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In this part

We reduce the model checking problem for MSO logic over

colored semi-infinite lines

colored infinite trees

to suitable acceptance problems respectively for

sequential Büchi automata (Büchi Theorem exploited)

Rabin tree automata (Rabin Theorem exploited)
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Acceptance problem for Rabin tree automata

In analogy to the case of the semi-infinite line, Rabin Theorem

Theorem (Rabin ’69)

For any MSO-formula ψ with free variables X1, ...,Xm,
one can compute a Rabin tree automaton Aψ over Bm

such that, for every tuple of unary predicates P1, ...,Pm ⊆ B∗(
B∗, δ0, δ1, P̄

)
� ψ[P1/X1, ...,Pm/Xm] iff T2,P̄ ∈ L (Aψ)

can be exploited to reduce the decision problem for
the MSO-theory of an expanded infinite complete tree(
B∗, δ0, δ1, P̄

)
to the acceptance problem of T2,P̄

(i.e., the characteristic colored tree encoding
(
B∗, δ0, δ1, P̄

)
)

for Rabin tree automata.
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Acceptance problem for Rabin tree automata

Definition (Acceptance problem)

The acceptance problem of a colored and complete infinite
binary tree T , denoted AccT , consists in deciding, for any
Rabin tree automaton A, whether

T ∈ L (A) (A accepts T )

Corollary (of RabinTheorem)

The problem of deciding the MSO-theory of a colored and
complete infinite binary tree

(
B∗, δ0, δ1, P̄

)
is reducible

to the problem AccT2,P̄
.

Such a result can be easily generalized to k-ary and
non-complete trees (i.e., trees with leaves).
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Acceptance problem for Rabin tree automata

To this end, we slightly modify the notion of tree automaton:
1 the transition relation ∆ is now a subset of Q × C × Qk

2 the automaton reads a dummy symbol ⊥
if a vertex of the input tree is missing

Example

Consider the ternary non-complete {red , blue}-colored tree
r

b b b

d d d b b b

and the Rabin tree automaton having

three states, r , b, and d , that signal which color was seen last

transitions (r/b, red , r , r , r), (r/b, blue, b, b, b),

(r , dummy , d , d , d), (b, dummy , d , d , d), (d , dummy , d , d , d)
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Acceptance problem for Rabin tree automata

Proposition

The problem of deciding the MSO-theory of a k-ary
(possibly incomplete) colored tree

(
D, δ0, ..., δk−1, P̄

)
is reducible to the problem AccTk,P̄

.

In the following, we describe a method to identify infinite
colored trees T , including incomplete ones, for which
AccT is decidable.
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Acceptance problem for Rabin tree automata

Proposition

The acceptance problem of any regular colored tree
(i.e., the unfolding of a finite colored graph) is decidable.

Proof

Let G be a finite colored graph

⇒ given any automaton A, T ∈ L (A) iff L (A) ∩L (AT ) 6= ∅

δ0

δ1

δ0

δ1

δ0 δ1

δ0 δ1 δ0 δ1

δ0 δ1 δ0 δ1 δ0 δ1 δ0 δ1

δ0 δ1 δ0 δ1 δ0 δ1 δ0 δ1 δ0 δ1 δ0 δ1 δ0 δ1 δ0 δ1
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Acceptance problem for Rabin tree automata

Proposition

The acceptance problem of any regular colored tree
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Acceptance problem for Rabin tree automata

Goal

We now want to extend the class of colored trees for which
the acceptance problem turns out to be decidable.

Idea

Reduce the acceptance problem of a non regular tree T
to an equivalent acceptance problem of a regular tree

−�
T :

1 decompose T into factors

2 ‘distill’ the relevant features of each factor F
(features describe the behavior of a given automaton A on F )

3 reason on the feature tree
−�
T

(i.e., a tree-shaped arrangement of features).

The features of F w.r.t. A are called A-type of F .

The feature tree
−�
T is called A-contraction of T .
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Acceptance problem for Rabin tree automata

A picture of the method:

Given a tree T , decompose it into factors ...
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Acceptance problem for Rabin tree automata

A picture of the method:

... then consider the equivalence classes
induced by the A-types of the factors ...
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Acceptance problem for Rabin tree automata

A picture of the method:

... The automaton A has the same behavior
on all trees in each equivalence class
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Acceptance problem for Rabin tree automata

A picture of the method:

⇒ We replace A with an automaton
−�
A that runs on

the (possibly regular) A-contraction and mimics A
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Factorizations, types, and contractions of trees

Definition (Factorization)

A factorization of a tree T is an uncolored tree Π such that

{root(T )} ⊆ Dom(Π) ⊆ Dom(T )

the edges are given by the ancestor relation of T
the edge labels are chosen arbitrarily from a finite set B.

b0

b0

b1

. . . . . . . . . . . .

Note: Π can be a non-deterministic tree
and it can have even unbounded/infinite degree.
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Factorizations, types, and contractions of trees

Definition (Factor)

For any u ∈ Dom(Π), the factor Tu of T in u
is the subgraph of T induced by the set{

v ∈ Dom(T ) : u v v and v v u′ for all successors u′ of u in Π
}

Example

. . . . . . . . . . . .

b0

b0

b1
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Factorizations, types, and contractions of trees

We also need to expand factors with information
about the edge labels of the factorization Π:

Definition (Marked factor)

Given u ∈ Dom(Π), the marked factor T+
u is

obtained from Tu by recoloring each leaf u′ with
the label of the edge of Π that reaches u′.

Example

. . . . . .

b0

b0

b1
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Factorizations, types, and contractions of trees

Definition (A-Type)

Given an automaton M and a marked factor T +
u ,

the A-type [T +
u ]A is the set of triples of the form R(ε){
(T (v),R(v), Img(R|πv )) : v ∈ Fr(T )

}{
Inf (R|π) : π ∈ Bch(T )

}


over all possible partial runs R of A on T +
u .

state at the root

for each leaf,
marker + state +
states along access path

for each infinite path,
states that occur infinitely often. . . . . .

b0

b0

b1

b0

b0
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b0

b0

state at the root
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Factorizations, types, and contractions of trees
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Factorizations, types, and contractions of trees

Definition (A-Type)

Given an automaton M and a marked factor T +
u ,

the A-type [T +
u ]A is the set of triples of the form R(ε){
(T (v),R(v), Img(R|πv )) : v ∈ Fr(T )

}{
Inf (R|π) : π ∈ Bch(T )

}


over all possible partial runs R of A on T +
u .

There exist finitely many A-types

⇒ they induce an equivalence of finite index on the set of trees

⇒ we can see each A-type as a color from a finite set

⇒ we can arrange the A-types of the factors of a tree
in a tree-shaped colored structure called A-contraction.
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Factorizations, types, and contractions of trees

Definition (A-contraction)

Given a tree T , a factorization Π of T , and an automaton A,
the A-contraction

−�
T of T is the tree obtained from Π by

coloring its vertices u with the corresponding A-type [T +
u ]A.

Example

b0

b0

b1

. . . . . .

Note:
−�
T may have infinite out-degree ( ⇒ non-deterministic).
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Factorizations, types, and contractions of trees

To reason on
−�
T by tree automata, we must get rid of (tree) non-determinism.

Idea

Collapse isomorphic subtrees in
−�
T . If this can be done for every pair of

outgoing edges with the same label, then
−�
T can be given the status of

deterministic tree and we can give it in input to a tree automaton
−�
A.

Example

[T +
ε ]A

[T +
1 ]A

[T +
0 ]A [T +

10 ]A

[T +
00 ]A

b0

b0

b1

b1

. . .

. . .
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Factorizations, types, and contractions of trees

To reason on
−�
T by tree automata, we must get rid of (tree) non-determinism.

Idea

Collapse isomorphic subtrees in
−�
T . If this can be done for every pair of

outgoing edges with the same label, then
−�
T can be given the status of

deterministic tree and we can give it in input to a tree automaton
−�
A.

Example

b0

b1

[T +
ε ]A

[T +
0 ]A

[T +
00 ]A

b0

b1
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From trees to their contractions

Theorem (Montanari and Puppis ’04)

If a tree T has a deterministic A-contraction
−�
T for any automaton

A, then one can build another Rabin tree automaton
−�
A, called

contraction automaton, such that

T ∈ L
(
A

)
iff

−�
T ∈ L

(−�
A

)

Proof idea

the input alphabet of
−�
A consists of all A-types plus

a dummy symbol ⊥ for missing b-labeled successors in
−�
T

a transition of
−�
A from a vertex colored by [T +

u ]A
mimics a computation of A on the marked factor T +

u

(note: this can be done since the A-type [T +
u ]A is

a finite object that completely characterizes the
‘behavior’ of A on the marked factor T +

u )
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From trees to their contractions

Corollary

Given a tree T and a Rabin tree automaton A, if one can
compute a (deterministic) A-contraction

−�
T with Acc−�T decidable

(e.g., a regular A-contraction), then AccT is decidable.

To summarize

to prove that the acceptance problem of a tree T is decidable:

1 provide a suitable factorization Π of T
2 build the A-contraction

−�
T of T w.r.t. Π

3 show that
−�
T is (bisimilar to) a deterministic tree

4 show that Acc−�T is decidable (e.g., show that
−�
T is regular).
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From trees to their contractions

Example

Let T be a tree with homogeneously-colored levels

wT

b

b

b

−�
T
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From trees to their contractions

Example

Let T be a tree with homogeneously-colored levels
Π the factorization of T such that Dom(Π) = Dom(T )

and
−�
T a corresponding A-contraction.
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b b b b

b b b b b b b b

b

b

b
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From trees to their contractions

Example

Each vertex of the A-contraction
−�
T

is colored with the A-type of the corresponding factor
b b

Accw decidable ⇒ Acc−�T decidable ⇒ AccT decidable

wT

b b

b b b b

b b b b b b b b

b

b

b

−�
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Second-order tree substitutions

Definition (Second-order tree substitution)

The second-order tree substitution CJT /xK is
the replacement of each x-colored vertex in C with T .

(a suitable marking on the leaves of T is used to specify
the attachment points for the subtrees rooted at the
successors of a replacement occurrence).

Example

x x

C

1

2 2

T CJT /xK
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Second-order tree substitutions

Definition (Second-order tree substitution)

The second-order tree substitution CJT /xK is
the replacement of each x-colored vertex in C with T .

(a suitable marking on the leaves of T is used to specify
the attachment points for the subtrees rooted at the
successors of a replacement occurrence).

Example

x x

C

1

2 2

T CJ / KT x
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Second-order tree substitutions

Theorem

Second-order tree substitutions respect the A-types:

[T ]A = [T ′]A ⇒
[
CJT /xK

]
A =

[
CJT ′/xK

]
A

Corollary

Given an automaton A and a function γ such that

γ(T ) = CJT /xK for any (marked) tree T

there is a well-defined (computable) function γA such that

γA
(
[T ]A

)
=

[
γ(T )

]
A for any (marked) tree T

The set of all functions γA with functional composition ◦ is a

finite monoid
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Second-order tree substitutions

Example

Let L be the semi-infinite line

T1 T2 T3 T4
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Second-order tree substitutions

Example

Let L be the semi-infinite line
we extend it with backward edges and loops
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Second-order tree substitutions

Example

Let L be the semi-infinite line
we extend it with backward edges and loops
and we unfold the structure from the leftmost vertex.
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ā

ā
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ā

a

a

a



Context-free and prefix-recognizable graphs The contraction method Rational and automatic graphs

Second-order tree substitutions

Example

Let L be the semi-infinite line
we extend it with backward edges and loops
and we unfold the structure from the leftmost vertex.

T1 T2 T3 T4

# #

a

ā
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ā

#

a

ā
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ā

ā
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Second-order tree substitutions

Example

We now define the following factorization:
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Second-order tree substitutions

Example

second-order tree substitution in x

x

b
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a

a

#

#

ā

ā

a

a

of x by Tn.

Each factor Tn+1 is obtained from the
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Second-order tree substitutions

Example

We can write Tn+1 = γ(Tn), hence [Tn+1]A = γn
A

(
[T1]A

)
⇒ the A-contraction is a regular tree of the form

(
[T1]A

) (
[T1]A

)
...

(
[T1]A

)
γ0
A γ1

A γn
A

b b b
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Generalizations

We just saw an example of a reduction to a regular contraction.

However, one can iterate reductions in order to show that
the acceptance problem of a tree T is decidable ...

Example

Consider the problem of deciding if T ∈ L (A):

If T has an A-contraction
−�
T , and

−�
T has a regular

−�
A-contraction

−�−�
T

Then we can decide if
−�−�
T ∈ L

(−�−�
A

)
,
−�
T ∈ L

(−�
A

)
, and T ∈ L

(
A).
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Generalizations

Definition (Reducible trees)

It comes natural to define a

hierarchy of recursively reducible trees:

rank 0 trees := regular trees

rank n + 1 trees := trees enjoying a rank n A-contraction,
for any Rabin tree automaton A.

Theorem

The acceptance problem of any recursively reducible tree
is decidable.
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Generalizations

Closure properties of rank n trees

By exploiting the inductive structure of rank n trees, one can
show that, for any n ∈ N, rank n trees are closed under:

rational colorings

specified by regular path expressions (like rational restrictions

and inverse rational mappings)

(alternative specifications in terms of Mealy tree automata,

namely, deterministic tree automata with an output function)

rational colorings with bounded lookahead

rational colorings extended with the facility of inspecting the

subtree issued from the current position, up to a bounded depth

regular tree morphisms

specified by a tuple of regular trees (Tx)x∈X

and mapping an input tree C to C
q
Tx/x

y
x∈X
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Generalizations

Proof idea (closure properties of rank n trees)

T T ′
t

−�
T

−�
T ′

rank n+ 1 rank n+ 1 ?

rank n rank n
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