
13

Inference from Visible Information and Background

Knowledge

MICHAEL BENEDIKT, University of Oxford

PIERRE BOURHIS, CNRS, CRIStAL

BALDER TEN CATE, Google

GABRIELED PUPPIS, University of Udine

MICHAEL VANDEN BOOM, d’Overbroeck’s College

We provide a wide-ranging study of the scenario where a subset of the relations in a relational vocabulary is

visible to a user—that is, their complete contents are known—while the remaining relations are invisible. We

also have a background theory—invariants given by logical sentences—that may relate the visible relations

to invisible ones, and also may constrain both the visible and invisible relations in isolation. We want to

determine whether some other information, given as a positive existential formula, can be inferred using

only the visible information and the background theory. This formula whose inference we are concerned

with is denoted as the query. We consider whether positive information about the query can be inferred, and

also whether negative information—the sentence does not hold—can be inferred. We further consider both

the instance-level version of the problem, where both the query and the visible instance are given, and the

schema-level version, where we want to know whether truth or falsity of the query can be inferred in some

instance of the schema.

CCS Concepts: • Information systems→ Relational database query languages; • Theory of compu-

tation→ Problems, reductions and completeness

Additional Key Words and Phrases: Query answering, GNF

ACM Reference format:

Michael Benedikt, Pierre Bourhis, Balder ten Cate, Gabrieled Puppis, and Michael Vanden Boom. 2021. In-

ference from Visible Information and Background Knowledge. ACM Trans. Comput. Logic 22, 2, Article 13

(June 2021), 69 pages.

https://doi.org/10.1145/3452919

This article is a long version of the extended abstract that appeared in Proceedings of LICS’15. [12].

The work of M. Benedikt was sponsored by the Engineering and Physical Sciences Research Council of the United Kingdom,

grants EP/M005852/1 and EP/L012138/1. P. Bourhis was supported by CPER Nord-Pas de Calais/FEDER DATA Advanced

data science and technologies 2015-2020 and ANR Aggreg project ANR-14-CE25-0017.

Authors’ addresses: M. Benedikt, University of Oxford, UK; email: michael.benedikt@cs.ox.ac.uk; P. Bourhis, CNRS,

CRIStAL, France; email: pierre.bourhis@inria.fr; B. ten Cate, Google, Mountainvale, CA, USA; email: balder.tencate@

gmail.com; G. Puppis, University of Udine, Italy; email: gabriele.puppis@uniud.it; M. V. Boom, d’Overbroeck’s College,

UK; email: michael.vandenboom@gmail.com.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Association for Computing Machinery.

1529-3785/2021/06-ART13 $15.00

https://doi.org/10.1145/3452919

ACM Transactions on Computational Logic, Vol. 22, No. 2, Article 13. Publication date: June 2021.

https://doi.org/10.1145/3452919
mailto:permissions@acm.org
https://doi.org/10.1145/3452919

13:2 M. Benedikt et al.

1 INTRODUCTION

This article concerns a scenario in which a user has access to only a subset of the relations from a
data source. For example, for privacy reasons, a data owner may restrict access to a subset of the
stored relations. Another use case arises in information integration, where the integrated schema
exposed to users may contain “virtual” relations, whose content is defined through logical speci-
fications involving the relations in the source schemas. More generally, we consider the situation
where there is a relational schema consisting of visible and/or hidden relations, and a background

theory (specified by constraints in some logical language). A basic computational problem is to
determine what queries can be answered (in the positive or in the negative) with access to the
visible relations and reasoning using the background theory. The following example (from logical
analysis of information disclosure, in the spirit of prior works such as that of Guarnieri and Basin
[36]) illustrates this.

Example 1.1. Consider a medical datasource with relation Appointment(p,a,d) containing pa-
tient names p, appointment ids a, and doctor names d . A data owner may provide access only to
the projection of Appointment by creating a relation Patient(p), defined by the following logical
sentences Σ:

∀ p Patient(p) → ∃ a d Appointment(p,a,d)

∀ p a d Appointment(p,a,d) → Patient(p).

Consider the Boolean queryQ = ∃a Appointment(“Smith”,a, “Jones”), which asks whether patient
Smith has an appointment with Dr. Jones. A user with access only to the Patient relation can never
be sure that the query is true, in any instance. We say that there is no Positive Query Implication

(PQI) in any instance. However, there exist instances where a user with access to Patient can infer
thatQ is false. Indeed, if the Patient relation does not contain “Smith,” thenQ is false in the database
instance in question. We say that there is a Negative Query Implication (NQI) in such cases.

A second motivating example relates to incomplete databases.

Example 1.2. In many situations, data sources are inherently incomplete but may nevertheless
be known to be partially complete. For example, consider an enterprise setting where we have a
relation sales(p,y, c,q), where p is a product id, y is a year, c is a country, and q is a quantity, and
this relation is known to be complete only for data with c = “US”. This can be specified formally
as follows:

∀ p y c q sales(p,y, c,q) → salesrw (p,y, c,q)

∀ p y c q salesrw (p,y, c,q) ∧ (c = “US”) → sales(p,y, c,q),

where salesrw is a hidden relation that represents the complete (“real-world”) sales relation. Con-
sider the Boolean query Q = ∃p q salesrw (p, 2019, “US”,q), expressing our interesting in knowing
whether (in the real world) any product was sold in 2019 in the United States. It is easy to see
informally that, under the above background theory and the assumption that sales is visible, the
answer to Q can be obtained from the sales relation. In particular, there are database instances
where we have a PQI: a user with access only to sales can be sure thatQ is true. And there are also
instances where we have an NQI. Indeed, every instance will have one or the other, depending on
whether Q held in sales.

More generally, a wide variety of partial-completeness conditions can be expressed using pairs
of constraints of the form ∀x̄ R(x̄) → Rrw (x̄) and ∀x̄ Rrw (x̄) ∧ α(x̄) → R(x̄), where α(x̄) is
some side condition. One of the main constraint languages that we will be studying in this ar-

ACM Transactions on Computational Logic, Vol. 22, No. 2, Article 13. Publication date: June 2021.

Inference from Visible Information and Background Knowledge 13:3

Fig. 1. Summary of complexity results for PQI.

ticle, Frontier-Guarded Tuple-Generating Dependencies (FGTGDs), subsumes many such
partial-completeness conditions.

The classic setting of Open-World Query Answering (OWQ) can also be viewed as a spe-
cial case of our framework, where we again have constraints of the form ∀x̄ R(x̄) → Rrw (x̄) but
no constraints in the opposite direction, whereas the background theory may include additional
constraints over the hidden Rrw relations.

We study the computational problem of testing for PQI and NQI, both at the instance level (in
a given instance, can a positive, respectively, a negative answer, to a query Q be inferred from the
visible data using the background theory?) and at the schema level (does there exist an instance
in which a positive, respectively, a negative, answer to Q can be inferred?). The schema-level
problems are motivated from schema-design considerations: they can help understand (e.g., during
the data-access API design phase) what the consequences are of providing users with the means to
access different relations. Variants of the schema-level problems defined here occur in prior work
[45], as well as in subsequent works [10, 11, 16]: see Section 2 for details.

We consider background theories specified in a variety of logical languages that are rich enough
to capture complex relationships between relations, including relationships that arise in informa-
tion integration and restrictions on a single source that have been studied in the database research
community (“integrity constraints”) (cf. Figure 3). At the query side, we consider Conjunctive

Queries (CQs) and Unions of Conjunctive Queries (UCQs).

Our results. As mentioned earlier, we consider both the instance-level problems (denoted PQI and
NQI) and the schema-level problem (denoted ∃PQI and ∃NQI). For the instance-level problem, we
study both data complexity and combined complexity. Our main results are summarized in Figures 1
and 2. They apply to Boolean UCQs that may contain constants. The extension to arbitrary k-ary
UCQs (k > 0) is discussed in Section 6, where we also discuss some richer query languages and
constraint languages (e.g., CQ view definitions).

Our results in Figures 1 and 2 show how different syntactic features of the constraint language
and the query language (e.g., the use of constants, connectedness, and disjunction) affect the decid-
ability and complexity of the decision problems. They also show that, even for simple background
theories, the PQI problem is already ExpTime-hard in data complexity—that is, when everything
except the visible instance is fixed. This is a big jump in complexity compared to the special cases
of the problem studied in the description logic [31] and database community [1] in the past. For

ACM Transactions on Computational Logic, Vol. 22, No. 2, Article 13. Publication date: June 2021.

13:4 M. Benedikt et al.

Fig. 2. Summary of complexity results for NQI.

example, in the work of Abiteboul and Duschka [1], it is shown that the data complexity of the
OWQ problem (which, we recall, can be seen as a particular instance of PQI with Inclusion

Dependencies (IDs) that go from visible to hidden relations) is shown to be in co-NP, and
Franconi et al. [31] proveco-NP-completeness of query answering in certain description logics
with DBoxes.

Our techniques. We develop a number of tools for reasoning on mixtures of complete and in-
complete information:

• Connection to guarded negation: Our first technique involves showing that a large class
of instance-level problems can be solved by translating them into satisfiability problems for
a rich fragment of first-order logic, the guarded negation fragment (GNFO). In fact, we show
that there is a natural connection between these inference problems and GNFO, in that the
“visibility restriction” can be expressed in GNFO. This allows us to exploit powerful prior
decidability results for GNFO “off-the-shelf.” However, to get tight complexity bounds, we
need a new analysis of the complexity of satisfiability for GNFO. This analysis is of interest
outside of these inference problems, in that we give a self-contained reduction from GNFO
satisfiability to tree automata, a reduction that allows us to give a finer-grained analysis of
the sources of complexity in GNFO satisfiability.
• Decidability via canonical counterexamples: The schema-level analysis asks if there is

some instance on which information about the query can be derived. As mentioned earlier,
we show that whenever there is some instance, this can be taken to be the “simplest possi-
ble instance.” Although this idea has been used before to simplify analysis of undecidability
(e.g., [32]), and for decidability of Datalog satisfiability [49], we provide a significant exten-
sion of the technique, and provide new applications of it for decidability.
• Tractability via greatest fixed-point: We show that some of our instance-level implication

problems can be reduced to evaluating a certain query of Greatest Fixedpoint Datalog

(GFP-Datalog) on the given visible instance. Since GFP-Datalog queries can be evaluated
in polynomial time, this shows tractability in the instance size. The reduction to GFP-Datalog
requires a new analysis of when these inference problems are “active-domain controllable”
(it suffices to see that the query value is invariant over all hidden instances that lie within
the active domain of the visible instance).
• Relationships between problems: In this article, we explain how the four inference prob-

lems we consider (combinations of positive/negative and instance level/schema level) dif-
fer from previously studied problems, such as the OWQ problem. However, we also pro-

ACM Transactions on Computational Logic, Vol. 22, No. 2, Article 13. Publication date: June 2021.

Inference from Visible Information and Background Knowledge 13:5

vide reductions between open world querying and some of our schema-level problems.
In addition to clarifying the relationship of the problems, we can use these reductions to
derive complexity bounds.

Organization. After a review of related work in Section 2, we formally define the problem in
Section 3. Section 4 presents our results on the PQI problems PQI and ∃PQI (cf. Figure 1), whereas
Section 5 presents our results for the NQI problems NQI and ∃NQI. In these two sections, we
restrict attention to Boolean queries. Section 6 shows how to extend the results to arbitrary,
non-Boolean queries, and it also discusses some further extensions and variants of the frame-
work, including background theories specified by CQ view definitions. We close in Section 7 with
conclusions.

2 RELATED WORK

Two different communities have studied the problem of determining which information can be
inferred from complete access to data in a subset of the relations, using background knowledge in
the form of logical sentences relating the subset to the full vocabulary.

In the database community, the focus has been on views. The schema is divided into the “base
tables” and “view tables,” with the latter being defined by queries (typically CQs) in terms of the
former. Given a query over the schema, the basic computational problem is determining which
answers can be inferred using only the values of the views. Abiteboul and Duschka [1] isolate the
complexity of this problem in the case where views are defined by CQs; in their terminology, it
is “querying under the Closed World Assumption,” emphasizing the fact that the possible worlds
revealed by the views are those where the view tables have exactly their visible content. In our
terminology, this corresponds exactly to the PQI problem in the case where the background the-
ory consists entirely of CQ view definitions. Chirkova and Yu [26] extend to the case where CQ
views are supplemented by weakly acyclic dependencies. Another subcase of PQI that has received
considerable attention is the case where the background theory consists only of “completeness as-
sertions” between the invisible and visible portions of the schema. A series of works by Fan and
Geerts [29, 30] isolate the complexity for several variations of the problem, with particular atten-
tion to the case where the completeness assertions are via IDs from the invisible to the visible
part.

The PQI problem we study in the first part of this work is also related to research on instance-
based determinacy (in particular, see the results of Koutris et al. [38]), whereas the NQI problem
in the second half of the article is examined in the view context by Zhang and Mendelzon [51],
under the name of “conditional emptiness.” As in the other work mentioned earlier, the emphasis
has been on view definitions rather than more general background knowledge that may restrict
both the visible and invisible instance. In contrast, in our work, we deal with logical languages
for the background theory that can restrict the visible and invisible data in ways incomparable to
view definitions (see also the comparison in Section 6).

In the description logic community, the emphasis has not been on views but on querying in-
complete information in the presence of a logical theory. Our PQI problems relate to work in
the description logic community on hybrid closed- and open-world query answering or DBoxes, in
which the schema is divided into closed-world and open-world relations. Given a Boolean CQ, we
want to find out if it holds in all instances that can add facts to the open-world relations but do
not change the closed-world relations. In the non-Boolean case, the generalization is to consider
which tuples from the initial instance are in the query answer on all such instances. Thus, closed-
world and open-world relations match our notion of visible and invisible, and the hybrid closed
and OWQ problem matches our notion of PQI, except we restrict to the case where the open-world

ACM Transactions on Computational Logic, Vol. 22, No. 2, Article 13. Publication date: June 2021.

13:6 M. Benedikt et al.

relations of the instance are empty. It is easy to see that this restriction is actually without loss of
generality: one can reduce the general case to the case we study with a simple linear time reduc-
tion, making a closed-world copy R′ of each open-world relation R, and adding an ID from R′ to
R. As with the database community, the main distinction between our study of the PQI problem
and the prior work in the DL community concerns the classes of background theories considered.
Lutz et al. [39–41] study the complexity of this problem for background knowledge for several
description logics. For example, for the description logics EL and DL-LITE, they provide a di-
chotomy between co-NP-hard and first-order rewritable theories. They also show that in all of the
tractable cases, the problem coincides with the classical OWQ problem. Franconi et al. [31] show
co-NP-completeness for a disjunction-free description logic. Our results on the data complexity of
PQI consider the same problem, although for background theories that are more expressive and,
in particular, can handle relations of arbitrary arity rather than arity at most 2 as in other works
[31, 40, 41].

In summary, both the database and DL communities considered the PQI questions addressed in
this article, although for background theories that are different from those we consider. However,
in some cases, we can infer relevant lower bounds for our problems from those in the DL or DB
community: in particular, see Theorem 4.8, a variant of a result from Ngo et al. [47]. The NQI

problems are not well studied in the prior literature. However, a special case of NQI is the problem
of “consistency” in the setting of hybrid open- and closed-world querying. This is what we call
realizability.1 Bounds on the combined complexity of this problem can be found in the work of
Ngo et al. [47], but they are for description logics that are orthogonal in expressiveness to the
logics we study.

We know of no work dealing with the schema-level questions (asking for the existence of an
instance with a query implication) prior to the publication of the conference version of this article.
Schema-level problems are mentioned in a work by Nash and Deutsch [45], who appear to define a
variant of our ∃PQI problem (“source-independent guarantees”). But the only results given in the
work (Section 5.4 of Nash and Deutsch [45]) refer to the opposite problem, a variant of determinacy.
However, in this article, we show (see Section 5.2) that there is a close relation between these
schema-level questions and the works of Lutz et al. that concern conservativity and modularity of
ontologies [37, 42].

Note that our schema-level analysis considers the existence of some instance where the query
result can be inferred. The converse problem is to determine whether the query result can be
inferred on all instances. This is exactly the problem of determinacy [46], which is closely related to
the notion of implicit definability in classical logic [21]. Determinacy has been extensively studied
for both views [33, 46] and for background theories and visible relations [18, 19].

Another contrast is to the work of Miklau and Suciu [44], which considers whether such an
inference is valid probabilistically, looking asymptotically at the uniform distribution over models
of increasing size.

Subsequent to the conference version of this article, there have been a number of follow-ups.
Two works [15, 16] analyzed the complexity of query implication in the presence of information
disclosure methods based on query answering interfaces—where an external user can query under
the certain answer semantics—rather than the model of disclosure based on exporting a subset of
the data, as in our setting. The analysis in these works build on the techniques presented in this
submission. For example, another work [16] proves an undecidability result for our static disclosure
problem in the case of background theories corresponding to UCQ views; see the comments prior

1More precisely, realizability can be viewed as a trivial case of NQI, where the query is the tautology �. Note, however,

that all of our lower bounds results for NQI in this article hold even when the input is required to be a realizable instance.

ACM Transactions on Computational Logic, Vol. 22, No. 2, Article 13. Publication date: June 2021.

Inference from Visible Information and Background Knowledge 13:7

to Theorem 6.2 for details. Yet another work [10] refines the complexity analysis presented in this
work in some special cases of interest in data integration: the background theory can only consist
of certain restricted sentences on the invisible relations and some simple “mappings” between
invisible and visible. In the process, that work [10] corrects an error from the conference version
of this work, as discussed in Theorem 4.21. The idea of using the critical instance as a technique
for optimizing static analysis, which we highlight in this submission, has been picked up by later
work in a different context (simplifying Datalog rules) in the work [17]. Another work [11] applies
the results here in analyzing trade-offs between privacy and utility.

3 DEFINITIONS

Schemas and instances. We consider partitioned schemas (or simply, schemas) S = Sh ∪ Sv ,
where the partition elements Sh and Sv are finite sets of relation names (or simply, relations), where
each relation R has an associated arity, denoted arity(R). These are the hidden and visible relations,
respectively. An instance of a schema maps each relation to a set of tuples of the associated arity.
Throughout this article, instances are assumed to be finite unless explicitly specified otherwise.
The active domain of an instance is the set of values occurring within the interpretation of some
relation in the instance. A fact over an instance I is a ground atom R(c1 . . . cn), where R has arity
n and tuple c1 . . . cn are in the set associated by I to R.

As a suggestive notation, we writeV (Visible) for instances over Sv and F (Full) for instances
over S, and we will use the term full instance to refer to an instance over the full schema S. Given
such an instance F for S, its restriction to the Sv relations will be referred to as its visible part,
denoted Visible(F).

CQs; unique name assumption. In this work, we will consider queries specified as CQs—first-
order formulas built up from relational atoms via conjunction and existential quantification (equiv-
alently, relational algebra queries built via selection, projection, join, and rename operations)—and
also UCQs, which are disjunctions (relational algebra unions) of CQs. Boolean (U)CQs are simply
(U)CQs with no free variables.

Unless specified otherwise, we allow constants in queries (as well as in background theories, de-
fined below). More precisely, we assume that we have associated with each value a corresponding
constant, and we will identify the constant with its value. Thus, distinct constants will always be
forced to denote distinct domain elements—this is often called the Unique Name Assumption

(UNA) [2].
Every CQQ is associated with a canonical instance CanonInst(Q), where the domain consists of

variables and constants of Q and the facts are the atoms of Q .

Background theories. We will look at background theories defined in a number of constraint
languages (cf. Figure 3). One class of constraints that we will focus on are Tuple-Generating

Dependencies (TGDs), which are first-order logic sentences of the form

∀x̄ ϕ(x̄) → ∃ȳ ρ(x̄ , ȳ),

whereϕ and ρ are conjunctions of atoms, which may contain variables and/or constants, and where
all universally quantified variables x̄ appear inϕ(x̄). For all of the problems considered in this work,
one can take without loss of generality the right-hand side ρ to consist of a single atom, and we will
assume this henceforth. For brevity, we will often omit the universal quantifiers in TGDs: writing
just ϕ(x̄) → ∃ȳ ρ(x̄ , ȳ). TGDs form an important and well-studied class of database constraints.
However, most inference problems involving TGDs are undecidable [2], including those that we
study here. To obtain decidability and complexity results, we will look at classes of TGDs that are
computationally better behaved:

ACM Transactions on Computational Logic, Vol. 22, No. 2, Article 13. Publication date: June 2021.

13:8 M. Benedikt et al.

Fig. 3. Constraint languages for specifying background theories.

• Linear TGDs, those where ϕ consists of a single atom.
• IDs, linear TGDs where each of ϕ and ρ have no constants and no repeated variables. These

correspond to traditional referential integrity constraints in databases.
• FGTGDs [4] are TGDs where one of the conjuncts of ϕ is an atom that includes every univer-

sally quantified variable xi occurring in ρ. Such variables are the exported variables of the
TGD.
• Connected TGDs require only that the co-occurrence graph of ϕ is connected. The nodes of

this graph are the variables x̄ , and variables are connected by an edge if they co-occur in an
atom of ϕ.

Note that every ID is a linear TGD, and every linear TGD is frontier guarded. We will also consider
two logical languages that are generalizations of the above:
• We allow disjunction, by considering disjunctive TGDs, which are of the form

∀x̄ ϕ(x̄) → ∃ȳ
∨
i

ρi (x̄ , ȳ),

where each ρi is a conjunction of atoms. The notion of a disjunctive TGD being connected

is the same as for TGDs above. A disjunctive FGTGD additionally requires that there is an
atom in ϕ that includes all variables x j occurring in any of the ρi ’s. Some of our negative
results will hold for a special case of disjunctive FGTGDs in which ϕ is a single atom; these
are disjunctive linear TGDs, which clearly subsume linear TGDs.

Note that in each of the above cases, with the exception of IDs, constants are allowed by default
(and, as we already pointed out earlier, constants are assumed to satisfy the UNA).

A key role will be played by an even richer logic, containing disjunctive FGTGDs, the guarded

negation fragment. GNFO is built up inductively according to the grammar:

ϕ ::= R(t̄) | t1 = t2 | ∃x ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | α(ȳ) ∧ ¬ϕ(ȳ),

where R is a relation symbol, each ti is a variable or constant, and α(ȳ) is an atomic formula (which
we will refer to as a guard), in which all variables in ȳ occur. The name guarded negation fragment

ACM Transactions on Computational Logic, Vol. 22, No. 2, Article 13. Publication date: June 2021.

Inference from Visible Information and Background Knowledge 13:9

reflects the fact that any use of negation must occur in conjunction with a guard. Note, however,
that if ȳ consists of a single variable y, then the trivial equality y = y is a possible such guard (and
therefore unguarded negations of subformulas with at most one free variable can be expressed).

In database terms, GNFO is equivalent to relational algebra where the difference operator can
only be used to subtract query results from a relation. The VLDB article [5] gives both relational
algebra and SQL-based syntax for GNFO, and argues that it covers useful queries and database
integrity constraints in practice.

Note that the classical semantics of a first-order logic formula requires an interpretation of each
relation in the formula and also a domain, a set of elements that includes the active domain of the
instance. Whenever we will speak about GNFO sentences, we will always assume that they are
domain independent—that is, their truth value does not depend on which domain we choose (as
long as it includes the active domain). This allows us to meaningfully interpret these sentences in
an instance without explicitly specifying a domain. The relational algebraic presentation of GNFO
mentioned earlier provides an explicit syntax for the domain-independent fragment of GNFO.

For many of the results in the article, the reader only needs to know a few facts about GNFO. The
first is that it is quite expressive, so in proving things about GNFO sentences, we immediately get
the results for many classes of theories that we have mentioned previously. GNFO contains every
positive existential formula, is closed under Boolean combinations of sentences, and it subsumes
disjunctive FGTGDs up to equivalence. In other words, by simply writing out a disjunctive FGTGD
using ∃,¬,∧, one sees that these are expressible in GNFO.

Second, we will use that GNFO is “tame,” encapsulated in the following result from Bárány
et al. [6].

Theorem 3.1 ([6]). Satisfiability for GNFO sentences can be tested effectively and is 2ExpTime-

complete. Furthermore, every satisfiable sentence has a finite satisfying model.

Instance-level PQI and NQI. A fundamental definition for our work is presented next.

Definition 3.2. Let Q be a Boolean UCQ over schema S, Σ a background theory over S (specified
in any of the constraint languages introduced earlier), and V an instance over a visible schema
Sv ⊆ S:
• PQI(Q, Σ, S,V) = true if for every finite instance F satisfying Σ, if V = Visible(F) then
Q(F) = true.
• NQI(Q, Σ, S,V) = true if for every finite instance F satisfying Σ, if V = Visible(F) then
Q(F) = false.

The above definition gives rise to decision problems: given Q , Σ, S, and V , decide if
PQI(Q, Σ, S,V) = true (respectively, if NQI(Q, Σ, S,V) = true).

We call an Sv -instance V realizable with respect to Σ if there is an S-instance F satisfying
Σ such that V = Visible(F). If an instance V is not realizable with respect to Σ, then, triv-
ially, PQI(Q, Σ, S,V) = NQI(Q, Σ, S,V) = true. In practice, realizable instances are the only Sv -
instances we should ever encounter. When studying the PQI and NQI decision problems, for sim-
plicity we assume that the input is an arbitrary, not-necessarily-realizable instance of Sv . However,
our lower bound arguments will only involve realizable instances, and therefore, an alternative def-
inition that assumes realizable inputs yields the same complexity bounds.

The definition of PQI(Q, Σ, S,V) involves a quantification over finite instance, in line with
our default assumption that instances are finite. We can also talk about an “unrestricted ver-
sion” where the quantification is over every (finite or infinite) instance. We denote this variant
by PQI∞(Q, Σ, S,V). As we will see, for most of the background theories we consider, PQI and

ACM Transactions on Computational Logic, Vol. 22, No. 2, Article 13. Publication date: June 2021.

13:10 M. Benedikt et al.

PQI∞ turn out to coincide. When this holds, we say PQI is finitely controllable for the background
theories in question. The same applies to NQI.

We need a definition of the size of the input. In our case, an input consists of a query Q , a
set of sentences Σ, a relational schema S, and an instance V , and the size is defined by taking
the length of the binary encoding of such objects. Other intuitive notions of size (e.g., number of
symbols) would also suffice for our results, since they differ from the bit-encoding notion only up
to a polynomial factor.

Often we will be interested in studying the behavior of the PQI and NQI problems when Q , Σ,
and S are fixed (e.g., looking at how the computation time varies in the size ofV only). We refer
to this as the data complexity of the PQI (respectively, NQI) problem.

The PQI problem contrasts with the usual OWQ problem (a.k.a., the Certain Answer problem),
denoted here OWQ(Q, Σ,F), which is studied extensively in databases and description logics. The
latter problem takes as input a Boolean queryQ , an instance I , and a set of sentences Σ, and returns
true if and only if the query holds in any finite instance I ′ containing all facts of I . In PQI (and
NQI), we further constrain the instance to be fixed on the visible part while requiring the invisible
part of the input instance to be empty. This is the mix of closed world and open world, and we will
see that this closed-world restriction can make the complexity significantly higher.

Example 3.3. Consider a scenario where the background theory consists of IDs F1(x) →
∃y U (x ,y) and U (x ,y) → F2(y). In the schema, the relations F1 and F2 are visible but U is not.
Consider the query Q = ∃x U (x ,x) and instance consisting only of facts F1(a), F2(a).

There is a PQI on this instance, since F1(a) implies that U (a, c) holds for some c , but the other
constraint and the fact that F2 must hold only on a means that c = a, and hence Q holds.

In contrast, one can easily see that Q is not certain in the usual sense, where F1 and F2 can be
freely extended with additional facts.

Since the PQI generalizes OWQ , by allowing us to constrain part of the schema, we clearly have
a reduction from OWQ to PQI. As we will see later (Theorem 5.2), there is a further reduction
from PQI to NQI. Since OWQ is undecidable for Boolean CQs under TGDs (e.g., [9]) this means
the following.

Proposition 3.4. Both PQI(Q, Σ, S,V) and NQI(Q, Σ, S,V) are undecidable when Q ranges over

Boolean CQs and Σ ranges over TGDs.

For this reason, in most of this article, we focus on more restricted classes of (disjunctive) TGDs,
as well as on GNFO (cf. Figure 3).

Schema-level PQI and NQI. Our schema-level problems ask if there is a realizable instance that
admits a query implication.

Definition 3.5. Let Q be a Boolean CQ over schema S and Σ a background theory over S:
• ∃PQI(Q, Σ, S) = true if there is a realizable finite Sv -instanceV such that PQI(Q, Σ, S,V) =

true.
• ∃NQI(Q, Σ, S) = true if there is a realizable finite Sv -instanceV such that NQI(Q, Σ, S,V) =

true.

Note that these problems now quantify over instances twice, and hence there are alternatives
depending on whether the instanceV is restricted to be finite, and whether the hidden instances F
are restricted to be finite. We denote by ∃PQI∞ and ∃NQI∞ the variants of ∃PQI and ∃NQI where
all quantification is over possibly infinite instances. In addition, for a class of input Q, Σ, S, we say
that “∃PQI(Q, Σ, S) is finitely controllable” if each of the two quantifications can be freely replaced
with quantification over arbitrary instances without changing the truth value of the statement.

ACM Transactions on Computational Logic, Vol. 22, No. 2, Article 13. Publication date: June 2021.

Inference from Visible Information and Background Knowledge 13:11

4 POSITIVE QUERY IMPLICATION

4.1 The Instance-Level Problem PQI

Here we study the (instance-level) problem PQI(Q, Σ, S,V). Recall that this asks whether Q(F) =
true for every full instance F satisfying Σ that agrees with V in the visible part. The section is
organized in two parts. In the first part, we prove upper bounds for the (instance-level) PQI prob-
lem, establishing a connection to the guarded negation fragment. In the second part, we present
matching lower bounds.

Upper bounds and the connection to guarded negation. We begin by showing that PQI is
decidable when background theories are in the logic GNFO, the guarded negation fragment of first-
order logic. This is interesting first of all because GNFO is a very expressive logic. It subsumes the
other decidable logics that we consider here, such as guarded TGDs, disjunctive guarded TGDs, and
Boolean combinations of Boolean CQs. Further, it highlights the fact that GNFO can express that
an instance has a particular restriction to the visible relations. This is exploited in the following
reduction to the satisfiability problem for GNFO.

Theorem 4.1. The problem PQI(Q, Σ, S,V), as Q ranges over Boolean UCQs and Σ ranges over

GNFO sentences, is in 2ExpTime. Furthermore, for suchQ and Σ, the problem is finitely controllable—

that is, PQI(Q, Σ, S,V) = PQI∞(Q, Σ, S,V).

Proof. One easily sees that PQI(Q, Σ, S,V) translates to unsatisfiability of the following
formula:

ϕPQItoGNF
Q,Σ,S,V = ¬Q ∧ Σ ∧

∧
R∈Sv

���
∧

R(ā)∈V

R(ā) ∧ ∀x̄ ���R(x̄) →
∨

R(ā)∈V

x̄ = ā
��	��	 .

Intuitively, the formula requires that the instance on which it is evaluated (which includesvisible
and hidden relations) satisfies the background theory, but not the query, and in addition, the visible
part of the instance agrees withV . Note that the formula has size linear in the inputs to PQI, and
thus this gives a polynomial time reduction.

Note that the third conjunct of ϕPQItoGNF
Q,Σ,S,V is a conjunction of disjunctive Equality-Generating

Dependencies (EGDs). Although this is not a well-studied type of constraints, they have arisen
in the past as a technical tool in the study of OWQ for CQs with inequalities [28].

If the background theory consists of GNFO sentences, then the formula above is also in GNFO.
Indeed, the only places where negation is used, either explicitly or implicitly, are ¬Q , which is
guarded since Q has no free variables, and the universal quantification ∀x̄ (R(x̄) → . . .), which
translates to ¬∃x̄ (R(x̄) ∧ ¬ . . .), with the inner negation guarded by R(x̄) and the outer negation
involving no free variables.

The finite controllability of PQI(Q, Σ, S,V) comes from the finite model property of GNFO (The-
orem 3.1). �

Above, we are using results on satisfiability of GNFO as a “black box.” Satisfiability tests for
GNFO work by translating a satisfiability problem for a formula into a tree automaton, which is
then tested for non-emptiness. By a finer analysis of this translation of GNFO formulas to automata,
we can show that the data complexity of the problem is only singly exponential.

We start by introducing a normal form for GNFO formulas, similar to the one introduced by
Bárány et al. [7]. Formulas in such a normal form are generated using the following grammar:

ϕ ::=
∨

i ∃x̄i
∧

j ψi j

ψ ::=α | α ∧ ¬ϕ,

ACM Transactions on Computational Logic, Vol. 22, No. 2, Article 13. Publication date: June 2021.

13:12 M. Benedikt et al.

where α is an atomic formula and free variables of ϕ are contained in free variables of α . As with
GNFO, in the second production rule, we also allow α to be omitted if ϕ has at most one free
variable x (thus allowing free negation of such formulas—note that such formulas can always be
trivially guarded by the equality atom x = x). The ϕ’s are referred to as UCQ-shaped formulas, with
each of the disjuncts being a CQ-shaped formula. UCQ-shaped formulas are only used to define
the normal form and the related notion of CQ-rank below.

As the name implies, every GNFO formula can be converted to an equivalent one in normal
form.

Proposition 4.2. There is an ExpTime procedure taking as input a GNFO formula and outputting

a ϕ ′ in normal form that is equivalent to ϕ.

This is a variant of a simple normalization procedure from Bárány et al. [7]; details are given in
the appendix.

The CQ-rank of a GNFO formula ϕ in normal form, denoted rank(ϕ), is the maximum number of
conjunctsψi in any CQ-shaped subformula ∃x̄i

∧
i ψi of ϕ, for non-empty x̄i . For the purposes of

CQ-rank, α ∧¬ϕ is treated as a CQ-shaped subformula with one conjunct. The width of ϕ, denoted
width(ϕ), is the maximum number of free variables of any subformula of ϕ.

What follows is the more detailed result of GNFO satisfiability that we will rely on.

Theorem 4.3. For every fixed numbers r and w , there is an ExpTime algorithm that determines

whether a given GNFO formula ϕ in normal form, with rank(ϕ) ≤ r and width(ϕ) ≤ w, is satisfiable.

The proof, which is spelled out in the appendix, is based on a fine-grained analysis of the transla-
tion of a GNFO formula ϕ in normal form to a suitable automaton, extending the translation found
in earlier work [14]. Here we only summarize at a high level. The result is proven by creating an
alternating two-way parity automaton whose states are formulas derived from ϕ. The automaton
runs on a tree where nodes encode width(ϕ)-sized collections of elements in a tree-like model. The
automaton at a state corresponding to some formula ϕ has transitions that verify ϕ, and there will
be transitions for each rule in the normal form. For Boolean connectives, the automaton makes use
of alternation. For example, when checking whether a formulaψ1∧ψ2 holds at the current node of
the input tree, the automaton spawns two subcomputations that check, respectively, thatψ1 andψ2

hold at the current node. When evaluating a formula that starts with a quantifier, the automaton
searches for nodes witnessing a “specialization” of the formula, and does so by inspecting both
the current node and its neighborhood. This crucially relies on the capability of the automaton of
navigating the tree in any direction—that is, from a node to its parent and/or to one of its children.

The difficulty in correctly evaluating a formula by means of an automaton as above is reflected
in the definition of “specialization.” If the formula ϕ to be evaluated were in the guarded fragment,
namely, the fragment of first-order logic with guarded quantification, rather than in GNFO, it
would suffice to use as states the subformulas of ϕ annotated with interpretations of the free vari-
ables. In particular, a possible specialization of a quantified formula like ∃x φ(x) from the guarded
fragment would be the subformula φ annotated with any interpretation of the free variable x by
an element of a guarded set.

For formulas of GNFO, instead, one has to throw in new subformulas. In particular, specializa-
tions of CQ-shaped formulas need to represent the possible guesses as to which of the conjuncts
were true of the elements associated to a given node of a tree-like structure. The bound on rank(ϕ)
guarantees that this need to throw in new subformulas does not blow up the number of states. An
additional issue is that, in this setting, tree nodes will not be associated with a guarded set but
with a set whose size is controlled by width(ϕ). Thus, by bounding width(ϕ), we keep the number
of annotations low. See the appendix for further details.

ACM Transactions on Computational Logic, Vol. 22, No. 2, Article 13. Publication date: June 2021.

Inference from Visible Information and Background Knowledge 13:13

It is also important for our application that the result applies to GNFO formulas that have equal-
ity and constants, which are treated by adding additional cases for equality atoms in the automata,
and conjoining with an additional automata that enforces that the facts involving constants are
consistent across the tree. The details of this, as well as other subtleties in the proof of Theorem 4.3,
are given in the appendix.

We are now ready to state our data-complexity result.

Theorem 4.4. If Q is a Boolean UCQ and Σ is a conjunction of GNFO sentences over a schema S,

then the data complexity of PQI(Q, Σ, S,V) (i.e., asV varies over instances) is in ExpTime.

Proof. Fix a Boolean UCQQ and a conjunction Σ of GNFO sentences over a schema S. Without
loss of generality, by Proposition 4.2, we can assume that the sentences in Σ are already in normal

form. Consider the formula ϕPQItoGNF
Q,Σ,S,V in the proof of Theorem 4.1:

¬Q ∧ Σ ∧
∧

R∈Sv

(∧
R(ā)∈V

R(ā) ∧ ∀x̄ (
R(x̄) →

∨
R(ā)∈V

x̄ = ā
))
.

This formula can be rewritten to eliminate the universally quantified implication, replacing this
subformula with the negation of the sentence

∃x̄ R(x̄) ∧
∧

R(ā)∈V

∨
i

xi � ai .

We can rewrite this to be in normal form, either by adding the relational atom to each negated
equality or by just observing that the negated equalities are unary. With these changes, which do
not impact the size of the formula, the conditions of the normal form are satisfied. This shows that

the formula ϕPQItoGNF
Q,Σ,S,V can be normalized in polynomial time.

Moreover, the rank and the width of the normal form of ϕPQItoGNF
Q,Σ,S,V are bounded when Q , Σ, and

S are fixed. Applying Theorem 4.3, the bound claimed in Theorem 4.4 now follows. �

Lower bounds. In the following, we show that the data complexity bound in Theorem 4.4 is tight
even for IDs. The proof proceeds by showing that a “universal machine” for alternating PSpace can
be constructed by fixing appropriate Q, Σ, S in a PQI problem. We first prove the hardness result
using a UCQ Q ; subsequently, we show how to strengthen this to apply to a CQ.

Theorem 4.5. There are a Boolean UCQ Q without constants and a set Σ of IDs over a schema S

for which the problem PQI(Q, Σ, S,V) is ExpTime-hard in data complexity.

Proof. We reduce the acceptance problem for an alternating PSpace Turing machine M to the
negation of PQI(Q, Σ, S,V).

A configuration of M is defined, as usual, by a control state, a position of the head on the tape,
and a finite string representing the content on the tape. The input of the machine is assumed to be
a string of blanks � · · · � (thus, only its length matters). Moreover, special symbols
, � are added
at the extremities of the input to mark the endpoints of the working tape. Accordingly, the initial
configuration of M has tape content of the form
 � · · · � � and the head on the first position.

The transition function of M describes a set of target configurations on the basis of the current
configuration. We distinguish between existential and universal control states ofM , and we assume
that there is a strict alternation between existential and universal states along every sequence of
transitions. Without loss of generality, we also assume that there are exactly two target configura-
tions for each transition that departs from a universal state. A computation ofM is thus represented
by a tree of configurations, where the root represents the initial configuration and every node with
an existential (respectively, universal) control state has exactly one (respectively, two) successor

ACM Transactions on Computational Logic, Vol. 22, No. 2, Article 13. Publication date: June 2021.

13:14 M. Benedikt et al.

configuration(s). Furthermore, to make the coding simpler, we adopt a non-standard acceptance
condition. Specifically, we assume that the Turing machine M never halts, namely, its transition
function is defined on every configuration, and we distinguish two special control states, qacc and
qrej. We further assume that every infinite path in a computation tree ofM eventually reaches a con-
figuration with either qacc or qrej as the control state, and from there onward there is no change of
configuration. Accordingly, we say that M accepts (its input) if it admits a computation tree where
the state qacc appears on all paths; symmetrically, we say that M rejects if every computation tree
has a path leading to qrej.

The general idea of the reduction is to create a schema, background theory, and query that to-
gether represent a “universal machine” for alternating PSpace. Then, given an alternating PSpace
machine M encoded in the visible instance, an accepting computation tree of M will be encoded
by an arbitrary full instance that satisfies the background theory and violates the query—that is,
a witness of the failure of PQI. We first devise the schema with hidden relations that will store
the computation tree of a generic alternating PSpace machine. The background theory and (the
negation of) the query will be used to restrict the hidden relations so as to guarantee that the
encoding of the computation tree is correct. By “generic,” we mean that the hidden relations and
corresponding background theory will be independent of the tape size, number of control states,
and transition function of the machine. The visible instance will store the “representation” of an
alternating PSpace machine M—that is, an encoding of M that can be calculated efficiently once
M is known. This will include the tape size and an encoding of the transition function. We will
then give the reduction that takes an alternating polynomial space machine M and instantiates all
visible relations with the encoding. The space bound on M will allow us to create the tape com-
ponents in the visible instance efficiently. In contrast, the hidden relations will store aspects of
a computation that cannot be computed easily from M . In summary, in the following, we will be
describe each part of the schema S for computation trees of a machine, along with the polynomial
mapping that transforms a machine M into data filling up the visible parts of the schema.

To begin with, we explain how to encode the tape (devoid of its content) into a binary relationT .
The relationT will be visible and can be filled efficiently once the length of the tape of M is known.
Given M , it will be filled in the following natural way: it contains all of the facts T (y,y ′), where y
is the identifier of a cell and y ′ is the identifier of the successor of this cell in the tape. Recall that
the Turing machine M works on a tape of polynomial length, and hence the visible instance for
the relation T has also size polynomial in M . We also add unary visible relations First and Last,
which are intended to distinguish the first and last cells of the tape. Given M , we will instantiate
First (respectively, Last) with the singleton consisting of the identifier of the first (respectively,
last) cell. Moreover, despite the fact that the tape length is finite, it is convenient to assume that
every cell has a successor—this assumption will be exploited later to ease the instantiation of new
tape contents for each configuration. We will thus add to the visible relation T also the “dummy”
pair (y,y), where y is the identifier of the rightmost cell of the tape.

As for the configurations of the machine, these are described by specifying, for each configura-
tion and each tape cell, a suitable value that represents the content of that cell, together with the
information on whether the Turing machine has its head on the cell, to the right, or to the left, and
what is the corresponding control state. Formally, the configurations of the machine are encoded
by a hidden ternary relation C , where each fact C(x ,y, z) indicates that, in the configuration iden-
tified by x , the cell y has value z. We will enforce that the cell values range over an appropriate
domain, defined by a visible unary relation V . In our reduction from M , we will fill this relation
V with ΣQ � Σ� � Σ�, where Σ is the tape alphabet of M (which includes the markers
 and �),
ΣQ = Σ×Q , Σ� = Σ×{�}, Σ� = Σ×{�},Q is the set of its control states, and �,� are fresh symbols.

ACM Transactions on Computational Logic, Vol. 22, No. 2, Article 13. Publication date: June 2021.

Inference from Visible Information and Background Knowledge 13:15

When a cell has value (a,q), this means that its content is a, the Turing machine stores the control
state q, and the head is precisely on this cell. Similarly, when a cell has value (a,�) (respectively,
(a,�)), this means that its content is a and the cell is to the immediate left (respectively, immediate
right) with respect to the position of the head of the Turing machine.

Because we need to associate the same tape structure with several different configurations, the
content of the relationsT and First will end up being replicated within new hidden relationsTC and
FirstC , where it will be paired with the identifier of a configuration. For example, a factTC (x ,y,y ′)
will indicate that, in the configuration identified by x , the cell y precedes the cell y ′. Similarly, a
fact FirstC (x ,y)will indicate that y is the first cell of the tape of configuration x . Of course, we will
enforce the condition that the relations TC and FirstC , devoid of the first attribute, are contained
in T and First, respectively.

We now turn to the encoding of the computation tree. For this, we introduce a visible unary
relation I that contains the identifier of the initial configuration. We also introduce the hidden
binary relations S∃, S∀1 , and S∀2 . We recall that every configuration x with an existential control state

has exactly one successor x ′ in the computation tree, so we represent this with the fact S∃(x ,x ′).
Symmetrically, every configuration x with a universal control state has exactly two successors x1

and x2 in the computation tree, and we represent this with the facts S∀1 (x ,x1) and S∀2 (x ,x2).
So far, we have introduced the visible relations T , First, Last, V , I , and the hidden relations C ,

TC , FirstC , S∃, S∀1 , S∀2 . These are sufficient to store an encoding of the computation tree of the ma-
chine. However, the background theories are only allowed to contain IDs, which are not powerful
enough to guarantee that these relations indeed represent a correct encoding. To overcome this
problem, we will later introduce a few additional relations and exploit a union of CQs to detect
those violations of the background theory that are not captured by IDs.

We now list some IDs in Σ that enforce basic restrictions on the relations:

• We begin with some sentences that guarantee that the relations T and TC induce the same
“successor” relation on the cells of the tape:

TC (x ,y,y ′) → T (y,y ′) FirstC (x ,y) → ∃ y ′ TC (x ,y,y ′)

FirstC (x ,y) → First(y) TC (x ,y,y ′) → ∃ y ′′ TC (x ,y ′,y ′′).

Note that we can easily enforce that T contains the projection of TC onto the last two at-
tributes, and similar for First and FirstC . But it is more difficult to enforce that TC contains
copies of T annotated with each configuration identifier. This will be done indirectly by re-
quiring that every tuple (x ,y) in FirstC is the source of an infinite chain of successors inside
TC , all annotated with the same configuration identifier. Paired with the previous sentences,
this will guarantee that TC contains the annotated copy {x} ×T . Further note that, for this
to work, it is crucial to have assumed that there is a “dummy” successor T (y,y) on the last
tape cell y. The existence of facts of the form FirstC (x ,y) for each configuration x will be
enforced later.
• We proceed by enforcing the existence of values associated with each cell in each configu-

ration:

TC (x ,y,y ′) → ∃ z C(x ,y, z) C(x ,y, z) → V (z).

Note that the sentences in the background theory defined so far may allow a cell to be
associated with multiple values. We will show later how to detect this case using a suitable
query.
• We finally enforce a graph structure representing the evolution of the configurations, as-

suming that the machine starts with the existential configuration contained in the visible

ACM Transactions on Computational Logic, Vol. 22, No. 2, Article 13. Publication date: June 2021.

13:16 M. Benedikt et al.

relation I :

I (x) → ∃ x ′ S∃(x ,x ′)
S∃(x ,x ′) → ∃ x1 S

∀
1 (x
′,x1)

S∃(x ,x ′) → ∃ x2 S
∀
2 (x
′,x2)

S∀1 (x ,x1) → ∃ x ′ S∃(x1,x
′)

S∀2 (x ,x2) → ∃ x ′ S∃(x2,x
′)

S∃(x ,x ′) → ∃ y FirstC (x ,y)

S∀1 (x ,x1) → ∃ y FirstC (x ,y)

S∀2 (x ,x2) → ∃ y FirstC (x ,y).

Note that the rules on the right side above trigger the creation of a first tape cell for each
configuration, which in turn spawns copies of the entire tape.

Next, we explain how to detect badly formed encodings of the computation tree. For this, we use
additional visible relations ErrC , ErrI, first, ErrI, last, ErrI,adj, ErrC,adj, ErrS∃ , ErrS∀

1
, and ErrS∀

2
, instanti-

ated as follows:

• The relation ErrC is binary and contains all pairs of distinct cell values from V × V . This is
used to check that every cell, in every configuration, is associated with at most one value.
The CQ below holds precisely when this latter property is violated:

QC = ∃ x y z z ′ C(x ,y, z) ∧ C(x ,y, z ′) ∧ ErrC (z, z
′).

• The relation ErrI, first is also binary and contains all pairs of values that cannot be associated
with the first two cells in the initial configuration (recall that the first two cells carry the
symbols
 and �, and M starts with state q0 on the first cell). Formally, ErrI, first contains all
pairs in V ×V except (z0, z1), where z0 = (
,q0) and z1 = (�,�). Accordingly, we can detect
whether the values of the first two cells in the initial configuration are badly formed using
the following CQ:

QI, first = ∃ x y y ′ z z ′

I (x) ∧ First(y) ∧ T (y,y ′) ∧ C(x ,y, z) ∧ C(x ,y ′, z ′) ∧ ErrI, first(z, z
′).

• Similarly, the relation ErrI, last contains pairs of values that cannot be associated with the last
two cells in the initial configuration—that is, ErrI, last = (V ×V) \ (z1, z−1), where z1 = (�,�)
is defined as before and z−1 = (�,�). We can detect whether the last two values in the initial
configuration are inconsistent using the CQ

QI, last = ∃ x y y ′ z z ′

I (x) ∧ T (y,y ′) ∧ Last(y ′) ∧ C(x ,y, z) ∧ C(x ,y ′, z ′) ∧ ErrI, last(z, z
′).

• The relation ErrI,adj contains pairs of values that cannot appear on any two consecutive cells
of the initial configuration, namely, ErrI,adj contains all pairs inV ×V but the following ones:
(z0, z1), (z1, z1), (z1, z−1). This type of violation is checked with the CQ

QI,adj = ∃ x y y ′ z z ′ I (x) ∧ T (y,y ′) ∧ C(x ,y, z) ∧ C(x ,y ′, z ′) ∧ ErrI,adj(z, z
′).

• In a similar way, we can check violations of labelings of consecutive cells in every configu-
ration. This is done with the binary visible relation ErrC,adj, instantiated with all pairs from

V ×V that cannot be adjacent in an arbitrary configuration (e.g., the pair
(
(a,�), (b,�)

)
), and

the CQ

QC,adj = ∃ x y y ′ z z ′ T (y,y ′) ∧ C(x ,y, z) ∧ C(x ,y ′, z ′) ∧ ErrC,adj(z, z
′).

• The relation ErrS∃ is used to check consistency along a transition that departs from an exis-
tential configuration. It contains a quadruple of cell values (z, z ′, z ′′, z ′′′) ∈ V × V × V × V
whenever it is not possible to have an existential configuration where the labels z, z ′, z ′′ ap-
pear on three consecutive positions y,y ′,y ′′, together with a successor configuration that

ACM Transactions on Computational Logic, Vol. 22, No. 2, Article 13. Publication date: June 2021.

Inference from Visible Information and Background Knowledge 13:17

carries value z ′′′ at position y ′. Of course, the content of this relation depends on the transi-
tion function of the Turing machine. A violation of the corresponding constraint is exposed
by the following CQ:

QS∃ = ∃ x x ′ y y ′ y ′′ z z ′ z ′′ z ′′′

S∃(x ,x ′) ∧ T (y,y ′) ∧ T (y ′,y ′′) ∧

C(x ,y, z) ∧ C(x ,y ′, z ′) ∧ C(x ,y ′′, z ′′) ∧ C(x ′,y ′, z ′′′) ∧

ErrS∃ (z, z ′, z ′′, z ′′′).

• Similarly, the relation ErrS∀
1

(respectively, ErrS∀
2
) contains quadruples of values that cannot

appear on positions y − 1,y,y + 1 of some universal configuration x , and at position y of
the first (respectively, second) successor configuration. The corresponding CQsQS∀

1
,QS∀

2
are

defined by

QS∀
i
= ∃ x x ′ y y ′ y ′′ z z ′ z ′′ z ′′′

S∀i (x ,x ′) ∧ T (y,y ′) ∧ T (y ′,y ′′) ∧

C(x ,y, z) ∧ C(x ,y ′, z ′) ∧ C(x ,y ′′, z ′′) ∧ C(x ′,y ′, z ′′′) ∧

ErrS∀
i
(z, z ′, z ′′, z ′′′).

It remains to check whether the Turing machine M reaches the rejecting state qrej along some path
of the computation tree. This can be done by introducing a last visible relation Vrej that contains
all cell values of the form (a,qrej), for some a ∈ Σ. The CQ that checks this property is

Qrej = ∃ x y z C(x ,y, z) ∧ Vrej(z).

The final query is thus a disjunction of all of the above CQs:

Q = QC ∨QI, first ∨QI, last ∨QI,adj ∨QC,adj ∨QS∃ ∨QS∀
1
∨QS∀

2
∨Qrej.

We are now ready to give the reduction. Denote byVM the instance that captures the intended
semantics of the visible relations T , First, Last, V , I , ErrC , ErrI, first, ErrI, last, ErrI,adj, ErrC,adj, ErrS∃ ,
ErrS∀

1
, and ErrS∀

2
. We have described these semantics previously and argued why they can be cre-

ated in polynomial time. In the following, we prove that the Turing machine M has a successful
computation tree where all paths visit the control state qacc if and only if PQI(Q, Σ, S,VM) = false.

Suppose that M has a successful computation tree ρ. On the basis of ρ, and by following the
intended semantics of the hidden relations C , TC , FirstC , S∃, S∀1 , S∀2 , we can easily construct a full
instance F that satisfies all sentences in Σ and agrees with VM on the visible part. Furthermore,
because we correctly encode a successful computation tree of M , the instance F violates every
disjunct of Q , and hence PQI(Q, Σ, S,VM) = false.

Conversely, suppose that PQI(Q, Σ, S,VM) = false. Let F be an S-instance that agrees withVM

on the visible part, satisfies the sentences in Σ, and violates every disjunct of the UCQ Q . We first
construct from F a graph, where every node encodes a configuration and, depending on whether
the configuration is existential or universal, it has either one or two outgoing edges that represent
some transitions of M . We will then argue that the unfolding of this graph from its initial node
correctly represents an accepting computation tree of M . The nodes of the graph are identified
by the values x that appear in facts of F of the form S∃(x ,x ′), S∀1 (x ,x

′), or S∀2 . The initial node is
identified by the unique value x0 in the singleton visible relation I .

Thanks to the background theory Σ, every configuration identifier x also appears in the first
column of the hidden relation FirstC , and there exist similar occurrences inTC andC , one for each
cell of the tape. The content of C can then be used to determine the labeling of the tape cells, the

ACM Transactions on Computational Logic, Vol. 22, No. 2, Article 13. Publication date: June 2021.

13:18 M. Benedikt et al.

control state, and the head position for each configuration, as indicated by the intended semantics.
For example, we set the content of a tape celly in some configuration x to be a whenever there is a
fact of the formC(x ,y, z), with z among (a,q), (a,�), or (a,�). We observe that this is well defined
(i.e., every tape position y at every configuration x has exactly one associated value) thanks to the
sentencesTC (x ,y,y ′) → ∃ z C(x ,y, z) andC(x ,y, z) → V (z), and thanks to the fact that the query
QC is not satisfied. Moreover, because the CQsQI, first,QI, last, andQI,adj are also is not satisfied, the
configuration at the initial node x0 is correct. That is, encodes the tape content
 � · · · � �, with
control state q0, and head on the first position.

Next, the edges of the graph are constructed using the hidden binary relations S∃, S∀1 , and S∀2 of

F . Formally, for every existential node x , the sentences constraining S∃(x ,x ′) imply the existence
of at least one node x ′ forming a fact S∃(x ,x ′). We can thus choose any such node x ′ and declare
(x ,x ′) to be an edge of the graph. A similar argument applies to the universal nodes, with the only
difference that we now introduce two edges instead of one. Moreover, using the assumption that
the CQsQC,adj,QS∃ ,QS∀

1
, andQS∀

2
are all violated, one can easily verify that the thus defined edges

represent valid transitions between the encoded configurations. The above arguments imply that
the unfolding of the graph from the initial node x0 results in a valid computation tree of M . Finally,
because the CQ Qrej is also violated, the computation tree must be accepting. �

Next, we show that PQI problems for UCQs can be reduced to PQI problems for CQs.

Lemma 4.6. Let Q be a Boolean UCQ without constants, let Σ be a set of first-order sentences over

a schema S, and letV be an instance for the visible part of S. There exist a schema S
′, a Boolean CQ

Q ′ without constants, a set Σ′ of first-order sentences, and an S
′
v -instanceV′, all having polynomial

size with respect to the original objects S, Q , Σ, andV , such that PQI(Q, Σ, S,V) = true if and only

if PQI(Q ′, Σ′, S′,V′) = true.

Moreover, if Σ consists of IDs (or, more generally, belongs to any of the languages considered in this

article), then the same holds for Σ′.

Proof. The general idea is as follows. For every visible (respectively, hidden) relation R of S of
arity k , we add to S

′ a corresponding visible (respectively, hidden) relation R′ of arity k + 1. The
idea is that the additional attribute of R′ represents a truth value (e.g., 0 or 1), which indicates the
presence of a tuple in the original relation R. For example, the fact R′(ā, 1) indicates the presence of
the tuple ā in the relation R, but R′(ā, 0) does not. The sentences Σ will be rewritten accordingly, so
as to propagate these truth values. We can then simulate the disjunctions in the query Q by using
conjunctions and an appropriate look-up table Or. This technique has been used in a number of
previous works (e.g., [34]) and will also be used later in this article. However, due to the nature of
the PQI problem, we also need to add dummy facts R′(⊥, . . . ,⊥, 0) to correctly transfer the validity
from the UCQ Q to the CQ Q ′. We give the full details in the following.

As mentioned, the new schema S
′ contains a copy R′ of each relation R in S, where R′ is visible

if and only if R is visible, and R′ has arity k + 1 if and only if R has arity k . In addition, the schema
S
′ contains the visible relations Or, Zero, One of arities 3, 1, 1, respectively, and some other visible

relations Bottomk of arity k + 1, for all k ranging from 0 to the maximal arity in S.
Let us now describe the visible instanceV′ constructed fromV . We choose some fresh values 0,

1, and ⊥ that do not belong to the active domain ofV . First, we include inV′ the facts Or(1, 1, 1),
Or(1, 0, 1), Or(0, 1, 1), Zero(0), One(1), and Bottomk (⊥, . . . ,⊥, 0) for all arities k . Then, for each
visible relation R of S, we add toV′ the fact R(ā, 1) whenever R(ā) is a fact inV .

As for the sentences in the background theory, we proceed as follows. If

R(x̄) → ∃ȳ S1(z̄1) ∧ . . . ∧ Sm(z̄m)

ACM Transactions on Computational Logic, Vol. 22, No. 2, Article 13. Publication date: June 2021.

Inference from Visible Information and Background Knowledge 13:19

is a sentence in Σ, with z̄1, . . . , z̄m sequences of variables or constants from x̄ , ȳ, then we add to Σ′

a corresponding sentence

R′(x̄ ,b) → ∃ȳ S ′1(z̄1,b) ∧ . . . ∧ S
′
m(z̄m ,b).

Furthermore, for each relation R of arity k in S, we introduce the ID

Bottomk+1(x1, . . . ,xk ,y) → R′(x1, . . . ,xk ,y).

Recall that Bottomk+1 is a visible relation of S
′ that contains the single fact (⊥, . . . ,⊥, 0). Therefore,

the effect of the above sentence is to introduce dummy facts R′(⊥, . . . ,⊥, 0) for each (visible or
hidden) relation R′.

It now remains to transform the UCQ Q into a CQ Q ′. Let Q1, . . . ,Qn be the disjuncts (CQs) in
Q . We define

Q ′ = ∃ b1 . . .bn b ′0 b
′
1 . . . b

′
n

∧
i

Q ′i (bi) ∧ Zero(b ′0) ∧ One(b ′n) ∧
∧

i

Or(b ′i−1,bi ,b
′
i),

where each Q ′i is obtained from the i-th disjunct Qi = ∃ȳ S1(z̄1) ∧ . . . ∧ Sm(z̄m) of Q by letting
Q ′i (bi) = ∃ȳ S ′1(z̄1,bi) ∧ . . . ∧ S ′m(z̄m ,bi). Note that the presence of the facts R′(⊥, . . . ,⊥, 0)
in every instance that extends V′ and satisfies Σ′ guarantees that the rewritten CQs Q ′i (bi) can
always be satisfied by letting bi = 0. In particular, the subquery

∧
i Q
′
i (bi) holds at least with all of

the bi ’s set to 0. The remaining part of the query Q ′ precisely requires that at least one of those
bi ’s is set to 1.

We are now ready to prove that PQI(Q, Σ, S,V) = true if and only if PQI(Q ′, Σ′, S′,V′) = true.
Suppose that PQI(Q ′, Σ′, S′,V′) = true and consider an S-instance F that satisfies the sentences
in Σ and such that Visible(F) = V . Without loss of generality, we can assume that the active
domain of F does not contain the values 0, 1, and⊥. We can easily transform F into an S

′-instance
F ′ by expanding all facts with the additional attributed value 1 and by adding new facts of the
form R′(⊥, . . . ,⊥, 0), for all relations R′ ∈ S

′, together with the visible facts Or(1, 1, 1), Or(1, 0, 1),
Or(0, 1, 1), Zero(0), One(1), and Bottomk (⊥, . . . ,⊥, 0) for all arities k . One easily verifies that F ′

satisfies the sentences in Σ′ and agrees withV′ on the visible part. Since PQI(Q ′, Σ′, S′,V′) = true,
we know that F ′ also satisfies the queryQ ′ and, in particular, it satisfies one of the conjunctsQ ′i (bi)

of Q ′ with bi = 1. This implies that F satisfies the corresponding Boolean CQ Qi and hence Q as
well.

Conversely, suppose that PQI(Q, Σ, S,V) = true and consider an S
′-instance F ′ that satisfies

the sentences in Σ′ and such that Visible(F ′) = V′. By selecting from F ′ only the facts of the
form R′(ā, 1), with R ∈ S, and by projecting away the last attribute, we obtain an S-instance F that
satisfies the sentences in Σ and such that Visible(F) = V . Since PQI(Q, Σ, S,V) = true, we know
that F satisfies at least one of the disjuncts Qi of Q . This immediately implies that F ′ satisfies the
CQ Q ′i (bi) with bi = 1. As for the remaining conjuncts of the query Q ′, we recall that F ′ must
contain facts of the form R′(⊥, . . . ,⊥, 0) for all relations R′. Thanks to these facts, the CQs Q ′j (bj)

hold on F ′ with bj = 0, for all j � i , and hence Q ′ holds on F ′ as well. �

Putting the above results together, we obtain the following.

Corollary 4.7. There are a Boolean CQ Q without constants and a set Σ of IDs over a schema S

for which the problem PQI(Q, Σ, S,V) is ExpTime-hard in data complexity.

We note that the above lower bound for data complexity makes use of a schema with arity
above 2, even for UCQs. See, for example, the ternary relation C . We do not know whether our
lower bound still holds for the arity 2 case. Our results contrasts with results of Franconi et al. [31],

ACM Transactions on Computational Logic, Vol. 22, No. 2, Article 13. Publication date: June 2021.

13:20 M. Benedikt et al.

which show that the data complexity lies in co-NP (and can be co-NP-hard) for certain description
logics over an arity 2 schema.

We now turn to the combined complexity. We start by noting that the 2ExpTime upper bound
of Theorem 4.1 is tight even for IDs. When the query is allowed to be a UCQ, a stronger result has
been shown in Theorem 8 of Ngo et al. [47], as the constraints there are IDs on an arity 2 schema.
In the case of linear TGDs, an alternative reduction that gives a 2ExpTime lower bound has been
pointed out by a reviewer, going through results on disjunctive IDs [22]. In the appendix, we give
our own argument that allows us to use a CQ rather than a UCQ, for IDs rather than linear TGDs.
However, our result does not use an arity 2 schema, so it is orthogonal to Theorem 8 of Ngo et al.
[47].

Theorem 4.8 (From Ngo et al. [47] in the case of UCQs). Checking PQI(Q, Σ, S,V), where

Q ranges over Boolean CQs without constants and Σ ranges over sets of IDs, is 2ExpTime-hard for

combined complexity.

4.2 A Chase Procedure for PQI with Arbitrary TGDs

In this section, we show that, for TGDs, the PQI problem (over arbitrary, possible infinite instances)
can be characterized using a variant of the chase procedure [28, 48]. We will make use of this char-
acterization in the next sections, where we consider the schema-level problems ∃PQI and ∃NQI.
For simplicity, we focus here on TGDs only, but in fact, the results extend in a straightforward way
to combinations of TGDs and EGDs.

Our chase procedure receives as input a relational schema S, a background theory Σ consisting
of TGDs, and an initial instance F0 for the schema S, which does not need to satisfy the background
theory Σ. The goal of the procedure is to produce a collection of instances (not necessarily finite)
that satisfy Σ, extend the initial instance F0, and agree with this instance on the visible part. The
goal is achieved by repeatedly adding new facts to the initial instance F0 so as to satisfy the sen-
tences in Σ, in a way similar to the classical chase procedure for TGDs. However, non-deterministic
choices are sometimes needed to map the newly generated tuples in a visible relation to some ex-
isting facts in F0. Our technique is actually a variant of the “disjunctive chase” of Deutsch et al.
[27], which produces multiple instances.

Recall that without loss of generality, TGDs can be assumed to have exactly one atom in the
right-hand side (as can be achieved by introducing auxiliary relations where needed).

In what follows, by a homomorphism (relative to a background theory and query), we will mean
a function f mapping domain elements of one instance to domain elements of another instance
such that (i) for every fact R(ā) of the first instance, its f -image R(f (ā)) is a fact of the second
instance, and (ii) f (a) = a for every constant a appearing in the query and/or background theory.
For an instance I , we will also denote by f (I) the instance consisting of all f -images of the facts
of I .

The procedure builds a chase tree of instances, starting with the singleton tree consisting of the
input S-instance F0 and extending the tree by repeatedly applying the following steps. It chooses
an instance K at some leaf of the current tree; a TGD R1(x̄1) ∧ . . . ∧ Rm(x̄m) → ∃ȳ S(z̄) in Σ,
where z̄ is a sequence of (possibly repeated) variables from x̄1, . . . , x̄m , ȳ; and a homomorphism
f that maps R1(x̄1), . . . , Rm(x̄m) to some facts in K . Note that then the procedure constructs a
new instance from K by adding the fact S(f ′(z̄)), where f ′ is an extension of f that maps, in an
injective way, the existentially quantified variables in ȳ to some values that are not in K . In the
usual terminology of the chase, such an added value is called a null, and adding this fact is called
performing a chase step. Immediately after this step, and only when the relation S is visible, the

ACM Transactions on Computational Logic, Vol. 22, No. 2, Article 13. Publication date: June 2021.

Inference from Visible Information and Background Knowledge 13:21

procedure replaces the instance K ′ = K ∪
{
S(f ′(z̄))

}
with copies of it of the form д(K ′) such that

Visible(д(K ′)) = Visible(F0), for all possible homomorphisms д that map the values f ′(z̄) to some
values in the active domain {a1, . . . ,an} of the visible instance Visible(F0) (and such that д acts as
the identity function on all other values). Note that the active domain of {a1, . . . ,an} of Visible(F0)

does not contain null values. In the language of prior works on the chase [27], this step would be a
sequence of “disjunctive chase steps,” for disjunctive EGDs of the form S(z̄) → zi = a1 ∨ . . .∨zi =

an). The resulting instances д(K ′) are then appended as new children of K in the tree-shaped
collection. In the special case where there are no homomorphisms д such that Visible(д(K ′)) =
Visible(F0), we append a “dummy instance” ⊥ as a child of K : this is used to represent the fact that
the chase step from K led to an inconsistency (the dummy node will never be extended during the
subsequent chase steps). If S is not visible, then the instance K ′ is simply appended as a new child
of K .

This process continues iteratively using a strategy that is “fair,” namely, that guarantees that
whenever a dependency is applicable in a node on a maximal path of the chase tree, then it will
be fired at some node (possibly later) on that same maximal path (unless the path ends with ⊥). In
the limit, the process generates a possibly infinite tree-shaped collection of instances. It remains
to complete the collection with “limits” to guarantee that the sentences in the background theory
are satisfied. Consider any infinite path K0,K1, . . . in the tree (if there are any). It follows from
the construction of the chase tree that the instances on the path form a chain of homomorphic

embeddings K0
h0
−→ K1

h1
−→ Such chains of homomorphic embeddings admit a natural notion

of limit, which we denote by limn∈N Kn . We omit the details of this construction here, which
can be found, for instance, in the work of Chang and Keisler [25]. The limit instance limn∈N Kn

satisfies the background theory Σ. We denote by Chasesvis(Σ, S,F0) the collection of all non-dummy
instances that occur at the leaves of the chase tree, plus all limit instances of the form limn∈N Kn ,
where K0,K1, . . . is an infinite path in the chase tree. This is well defined only once the ordering
of steps is chosen, but for the results below, which order is chosen will not matter, so we abuse
notation by referring to Chasesvis(Σ, S,F0) as a single object.

Note that the instances in Chasesvis(Σ, S,F0) are not necessarily finite. Every instance in
Chasesvis(Σ, S,F0) satisfies the sentences in Σ and, in addition, agrees with F0 on the visible part
of the schema.

Lemma 4.9. Let Σ consist of TGDs, let F0 be an instance of a schema S, and let F be another instance

over the same schema that contains all facts of F0, agrees with F0 on the visible part (i.e., Visible(F) =

Visible(F0)), and satisfies all TGDs in Σ. Then, there exist an instance K ∈ Chasesvis(Σ, S,F0) and a

homomorphism from K to F .

Proof. We consider the chase tree for Chasesvis(Σ, S,F0), and based on the full instance F , we
identify inside this chase tree a suitable path K0,K1, . . . and a corresponding sequence of homo-
morphisms h0,h1, . . . such that for all n ∈ N, hn maps Kn to F . Once these sequences are defined,
the lemma will follow easily by letting K = limn∈N Kn and h = limn∈N hn—that is, h(ā) = b̄ if
hn(ā) = b̄ for all but finitely many n ∈ N.

The base step is easy, as we simply let K0 be the initial instance F0, which appears at the root
of the chase tree, and let h0 be the identity. As for the inductive step, suppose that Kn and hn are
defined for some step n, and suppose that R1(x̄1) ∧ . . . ∧ Rm(x̄m) → ∃ȳ S(z̄) is the dependency
that is applied at node Kn , where z̄ is a sequence of variables from x̄1, . . . , x̄m , ȳ. Let R1

(
f (x̄1)

)
,

. . . , Rm

(
f (x̄m)

)
be the facts in the instance Kn that have triggered the chase step, where f is a

homomorphism from the variables in x̄1, . . . , x̄m to the domain of Kn . Since F satisfies the same
dependency and contains the facts R1

(
hn(f (x̄1))

)
, . . . , Rm

(
hn(f (x̄m))

)
, it must also contain a fact

of the form S
(
h′(f ′(z̄))

)
, where f ′ is the extension of f that is the identity on the existentially

ACM Transactions on Computational Logic, Vol. 22, No. 2, Article 13. Publication date: June 2021.

13:22 M. Benedikt et al.

quantified variables ȳ and h′ is some extension of hn that maps the variables ȳ to some values in
the domain of F .

Now, to choose the next instance Kn+1, we distinguish two cases, depending on whether S is
visible or not. If S is not visible, then we know that the chase step appends a single instance
K ′ = Kn ∪

{
S(f ′(z̄))

}
as a child of Kn ; accordingly, we let Kn+1 = K ′ and hn+1 = h

′ ◦ f ′. Otherwise,

if S is visible, then we observe that h′ is a homomorphism from K ′ = Kn ∪
{
S(f ′(z̄))

}
to F . In

particular,h′maps the variables z̄ to some values in the active domain of the visible part Visible(F0),
and hence h′(K ′) agrees with F0 on the visible part of the schema. This implies that the chase step
adds at least the instance h′(K ′) as a child of Kn . Accordingly, we can define Kn+1 = h′(K ′) and
hn+1 = f ′. Given the above constructions, it is easy to see that the homomorphismhn+1 mapsKn+1

to F .
Proceeding in this way, we either arrive at a leaf, and in this case we are done, or we obtain an

infinite path of the chase tree K0
h0
−→ K1

h1
−→ . . ., with homomorphisms h′i : Ki → F such that

hi ◦ h
′
i+1 extends h′i , for all i ∈ N. In the latter case, it can be shown that the limit limn∈N Kn also

homomorphically maps to F . �

The following proposition characterizes the positive instances of the PQI problem when the
background theory consists of TGDs without constants.

Proposition 4.10. If Q is a Boolean UCQ, Σ is a set of TGDs over a schema S, andV is a visible

instance, then PQI∞(Q, Σ, S,V) = true if and only if every instance K in Chasesvis(Σ, S,V) satisfies

Q .

Proof. Suppose that PQI∞(Q, Σ, S,V) = true and recall that every instance in
Chasesvis(Σ, S,V) satisfies the TGDs in Σ and agrees with V on the visible part. In particular,
this means that every instance in Chasesvis(Σ, S,V) satisfies the query Q .

Conversely, suppose that PQI∞(Q, Σ, S,V) = false. This means that there is a (possibly infinite)
S-instance F that has V as the visible part, satisfies the TGDs in Σ, but not the query Q . By
Lemma 4.9, letting F0 = V , we get an instance K ∈ Chasesvis(Σ, S,V) and a homomorphism from
K to F . Since Q is preserved under homomorphisms, K does not satisfy Q . �

As we mentioned earlier, although we only consider TGDs in this article, these above results
extend naturally to the case with EGDs. Chasing an EGD of the form R1(x̄1)∧ . . .∧Rm(x̄m) → x =
x ′, where x ,x ′ are two variables from x̄1, . . . , x̄m , amounts to applying a suitable homomorphism
that identifies the two values h(x) and h(x ′) whenever the facts R1(h(x̄1)), . . . ,Rm(h(x̄m)) belong
to the instance under consideration. Note that this operation can lead to a failure (i.e., a dummy
instance) when h(x) and h(x ′) are distinct values from the active domain of the visible partV .

4.3 The Schema-Level Problem ∃PQI

In this section, we focus on the schema-level problem ∃PQI—that is, the problem of deciding the
existence of an instanceV such that PQI(Q, Σ, S,V) = true.

Choose an arbitrary domain element a, and let V{a } be a fixed instance for the visible part of
a schema S whose domain contains the single value a and whose visible relations are singleton
relations of the form {(a, . . . ,a)}. We will show that, for certain languages for the background
theories, if ∃PQI(Q, Σ, S) = true, then the witnessing instance can be taken to be V{a } . This can
be viewed as an extension of the “critical instance” method that has been applied previously to
chase termination problems: Proposition 3.7 of Marnette and Geerts [43] states a related result
for disjunctive TGDs in isolation; Gogacz and Marcinkowski [32] call such an instance a “well of

ACM Transactions on Computational Logic, Vol. 22, No. 2, Article 13. Publication date: June 2021.

Inference from Visible Information and Background Knowledge 13:23

positivity.” We will use the terminology of the earlier work [35] and the later works [10, 17], calling
this instance the critical instance and the element a the critical element.

Theorem 4.11. For every Boolean UCQ Q without constants, and every set Σ of TGDs without

constants, ∃PQI∞(Q, Σ, S) = true if and only if PQI∞(Q, Σ, S,V{a }) = true.

Before proving Theorem 4.11, we first establish a lemma. Recall that the visible instanceV{a } is
constructed over a singleton active domain and the TGDs in the background theory Σ have no con-
stants. This implies that there are no disjunctive choices to perform while chasing with the TGDs
starting from the initial instanceV{a } . Moreover, it is easy to see that this chase always succeeds.
In other words, it returns a collection Chasesvis(Σ, S,V{a })with exactly one instance—in particular,
V{a } is a realizable instance. By a slight abuse of notation, we denote by chasevis(Σ, S,V{a }) the
unique instance in the collection Chasesvis(Σ, S,V{a }).

Lemma 4.12. If Σ is a set of TGDs without constants over a schema S and V is an instance

of the visible part of S, then every instance K ∈ Chasesvis(Σ, S,V) maps homomorphically to

chasevis(Σ, S,V{a })—that is, h(K) ⊆ chasevis(Σ, S,V{a }) for some homomorphism h.

Proof. Recall that the instances in Chasesvis(Σ, S,V) are either leaves or limits of infinite
paths of the chase tree. In the following, we prove that every instance K in the chase tree for
Chasesvis(Σ, S,V) maps to chasevis(Σ, S,V{a }) via some homomorphism h. In addition, we ensure
that if K ′ is a descendant of K in the same chase tree, then the corresponding homomorphism h′

is obtained by composing some homomorphism with an extension of h. This way of constructing
homomorphisms is compatible with limits in the following sense: ifh0,h1, . . . are homomorphisms
mapping instances K0,K1, . . . along an infinite path of the chase tree, then there is a homomor-
phism limn∈N hn that maps the limit instance limn∈N Kn to F .

For the base case of the induction, we consider the initial instance V at the root of the chase
tree, which clearly maps homomorphically toV{a } (recall that there are no constants in the query
or in the TGDs, and homomorphisms are free to map all domain elements to a). For the inductive
case, we consider an instance K in the chase tree and suppose that it maps to chasevis(Σ, S,V{a })
via a homomorphism h. We also consider an instance K ′ that is a child of K and is obtained by
chasing some dependency R1(x̄1) ∧ . . . ∧ Rm(x̄m) → ∃ȳ S(z̄), where z̄ is a sequence of variables
from x̄1, . . . , x̄m , ȳ. This means that there exist two homomorphisms f and д such that

(1) f maps the variables x̄1, . . . , x̄m to some values in K and maps injectively the variables ȳ to
fresh values;

(2) д either maps f (z̄) to values in the active domain ofV or is the identity on f (z̄), depending
on whether S is visible or not;

(3) R j

(
f (x̄ j)

)
∈ K for all 1 ≤ j ≤ m;

(4) K ′ = д
(
K ∪

{
S(f (z̄))

})
.

Note that h maps each fact R j

(
f (x̄ j)

)
in K to R j

(
h(f (x̄ j))

)
in chasevis(Σ, S,V{a }). Since

chasevis(Σ, S,V{a }) satisfies the chased dependency, it must also contain a fact of the form

S
(
h′(f (z̄))

)
, where h′ is a homomorphism that extends h on the fresh values f (ȳ). Moreover, if

S is visible, then h′ maps all values f (z̄) to the same value a, which is the only element of the
active domain ofV{a } .

We can now define a homomorphism that maps the instance K ′ = д
(
K ∪

{
S(f (z̄))

})
to

chasevis(Σ, S,V{a }). If S is not visible, then we recall that д is the identity on f (z̄), and hence

h′ already maps K ′ = д
(
K ∪

{
S(f (z̄))

})
= K ∪

{
S(f (z̄))

}
to chasevis(Σ, S,V{a }). Otherwise, if S

is visible, then we recall that д maps f (z̄) to values in the active domain of V , we let д′ be the

ACM Transactions on Computational Logic, Vol. 22, No. 2, Article 13. Publication date: June 2021.

13:24 M. Benedikt et al.

function that maps all values of the active domain ofV to a, and finally we define h′′ = h′ ◦д′. In
this way, h′′ maps K ′ = д

(
K ∪

{
S(f (z̄))

})
to chasevis(Σ, S,V{a }). �

Proof of Theorem 4.11. One direction is trivial: if PQI∞(Q, Σ, S,V{a }) = true, then clearly
∃PQI∞(Q, Σ, S) = true. For the converse direction, suppose that ∃PQI∞(Q, Σ, S) = true. This
implies the existence of a realizable instance V such that PQI∞(Q, Σ, S,V) = true. By Proposi-
tion 4.10, every instance in Chasesvis(Σ, S,V) satisfies the query Q . Moreover, by Lemma 4.12,
every instance in Chasesvis(Σ, S,V) maps homomorphically to chasevis(Σ, S,V{a }). Hence, the
unique instance in Chasesvis(S, Σ,V{a }), i.e. chasevis(Σ, S,V{a }), also satisfiesQ . By applying Propo-
sition 4.10 again, we conclude that PQI∞(Q, Σ, S,V{a }) = true. �

Although we only consider TGDs in this article, it is worth pointing out that the same results
naturally extend to combinations of TGDs and EGDs without constants. By pairing Theorem 4.11
with the upper bound and the finite controllability for instance-level problems (Theorem 4.1), one
immediately obtains the following corollary.

Corollary 4.13. ∃PQI(Q, Σ, S) withQ ranging over Boolean UCQs without constants and Σ rang-

ing over sets of FGTGDs without constants, is decidable in 2ExpTime, and is finitely controllable.

A matching lower bound can be obtained by reduction from OWQ .

Proposition 4.14. Let L be any constraint language that includes IDs. There is a polynomial time

reduction from OWQ for Boolean CQs (with or without constants) and constraints in L, to ∃PQI for

Boolean CQs (with, respectively, without constants) and constraints in L.

Proof. LetQ be a Boolean CQ, let Σ be a set of constraints over a schema S belonging to L, and
let F be an instance of the schema S. We show how to reduce the OWQ problem for Q , Σ, S, and
F to a problem ∃PQI(Q ′, Σ′, S′). The idea is to create a copy of the instance F in the hidden part
of the schema, which can then be extended arbitrarily.

Formally, we let the transformed schema S
′ consist of all relations in S, which are assumed to

be hidden, plus an additional visible relation Good of arity 0. We then introduce a variable yb for
each value in the active domain of F , and we let Σ′ contain all sentences from Σ, plus the sentence
Good → ∃ȳ QF , where ȳ contains one variable yb for each value b in the active domain of F and
QF is the conjunction of the atoms of the formA(yb1

, . . . ,ybk
), for all factsA(b1, . . . ,bk) in F . Note

that the visible instanceVGood that contains the atom Good is realizable, since it can be completed
(using the chase) to an S

′-instance F ′ that satisfies the sentences in Σ′. Let Q ′ = Q ∧ Good. We
claim that ∃PQI(Q ′, Σ′, S′) = true if and only ifQ is certain with respect to Σ on F . In one direction,
suppose that ∃PQI(Q ′, Σ′, S′) = true holds. The witness visible instance having PQI can only be
the instance VGood. Consider an instance F ′ containing all facts of F and satisfying the original
sentences Σ. By setting Good to true in F ′, we have an instance satisfying Σ′, and since VGood

has a PQI, then we know that this instance must satisfy Q ′ and hence Q . Thus, Q is certain with
respect to Σ on F as required. Conversely, suppose thatQ is certain with respect to Σ on F . Letting
CF be the chase of F with respect to Σ, we see that CF satisfies Q . We will show that there is a
PQI for Q ′, Σ′, S on VGood. Thus, fix an instance F ′ where Good and Σ′ holds. The additional
sentence implies that F ′ contains the image of F under some homomorphism h. But h extends to
a homomorphism of CF into F ′. Thus, F ′ satisfies Q and therefore satisfies Q ′. Thus, there is a
PQI onVGood as required.

Therefore, we have reduced the OWQ problem for Q , Σ, and S to the problem ∃PQI(Q ′, Σ′,
S
′). �

It was shown in the work of Cali et al. [23] that OWQ is 2ExpTime-hard for guarded TGDs with-
out constants and CQs without constants (in combined complexity, when the schema is included

ACM Transactions on Computational Logic, Vol. 22, No. 2, Article 13. Publication date: June 2021.

Inference from Visible Information and Background Knowledge 13:25

in the input of the problem). Guarded TGDs are a special case of connected FGTGDs. Therefore,
by the above reduction, we obtain a lower bound for ∃PQI that matches the upper bound in Corol-
lary 4.13.

Corollary 4.15. The problem ∃PQI(Q, Σ, S), whereQ ranges over Boolean CQs without constants

and Σ over sets of connected FGTGDs without constants, is 2ExpTime-hard.

Next, we show that allowing disjunctions or constants in the background theory sentences leads
to undecidability. In particular, this shows that our “critical instance” method for reducing ∃PQI

to PQI fails for these cases.

Theorem 4.16. The problem ∃PQI(Q, Σ, S) is undecidable as Q ranges over Boolean UCQs and Σ
over sets of disjunctive linear TGDs without constants.

Proof. The proof uses a technique that will be exploited for many of our schema-level undecid-
ability arguments. We will reduce the existence of a tiling to the ∃PQI problem. The tiling itself
will correspond to the visible instance that has a PQI. The invisible relations will store “challenges”
to the correctness of the tiling. The UCQ Q will have disjuncts that return true exactly when the
challenge to correctness is passed. There will be challenges to the labeling of adjacent cells, chal-
lenges to the correctness of the initial tile, and challenges to the correct shape of the adjacency
relationship—that is, challenges that the tiling is really grid-like. A correct tiling corresponds to
every challenge being passed and thus corresponds to a visible instance where every extension
satisfies Q .

To simplify the proof, we first provide undecidability of the “unrestricted” variant ∃PQI∞, which
asks if there is an arbitrary instance of the visible schema such that every (possibly infinite) su-
perinstance satisfying the sentences in Σ also satisfies Q . After that, we discuss how to adapt the
undecidability argument so that it applies to finite instances only—that is, for the actual ∃PQI

problem at hand.
We reduce the problem of tiling the infinite grid, which is known to be undecidable, to the

problem ∃PQI∞. Recall that an instance of the tiling problem consists of a finite set T of available
tiles, some horizontal and vertical constraints, given by two relations H ,V ⊆ T ×T , and an initial
tile t⊥ ∈ T for the lower-left corner. The problem consists of deciding whether there is a tiling
function f : N ×N→ T such that

(1) f (0, 0) = t⊥;
(2) (f (i, j), f (i + 1, j)) ∈ H for all i, j ∈ N;
(3) (f (i, j), f (i, j + 1)) ∈ V for all i, j ∈ N.

Given an instance (T ,H ,V , t⊥) of the tiling problem, we show how to construct a schema S, a query
Q , and a set of disjunctive linear TGDs over S such that ∃PQI∞(Q, Σ, S) = true if and only if there
is a tiling function for (T ,H ,V , t⊥).

The basic idea is that the visible instance that witnesses ∃PQI∞ should represent a candidate
tiling, and the invisible instances represent challenges to the correctness of the tiling. Every cell of
the grid is identified with some value, and we use two visible binary relations EH ,EV to represent
the horizontal and vertical edges of the grid. We also introduce a unary visible relationUt , for each
tile t ∈ T , to represent a candidate tiling function on the grid.

We begin by enforcing the existence of an initial node with the associated tile t⊥. For this, we
introduce another visible relation Init, of arity 0, and linear TGD

Init → ∃x Ut⊥(x).

It is also easy to guarantee that every node is connected to at least another node in the relation
EH (respectively, EV), and that this latter node has an associated tile that satisfies the horizontal

ACM Transactions on Computational Logic, Vol. 22, No. 2, Article 13. Publication date: June 2021.

13:26 M. Benedikt et al.

constraintsH (respectively, the vertical constraintsV). To do so, we use the following TGDs, which
can be easily converted to disjunctive linear TGDs:

Ut (x) → ∃y EH (x ,y) ∧
∨
(t,t ′)∈H

Ut ′ (y) (for all tiles t ∈ T)

Ut (x) → ∃z EV (x , z) ∧
∨
(t,t ′)∈V

Ut ′ (z). (for all tiles t ∈ T)

We now explain how to enforce a grid structure on the relations EH and EV , and how to guarantee
that each node has exactly one tile associated with it. Of course, we cannot directly use disjunctive
TGDs to guarantee that EH and EV correctly represent the horizontal and vertical edges of the grid.
However, we can introduce additional hidden relations that make it possible to mark certain nodes
so as to expose the possible violations. We first show how to expose violations to the fact that the
horizontal edge relation is a function. The idea is to select nodes in EH to challenge functionality.
Formally, the horizontal challenge is captured by a hidden ternary relation HChallengefunct, by the
linear TGDs

Init → ∃ x y y ′ HChallengefunct(x ,y,y
′)

HChallengefunct(x ,y,y
′) → EH (x ,y) ∧ EH (x ,y

′)

and by the CQ

QH = ∃ x y HChallengefunct(x ,y,y).

Note that if the visible fact Init is present and the relation EH correctly describes the hori-
zontal edges of the grid, then the above query QH is necessarily satisfied by any instance of
HChallengefunct that satisfies the above sentences: the only way to give a non-empty instance
for HChallengefunct is to use triples of the form (x ,y,y). Conversely, if the relation EH is not a
function, namely, if there exist nodes x ,y,y ′ such that (x ,y), (x ,y ′) ∈ EH and y � y ′, then the
singleton instance {(x ,y,y ′)} for the hidden relation HChallengefunct will satisfy the associated
sentences of the background theory and violate the query QH . Note that we do not require that
the relation EH is injective (this could be still done but is not necessary for the reduction). Similarly,
we can use a hidden relation VChallenge and analogous background theory sentences and query
QV to challenge the functionality of EV .

In the same way, we can challenge the confluence of the relations EH and EV . For this, we
introduce a hidden relation CChallenge of arity 5, which is associated with the background theory
sentences

Init → ∃ x y z w w ′ CChallenge(x ,y, z,w,w ′)

CChallenge(x ,y, z,w,w ′) → EH (x ,y) ∧ EV (x , z) ∧ EV (y,w) ∧ EH (z,w
′)

and the CQ

QC = ∃ x y z w CChallenge(x ,y, z,w,w).

As before, we can argue that there is a PQI for QC if and only if the horizontal and vertical edge
relations are confluent—that is, (x ,w) ∈ EH ◦ EV and (x ,w ′) ∈ EV ◦ EH imply w = w ′.

We need now to ensure that every node is labeled with at most one tile, or equally that there
are no relationsUt andUt ′ , for distinct tiles t � t ′ ∈ T , that have non-empty intersection. For that,
we add the two following sentences, where A and B are hidden relations

Init → ∃ x A(x) ∨ B(x)

B(x) →
∨

t�t ′

(Ut (x) ∧Ut ′ (x)).

ACM Transactions on Computational Logic, Vol. 22, No. 2, Article 13. Publication date: June 2021.

Inference from Visible Information and Background Knowledge 13:27

Finally, we add the CQ

QA = ∃ x A(x).

Now that we described all of the visible and hidden relations of the schema S, and the associated
sentences Σ, we define the query for the ∃PQI∞ problem as the conjunction of the atom Init and
all previous UCQs (for this, we distribute the disjunctions and existential quantifications over the
conjunctions):

Q = Init ∧ QA ∧ QH ∧ QV ∧ QC .

It remains to show that ∃PQI∞(Q, Σ, S) = true if and only if there is a correct tiling of the infinite
grid, namely, a function f : N ×N→ T that satisfies conditions (1), (2), and (3) above.

Suppose that there is a correct tiling f : N × N → T . We construct the visible instance V
that contains the fact Init and the relations EH , EV , and Ut with the intended semantics: EH =

{((i, j), (i + 1, j)) | i, j ∈ N}, EV = {((i, j), (i, j + 1)) | i, j ∈ N}, and Ut = {(i, j) | f (i, j) = t} for all
t ∈ T . Since no error can be exposed on the relations EH , EV , andUt , no matter how we construct
a full instance F that agrees with V on the visible part and satisfies the sentences in Σ, we will
have that F satisfies all components of the query Q , other than QA. In addition, in any such F , B
must be empty, since otherwise tiling predicates for distinct tiles would overlap, which is not the
case. Since Init holds, we can conclude via the first sentence above that QA must hold.

Conversely, suppose that ∃PQI∞(Q, Σ, S) = true and let V be the witnessing visible instance.
Clearly,V contains the fact Init (otherwise, the query would be immediately violated). We can use
the content ofV and the knowledge that ∃PQI∞(Q, Σ, S) = true to inductively construct a correct
tiling of the infinite grid. More precisely, by the first sentence in Σ, we know thatV contains the
fact Ut⊥(x), for some node x . Accordingly, we define ix = 0, jx = 0, and f (ix , jx) = t⊥. For the
induction step, suppose that f (ix , jx) is defined for a node x with the associated coordinates ix and
jx . The sentences in Σ enforce the existence of two cellsy and z and two tiles t and t ′ for which the
following facts are in the visible instance: EH (x ,y), EV (x , z),Ut (y), andUt ′ (z). Accordingly, we let
iy = ix + 1, jy = jx , iz = ix , jz = jy + 1, f (iy , jy) = t , and f (iz , jz) = t ′. By the initial sentences in Σ,
we know that the tiles associated with the new cells (iy , jy) and (iz , jz) are consistent with the tile
in (ix , jx) and with the horizontal and vertical constraints H and V . We now argue that there is a
unique choice for the nodesy and z. Indeed, suppose that this is not the case; for instance, suppose
that there exist two distinct nodes y,y ′ that are connected to x via EH . Then, we could construct
a full instance in which the relation HChallengefunct contains the single triple (x ,y,y ′). This will
immediately violate the CQ QH and hence Q . Similar arguments apply to the vertical successor z.

We now argue that there are unique choices for the tile t associated with a node y. Suppose not.
Then we can let A be empty and B the set of all nodes with multiple tiles. All sentences in Σ are
satisfied, but the query QA is not. This contradicts the assumption that we have a PQI.

Finally, we can argue along the same lines that, during the next steps of the induction, the EV -
successor of y and the EH -successor of z coincide. The above properties are sufficient to conclude
that the constructed function f is a correct tiling of the infinite grid.

This concludes the undecidability proof for ∃PQI∞. The undecidability of ∃PQI follows from
the following further observation: the same above reduction has the property that ∃PQI holds if
and only if there is a periodic tiling of the grid—that is, a tiling that is obtained by iterating a tiling
TF of an n by n grid. In one direction, we observe that if there is a periodic tiling, we can form a
finite witness to ∃PQI by basing EH ,EV ,Ut on the finite tilingTF , including back edges from n to 1.
In the other direction, we take a finite witness to ∃PQI and observe that the corresponding tiling
will be periodic. �

It turns out that disjunction can be simulated using constants (under UNA). The proof works by
applying the technique of “coding Boolean operations and truth values in the schema” that has

ACM Transactions on Computational Logic, Vol. 22, No. 2, Article 13. Publication date: June 2021.

13:28 M. Benedikt et al.

been used to eliminate the need for disjunction in hardness proofs in several past works (e.g., [34]).
It is also similar to the proof idea used in Lemma 4.6 from earlier in this article.

Proposition 4.17. There is a polynomial time reduction from ∃PQI(Q, Σ, S), whereQ ranges over

Boolean UCQs without constants and Σ over sets of disjunctive linear TGDs without constants, to

∃PQI(Q ′, Σ′, S′), where Q ′ ranges over Boolean UCQs without constants and Σ′ over sets of linear

TGDs with constants.

Proof. We transform the schema S to a new schema S
′ as follows. For every visible (respectively,

hidden) relationR of S of arityk , we add to S
′ a corresponding visible (respectively, hidden) relation

R′ of arity k + 1. The idea is that the additional attribute of R′ represents a truth value (i.e., either
the constant 0 or the constant 1), which indicates the presence of a tuple in the original relation R.
For example, the fact R′(ā, 1) indicates the presence of the tuple ā in the relation R. We can then
simulate the disjunctions in the sentences of Σ by using conjunctions and an appropriate look-up
table, which we denote by Or. Formally, we introduce three additional relations Or, Check, and
Init, of arities 2, 1, and 0, respectively, and we let Or and Init be visible and Check be hidden in S

′.
Consider a disjunctive linear TGD in Σ. By normalizing (introducing additional relations if needed),
we can assume that these are of the form

R(x̄) → ∃ȳ S(z̄) ∨T (z̄ ′).

We add to Σ′ the linear TGD with constants

R′(x̄ , 1) → ∃ȳ b1 b2 S
′(z̄,b1) ∧T

′(z̄ ′,b2) ∧Or(b1,b2).

We further add to Σ′ the following sentences:

Init → Or(0, 1) ∧Or(1, 0) ∧Or(1, 1)

Init → ∃b1 b2 Or(b1,b2) ∧ Check(b1) ∧ Check(b2).

Finally, we transform every CQ of Q of the form ∃ȳ S(ȳ) to a corresponding CQ of Q ′ of the form

∃ȳ S ′(ȳ, 1) ∧ Check(1) ∧ Init.

We can further rewrite the CQ above so as to avoid constants: we introduce another hidden
unary relation One and the sentence Init → One(1), and we replace the conjunct Check(1)
with ∃b Check(b) ∧ One(b). In the following, we prove that ∃PQI(Q, Σ, S) = true if and only if
∃PQI(Q ′, Σ′, S′) = true.

For the easier direction, we consider a realizable Sv -instanceV such that PQI(Q, Σ, S,V) = true.
We can easily transformV into a realizable S

′
v -instanceV′ that satisfies PQI(Q ′, Σ′, S′,V′) = true.

For this, it suffices to copy the content of the visible relations ofV intoV′, by properly expanding
the tuples with the constant 1, and then adding the facts Init, Or(0, 1), Or(1, 0), and Or(1, 1).

As for the converse direction, we consider a realizable S
′
v -instance V′ such that

PQI(Q ′, Σ′, S′,V′) = true. By the definition of Q ′, it is clear that V′ contains the fact Init and
hence also the facts Or(0, 1), Or(1, 0), and Or(1, 1). We first claim that it suffices to show that for
every fact Or(b1,b2) in V′, we have b1 = 1 or b2 = 1. If this were the case, then we could eas-
ily transform V′ into a realizable Sv -instance V that satisfies PQI(Q, Σ, S,V) = true. For this,
we simply select the facts R′(ā, 1) in V′, where R is a visible relation of S, and project away the
constant 1.

Thus, it remains to show that for every fact Or(b1,b2) inV′, we have b1 = 1 or b2 = 1. For the
sake of contradiction, suppose thatV′ contains a fact of the form Or(b1,b2), withb1 � 1 andb2 � 1.
SinceV′ is realizable, there is a full S

′-instance F ′ such that F ′ |= Σ′ and Visible(F ′) = V′. Note
that F ′may satisfyQ ′ and, in particular, the conjunct Check(1). However, removing the single fact

ACM Transactions on Computational Logic, Vol. 22, No. 2, Article 13. Publication date: June 2021.

Inference from Visible Information and Background Knowledge 13:29

Check(1) from F ′ gives a new instance F ′′ that still satisfies the sentences in Σ′, agrees with F ′

on the visible part, and violates the query Q ′. This contradicts the fact that PQI(Q ′, Σ′, S′,V′) =
true. �

Proposition 4.17 shows that disjunctions can be simulated using constants in the constraints

(without using constants in the query). A variant of the same construction shows that disjunctions
can be simulated using constants in the query (without using constants in the constraints).

Proposition 4.18. There is a polynomial time reduction from ∃PQI(Q, Σ, S), whereQ ranges over

Boolean UCQs without constants and Σ over sets of disjunctive linear TGDs without constants, to

∃PQI(Q ′, Σ′, S′), where Q ′ ranges over Boolean UCQs with constants and Σ′ over sets of linear TGDs

without constants.

Proof. The proof is similar to that of Proposition 4.17. We transform the schema S to a new
schema S

′ as follows. For every visible relation R of S of arity k , we add to S
′ a corresponding

visible relation R′ of arity k + 1, and similarly for hidden relations. In addition, S
′ contains

• A visible ternary relation Or,
• A visible binary relation Neg,
• Hidden unary relations OrCheck and NegCheck,
• A visible zero-ary relation Init.

For each (normalized) disjunctive linear TGD in Σ of the form R(x̄) → ∃ȳ S(z̄) ∨T (z̄ ′), we add to
Σ′ the linear TGD

R′(x̄ ,b0) → ∃ȳ b ′0 b1 b2 Neg(b0,b
′
0) ∧ S

′(z̄,b1) ∧T
′(z̄ ′,b2) ∧ Or(b ′0,b1,b2).

We further add to Σ′ the following sentences:

Init → ∃b1 b2 Neg(b1,b2) ∧ NegCheck(b1) ∧ NegCheck(b2)

Init → ∃b1 b2 b3 Or(b1,b2,b3) ∧ OrCheck(b1) ∧OrCheck(b2) ∧OrCheck2(b3).

Finally, we transform every CQ Qi of Q to a corresponding CQ of Q ′i of the form

Qi ∧ Neg(0, 1) ∧ Neg(1, 0) ∧ NegCheck(0) ∧ NegCheck(1) ∧
∧

(a,b,c)∈{0,1}3\{0,0,0}

(Or(a,b, c)) ∧OrCheck(1).

Let V be any realizable instance where PQI(Q ′, Σ′, S′) holds true. Using similar reasoning as in
the proof of Proposition 4.17, we can show the following:

• The visible relation Neg must contain the tuples (0, 1) and (1, 0), and no other tuples (for if it
contained any other tuples, one of the conjuncts NegCheck(0) ∧ NegCheck(1) in the query
could be forced to be false).
• The visible relation Or must contain all tuples (a,b, c) ∈ {0, 1}3 \ {0, 0, 0}, and every other

tuple in Or must contain the constant 1 in at least one position.

The remainder of the proof proceeds in the same way as with Proposition 4.17. �

The above results together yield the following theorem.

Theorem 4.19. The problem ∃PQI(Q, Σ, S) is undecidable when

• Q ranges over Boolean UCQs without constants and Σ ranges over sets of linear TGDs with

constants, or

• Q ranges over Boolean UCQs with constants and Σ ranges over sets of linear TGDs without

constants.

ACM Transactions on Computational Logic, Vol. 22, No. 2, Article 13. Publication date: June 2021.

13:30 M. Benedikt et al.

In other words, Corollary 4.13 fails when constants are allowed in either the query or in the
constraints.

There remains the question of the complexity for IDs as well as for linear TGDs without con-
stants. In earlier work [10], a special case of this problem is proven to be PSpace-complete. We
can can easily extend the ideas there to show PSpace-completeness for the full problem; details
are deferred to the appendix.

Theorem 4.20. The problem ∃PQI(Q, Σ, S), where Q ranges over Boolean UCQs without constants

and Σ over sets of IDs, is PSpace-complete. Hardness holds even in the case of Boolean CQs without

constants.

In the conference paper [12], it was claimed that for more general linear TGDs, this problem
was also PSpace-complete. However, subsequent work provides an argument that this problem is
in fact ExpTime-complete.

Theorem 4.21 ([10]). The problem ∃PQI(Q, Σ, S), where Q ranges over Boolean UCQs without

constants and Σ over sets of linear TGDs without constants, is ExpTime-complete. Hardness holds

even in the case of Boolean CQs without constants.

In earlier work [10], the setting and terminology is slightly different. There is a source schema
and a target schema. We have constraints on the sources and the target schema is populated from
the sources via mappings (views) from source to target. Thus, the relations in the source schema
correspond to what we call invisible relations here, whereas the relations in the target schema
are the visible relations. The ExpTime upper bound derives from Theorem 4 of earlier work [10],
where it is only stated for the special case where there are linear TGDs on the sources, and the
mappings correspond to full linear TGDs from source to target. A rewriting argument is given that
the reduces the problem to OWQ for TGDs of a special form, where the body contains a guard
atom and a conjunction of atoms in a fixed “side signature.” Earlier work [10] cites an argument in
the technical report [3] (Corollary G.5) to infer that this class of OWQ problems is in ExpTime. It
is easy to see that the rewriting reduction in the earlier work [10] carries over to the setting with
arbitrary linear TGDs. The ExpTime lower bound is implied immediately by Theorem 7 of the
earlier work [10], which shows the bound for their special case, where the linear TGDs constrain
the sources, and there are also very simple linear TGDs (atomic views) from source to target.

5 NEGATIVE QUERY IMPLICATION

5.1 Instance-Level Problems

Here we analyze the complexity of the problem NQI(Q, Σ, S,V). As in the positive case, we obtain
a general 2ExpTime upper bound for GNFO background theories.

Theorem 5.1. The problem NQI(Q, Σ, S,V), as Q ranges over Boolean UCQs and Σ over sets of

GNFO sentences, has 2ExpTime combined complexity, has ExpTime data complexity, and is finitely

controllable.

Proof. As in the positive case, we reduce to unsatisfiability of a GNFO formula. We use a vari-
ation of the same formula, where ¬Q is now replaced by Q :

ϕNQItoGNF
Q,Σ,S,V = Q ∧ Σ ∧∧

R∈Sv

���
∧

R(ā)∈V

R(ā) ∧ ∀x̄ ���R(x̄) →
∨

R(ā)∈V

x̄ = ā
��	��	

The data complexity analysis is as in Theorem 4.4, since the formulas agree on the part that varies
with the instance. �

ACM Transactions on Computational Logic, Vol. 22, No. 2, Article 13. Publication date: June 2021.

Inference from Visible Information and Background Knowledge 13:31

We can obtain a matching lower bound by reducing PQI to NQI.

Theorem 5.2. For any class of sentences that include connected FGTGDs and for any UCQ Q ,

PQI(Q, Σ, S,V) reduces in polynomial time to NQI(Q ′, Σ′, S′,V′). WhenQ, Σ, S are fixed in the input

to this reduction, then Q ′, Σ′, S′ are fixed in the output, and when Q is a CQ, then Q ′ is a CQ as well.

Proof. We first provide a reduction that uses not-necessarily-connected FGTGDs. Subsequently,
we show how to modify the constructions to preserve connectedness.

The schema S
′ is obtained by copying both the visible and the hidden relations from S and by

adding the following relations: a visible relation Error of arity 0 and a hidden relation Good of arity
0. The sentences Σ′ will contain the sentences from Σ, plus one FGTGD of the form

Qi (ȳ) ∧ Good → Error

for each disjunct ∃ȳ Qi (ȳ) of the UCQ Q . Finally, the query and the visible instance for NQI are
defined as follows: Q ′ = Good and V′ = V (in particular, we initialize the visible relation Error

with the empty set).
We now verify that PQI(Q, Σ, S,V) = false if and only if NQI(Q ′, Σ′, S′,V′) = false. Suppose

that PQI(Q, Σ, S,V) = false, namely, that there is an S-instance F such that F �|= Q , F |= Σ,
and Visible(F) = V . Let F ′ be the S

′-instance obtained from F by adding the single hidden
fact Good. Clearly, F ′ satisfies the query Q ′ and also the sentences in Σ′. In particular, it satisfies
every sentence Qi (ȳ) ∧ Good → Error because F violates every disjunct ∃ȳ Qi of Q . Hence, we
have NQI(Q ′, Σ′, S′,V′) = false. Conversely, suppose that NQI(Q ′, Σ′, S′,V′) = false, namely,
that there is an S

′-instance F ′ such that F ′ |= Q ′, F ′ |= Σ′, and Visible(F ′) = V′. By copying
the content of F ′ for those relations that belong to the schema S, we obtain an S-instance F that
satisfies the sentences Σ. Moreover, because F ′ contains the fact Good but not the fact Error, F ′

violates every conjunct ∃ȳ Qi (ȳ) of Q , and so does F . This shows that PQI(Q, Σ, S,V) = false.
We observe that the sentences in the above reduction use left-hand sides that are not connected.

To preserve connectedness, it is sufficient to modify the above constructions by adding a dummy
variable that is shared among all atoms. More precisely, we expand the relations of the schema
S and the relation Good with a new attribute, and we introduce a new visible relation Check of
arity 1. The dummy variable will be used to enforce connectedness in the left-hand sides, and
the relation Check will gather all values associated with the dummy attribute. Using the visible
instance, we can also check that the relation Check contains exactly one value. The sentences in the
background theory are thus modified as follows. Every sentenceR1(x̄1)∧. . .∧Rm(x̄m) → ∃ȳ S(z̄) in
Σ′ is transformed intoR1(x̄1,w)∧. . .∧Rm(x̄m ,w) → ∃ȳ S(z̄,w). In particular, note that the sentence
Qi (ȳ)∧Good→ Error becomesQi (ȳ,w)∧Good(w) → Error(w), which is now a connected FGTGD.
Furthermore, for every relation R(x̄) in S, we add the sentence

R(x̄ ,w) → Check(w),

and we do the same for the relation Good:

Good(w) → Check(w).

Finally, the query is transformed into Q ′ = ∃w Good(w) and the visible instanceV′ is expanded
with a fresh dummy value a on the additional attribute and with the visible fact Check(a). �

Note that the above reduction does not introduce constants. Combining the above reduction
with Corollary 4.7 and Theorem 4.8, we get the following hardness results for instance-based NQI.

Corollary 5.3. There are a Boolean CQ Q without constants and a set Σ of connected FGTGDs

without constants over a schema S for which the problem NQI(Q, Σ, S,V) is ExpTime-hard in data

complexity (i.e., asV varies over instances).

ACM Transactions on Computational Logic, Vol. 22, No. 2, Article 13. Publication date: June 2021.

13:32 M. Benedikt et al.

Corollary 5.4. The problem NQI(Q, Σ, S,V), as Σ ranges over sets of connected FGTGDs without

constants, and Q over CQs without constants, is 2ExpTime-hard.

Thus far, the NQI results are similar to the positive ones. We will now show a strong contrast
in the case of IDs and linear TGDs. Recall that the PQI problems were highly intractable even for
fixed schema, query, and background theory. We show that NQI is computationally better behaved
for such constraints.

We begin by showing that NQI(Q, Σ, S,V) can be solved easily by looking only at full instances
that agree with V on the visible part and whose active domains are (almost) the same as that of
V . In what follows, we denote by adom+(I) the active domain of the (visible or full) instance I
extended with the constants appearing in Σ and Q .

Definition 5.5. The problem NQI(Q, Σ, S,V) is said to be active-domain controllable over a class
of inputs if it is equivalent to asking that for every instance F with adom+(F) ⊆ adom+(V) if F
satisfies Σ andV = Visible(F), then Q(F) = false.

This concept will serve as a stepping stone: we will establish that (a suitable relaxation of)
active-domain controllability holds for certain background theories. After that, we show that this
implies a polynomial time algorithm for NQI. Indeed, it is intuitively already clear that active-
domain controllability makes the problem NQI(Q, Σ, S,V) simpler, as in this case we can guess a
full instance F over adom+(V) and check whether Q holds on F . In fact, as we will see soon, we
can do even better.

We give a simple argument that when we consider NQI under IDs, we can reduce in polynomial
time to a class of NQI problems that is active-domain controllable. Let Σ be a set of IDs over a
schema S, Q be a UCQ, and V be a visible instance. Our reduction will simply add an additional
visible relation that does not occur in the sentences of the background theory and a dummy visible
fact over a visible relation. This reduction does not change the truth of the problem, and it produces
a problem instance where adom+(V) contains at least one element. We now argue that the latter
restriction on inputs to NQI yields active-domain controllability.

Suppose that NQI(Q, Σ, S,V) = false. The fact that NQI(Q, Σ, S,V) = false implies the existence
of a full instance F such that F |= Σ, Visible(F) = V , and F |= Q . Now take any element
a ∈ adom+(V) and let h be the homomorphism that is the identity over adom+(V) and maps any
other value from adom+(F) \ adom+(V) to a. Since the sentences Σ are IDs (in particular, since
the left-hand side atoms do not have constants or repeated occurrences of the same variable), we
know that h(F) |= Σ. Similarly, we have h(F) |= Q . Hence, h(F) is an instance over adom+(V)

that equally witnesses NQI(Q, Σ, S,V) = false.
Note that our hardness results for PQI (in particular, Theorem 4.8) imply that PQI is not active-

domain controllable even for IDs, since such a result would easily give membership in co-NP.
The following example shows that linear TGDs are not always active-domain controllable.

Example 5.6. Let S be the schema with a hidden relation R of arity 2, with two visible relations
S,T of arities 1, 0, respectively, and with the sentences:

R(x ,y) → S(x) R(x ,x) → T .

Note that the sentences are linear TGDs and they are even full—no existential quantifiers on the
right. The CQ is Q = ∃x y R(x ,y). Further, let the visible instance V consist of the single fact
S(a). Clearly, every full instance F over the active domain {a} that satisfies both Σ and Q must
also contain the facts R(a,a) and T , and so such an instance cannot agree with V in the visible
part. However, the instance that contains the facts S(a) and R(a,b), for a fresh value b, satisfies
both Σ and Q and moreover agrees withV . This shows that NQI(Q, Σ, S,V) is not active-domain
controllable.

ACM Transactions on Computational Logic, Vol. 22, No. 2, Article 13. Publication date: June 2021.

Inference from Visible Information and Background Knowledge 13:33

The example shows that we need to weaken the notion of active-domain controllability to allow
some elements outside of the active domain. The following definition allows a fixed number of
exceptions.

Definition 5.7. For a number k , the problem NQI(Q, Σ, S,V) is said to be active-domain control-

lable modulo k over a class of inputs if it is equivalent to asking that for every instance F with
|adom+(F) \ adom+(V)| ≤ k , if F satisfies Σ andV = Visible(F), then Q(F) = false.

Theorem 5.8. Consider a schema S, and let k be the maximal arity of relations in S. Every problem

NQI(Q, Σ, S,V), where Σ consists of linear TGDs, is active-domain controllable modulo k .

Proof. The main idea is to compress an arbitrary counterexample instance to NQI by one with
at most k elements outside the active domain, by taking k “representative elements” outside the
active domain and replacing arbitrary tuples outside the active domain with these k elements. In
doing this replacement, we should take into account equalities within each tuple.

Formally, given a finite set of constants C, we say that two tuples t1 . . . tn and t ′1 . . . t
′
n of the

same length are equality-equivalent for C if ti = tj if and only if t ′i = t ′j and for every constant

c ∈ C , ti = c if and only if t ′i = c . For example, suppose that C = {1}. Then the tuples 〈1, 1, 2, 4〉
and 〈1, 1, 3, 5〉 are equality-equivalent.

Suppose that NQI(Q, Σ, S,V) = false, namely, that there is an S-instance F such that F |= Σ,
F |= Q , and Visible(F) = V . We need to construct an instance F ′ whose active domain has only
k elements outside the active domain ofV that witnesses NQI(Q, Σ, S,V) = false.

We fix an extension D of the active domain of V that contains k additional fresh values, and
let C be the set of constants occurring in Σ or Q . Recall that for a relation R, arity(R) denotes the
arity of the relation. For each fact R(ā) in F and each tuple b̄ ∈ Darity(R), if b̄ and ā are equality-
equivalent over C and also agree on each position whose value is in the active domain ofV , then
we add the fact R(b̄) to F ′. By definition, the instance F ′ agrees with F on the visible part and
has only k elements outside the active domain ofV .

In the following, we show that F ′ satisfies the sentences of Σ and the query Q . Consider any
linear TGD τ of Σ of the form

R(x̄) → ∃ȳ S(z̄)

and any fact R(ā) that is the image under some homomorphism h of the left-hand side atom R(x̄).
Let I be the set of positions i ∈ {1, . . . , arity(R)} such that ā(i) ∈ adom+(V). We know that there is
ū such that R(ū) holds in F such that ā |I = ū |I and ā is equality-equivalent to ū. Here, ā |I denotes
the restriction of the tuple a to the positions in I . Since F satisfies τ , and ū is equality-equivalent
to ā, we know that there is a fact S(v̄) in F agreeing with ū on the positions corresponding to
exported variables of τ . Let b̄ be any tuple in Darity(R) equality-equivalent to ā and agreeing with v̄
on all the positions corresponding to exported variables of τ . Since k is at least the arity of R, such
a b̄ must exist. Then b̄ witnesses that τ holds for ā. This completes the proof that the sentences of
Σ hold.

A similar argument shows thatQ holds in F ′. Thus, F ′ witnesses that NQI(Q, Σ, S,V) is active-
domain controllable modulo k . �

Example 5.9. As an example of the prior argument, consider a TGD τ

R(x ,y,y) → ∃z S(y, z, z),
and suppose that the instance F has a tuple R(a,b,b),where a is in the active domain of the visible
instance and b is outside of the active domain of the visible instance. Thus, there is a homomor-
phism from the left side of τ to R(a,b,b). Since F satisfies τ , it must contain S(b, c, c) for some
value c .

ACM Transactions on Computational Logic, Vol. 22, No. 2, Article 13. Publication date: June 2021.

13:34 M. Benedikt et al.

The instance F ′ produced by the prior argument will replace R(a,b,b) by R(a, c1, c1), where c1 is
one of the k additional constants. We explain why this replacement will not break the satisfaction
of τ . There is a homomorphismh′ of the left-hand side of τ to R(a, c1, c1). If the witness c of S(b, c, c)
is in the active domain of the visible instance, then F ′ has S(c1, c, c), and thus we have the witness
we need for τ with respect to h′. If c is not in the active domain of the visible instance, then F ′

will also have S(c1, c2, c2), for c2 another of the additional constants. Either way, the required value
is present.

Now we show how to exploit active-domain controllability and its modulo k variant to prove
that NQI problems can be solved not only efficiently but also “definably” using well-behaved query
languages. For this, we introduce a variant of Datalog programs, called GFP-Datalog programs,
whose semantics is given by greatest fixpoints. GFP-Datalog programs are defined syntactically
in the same way as Datalog programs [2]—that is, as finite sets of rules of the form U (x̄ , c̄) ←
Q(x̄) where the heads can contain variables or constants, with the variables x̄ being implicitly
universally quantified. Q is a CQ whose free variables are exactly x̄ . As for Datalog programs,
we distinguish between extensional (i.e., input) predicates and intensional (i.e., output) predicates.
In the above rules, we restrict the left-hand sides to contain only intensional predicates. Given
a GFP-Datalog program P , the immediate consequence operator for P is the function that, given
an instance M consisting of both extensional and intensional relations, returns the instance M ′

where the extensional relations are as in M and the tuples of each intensional relationU are those
satisfying QU in M , where QU is any rule body appearing on the right of a rule with U . The
immediate consequence operator is monotone, and the usual semantics of Datalog is defined as
its least fixpoint. The semantics of the GFP-Datalog program on instance I for the extensional
relations is defined as the greatest fixpoint of this operator starting at the instance I+ that extends
I by setting each intensional relation “maximally”—that is, to the tuples of values from the active
domain of I plus the constants appearing in the GFP-Datalog program. A program may also include
a distinguished intensional predicate, the goal predicate G, in which case it defines the query that
maps every instance to the set of tuples satisfying G in the greatest fixpoint. We now show that
under active-domain controllability, we can use GFP-Datalog to decide NQI(Q, Σ, S,V).

Theorem 5.10. If Q is a Boolean UCQ, Σ is a set of linear TGDs, and NQI(Q, Σ, S,V) is active-

domain controllable, then ¬NQI(Q, Σ, S,V), viewed as a Boolean query over the visible part V , is

definable by a GFP-Datalog program that can be constructed in PTime from Q , Σ, and S.

Proof. First observe that NQI(Q, Σ, S,−) can be seen as a Boolean function that takes as input
an instance V for the visible relations of S and returns true if and only if the query Q does not

hold on every instance F that satisfies the sentences Σ and such that Visible(F) = V . Accord-
ingly, ¬NQI(Q, Σ, S,−) is the negation of the function NQI(Q, Σ, S,−) and thus maps an instance
V to true when Q does hold on some instance F that satisfies Σ and agrees withV on the visible
relations.

In the following, we implement the function ¬NQI(Q, Σ, S,−) by means of a GFP-Datalog pro-
gram. Thanks to active-domain controllability, it is sufficient to consider only full instances con-
structed over the active domain of V . More precisely, it is sufficient to show that a witnessing
instance F can be obtained as a greatest fixpoint starting from the values in the active domain of
V . We also describe the GFP-Datalog program that computes F starting fromV .

The extensional relations are the ones in the visible part V , whereas the intensional relations
are the ones in the hidden part of the schema S, plus an extra intensional relation A that col-
lects the values in adom+(V). For each extensional (i.e., visible) relation R and each position
i ∈ {1, . . . , arity(R)}, we add the rule A(xi) ← R(x̄), which collects all values of the active

ACM Transactions on Computational Logic, Vol. 22, No. 2, Article 13. Publication date: June 2021.

Inference from Visible Information and Background Knowledge 13:35

domain into the relation A. We also have rules that put constants in A as well. In addition, for
each intensional (i.e., hidden) relation R, we have the rule

R(x̄) ←
∧

i

A(xi) ∧
∧

linear TGD in Σ of the
form R(x̄) → ∃ȳ S (z̄)

S(z̄).

Intuitively, the above rule permits the existence of a fact R(ā) only when ā consists of values from
the active domain and every linear TGD R(x̄) → ∃ȳ S(z̄) of Σ is satisfied by some fact S(b̄) when
substituting x̄ for ā. This semantics is consistent with the goal of finding the biggest instance F
over the active domain ofV that satisfies the UCQQ—so as to have NQI(Q, Σ, S,V) = false —while
guaranteeing that the linear TGDs remain valid.

We finally add the rule
Goal ← S1(z̄1) ∧ . . . ∧ Sn(z̄n)

for each CQ ∃ȳ S1(z̄1) ∧ . . . ∧ Sn(z̄n) of Q and take Goal to be the final output of our program.
Let us now prove that the Datalog program does compute the function ¬NQI(Q, Σ, S,−) under

the greatest fixpoint semantics. Consider an instance F computed by the GFP-Datalog program
starting from inputV . Clearly, the extensional (visible) part of F agrees withV . We claim that F
also satisfies the sentences in Σ. Indeed, if R(x̄) → ∃ȳ S(z̄) is a linear TGD in Σ and R(ā) is a fact
of F , with R(ā) image of R(x̄) via some homomorphism h, then F contains a fact of the form S(b̄),
where b̄ is the image of S(z̄) via some homomorphism h′ that extends h. To conclude, we observe
that the predicate Goal holds if and only if F satisfies some disjunct S1(z̄1) ∧ . . . ∧ Sn(z̄n) of the
UCQ Q , namely, if and only if NQI(Q, Σ, S,V) = false. �

In the case of linear TGDs that are active-domain controllable modulo k , we can similarly use
a GFP Datalog program, but first pre-processing the active domain to contain the k additional
constants. The extension of Theorem 5.10 clearly holds.

Theorem 5.11. For every k , if Q is a Boolean UCQ and Σ a set of linear TGDs (possibly

with constants) from a class where NQI(Q, Σ, S,V) is active-domain controllable modulo k , then

NQI(Q, Σ, S,V) can be computed by evaluating a GFP program P on V′, where V′ is an instance

that can be computed in PTime fromV , whereas P is a GFP-Datalog program that can be constructed

in PTime from Q , Σ, and S.

Recall that the naïve fixpoint algorithm for a GFP-Datalog program takes exponential time in the
maximum arity of the intensional relations, but only polynomial time in the size of the extensional
relations and the number of rules. This is true even if one extends the active domain by k elements,
where k is the maximal arity. Thus, we can get bounds on the NQI problem for IDs using the simple
argument for active-domain controllability for IDs given above along with Theorem 5.10. We can
likewise get bounds for linear TGDs using Theorem 5.8 and Theorem 5.11.

Corollary 5.12. When Σ ranges over sets of linear TGDs and Q over Boolean UCQs,

NQI(Q, Σ, S,V) has data complexity in PTime and combined complexity in ExpTime.

Example 5.13. Returning to the medical example from the introduction, Example 1.1, we see that
the GFP-Datalog program is quite intuitive: since we have an ID from Appointment into Patient

and the visible instance does not contain the fact Patient(Smith), all tuples of the form (Smith,a,d)
are removed from the relation Appointment. The program then simply evaluates the query on the
resulting instance, which returns false, indicating that an NQI does hold on the original visible
instance.

We give a tight ExpTime lower bound for the combined complexity of NQI with linear TGDs
(and even IDs).

ACM Transactions on Computational Logic, Vol. 22, No. 2, Article 13. Publication date: June 2021.

13:36 M. Benedikt et al.

Theorem 5.14. The combined complexity of NQI(Q, Σ, S,V), where Q ranges over Boolean UCQs

without constants and Σ ranges over IDs, is ExpTime-hard.

Proof. We reduce the acceptance problem for an alternating PSpace Turing machine M to
NQI(Q, Σ, S,V). As in the proof of Theorem 4.5, we assume that the transition function of M
maps each universal configuration to a set of exactly two target configurations. Moreover, we as-
sume that there is at least one target configuration for each existential configuration. In particular,
M never halts. The computation begins with the head on the second position and never visits the
first and last position of the tape. The acceptance condition of M is defined by distinguishing two
special control states, qacc and qrej, that once reached will “freeze”M in its current configuration.
We say that M accepts (the empty input) if for all paths in the computation tree, the state qacc is
eventually reached; otherwise, we say that M rejects.

Differently from the proofs of Theorem 4.5 and Theorem 4.8, the configurations of M can be
described by simply specifying the label of each cell of the tape, the position of the head, and the
control state of the Turing machine M . We thus define cell values as elements of V = (Σ ×Q) � Σ,
where Σ is the alphabet ofM andQ is the set of its control states. If a cell has value (a,q), this means
that the associated letter is a, the control state of M is q, and the head is on this cell. Otherwise, if
a cell has value a, this means that the associated letter is a and the head of M is not on this cell.

Now, let n be the size of the tape of M . We begin by describing the initial configuration of M .
This is encoded by a visible relation C0 of arity n + 1, where the first attribute gives the identifier
of the initial configuration and the remaining n attributes give the values of the tape cells. As the
relation C0 is visible, we can immediately fix its content to be a singleton consisting of the tuple
(x0,y1,y2,y3, . . . ,yn), where x0 is the identifier of the initial configuration, y1 = ⊥, y2 = (⊥,q0),
y3 = · · · = yn = ⊥. As for the other configurations of M , we store them into two distinct hidden
relations C∃ and C∀, depending on whether the control states are existential or universal. Each
fact in one of these two relation consists of n + 1 attributes, where the first attribute specifies an
identifier and the remaining n attributes specify the cell values. We can immediately give the first
sentence, which requires the initial configuration to be existential and stored also in the relation
C∃:

C0(x ,y1, . . . ,yn) → C∃(x ,y1, . . . ,yn).

To represent the computation tree of M , we encode pairs of subsequent configurations. In doing
so, we not only store the identifiers of the configurations but also their contents, in such a way
that we can later check the correctness of the transitions using IDs. We use different relations to
record whether the current configuration is existential or universal and, in the latter case, whether
the successor configuration is the first or the second one in the transition set (recall that the tran-
sition rules of M define exactly two successor configurations from each universal configuration).
Formally, we introduce three hidden relations S∃, S∀1 , and S∀2 , all of arity 2n + 2. We can easily

enforce that the first n + 1 and the last n + 1 attributes in every tuple of S∃, S∀1 , and S∀2 describe

configurations in C∃ and C∀:

S∃(x , ȳ,x ′, ȳ ′) → C∃(x , ȳ) S∃(x , ȳ,x ′, ȳ ′) → C∃(x ′, ȳ ′)
S∀1 (x , ȳ,x

′, ȳ ′) → C∀(x , ȳ) S∀1 (x , ȳ,x
′, ȳ ′) → C∀(x ′, ȳ ′)

S∀2 (x , ȳ,x
′, ȳ ′) → C∀(x , ȳ) S∀2 (x , ȳ,x

′, ȳ ′) → C∀(x ′, ȳ ′).

Similarly, we guarantee that every existential (respectively, universal) configuration has one (re-
spectively, two) successor configuration(s) in S∃ (respectively, S∀1 and S∀2):

ACM Transactions on Computational Logic, Vol. 22, No. 2, Article 13. Publication date: June 2021.

Inference from Visible Information and Background Knowledge 13:37

C∃(x , ȳ) → ∃ x ′ ȳ ′ S∃(x , ȳ,x ′, ȳ ′)
C∀(x , ȳ) → ∃ x ′ ȳ ′ S∀1 (x , ȳ,x

′, ȳ ′)

C∀(x , ȳ) → ∃ x ′ ȳ ′ S∀2 (x , ȳ,x
′, ȳ ′).

We now turn to explaining how we can enforce the correctness of the transitions represented
in the relations S∃, S∀1 , and S∀2 . Compared to the proof of Theorem 4.5, the goal is simpler in this
setting, as we can simply compare the values z−1, z0, z+1 for the cells at positions i − 1, i, i + 1 in
a configuration with the value z ′ for the cell at position i in the successor configuration. We thus
introduce new visible relations N ∃, N ∀

1 , and N ∀
2 of arity 4. Each of these relations is initialized with

the possible quadruples of cell values z−1, z0, z+1, z
′ that are allowed by the transition function of

M . Consider, for example, the case where the transition function specifies that when M is in the
universal control state q and reads the letter a, then the first of the two subcomputations spawned
by M begins by rewriting a with a′, moving the head to the left, and switching to control state
q′. In this case, we add to N ∀

1 all tuples of the form
(
a−1, (a,q),a+1,a

′
)

or
(
a−2,a−1, (a,q), (a−1,q

′)
)
,

with a−2,a−1,a+1 ∈ Σ. Accordingly, we introduce the following IDs, for all 1 < i < n:

S∃(x , ȳ,x ′, ȳ ′) → N ∃(yi−1,yi ,yi+1,y
′
i)

S∀1 (x , ȳ,x
′, ȳ ′) → N ∀

1 (yi−1,yi ,yi+1,y
′
i)

S∀2 (x , ȳ,x
′, ȳ ′) → N ∀

2 (yi−1,yi ,yi+1,y
′
i).

Furthermore, we constrain the values of the extremal cells to never change:

S∃(x , ȳ,x ′, ȳ ′) → E(y1,y
′
1) S∃(x , ȳ,x ′, ȳ ′) → E(yn ,y

′
n)

S∀1 (x , ȳ,x
′, ȳ ′) → E(y1,y

′
1) S∀1 (x , ȳ,x

′, ȳ ′) → E(yn ,y
′
n)

S∀2 (x , ȳ,x
′, ȳ ′) → E(y1,y

′
1) S∀2 (x , ȳ,x

′, ȳ ′) → E(yn ,y
′
n),

where E is another visible binary relation interpreted by the singleton instance {(⊥,⊥)}.
It remains to specify the query that checks that the Turing machine M reaches the rejecting

state qrej along some path of its computation tree. For this, we introduce a last visible relation Vrej

that contains all cell values of the form (a,qrej), with a ∈ Σ. The query that checks this property is

Q =
∨

1<i<n

∃ x ȳ
(
C∃(x , ȳ) ∧ Vrej(yi)

)
.

Let V be the instance that captures the intended semantics of the visible relations V , C0, N ∃,
N ∀

1 , N ∀
2 , E, and Vrej, The proof that NQI(Q, Σ, S,V) = true if and only if M accepts (namely, has a

computation tree where all paths visit the control state qacc) goes along the same lines of the proof
of Theorem 4.5. �

5.2 Existence Problems

Here we consider the complexity of the schema-level question, ∃NQI(Q, Σ, S). We first give a result
that holds whenever the background theories Σ that are preserved under disjoint unions: whenever
F and F ′ are instances satisfying Σ, with the active domain of F disjoint from the active domain of
F ′, then the instance F ∪F ′ obtained by just unioning all of the facts still satisfies Σ. An example
of sentences with this property are connected disjunctive TGDs without constants: if the left-hand
side of such a disjunctive TGD is satisfied in F ∪ F ′, it must be satisfied either in F or in F ′.

We will show that for theories with this property, the existence of an NQI can be checked by
considering a single “negative critical instance,” namely the empty visible instance ∅. This instance
is easily seen to be realizable for background theories defined by TGDs: the variant of the chase
procedure that we introduced in Section 4.3 terminates immediately when initialized with the

ACM Transactions on Computational Logic, Vol. 22, No. 2, Article 13. Publication date: June 2021.

13:38 M. Benedikt et al.

empty instance F0 = ∅ and returns the singleton collection Chasesvis(Σ, S, ∅) consisting of the
empty S-instance satisfying Σ.

Theorem 5.15. If Q is a Boolean UCQ without constants and Σ is a background theory that is pre-

served under disjoint unions of instances, then ∃NQI(Q, Σ, S) = true if and only if NQI(Q, Σ, S, ∅) =
true.

Proof. It is immediate to see that NQI(Q, Σ, S, ∅) = true implies that ∃NQI(Q, Σ, S) = true. We
prove the converse implication by contraposition.

Suppose that NQI(Q, Σ, S, ∅) = false, namely, that there is an S-instance F satisfying Σ and Q
and such that Visible(F) = ∅. We aim at proving that NQI(Q, Σ, S,V) = false for all realizable
visible instancesV . LetV be such a realizable instance and let F ′ be an S-instance that satisfies
Σ and such that Visible(F ′) = V . We define the new instance F ′′ as a disjoint union of F and
F ′. Since the background theory Σ is preserved under disjoint unions, F ′′ satisfies Σ. Moreover,
F ′′ satisfies the query Q , by monotonicity of UCQs. Since V = Visible(F ′) = Visible(F ′′), we
have NQI(Q, Σ, S,V) = false. Finally, since V was chosen in an arbitrary way, this proves that
∃NQI(Q, Σ, S) = false. �

Using the “negative critical instance” result above and Theorem 5.1, we immediately get the
following corollary.

Corollary 5.16. ∃NQI(Q, Σ, S) is decidable in 2ExpTime for Boolean UCQs without constants and

GNFO sentences that are closed under disjoint unions (in particular, for connected disjunctive FGTGDs

without constants).

Combining this result with Corollary 5.12 also gives an ExpTime bound for linear TGDs without
constants, for Boolean UCQs without constants. In fact, we can improve this upper bound by
observing that the NQI problem over the empty visible instance reduces to classical OWQ.

Proposition 5.17. For any Boolean UCQ Q =
⋃

i Qi , NQI(Q, Σ, S, ∅) holds if and only if

OWQ(Q ′, Σ,CanonInst(Qi)) holds for each Qi , where

Q ′ =
∨

R∈Sv

∃x̄ R(x̄)

and CanonInst(Qi) is the canonical instance of the CQ Qi .

Proof. Suppose that NQI(Q, Σ, S, ∅) = true. This means that every S-instance that satisfies the
sentences in Σ and has empty visible part must violate each query Qi . By contraposition, every S-
instance that satisfies the sentences Σ and contains CanonInst(Qi) (i.e., satisfies Qi), must contain
some visible facts and hence satisfy the UCQ Q ′. This implies that OWQ(Q ′, Σ,CanonInst(Qi)) =

true.
The proof that OWQ(Q ′, Σ,CanonInst(Qi)) = true for all i implies that ∃NQI(Q, Σ, S, ∅) = true

follows symmetric arguments. �

We know from previous results [8] that OWQ for Boolean UCQs (without constants) and linear
TGDs (without constants) is in PSpace. From the above reduction, we immediately get that the
problem NQI(Q, Σ, S, ∅), and hence (by Theorem 5.15) the problem ∃NQI(Q, Σ, S), for a set of linear
TGDs without constants is also in PSpace.

Corollary 5.18. The problem ∃NQI(Q, Σ, S), as Q ranges over Boolean UCQs without constants

and Σ over sets of linear TGDs without constants, is in PSpace.

To conclude our upper bounds, we show that ∃NQI can be solved in PTime for IDs.

ACM Transactions on Computational Logic, Vol. 22, No. 2, Article 13. Publication date: June 2021.

Inference from Visible Information and Background Knowledge 13:39

Theorem 5.19. The problem ∃NQI(Q, Σ, S) is in PTime whenQ ranges over Boolean UCQs without

constants and Σ ranges over sets of IDs.

The informal explanation for the distinction with linear TGDs is that when Σ contains linear
TGDs, there are reductions in both directions between ∃NQI and OWQ problems with respect to
Σ for an arbitraryQ : the reduction in one direction is above, and Theorem 5.21 below will provide
a reduction in the other direction. But in the case where Σ has only IDs, then ∃NQI reduces to
OWQ problems over Σ where the query is extremely simple, of the form ∃x̄ R(x̄) where the xi are
all distinct. Such query answering problems can be solved in PTime. We now formalize this.

Proof of Theorem 5.19. By Theorem 5.15, ∃NQI(Q, Σ, S) = true holds if and only if
NQI(Q, Σ, S, ∅) = true. Note that the latter holds if and only if NQI(Q ′, Σ, S, ∅) = true for all
CQs Q ′ in Q . In what follows, we may therefore restrict attention to a single CQ Q ′. Furthermore,
by Proposition 5.22 together with finite controllability, NQI(Q ′, Σ, S, ∅) = true holds if and only
if either Q ′ contains a visible atom or Chasesvis(Σ, S,CanonInst(Q)) = ∅. Clearly, we can test in
polynomial time if Q ′ contains a visible atom. It remains to show that we can test in polynomial
time if Chasesvis(Σ, S,CanonInst(Q)) = ∅. Note that Chasesvis(Σ, S,CanonInst(Q)) is guaranteed
to contain at most one instance (because there are no visible facts in CanonInst(Q)).

We define a directed graph over the set of relation symbols as follows: there is a directed edge
from relation R to relation S if there is a ID in Σ containing R in its left-hand side and containing
S in its right-hand side.

It is easy to show that the following are equivalent:

(1) Chasesvis(Σ, S,CanonInst(Q))
(2) CanonInst contains a fact such that there is a directed path from the relation of that fact (in

the above graph) to a visible relation.

This places the problem in PTime, as it suffices to evaluate a Boolean combination of directed graph
reachability statements. �

We now turn to lower bounds. We first show that the upper bounds for connected FGTGDs and
linear TGDs without constants are tight.

Theorem 5.20. ∃NQI(Q, Σ, S) is 2ExpTime-hard as Q ranges over Boolean CQs without constants

and Σ over sets of connected FGTGDs without constants.

Theorem 5.21. ∃NQI(Q, Σ, S) is PSpace-hard as Q ranges over Boolean CQs without constants

and Σ over sets of linear TGDs without constants.

The first theorem will be proven by reducing the OWQ problem to ∃NQI, and then applying a
prior 2ExpTime-hardness result from Calì et al. [23]. The PSpace lower bound will be shown by a
reduction from the implication problem for IDs, shown PSpace-hard by Casanova et al. [24].

We begin with the reduction from OWQ. To prove this reduction, we first provide a character-
ization of the NQI problem over the empty visible instance, which is based, like Proposition 4.10,
on our chase procedure.

Proposition 5.22. If Q is a Boolean CQ and Σ is a set of TGDs without constants over a schema S,

then NQI∞(Q, Σ, S, ∅) = true if and only if either Q contains a visible atom or it does not and in this

case Chasesvis(Σ, S,CanonInst(Q)) = ∅.

Proof. Suppose thatQ does not contain visible atoms and Chasesvis(Σ, S,CanonInst(Q)) is non-
empty. Let K be some instance in Chasesvis(Σ, S,CanonInst(Q)), and observe that, by construction,
K satisfies the sentences in Σ and the query Q and has the same visible part as CanonInst(Q),
which is empty. This means that K is a witness of the fact that NQI(Q, Σ, S, ∅) = false.

ACM Transactions on Computational Logic, Vol. 22, No. 2, Article 13. Publication date: June 2021.

13:40 M. Benedikt et al.

Conversely, suppose that NQI∞(Q, Σ, S, ∅) = false This means that there is an S-instance F
with no visible facts that satisfies the sentences in Σ and the query Q . Since F |= Q , there is a
homomorphism д from CanonInst(Q) to F . Moreover, since Q contains no visible atoms, the two
instances F and CanonInst(Q) agree on the visible part. By Lemma 4.9, letting F0 = CanonInst(Q),
we get the existence of an instance K in Chasesvis(Σ, S,CanonInst(Q)). �

Proposition 5.23. There is a polynomial time reduction from the OWQ problem over a set of

connected FGTGDs without constants and a connected Boolean CQ without constants to an ∃NQI

problem over a set of connected FGTGDs without constants and a Boolean CQ without constants.

Proof. Consider the OWQ problem over a schema S, a set Σ of sentences without constants and
closed under disjoint union, a Boolean CQ Q , and an S-instance F . We reduce this problem to an
∃NQI problem over a new schema S

′, a new set of sentences Σ′, and a new Boolean CQ Q ′. The
schema S

′ is obtained from S by adding a relation Good of arity 0, which is assumed to be the only
visible relation in S

′. The set of sentences Σ′ is equal to Σ unioned with the sentence

S1(x̄1) ∧ . . . ∧ Sm(x̄m) → Good,

where S1(x̄1), . . . , Sm(x̄m) are the atoms in the CQ Q . The query Q ′ is defined as the canonical

query of the instance F , obtained by replacing each valuev with a variable yv and by quantifying
existentially over all of these variables. Note that CanonInst(Q ′) is isomorphic to the input instance
F .

Now, assume that the original sentences in Σ were connected FGTGDs and the CQ Q was also
connected. By construction, the sentences in Σ′ turn out to be also connected FGTGDs. In par-
ticular, the satisfiability of these sentences are preserved under disjoint unions, and hence from
Theorem 5.15, ∃NQI(Q ′, Σ′, S′) = true if and only if NQI(Q ′, Σ′, S′, ∅) = true. Thus, it remains to
show that NQI(Q ′, Σ′, S′, ∅) = true if and only if OWQ(Q, Σ,F) = true.

By contraposition, suppose that OWQ(Q, Σ,F) = false. This means that there is a S-instance
F ′ that contains F , satisfies the sentences in Σ, and violates the query Q . In particular, F ′, seen
as an instance of the new schema S

′, without the visible fact Good, satisfies the query Q ′ and
the sentences in Σ′ (including the sentence that derives Good from the satisfiability of Q). The
S
′-instance F ′ thus witnesses the fact that NQI(Q ′, Σ′, S′, ∅) = false.
Conversely, suppose that NQI(Q ′, Σ′, S′, ∅) = false. By finite controllability (Theorem 5.1),

we also have that NQI∞(Q
′, Σ′, S′, ∅) = false. Recall that the sentences in Σ′ do not use

constants and Q ′ contains no visible facts. We can thus apply Proposition 5.22 and derive
Chasesvis(Σ

′, S′,CanonInst(Q ′)) � ∅. Note that CanonInst(Q ′) is clearly isomorphic to the original
instance F . In particular, there is an instance K in Chasesvis(Σ

′, S′,CanonInst(Q ′)) that contains
the original instance F , satisfies the sentences in Σ′, and does not contain the visible fact Good.
From the latter property, we derive that K violates the query Q . Thus, K , seen as an instance of
the schema S, witnesses the fact that OWQ(Q, Σ,F) = false. �

We are now ready to prove Theorem 5.20, namely, the 2ExpTime-hardness of the problem
∃NQI(Q, Σ, S), where Q ranges over Boolean CQs and Σ ranges over sets of connected FGTGDs.

Proof of Theorem 5.20. Theorem 6.2 of Calì et al. [23] shows 2ExpTime-hardness of OWQ
for FGTGDs. We note that there are two variants of OWQ , corresponding to finite and infinite
instances. However, by finite controllability of FGTGDs, inherited from the finite model property
of GNFO (see Theorem 3.1), these two variants agree. An inspection of the proof shows that only
connected FGTGDs without constants and a connected CQ without constants are required. Thus,
the theorem follows immediately from Proposition 5.23. �

ACM Transactions on Computational Logic, Vol. 22, No. 2, Article 13. Publication date: June 2021.

Inference from Visible Information and Background Knowledge 13:41

We now turn toward proving Theorem 5.21, namely, the PSpace lower bound for ∃NQI under
linear TGDs. Recall that the reduction in Proposition 5.23 does not preserve smaller classes of
sentences, such as linear TGDs. We thus prove the theorem using a separate reduction.

Proof of Theorem 5.21. We reduce from the implication problem for IDs, which is known
to be PSpace-hard from Casanova et al. [24]. Consider a set of IDs Σ and an additional ID
δ = S�(x̄�) → ∃ȳ T�(z̄�), where x̄�, ȳ are sequences of pairwise distinct variables and z̄� is
a sequence of variables from x̄� unioned with ȳ. We denote by F (δ) the sequence of variables
shared between x̄� and z̄�—that is, the exported variables of this dependency. We letm denote the
length of this vector. Note that we annotated relations and variables in δ with the subscript � to
make it clear when we refer later to these particular objects.

We create a new schema S
′ that contains, for each relation R of arity k in the original schema S,

a relation R′ of arity k+m. We also add to S
′ a copy of each relation R from S, without changing the

arity. Furthermore, we add a 0-ary relation Good, which is the only visible relation of S
′. Consider

an ID in Σ of the form

R(x̄) → ∃ȳ S(z̄),

where z̄ enumerates variables from x̄ and ȳ. We introduce a corresponding “expanded ID” in Σ′ of
the form

R′(x̄ , x̄ ′) → ∃ȳ S ′(z̄, x̄ ′),

where the variables in x̄ ′ are m variables distinct from the variables in x̄ , added in the last m
places of R′ and S ′. Thus, we are carrying around the values of x̄ ′ as “parameters.” We also add the
sentences

S�(x̄�) → S ′�(x̄�, F (δ))

T ′�(z̄�, F (δ)) → Good,

where the elements of z̄� are arranged as in the atomT�(z̄�) that appears on the right-hand side of
the ID δ . Note that the sentence that copies the content from S� to S ′� and duplicates the exported
positions is not an ID but is still a linear TGD. The query of our ∃NQI problem is defined as

Q ′ = ∃x̄� S�(x̄).

Intuitively, the first added dependency above initializes the visible chase process by copying
nulls in S� atom into the additional parameter positions of S ′�. The second additional dependency
will verify that these values propagate to T ′� via the usual chase procedure.

The sentences that we just defined are preserved under disjoint unions. Thus, by Theorem 5.15,
we know that ∃NQI(Q ′, Σ′, S′) = true if and only if NQI(Q ′, Σ′, S′, ∅) = true. In the following, we
prove that the latter holds if and only if the ID δ is implied by the set of IDs in Σ.

In one direction, suppose that the implication holds. From this, we can easily infer that in the
schema S

′, the following dependency holds:

S ′�(x̄�, F (δ)) → ∃ȳ T ′�(z̄�, F (δ)).
Consider now a full S

′-instance F ′ with an empty visible part. We show that the query Q ′ is not
satisfied, namely, F ′ cannot satisfy ∃x̄� S�(x̄�). If F ′ did satisfy S�(c̄, x̄�), then, by the copy of the
sentences on the primed relations, this would yield ∃x̄� S ′�(c̄, F (δ)). Hence, by the sentences in the
background theory, we infer that ∃z̄� T ′�(z̄�, F (δ)) holds and thus that Good holds. However, this
would contradict the hypothesis that F ′ has an empty visible part.

In the other direction, suppose that the implication fails and consider a witness S-instance F
that contains the fact S�(x̄�) but not the correspondingT� fact. We create a full S

′-instance F ′with
an empty visible part where Q ′ holds, thus showing that ∃NQI(Q ′, Σ′, S′, ∅) = false. We first copy
in F ′ the content of all relations R from F . In particular, F ′ contains the fact S�(x̄�), but no T�

ACM Transactions on Computational Logic, Vol. 22, No. 2, Article 13. Publication date: June 2021.

13:42 M. Benedikt et al.

fact. The primed relations R′ in F ′ are set to contain all and only the facts of the form R′(x̄ , F (δ)),
where R(x̄) is a fact in F . Finally, we set Good to be the empty relation in F ′. Clearly, Q ′ holds in
F ′ and the visible part is the empty instance. It is also easy to verify that all sentences in Σ′ are
satisfied by F ′, and this completes the proof. �

Note that the reduction above does not create a schema with IDs but rather with general linear
TGDs (variables can be repeated on the right).

At this point, we look at the connectedness requirement, which was used in our upper bounds.
We show that it is critical for decidability.

Theorem 5.24. The problem ∃NQI(Q, Σ, S) is undecidable as Q ranges over Boolean CQs without

constants and Σ over sets of FGTGDs without constants.

Proof. We give a reduction from the model conservativity problem for EL TBoxes, which is
shown undecidable in the work of Lutz and Wolter [42]. Intuitively, EL is a logic that defines
FGTGDs over relations of arity 2, called TBoxes. Given some TBoxes ϕ1 and ϕ2 over two schemas
S1 and S2, respectively, with S1 ⊆ S2, we say that ϕ2 is a model conservative extension of ϕ1 if every
S1-instanceV that satisfies ϕ1 can be extended to an S2-instance that satisfies ϕ2 without changing
the interpretation of the predicates in S1—that is, by only adding an interpretation for the relations
that are in S2 but not in S1. The model conservativity problem consists of deciding whether ϕ2 is
a model conservative extension of ϕ1. The proof in the work of Lutz and Wolter [42] shows that
this problem is undecidable for both finite instances and arbitrary instances.

We reduce the above problem to the complement of ∃NQI(Q, Σ, S), for suitable Q , Σ, and S, as
follows. Given some TBoxes ϕ1 and ϕ2 over the schemas S1 ⊆ S2, let S be the schema obtained from
S2 by adding a new predicate Good of arity 0 and by letting the visible part be S1 (in particular,
the relation Good is hidden). Further, let Σ = {ϕ1,Good → ϕ2}, where Good → ϕ2 is shorthand
for the collection of FGTGDs obtained by adding Good as a conjunct to the left-hand side of each
dependency of ϕ2 (note that this makes the dependency unconnected). Finally, consider the query
Q = Good. We have that ∃NQI(Q, Σ, S) = true if and only if there is an S1-instance V satisfying
ϕ1, none of whose S2-expansions satisfies ϕ2. �

In particular, this shows that our critical-instance method depends on connectedness. If con-
stants are allowed, ∃NQI becomes undecidable even for connected FGTGDs, which indicates that
our critical-instance method fails in the presence of constants.

Theorem 5.25. The problem ∃NQI(Q, Σ, S) is undecidable when

(1) Q ranges over Boolean CQs without constants and Σ ranges over sets of connected FGTGDs with

constants or

(2) Q ranges over Boolean CQs with constants and Σ ranges over sets of connected FGTGDs without

constants.

Proof. Both claims are proved by reduction from Theorem 5.24. Let Σ be any set of FGTGDs
and Q a Boolean CQ, over a schema S.

For the first item, let S
′ be the schema obtained from S by adding, for each k-ary (visible or

hidden) relation R, an additional hidden k + 1-ary relation R′. Fix a fresh constant a. Let Σ′ be
the following set of connected FGTGDs over S

′: for every FGTGD in Σ, Σ′ contains the connected
FGTGD obtained from it by replacing every atom R(x̄) by R(x̄ ,y), wherey is a fixed variable shared
across all atoms in the FGTGD. In addition, Σ′ contains the connected FGTGDs R(x̄) → R′(x̄ ,a)
and R′(x̄ ,a) → R(x̄) for each relation R.

It is easy to see that ∃NQI(Q, Σ, S) and ∃NQI(Q, Σ′, S′) coincide: every full instance F witnessing
NQI(Q, Σ, S) = true gives rise to a full instance F ′ witnessing NQI(Q, Σ′, S′) = true, where F ′

ACM Transactions on Computational Logic, Vol. 22, No. 2, Article 13. Publication date: June 2021.

Inference from Visible Information and Background Knowledge 13:43

extends F with all facts R′(b̄,a) for R(b̄) a fact of F . Conversely, every full instance witnessing
NQI(Q, Σ′, S′) = true gives rise (by restricting to the relations in the original schema S) to a full
instance witnessing ∃NQI(Q, Σ, S).

For the second item, we provide a similar reduction: let S
′ be the schema obtained from S by

increasing the arity of every (visible or hidden) relation by 1. Fix a constant a, and let Q ′ be the
CQ obtained from Q by replacing every atom R(x̄) by R(x̄ ,a). Furthermore, let Σ′ be the set of
connected FGTGDs obtained from Σ by replacing every atom R(x̄) by R(x̄ ,y), where y is a fixed
variable shared across all atoms in the FGTGD.

Again, it is easy to see that ∃NQI(Q, Σ, S) and ∃NQI(Q, Σ′, S′) coincide: every full instance F
witnessing NQI(Q, Σ, S) = true gives rise to a full instance F ′ witnessing NQI(Q, Σ′, S′) = true,
where F ′ consists of all facts R(b̄,a) for R(b̄) a fact of F . Conversely, every full instance witnessing
NQI(Q, Σ′, S′) = true gives rise to a full instance F ′ witnessing ∃NQI(Q, Σ, S), where F ′ consists
of all facts R(b̄) for R(b̄,a) a fact of F having a as its last argument. �

6 EXTENSIONS AND SPECIAL CASES

Next we present some results concerning natural extensions of the framework.

Non-Boolean queries. Throughout this work, we have restricted to Boolean queries. The nat-
ural extension of the notion of query implication for non-Boolean queries is to consider infer-
ence of information concerning membership of any visible tuple in the query output. For exam-
ple, PQI(Q, Σ, S,V)would hold if there is a tuple t̄ over the active domain ofV such that t̄ ∈ Q(F)
for all instances F of S satisfying the background theory Σ and having visible part V . As usual,
the schema-level problem ∃PQI(Q, Σ, S) (respectively, ∃NQI(Q, Σ, S)) for a non-Boolean query Q
amounts to deciding whether there is a realizable visible instance V witnessing PQI(Q, Σ, S,V)
(respectively, NQI(Q, Σ, S,V)).

The complexity upper bounds for the instance-level problems carry over to non-Boolean queries
in a rather simple way. For example, given S, Σ,V as usual, and given a non-Boolean queryQ and
a visible tuple t̄ , the problem of deciding whether t̄ appears in every potential output Q(F), for
any instance F satisfying Σ and having visible part V , reduces to the problem PQI(Qt̄ , Σ, S,V),
where Qt̄ is the Boolean query obtained by substituting the i-th free variable of Q with the i-th
constant in t̄ , for all i’s. A similar reduction holds for negative implication. Thus, the instance-level
problem in the non-Boolean case reduces to a series of instance-level problems in the Boolean case,
one for each choice of a tuple t̄ over the active domain of V . Our upper bounds can be applied
to the latter problems, since they hold in the presence of constants in the query. Moreover, the
iteration over the tuples t̄ can be absorbed in the complexity classes of our upper bounds: for data
complexity, the iteration is polynomial, whereas for combined complexity, the number of tuples
can be exponential, but our bounds are at least exponential. Further, GFP-Datalog definability for
negative implications also extends straightforwardly to the non-Boolean case: Theorem 5.8 extends
with the same statement and proof, whereas the argument in Theorem 5.10 is easily extended to
show that there is a GFP-Datalog program that returns the complement of NQI(Q, Σ, S)within the
active domain.

Turning to schema-level results for ∃PQI as listed in Figure 1, we can generalize our Theo-
rem 4.11, which reduces ∃PQI to PQI on a critical instance, to non-Boolean queries, by revising it
to state ∃PQI(Q, Σ, S) = true if and only if there is a PQI for the tuple (a, . . . ,a) and the instance
V{a } . Consequently, Theorem 4.20 and Corollary 4.13 extend to non-Boolean queries without con-
stants. We believe that Theorem 4.21 (which we derived from earlier work [10]) can be lifted to
non-Boolean queries without constants as well, but we have not verified this.

ACM Transactions on Computational Logic, Vol. 22, No. 2, Article 13. Publication date: June 2021.

13:44 M. Benedikt et al.

The more problematic case for non-Boolean queries is that of ∃NQI. We do not know if the
upper bounds for ∃NQI carry over from the Boolean case. We leave this for future work.

Beyond unions of CQs. So far, we have considered only the case where the query Q does not
contain negation or universal quantification. It is natural to extend the query language even further,
to Boolean combinations of Boolean conjunctive queries (BCCQs). We note that the problem
PQI(Q, Σ, S,V), as Q ranges over BCCQs, subsumes both PQI(Q, Σ, S,V) and NQI(Q, Σ, S,V) for
Q a UCQ. Thus, all lower bounds for either of these two problems are inherited by the BCCQ
problem. The corresponding instance-level problems are still decidable. Indeed, this holds even
when Q is a GNFO sentence, since we can use the same translation to GNFO satisfiability applied
in Theorems 4.1 and 5.1. However, for the schema-level problems ∃PQI and ∃NQI,we immediately
run into problems.

Theorem 6.1. The problem ∃PQI(Q, Σ, S) for a Boolean combinationQ of Boolean CQs is undecid-

able, even when the sentences in the background theory are IDs. The same holds for ∃NQI(Q, Σ, S).

Proof. As in the previous undecidability results, we reduce a tiling problem with tilesT , initial
tile t⊥ ∈ T , and horizontal and vertical constraints H ,V ⊆ T × T to the problem ∃PQI(Q, Σ, S).
Again, for convenience, we deal with the infinite variant of the problem. The idea will be that the
visible instance witnessing ∃PQI represents the tiling, and invisible instances represent challenges
to the correctness of the tiling.

We model the infinite grid to be tiled by visible relations EH and EV , and the tiling function by
a collection of unary visible relations Ut , for all tiles t ∈ T .

The invisible relations represent markings of the grid for possible errors. There are several kinds
of challenges. We focus on the horizontal consistency challenge, which selects two nodes in the EH

relation, to challenge whether the nodes satisfy the horizontal constraint. Formally, the challenge
is captured by a binary invisible predicate HorChallenge(x ,y), with an associated sentence in the
background theory

HorChallenge(x ,y) → EH (x ,y).

The query Q will be satisfied only when the following negated CQs hold, for all pairs (t , t ′) � H :

¬∃ x y HorChallenge(x ,y) ∧ Ut (x) ∧ Ut ′ (y).

Note that this can only happen if the relation HorChallenge has selected two horizontally adjacent
nodes whose tiles violate the horizontal constraints. The vertical constraints are enforced in a
similar way using an invisible relation VertChallenge and another negated CQ.

Recall that in the infinite grid, we have unique vertical and horizontal successors of each node,
and the horizontal and vertical successor functions commute. Thus far, we have not enforced that
EV and EH have this property. We will use additional hidden relations and IDs to enforce that
every element is related to at least one other via EH and EV .

We first show how to enforce that every element has at most one horizontal successor (“func-
tionality challenge”). We introduce a hidden relation HorFuncChallenge(x ,y,y ′) and a background
theory sentence

HorFuncChallenge(x ,y,y ′) → EH (x ,y)

HorFuncChallenge(x ,y,y ′) → EH (x ,y
′).

We also add to the query Q the conjunct:(
¬∃ x y y ′ HorFuncChallenge(x ,y,y ′)

)
∨

(∃ x y HorFuncChallenge(x ,y,y)
)
.

We claim that if there is a visible instance witnessing ∃PQI, then EH is functional. Indeed, if EH

were not functional in the visible instance, then we could choose a node x with two distinct

ACM Transactions on Computational Logic, Vol. 22, No. 2, Article 13. Publication date: June 2021.

Inference from Visible Information and Background Knowledge 13:45

EH -successors y and y ′, add only the tuple (x ,y,y ′) to HorFuncChallenge, and obtain a full in-
stance that satisfies the sentences of the background theory but not the query Q . Conversely,
suppose that EH is functional in a visible instance V , and consider any full instance F that
satisfies the background theory and agrees with V on the visible part. If there are no tuples in
HorFuncChallenge, the conjunct above is clearly satisfied by its first disjunct. If there is some tu-
ple (x ,y,y ′) in HorFuncChallenge, then by the background theory, we must have EH (x ,y) and
EH (x ,y

′), and hence, by functionality, y = y ′. In this case, the conjunct above holds via the second
disjunct. The functionality of the vertical relation EV is enforced in an analogous way.

Commutativity of EH and EV can be also enforced using a similar technique. We add a hidden
relation ConfChallenge(x ,y, z,u,v) with the following sentences in the background theory:

ConfChallenge(x ,y, z,u,v) → EH (x ,y)

ConfChallenge(x ,y, z,u,v) → EV (y,u)

ConfChallenge(x ,y, z,u,v) → EV (x , z)

ConfChallenge(x ,y, z,u,v) → EH (z,v).

A potential tuple in ConfChallenge(x ,y, z,u,v) represents the join of a triple of nodes moving
first horizontally and then vertically from x (i.e., x ,y,u) and a triple going first vertically and then
horizontally from x (i.e., x , z,v). For the relations to commute, we must satisfy the query(

¬∃ x y z u v ConfChallenge(x ,y, z,u,v)
)
∨

(∃ x y z u ConfChallenge(x ,y, z,u,u)
)

in the full instance. Thus, we add the above conjunct to Q .
Putting the various components ofQ for different challenges together as a Boolean combination

of CQ completes the proof of the theorem. �

The case of CQ views. As mentioned earlier, the database community has studied the PQI problem
in the case where the background theory consist exactly of CQ-view definitions that determine
each visible relation in terms of invisible relations. Formally, a CQ-view-based scenario consists
of a schema S = Sv ∪ Sh , namely, the union of a schema for the visible relations and a schema for
the hidden relations, and a set of sentences Σ between visible and hidden relations that must be of
a particular form. For each visible relation R ∈ Sv , Σ must contain two dependencies of the form

R(x̄) → ∃ȳ ϕR (x̄ , ȳ)

ϕR (x̄ , ȳ) → R(x̄),

where ϕR is a conjunction of atoms over the hidden schema Sh , Furthermore, all sentences in Σ
must be of the above forms. Note that this CQ-view scenario is incomparable in expressiveness to
GNFO sentences.

The PQI problem is decidable, because given a visible instanceV , the sentences can be rewritten
as Σ1∧Σ2, where Σ1 consists of TGDs from the view relations to the base relations, and Σ2 consists
of sentences of the formV (x̄) →

∨
ā∈V (V) x̄ = ā. Let us consider what will happen in the the visible

chase of V with these dependencies. In the first round, we will fire the Σ1 dependencies, which
will create facts over the invisible source relations for each view atom. In the subsequent rounds,
we will fire Σ2 dependencies that non-deterministically merge source elements with elements in
the view relations. We continue with these firing/merging steps with Σ2 constraints until no new
rules fire. The process must terminate because in these merging rounds, no new elements will be
created.

The decidability of the ∃PQI problem follows immediately from these observations and Theo-
rem 4.11, which applies to background theories capturing CQ-view definitions. We can also see

ACM Transactions on Computational Logic, Vol. 22, No. 2, Article 13. Publication date: June 2021.

13:46 M. Benedikt et al.

that the problem ∃PQI is finitely controllable. The construction of Theorem 4.11 creates a coun-
terexample to PQI on the critical instance from a counterexample to PQI on an arbitrary visible
instance that is one of the members of the visible chase. If we have an arbitrary finite visible in-
stance, then the visible chase will contain only finite instances, by the termination algorithm above.
Hence, the argument of Theorem 4.11 will produce a finite counterexample to PQI on the critical
instance.

Note that subsequent to our work, an earlier work [16] showed that ∃PQI becomes undecidable
for UCQ view definitions. This result is related to (but formally orthogonal to) our undecidability
results for disjunctive TGDs earlier in the article.

The NQI problem for CQ views is also decidable, because we can bound the size of a counterex-
ample witness full instance. Given a full instance F that gives a given view image V where CQ
Q is non-empty, only polynomial many facts in F over the invisible schema are needed to ensure
that the view image is V , and only polynomial many facts over F are needed to ensure that Q
is non-empty. GivenV and Q, an algorithm can thus non-deterministically guess all such sets of
facts and check that one of them returns non-empty. When we turn to ∃NQI, we find that even
CQ views lead to undecidability.

Theorem 6.2. The ∃NQI problem under background knowledge given as CQ-view definitions is

undecidable.

The proof, deferred to the electronic appendix, uses a variant of the encoding technique used in
the previous undecidability results in this article.

7 CONCLUSION

This work gives a detailed examination of inference of information from complete knowledge
about a subset of the signature coupled with background knowledge about the full signature. Both
the information and the background knowledge are expressed by logical sentences. In future work,
we will look at mechanisms for “restricted access” that are finer grained than just exposing the full
contents of a subset of the schema relations. One such mechanism consists of language-based
restrictions—the ability to evaluate open formulas over the schemas in a fragment of the logic.
Another mechanism consists of functional interfaces—for example, the “access method” interfaces
studied in other works [18, 19].

APPENDICES

A PROOF OF EXPONENTIAL TIME SATISFIABILITY FOR GNFO WITH FIXED

WIDTH, FIXED CQ-RANK, AND FIXED ARITY OF SCHEMA

In this appendix, we give details of the following result:

Satisfiability of GNFO sentences is decidable in exponential time if the following parameters are
fixed: the width and the CQ-rank.

A doubly exponential bound on satisfiability of GNFO was proven in the works where GNFO
was introduced [6, 7]. However, the argument was by reduction to satisfiability of the guarded

fragment, which was already known to be decidable in doubly exponential time.
The guarded fragment is the fragment of first-order logic built up from relational atoms and

equality atoms via the Boolean operators ∧,∨,¬ along with the guarded quantifiers: ∃x̄ R(x̄) ∧ φ
and ∀x̄ R(x̄) → φ, where the free variables of φ are contained in x̄ . It is easily seen that every
sentence of the guarded fragment is expressible in GNFO, and the results of Bárány et al. [6, 7]
show that the fragments do not differ in the complexity of satisfiability.

ACM Transactions on Computational Logic, Vol. 22, No. 2, Article 13. Publication date: June 2021.

Inference from Visible Information and Background Knowledge 13:47

Conversions of GNFO formulas to automata, and comments about what controls their complex-
ity, are implicit in a number of other works [13, 14, 20]. But the conversions are performed for
richer logics than GNFO. This means first that they introduce many complications that are unnec-
essary for GNFO, and second that they do not provide the precise statements for GNFO that we
require in our analysis of inference problems.

Here, we give a direct reduction of satisfiability of GNFO to emptiness testing for a tree automa-
ton. The translation allows us to track the complexity of satisfiability in a more fine-grained way,
including the collapse to exponential time when the width and the CQ-rank is fixed.

We will start in Section A.1 explaining the tree-like model property, and in Section A.2 giving
background on the automaton formalism we use. In Section A.3, we show decidability of GNFO by
restricting to sentences of a special kind, namely, sentences in normal form and without equality
or constants. We present a result that provides an exponential time bound for formulas in normal
form once the width, CQ-rank, and additionally the maximum arity of relations is fixed. In Sec-
tion A.4, we extend the result to GNFO sentences in normal form with equalities and constants.
Finally, in Section A.5, we lift the assumption that the arity is also fixed. We close in Section A.6
with some remarks relating the results here with the bounds in the absence of any normal form
restriction.

A.1 Tree-Like Models and Automata

The first step in showing decidability of GNFO satisfiability is to show that for any sentenceφ there
is a number k , easily computed from φ, such that if φ is satisfiable, it is satisfiable over structures
that are “k-tree-like.” Here, structure is k-tree-like if it is coded by a tree, where each vertex in the
tree represents at most k elements in the structure.

In this section, we will explain the tree-like model property. In doing so, we will restrict to GNFO
sentences that do not have equality or constants. The extension to equality and constants will be
given in Section A.4.

We start by describing what these tree codes look like in detail. These are essentially unordered,
unranked trees with nodes labeled by unary predicates from a fixed finite signature.

More precisely, for a number k, we let Nk = {1, . . . , 2k}. This is a finite set of names that will
be used to describe the elements represented in a given node of the tree.

Given a relational signature σ and a number k , the k-code signature, Σcode
σ ,k

contains

• A unary predicate Da for all a ∈ Nk

• Unary predicates Rā for all R ∈ σ of arity j and all ā ∈ (Nk)
j .

Informally, Da(v) indicates that a is a name in the nodev in the tree code, whereas Rā(v) indicates
that R holds for the elements represented by the names ā at v .

Neighboring nodes may describe overlapping pieces of the structure. This will be implicitly
coded based on repeated use of names: if some name appears in two neighboring nodes, then the
same element is being described in both nodes. This is why Nk has 2k names, even though at most
k names are used in a single node.

For a vertex v in a Σcode
σ ,k

tree T , let names(v) := {a ∈ Nk : Da holds of v}. This denotes the set

of names used for elements in node v .
A consistent Σcode

σ ,k
-tree is a Σcode

σ ,k
-tree such that every node v satisfies

• |names(v)| ≤ k
• For all Rā ∈ Σcode

σ ,k
, if Rā(v), then ā ⊆ names(v).

When σ is clear from context, such a tree will also be called a k-code.

ACM Transactions on Computational Logic, Vol. 22, No. 2, Article 13. Publication date: June 2021.

13:48 M. Benedikt et al.

We now describe the structure coded by a k-code formally. Given a consistent tree T and a
local name a, we say that nodes u and v are a-connected if there is a sequence of nodes u =
w0,w1, . . . ,w j = v such thatwi+1 is a parent or child ofwi , and a ∈ names(wi) for all i ∈ {0, . . . , j}.
Note that the property of being a-connected is an equivalence relation. We write [v]a for the
equivalence class of a-connected nodes of v . Moreover, for ā = a1 . . . an , we often abuse notation
and write [v]ā for the tuple [v]a1 , . . . , [v]an

.

Definition A.1. The decoding of T is the σ -structure decode(T) with universe

{[v]a : v ∈ dom(T) and a ∈ names(v)},

and with each relation R instantiated by the set

Rdecode(T) = {[w]ā : w ∈ Rā}.

So, intuitively, the elements of the decoding of T are represented by equivalence classes of
a-connected nodes of T , for every name a, and the facts of any relation R of the signature are
witnessed by tuples of equivalence classes of Rā-labeled nodes of T , for every a tuple ā of names
of the same arity as R.

We are now ready to state the result that satisfiable GNFO sentences have k-tree-like models, for
some appropriate k . The original works on GNFO [6, 7] show that every satisfiable GNFO sentence
(even with equality but without constants) has a satisfying model with a tree decomposition where
every vertex of the tree is associated with k elements of the model and k is the width of a suitable
normal form of the formula. This result can be transferred to our setting. We will not need to
introduce the definition of tree decomposition here, but it is easy to see (and explained in other
works (e.g., [13]) that structures with such a decomposition have codes of the form given above.
We also recall (cf. Proposition 4.2) that any GNFO formula can be put in a normal form that satisfies
the following grammar:

φ ::=
∨

i ∃x̄i
∧

j ψi j

ψ ::=α | α ∧ ¬φ,

where α is an atomic formula and free variables of φ are contained in free variables of α . Finally,
we recall that the width of a formula φ in normal form is the maximum number of free variables
of any of its subformulas. Hence, we have the following proposition.

Proposition A.2 ([7]). Suppose that φ is a GNFO sentence in normal form without constants and

having width k . If φ is satisfiable, then it is satisfiable in a structure that is the decoding of some

k-code.

Tree codes like this can generally have unbounded (possibly infinite) degree. It is well known
that if a first-order sentence φ is satisfiable, there is a structure M that is countable such that
M |= φ—this follows from the Lowenheim-Skolem theorem [25]. Using this fact, one can refine the
proof of Proposition A.2 to show that M is satisfiable in a countable model that has a k-tree code
where the branching degree is countable.

For technical reasons, it is more convenient to use full binary trees for our encodings. Any tree
code T where each node has at most countably many children can be converted to a binary tree
that encodes the same model, in the following way. First, for each node u, we add infinitely many
new children to u, each child being the root of an infinite full binary tree where each node has the
same label asu in T . This ensures that each node of T now has infinitely many (but still countably
many) children. Second, we convert T into a full binary tree, using the classical “first-child, next-
sibling” encoding. More precisely, we transform the tree inductively, starting from the root and

ACM Transactions on Computational Logic, Vol. 22, No. 2, Article 13. Publication date: June 2021.

Inference from Visible Information and Background Knowledge 13:49

replacing every node u with children v1,v2, . . . by the tree that has an infinite rightward spine
consisting of copies of u, and where the i-th copy of u along the spine has node vi as left child.

A.2 Automata Background

We will consider automata that process infinite complete binary trees—that is, infinite trees in
which the outdegree of every vertex is 2. We assume a set of unary predicates A1 . . .An for such
input trees, and let Σ be {A1 . . .An}.

We will look at automata that can move up and down in such trees. Let Direction2 be the set of
(movement) directions: Stay, Down1, Down2, and Up.

For any set J , let B+(J) be the set of positive Boolean combinations of propositions in J . Given
a set I ⊆ J and a formula φ ∈ B+(J), the notion of φ holding in I (I |= φ) is defined as usual in
propositional logic: a single element j ∈ J holds in I if j ∈ I , a disjunction holds in I if one of its
disjuncts holds, and a conjunction holds if all of its conjuncts hold. We will be interested in positive
Boolean combinations over Direction2 ×Q ; these formulas will be used to describe possible moves
of the automaton.

We will convert GNFO sentences in normal form to two-way alternating Büchi tree automata

(2ABTA for short) that process infinite binary trees labeled over P(Σ). An automaton of this type
is specified as a tuple (Q, Σ,q0,δ ,Ω), where

• Q is a finite set of states,
• Σ is as above,
• q0 ∈ Q is the initial state,
• δ ∈ Q × P(Σ) → B+(Direction2 ×Q) is the transition function,
• Ω is an acceptance condition, which we discuss in the following.

A run of the automaton on a tree T is another tree R (not necessarily binary) with a labeling
function λR that maps each vertex of R to a pair consisting of a vertex of T and a state q ∈ Q . We
now describe further properties that are required for the run R to be accepting.

First, we require that the root of R is labeled by a pair (v,q0) consisting of a vertex v0 of T and
the initial state of the automaton. We say that the run R starts at vertex v0 (which does not need
to be the root of T in general).

Second, we require that the relationship between parent and children labels in R be consistent
with the transition function δ of the automaton. Consider any vertexw of R together with its label
and the labels of its children, as specified by λR , say λR(w) = (vw ,qw) and λR(w

′) = (vw ′,qw ′) for
each child w ′ of w . For every direction d ∈ Direction2, let d(v) be the vertex reached from v by a
move along d , namely, let d(v) be either v , the left child of v , the right child of v , or the parent of
v , depending on whether d = Stay, d = Down1, d = Down2, or d = Parent. Consistency with the
transition function δ is enforced by requiring that

• For every child w ′ of w , there is a direction dw ′ ∈ Direction2 such that vw ′ = dw ′ (vw),
• Iw |= δ (q, Sv), where Iw is the set of all pairs (dw ′,qw ′), with w ′ child of w , and Sv is the set

of predicates labeling v in T .

Finally, we require that every branch ofR obeys the acceptance condition Ω. There are a number
of different acceptance conditions defined for automata over infinite trees. Here, we will make
use of the Büchi acceptance condition. This is specified by a set Ω ⊆ Q of accepting states. The
requirement is that along each branch in R, there is a state in Ω that occurs infinitely often along
the branch.

Given an automaton A, the language recognized by A, denoted L(A), is the set of trees T that
admit an accepting run of A starting at the root of T . The non-emptiness problem for a class of

ACM Transactions on Computational Logic, Vol. 22, No. 2, Article 13. Publication date: June 2021.

13:50 M. Benedikt et al.

automata is the analog of the satisfiability problem for a logic: given an automatonA in the class,
determine if L(A) � ∅.

Vardi [50] showed that non-emptiness is decidable in ExpTime for 2ABTA (in fact, this was
shown for parity automata, which includes Büchi automata).

Theorem A.3 ([50]). It is decidable in ExpTime whether L(A) � ∅ for any given 2ABTAA. More

specifically, the running time of the decision procedure is p(|A|)p(s), where s is the number of states

of A and p is a polynomial independent of A.

In view of the above result, if we can reduce our satisfiability problem to an emptiness check for
a 2ABTA with size doubly exponential in the size of the formula and number of states exponential
in the size of the formula, we will obtain a doubly exponential bound on satisfiability. Similarly, if
we can construct a 2ABTA with size exponential in the formula and number of states polynomial
in the formula, we will obtain a singly exponential bound on satisfiability.

A.3 Decision Procedure for Normal-Form GNFO Without Equality and Constants

In giving the automata constructions in this section, we will assume that φ is a GNFO sentence
in a normal form, similar to the one introduced by Bárány et al. [7]. Throughout this section,
we also assume that the formulas do not use equality or constants. In particular, this means that
every negation is either guarded by an atomic formula or involves a subformula with a single free
variable.

We begin by focusing on the case where formulas do not have equality or constants. We recall
that the formulas φ of GNFO in normal form are generated using the following grammar:

φ ::=
∨

i ∃x̄i
∧

j ψi j

ψ ::=α | α ∧ ¬φ |

φ if φ has at most one free variable |

¬φ if φ has at most one free variable,

where α is an atomic formula, and in the case of α ∧ φ and α ∧ ¬φ , Free(α) ⊇ Free(φ). The φ are
referred to as UCQ-shaped formulas, with each of the disjuncts being a CQ-shaped formula. Note
that

∧
i φi is a sentence in normal form when the φi ’s are sentences in normal form.

A formula is answer-guarded if it has at most one free variable or is of the form α ∧ χ where α
is an atom that contains all free variables of χ . The idea of the normal form is that the grammar
generates formulas that alternate been UCQ-shaped templates and guarded formulas. The normal
form guarantees that eachψ , and thus in particular eachψi j component of a UCQ-shaped template,
is answer guarded.

As mentioned in the body of the article, Bárány et al. [7] showed that every GNFO formula can be
efficiently put in normal form. For completeness, we also include a procedure in Proposition 4.2. We
also recall below the definitions of the parameters that are important for our complexity analysis.

The width of a GNFO formula φ in normal form, denoted width(φ), is the maximum number of
free variables in any of its subformulas.

The CQ-rank of φ, denoted rank(φ), is the maximum number of conjunctsψi in any CQ-shaped
subformula ∃x̄ ∧

i ψi of φ, where x̄ is non-empty. Note that the ψi in such a CQ-shaped formula
are of the form α , α ∧φ ′′, or α ∧¬φ ′′, but for the purposes of counting conjuncts for the CQ-rank,
eachψi is treated as a single conjunct.

In our preliminary analysis, we will also fix the maximum arity of relations in the signature.
This will fix the size of the signature underlying tree codes and thus the size of the automaton that

ACM Transactions on Computational Logic, Vol. 22, No. 2, Article 13. Publication date: June 2021.

Inference from Visible Information and Background Knowledge 13:51

will check satisfiability of the given GNFO formula. We will see later (Section A.5) how to lift this
restriction on the arity.

We now explain how to construct a two-way alternating Büchi tree automaton (2ABTA) for a
GNFO sentence φ in normal form without equality or constants.

The rough idea will be that the automaton has states for all subformulas of φ—the “subformula
closure” of φ. The automaton being at a vertex v of the input tree T with a state that corresponds
to subformula ψ indicates that it is verifying that ψ holds at v in T . The statement above is not
precise because in GNFO, the notion of “subformula” needs to be more expansive than the usual
one, in order to be able to correctly verify the CQ-shaped formulas.

Before we define the correct subformula closure, we need to think more carefully about CQ-
shaped formulas and how they can be satisfied in a tree-like structure. For this, it is convenient to
introduce specializations.

Specializations. Consider a CQ-shaped formula

ρ(x̄) = ∃ȳ
∧

j ∈{1, ...,r }

ψj (x̄ , ȳ).

A specialization of ρ is a formula ρ ′ obtained from ρ by the following operations:

• Select a subset ȳ0 of ȳ; call variables from x̄ ∪ ȳ0 the inside variables and variables from ȳ \ ȳ0

the outside variables;
• Select a partition ȳ1, . . . , ȳs of the outside variables, with the property that for everyψj , either
ψj has no outside variables or all of its outside variables are contained in some partition
element ȳj ;
• Let χ0 be the conjunction of the ψj ’s whose free variables are among x̄ and the inside vari-

ables ȳ0, and let χi for i ∈ {1, . . . , s} be the conjunction of the ψj ’s that use some outside
variables and satisfy Free(ψj) ⊆ x̄ ∪ ȳ0 ∪ ȳi ;
• Set ρ ′(x̄ , ȳ0) to be

χ0(x̄ , ȳ0) ∧
∧

i ∈{1, ...,s }

∃ȳi χi (x̄ , ȳ0, ȳi).

Roughly speaking, each specialization ρ ′ of ρ describes a possible way that a CQ-shaped formula
could be satisfied by elements x̄ represented in a node of a tree code, as described in Section A.1.
The inside variables represent witnesses for the existential quantifiers that are found in the node
itself. The partition of the outside variables represent the different directions from the node where
the additional non-local witnesses are to be found: moving either to an ancestor or to one of
the children. Since each atom of the CQ-shaped formula must be realized in a single node, each
conjunctψj (x̄ , ȳ) must be witnessed “homogeneously” with respect to the covering of the outside
variables, as captured in the second item above.

It is easy to see that if a specialization is realized, then so is the original formula, since the
realization of the specialization gives witnesses for the existential quantifiers.

Lemma A.4. Let ρ(x̄) = ∃ȳ ∧
j ψj (x̄ , ȳ) be a CQ-shaped formula. For all structures M and for all

specializations ρ ′(x̄ , ȳ0) of ρ, if M |= ρ ′(ā, b̄), then M |= ρ(ā).

Since a formula is trivially a specialization of itself, where all variables ȳ are chosen to be outside
variables and the partition consists of a single set ȳ1 = ȳ, the converse of Lemma A.4, with the
specialization quantified existentially, is vacuously true. What is more useful, however, is that
whenever a formula is realized in a tree code, some “non-trivial” specialization of it is also realized
in the same tree code. Formally, we say that a specialization ρ ′ as above is non-trivial if either χ0 is

ACM Transactions on Computational Logic, Vol. 22, No. 2, Article 13. Publication date: June 2021.

13:52 M. Benedikt et al.

non-empty or the partition ȳ1, . . . , ȳs of the outside variables ȳ is such that none of the ȳi coincides
with ȳ.

Let us briefly explain the use of specializations as a way to evaluate CQ-shaped formulas in a tree
code. Consider the CQ-shaped formula ρ = ∃y1,y2,y3 A(y1,y2) ∧ B(y1,y3) ∧C(y2,y3), with A,B,C
atomic binary predicates. Suppose that ρ holds in a model decode(T) that is the decoding of some
tree code T , with ȳ = y1y2y3 interpreted by a tuple ā = a1a2a3 of elements. The specialization
ρ ′(y1,y2,y3) = A(y1,y2) ∧ B(y1,y3) ∧ C(y2,y3), obtained from letting all quantified variables ȳ
be inside variables, also holds in the model decode(T), with the interpretation ā for ȳ. However,
this specialization may not be realized in a single node of the tree code T , as it may happen that
the atomic predicate A is witnessed at different nodes than those witnessing B and C . However,
we could consider another non-trivial specialization, say ρ ′′(y1,y2) = A(y1,y2) ∧ (∃y3 B(y1,y3) ∧

C(y2,y3)), with y1,y2 inside variables and y3 outside variable, which could then be realized by two
(a1,a2)-connected nodes witnessing, respectively, A(a1,a2) and B(a1,a3) ∧C(a2,a3).

We formalize the above idea into a lemma. We recall from Proposition A.2 that every satisfiable
GNFO formula in normal form (and, in particular, every satisfiable CQ-shaped formula) of width
k has a model of the form M = decode(T), for some k-code T . In particular, by the definition of
decoding, the elements of M correspond to equivalence classes [v]a of a-connected notes v ∈ T .
Hereafter, we simply call T a tree code of M , thus avoiding to specify the width k of the formula.
The following result captures the idea that in realizing a CQ-shaped formula, we need also to
realize some simpler specialization of it.

Lemma A.5. Let ρ(x̄) = ∃ȳ ∧
j ψj (x̄ , ȳ) be a CQ-shaped formula. Given a structure M and its tree

code T , if there is a vertex v ∈ T that includes names ā and such that M |= ρ([v]ā), then there is

a non-trivial specialization ρ ′(x̄ , ȳ0) of ρ and a vertex w ∈ T that includes ā and some additional

names b̄0 and such that [w]ā = [v]ā and M |= ρ ′([w]ā,b̄0
).

Sketch. The idea behind the proof is that if the formula holds at a node with certain witnesses
ā for the free variables x̄ , we can traverse the nodes of the tree code, while preserving all of those
witnesses ā, until we arrive at a node w where either some of the witnesses for the existentially
quantified variables ȳ are found locally in w or the witnesses for ȳ are found in different direc-
tions from w . In the first case, we have realized a specialization in which χ0 is non-empty; in the
second case, we have realized a specialization in which the partition of the outside variables is
non-trivial. �

Let η(x̄) = ∃ȳ ∧
j ψj (x̄ , ȳ) be a CQ-shaped formula and let η(ā) = ∃ȳ ∧

j ψj (ā, ȳ) be formed
by substituting names ai ∈ Nk (recall that Nk = {1, . . . , 2k}) for each free variable xi of η(x̄).
We will write Spec(η(ā),Nk) for the set of all specializations of η(ā) with elements from Nk sub-
stituted for each new inside variable. For convenience, in the construction below, each formula
in Spec(η(ā),Nk) will be represented by the set of its outermost conjuncts. In other words, any
specialization of η(ā) is of the form χ0(ā, b̄0) ∧

∧
i ∈{1, ...,s } ∃ȳi χi (ā, b̄0, ȳi), with χ0(ā, b̄0) conjunc-

tion of all ψj (ā, b̄)’s that use only names ā and names b̄0 corresponding to inside variables. This
specialization will be represented as the set

S = {ψj (ā, b̄0) : ψj (ā, b̄0) conjunct in χ0(ā, b̄0)} ∪ {∃ȳi χi (ā, b̄0, ȳi) : i ∈ {1, . . . , s}}.

We are now ready to define the notion of subformula that we are interested in. Fix some GNFO
sentence φ in normal form. The closure cl(φ,Nk) that is relevant for the automaton construction
to decide satisfiability of φ consists of the subformulas of φ along with formulas that are part of
the specializations of the CQ-shaped formulas. Formally, cl(φ,Nk) is the smallest set of formulas
containing φ, true, and false, and satisfying the following closure properties:

ACM Transactions on Computational Logic, Vol. 22, No. 2, Article 13. Publication date: June 2021.

Inference from Visible Information and Background Knowledge 13:53

• If
∨

i ψi ∈ cl(φ,Nk), thenψi ∈ cl(φ,Nk) for all i;
• If α ∧ψ ∈ cl(φ,Nk), then α ,ψ ∈ cl(φ,Nk);
• If α ∧ ¬ψ ∈ cl(φ,Nk), then α ,ψ ∈ cl(φ,Nk);
• If ¬ψ ∈ cl(φ,Nk) (for a unaryψ), thenψ ∈ cl(φ,Nk);
• If η(ā) = ∃ȳ ∧

j ψj (ā, ȳ) ∈ cl(φ,Nk), thenψ ∈ cl(φ,Nk) for all S ∈ Spec(η(ā),Nk) andψ ∈ S .

We are now ready to give a translation of GNFO sentences into automata and show that the
automaton size is controlled by the size of the subformula closure.

Proposition A.6. For every GNFO sentence φ in normal form, every signature σ containing rela-

tions of φ, and every k ∈ N, there is a 2ABTA Aφ on Σcode
σ ,k

-trees such that Aφ accepts a consistent

Σcode
σ ,k

-tree T if and only if the decoding decode(T) satisfiesφ. Moreover, the number of states of the au-

tomaton is bounded by the size of cl(φ,Nk), whereas the overall size and the time needed to construct

the automaton is at most f (|φ | · |P(Σcode
σ ,k
)|) · |Nk |

f (width(φ) rank(φ)) for some polynomial f independent

of φ and k .

The 2ABTA automaton Aφ for φ is defined as follows:

• The state set is cl(φ,Nk) × {+,−}, so every state is a pair of the form 〈φ,+〉 or 〈φ,−〉, where
ψ ∈ cl(φ,Nk) and +,− are polarities that indicate whetherψ comes from a positive or nega-
tive part of φ;
• The initial state is 〈φ,+〉;
• The transition function δ is defined further below;
• The accepting states are 〈true,+〉, 〈false,−〉, 〈R(ā),−〉, 〈∃ȳ η(ā, ȳ),−〉, for every relation R

and every CQ-shaped formula ∃ȳ η(x̄ , ȳ) ∈ cl(φ,Nk).

We now describe the transition function δ . Below, τ is a set of symbols from Σcode
σ ,k

(e.g., the label of a

vertex of the tree code). Given such a set τ and a tuple ā of names in Nk , we say that ā is represented

in τ if τ includes Dai
for every name ai in ā. Thus, a vertex v labeled with τ that represents ā has

each ai in ā as one of its local names:

δ (〈true,+〉,τ) := (Stay, 〈true,+〉)

δ (〈true,−〉,τ) := (Stay, 〈true,−〉)

δ (〈false,+〉,τ) := (Stay, 〈false,+〉)

δ (〈false,−〉,τ) := (Stay, 〈false,−〉)

δ (〈R(ā),+〉,τ) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(Stay, 〈false,+〉) if ā is not represented in τ

(Stay, 〈true,+〉) if Rā ∈ τ∨
d ∈Direction2

(d, 〈R(ā),+〉) otherwise

δ (〈R(ā),−〉,τ) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(Stay, 〈true,+〉) if ā is not represented in τ

(Stay, 〈false,+〉) if Rā ∈ τ∧
d ∈Direction2

(d, 〈R(ā),−〉) otherwise

δ
(
〈
∨

i ψi ,+〉,τ
)

:=
∨

i (Stay, 〈ψi ,+〉)

δ
(
〈
∨

i ψi ,−〉,τ
)

:=
∧

i (Stay, 〈ψi ,−〉)

ACM Transactions on Computational Logic, Vol. 22, No. 2, Article 13. Publication date: June 2021.

13:54 M. Benedikt et al.

δ (〈α ∧ ¬ψ ,+〉,τ) := (Stay, 〈α ,+〉) ∧ (Stay, 〈ψ ,−〉)

δ (〈α ∧ ¬ψ ,−〉,τ) := (Stay, 〈α ,−〉) ∨ (Stay, 〈ψ ,+〉)

δ (〈¬ψ ,+〉,τ) := (Stay, 〈ψ ,−〉)

δ (〈¬ψ ,−〉,τ) := (Stay, 〈ψ ,+〉)

δ (〈α ∧ψ ,+〉,τ) := (Stay, 〈α ,+〉) ∧ (Stay, 〈ψ ,+〉)

δ (〈α ∧ψ ,−〉,τ) := (Stay, 〈α ,−〉) ∨ (Stay, 〈ψ ,−〉)

for η(ā) = ∃ȳ
∧

j

ψj (ā, ȳ)

δ (〈η(ā),+〉,τ) :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(Stay, 〈false,+〉) if ā is not

represented in τ∨
d ∈Direction2

(d, 〈η(ā),+〉)

∨
∨

S ∈Spec(η(ā),names(τ))

∧
ψ ∈S (Stay, 〈ψ ,+〉) otherwise

δ (〈η(ā),−〉,τ) :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(Stay, 〈true,+〉) if ā is not

represented in τ∧
d ∈Direction2

(d, 〈η(ā),−〉)

∧
∧

S ∈Spec(η(ā),names(τ))

∨
ψ ∈S (Stay, 〈ψ ,−〉) otherwise.

The correctness of the automaton construction is captured in the following result.

Lemma A.7. For each 〈ψ (ā),+〉 ∈ cl(φ,Nk), ψ (x̄) holds in decode(T) with valuation [v]ā for x̄ if

and only if the automaton above accepts when launched in T from vertexv with initial state〈ψ (ā),+〉.
Likewise, for each 〈ψ (ā),−〉 ∈ cl(φ,Nk), ψ (x̄) does not hold in decode(T) with valuation [v]ā for

x̄ if and only if the automaton above accepts when launched in T from vertex v with initial state

〈ψ (ā),−〉.

Proof. The lemma is proven by structural induction. The base cases are simple to verify by
construction. Lemmas A.4 and A.5 are utilized in the inductive case for CQ-shaped formulas. �

We now calculate the size of cl(φ,Nk).

Lemma A.8. Let φ ∈ GNFO in normal form, and let k ∈ N. Then, |cl(φ,Nk)| ≤ |φ | · 2
rank(φ) ·

(2k)width(φ).

Proof. Let w = width(φ) and r = rank(φ). Note that in the definition of the closure set, the
only formulas that appear are either actual subformulas of φ (with names from Nk substituted for
free variables) or are formulas that come from specializations of CQ-shaped formulas (again, with
names from Nk).

Specializations of CQ-shaped subformulas that do not begin with existential quantification
(i.e., CQ-shaped formulas without projection) only contribute as actual subformulas of φ to the
closure set. The other specializations η contribute up to 2r additional CQ-shaped formulas that are
based on taking some subset of the (at most) r conjuncts of η.

Since each of these formulas has at most w free variables taking names from Nk = {1, . . . , 2k},
this means that the overall size of the closure set is at most |φ | · 2r · (2k)w . �

Let us derive complexity bounds for the automaton construction. As usual, let m = arity(σ),
w = width(φ), and r = rank(φ) be, respectively, the maximum arity of relations in σ , the width,
and the CQ-rank of the formula φ. Since these parameters are all bound by the size of the formula

ACM Transactions on Computational Logic, Vol. 22, No. 2, Article 13. Publication date: June 2021.

Inference from Visible Information and Background Knowledge 13:55

φ, this means that the cardinality of the closure set cl(φ,Nk), and hence the number of states of
the automaton Aφ , is at most exponential in the size of φ. In fact, the number of states of Aφ is
polynomial when the maximal arity, the width, and the CQ-rank are fixed.

The size of the input alphabet P(Σcode
σ ,k
) for the automaton is at most 2 |σ | ·(2k)arityσ

, which is doubly

exponential in general but singly exponential when the maximal arity is fixed.
The size of each transition function formula is at most linear in 2w · |Nk |

w · ww · |cl(φ,Nk)|.
In particular, note that the transition function formula for a CQ-shaped formula ψ respects this
bound since |Spec(ψ ,Nk)| is at most 2w · |Nk |

w · ww (the maximum number of ways to choose
the inside variables, names for these inside variables, and the partition of the outside variables),
and each S ∈ Spec(ψ ,Nk) is of size at most |cl(φ,Nk)|. This means that the size of the transition
function is linear in |Q | · |P(Σcode

σ ,k
)| · 2w · |Nk |

w · ww · |Q |. This is doubly exponential in general

but singly exponential when the maximal arity, width, and CQ-rank are fixed.
Therefore, the overall size of Aφ and the time taken to construct it are at most doubly expo-

nential in the size of φ but singly exponential when the maximal arity, width, and CQ-rank are
fixed.

From an automaton to decidability. We are now almost done with our satisfiability procedure.
Combining Proposition A.6 with Proposition A.2, we see that φ is satisfiable if and only if there is
a consistent k-tree code that satisfies Aφ , where k = width(φ).

Recall that a consistent Σcode
σ ,k

-tree is just an arbitrary Σcode
σ ,k

-tree such that every node v satisfies

|names(v)| ≤ k and for all Rā ∈ Σcode
σ ,k

, if Rā(v), then ā ⊆ names(v). It is straightforward to see

that there is a 2ABTA automaton Aconsistent that accepts exactly the trees that are consistent in
the above sense. The size of Aconsistent is doubly exponential (due to the size of the alphabet) and
singly exponential if the maximal arity of each relation is fixed. The running time needed to form
the automaton is likewise doubly exponential in general and singly exponential when the arity
of relations is fixed. Further, the number of states is just 2—an initial state and a “rejection” state
representing a violation of consistency.

By the closure properties of 2ABTA, we know that we can form an automaton Aφ,consistent that
accepts the intersection L(Aφ) ∩ L(Aconsistent) in time proportional to the sum of the sizes of Aφ

and Aconsistent. The number of states of this automata is just the sum of the number states of Aφ

and Aconsistent. Hence, by applying Theorem A.3, we can conclude the following.

Theorem A.9. There is a 2ExpTime satisfiability testing algorithm for GNFO sentences in normal

form without equality and constants. When the width, CQ-rank, and maximal arity of the relations

are fixed, it shrinks to ExpTime.

A.4 Handling Equality and Constants

The extension to handle equalities, in the absence of constants, is not difficult. We consider the
same tree codes as before.

We claim again that if a sentence φ in GNFO with width bounded by k is satisfiable, then it is
satisfied in a structure with a k-code.

The conversion to normal form is the same, treating equality like any other relation.
In the automaton construction, we need additional cases for equality.

δ (〈a = b,+〉,τ) :=

{
(Stay, 〈true,+〉) if a is the same as b

(Stay, 〈false,+〉) if a is not the same as b

δ (〈a = b,−〉,τ) :=

{
(Stay, 〈false,+〉) if a is the same as b

(Stay, 〈true,+〉) if a is not the same as b

The size bounds and running time of the construction remain the same.
ACM Transactions on Computational Logic, Vol. 22, No. 2, Article 13. Publication date: June 2021.

13:56 M. Benedikt et al.

Constants. We now deal with GNFO formulas that can have logical constant symbols and equal-
ities. The requirement that negation be guarded is the same as before: the free variables of the
negated formula must occur in a guard, saying nothing about the constants. Thus, in the extension
of GNFO with constants, we can freely express that two constants are not equal, and in particular
we can express that all distinct constants are unequal (the “UNA” we deal with in the body of
the article). To handle constants requires some additional effort. One route to decidability, taken
in the work of Bárány et al. [7], is to reduce satisfiability of GNFO with equality and constants
to satisfiability without constants. The idea of the reduction by Bárány et al. [7] is to extend the
signature with additional predicates that hold the constants. However, using such a reduction as a
black box does not give us the fine-grained bounds we desire in terms of parameters like CQ-rank.
We thus provide a more direct argument.

We consider k-tree codes in which the constants Const(σ) are represented in each node, along
with at most k local names. The codes will also now include some equality facts, but with the
following restrictions:

• There are no equality facts relating non-constants to each other, and no equality facts relat-
ing constants to non-constants.
• The equality facts on constants are identical across vertices of the tree. They satisfy tran-

sitivity and reflexivity, as well as congruence: if we have a fact R(. . . c . . .) holding in a ver-
tex, where c is a constant, and we also have an equality fact c = d, then we have the fact
R(. . .d . . .).

We can extend Aconsistent to check whether a tree is a code satisfying these additional
restrictions.

We must change the notion of decoding of a tree to account for equalities. For a consistent tree
T using local names and constants Const(σ), we let Const(σ)=,T be the equivalence classes of
constants under the equality relation in T . The decoding decode(T) is now the σ -structure with
universe

{[v,a] : v ∈ dom(T) and a ∈ names(v)} ∪ Const(σ)=T

such that for each relation R, we have Rdecode(T)([v1,a1], . . . , [vj ,aj], e1 . . . el), where ai are local
names and ei are equivalence classes of constants, if and only if there is w ∈ dom(T) such that
Rā,c1 ...cl

(w) holds, [w,ai] = [vi ,ai] for all i ≤ j and ci is in class ei for each i ≤ l .
We further claim the following extension of Proposition A.2 to formulas with constants.

Proposition A.10. Let φ be a GNFO sentence in normal form, having width k , and possibly using

equality and constants. If φ is satisfiable, then it is satisfiable in a structure that is the decoding of

some k-code.

Proof. Consider an expanded signature where for each relation R of arityn and partial function
h from the positions of R into constants, we have a relation Rh of arity n − |dom(h)|. We can
rewrite φ to a φ ′ in this signature that does not contain constants, replacing atoms R(x1 . . . xn) by a
disjunction of atoms over Rh whereh varies over every partial function, and replacing subformulas
with negation guarded by an R-atom with a disjunction of subformulas guarded by an Rh-atom.
Note that φ ′ will be larger than φ, but its width will still be k . Thus, applying Proposition A.2,
we see that φ has a model M ′ with a k-code in the expanded signature. But then we can reverse
this process on M , replacing atoms Rh in M with an atom R but using the additional constants
as arguments. We can similarly add the equality facts to the codes. Since equality in M ′ must
satisfy congruence, reflexivity, and transitivity, we will obtain a structure satisfying the additional
properties. �

ACM Transactions on Computational Logic, Vol. 22, No. 2, Article 13. Publication date: June 2021.

Inference from Visible Information and Background Knowledge 13:57

The closure is now defined as before, but based on Nk ∪ Const(σ) rather than Nk .
In the automaton construction, we need a few modifications:
We need a base case for equality atoms.

• For a non-negated equality of a local name with a constant, the automaton should ensure
rejection: it does this by switching to state 〈false,+〉, since there are no accepting runs from
such states. Similarly for a negated equality of a local name with a constant, the automaton
should ensure acceptance by switching to state 〈true,+〉.
• For an equality between constants, the automaton simply checks whether the equality is

present in the vertex; if this is true, the automaton should ensure acceptance. It does this by
switching to state 〈true,+〉. Otherwise, it ensures rejection by switching to state 〈false,+〉.

In other words, for a name a ∈ Nk and for constants c,d ∈ Const(σ), we have the following
transitions:

δ (〈a = c,+〉,τ) := (Stay, 〈false,+〉)

δ (〈a = c,−〉,τ) := (Stay, 〈true,+〉)

δ (〈c = d,+〉,τ) :=

{
(Stay, 〈true,+〉) if c = d ∈ τ

(Stay, 〈false,+〉) if c = d � τ

δ (〈c = d,−〉,τ) :=

{
(Stay, 〈false,+〉) if c = d ∈ τ

(Stay, 〈true,+〉) if c = d � τ .

We also modify the CQ-shaped formula case, to allow the automaton to draw witnesses from
the constants:

δ (〈∃ȳ η(ā, ȳ),+〉,τ) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(Stay, 〈false,+〉) if ā is not represented in τ∨

S ∈Spec(∃ȳ η(ā,ȳ),names(τ)∪Const(σ))

∧
ψ ∈S (Stay, 〈ψ ,+〉) ∨∨

d ∈Direction2
(d, 〈∃ȳ η(ā, ȳ),+〉) otherwise

δ (〈∃ȳ η(ā, ȳ),−〉,τ) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(Stay, 〈true,+〉) if ā is not represented in τ∧

S ∈Spec(∃ȳ η(ā,ȳ),names(τ)∪Const(σ))

∨
ψ ∈S (Stay, 〈ψ ,−〉) ∧∧

d ∈Direction2
(d, 〈∃ȳ η(ā, ȳ),−〉) otherwise.

Using these modifications, we can now extend Lemma A.7.

Lemma A.11. For each 〈ψ (ā, c̄),+〉 ∈ cl(φ,Nk),ψ (x̄ , ȳ) holds in decode(T) at vertex v with valua-

tion [v, ā] for x̄ and constants c1 . . . cl for ȳ if and only if the automaton above accepts when launched

in T from vertex v with initial state 〈ψ (ā, c̄),+〉.Likewise, for each 〈ψ (ā, c̄),−〉 ∈ cl(φ,Nk), ψ (x̄ , ȳ)
does not hold in decode(T) at vertex v with the valuation above if and only if the automaton above

accepts when launched in T from vertex v with initial state 〈ψ (ā, c̄),−〉.

Recall that the proof of Lemma A.7 worked by induction on ψ . In the proof, we first need to
consider base cases for equality. For example, suppose that x1 = x2 holds in decode(T) with valu-
ation x1 = [v,a1] x2 = [v,a2] for local names a1,a2. The only way the equality can hold is if a1 is
actually the same name as a2. Thus, the automaton run from 〈a = b,+〉 will transition to 〈true,+〉,
and will accept. The converse direction is similar.

However, suppose that x1 = x2 holds in decode(T) with valuation x1 = [c]=,T , x2 = [d]=,T for
constants c,d . This holds exactly when the equality fact c = d is present in the label of v . But then
looking at the transition function for 〈c = d,+〉 we see that the automaton accepts.

We must also reconsider the base cases for atomic relations. Suppose that R(x1, . . . x j ,y1 . . .yl)

holds in decode(T) with valuation xi = [v,ai],yi = [ci]=,T} for local names ā and constants c̄ .

ACM Transactions on Computational Logic, Vol. 22, No. 2, Article 13. Publication date: June 2021.

13:58 M. Benedikt et al.

By definition of our decoding, along with the congruence closure of the codes, this means that
we must have a fact R([v, ā], c̄) holding in some node v ′ in the tree. We now argue as in the case
without constants that iterating the transition function for an atom, the automaton will accept
from v .

Proposition A.12. φ is satisfiable if and only if the modified automaton Aφ accepts a consistent

tree. This in turn can be checked by taking the automatonAconsistent for checking consistency, forming

an automaton A′φ accepting the intersection of Aconsistent with Aφ , and checking non-emptiness of

A′φ .

Thus, we obtain the following result.

Theorem A.13. There is a 2ExpTime algorithm for deciding satisfiability of sentences in GNFO,

even allowing equality and constants. For a sentence in normal form with fixed width, CQ-rank, and

fixed arity of relations, we get an ExpTime algorithm for satisfiability.

A.5 Lifting the Fixed Arity Restriction

From what we have seen in the previous sections, we can almost infer the ExpTime bound claimed
in Theorem 4.3 in the body of the article. The only gap is that thus far we have restricted the
maximal arity of relations. This is actually unproblematic in the application to the data complexity
bounds in the body. But it is an unnecessary restriction for lowering the complexity, as we now
show.

We argue that we can reduce satisfiability for GNFO formulas of unbounded arity to the setting
with fixed arity, preserving the bounds on the other parameters.

Let φ be any GNFO formula in normal form. We will show how to construct, in polynomial time,
another GNFO formulaψ , such that

(1) φ andψ are equi-satisfiable,
(2) width(ψ) ≤ width(φ) + rank(φ)
(3) rank(ψ) ≤ rank(φ) · width(φ)
(4) ψ uses only binary relations.

For each n-ary relation R occurring in φ, we introduce binary relations Ri for i = 1, . . . ,n. We
replace each atomic formula R(t1, . . . , tn) in φ by ∃y∧i Ri (y, ti), for a fresh variable y. Let χ be the
resulting formula. Note that χ may not be in normal form, because the newly introduced existential
quantifiers may occur directly below a conjunction.

Our formulaψ is obtained from χ by the following operations:

(1) Letw = width(φ), and consider any atomic formulaR(t1, . . . , tn) occurring inφ. Then, among
the terms t1, . . . , tn , there are at most w distinct variables. Therefore, the corresponding for-
mula ∃y∧i Ri (y, ti) in χ can be rewritten as follows: whenever a term ti is a constant, the cor-
responding conjunct Ri (y, ti) (having only one free variable) can be rewritten to ¬¬Ri (y, ti).
If terms ti1 , . . . , tik

are all the same variable, then we can rewrite the corresponding conjunc-
tion Ri1 (y, ti1) ∧ · · · ∧ Rik

(y, tik
) to Ri1 (y, ti1) ∧ ¬

∨
j=2, ...,n Ri1 (y, ti1) ∧ ¬Ri j

(y, ti j
)). All of this

has the effect of “hiding behind a guarded double negation” all but at mostw of the conjuncts
in question.

(2) We pull out, as needed, these existential quantifiers, using the equivalence α ∧∃yβ ≡ ∃y(α ∧
β), to bring the formula in normal form.

It is easy to see that φ ′ is in normal form, and that the construction is in polynomial time. The
argument thatφ ′ is equi-satisfiable toφ is also easy: given a structureM ′ for the signature ofφ ′,we
create a structure M by taking a tuple y, t1 . . . tn witnessing

∧
i Ri (y, ti) in M ′ and creating a fact

ACM Transactions on Computational Logic, Vol. 22, No. 2, Article 13. Publication date: June 2021.

Inference from Visible Information and Background Knowledge 13:59

R(t1 . . . tn) in M . An induction argument shows that if M ′ |= φ then M |= φ. In the other direction,
given a structure M for the language of φ we create M ′ by “shredding” R facts into a sequence of
facts for R1 . . .Rn .

The width of ψ may be larger than the width of φ, due to the newly introduced existential
variables. However, we introduce at most one such variable per conjunct, and therefore it is easy
to see that width(ψ) ≤ width(φ) + rank(φ).

Finally, it is easy to see that rank(ψ) is bounded by w · rank(φ), wherew = width(φ), due to our
construction in the first item above.

Applying this reduction, we obtain the following main result, which immediately implies The-
orem 4.3 in the body of the article.

Theorem A.14. There is a 2ExpTime algorithm for deciding satisfiability of sentences in GNFO,

and for every fixed width and CQ-rank, there is an ExpTime satisfiability testing algorithm for GNFO

sentences in normal form.

A.6 Additional Remarks: Relationship to Bounds for General GNFO

We note that the previous result allows us to re-prove the bounds for satisfiability of GNFO sen-
tences that are not in normal form from Bárány et al. [6, 7]. We include this only because it might
be useful to have a self-contained presentation of the GNFO-to-automata translation. The idea is
that general GNFO sentences can be converted to normal form in such a way that we blow up the
size of the formula, but the size of the closure set remains at most exponential in the size of the
original formula. The following proposition shows this in detail and can be seen as a strengthening
of Proposition 4.2.

Proposition A.15. Letψ be a GNFO formula withm = |ψ |. We can construct, in exponential time,

a sentence convert(ψ) in normal form equivalent toψ such that

• |convert(ψ)| ≤ 2f (m) ,

• width(convert(ψ)) ≤ m,

• rank(convert(ψ)) ≤ m,

• |cl(convert(ψ),Nm)| ≤ 2f (m),

where f is a polynomial function independent ofψ .

Proof. We first push disjunctions outside, as much as possible, by distributing with conjunc-
tions and existential quantifications. We then push existential quantifications outside through con-
junctions (this may require some variable renaming). After this rewriting, every subformula under
a conjunction must be either an atom or a guarded negation, and thus it satisfies the formψ of the
above grammar. �

Now when we apply the automaton construction of Proposition A.6 to the output, we will get
an automaton with state set cl(convert(ψ),N |ψ |). By the above, the size of this is bounded by an ex-
ponential in the size of the original formulaψ . The size of the automaton alphabet is unaffected by
this transformation. Thus, again we can apply Theorem A.3 to get a doubly exponential algorithm
for testing satisfiability.

Corollary A.16 ([7]). There is a 2ExpTime satisfiability testing algorithm for GNFO sentences

without equality.

B PSpace-COMPLETENESS OF ∃PQI FOR IDS: PROOF OF THEOREM 4.20

Recall the statement of Theorem 4.20:

The problem ∃PQI(Q, Σ, S), where Q ranges over Boolean UCQs without constants and Σ over
sets of IDs, is PSpace-complete. Hardness holds even in the case of Boolean CQs without constants.

ACM Transactions on Computational Logic, Vol. 22, No. 2, Article 13. Publication date: June 2021.

13:60 M. Benedikt et al.

We first prove the upper bound, using a rewriting technique similar to the one used in earlier
work [10], Theorem 5. By Theorem 4.11, ∃PQI(Q, Σ, S) holds if and only if PQI(Q, Σ, S,V{a })) holds.
Therefore, it suffices to show that we can test the latter in PSpace.

By the position graph, we will mean the directed graph whose nodes are all pairs (R, i) where R
is a relation in S and i ≤ arity(R), and such that there is an edge from (R, i) to (S, j) if Σ contains an
ID in which some variable x appears in position (R, i) in the left and position (S, j) in the right side,
at the expense of allowing constants in the IDs. We call a position (R, i) exposed if, in the position
graph, there is a path from (R, i) to some (S, j) for S a visible relation.

It follows from the construction of chasevis(V{a }) that.

Claim 1. In chasevis(V{a }), the only value appearing in exposed positionsis the critical element
a.

Based on this observation, we will show that we can eliminate all IDs whose right-hand side
contains a visible relation. First, we modify our schema S to remove all exposed attributes from
hidden relations. We denote the resulting schema by S

′. We also add a new unary relation IsCrit(x).
Note that, as with any unary predicate, the extension of IsCrit in the critical instance will consist
only of the critical element a.

We modify the constraints in Σ accordingly, by dropping the argument corresponding to ex-
posed attributes from all atoms. It may happen, in doing so, that some universally quantified vari-
able appearing in the right-hand side of an ID no longer occurs in the left-hand side (because all
its occurrences were in exposed positions). In this case, we replace the variable in question by the
constant a. The resulting set of constraints (over schema S

′) is denoted by Σ′. Note that the con-
straints in Σ′ are IDs, except they may contain constants in their right-hand sides. Finally, in the
queryQ , we modify all atoms R(x1, . . . ,xn) over hidden relations by dropping the xi that are in an
exposed position and adding conjuncts IsCrit(xi) instead. We denote the resulting query by Q ′.

Claim 2. PQI(Q, Σ, S,V{a })) holds if and only if PQI(Q ′, Σ′, S′,V{a }) holds.
(Note that, in the statement of Claim 2, we allow ourselves to be a little sloppy in our notation:

the firstV{a }) is over schema S, whereas the second one is over S
′).

The proof of Claim 2 is straightforward: a counterexample to PQI(Q, Σ, S,V{a })) is trans-
formed into a counterexample for PQI(Q ′, Σ′, S′,V{a }) by projecting out the exposed positions,
whereas a counterexample for PQI(Q ′, Σ′, S′,V{a }) is transformed into a counterexample for
PQI(Q, Σ, S,V{a })) by inserting constant a in all exposed positions (as justified by Claim 1).

Next, observe that (i) whenever a constraint in Σ′ has a visible relation in its right-hand side,
then the left- and right-hand side of the constraint in question do not share any variables; (ii) if F
is any instance (over schema S

′) that contains all of the facts inV{a }), then all such constraints are
satisfied in F . It follows from these two observations that we can remove from Σ′ all constraints
with right-hand sides that are visible relations, and that doing so we do not affect chasevis(V{a }).
Let Σ′′ therefore be the result of dropping from Σ′ all constraints that derive into visible relations.
Then, we have the following claim.

Claim 3. PQI(Q, Σ, S,V{a })) holds if and only if PQI(Q ′, Σ′′, S′,V{a }) holds.
Since Σ′′ does not contain any IDs whose right-hand sides are atoms over visible relations, we

have that PQI(Q ′, Σ′′, S′,V{a }) holds, if and only if the query containment Q1 ⊆ Q2 holds relative
to the constraints Σ′′, where Q1 is the canonical query of the instance V{a } and Q2 is the query
Q ′.

It was shown in the work of Casanova et al. [24] that query containment under IDs (without
constants) is PSpace-complete. Inspection of the upper bound proof in their work [24] (which
is a straightforward non-deterministic polynomial-space bounded algorithm based on the chase)

ACM Transactions on Computational Logic, Vol. 22, No. 2, Article 13. Publication date: June 2021.

Inference from Visible Information and Background Knowledge 13:61

shows that the presence of constants does not affect the argument. Therefore, we conclude that
our problem is in PSpace.

Next, we prove the lower bound. This is already claimed in earlier work [10] but without proof
details, so we spell out an argument here. For this, we provide a reduction from the implication
problem for IDs: given a finite collection of IDs σ1, . . . ,σn and an ID σ , do σ1, . . . ,σn logically
imply σ? This problem is known to be PSpace-complete [24]. Given σ1, . . . ,σn ,σ , with σ of the
form ∀x̄ R(x̄) → ∃ȳS(z̄), we construct an instance ∃PQI(Q, Σ, S) as follows:

• Q is the query ∃x̄ȳ R′(x̄) ∧ S(z̄).
• Σ consists of the IDs σ1, . . . ,σn together with the IDs visible() → ∃x̄R′(x̄) and R′(x̄) → R(x̄).
• S is the schema consisting of all relations occurring in σ1, . . . ,σn ,σ as well as R′ and visible.

All relations are treated as hidden, except for visible.

It is easy to show that ∃PQI(Q, Σ, S) holds if and only if σ1, . . . ,σn logically imply σ .

C 2ExpTime-HARDNESS OF PQI IN COMBINED COMPLEXITY: PROOF OF

THEOREM 4.8

Recall the following statement:
Checking PQI(Q, Σ, S,V), where Q ranges over Boolean CQs without constants and Σ ranges

over sets of IDs, is 2ExpTime-hard for combined complexity.

Proof. This proof builds on ideas from the proof for Corollary 4.7 in the body of the article.
Specifically, we reduce the acceptance problem for an alternating ExpSpace Turing machine M
to the negation of PQI(Q, Σ, S,V), where Q is a Boolean UCQ and Σ consists of IDs. Note that to
further reduce the problem to a PQI problem with a Boolean CQ, one can exploit Lemma 4.6.

The additional technical difficulty here is to encode a tape of exponential size. Of course, this
cannot be done succinctly using an instance with visible relations. However, we can represent the
exponential tape by a set of tuples of bits. More precisely, given an alternating ExpSpace Turing
machine M and an input for M of length n, we identify each cell of the tape of M by an n-tuple
of bits. Note that, differently from the reduction in Theorem 4.5, here we can let the schema, the
sentences, and the query depend on M and n, since the goal here is to prove a lower bound for
combined complexity.

For the sake of simplicity, we first explain how to create a single tape of exponential length,
without being concerned about the content of the cells and the different configurations that can
be reached by M . For this, we introduce three visible relations Zero, One, and Bit, instantiated
with {0}, {1}, and {0, 1}, respectively. We also introduce hidden relations Ti ,Ti,zero,Ti,one of arity
i , for all i = 1, . . . ,n, and an additional hidden relation T0 of arity 0. Intuitively, the intended
semantics of each relationTi is to contain all i-tuples of bits, whereasTi,zero (respectively,Ti,one) is
the restriction of Ti to the tuples ending with 0 (respectively, 1). We enforce this semantics using
a simple induction on i = 1, . . . ,n and the following IDs:

true → T0()

(∀j ≤ i) Ti (y1, . . . ,yi) → Bit(yj)

Ti−1(y1, . . . ,yi−1) → ∃yi Ti,zero(y1, . . . ,yi)

Ti−1(y1, . . . ,yi−1) → ∃yi Ti,one(y1, . . . ,yi)

Ti,zero(y1, . . . ,yi) → Zero(yi)

Ti,one(y1, . . . ,yi) → One(yi)

Ti,zero(y1, . . . ,yi) → Ti (y1, . . . ,yi)

Ti,one(y1, . . . ,yi) → Ti (y1, . . . ,yi).

It is clear that every instance satisfying the above sentences will have Tn = Bitn , so the tuples in
Tn can be used to represent the cells of a tape of exponential length.

ACM Transactions on Computational Logic, Vol. 22, No. 2, Article 13. Publication date: June 2021.

13:62 M. Benedikt et al.

Cells are naturally ordered in the tape, and so must be the tuples inTn . We use the lexicographic
order on n-tuples of bits and show how to access this order by means of a formula. Formally, we
need to write a UCQ that checks whether two cells, identified by some n-tuples ȳ = (y1, . . . ,yn)

and ȳ ′ = (y ′1, . . . ,y
′
n) in Tn , are adjacent according to the lexicographic ordering. A well-known

technique consists in determining the smallest index 1 ≤ i ≤ n such that yi � y ′i . Then, given such
i , one verifies that yi = 0, y ′i = 1, yj = 1, and y ′j = 0 for all j > i . We give beforehand the formula

that checks these conditions. The formula is the disjunction over all i = 1, . . . ,n of the following
CQs:

Qadj,i (ȳ, ȳ
′) =

∧
1≤j<i

(yj = y
′
j) ∧ Zero(yi) ∧ One(y ′i) ∧

∧
i<j≤n

One(yj) ∧
∧

i<j≤n

Zero(y ′j).

Here, for convenience of description, we allow equalities in a CQ, but they can be replaced in favor
of an explicit substitution. It is not difficult to see that the UCQ

∨
1≤i≤n Qadj,i defines precisely those

pairs of tuples that are consecutive in the lexicographic order. Moreover, we will need to easily
identify the first and the last cell of the tape. For this, we introduce two visible relations First

and Last, both of arity n, and instantiate them with the singletons {(0, . . . , 0)} and {(1, . . . , 1)},
respectively.

Now that we know how to represent exponentially many cells in the tape and check their ad-
jacency, we proceed as in the proof of Theorem 4.5. We begin by encoding configurations of M .
Intuitively, the goal is to create a copyC of the relationTn , expanded with configuration identifiers
and cell values, in such a way that a fact of the form C(x ,y1, . . . ,yn , z) denotes the existence of a
configuration identified by x , where the tape cell represented by ȳ = (y1, . . . ,yn) carries the value
z. As usual (cf. proof of Theorem 4.5), we define cell values as elements from a visible unary rela-
tionV = ΣQ � Σ� � Σ�, where Σ is the alphabet of the Turing machine, ΣQ = Σ×Q . Σ� = Σ× {�},
Σ� = Σ× {�}, Q is the set of its control states, and �,� are fresh symbols. To correctly instantiate
the relation C , we create also copies of the relations Ti ,Ti,zero,Ti,one, expanded with configura-
tion identifiers, and enforce constraints analogous to the ones introduced in the sentences above.
More precisely, we have the following hidden relations: C of arity n + 2, TC

i of arity i + 1, for all

i = 0, . . . ,n,TC
i,zero andTC

i,one of arity i + 1, for all i = 1, . . . ,n. We have the following sentences for
all i = 1, . . . ,n:

(∀j ≤ i) TC
i (x ,y1, . . . ,yi) → Bit(yj)

TC
n (x ,y1, . . . ,yn) → ∃z C(x ,y1, . . . ,yn , z) TC

i,zero(x ,y1, . . . ,yi) → Zero(yi)

C(x ,y1, . . . ,yn , z) → V (z) TC
i,one(x ,y1, . . . ,yi) → One(yi)

TC
i−1(x ,y1, . . . ,yi−1) → ∃yi T

C
i,zero(x ,y1, . . . ,yi) TC

i,zero(x ,y1, . . . ,yi) → TC
i (x ,y1, . . . ,yi)

TC
i−1(x ,y1, . . . ,yi−1) → ∃yi T

C
i,one(x ,y1, . . . ,yi) TC

i,one(x ,y1, . . . ,yi) → TC
i (x ,y1, . . . ,yi).

Note that the analog of the sentence true → T0() is missing here. This will be given later, when
we will explain how new configurations are created to simulate a computation tree of M . For the
moment, it suffices to observe that, in every instance that satisfies the above sentences, as soon
as TC

0 contains a configuration identifier x , then TC
n contains all tuples of the form (x ,y1, . . . ,yn),

with (y1, . . . ,yn) ∈ Bitn , andC specifies at least one value z for each configuration identifier x and
each cell (y1, . . . ,yn).

We now turn toward the encoding of the computation tree of M . This is almost the same as in
the proof of Theorem 4.5. We introduce a visible unary relation I , which contains the identifier
x0 of the initial existential configuration, and three hidden binary relations S∃, S∀1 , and S∀2 . A fact

of the form S∃(x ,x ′) (respectively, S∀1 (x ,x1), S
∀
2 (x ,x1)) represents a transition from an existential

(respectively, universal) configuration x to a universal (respectively, existential) configuration x ′

(respectively, x1, x2). We then include the following sentences in the background theory:

ACM Transactions on Computational Logic, Vol. 22, No. 2, Article 13. Publication date: June 2021.

Inference from Visible Information and Background Knowledge 13:63

I (x) → ∃ x ′ S∃(x ,x ′)
S∃(x ,x ′) → ∃ x1 S

∀
1 (x
′,x1)

S∃(x ,x ′) → ∃ x2 S
∀
2 (x
′,x2)

S∀1 (x ,x1) → ∃ x ′ S∃(x1,x
′)

S∀2 (x ,x2) → ∃ x ′ S∃(x2,x
′)

S∃(x ,x ′) → TC
0 (x)

S∀1 (x ,x1) → TC
0 (x)

S∀2 (x ,x2) → TC
0 (x).

Intuitively, the rules on the left enforce the existence of a transition graph where x0 ∈ I is the initial
node and every node has one or two outgoing edges, depending on whether it is existential or
universal. The rules on the right trigger the instantiation of the tablesTC

n andC , with the intended
goal of representing the content of the tape associated with each node/configuration. As usual,
the unfolding of the transition graph from the initial node yields a tree, which should represent a
computation of M .

It remains to describe how we detect badly formed encodings of computations of M . For this,
we introduce new visible relations ErrC , ErrI, first, ErrI, last, ErrI,adj, ErrC,adj, ErrS∃ , ErrS∀

1
, and ErrS∀

2
,

whose instances are defined exactly as in the proof of Theorem 4.5:

• The relation ErrC is binary and contains all pairs of distinct values fromV ×V . This is used
to detect multiple values associated with the same cell:

QC = ∃ x ȳ z z ′ C(x , ȳ, z) ∧ C(x , ȳ, z ′) ∧ ErrC (z, z
′).

• The relation ErrI, first contains all pairs in V × V but (z0, z1), where z0 = (
,q0) and z1 =

(�,�). This is used to detect wrong values associated with the first two cells of the initial
configuration:

QI, first = ∃ x ȳ ȳ ′ z z ′

I (x) ∧ First(ȳ) ∧
∨

1≤i≤n

Qadj,i (ȳ, ȳ
′) ∧

C(x , ȳ, z) ∧ C(x , ȳ ′, z ′) ∧ ErrI, first(z, z
′).

Note that, strictly speaking, the above query is not a UCQ but can be easily normalized into
a UCQ of polynomial size. The same remark applies to all remaining queries.
• Similar visible relations ErrI, last, ErrI,adj, ErrC,adj and UCQs QI, last, QI,adj, QC,adj are used to

detect wrong values, respectively, for the last two cells of the initial configuration, for any
two adjacent cells of the initial configuration, and for any two adjacent cells of an arbitrary
configuration.
• To detect the violations that involve values associated with the same position of the tape but

in two consecutive configurations, we use the following UCQs:

QS∃ = ∃ x x ′ ȳ ȳ ′ ȳ ′′ z z ′ z ′′ z ′′′

S∃(x ,x ′) ∧
∨

1≤i≤n

Qadj,i (ȳ, ȳ
′) ∧

∨
1≤i≤n

Qadj,i (ȳ
′, ȳ ′′) ∧

C(x , ȳ, z) ∧ C(x , ȳ ′, z ′) ∧ C(x , ȳ ′′, z ′′) ∧ C(x ′, ȳ ′, z ′′′) ∧ ErrS∃(z, z ′, z ′′, z ′′′)

QS∀
1
= ∃ x x1 ȳ ȳ ′ ȳ ′′ z z ′ z ′′ z ′′′

S∀1 (x ,x1) ∧
∨

1≤i≤n

Qadj,i (ȳ, ȳ
′) ∧

∨
1≤i≤n

Qadj,i (ȳ
′, ȳ ′′) ∧

C(x , ȳ, z) ∧ C(x , ȳ ′, z ′) ∧ C(x , ȳ ′′, z ′′) ∧ C(x1, ȳ
′, z ′′′) ∧ ErrS∀

1
(z, z ′, z ′′, z ′′′)

ACM Transactions on Computational Logic, Vol. 22, No. 2, Article 13. Publication date: June 2021.

13:64 M. Benedikt et al.

QS∀
2
= ∃ x x2 ȳ ȳ ′ ȳ ′′ z z ′ z ′′ z ′′′

S∀2 (x ,x2) ∧
∨

1≤i≤n

Qadj,i (ȳ, ȳ
′) ∧

∨
1≤i≤n

Qadj,i (ȳ
′, ȳ ′′) ∧

C(x , ȳ, z) ∧ C(x , ȳ ′, z ′) ∧ C(x , ȳ ′′, z ′′) ∧ C(x2, ȳ
′, z ′′′) ∧ ErrS∀

2
(z, z ′, z ′′, z ′′′),

where ErrS∃ , ErrS∀
1
, and ErrS∀

2
are defined exactly as in the proof of Theorem 4.5.

In addition, we check whether the Turing machine M reaches the rejecting state qrej along some
path in its computation tree. This is done with the CQ

Qrej = ∃ x ȳ z C(x , ȳ, z) ∧ Vrej(z),

where Vrej is the visible relation that contains all cell values of the form (a,qrej), for some a ∈ Σ.
Let Q be the disjunction of all previous UCQs, and let V be the instance that captures the in-

tended semantics of the visible relations Zero, One, Bit, V , ErrC , ErrI, first, ErrI, last, ErrI,adj, ErrC,adj,
ErrS∃ , ErrS∀

1
, and ErrS∀

2
. We can argue as in the proof of Theorem 4.5 that M has a successful com-

putation tree if and only if PQI(Q, Σ, S,V) = false. �

D UNDECIDABILITY OF SCHEMA-BASED NEGATIVE IMPLICATION FOR CQ VIEW

DEFINITIONS: PROOF OF THEOREM 6.2

Recall the statement of Theorem 6.2:

The ∃NQI problem under background knowledge given as CQ-view definitions is undecidable.

This appendix will be devoted to the proof of the theorem.
As in earlier undecidability results, such as Theorem 4.16, we will give the proof for the unre-

stricted version of the problem, which asserts the existence of an instance with an NQI, finite or
infinite.

We give a reduction from a tiling problem that is specified by a set of tilesT , an initial tile t⊥ ∈ T ,
and horizontal and vertical constraints H ,V ⊆ T ×T . To match the unrestricted version of ∃NQI,
we will deal with the infinite tiling variant, thus considering the problem of tiling the infinite grid
N ×N.

As before, we will have visible relations EH and EV representing the horizontal and vertical
edges of the grid. Recall that every visible relation must be associated with a CQ-view definition
on a subset of hidden relations. In particular, for the relations EH ,EV , it is sufficient to introduce
hidden copies E ′H ,E

′
V and enforce the trivial dependencies:

EH (x ,y) ⇐⇒ E ′H (x ,y)

EV (x ,y) ⇐⇒ E ′V (x ,y).

Note that these dependencies serve only to satisfy the requirement that every visible relation has
an associated view definition on Σ. They play no further role in the reduction.

Similarly, each node of the grid has to be associated with a tile inT , and this will be represented
by some visible unary relations Ut , together with the corresponding hidden copies U ′t . We have
associated sentences in the background theory: Ut (x) ⇐⇒ U ′t (x), for all t ∈ T .

As in earlier undecidability results, such as Theorem 6.1, the first goal is to ensure that for each
node, there exists at most one predecessor and at most one successor for the relations EH and EV .
We explain how to ensure this for the successor case and the relation EH , but similar constructions
work for the other cases. We introduce a hidden relation HorFuncChallenge of arity 4 and a visible
relation ErrHorFun of arity 3 with the associated CQ-view definition

ErrHorFun(x ,y,x ′) ⇐⇒ HorFuncChallenge(x ,y,x ′,y).

ACM Transactions on Computational Logic, Vol. 22, No. 2, Article 13. Publication date: June 2021.

Inference from Visible Information and Background Knowledge 13:65

Our query Q will contain as a subquery the following UCQ:

QHorFuncChallenge =
(∃ x y y ′ ErrHorFun(x ,y,y ′)

)
∨(∃ x y y ′ HorFuncChallenge(x ,y,x ,y ′) ∧ EH (x ,y) ∧ EH (x ,y

′)
)
.

We explain how having an NQI for the subqueryQHorFuncChallenge on a realizable visible instance
is equivalent to the visible instance having the properties that ErrHorFun is empty and every
element has at most one successor in the relation EH .

Suppose that we have Sv -instanceV such that NQI(QHorFuncChallenge, Σ, S,V) = true. Note that
anyV for these constraints is visible, since at this point we just have trivial “renaming” constraints.

The visible relation ErrHorFun must be empty in V , as otherwise the query QHorFuncChallenge

would be satisfied in every full instance that agrees with V on the visible part. From the fact
that ErrHorFun is empty inV and the view definition of ErrHorFun, we conclude that every full
instance that satisfies the background theory and agrees withV does not contain a fact of the form
HorFuncChallenge(x ,y,x ′,y). Now, suppose, by way of contradiction, that there is an element x
with two distinct EH -successorsy andy ′. We can construct a full instance that extendsV with the
single fact HorFuncChallenge(x ,y,x ,y ′). This full instance satisfies all of the sentences in Σ and
also the query QHorFuncChallenge, thus contradicting that NQI(QHorFuncChallenge, Σ, S,V) = true.

For the converse direction, we consider a visible instanceV in which the relation EH is a func-
tion and the relation ErrHorFun is empty. We claim that NQI(QHorFuncChallenge, Σ, S,V) = true. Con-
sider an arbitrary full instance F that agrees withV on the visible part and satisfies the sentences
in Σ, and suppose by way of contradiction thatQHorFuncChallenge holds on F . Then, F would contain
the following facts, for a triple of nodes x ,y,y ′: HorFuncChallenge(x ,y,x ,y ′), EH (x ,y), EV (x ,y

′).
However, F cannot contain the fact HorFuncChallenge(x ,y,x ′,y), as otherwise this would imply
the presence of the visible fact ErrHorFun(x ,y,x ′). From this, we conclude that y � y ′, which
contradicts the functionality of EH .

Very similar constructions and arguments can be used to enforce single successors in EV , single
predecessors in EH and EV , as well as confluence of EH and EV .

We now explain how we enforce the existential properties of the grid, such as EH being
non-empty (and similarly for EV). We introduce two nullary relations HorEmptyError and
HorEmptyHiddenError, where the former is visible and the latter is hidden, and we constrain
them via the CQ-view definition

HorEmptyError ⇐⇒ ∃ x y
(
EH (x ,y) ∧ HorEmptyHiddenError

)
.

We add as a subquery of our query the following UCQ:

QHorEmptyError = HorEmptyError ∨ HorEmptyHiddenError.

In the following, we show how this enforces non-emptiness of EH , assuming that HorEmptyError

is empty.
Suppose thatV is an Sv -instance such that NQI(QHorEmptyError, Σ, S,V) = true. We show that in

this case, the relation EH is non-empty. First, note that the fact HorEmptyError must not appear in
V , since otherwise all full instances extending V would satisfy QHorEmptyError (as V is realizable,
there is at least one such full instance). If EH were empty, we could set HorEmptyHiddenError to
non-empty and thus get a contradiction of NQI(QHorEmptyError, Σ, S,V) = true.

For the converse direction, we consider a visible instance V in which the relation EH is non-
empty and HorEmptyError is empty. In any full instance that agrees with V on the visible part,
HorEmptyHiddenError must agree with HorEmptyError and hence must be empty. This implies
that the query QHorEmptyError is violated, when NQI(QHorEmptyError, Σ, S,V) = true.

ACM Transactions on Computational Logic, Vol. 22, No. 2, Article 13. Publication date: June 2021.

13:66 M. Benedikt et al.

Besides requiring that EH and EV are non-empty, we must also guarantee that for every pair
(x ,y) ∈ EH (respectively, (x ,y) ∈ EV), there is a pair (y, z) ∈ EV (respectively, (y, z) ∈ EH).
Note that once we have guaranteed this, functionality and confluence will ensure that EH and
EV correctly encode the horizontal and vertical edges of the grid. We explain how to enforce that
every pair (x ,y) ∈ EH has a successor pair (y, z) ∈ EV —a similar construction can be given for the
symmetric property. We add to our schema another visible relation HorSuccError of arity 0 and a
hidden relation HorSuccHiddenError of arity 1. The associated CQ-view definition is

HorSuccError ↔ ∃ x y z EH (x ,y) ∧ HorSuccHiddenError(y) ∧ EV (y, z).

Moreover, we add as a subquery of our query the following UCQ:

QHorSuccError = HorSuccError ∨
(∃ x y EH (x ,y) ∧ HorSuccHiddenError(y)

)
.

We show how this enforces the desired property.
Suppose that there is a visible instanceV such that NQI(QHorSuccError, Σ, S,V) = true. First, ob-

serve that the visible relation HorSuccError must be empty, as otherwise all extensions ofV would
satisfyQHorSuccError. Now, suppose, by way of contradiction, that there is a pair (x ,y) ∈ EH that has
no successor pair (y, z) ∈ EV . In this case, we can construct a full instance that extends V with
the hidden fact HorLabelHiddenError(y). This full instance hasV as visible part and satisfies the
sentences in the background theory and the queryQHorSuccError. As this contradicts the hypothesis
NQI(QHorSuccError, Σ, S,V) = true, we conclude that for every pair (x ,y) ∈ EH , there is a successor
pair (y, z) ∈ EV .

Conversely, consider a visible instanceV that represents a correct encoding of the infinite grid
and where the visible relation HorSuccError is empty. In any full instance that agrees withV on
the visible part, HorSuccError must be the same as ∃ x y z EH (x ,y) ∧ HorSuccHiddenError(y)
∧ EV (y, z). In particular, because every node has both a successor in EH and a successor in
EV , this implies that the hidden relation HorSuccHiddenError cannot contain the node y, for
any pair (x ,y) ∈ EH . Hence, the query QHorSuccError is necessarily violated, and this proves that
NQI(QHorSuccError, Σ, S,V) = true.

Now that we have enforced a grid-like structure on the relations EH and EV , we consider the rela-
tionsUt that encode a candidate tiling function. Using similar techniques, we can ensure that every
node of the grid has an associated tile. More precisely, we enforce that, for every pair (x ,y) ∈ EH ,
the element x must also appear inUt , for some tile t ∈ T . We add a visible relation HorLabelErrort

of arity 0 for each tile t ∈ T and a hidden relation HorLabelHiddenError of arity 1. The associated
CQ-view definitions are of the form

HorLabelErrort ⇐⇒ ∃ x y EH (x ,y) ∧ HorLabelHiddenError(x) ∧ Ut (x).

We add as a subquery of our query the following UCQ:

QHorLabelError =
∨
t ∈T

∃ x y
(

HorLabelErrort (x ,y)
)
∨

(
EH (x ,y) ∧ HorLabelHiddenError(x)

)
.

We prove that the above definitions enforce that all nodes that appear in the first column of the
relation EH have at least one associated tile.

Consider a visible instance V such that NQI(QHorLabelError, Σ, S,V) = true. For each tile t , the
visible relation HorLabelErrort must be empty, as otherwise all extensions of V would satisfy
QHorLabelError. Suppose, by way of contradiction, that there is a node x that appears in the first col-
umn of the visible relation EH but does not appear in any relationUt , with t ∈ T . We can construct a
full instance where the relation HorLabelHiddenError contains the element x . This instance would
then satisfy the query QHorLabelError, thus contradicting that NQI(QHorLabelError, Σ, S,V) = true.

ACM Transactions on Computational Logic, Vol. 22, No. 2, Article 13. Publication date: June 2021.

Inference from Visible Information and Background Knowledge 13:67

For the converse, consider a visible instance V in which the relation EH is non-empty (as en-
forced in the previous steps) and, for all pairs (x ,y) ∈ EH , there is a tile t ∈ T such that x ∈ Ut . Fur-
thermore, assume that all relations HorLabelErrort , with t ∈ T , in this visible instance are empty.
In every full instance that agrees withV and satisfies the background theory, HorLabelErrort must
be the same as ∃ x y HorLabelHiddenError(x)∧EH (x ,y)∧Ut (x). In particular, because every node
is associated with some tile, this implies that the hidden relation HorLabelHiddenError cannot
contain the node x , for any pair (x ,y) ∈ EH . Hence, the query QHorLabelError is necessarily violated,
and this proves that NQI(QHorLabelError, Σ, S,V) = true.

We also need to guarantee that each node has at most one associated tile. This property can be
easily enforced by the subquery

QTwoLabelsError =
∨
t�t ′

∃x Ut (x) ∧Ut ′ (x).

Finally, we enforce that the encoded tiling function respects the horizontal and vertical constraints
using the following UCQ:

QConstraintError =
∨
(t,t ′)�H

(∃ x y EH (x ,y) ∧Ut (x) ∧Ut ′ (y)
)
∨∨

(t,t ′)�V

(∃ x y EV (x ,y) ∧Ut (x) ∧Ut ′ (y)
)
.

Summing up, if we let Q be the disjunction of all previous queries Qe for subqueries above
corresponding to various grid errors e . The previous arguments show that ∃NQI(Q, Σ, S) = true

if and only if there exists a valid tiling of the infinite grid N × N. Note that, by definition,
NQI(Q, Σ, S,V) = true holds for a UCQ Q =

⋃
e Qe if and only if NQI(Qe , Σ, S,V) = true holds

for all Qe , and this property can be directly transferred to the schema-level problem ∃NQI.
This completes the proof of the theorem.

ACKNOWLEDGMENTS

We are quite grateful to the referees of LICS for their helpful comments.

REFERENCES

[1] S. Abiteboul and O. Duschka. 1998. Complexity of answering queries using materialized views. In Proceedings of

PODS’98.

[2] S. Abiteboul, R. Hull, and V. Vianu. 1995. Foundations of Databases. Addison-Wesley.

[3] Antoine Amarilli and Michael Benedikt. 2018. When Can We Answer Queries Using Result-Bounded Interfaces? Re-

trieved March 21, 2021 from https://arxiv.org/pdf/1706.07936.pdf.

[4] Jean-François Baget, Michel Leclère, Marie-Laure Mugnier, and Eric Salvat. 2009. Extending decidable cases for rules

with existential variables. In Proceedings of IJCAI’09.

[5] Vince Bárány, Balder Ten Cate, and Martin Otto. 2012. Queries with guarded negation. In Proceedings of VLDB’12.

[6] Vince Bárány, Balder Ten Cate, and Luc Segoufin. 2011. Guarded negation. In Proceedings of ICALP’11.

[7] Vince Bárány, Balder Ten Cate, and Luc Segoufin. 2015. Guarded negation. J. ACM 62, 3 (2015), Article 22.

[8] Vince Bárány, George Gottlob, and Martin Otto. 2010. Querying the guarded fragment. In Proceedings of LICS’10.

[9] C. Beeri and M. Y. Vardi. 1981. The implication problem for data dependencies. In Proceedings of ICALP’81.

[10] Michael Benedikt, Pierre Bourhis, Louis Jachiet, and Michaël Thomazo. 2019. Reasoning about disclosure in data

integration in the presence of source constraint. In Proceedings of IJCAI’19. Long version available at arxiv.org/pdf/

1906.00624.pdf.

[11] Michael Benedikt, Pierre Bourhis, Louis Jachiet, and Efthymia Tsamoura. 2020. Balancing expressiveness and inex-

pressiveness in view design. In Proceedings of KR’20.

[12] Michael Benedikt, Pierre Bourhis, Gabriele Puppis, and Balder ten Cate. 2016. Querying visible and invisible informa-

tion. In Proceedings of LICS’16.

ACM Transactions on Computational Logic, Vol. 22, No. 2, Article 13. Publication date: June 2021.

https://arxiv.org/pdf/1706.07936.pdf
arxiv.org/pdf/1906.00624.pdf

13:68 M. Benedikt et al.

[13] Michael Benedikt, Pierre Bourhis, and Michael Vanden Boom. 2017. Characterizing definability in decidable fixpoint

logics. In Proceedings of ICALP’17.

[14] Michael Benedikt, Thomas Colcombet, Balder ten Cate, and Michael Vanden Boom. 2015. The complexity of bound-

edness for guarded logics. In Proceedings of LICS ’15.

[15] Michael Benedikt, Bernardo Cuenca Grau, and Egor V. Kostylev. 2017. Source information disclosure in ontology-

based data integration. In Proceedings of AAAI’17.

[16] Michael Benedikt, Bernardo Cuenca Grau, and Egor V. Kostylev. 2018. Logical foundations of information disclosure

in ontology-based data integration. Artif. Intell. 262 (2018), 52–95.

[17] Michael Benedikt, Boris Motik, and Efthymia Tsamoura. 2018. Goal-driven query answering for existential rules with

equality. In Proceedings of AAAI’18.

[18] Michael Benedikt, Balden ten Cate, Julien Leblay, and Efthymia Tsamoura. 2016. Generating Plans from Proofs: The

Interpolation-Based Approach to Query Reformulation. Morgan Claypool.

[19] Michael Benedikt, Balder ten Cate, and Efi Tsamoura. 2016. Generating plans from proofs. ACM TODS 40, 4 (2016),

Article 22.

[20] Michael Benedikt, Balder ten Cate, and Michael Vanden Boom. 2014. Effective interpolation and preservation in

guarded logics. In Proceedings of CSL-LICS’14.

[21] E. W. Beth. 1953. On Padoa’s method in the theory of definitions. Indagationes Mathematicae 15 (1953), 330–339.

[22] Pierre Bourhis, Marco Manna, Michael Morak, and Andreas Pieris. 2016. Guarded-based disjunctive tuple-generating

dependencies. ACM Trans. Database Syst. 41, 4 (2016), Article 27, 45 pages.

[23] Andrea Calì, George Gottlob, and Michael Kifer. 2013. Taming the infinite chase: Query answering under expressive

relational constraints. JAIR 48 (2013), 115–174.

[24] Marco A. Casanova, Ronald Fagin, and Christos Papadimitriou. 1984. Inclusion dependencies and their interaction

with functional dependencies. JCSS 28, 1 (1984), 29–59.

[25] C. C. Chang and H. J. Keisler. 1990. Model Theory. North-Holland.

[26] R. Chirkova and T. Yu. 2014. Obtaining information about queries behind views and dependencies. arXiv:1403.5199

[27] Alin Deutsch, Alan Nash, and Jeff Remmel. 2008. The chase revisited. In Proceedings of PODS’08.

[28] Ronald Fagin, Phokion G. Kolaitis, Renee J. Miller, and Lucian Popa. 2005. Data exchange: Semantics and query an-

swering. Theor. Comput. Sci. 336, 1 (2005), 89–124.

[29] W. Fan and F. Geerts. 2010. Capturing missing tuples and missing values. In Proceedings of PODS’10.

[30] W. Fan and F. Geerts. 2010. Relative information completeness. ACM TODS 35, 4 (2010), 27.

[31] E. Franconi, Y. Ibáñez-García, and I. Seylan. 2011. Query answering with DBoxes is hard. ENTCS 278 (2011), 71–84.

[32] Tomasz Gogacz and Jerzy Marcinkowski. 2014. All-instances termination of chase is undecidable. In Proceedings of

ICALP’14.

[33] Tomasz Gogacz and Jerzy Marcinkowski. 2015. The hunt for a red spider: Conjunctive query determinacy is undecid-

able. In Proceedings of LICS’15.

[34] George Gottlob and Christos Papadimitriou. 2003. On the complexity of single-rule datalog queries. Inf. Comp. 183

(2003), 104–122.

[35] B. Cuenca Grau, I. Horrocks, M. Krötzsch, C. Kupke, D. Magka, B. Motik, and Z. Wang. 2013. Acyclicity notions for

existential rules and their application to query answering in ontologies. J. Artif. Int. Res. 47, 1 (2013), 741–808.

[36] M. Guarnieri and D. A. Basin. 2014. Optimal security-aware query processing. PVLDB 7, 12 (2014), 1307–1318.

[37] B. Konev, C. Lutz, D. Walther, and F. Wolter. 2013. Model-theoretic inseparability and modularity of description logic

ontologies. Artif. Intell. 203 (2013), 66–103.

[38] P. Koutris, P. Upadhyaya, M. Balazinska, B. Howe, and D. Suciu. 2012. Query-based data pricing. In Proceedings of

PODS’12.

[39] C. Lutz, I. Seylan, and F. Wolter. 2012. Mixing open and closed world assumption in ontology-based data access:

Non-uniform data complexity. In Proceedings of the 2012 International Workshop on Description Logics. http://ceur-

ws.org/Vol-846/paper_17.pdf.

[40] C. Lutz, I. Seylan, and F. Wolter. 2013. Ontology-based data access with closed predicates is inherently intractable

(sometimes). In Proceedings of IJCAI’13.

[41] Carsten Lutz, Inanc Seylan, and Frank Wolter. 2015. Ontology-mediated queries with closed predicates. In Proceedings

of IJCAI’15.

[42] C. Lutz and F. Wolter. 2007. Conservative extensions in the lightweight description logic EL. In Proceedings of CADE’07.

[43] Bruno Marnette and Floris Geerts. 2010. Static analysis of schema-mappings ensuring oblivious termination. In Pro-

ceedings of ICDT’10.

[44] G. Miklau and D. Suciu. 2007. A formal analysis of information disclosure in data exchange. JCSS 73, 3 (2007), 507–534.

[45] Alan Nash and Alin Deutsch. 2006. Privacy in GLAV information integration. In Proceedings of ICDT’06.

ACM Transactions on Computational Logic, Vol. 22, No. 2, Article 13. Publication date: June 2021.

http://ceur-ws.org/Vol-846/paper_17.pdf

Inference from Visible Information and Background Knowledge 13:69

[46] A. Nash, L. Segoufin, and V. Vianu. 2010. Views and queries: Determinacy and rewriting. ACM TODS 35, 3 (2010),

Article 21.

[47] Nhung Ngo, Magdalena Ortiz, and Mantas Simkus. 2016. Closed predicates in description logics: Results on combined

complexity. In Proceedings of KR’16.

[48] Adrian Onet. 2013. The chase procedure and its applications in data exchange. In Data Exchange Intregation and

Streams. Schloss Dagstuhl, 1–37.

[49] Oded Shmueli. 1993. Equivalence of datalog queries is undecidable. JLAP 15, 3 (1993), 231–241.

[50] M. Y. Vardi. 1998. Reasoning about the past with two-way automata. In Proceedings of ICALP’98.

[51] Z. Zhang and A. O. Mendelzon. 2005. Authorization views and conditional query containment. In Proceedings of

ICDT’05.

Received October 2019; revised November 2020; accepted February 2021

ACM Transactions on Computational Logic, Vol. 22, No. 2, Article 13. Publication date: June 2021.

