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Transductions defined by formulas

Logically define the output inside copies of the input:  

❖ domain:  unary formula selecting positions in each copy 

❖ order:      binary formula defining an order on the domain 

❖ letters:     unary formulas partitioning the domain

hannover revonnah mirror

φ<(x,y)  =  “x > y”       //   x < y in the output  iff  x > y in the input

MSOT = monadic second-order transductions [Courcelle '95]



Transductions defined by automata

Finite-state Transducers  =  automata with outputs on transitions

Deterministic Non-deterministic

One-way
1DFT 1NFT

Two-way
2DFT 2NFT
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Transductions defined by automata

❖ deterministic / non-deterministic 

❖ 1-way 

❖ write-only registers to store partial outputs 
+ copyless restriction = each register used at most once

SST  =  Streaming String Transducers

E.g. mirror

a|x := a.x

out := x

[Alur, Cerny ’10]

E.g. split & swap



 
 
 
 
 
 
 
              

 
 

Relational transductions

1DFT 2DFT = DSST = MSOT

1NFT 2NFT

NSST = NMSOT

w ↦ Σ|w| w ↦ w*

u v ↦ v u

w ↦ w wa w ↦ w  a
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NSST = NMSOT
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u v ↦ v u
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Relational transductions

1DFT 2DFT = DSST = MSOT

1NFT 2NFTNSST = NMSOT =

=
decidable equivalence

undecidable equivalence

Functional

w ↦ w wa w ↦ w  a

w  a ↦ a w



 
 
 
 
 

 
 

Relational transductions

1DFT 2DFT = DSST = MSOT

1NFT 2NFTNSST = NMSOT =

=
decidable equivalence

undecidable equivalence

Functional

Anything interesting beyond functional transductions?

w ↦ w wa w ↦ w  a

w  a ↦ a w



Finite valuedness

k-valued transductions  =  at most k outputs for each input

❖ decidable equivalence? 

❖ correspondence with logic (e.g. MSO) ?  

❖ equivalent models (e.g. 2-way vs SSTs) ? 

❖ effective characterisations (e.g. 1-way definability) ?



Finite valuedness

k-valued transductions  =  at most k outputs for each input

❖ decidable equivalence? 

❖ correspondence with logic (e.g. MSO) ?  

❖ equivalent models (e.g. 2-way vs SSTs) ? 

❖ effective characterisations (e.g. 1-way definability) ?
} a unifying approach: 

Decomposition 
Theorem

“Every k-valued transducer ∈ 𝒞 can be decomposed  
    into a finite union of functional transducers ∈ 𝒞 ”

For a suitable class  
𝒞 of transducers:



Decomposition of 1-way transducers

Every k-valued 1NFT is a finite union of functional 1NFTs.

[Weber ’96, Sakarovitch - de Souza ‘08]

The decomposition theorem for 𝒞 = { 1NFTs } :



Decomposition of 1-way transducers

Every k-valued 1NFT is a finite union of functional 1NFTs.

[Weber ’96, Sakarovitch - de Souza ‘08]

The decomposition theorem for 𝒞 = { 1NFTs } :

Corollaries: 

❖ decidable equivalence of k-valued 1NFTs 

❖ k-valued 1NFTs  =  k-valued order-preserving MSO transductions



Decomposition of 1NFTs

Unboundedly many runs with same output…

Follow lexico.-least run for each output

Subproblem: compare runs by their outputs



Decomposition of 1NFTs

In a 1NFT, outputs are formed by appending only to the right
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𝜌’ out

align (𝜌,𝜌’)  = { (𝜀, v)  :  out (𝜌) = out (𝜌’) . v

(u, 𝜀)  :  out (𝜌) . u = out (𝜌’)

u
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Decomposition of 1NFTs

In a 1NFT, outputs are formed by appending only to the right

maxlag (𝜌,𝜌’) = MAX { lag (𝜌≤t , 𝜌’≤t )  :  t ≤ |𝜌| } 

             𝜌

𝜌’ out

align (𝜌,𝜌’)  = { (𝜀, v)  :  out (𝜌) = out (𝜌’) . v

(u, 𝜀)  :  out (𝜌) . u = out (𝜌’)

u
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Decomposition of 1NFTs

It may happen that  out (𝜌) = out (𝜌’)  yet with large  maxlag (𝜌,𝜌’)

input    =      a a … a a …      #    … a a … a a 
out (𝜌)  =      a a … a a … 
out (𝜌’) =                                       … a a … a a 
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Decomposition of 1NFTs

It may happen that  out (𝜌) = out (𝜌’)  yet with large  maxlag (𝜌,𝜌’)

lag (𝜌,𝜌’)

maxlag (𝜌,𝜌’)

input    =      a a … a a …      #    … a a … a a 
out (𝜌)  =      a a … a a … 
out (𝜌’) =                                       … a a … a a 

It is not thanks to  

out (𝜌) = out (𝜌’) 

that the transducer 
is k-valued!



Decomposition of 1NFTs

Key combinatorial property:

𝜌1 , …, 𝜌k+1  runs  
of k-valued 1NFT

⇒ ∃ i ≠ j     out (𝜌i ) = out (𝜌j )  &  
maxlag (𝜌i , 𝜌j )  small



Decomposition of 1NFTs

Key combinatorial property:

𝜌1 , …, 𝜌k+1  runs  
of k-valued 1NFT

⇒ ∃ i ≠ j     out (𝜌i ) = out (𝜌j )  &  
maxlag (𝜌i , 𝜌j )  small

Moreover,  if  maxlag (𝜌i , 𝜌j )  is small 
one can maintain  align (𝜌i , 𝜌j )  in bounded memory 
— in particular, one knows whether  out (𝜌i ) = out (𝜌j )



Decomposition of 1NFTs

One can simulate only the witness runs, namely, the 𝜌’s that are 

✤  successful 

✤  lexico.-least among all other runs 𝜌’  with { out (𝜌 ) = out (𝜌’ ) &
maxlag (𝜌 , 𝜌’ ) small

at most  
k 

witnesses!
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Beyond 1NFTs — decomposition of SSTs

Conjecture:  every k-valued SST is a finite union of functional SSTs

Some corollaries: 

❖ decidable equivalence of k-valued SSTs 

❖ k-valued SSTs  =  k-valued MSO transductions 
                        =  k-valued 2NFTs  

❖ effective characterisation of k-valued SSTs 
                    definable by k-valued 1NFTs [Filiot, Gauwin, Reynier, Servais ’13]

[Engelfriet, Hoogeboom ’01]
[Alur, Cerny ’10]

[Alur, Deshmukh ’11]

in the functional case 

     DSSTs = MSO = 2NFTs



Beyond 1NFTs — decomposition of SSTs

Conjecture:  every k-valued SST is a finite union of functional SSTs

Some corollaries: 

❖ decidable equivalence of k-valued SSTs 

❖ k-valued SSTs  =  k-valued MSO transductions 
                        =  k-valued 2NFTs  

❖ effective characterisation of k-valued SSTs 
                    definable by k-valued 1NFTs [Filiot, Gauwin, Reynier, Servais ’13]

[Engelfriet, Hoogeboom ’01]
[Alur, Cerny ’10]

[Alur, Deshmukh ’11]

Our contribution:  we proved the conjecture for SSTs with 1 register



Decomposition of 1-register SSTs

reg𝜌
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u

reg z

First difficulty:         letters added to left and right of register   ⇒   symmetric alignments on registers

align (𝜌,𝜌’)  =  { 𝝀=(u, v, w, z)  :  u . reg (𝜌) . v  =  w . reg (𝜌’) . z }
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Decomposition of 1-register SSTs

reg𝜌

𝜌’

u

reg z

First difficulty:         letters added to left and right of register   ⇒   symmetric alignments on registers

maxlag (𝜌,𝜌’)  =  MAX { lag (𝜌≤t , 𝜌’≤t )  :  t ≤ |𝜌| }

align (𝜌,𝜌’)  =  { 𝝀=(u, v, w, z)  :  u . reg (𝜌) . v  =  w . reg (𝜌’) . z }

lag (𝜌,𝜌’)  =  MIN { | 𝝀 |  :  𝝀 ∈ align (𝜌,𝜌’)  }
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maxlag (𝜌i , 𝜌j )  small
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Some equalities
 

hold  just 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Decomposition of 1-register SSTs

k+1 runs  
_
𝜌 = 𝜌1 , …, 𝜌k+1 

of  k-valued  SST ⇒ ∃ i ≠ j       reg (𝜌i ) = reg (𝜌j )  & 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_
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_
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Second difficulty:          combinatorial property

Some equalities
 

hold  just 

by chance…

…

_
𝜌

L1 L2 Lk

(i,j) ∈ Equals( 

_
𝜌 )  is not robust to pumping
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Decomposition of 1-register SSTs
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_
𝜌n )  holds for infinitely many n’s

⇒  replace  

_
𝜌  by  

_
𝜌n  for large enough n

⇒   it holds  for all n’s,  including  n=0 …

L1 L2 Lk…

Let  
_
𝜌n = pump 

n
L1,…,Lk

 ( 

_
𝜌 )

[Kortelainen ’98, Saarela ’15]

Word equations of the form 

u0 (v1)n u1 … (vh)n uh 
= 

u’0 (v’1)n u’1 … (v’h)n u’h
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reg
cs

reg ac

After updating 

reg (𝜌)  := reg (𝜌) . s 
reg (𝜌’) := a . reg (𝜌’)

regacs

reg acs
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Decomposition of 1-register SSTs

Third difficulty:          maintain alignments in bounded memory

reg
cs

reg ac

After updating 

reg (𝜌)  := reg (𝜌) . s 
reg (𝜌’) := a . reg (𝜌’)

+ knowledge on periodicity: 

reg (𝜌)  ∈  { stac }* 
reg (𝜌’) ∈  { csta }*



Recap

Theorem 
Every k-valued SST with 1 register is a union of k functional SSTs.

Corollary 
Equivalence problem for k-valued SSTs with 1 register is decidable.

A first steps towards a decomposition theorem for SSTs with many registers…
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Beyond the 1-register case

Managed to prove the combinatorial property with many registers:

𝜌1 , …, 𝜌k+1  runs  
of k-valued SST

⇒ ∃ i ≠ j     out (𝜌i ) = out (𝜌j )  &  
maxlag (𝜌i , 𝜌j )  small

Idea: 

1.   not all loops induce repetitions of factors in the registers 

2.   those that do not induce repetitions can be simulated with less registers 

3.   word equations  +  induction on number of registers…
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