
Time Granularities and Ultimately
Periodic Automata

Davide Bresolin
Angelo Montanari
Gabriele Puppis

{bresolin,montana,puppis}@dimi.uniud.it

Dipartimento di Matematica e Informatica
Università degli Studi di Udine

Time Granularities and Ultimately Periodic Automata – p.1

Outline

• Motivation
• The notion of Time Granularity
• Approaches to Time Granularity
• The Automaton-based Approach:

• Basic ingredients
• Ultimately Periodic Automata (UPA)

• Paradigmatic problems and their solutions
• A Real-World Application
• Beyond UPA
• Further Work

Time Granularities and Ultimately Periodic Automata – p.2

Time Granularities - 1

Motivations:

• Relational databases:
to express temporal information at different time
granularities, to relate different granules and to convert
associated data (queries)

• Artificial intelligence:
to reason about temporal relationships, e.g, to check
consistency and validity of temporal constraints at different
time granularities (temporal CSPs)

• Specification and verification of reactive systems:
to specify and to check temporal properties of (real-time)
reactive systems

Time Granularities and Ultimately Periodic Automata – p.3

Time Granularities - 2

Definition. G : Z → 2T is a granularity iff

• (T,<) is a linearly ordered set of temporal instants,

• tx < ty whenever x < y, tx ∈ G(x), and ty ∈ G(y).

A granule of G is a non-empty set G(x) and x ∈ Z is said to be
its label.

Day

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
BusinessDay

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Week

1 2 3 4

BusinessWeek

1 2 3 4

BusinessMonth

1

Time Granularities and Ultimately Periodic Automata – p.4

Approaches to Time Granularities - 1

Possible approaches to model time granularity:

• algebraic: it uses expressions built up from a set of
symbolic operators

(e.g., Week = Group7(Day),
cf. Bettini, Wang and Jajodia ’00)

• logical: it identifies granularities with models of logical
formulas

(e.g., PLTL-formulas,
cf. Combi, Franceschet and Peron ’04)

Time Granularities and Ultimately Periodic Automata – p.5

Approaches to Time Granularities - 2

• string-based: it specifies time granularities through
ultimately periodic strings over {�,�, o}
(e.g., (�������o)ω represents business weeks,
cf. Wijsen ’00)

• automaton-based: it exploits finite state automata (Büchi
automata) to represent granularities that, ultimately,
periodically group temporal instants

(e.g., Single String Automata,
cf. Dal Lago and Montanari ’01)

Time Granularities and Ultimately Periodic Automata – p.6

The Automaton-based Approach - 1

We followed the automaton-based approach, trying to achieve

1. expressiveness, namely, to capture a large set of
granularities

2. compactness, namely, to obtain size-optimal
representations

3. effectiveness, namely to ease algorithmic manipulation,
in particular w.r.t. the following fundamental problems:
• equivalence, which consists in deciding whether two

given automata represent the same granularity
• granularity comparison, which consist in relating

different temporal structures
• optimization, which consists in manipulating

representations in order to optimize the running time of
crucial algorithms.

Time Granularities and Ultimately Periodic Automata – p.7

The Automaton-based Approach - 2

Basic ingredients:

• a discrete temporal domain T

• restriction to left bounded periodical granularities

• a fixed alphabet {�,�,J}, where

� represents elements covered by some granule,

� represents gaps within and between granules,

J represents the last element of a granule.

Time Granularities and Ultimately Periodic Automata – p.8

Single String Automata

Proposition. Ultimately periodic words over {�,�,J} capture
all the left bounded periodical granularities.

Ultimately periodic words can be finitely represented by using
Büchi automata recognizing single words.

⇒ notion of Single String Automaton (SSA).

s0 s1 s2 s3

s4s5s6

� � �

�

J�

�

The SSA for the business-week granularity.

Time Granularities and Ultimately Periodic Automata – p.9

From Single Granularities to Sets of Granularities

We generalize the automaton-based approach to capture sets of
granularities, instead of single time granularities, by means of
larger subclasses of Büchi automata.

Remark. Büchi automata recognize ω-regular languages.

⇒ we started by considering sets of granularities which are
represented by

ω-regular languages of ultimately periodic words.

Time Granularities and Ultimately Periodic Automata – p.10

Dealing with Sets of Granularities - 1

Proposition. An ω-regular language L consists of only
ultimately periodic words iff it is a finite union of sets of the form

U · {v}ω

with U ⊆ Σ∗ being a regular language and v a finite non-empty
word.

⇒ We can represent sets of granularities featuring

• a possibly infinite number of different prefixes

• a finite number of non-equivalent repeating patterns

(equivalent patterns are those which can be obtained by
rotating and/or repeating a given finite word
e.g. ��J and �J��J�)

Time Granularities and Ultimately Periodic Automata – p.11

Dealing with Sets of Granularities - 2

⇒ the notion of Ultimately Periodic Automata (UPA) comes
into play.

UPA are Büchi automata where the strongly connected
component of any final state is either a single transient state or a
simple loop with no exiting transitions.

(each loop acts like an SSA recognizing a single periodic word)

⇒ UPA capture all and only the ω-regular languages of
ultimately periodic words.

Remark. Such languages are closed under union, intersection,
concatenation with regular languages, but not under
complementation.

Time Granularities and Ultimately Periodic Automata – p.12

Dealing with Sets of Granularities - 3

Examples.

The set of granularities that
groups days two-by-two:

{�}∗ · {�J}ω

s0 s1 s2

�

� J

�

The set of granularities that
groups day either two-by-two
or three-by-three:

{��J}ω ∪ {�J}ω

s0

s1 s2 s3

s4 s5

�

�

� J

�

J

�

Time Granularities and Ultimately Periodic Automata – p.13

Paradigmatic problems

Emptiness.
Decide whether the language of a given UPA is empty.

Membership.
Given an UPA A and a word w, decide whether w ∈ L(A).

Equivalence.
Decide whether two UPA recognize the same language.

Minimization.
Compute the smallest UPA recognizing a given language.

Granularity comparison.
For any pair of sets of granularities G,H, decide whether
there exist G ∈ G and H ∈ H such that G ∼ H , with ∼
being one of the usual relation between granularities
(e.g., finer than, groups into, . . .).

Time Granularities and Ultimately Periodic Automata – p.14

Emptiness, membership, and equivalence problems

Emptiness.
Solved in linear time by testing the existence of a reachable
loop involving some final state.

Membership.
Given an UPA B recognizing {w}, test the emptiness of the
language recognized by the product automaton A× B over
the alphabet {

(

�
�

)

,
(

�
�

)

,
(

J
J

)

}.

Equivalence (Trivial Solution.)
Consider A and B as Büchi automata: compute their
complements A and B, and test the emptiness of both
L(A) ∩ L(B) and L(B) ∩ L(A).

Time Granularities and Ultimately Periodic Automata – p.15

The equivalence problem

Equivalence (Improved Solution.)
Compute a canonical form for A and B, that is unique up to
isomorphisms:

1. minimize the patterns of the recognized words and the
final loops (using Paige-Tarjan-Bonic algorithm);

2. minimize the prefixes of the recognized words;

3. compute the minimum deterministic automaton for the
prefixes of the recognized words;

4. build the canonical form by adding the final loops to
the minimum automaton for the prefixes.

Time Granularities and Ultimately Periodic Automata – p.16

Minimization and Comparison problems

Minimization.
Replace step 3 in the canonization algorithm with the
computation of a minimal non-deterministic automaton for
the prefixes.
The problem is PSPACE-complete and it may yields to
different solutions.

Comparison of granularities.
Can be reduced to the emptiness problem as follows:
1. express the granularity relation in the string-based

formalism;
2. define a product automaton that accepts all pairs of

granularities that satisfy the relation;
3. test the emptiness of such an automaton.

Time Granularities and Ultimately Periodic Automata – p.17

A Real-World Application - 1

Posttransplantation guidelines: The patient must undertake a
GFR estimation with one of the following schedule:
• 3 months, 12 months and every year thereafter;
• 3 months, 12 months and every 2 years thereafter.

⇒ UPA A representing the protocol:

�
�60 �29 J �245 �29

J

J

�335 �29

J

�700 �29

J

Time Granularities and Ultimately Periodic Automata – p.18

A Real-World Application - 2

Consider the following instance of the temporal relation
VISITS(PatientId, Date, Treatment):

PatientId Date (MM/DD/YYYY) Treatment

1001 02/10/2003 transplant

1001 04/26/2003 GFR

1002 06/07/2003 GFR

1001 06/08/2003 biopsy

1001 02/10/2004 GFR

1001 01/11/2005 GFR

1001 01/29/2006 GFR

Problem: GFR measurement of patient 1001 respects the
guidelines?

Time Granularities and Ultimately Periodic Automata – p.19

Solution to the problem - 1

Solution: Test whether the granularity of GFR measurement of
patient 1001, represented by the UPA B:

�115 J �288 J �335 J �382 J

�

is an aligned refinement of some granularity recognized by A.

Definition. A granularity G is an aligned refinement of the
granularity H if, for every positive integer n, the n-th granule of
G is included in the n-th granule of H .

Time Granularities and Ultimately Periodic Automata – p.20

Solution to the problem - 2

1. Given two words g and h, representing G and H , H is an
aligned refinement of G iff, for every n ∈ N+:

• h[n] ∈ {�,J} ⇒ g[n] ∈ {�,J};

• h[1, n− 1] and g[1, n− 1] encompass the same number
of occurrences ofJ.

2. Given the UPA A for the protocol, and the UPA B for the
visits, we can compute the product automaton for the
aligned refinement relation.

Time Granularities and Ultimately Periodic Automata – p.21

Solution to the problem - 3

3. The product automaton recognizes the language:
{

(

�
�

)100(�
�

)15(�
J

)(

�
�

)13(J
�

)(

�
�

)245(�
�

)29(J
J

)(

�
�

)335·

·
(

�
J

)(

�
�

)28(J
�

)(

�
�

)335(�
�

)18(�
J

)(

�
�

)10(J
�

)

·

·
(

(

�
�

)335(�
�

)29(J
�

)

)ω
}

⇒ GFR measurements for patient 1001 respects the protocol
guidelines.

Time Granularities and Ultimately Periodic Automata – p.22

Redundancies in UPA

Problem: How to build compact representations of set of
granularities?

⇒ we have an algorithm to minimize UPA.

But.. UPA may present redundancies in their structure:
• final and non-final loops that encodes the same patterns.

q0

q1 q2

q4

q3

p0 p1 p2 p3

�

�

J

J

�

�

J

�

J

J

�

�

Time Granularities and Ultimately Periodic Automata – p.23

Relaxed UPA (RUPA)

Solution:
• Allow transitions to exit from final loops;
• whenever an automaton leaves a final loop, it cannot reach

it again.

⇒ the notion of Relaxed UPA (RUPA) comes into play:
• These are Büchi automata where the SCC of any final states

is either a single transient state or a simple loop.

Theorem. RUPA recognize all and only the UPA-recognizable
languages.

Remark. UPA can be transformed into more compact RUPA by
collapsing redundant final loops.

Time Granularities and Ultimately Periodic Automata – p.24

Beyond (R)UPA - 1

Open Problem: How to capture larger sets of periodical
granularities?

⇒ we need more expressive classes of automata.

Three-phase automata (3PA):
• they recognize languages obtained from Büchi recognizable

languages by discarding non ultimately periodic words;
• they operate as follows:

1. guess the prefix of the word;
2. guess the repeating pattern and store it in a queue;
3. recognize the stored pattern infinitely often.

Time Granularities and Ultimately Periodic Automata – p.25

Beyond (R)UPA - 2

Theorem. 3PA-recognizable languages are closed under union,
intersection, concatenation with regular languages, and
complementation.

Remark. Noticeable sets of time granularities are not
3PA-recognizable.

Example. The set of all granularities that group days n by n,
that is {(�nJ)ω|n ≥ 0}.

A 3PA that recognizes these repeating patterns must also
recognize all, but finitely many, combinations of them.

Time Granularities and Ultimately Periodic Automata – p.26

Further Work

Other Open Problems:

• Investigate larger classes of automata:

• that extend 3PA;

• that (possibly) preserve closure and decidability
properties.

• Temporal logics and automata:

• temporal logic counterparts of SSA, UPA, and 3PA;

• a computational framework for pairing temporal logics
and automata.

Time Granularities and Ultimately Periodic Automata – p.27

	Outline
	Time Granularities - 1
	Time Granularities - 2
	Approaches to Time Granularities - 1
	Approaches to Time Granularities - 2
	The Automaton-based Approach - 1
	The Automaton-based Approach - 2
	Single String Automata
	From Single Granularities to Sets of Granularities
	Dealing with Sets of Granularities - 1
	Dealing with Sets of Granularities - 2
	Dealing with Sets of Granularities - 3
	Paradigmatic problems
	Emptiness, membership, and equivalence problems
	The equivalence problem
	Minimization and Comparison problems
	A Real-World Application - 1
	A Real-World Application - 2
	Solution to the problem - 1
	Solution to the problem - 2
	Solution to the problem - 3
	Redundancies in UPA
	Relaxed UPA (RUPA)
	Beyond (R)UPA - 1
	Beyond (R)UPA - 2
	Further Work

