m� id�

Precondition�

modes � send

current �msg
s
� m

id s � id

E�ect�

none

receive pktsr �send�m� id�

E�ect�

if moder �� rec then

if moder � accept

and id � idr then

moder �� rcvd

add m to buf
r

lastr �� id

else if id �� lastr then

add id to nack � buf
r

receive msg�m�

Precondition�

moder � rcvd�

m �rst on buf
r

E�ect�

remove head �buf
r
�

if buf
r
is empty then

moder �� ack

receive pktrs�ack� id � b�

E�ect�

if modes �� rec then

if modes � send and

id � ids then

modes �� acked

current � ack s �� b

jd
s
�� nil

ids �� nil

current �msg
s
�� nil

if b � true then

add id to acked � buf
s

send pktrs�ack� id � true�

Precondition�

moder � ack

lastr � id

E�ect�

none

send pktrs�ack� id � false�

Precondition�

moder �� rec

id �rst on nack � buf
r

E�ect�

remove head �nack � buf
r
�

send pktsr �acked� id �nil�

Precondition�

modes �� rec�

id �rst on acked � buf
s

E�ect�

remove head �acked � buf
s
�

receive pktsr �acked� id �nil�

E�ect�

if �moder � accept

and id � idr� or

�moder � ack

and id � lastr� then

moder �� idle

jd
r
�� nil

idr �� nil

lastr �� nil
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Ack�b�

Precondition�

modes � acked

buf
s
is empty

b � current � ack s

E�ect�

none

crashs

E�ect�

modes �� rec

recovers

Precondition�

modes � rec

E�ect�

modes �� acked

jd
s
�� nil

id s �� nil

empty buf
s

current �msg
s
�� nil

current � acks �� false

empty acked � buf
s

crashr

E�ect�

moder �� rec

recoverr

Precondition�

moder � rec

E�ect�

moder �� idle

jd
r
�� nil

idr �� nil

lastr �� nil

empty buf
r

empty nack � buf
r

grow � jd � used
s

Precondition�

none

E�ect�

add some JDs to jd � used
s

grow � issued
r

Precondition�

none

E�ect�

add some Ds to issuedr

Explain the algorithm from my talk � overview� discuss why it works

informally�

Note the two places where msgs get added to the acked�bu�er� once

normally� once in reponse to information about an old message�

The trickiest part of this code turns out to be the liveness argument

� how do we know that this algorithm does continue to make progress"

There are some places where only single responses are sent� e�g�� a

single nack� but that could get lost�

However� in this case� the node at the other end is continuing to

resend� so eventually another nack will be triggered�
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�����J�������J Distributed Algorithms January ��� �		�
Lecturer� Nancy Lynch

Lecture ��

This is the 
nal lecture�

Its on timing�based computing�

Recall that we started this course out studying synchronous

distributed algorithms� spent the rest of the time doing

asynchronous algorithms�

There is an interesting model that is in between these two � really�

a class of models�

Call these partially synchronous�

The idea is that the processes can presume some information about

time� though the information might not be exact�

For example� we might have bounds on process step time� or message

delivery time�

Note that it doesnt change things much just to include upper bounds�

because the same set of executions results�

In fact� we have been associating upper bounds with events throughout

the course� when we analyzed time complexity�

Rather� we will consider both lower and upper bounds on the time for

events�

Now we do get some extra power� in the sense that we are now

restricting the possible interleavings�

C�� MMT Model De�nition

A natural model to use is the one of Merritt� Modugno and Tuttle�

Here Im describing the version thats used in Lynch� Attiya paper�

This is the same as I�O automata� but now each class doesnt just get
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treated fairly�

rather� have a boundmap� which associates lower and upper

bounds with each class�

The lower bound is any nonnegative real number� while the upper bound

is either a positive real or ��

The intuition is that the successive actions in each class arent

supposed to occur any sooner �after the class is enabled or after

the last action in that class� than indicated by the lower bound�

Also� no later than the upper bound�

Executions are described as sequences of alternating states and

�action�time� pairs�

Admissibility�

Ive edited the following from the Lynch� Attiya model paper� Section ��

C���� Timed Automata

In this subsection� we augment the I�O automaton model to allow discussion of timing

properties� The treatment here is similar to the one described in �AttiyaL�	 and is a special

case of the de
nitions proposed in �MerrittMT	� � A boundmap for an I�O automaton A is

a a mapping that associates a closed subinterval of ���� with each class in part�A�� where

the lower bound of each interval is not � and the upper bound is nonzero��� Intuitively�

the interval associated with a class C by the boundmap represents the range of possible

lengths of time between successive times when C �gets a chance� to perform an action� We

sometimes use the notation b��C� to denote the lower bound assigned by boundmap b to

class C� and bu�C� for the corresponding upper bound� A timed automaton is a pair �A� b��

where A is an I�O automaton and b is a boundmap for A�

We require notions of �timed execution�� �timed schedule� and �timed behavior� for

timed automata� corresponding to executions� schedules and behaviors for ordinary I�O

automata� These will all include time information� We begin by de
ning the basic type of

sequence that underlies the de
nition of a timed execution�

��In �MerrittMT�	
� the model is de�ned in a more general manner� to allow boundmaps to yield open or

semi�open intervals as well as closed intervals� This restriction is not crucial in this paper� but allows us to

avoid considering extra cases in some of the technical arguments�
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De�nition � A timed sequence �for an I�O automaton A� is a ��nite or in�nite� sequence

of alternating states and �action�time� pairs�

s�� ���� t��� s�� ���� t��� ��� �

satisfying the following conditions�

�� The states s�� s�� ��� are in states�A��

�� The actions ��� ������ are in acts�A��

	� The times t�� t����� are successively nondecreasing nonnegative real numbers�

�� If the sequence is �nite� then it ends in a state si�

�� If the sequence is in�nite then the times are unbounded�

For a given timed sequence� we use the convention that t� � �� For any 
nite timed

sequence �� we de
ne tend��� to be the time of the last event in �� if � contains any �ac�

tion�time� pairs� or �� if � contains no such pairs� Also� we de
ne send��� to be the last state

in �� We denote by ord��� �the �ordinary� part of �� the sequence

s�� ��� s�� ��� ��� �

i�e�� � with time information removed�

If i is a nonnegative integer and C � part�A�� we say that i is an initial index for C in �

if si � enabled �A�C� and either i � � or si�� � disabled �A�C� or �i � C� Thus� an initial

index for class C is the index of an event at which C becomes enabled� it indicates a point

in � from which we will begin measuring upper and lower time bounds�

De�nition � Suppose �A� b� is a timed automaton� Then a timed sequence � is a timed

execution of �A� b� provided that ord��� is an execution of A and � satis�es the following

conditions� for each class C � part�A� and every initial index i for C in ��

�� If bu�C� � � then there exists j � i with tj � ti � bu�C� such that either �j � C or

sj � disabled �A�C��

�� There does not exist j � i with tj � ti � b��C� and �j in C�

The 
rst condition says that� starting from an initial index for C� within time bu�C�

either some action in C occurs or there is a point at which no such action is enabled� Note

that if bu�C� � �� no upper bound requirement is imposed� The second condition says

that� again starting from an initial index for C� no action in C can occur before time b��C�
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has elapsed� Note in particular that if a class C becomes disabled and then enabled once

again� the lower bound calculation gets �restarted� at the point where the class becomes

re�enabled�

The timed schedule of a timed execution of a timed automaton �A� b� is the subsequence

consisting of the �action�time� pairs� and the timed behavior is the subsequence consisting

of the �action�time� pairs for which the action is external� The timed schedules and timed

behaviors of �A� b� are just those of the timed executions of �A� b��

We model each timing�dependent concurrent system as a single timed automaton �A� b��

where A is a composition of ordinary I�O automata �possibly with some output actions

hidden���� We also model problem speci
cations� including timing properties� in terms of

timed automata�

We note that the de
nition we use for timed automata may not be su�ciently general to

capture all interesting systems and timing requirements� It does capture many� however�

The MMT paper contains a generalization of this model� in which we have bounds that

can be open or closed� Also� upper bound of � allowed �"�� Finally� dont restrict to only


nitely many processes� Do results about composition similar to I�O automata�

C�� Simple Mutual Exclusion Example

Just as an illustrative example� Ill describe a very basic problem we
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results for a basic problem�
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When we did this� we did not have a clear idea of which parameters�

etc�� would turn out to be the most important� so we considered

everything�

C�� Basic Proof Methods

Algorithms such as the ones in this paper quickly lead to the need for

proof methods for verifying correctness of timing�based algorithms�

��An equivalent way of looking at each system is as a composition of timed automata� An appropriate

de�nition for a composition of timed automata is developed in �MerrittMT�	
� together with theorems

showing the equivalence of the two viewpoints�
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In the untimed setting� we make heavy use of invariants and

simulations� so it seems most reasonable to try to extend these

methods to the timed setting�

However� it is not instantly obvious how to do this�

In an asynchronous system� everything important about the systems

state �i�e�� everything that can a�ect the systems future

behavior� is summarized in the ordinary states of the processes and

channels� i�e�� in the values of the local variables and the multiset of

messages in transit on each link�

In a timing�based system� that is no longer the case�

Now if a message is in transit� it is important to know whether it has

just been placed into a channel or has been there a long time �and is

therefore about to be delivered��

Similar remarks hold for process steps�

Therefore� it is convenient to augment the states with some extra

predictive timing information� giving bounds on how long it will be

before certain events may or must occur�

C�� Consensus

Now we can also revisit the problem of distributed consensus

in the timed setting�

This time� for simplicity� we ignore the separate clocks and just

suppose we have processes with upper and lower bounds of �c�� c� 

on step time�

The questions is how much time it takes to reach consensus� if there

are f faulty processes�

C�� More Mutual Exclusion

Lynch�Shavit mutual exclusion with proofs�

���



C�� Clock Synchronization

Work from Lamport� Melliar�Smith�

Lundelius� Lynch

Fischer� Lynch� Merritt
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