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Time Granularities - 1

Motivations:

• Relational databases:
to express temporal information at different time
granularities, to relate different granules and to convert
associated data (queries)

• Artificial intelligence:
to reason about temporal relationships, e.g, to check
consistency and validity of temporal constraints at different
time granularities (temporal CSPs)

• Specification and verification of reactive systems:
to specify and to check temporal properties of (real-time)
reactive systems
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Time Granularities - 2

Definition. G : Z → 2T is a granularity iff

• (T,<) is a linearly ordered set of temporal instants,

• tx < ty whenever x < y, tx ∈ G(x), and ty ∈ G(y).

A granule of G is a non-empty set G(x) and x ∈ Z is said to be
its label.

Day ... ...

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
BusinessDay ... ...

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Week ... ...

1 2 3 4

BusinessWeek ... ...

1 2 3 4

BusinessMonth ... ...

1
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Approaches to Time Granularities - 1

Possible approaches to model time granularity:

• algebraic: it uses expressions built up from a set of
symbolic operators

(e.g., Week = Group7(Day),
cf. Bettini, Wang and Jajodia ’00)

• logical: it identifies granularities with models of logical
formulas

(e.g., PLTL-formulas,
cf. Combi, Franceschet and Peron ’04)
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Approaches to Time Granularities - 2

• string-based: it specifies time granularities through
ultimately periodic strings over {�,�, o}
(e.g., (�������o)ω represents business weeks,
cf. Wijsen ’00)

• automaton-based: it exploits finite state automata (Büchi
automata) to represent granularities that, ultimately,
periodically group temporal instants

(e.g., Single String Automata,
cf. Dal Lago and Montanari ’01)
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The Automaton-based Approach - 1

We followed the automaton-based approach, trying to achieve

1. expressiveness, namely, to capture a large set of
granularities

2. compactness, namely, to obtain size-optimal
representations

3. effectiveness, namely to ease algorithmic manipulation,
in particular w.r.t. the following fundamental problems:
• equivalence, which consists in deciding whether two

given automata represent the same granularity
• granularity comparison, which consist in relating

different temporal structures
• optimization, which consists in manipulating

representations in order to optimize the running time of
crucial algorithms.
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The Automaton-based Approach - 2

Basic ingredients:

• a discrete temporal domain T

• restriction to left bounded periodical granularities

• a fixed alphabet {�,�,J}, where

� represents elements covered by some granule,

� represents gaps within and between granules,

J represents the last element of a granule.
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Single String Automata

Proposition. Ultimately periodic words over {�,�,J} capture
all the left bounded periodical granularities.

Ultimately periodic words can be finitely represented by using
Büchi automata recognizing single words.

⇒ notion of Single String Automaton (SSA).

s0 s1 s2 s3

s4s5s6

� � �

�

J�

�

The SSA for the business-week granularity.
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From Single Granularities to Sets of Granularities

We generalize the automaton-based approach to capture sets of
granularities, instead of single time granularities, by means of
larger subclasses of Büchi automata.

Remark. Büchi automata recognize ω-regular languages.

⇒ we started by considering sets of granularities which are
represented by

ω-regular languages of ultimately periodic words.
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Dealing with Sets of Granularities - 1

Proposition. An ω-regular language L consists of only
ultimately periodic words iff it is a finite union of sets of the form

U · {v}ω

with U ⊆ Σ∗ being a regular language and v a finite non-empty
word.

⇒ We can represent sets of granularities featuring

• a possibly infinite number of different prefixes

• a finite number of non-equivalent repeating patterns

(equivalent patterns are those which can be obtained by
rotating and/or repeating a given finite word
e.g. ��J and �J��J�)
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Dealing with Sets of Granularities - 2

⇒ the notion of Ultimately Periodic Automata (UPA) comes
into play.

UPA are Büchi automata where the strongly connected
component of any final state is either a single transient state or a
simple loop with no exiting transitions.

(each loop acts like an SSA recognizing a single periodic word)

⇒ UPA capture all and only the ω-regular languages of
ultimately periodic words.

Remark. Such languages are closed under union, intersection,
concatenation with regular languages, but not under
complementation.
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Dealing with Sets of Granularities - 3

Examples.

The set of granularities that
groups days two-by-two:

{�}∗ · {�J}ω

s0 s1 s2

�

� J

�

The set of granularities that
groups day either two-by-two
or three-by-three:

{��J}ω ∪ {�J}ω

s0

s1 s2 s3

s4 s5

�

�

� J

�

J

�
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Paradigmatic problems

Emptiness.
Decide whether the language of a given UPA is empty.

Membership.
Given an UPA A and a word w, decide whether w ∈ L(A).

Equivalence.
Decide whether two UPA recognize the same language.

Minimization.
Compute the smallest UPA recognizing a given language.

Granularity comparison.
For any pair of sets of granularities G,H, decide whether
there exist G ∈ G and H ∈ H such that G ∼ H , with ∼
being one of the usual relation between granularities
(e.g., finer than, groups into, . . . ).
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Emptiness, membership, and equivalence problems

Emptiness.
Solved in linear time by testing the existence of a reachable
loop involving some final state.

Membership.
Given an UPA B recognizing {w}, test the emptiness of the
language recognized by the product automaton A× B over
the alphabet {

(

�
�

)

,
(

�
�

)

,
(

J
J

)

}.

Equivalence (Trivial Solution.)
Consider A and B as Büchi automata: compute their
complements A and B, and test the emptiness of both
L(A) ∩ L(B) and L(B) ∩ L(A).
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The equivalence problem

Equivalence (Improved Solution.)
Compute a canonical form for A and B, that is unique up to
isomorphisms:

1. minimize the patterns of the recognized words and the
final loops (using Paige-Tarjan-Bonic algorithm);

2. minimize the prefixes of the recognized words;

3. compute the minimum deterministic automaton for the
prefixes of the recognized words;

4. build the canonical form by adding the final loops to
the minimum automaton for the prefixes.
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Minimization and Comparison problems

Minimization.
Replace step 3 in the canonization algorithm with the
computation of a minimal non-deterministic automaton for
the prefixes.
The problem is PSPACE-complete and it may yields to
different solutions.

Comparison of granularities.
Can be reduced to the emptiness problem as follows:
1. express the granularity relation in the string-based

formalism;
2. define a product automaton that accepts all pairs of

granularities that satisfy the relation;
3. test the emptiness of such an automaton.
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A Real-World Application - 1

Posttransplantation guidelines: The patient must undertake a
GFR estimation with one of the following schedule:
• 3 months, 12 months and every year thereafter;
• 3 months, 12 months and every 2 years thereafter.

⇒ UPA A representing the protocol:

�
�60 �29 J �245 �29

J

J

�335 �29

J

�700 �29

J
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A Real-World Application - 2

Consider the following instance of the temporal relation
VISITS(PatientId, Date, Treatment):

PatientId Date (MM/DD/YYYY) Treatment

1001 02/10/2003 transplant

1001 04/26/2003 GFR

1002 06/07/2003 GFR

1001 06/08/2003 biopsy

1001 02/10/2004 GFR

1001 01/11/2005 GFR

1001 01/29/2006 GFR

Problem: GFR measurement of patient 1001 respects the
guidelines?
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Solution to the problem - 1

Solution: Test whether the granularity of GFR measurement of
patient 1001, represented by the UPA B:

�115 J �288 J �335 J �382 J

�

is an aligned refinement of some granularity recognized by A.

Definition. A granularity G is an aligned refinement of the
granularity H if, for every positive integer n, the n-th granule of
G is included in the n-th granule of H .
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Solution to the problem - 2

1. Given two words g and h, representing G and H , H is an
aligned refinement of G iff, for every n ∈ N+:

• h[n] ∈ {�,J} ⇒ g[n] ∈ {�,J};

• h[1, n− 1] and g[1, n− 1] encompass the same number
of occurrences ofJ.

2. Given the UPA A for the protocol, and the UPA B for the
visits, we can compute the product automaton for the
aligned refinement relation.
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Solution to the problem - 3

3. The product automaton recognizes the language:
{

(

�
�

)100( �
�

)15( �
J

)(

�
�

)13(J
�

)(

�
�

)245( �
�

)29(J
J

)(

�
�

)335·

·
(

�
J

)(

�
�

)28(J
�

)(

�
�

)335( �
�

)18( �
J
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�

)10(J
�

)

·

·
(

(

�
�

)335( �
�

)29(J
�

)

)ω
}

⇒ GFR measurements for patient 1001 respects the protocol
guidelines.
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Redundancies in UPA

Problem: How to build compact representations of set of
granularities?

⇒ we have an algorithm to minimize UPA.

But.. UPA may present redundancies in their structure:
• final and non-final loops that encodes the same patterns.

q0

q1 q2

q4

q3

p0 p1 p2 p3

�

�

J

J

�

�

J

�

J

J

�

�
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Relaxed UPA (RUPA)

Solution:
• Allow transitions to exit from final loops;
• whenever an automaton leaves a final loop, it cannot reach

it again.

⇒ the notion of Relaxed UPA (RUPA) comes into play:
• These are Büchi automata where the SCC of any final states

is either a single transient state or a simple loop.

Theorem. RUPA recognize all and only the UPA-recognizable
languages.

Remark. UPA can be transformed into more compact RUPA by
collapsing redundant final loops.
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Beyond (R)UPA - 1

Open Problem: How to capture larger sets of periodical
granularities?

⇒ we need more expressive classes of automata.

Three-phase automata (3PA):
• they recognize languages obtained from Büchi recognizable

languages by discarding non ultimately periodic words;
• they operate as follows:

1. guess the prefix of the word;
2. guess the repeating pattern and store it in a queue;
3. recognize the stored pattern infinitely often.
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Beyond (R)UPA - 2

Theorem. 3PA-recognizable languages are closed under union,
intersection, concatenation with regular languages, and
complementation.

Remark. Noticeable sets of time granularities are not
3PA-recognizable.

Example. The set of all granularities that group days n by n,
that is {(�nJ)ω|n ≥ 0}.

A 3PA that recognizes these repeating patterns must also
recognize all, but finitely many, combinations of them.
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Further Work

Other Open Problems:

• Investigate larger classes of automata:

• that extend 3PA;

• that (possibly) preserve closure and decidability
properties.

• Temporal logics and automata:

• temporal logic counterparts of SSA, UPA, and 3PA;

• a computational framework for pairing temporal logics
and automata.
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