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What do you do when a computational object fails a specification?

10000X
5

Source

1000
10000

100000
. . .

Target

1050
10050

100050
. . .

Worst-case cost of repairing source into target:

max
s∈S

min
t∈T

dist(s, t)

Can be finite or infinite, depending on source and target
...can we decide this?
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Plan

A. Bounded repairability of regular word languages

1) characterization

2) streaming setting

3) complexity

B. Bounded repairability of regular tree languages

1) curry encodings, stepwise automata, contexts

2) characterization

3) complexity



Part A. Problem setting:

Given two languages S ⊆ Σ∗ and T ⊆ ∆∗

(represented by finite state automata)

Decide whether max
s∈S

min
t∈T

dist(s, t) is finite.

Examples

10∗ is bounded repairable into 10∗50

10∗ is not bounded repairable into (10)∗

(1 + 0)∗ is not bounded repairable into (1 + 0∗5)∗
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Rule of thumb: If you need to edit,
you’d better do it outside a loop!
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For any strategy that repairs traces of X into traces of Y:
1. either traces(X) ⊆ traces(Y )

2. or the strategy has unbounded cost.
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Characterization of bounded repairability of word languages

S is repairable into T with uniformly bounded cost

⇕

Given some (trimmed) automata for S and T
and the DAGs of strongly connected components...

Source DAG Target DAG

...every chain of components in the source is
covered by a chain of components in the target.
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An example

All chains of source DAG are covered by chains of target DAG
⇒ S is repairable into T with uniformly bounded cost.

S = 30∗1∗+ 30∗2∗
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There is no covering relation compatible with prefixes
⇒ the repair strategy is not streaming

(i.e. implementable by a sequential transducer)
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Complexity of non-streaming bounded repairability problem:

NFA PTIME coNP PSPACE

DFA P coNP PSPACE

fixed CONST P PSPACE

fixed DFA NFA

Complexity of streaming bounded repairability problem:

NFA ≤ PSPACE
≥ P

≤ PSPACE
≥ P

≤ EXP
≥ PSPACE

DFA P P PSPACE

fixed CONST P PSPACE

fixed DFA NFA
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Part B. New tools for a more general setting...

Languages of words:

insersions / deletions

finite state automata

components & traces

coverability of chains

Languages of unranked trees:

insertions / deletions

stepwise tree automata

components & contexts

coverability of synopsis trees
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Bottom-up automata on ranked (binary) trees:

. . .

q1 q2

δ(q1, q2)

How to parse unranked trees?

Encode them using binary trees!
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Contexts = trees with holes
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(accessibility of states and components are defined accordingly)
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Recall: a run of a finite state automaton induces
a chain of components...

Likewise, a run of a stepwise automaton induces
a tree of components, called synopsis tree.
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Characterization of bounded repairability of tree languages

S is repairable into T with uniformly bounded cost

⇕

Given some (trimmed) stepwise automata for S and T ,
all synopsis trees of S are covered by synopsis trees of T

Source synopsis tree

@
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i.e. ...

1. λ preserves contexts:
contexts(X) ⊆ contexts(λ(X))

2. λ respects post-order of components:
X ≤postorder Y ↔ λ(X) ≤postorder λ(Y )

3. λ preserves ancestorship of vertical components:
X ⪯ancestor Y ↔ λ(X) ⪯ancestor λ(Y )
whenever vertical−contexts(X) ≠ ∅



Characterization of bounded repairability of tree languages

S is repairable into T with uniformly bounded cost

⇕

Given some (trimmed) stepwise automata for S and T ,
all synopsis trees of S are covered by synopsis trees of T

Source synopsis tree

@

@

“covered
by”

Target synopsis tree

@

@

i.e. ∃ λ : cyclic components Ð→ cyclic components

1. λ preserves contexts:
contexts(X) ⊆ contexts(λ(X))

2. λ respects post-order of components:
X ≤postorder Y ↔ λ(X) ≤postorder λ(Y )

3. λ preserves ancestorship of vertical components:
X ⪯ancestor Y ↔ λ(X) ⪯ancestor λ(Y )
whenever vertical−contexts(X) ≠ ∅



Characterization of bounded repairability of tree languages

S is repairable into T with uniformly bounded cost

⇕

Given some (trimmed) stepwise automata for S and T ,
all synopsis trees of S are covered by synopsis trees of T

Source synopsis tree

@

@

“covered
by”

Target synopsis tree

@

@

i.e. ∃ λ : cyclic components Ð→ cyclic components

1. λ preserves contexts:
contexts(X) ⊆ contexts(λ(X))

2. λ respects post-order of components:
X ≤postorder Y ↔ λ(X) ≤postorder λ(Y )

3. λ preserves ancestorship of vertical components:
X ⪯ancestor Y ↔ λ(X) ⪯ancestor λ(Y )
whenever vertical−contexts(X) ≠ ∅



Characterization of bounded repairability of tree languages

S is repairable into T with uniformly bounded cost

⇕

Given some (trimmed) stepwise automata for S and T ,
all synopsis trees of S are covered by synopsis trees of T

Source synopsis tree

@

@

“covered
by”

Target synopsis tree

@

@

i.e. ∃ λ : cyclic components Ð→ cyclic components

1. λ preserves contexts:
contexts(X) ⊆ contexts(λ(X))

2. λ respects post-order of components:
X ≤postorder Y ↔ λ(X) ≤postorder λ(Y )

3. λ preserves ancestorship of vertical components:
X ⪯ancestor Y ↔ λ(X) ⪯ancestor λ(Y )
whenever vertical−contexts(X) ≠ ∅



Characterization of bounded repairability of tree languages

S is repairable into T with uniformly bounded cost

⇕

Given some (trimmed) stepwise automata for S and T ,
all synopsis trees of S are covered by synopsis trees of T

Source synopsis tree

@

@

“covered
by”

Target synopsis tree

@

@

i.e. ∃ λ : cyclic components Ð→ cyclic components

1. λ preserves contexts:
contexts(X) ⊆ contexts(λ(X))

2. λ respects post-order of components:
X ≤postorder Y ↔ λ(X) ≤postorder λ(Y )

3. λ preserves ancestorship of vertical components:
X ⪯ancestor Y ↔ λ(X) ⪯ancestor λ(Y )
whenever vertical−contexts(X) ≠ ∅



r

a . . . a d

b . . . b

c . . . c

r

a . . . a b . . . b c . . . c
delete d

@
...

@

@

@
...

@

r

a

a
@

...

@

d

b

b

c

c

@
...

@

@
...

@

@
...

@

r

a

a

b

b

c

c



r

a . . . a d

b . . . b

c . . . c

r

a . . . a b . . . b c . . . c
delete d

≅
≅

@
...

@

@

@
...

@

r

a

a
@

...

@

d

b

b

c

c

@
...

@

@
...

@

@
...

@

r

a

a

b

b

c

c



r

a . . . a d

b . . . b

c . . . c

r

a . . . a b . . . b c . . . c
delete d

≅
≅

@
...

@

@

@
...

@

r

a

a
@

...

@

d

b

b

c

c

@
...

@

@
...

@

@
...

@

r

a

a

b

b

c

c



r

a . . . a d

b . . . b

c . . . c

r

a . . . a b . . . b c . . . c
delete d

≅
≅

@
...

@

@

@
...

@

r

a

a
@

...

@

d

b

b

c

c

@
...

@

@
...

@

@
...

@

r

a

a

b

b

c

c

C

A B

C

A

B



r

a . . . a d

b . . . b

c . . . c

r

a . . . a b . . . b c . . . c
delete d

≅
≅

@
...

@

@

@
...

@

r

a

a
@

...

@

d

b

b

c

c

@
...

@

@
...

@

@
...

@

r

a

a

b

b

c

c

C

A B

C

A

Bhorizontal



Complexity of non-streaming bounded repairability problem:

det. DTD DTD stepwise

universal

fixed alphabet
det. DTD

non recursive
det. DTD

stepwise

P PSPACE EXP

coNP PSPACE PSPACE

coNEXP coNEXP coNEXP

coNEXP coNEXP coNEXP

Complexity of streaming bounded repairability problem:

universal

DTD

det. DTD DTD

P PSPACE

EXP EXP



Complexity of non-streaming bounded repairability problem:

det. DTD DTD stepwise

universal

fixed alphabet
det. DTD

non recursive
det. DTD

stepwise

P PSPACE EXP

coNP PSPACE PSPACE

coNEXP coNEXP coNEXP

coNEXP coNEXP coNEXP

Complexity of streaming bounded repairability problem:

universal

DTD

det. DTD DTD

P PSPACE

EXP EXP



Some references...

Regular Repair of Specifications
Benedikt, Riveros, P. – LICS 2011

The cost of traveling between languages
Benedikt, Riveros, P. – ICALP 2011

Bounded repairability for regular tree languages
Riveros, Staworko, P. – ICDT 2012

Which DTDs are streaming bounded repairable?
Bourhis, Riveros, Staworko, P. – ICDT 2013

...and other related topics

normalized edit cost sup
s∈S

min
t∈T

dist(s, t)

∣s∣

distance automata and limitedness problem

energy games with perfect/imperfect information



Some references...

Regular Repair of Specifications
Benedikt, Riveros, P. – LICS 2011

The cost of traveling between languages
Benedikt, Riveros, P. – ICALP 2011

Bounded repairability for regular tree languages
Riveros, Staworko, P. – ICDT 2012

Which DTDs are streaming bounded repairable?
Bourhis, Riveros, Staworko, P. – ICDT 2013

...and other related topics

normalized edit cost sup
s∈S

min
t∈T

dist(s, t)

∣s∣

distance automata and limitedness problem

energy games with perfect/imperfect information


