
Decomposition of finite-valued 
streaming string transducers

Paul Gallot 
Anca Muscholl 

Gabriele Puppis 
Sylvain Salvati

Transductions

Transformations of objects, here words

transduction = function or relation between words

Transductions

Transformations of objects, here words

transduction = function or relation between words

hannover {hannover}* Kleene iteration

hannover revonnah mirror

hannover hannover hannover duplicate

hannover over hann split & swap

Transductions defined by formulas

Logically define the output inside copies of the input:

❖ domain: unary formula selecting positions in each copy

❖ order: binary formula defining an order on the domain

❖ letters: unary formulas partitioning the domain

hannover revonnah mirror

φ<(x,y) = “x > y” // x < y in the output iff x > y in the input

MSOT = monadic second-order transductions [Courcelle '95]

Transductions defined by automata

Finite-state Transducers = automata with outputs on transitions

Deterministic Non-deterministic

One-way
1DFT 1NFT

Two-way
2DFT 2NFT

Transductions defined by automata

❖ deterministic / non-deterministic

❖ 1-way

❖ write-only registers to store partial outputs 
+ copyless restriction = each register used at most once

SST = Streaming String Transducers [Alur, Cerny ’10]

E.g. split & swap

Transductions defined by automata

❖ deterministic / non-deterministic

❖ 1-way

❖ write-only registers to store partial outputs 
+ copyless restriction = each register used at most once

SST = Streaming String Transducers [Alur, Cerny ’10]

E.g. split & swap

Transductions defined by automata

❖ deterministic / non-deterministic

❖ 1-way

❖ write-only registers to store partial outputs 
+ copyless restriction = each register used at most once

SST = Streaming String Transducers

E.g. mirror

a|x := a.x

out := x

[Alur, Cerny ’10]

E.g. split & swap

 
 
 
 
 
 
 

 
 

Relational transductions

1DFT 2DFT = DSST = MSOT

1NFT 2NFT

NSST = NMSOT

w ↦ Σ|w| w ↦ w*

u v ↦ v u

w ↦ w wa w ↦ w a

 
 
 
 
 
 
 

 
 

Relational transductions

1DFT 2DFT = DSST = MSOT

1NFT 2NFT

NSST = NMSOT

w ↦ Σ|w| w ↦ w*

u v ↦ v u

w ↦ w w

decidable equivalence
undecidable equivalence

a w ↦ w a

 
 
 
 
 

 
 

Relational transductions

1DFT 2DFT = DSST = MSOT

1NFT 2NFTNSST = NMSOT =

=
decidable equivalence

undecidable equivalence

Functional

w ↦ w wa w ↦ w a

w a ↦ a w

 
 
 
 
 

 
 

Relational transductions

1DFT 2DFT = DSST = MSOT

1NFT 2NFTNSST = NMSOT =

=
decidable equivalence

undecidable equivalence

Functional

Anything interesting beyond functional transductions?

w ↦ w wa w ↦ w a

w a ↦ a w

Finite valuedness

k-valued transductions = at most k outputs for each input

❖ decidable equivalence?

❖ correspondence with logic (e.g. MSO) ?

❖ equivalent models (e.g. 2-way vs SSTs) ?

❖ effective characterisations (e.g. 1-way definability) ?

Finite valuedness

k-valued transductions = at most k outputs for each input

❖ decidable equivalence?

❖ correspondence with logic (e.g. MSO) ?

❖ equivalent models (e.g. 2-way vs SSTs) ?

❖ effective characterisations (e.g. 1-way definability) ?
} a unifying approach:

Decomposition 
Theorem

“Every k-valued transducer ∈ 𝒞 can be decomposed  
 into a finite union of functional transducers ∈ 𝒞 ”

For a suitable class  
𝒞 of transducers:

Decomposition of 1-way transducers

Every k-valued 1NFT is a finite union of functional 1NFTs.

[Weber ’96, Sakarovitch - de Souza ‘08]

The decomposition theorem for 𝒞 = { 1NFTs } :

Decomposition of 1-way transducers

Every k-valued 1NFT is a finite union of functional 1NFTs.

[Weber ’96, Sakarovitch - de Souza ‘08]

The decomposition theorem for 𝒞 = { 1NFTs } :

Corollaries:

❖ decidable equivalence of k-valued 1NFTs

❖ k-valued 1NFTs = k-valued order-preserving MSO transductions

Decomposition of 1NFTs

Unboundedly many runs with same output…

Follow lexico.-least run for each output

Subproblem: compare runs by their outputs

Decomposition of 1NFTs

In a 1NFT, outputs are formed by appending only to the right

 𝜌

𝜌’ out

Decomposition of 1NFTs

In a 1NFT, outputs are formed by appending only to the right

 𝜌

𝜌’ out

align (𝜌,𝜌’) = { (𝜀, v) : out (𝜌) = out (𝜌’) . v

(u, 𝜀) : out (𝜌) . u = out (𝜌’)

u

Decomposition of 1NFTs

In a 1NFT, outputs are formed by appending only to the right

 𝜌

𝜌’ out

align (𝜌,𝜌’) = { (𝜀, v) : out (𝜌) = out (𝜌’) . v

(u, 𝜀) : out (𝜌) . u = out (𝜌’)

u

lag (𝜌,𝜌’) = | align (𝜌,𝜌’) |

Decomposition of 1NFTs

In a 1NFT, outputs are formed by appending only to the right

maxlag (𝜌,𝜌’) = MAX { lag (𝜌≤t , 𝜌’≤t) : t ≤ |𝜌| }

 𝜌

𝜌’ out

align (𝜌,𝜌’) = { (𝜀, v) : out (𝜌) = out (𝜌’) . v

(u, 𝜀) : out (𝜌) . u = out (𝜌’)

u

lag (𝜌,𝜌’) = | align (𝜌,𝜌’) |

Decomposition of 1NFTs

It may happen that out (𝜌) = out (𝜌’) yet with large maxlag (𝜌,𝜌’)

input = a a … a a … # … a a … a a 
out (𝜌) = a a … a a … 
out (𝜌’) = … a a … a a

Decomposition of 1NFTs

It may happen that out (𝜌) = out (𝜌’) yet with large maxlag (𝜌,𝜌’)

lag (𝜌,𝜌’)

maxlag (𝜌,𝜌’)

input = a a … a a … # … a a … a a 
out (𝜌) = a a … a a … 
out (𝜌’) = … a a … a a

Decomposition of 1NFTs

It may happen that out (𝜌) = out (𝜌’) yet with large maxlag (𝜌,𝜌’)

lag (𝜌,𝜌’)

maxlag (𝜌,𝜌’)

input = a a … a a … # … a a … a a 
out (𝜌) = a a … a a … 
out (𝜌’) = … a a … a a

It is not thanks to

out (𝜌) = out (𝜌’)

that the transducer 
is k-valued!

Decomposition of 1NFTs

Key combinatorial property:

𝜌1 , …, 𝜌k+1 runs  
of k-valued 1NFT

⇒ ∃ i ≠ j out (𝜌i) = out (𝜌j) &  
maxlag (𝜌i , 𝜌j) small

Decomposition of 1NFTs

Key combinatorial property:

𝜌1 , …, 𝜌k+1 runs  
of k-valued 1NFT

⇒ ∃ i ≠ j out (𝜌i) = out (𝜌j) &  
maxlag (𝜌i , 𝜌j) small

Moreover, if maxlag (𝜌i , 𝜌j) is small 
one can maintain align (𝜌i , 𝜌j) in bounded memory 
— in particular, one knows whether out (𝜌i) = out (𝜌j)

Decomposition of 1NFTs

One can simulate only the witness runs, namely, the 𝜌’s that are 

✤ successful

✤ lexico.-least among all other runs 𝜌’ with { out (𝜌) = out (𝜌’) &
maxlag (𝜌 , 𝜌’) small

at most  
k 

witnesses!

Beyond 1NFTs — decomposition of SSTs

Conjecture: every k-valued SST is a finite union of functional SSTs

Beyond 1NFTs — decomposition of SSTs

Conjecture: every k-valued SST is a finite union of functional SSTs

Some corollaries: 

❖ decidable equivalence of k-valued SSTs 

❖ k-valued SSTs = k-valued MSO transductions 
 = k-valued 2NFTs  

❖ effective characterisation of k-valued SSTs 
 definable by k-valued 1NFTs [Filiot, Gauwin, Reynier, Servais ’13]

[Engelfriet, Hoogeboom ’01]
[Alur, Cerny ’10]

[Alur, Deshmukh ’11]

Beyond 1NFTs — decomposition of SSTs

Conjecture: every k-valued SST is a finite union of functional SSTs

Some corollaries: 

❖ decidable equivalence of k-valued SSTs 

❖ k-valued SSTs = k-valued MSO transductions 
 = k-valued 2NFTs  

❖ effective characterisation of k-valued SSTs 
 definable by k-valued 1NFTs [Filiot, Gauwin, Reynier, Servais ’13]

[Engelfriet, Hoogeboom ’01]
[Alur, Cerny ’10]

[Alur, Deshmukh ’11]

T ⊆ T1 ∪ … ∪ Tk decidable 
for functional SSTs T, T1, …, Tk

Beyond 1NFTs — decomposition of SSTs

Conjecture: every k-valued SST is a finite union of functional SSTs

Some corollaries: 

❖ decidable equivalence of k-valued SSTs 

❖ k-valued SSTs = k-valued MSO transductions 
 = k-valued 2NFTs  

❖ effective characterisation of k-valued SSTs 
 definable by k-valued 1NFTs [Filiot, Gauwin, Reynier, Servais ’13]

[Engelfriet, Hoogeboom ’01]
[Alur, Cerny ’10]

[Alur, Deshmukh ’11]

in the functional case

 DSSTs = MSO = 2NFTs

Beyond 1NFTs — decomposition of SSTs

Conjecture: every k-valued SST is a finite union of functional SSTs

Some corollaries: 

❖ decidable equivalence of k-valued SSTs 

❖ k-valued SSTs = k-valued MSO transductions 
 = k-valued 2NFTs  

❖ effective characterisation of k-valued SSTs 
 definable by k-valued 1NFTs [Filiot, Gauwin, Reynier, Servais ’13]

[Engelfriet, Hoogeboom ’01]
[Alur, Cerny ’10]

[Alur, Deshmukh ’11]

Our contribution: we proved the conjecture for SSTs with 1 register

Decomposition of 1-register SSTs

reg𝜌

𝜌’

u

reg z

First difficulty: letters added to left and right of register ⇒ symmetric alignments on registers

align (𝜌,𝜌’) = { 𝝀=(u, v, w, z) : u . reg (𝜌) . v = w . reg (𝜌’) . z }

Decomposition of 1-register SSTs

reg𝜌

𝜌’

u

reg z

First difficulty: letters added to left and right of register ⇒ symmetric alignments on registers

align (𝜌,𝜌’) = { 𝝀=(u, v, w, z) : u . reg (𝜌) . v = w . reg (𝜌’) . z }

lag (𝜌,𝜌’) = MIN { | 𝝀 | : 𝝀 ∈ align (𝜌,𝜌’) }

Decomposition of 1-register SSTs

reg𝜌

𝜌’

u

reg z

First difficulty: letters added to left and right of register ⇒ symmetric alignments on registers

maxlag (𝜌,𝜌’) = MAX { lag (𝜌≤t , 𝜌’≤t) : t ≤ |𝜌| }

align (𝜌,𝜌’) = { 𝝀=(u, v, w, z) : u . reg (𝜌) . v = w . reg (𝜌’) . z }

lag (𝜌,𝜌’) = MIN { | 𝝀 | : 𝝀 ∈ align (𝜌,𝜌’) }

Decomposition of 1-register SSTs

k+1 runs
_
𝜌 = 𝜌1 , …, 𝜌k+1 

of k-valued SST ⇒ ∃ i ≠ j reg (𝜌i) = reg (𝜌j) & 
maxlag (𝜌i , 𝜌j) small

Second difficulty: combinatorial property

Some equalities
 

hold just 

by chance…

Decomposition of 1-register SSTs

k+1 runs
_
𝜌 = 𝜌1 , …, 𝜌k+1 

of k-valued SST ⇒ ∃ i ≠ j reg (𝜌i) = reg (𝜌j) & 
maxlag (𝜌i , 𝜌j) small

(i,j) ∈ Equals(

_
𝜌)

(i,j) ∈ SmallLags(

_
𝜌)

Second difficulty: combinatorial property

Some equalities
 

hold just 

by chance…

Decomposition of 1-register SSTs

k+1 runs
_
𝜌 = 𝜌1 , …, 𝜌k+1 

of k-valued SST ⇒ ∃ i ≠ j reg (𝜌i) = reg (𝜌j) & 
maxlag (𝜌i , 𝜌j) small

(i,j) ∈ Equals(

_
𝜌)

(i,j) ∈ SmallLags(

_
𝜌)

Second difficulty: combinatorial property

Some equalities
 

hold just 

by chance…

…

_
𝜌

L1 L2 Lk

(i,j) ∈ Equals(

_
𝜌) is not robust to pumping

Decomposition of 1-register SSTs

Take (i,j) ∈ Equals(

_
𝜌)

lag (𝜌i , 𝜌j)

maxlag (𝜌i , 𝜌j)

sm
all 

lag

larg
e 

lag

Decomposition of 1-register SSTs

Take (i,j) ∈ Equals(

_
𝜌)

lag (𝜌i , 𝜌j)

maxlag (𝜌i , 𝜌j)

sm
all 

lag

larg
e 

lag

L1 L2 Lk…

Let
_
𝜌n = pump

n
L1,…,Lk

 (

_
𝜌)

Decomposition of 1-register SSTs

Take (i,j) ∈ Equals(

_
𝜌)

lag (𝜌i , 𝜌j)

maxlag (𝜌i , 𝜌j)

sm
all 

lag

larg
e 

lag

2 cases

(i,j) ∈ Equals(

_
𝜌n) holds for only finitely many n’s

(i,j) ∈ Equals(

_
𝜌n) holds for infinitely many n’s

L1 L2 Lk…

Let
_
𝜌n = pump

n
L1,…,Lk

 (

_
𝜌)

Decomposition of 1-register SSTs

Take (i,j) ∈ Equals(

_
𝜌)

lag (𝜌i , 𝜌j)

maxlag (𝜌i , 𝜌j)

sm
all 

lag

larg
e 

lag

2 cases

(i,j) ∈ Equals(

_
𝜌n) holds for only finitely many n’s

(i,j) ∈ Equals(

_
𝜌n) holds for infinitely many n’s

⇒ replace

_
𝜌 by

_
𝜌n for large enough n

L1 L2 Lk…

Let
_
𝜌n = pump

n
L1,…,Lk

 (

_
𝜌)

Decomposition of 1-register SSTs

Take (i,j) ∈ Equals(

_
𝜌)

lag (𝜌i , 𝜌j)

maxlag (𝜌i , 𝜌j)

sm
all 

lag

larg
e 

lag

2 cases

(i,j) ∈ Equals(

_
𝜌n) holds for only finitely many n’s

(i,j) ∈ Equals(

_
𝜌n) holds for infinitely many n’s

⇒ replace

_
𝜌 by

_
𝜌n for large enough n

⇒ it holds for all n’s, including n=0 …

L1 L2 Lk…

Let
_
𝜌n = pump

n
L1,…,Lk

 (

_
𝜌)

Decomposition of 1-register SSTs

Take (i,j) ∈ Equals(

_
𝜌)

lag (𝜌i , 𝜌j)

maxlag (𝜌i , 𝜌j)

sm
all 

lag

larg
e 

lag

2 cases

(i,j) ∈ Equals(

_
𝜌n) holds for only finitely many n’s

(i,j) ∈ Equals(

_
𝜌n) holds for infinitely many n’s

⇒ replace

_
𝜌 by

_
𝜌n for large enough n

⇒ it holds for all n’s, including n=0 …

L1 L2 Lk…

Let
_
𝜌n = pump

n
L1,…,Lk

 (

_
𝜌)

[Kortelainen ’98, Saarela ’15]

Word equations of the form

u0 (v1)n u1 … (vh)n uh 
=

u’0 (v’1)n u’1 … (v’h)n u’h

Decomposition of 1-register SSTs

Third difficulty: maintain alignments in bounded memory

reg
cs

reg ac

Decomposition of 1-register SSTs

Third difficulty: maintain alignments in bounded memory

reg
cs

reg ac

After updating

reg (𝜌) := reg (𝜌) . s 
reg (𝜌’) := a . reg (𝜌’)

regacs

reg acs

stacstac…stacstacacs

a acs

Decomposition of 1-register SSTs

Third difficulty: maintain alignments in bounded memory

reg
cs

reg ac

After updating

reg (𝜌) := reg (𝜌) . s 
reg (𝜌’) := a . reg (𝜌’)

+ knowledge on periodicity:

reg (𝜌) ∈ { stac }* 
reg (𝜌’) ∈ { csta }*

ta

st

stacstac…stacstac

a

Decomposition of 1-register SSTs

Third difficulty: maintain alignments in bounded memory

reg
cs

reg ac

After updating

reg (𝜌) := reg (𝜌) . s 
reg (𝜌’) := a . reg (𝜌’)

+ knowledge on periodicity:

reg (𝜌) ∈ { stac }* 
reg (𝜌’) ∈ { csta }*

Recap

Theorem 
Every k-valued SST with 1 register is a union of k functional SSTs.

Corollary 
Equivalence problem for k-valued SSTs with 1 register is decidable.

A first steps towards a decomposition theorem for SSTs with many registers…

Beyond the 1-register case

Managed to prove the combinatorial property with many registers:

𝜌1 , …, 𝜌k+1 runs  
of k-valued SST

⇒ ∃ i ≠ j out (𝜌i) = out (𝜌j) &  
maxlag (𝜌i , 𝜌j) small

Beyond the 1-register case

Managed to prove the combinatorial property with many registers:

𝜌1 , …, 𝜌k+1 runs  
of k-valued SST

⇒ ∃ i ≠ j out (𝜌i) = out (𝜌j) &  
maxlag (𝜌i , 𝜌j) small

Idea:

1. not all loops induce repetitions of factors in the registers

2. those that do not induce repetitions can be simulated with less registers

3. word equations + induction on number of registers…

Beyond the 1-register case

maxlag (𝜌i , 𝜌j) small ⇒ align (𝜌i , 𝜌j) maintainable 
in bounded memory

Beyond the 1-register case

maxlag (𝜌i , 𝜌j) small ⇒ align (𝜌i , 𝜌j) maintainable 
in bounded memory

a|x := x.c 
 y := y

out := x

b|x := x 
 y := y .c

#|x := x .d.y 
y := 𝜀

#

a|x := x 
 y := y .c

b|x := x.c 
 y := y

#|x := x .d.y 
y := 𝜀

c c

cc

x y

x y

Beyond the 1-register case

maxlag (𝜌i , 𝜌j) small ⇒ align (𝜌i , 𝜌j) maintainable 
in bounded memory

a|x := x.c 
 y := y

out := x

b|x := x 
 y := y .c

#|x := x .d.y 
y := 𝜀

#

a|x := x 
 y := y .c

b|x := x.c 
 y := y

#|x := x .d.y 
y := 𝜀

cccc … cccc c

cccc … ccccc

x y

x y

Beyond the 1-register case

maxlag (𝜌i , 𝜌j) small ⇒ align (𝜌i , 𝜌j) maintainable 
in bounded memory

a|x := x.c 
 y := y

out := x

b|x := x 
 y := y .c

#|x := x .d.y 
y := 𝜀

#

a|x := x 
 y := y .c

b|x := x.c 
 y := y

#|x := x .d.y 
y := 𝜀

cccc cccc

cccccccc

x y

x y

Beyond the 1-register case

maxlag (𝜌i , 𝜌j) small ⇒ align (𝜌i , 𝜌j) maintainable 
in bounded memory

a|x := x.c 
 y := y

out := x

b|x := x 
 y := y .c

#|x := x .d.y 
y := 𝜀

#

a|x := x 
 y := y .c

b|x := x.c 
 y := y

#|x := x .d.y 
y := 𝜀

cccc cccc

cccccccc

x

x

d

d

