EPTCS 119

Proceedings of the
Fourth International Symposium on

Games, Automata, Logics and Formal
Verification

Borca di Cadore, Dolomites, Italy, 29-31th August 2013

Edited by: Gabriele Puppis and Tiziano Villa

Published: 16th July 2013
DOI: 10.4204/EPTCS.119
ISSN: 2075-2180

Open Publishing Association

Table of Contents

TablE Of CONTENTS .. .ottt e e e e e e e e e e e e e e i

(] = T = iii
Gabriele Puppis and Tiziano Villa

Invited Presentation: Games with delay for automaton synthesis...........coevvovv. 1
Christof Loding

Invited Presentation: New trends in program synthesiscciiieoaa ... 3
Thomas A. Henzinger

Invited Presentation: Temporal logic satisfiability for the design of complex st 4
Alessandro Cimatti and Stefano Tonetta

Zielonka’s Recursive Algorithm: dull, weak and solitairenges and tighter bounds............... 7
Maciej Gazda and Tim A.C. Willemse

Simple strategies for Banach-Mazur games and fairly coagstems 21
Thomas Brihaye and Quentin Menet

The Rabin index of parity games.t e e e e 35
Michael Huth, Jim Huan-Pu Kuo and Nir Piterman

A Faster Tableau for CT Lot e e e e e e e e e e 50
Mark Reynolds

Deciding the Satisfiability of MITL Specifications. ...« oo it e 64
Marcello Maria Bersani, Matteo Rossi and Pierluigi San et

Improving HyLTL model checking of hybrid systems..c.. . i it 79
Davide Bresolin

Upwards Closed Dependencies in Team SemanticS e v v v v e ieeenennnnnnnnn.... 93
Pietro Galliani

Profile Trees for Blichi Word Automata, with Application tot®eminization 107
Seth Fogarty, Orna Kupferman, Moshe Y. Vardi and ThomaseWilk

Weighted Automata and Monadic Second Order LogiC. ... e oo oo e ii i 122
Nadia Labai and Johann A. Makowsky

Approximating the minimum CYCIe MeEaNttt e e et 136
Krishnendu Chatterjee, Monika Henzinger, Sebastian Kniger and Veronika Loitzenbauer

Probabilistic data flow analysis: a linear equational appho.

Alessandra Di Pierro and Herbert Wiklicky

Slot Games for Detecting Timing Leaks of Programs

Aleksandar S. Dimovski

Social Network Games with Obligatory Product Selection....................

Krzysztof R. Apt and Sunil Simon

Alternating-time temporal logic with finite-memory strgies

Steen Vester

Satisfiability of ATL with strategy contextsc.euiiiiiiiiiiinn..

Francois Laroussinie and Nicolas Markey

Modularity and Openness in Modeling Multi-Agent Systems..................

Wojciech Jamroga, Artur Meski and Maciej Szreter

Model checking coalitional games in shortage resourcess@

Dario Della Monica, Margherita Napoli and Mimmo Parente

Preface

This volume contains the proceedings of Buarth International Symposium on Games, Automata,
Logic and Formal Verificatio{GandALF 2013). The symposium took place in Borca di Cadibay,
from 29th to 31st of August 2013.

The GandALF symposium was established by a number of Italsnputer scientists interested in
mathematical logic, automata theory, game theory, and #pgilications to the specification, design,
and verification of complex systems. It aims to provide afioruhere people from different areas, and
possibly with different backgrounds, can fruitfully inket. Even though the idea of the symposium
emerged within the Italian research community, the evesatehtuly international nature, as witnessed
by the composition of the conference committees and by thetopdistribution of the submitted papers.

In response to the Call for Papers, the program committexvext 34 submissions and selected 17 of
them to be included in the conference program. Each paperenvaed by at least three referees and the
selection was based on originality, quality, and relevaodie topics of the symposium. The scientific
program consisted of papers on a wide variety of topics,udlinly algorithmic and behavioral game
theory, game semantics, formal languages and automateythmodal and temporal logics, software
verification, hybrid systems.

This fourth edition of GandALF has also hosted three inviths:

e Games with delay for automaton synthes&ig Christof Loding (Lehrstuhl Informatik 7, RWTH
Aachen University, Germany)

e New trends in program synthestsy Thomas A. Henzinger (IST, Austria)

e Temporal logic satisfiability for the design of complex eys$ by Alessandro Cimatti and Stefano
Tonetta (Center for Information Technology, Fondazionert®rKessler, Trento, Italy)

We wish to express our thanks to the authors who submitteshdgt! abstracts for consideration.
We would like to thank also the steering committee for givirsgthe opportunity and the honor to super-
vise GandALF 2013, as well as the program committee memlnershe additional reviewers for their
excellent work, fruitful discussions and active partit¢ipa during the evaluation process.

We would like to thank the people, institutions, and comeatior contributing to the success of this
edition of GandALF. In particular, we gratefully acknowtgglthe financial support from private and pub-
lic sponsaors, including: Dipartimento d’'Informatica - Warsita di Verona, Dipartimento d’Informatica -
Universita di Salerno, Comune di Borca di Cadore. We alspktthe EasyChair organization for sup-
porting all the tasks related to the selection of contriimdi EPTCS and arXiv for hosting the proceed-
ings.

Finally, we would like to extend special thanks to the organg chair, Pietro Sala, for his care and
tireless efforts in making the local arrangements and dérgapan attractive social program. Without
his dedicated help and diligent work the conference woutchage been such a success.

August 2013,
Gabriele Puppis and Tiziano Villa

Gabriele Puppis, Tiziano Villa (Eds.): Fourth Interna@bn
Symposium on Games, Automata, Logics and Formal Verifinatio
EPTCS 119, 2013, pp. iii-v, do0i:10.4204/EPTCS.119.0

iv Preface

Program Committee

Luca Aceto, University of Reykjavik, Iceland

Rajeev Alur, University of Pennsylvania, United States
Arnaud Carayol, IGM, Marne-la-Vallee, France

Anuj Dawar, University of Cambridge, United Kingdom
Stephane Demri, CNRS/New York University, United States
Volker Diekert, University of Stuttgart, Germany

Javier Esparza, University of Munich, Germany

Valentin Goranko, Technical University of Denmark, Denknar
Bakhadyr Khoussainov, University of Auckland, New Zealand
Naoki Kobayashi, University of Tokyo, Japan

Stephan Kreutzer, University of Berlin, Germany

Marta Kwiatkowska, University of Oxford, United Kingdom
Martin Lange, University of Kassel, Germany

Angelo Montanari, University of Udine, Italy

Mimmo Parente, University of Salerno, Italy

Adriano Peron, University of Naples, Italy

Gabriele Puppis, LaBRI, Bordeaux, France-Chain

Alexander Rabinovich, University of Tel Aviv, Israel
Ramaswamy Ramanujam, Institute of Mathematical Scier@@esnnai, India
Jean Francois Raskin, University of Bruxelles, Belgium
Davide Sangiorgi, University of Bologna, Italy

Olivier Serre, LIAFA, Paris, France

Sharon Shoham, Academic College of Tel Aviv Yaffo, Israel
Szymon Torunczyk, University of Warsaw, Poland

Tiziano Villa, University of Verona, Italydo-chair

Zhilin Wu, State Key Laboratory of Computer Science, China
Hsu-Chun Yen, National Taiwan University, Taiwan

Organizing Chair

Pietro Sala, University of Verona, Italy

Steering Committee

Mikolaj Bojanczyk, University of Warsaw, Poland

Javier Esparza, University of Munich, Germany
Andrea Maggiolo-Schettini, University of Pisa, Italy
Angelo Montanari, University of Udine, Italy

Margherita Napoli, University of Salerno, Italy

Mimmo Parente, University of Salerno, Italy

Wolfgang Thomas, RWTH Aachen University, Germany
Wieslaw Zielonka, University of Paris 7, France

Additional Reviewers

Massimo Benerecetti, Nataliia Bielova, Davide BresolinlsNBulling, Supratik Chakraborty, Taolue
Chen, David Cock, Catalin Dima, Klaus Drager, Marco FaéMlaran Feldman, Nathanaél Fijalkow,
Goran Frehse, Oliver Friedmann, Gilles Geeraerts, Danalago Gimbert, Paul Hunter, Yoshinao
Isobe, Lukasz Kaiser, Curtis Kent, Aleks Kissinger, Deniglrberg, Simon LelRenich, Kamal Lodaya,
Etienne Lozes, Michael Luttenberger, Radu Mardare, Badfiaubert, Till Mossakowski, Aniello Mu-

rano, Sylvain Perifel, Pietro Sala, Ulrich Schopp, SafaiBvald, Aistis Simaitis, Hans Tompits, Dirk
Walther.

Gameswith delay for automaton synthesis

Christof Loding

Lehrstuhl Informatik 7
RWTH Aachen University
Germany

loeding@cs.rwth-aachen.de

Abstract

The framework of infinite two-player games is a powerful arekifile tool to verify and synthesize
systems from given specifications. The origin of this worthis problem of automatic circuit synthesis
from specifications, as posed in [3]. A circuit can be views@aevice that transforms input sequences
of bit vectors into output sequences of bit vectors. If theewt acts as a kind of control device, then
these sequences are assumed to be infinite because the abompsiiould never halt.

The task in synthesis is to construct such a circuit based fonn@al specification describing the
desired input/output behaviour. This problem setting cawvibwed as a game of infinite duration be-
tween two players: The first player provides the bit vectorgte input, and the second player produces
the output bit vectors. The winning condition of the gameively by the specification. The goal is to
find a strategy for the second player, such that all pairs mitiloutput sequences that can be produced
according to the strategy, satisfy the specification. Susthraaegy can be seen as a realisation of the
specification.

This approach using games as a model for the synthesis prdide been taken in [1], where it
is shown that the synthesis problem can be solved by an tigofor specifications that are written
in monadic second-order logic. Furthermore, for a giverciijgation, one can construct a strategy
represented by a finite transducer that reads the input segud synchronously produces an output
sequence such that the resulting pair of input/output sempieatisfies the specification.

An interesting variation of the problem arises when the tonted strategy can use a lookahead: it
does not need to produce an output in each step. In the condisig game this means that the second
player, who is in charge of the output, can delay some of higasi0An early decidability result in such
a setting has been obtained in [6], where the strategy iwatldo skip a bounded number of moves in
order to obtain a bounded look-ahead.

The aim of this presentation is to survey some recent rethadtshave been obtained for games with
delay, as for example, games with arbitrary (not necegdaoilinded) delay [5], delay games with deter-
ministic pushdown specifications [4], and delay games owitefivords for the synthesis of sequential
transducers [2].

References

[1] J. Richard Buchi & Lawrence H. Landweber (1969olving sequential conditions by finite-state strategies
Transactions of the American Mathematical Socl88, pp. 295-311, ddi0.2307/1994916.

[2] Arnaud Carayol & Christof LodingUniformization in Automata Theoryfo appear in the Proceedings of the
14th Congress of Logic, Methodology and Philosophy of Sméeancy, July 19-26, 2011.

Gabriele Puppis, Tiziano Villa (Eds.): Fourth Interna@bn © C. Loding
Symposium on Games, Automata, Logics and Formal Verifinatio This work is licensed under the
EPTCS 119, 2013, pp. 1-2, doi:10.4204/EPTCS.119.1 Creative Commons Attribution License.

2 Games with delay

[3] Alonzo Church (1962):Logic, Arithmetic and Automataln: Proceedings of the International Congress of
Mathematicianspp. 23-35.

[4] Wiladimir Fridman, Christof Loding & Martin Zimmermanf2011): Degrees of Lookahead in Context-free
Infinite Gamesln Marc Bezem, editorComputer Science Logic (CSL’'11) - 25th International Wrds/20th
Annual Conference of the EACSILeibniz International Proceedings in Informatics (LIRIGR, Schloss

Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, &any, pp. 264-276, ddi0.4230/LIPIcs.CSL.
2011.264.

[5] Michael Holtmann, tukasz Kaiser & Wolfgang Thomas (2D1Degrees of Lookahead in Regular Infinite
Games In: Foundations of Software Science and Computational Stregtuecture Notes in Computer
Science014, Springer, pp. 252—-266, dui:. 1007/978-3-642-12032-9_18.

[6] Frederick A. Hosch & Lawrence H. Landweber (197Binite Delay Solutions for Sequential Conditionia:
ICALP, pp. 45-60.

New Trendsin Program Synthesis

Thomas A. Hemzinger
IST Austria
tah@ist.ac.at

The synthesis of reactive programs from omega-regulaifspaions is based on finding winning
strategies in graph games. In recent years, program systies seen a revival due to several vari-
ations and extensions of this basic theme. We survey thigersew trends. First, partial program
synthesis shifts the emphasis from the problem of synthmegsizhole programs from specifications to
the problem of completing a partial program so that it s&sséi desired property. Second, quantita-
tive program synthesis aims to find a solution that optimaegssen criterion, such as performance,
robustness, or resource consumption. Third, concurragram synthesis may require the com-
putation of equilibria in graph games with multiple playénat represent independent concurrent
processes. Recent progress in these directions promisg@éce some particularly intricate aspects
of programming, such as the placement of synchronizatieeourity primitives, by automatic code
generation.

This work has been supported in part by an ERC Advanced GRASAREM - Quantitative Reactive
Models) and by an FWF National Research Network (RISE - RigeiSystems Engineering).

Gabriele Puppis, Tiziano Villa (Eds.): Fourth Interna@bn © T.A. Henzinger
Symposium on Games, Automata, Logics and Formal Verifinatio This work is licensed under the
EPTCS 119, 2013, pp. 3-3, doi:10.4204/EPTCS.119.2 Creative Commons Attribution License.

Temporal logic satisfiability
for the design of complex Systems

Alessandro Cimatti and Stefano Tonetta
Center for Information Technology, Fondazione Bruno Kessdlrento, Italy
{cimatti,tonettas}@fbk.eu

The development of computer-based dynamic systems is eheedytask. On the one hand, the re-
quired functionalities are very complex, and often includerently contradicting aspects (e.g. moving
trains in a railways station versus avoiding crashes). @mother hand, it is required to integrate the
continuous dynamics of physical plants with the discreteadyics in the control modules and proce-
dures. In addition, such systems often carry out criticakfions, which calls for rigorous means to
support a development process. The use of a formal approacpled with suitable reasoning tools,
has found its way in several practical domains, such asag#\b5], industrial production [20], hardware
design [2, 13, 11], and avionics [15].

Most formal approaches focus on a behavioral charactenizaf a system, possibly expressed as an
automaton or network/hierarchy of automata. Model-baggaaaches build this behavioral model as a
result of semantics-preserving transformation of som&ddanguage, and use the model to verify the
system description. The verification uses some propeitigerm of first-order or temporal formulas,
which represent the requirements and are typically assuoiee correct.

More recently, the role of properties is being recognizethasasingly important. For example, in
hardware design, specification languages for propertigs RSL [10], SVA [19]) have been introduced
to increase expressive power (augmenting for example L-itt@@ Temporal Logic (LTL) with regular
expressions) and usability (using natural language egnmes and maximizing the syntactic sugar). The
quality of the assertions expressed with such language&rasged as a problem leading to the de-
velopment of specialized techniques for their validatidng]. Interestingly, the same type of problem
has been addressed in requirements engineering, acroséndofior many years. According to studies
sponsored by NASA in 90s, many software bugs in safetyeatiimbedded systems were due to flaws
in requirements [14]. The role of formal methods in findinglserrors is becoming more and more
important (e.g., [7]). The role of properties is also fundauwal in compositional reasoning [17], where a
global verification problem is decomposed into a number cédliaed problems. Finally, contract based
design [18] allows to decompose the properties of the archital blocks according to the hierarchical
system decomposition, before behavioral descriptionsaeaéable, and provides a strong support for
property-based refinement and reuse of components [9].

In the talk, we explore the role of temporal logic satisfigyiln the design of complex systems,
focusing on a property-based design, where behaviors tdragsare expressed as formulas in temporal
logics. We first discuss the challenges resulting in pradiiom requirements analysis, compositional
reasoning, and contract-based design, showing that abti&fi of temporal formulas is a crucial prob-
lem.

Then, we analyze the satisfiability problem for various ¢sgdf interest. We adopt a linear model of
time, and take into account two kinds of traces: discretesand hybrid traces. Properties are therefore
represented by sets of traces and temporal formulas aretosgukecify such sets. We analyze two
classes of temporal logics of practical interest. The filstcis interpreted over discrete traces, that are

Gabriele Puppis, Tiziano Villa (Eds.): Fourth Interna@bn © A. Cimatti, S. Tonetta
Symposium on Games, Automata, Logics and Formal Verifinatio This work is licensed under the
EPTCS 119, 2013, pp. 4-6, doi:10.4204/EPTCS.119.3 Creative Commons Attribution License.

A. Cimatti, S. Tonetta 5

sequences of states (assignments to sets of variablesglutées the usual temporal operators of Linear
Temporal Logic (LTL) [16], regular expression and suffix oggers [10, 4]. In addition, it allows for
first order atoms, composed of symbols to be interpretedrditgpto a background theory, similarly to
Satisfiability Modulo Theories [1]. We call this class REL(M), LTL with regular expressions Modulo
Theory. This class is decidable for specific classes of theand if the variable interpretation is local to
each state [12].

The second class, referred to as HRELTL, for Hybrid RELTL, [8]interpreted over hybrid traces.
Hybrid traces are useful to model the behaviors of systeatsfiag continuous transitions, with discrete,
instantaneous transitions. Continuous variables arepirged as functions of time, and the predicates
are required to have a uniform interpretation over all waér The satisfiability problem for HRELTL
is undecidable. However, there exists a satisfiabilitysereing reduction from HRELTL to RELTL(T)
over discrete traces [8]. The main idea is to introduce aaeffi number of constraints on the temporal
evolution of the evaluation of predicates to guaranteetti@nature of the hybrid dynamics is retained
also in the discrete case.

We conclude the talk with an overview of the practical effeatess of the current methods, and the
open challenges in the area.

References

[1] C.W. Barrett, R. Sebastiani, S.A. Seshia & C. Tinelli (®): Satisfiability Modulo Theoriesin: Handbook
of Satisfiability pp. 825—-885, doi:0.3233/978-1-58603-929-5-825.

[2] M. Bernardo & A. Cimatti, editors (2006)Formal Methods for Hardware Verification, 6th Internatidna
School on Formal Methods for the Design of Computer, Comeatinin, and Software Systems, SFM 2006,
Bertinoro, Italy, May 22-27, 2006, Advanced Lecturescture Notes in Computer Scier8@65, Springer.

[3] R. Bloem, R. Cavada, I. Pill, M. Roveri & A. Tchaltsev (200 RAT: A Tool for the Formal Analysis of
Requirementsin: CAV, pp. 263—-267, doi:0.1007/978-3-540-73368-3_30.

[4] D. Bustan, A. Flaisher, O. Grumberg, O. Kupferman & M.\ardi (2005):Regular Vacuity In: CHARME,
pp. 191-206, doi:0.1007/11560548_16

[5] A. Cimatti, R. Corvino, A. Lazzaro, |I. Narasamdya, T. Riz M. Roveri, A. Sanseviero & A. Tchaltsev
(2012): Formal Verification and Validation of ERTMS Industrial Redly Train Spacing Systenin: CAV,
pp. 378-393, doi:0.1007/978-3-642-31424-7_29.

[6] A. Cimatti, M. Roveri, V. Schuppan & S. Tonetta (200Boolean Abstraction for Temporal Logic Satisfia-
bility. In: CAV, pp. 532-546, doi:0.1007/978-3-540-73368-3_53.

[7] A. Cimatti, M. Roveri, A. Susi & S. Tonetta (2012¥alidation of requirements for hybrid systems: A formal
approach ACM Trans. Softw. Eng. Methodd21(4), p. 22, doit0.1145/2377656.2377659.

[8] A. Cimatti, M. Roveri & S. Tonetta (2009)Requirements Validation for Hybrid Systemis: CAV, pp.
188-203, doit0.1007/978-3-642-02658-4_17.

[9] A. Cimatti & S. Tonetta (2012): A Property-Based Proof System for Contract-Based Desigm:
EUROMICRO-SEAA pp. 21-28, doit0.1109/SEAA.2012.68.

[10] C. Eisner & D. Fisman (2006 Practical Introduction to PSL (Series on Integrated Citswand Systems)
Springer-Verlag New York, Inc., ddio.1007/978-0-387-36123-9.

[11] A. Franzén, A. Cimatti, A. Nadel, R. Sebastiani & J. &va2010): Applying SMT in symbolic execution
of microcode In: FMCAD, pp. 121-128. Available aittp://ieecexplore.ieece.org/xpls/abs_all.
jsp7arnumber=5770940.

[12] S. Ghilardi, E. Nicolini, S. Ranise & D. Zucchelli (20pTombination Methods for Satisfiability and Model-
Checking of Infinite-State Systenis: CADE, pp. 362—378, doi:0.1007/978-3-540-73595-3_25.

6 Temporal logic satisfiability for the design of complex g8k

[13] W.A. Hunt, Jr., S. Swords, J. Davis & A. Slobodova (2D10se of Formal Verification at Centaur Technol-
ogy. In: Design and Verification of Microprocessor Systems for Hkgsurance Application$pringer, pp.
65-88, doi10.1007/978-1-4419-1539-9_3.

[14] R.R. Lutz (1993):Analyzing Software Requirements Errors in Safety-CiitiEmbedded Systemin: RE,
pp. 126-133, doi0.1109/ISRE. 1993.324825.

[15] S.P. Miller, M.W. Whalen & D. D. Cofer (201050ftware model checking takes.afommun. ACM53(2),
pp. 58-64, doit0.1145/1646353.1646372.

[16] A. Pnueli (1977)The Temporal Logic of Programén: FOCS pp. 46-57, doit0.1109/SFCS.1977.32.

[17] W.P. de Roever, F.S. de Boer, U. Hannemann, J. HoomdrmgRhnech, M. Poel & J. Zwiers (2001Eon-

currency Verification: Introduction to Compositional andihtompositional MethodsCambridge Tracts in
Theoretical Computer Scienéd, Cambridge University Press.

[18] A.L. Sangiovanni-Vincentelli, W. Damm & R. Passero2012): Taming Dr. Frankenstein: Contract-Based
Design for Cyber-Physical Systentsur. J. Control8(3), pp. 217-238, ddi0.3166/ejc.18.217-238.

[19] S. Vijayaraghavan & M. Ramanathan (200%):Practical Guide for SystemVerilog AssertionSpringer,
doi:10.1007/b137011.

[20] M. Weildmann, S. Bedenk, C. Buckl & A. Knoll (201Model Checking Industrial Robot Systerite SPIN,
pp. 161-176, doi:0.1007/978-3-642-22306-8_11.

Zielonka’s Recursive Algorithm:
dull, weak and solitaire games and tighter bounds

Maciej Gazda and Tim A.C. Willemse

Eindhoven University of Technology, The Netherlands

Dull, weak and nested solitaire games are important claggesity games, capturing, among others,
alternation-frequ-calculus and ECTE. model checking problems. These classes can be solved in
polynomial time using dedicated algorithms. We invesgghe complexity of Zielonka’'Recursive
algorithm for solving these special games, showing thahtherithm runs ino’(d - (n+ m)) on weak
games, and, somewhat surprisingly, that it requires exmt@aléime to solve dull games and (nested)
solitaire games. For the latter classes, we provide a faafilyjames?, allowing us to establish

a lower bound oiQ(Z”/3). We show that an optimisation of Zielonka’s algorithm pdasiolving
games from all three classes in polynomial time. Moreoverstwow that there is a family of (non-
special) games# that permits us to establish a lower boundX{P™?), improving on the previous
lower bound for the algorithm.

1 Introduction

Parity games [5, 15, 18] are infinite duration, two player garmplayed on a finite directed graph. Each
vertex in the graph is owned by one of the two players andogstare assigned a priority. The game
is played by moving a single token along the edges in the grighchoice where to move next is
decided by the player owning the vertex on which the tokerecly resides. A parity winning condition
determines the winner of this infinite play; a vertex in thengas won by the player that can play such
that, no matter how the opponent plays, every play from tegex is won by her, and the winner of each
vertex is uniquely determined [15]. From a practical poihtiew, parity games are interesting as they
underpin verification, satisfiability and synthesis protde see [4, 5, 1].

The simplicity of the gameplay is fiendishly deceptive. DOtsgontinued effort, no polynomial
algorithm for solving such gamesd. computing the set of vertices won by each player) has been
found. Solving a parity game is known to be in GRoUP [10], a class that neither precludes nor
predicts the existence of a polynomial algorithm. In thet,pasn-trivial classes of parity games have
been identified for which polynomial time solving algoriterexist. These classes includeakanddull
games, which arise naturally from alternation-free madahlculus model checking, see [3], amelsted
solitaire games which are obtained froeng. the L, fragment of the modgli-calculus, see [3, 6]. Weak
and dull games can be solved dr(n+ m), wheren is the number of vertices armd is the number of
edges, whereas (nested) solitaire games can be solv&flag(d) - (n+m)), whered is the number of
different priorities in the game.

One of the most fundamental algorithms for solving paritynga is Zielonka'srecursive algo-
rithm [18]. With a complexity of¢’(nd), the algorithm is theoretically less attractive theag. Jurdzinski’'s
small progress measuredgorithm [11], Schewe'bigstepalgorithm [16] or the sub-exponential algo-
rithm due to Jurdzihsket al. [12]. However, as observed in [8], Zielonka’s algorithm articularly
effective in practice, typically beating other algorithnis view of this, one might therefore ask whether
the algorithm is particularly apt at solving natural classégames, taking advantage of the special struc-

Gabriele Puppis, Tiziano Villa (Eds.): Fourth Interna@bn (© Maciej Gazda and Tim A.C. Willemse
Symposium on Games, Automata, Logics and Formal Verifinatio This work is licensed under the
EPTCS 119, 2013, pp. 7-20, doi:10.4204/EPTCS.119.4 Creative Commons Attribution License.

8 Zielonka’s Recursive Algorithm: dull, weak and solitairanges and tighter bounds

ture of these games. We explore this question by investigaktie complexity of solving weak, dull and
nested solitaire classes using Zielonka’s algorithm. Quifigs are as follows:

e in Section 4.1, we prove that Zielonka'’s algorithm solveskvgames in polynomial time.

e in Section 4.2, we demonstrate that, somewhat surprisizigfonka’s algorithm is exponential
on dull games and solitaire games.

The exponential lower bounds we obtain utilise a family of,dsolitaire games/* with 3k vertices on
which the algorithm requires‘@terations, allowing us to establish a lower boun(fzcéfZ”/S). This lower
bound improves on previously documented lower bounds fsralgorithm €.g, in [7] a lower bound of
Q(1.6"%) is established).

In addition to the above complexity results we investigaketlier the most common improvement of
the algorithm permits it to run in polynomial time for all && special classes of games. That is, we prove
in Section 5 that integrating Zielonka’s algorithm insongly connected componedé&composition
algorithm, as suggested in [11, 8], permits solving all ¢hciasses in polynomial time. We analyse the
complexity of the resulting algorithm for these three akssshowing that the optimised algorithm runs
in & (n-(n+m)) for weak, dull and (nested) solitaire games. Note that thesst-case complexities are
slightly worse than those for the dedicated algorithms thait the applicability of the algorithm remains
universal;e.qg, it is capable of solving arbitrary nestings of dull and wite games, and it does not
depend on dedicated algorithms for detecting whether theedgs special.

The optimised algorithm still requires exponential timemmm-special games. For instance, Fried-
mann’s games are resilient to all known optimisations. Dmgvnspiration from our family of gamegk
and the games of [7], we define a new family of gam#¥ containing & vertices, that is also resilient
to all known optimisations and require$igerations of the algorithm. This again allows us to estibé
lower bound ofQ(2"/3), also improving on the lower bound established by Friedniaififi]. We exper-
imentally compare the running time of the optimised aldoniton our games to those of Friedmann.

Outline. Before we present our results, we briefly describe parityegain Section 2 and Zielonka’s
algorithm in Section 3. Our runtime analysis of Zielonkafggmal algorithm on special games is pre-
sented in Section 4. We prove that an optimisation of therahgo runs in polynomial time on special
games in Section 5, and we prove that, in general, the ogirorss complexity is£2(2”/3) in Section 6.
In Section 7, we wrap up with some conclusions.

2 Parity Games

A parity game is an infinite duration game, played by playstd denoted by andeven denoted by
<, on a directed, finite graph. The game is formally defined kevis.

Definition 1 A pseudo parity game is a tupl¥,E, &, (Vo,Vo)), where

e V is a finite set of vertices, partitioned in a 3&t of vertices owned by playe®, and a set of
verticesVo owned by playet],

e E CV xVis an edge relation,
e &V — Nis a priority function that assigns priorities to verticpiayers.

We writev — wiff (v,w) € E. A pseudo parity game isgarity gameif the edge relation is total;e. for
eachv €V there is at least one € V such thatv,w) € E.

Maciej Gazda and Tim A.C. Willemse 9

We depict (pseudo) parity games as graphs in which diambagesl vertices represent vertices
owned by playe> and box-shaped vertices represent vertices owned by fdlayeriorities, associated
with vertices, are written inside vertices.

For a given (pseudo) parity game, we are often interestdueistbgame that is obtained by restrict-
ing the game to a given set of vertices in some way. Formakydefine such subgames as follows.

Definition 2 LetG = (V,E, Z, (Vo,V)) be a (pseudo) parity game and AeC V be an arbitrary non-
empty set. The (pseudo) parity gar@e A is the tuple(A,EN (A x A), Z|a, Vo NAVoNA)). The
(pseudo) parity gamé \ A is defined as the gan@n (V \ A).

Throughout this section, assume ti@at= (V,E, 2, (Vo,Vo)) is an arbitrary pseudo parity game.
Note that in general, whenev& is a parity gamethen it is not necessarily the case that the pseudo
parity gamess \ AandGN A are again parity games, as totality may not be preserved elawin what
follows, we only consider constructs in which these operatiguarantee that totality preserved.

The gameG is said to bestrongly connectedsee [17], if for all pairs of verticeg w € V, we have
v —*wandw —* v, where—* denotes the transitive closure-ef. A strongly connected componeuit
G is a maximal se€ C V for which GNC is strongly connected.

Lemma 1l LetC CV be a strongly connected componentGlfs a parity game, then so GNC.

Henceforth, we assume th&tis a parity gameife. its edge relation is total), and denotes an
arbitrary player. We write for O’s opponentj.e. & = [0 and = <. A sequence of vertices, ..., Vn
is apathif v, — v 1 for all 1 < m < n. Infinite paths are defined in a similar manner. We wgiego
denote the™ vertex in a pathp.

A game starts by placing a token on a vertex V. Players move the token indefinitely according
to a simple rule: if the token is on some vertex V., playerO gets to move the token to an adjacent
vertex. The choice where to move the token next is deterntiyeal partial functiono:vV+ — V, called
astrategy Formally, a strategy for playerO is a function satisfying that whenever it is defined for a
finite pathvy, ..., vy, we haveo (v, ...,Vn) € {weV | v— w} andv, € V. We say that an infinite path
V1, Vo, ... is consistentwith a strategyo for player O if for all finite prefixesvy,...,v, for which o is
defined, we haver(vy,...,v,) = Vh1. Aninfinite path induced by strategies for both players iedaa
play.

The winner of a play is determined by tharity of the highestpriority that occurs infinitely often
on it: player< wins if, and only if this priority is even. That is, we here s@er maxparity games.
Note that, alternatively, one could demand thatittveestpriority that occurs infinitely often along a play
determines the winner; such games wouldria parity games.

A strategyo for player O is winning from a vertexv if and only if O is the winner of every play
starting inv that is consistent witlw. A vertex is won byO if O has a winning strategy from that vertex.
Note that parity games apmsitionally determinedneaning that a vertex is won by playerif O has a
winning positional strategya strategy that determines where to move the token nexdizasdely on the
vertex on which the token currently resides. Such strasezae be represented by a functowv- — V.

A consequence of positional determinacy is that verticesnamn by exactly one player [5]Solvinga
parity game essentially is computing the partitigtt,,WH) of V of vertices won by playe¢> and player
O, respectively. We say that a gar@ds aparadisefor player© if all vertices inG are won byO.

Special games. Parity games pop up in a variety of practical problems. Tiwdade model checking
problems for fixed point logics [5], behavioural equivalerahecking problems [4] and satisfiability and

10 Zielonka’s Recursive Algorithm: dull, weak and solitairanges and tighter bounds

synthesis problems [1]. In many cases, the parity gamesrlyimde such problems arspecial games
parity games with a particular structure. We here consideret such special gamesieak, dulland
nested solitairggames; these classes have previously been studied ingteuite, see.g.[3] and the
references therein. The definitions that we present heraleea from [3].

Weak games are game graphs in which the priorities along pathmonotonically descending (this
is not to be confused with parity games witleak parityconditions). That is, for each pair of vertices
v,w in the graph, ifv — w, thenZ?(v) > #(w). Such games correspond naturally to model checking
problems for the alternation-free modaicalculus.

Definition 3 A parity game isveakif the priorities along all paths are descending.

Dedicated solvers for weak games can solve thes@({f| + |E|). The algorithm that does so is
rather straightforward. Since parity games are total, #id f vertices with lowest prioritiesn are
immediately won by playe® iff mis even. Any vertex in the game that canfbecedto L by the player
winning L can then be removed from the game; technically, this is geliby computing thattractor
set(see the next section) inta What remains is another weak parity game which can be sdbiesv-
ing the same steps until no vertex is left.

Weak games are closely related to dull games: the latteraane graphs in which abasic cyclesn
the graph are disjoint. A basic cycle is a finite pgih.. ., v, for which v, — vi and no vertex; occurs
twice on the path. Arevencycle is a cycle in which the dominatingd. highest) priority is even; the
cycle is anodd cycle if the dominating priority occurring on the cycle iscbd

Definition 4 A parity game idull if even cycles and odd cycles are disjoint.

Note that every weak game is dull; every dull game, on therdtaed, can be converted in linear time
to a weak game by changing priorities only. This is achiewe@dsigning a priority that has the same
parity as the highest priority present in a strongly conegciomponent to all vertices in that component.
This is harmless as each strongly connected componenhés eintirely even dominated or entirely odd
dominated: if not, even cycles and odd cycles would overtamtradicting the fact that the game is
dull. Working bottom-up, it is straightforward to ensureathhe priorities along the paths in the game
are descending. As a result, dull games can also be solv&@\f| + |[E|) using the same algorithm as
that for solving weak games. Dull games, too, can be obtairmed alternation-frequ-calculus model
checking problems, and they correspond naturally to tlegradtion-free fragment of LFP, see [2].

Solitaire games are games in which only one of the two plagets to make non-trivial choices
where to play the token next; nested solitaire games gesersdlitaire games to games in which both
players may make non-trivial moves, but the interactiortsvben both players is still restricted. Such
games arise from model checking problems for the fragrhemif the modalu-calculus, see [6], and
they correspond with the solitaire fragment of LFP [3].

Definition 5 A parity game issolitaire if all non-trivial moves are made by a single player. The gésne
nested solitairdéf each strongly connected component induces a solitaineega

Nested solitaire games can be solvedifiog(d) - (V| + |E|)), see [9], although most implemen-
tations use a somewhat less optimal implementation thatiru(d - (V| + |E|)), see [3]. The latter
algorithm works by computing the strongly connected congods of a graph and start searching for an
even cycle if all non-trivial moves in the component are mag@layerd and an odd cycle otherwise.

Maciej Gazda and Tim A.C. Willemse 11

Computing whether there is an even cycle (resp. odd cyclepealone inv'(log(d) - (V| + |E|)) using

the techniques of [14] or, i(d - (V| + |E|)) by repeatedly conducting a depth-first search, starting at
the lowest even priority in the component. Clearly, in a comgnt where only playe® gets to make
non-trivial moves, all vertices are won by playeriff an even cycle is found. Iteratively solving the
final strongly connected component and removing it togettitr the attractor for the winner of this
component solves entire nested solitaire games.

3 Zielonka's Recursive Algorithm

Throughout this section, we assuids a fixed parity gaméV,E, &, (Vo,V)), andO is an arbitrary
player.

Zielonka’s algorithm for solving parity games, listed agi@éiithm 1, is a divide and conquer algo-
rithm. It constructs winning regions for both players outh# solution of subgames with fewer different
priorities and fewer vertices. It removes the vertices Wl highest priority from the game, together
with all verticesattractedto this set of vertices. Attractor sets are formally definedcdlows.

Definition 6 The O-attractor into a selJ C V, denotedAttr (U), is defined inductively as follows:

Al (U) = U

Attrt(U) Attr?, (U)

{fueVy |Fve Attr,(U) : u— v}
{fueVg|weV:iu—v = veAttr} (U)}
U Attrl (U)

i>0

I c cC

Attr(U)

If needed for clarity, we Write\ttrg(U) to indicate that the>-attractor is computed in game gra@h

The lemma below states that whenever attractor sets areveeirftom a parity game, totality is
preserved.

Lemma 2 Let A= Attr(U) CV be an arbitrary attractor set. &is a parity game, then so @G\ A.

The correctness of Zielonka’s algorithm hinges on the faat higher priorities in the game dominate
lower priorities, and that any forced revisit of these higpeorities is beneficial to the player aligning
with the parity of the priority. For a detailed explanatiohtloe algorithm and proof of its correctness,
we refer to [18, 7].

4 Solving Special Games

Zielonka’s algorithm is quite competitive on parity gambattstem from practical verification prob-
lems [8, 13], often beating algorithms with better worssecaunning time. While Zielonka’s original
algorithm is known to run in exponential time on games defimgériedmann [7], its behaviour on spe-
cial parity games has never before been studied. It mighbgithe case that this algorithm is particularly
apt to solve such games. We partly confirm this hypothesi®ati@ 4.1 by proving that the algorithm
indeed runs in polynomial time on weak games. Somewhatisungly, however, we also establish that
Zielonka’s algorithm performs poorly when solving dull afmésted) solitaire games, see Section 4.2.

12

Zielonka’s Recursive Algorithm: dull, weak and solitairanges and tighter bounds

Algorithm 1 Zielonka’s Algorithm

1: function ZIELONKA(G)

2:

10:
11:
12:
13:
14:
15:
16:
17:
18:

if V= 0then
(W<>,VV[|) — (07 0)
else
m<« max{Z(v) |[veV}
if mmod 2=0then p«+ <¢ elsep+ Oend if
U+ {veV | Z(Vv)=m}
A< Attrp(U)
(W5, W) < ZIELONKA (G\ A)
if W5= 0then
(Wp, Wp) + (AUW,,0)
else
B « Attr5(Wg)
(W5, W) < ZIELONKA (G\ B)
(Wp, Wp) (Wg, WgUB)
end if
end if
return (We,WhH)

19: end function

4.1 Weak Games

We start with a crucial observation —namely, that for weakngs, ZIELONKA solves a paradise in

polynomial time— which permits us to prove that solving weghnes can be done in polynomial time
using ZIELONKA. The proof of the latter, formalised as Proposition 1, dejseon three observations,
which we first prove in isolation in the following lemma.

Lemma3 Let G = (V,E, Z,(Vo,Vo)) be a weak parity game. SuppoSes a paradise for playeb;
i.e., Gis won entirely byD. ThenzieLonka, applied toG, has the following properties:

1. inthe first recursive call in line 9, the argum&ht A is also a paradise for player.
2. if the second recursive call (line 14) is reached, theariggiment G \ B) is the empty set.
3. edges that are used in the computation of attractor gats (B and 13) are not considered in

subroutines.

Proof: We prove all three statements below.

1. Observe thah = Attr,(U) = U, since, in a weak game, no vertex with lower priority has ageed

to a vertex inJ. In particular, the subgan®)\ A is O-closed, and hence must be won entirely by
O, if Gis aO-paradise.

. The second recursive call can be invoked onlyifz= 0. From the above considerations we know

that this impliesp = O, andWg = G\ A is a paradise foD. We also haves = WgUA. Since
every game staying iA would be losing forO, it must be the case thatC Attr(Wg). But then
B = Attr5(Wp5) = G, and hencés\ B = 0.

. Edges that are considered in the computation of Betiy(U) (line 8) andAttrﬁ(WF’y) have sources

only in U; since no vertices frord are included in the subgame considered in the first recursive

Maciej Gazda and Tim A.C. Willemse 13

call, and the second call can only take the empty set as amargu Therefore, these edges will
not be considered in the subroutines.

O

Proposition 1 Let G = (V,E, 2, (Vo,Vo)) be a weak parity game. SuppdSds a paradise for player
O; i.e,, Gis won entirely byO. ThenzZieLonkA runs in@(|V| + |E]).

Proof: We analyse the running timie(k) of ZiELonkA when it is called on a subgant@® of G with
exactlyk priorities. Letvy denote the number of nodes with the highest prioritgin and withe, the
number of edges that are considered in the attractor comigmaglines 8 and 13) oGy.

If we assume that the representation of the game has sontarbfuhctionality that allows us to
inspect the nodes in the order of priority, then the time imeglito execute the specific lines of the
procedure can be bounded as follows:

e line 7: c- v for some constart
e lines 8 and 13 in totalc- g for some constart
¢ the remaining linesz for some constart € N
We obtain:
Tk < c(vite+2+T(k-1)
k
Tk < 3 c(M+ea+2)
i=1
= k k
Tk < c(Fvi+t3ye+32
i=1 i=1 i=1
Let d denote the total number of priorities occurring@n Observe that from Lemma 3, we have:

iivi =|V| andiia = |E]

The total execution time dtieLonkA on G can be bounded by:
T(d,V.E) <c-(V|+[E|+0(d))
Hence we obtaii (d,V,E) = O(|V |+ |E]). O

The above proposition is used in our main theorem below teeptbat solving weak games using
ZIELONKA can be done in polynomial time: each second recursive callgoonka will effectively be
issued on a paradise or an empty game. By proposition 1, w& et ZiELonka will solve a paradise
in linear time.

Theorem 1 ZieLonkA requires@'(d - (|V |+ |E|)) to solve weak games with different priorities, |V |
vertices andE| edges.

Proof: The key observation is tha&ieLoNkA, upon entering the second recursive call in line 14 is
invoked on a game that is a paradise. Consider the set ofeg¥ti\ B of the gameG at that point. It
contains the entire swg,, and possibly a subset bf. Now, if player p could force a play in a node
v eWF’) toW,g—, it could be done only via sét. But this would violate the weakness property. Playéas
awinning strategy ol \ B, which combines the existing strategy\Wj and if necessary any strategy on
U (because whenever a play visidsinfinitely often, it is won byp). Thus, the gam& \ B that is then
considered is @-paradise.

14 Zielonka’s Recursive Algorithm: dull, weak and solitairanges and tighter bounds

As aresult, by Proposition 1, the gari®e B is solved ind'(|V |+ |E|). Based on these observations,
we obtain the following recurrence f@ieLoNKA:

T(0,V,E) <0(1)
Td+1LV,E) <T(d,V,E)+I(|V])+O(E|)

Thus, a non-trivial upper bound on the complexityigd - (|V |+ |E|)). O

Next, we show this bound is tight. Consider the family of fjagames#?™" = (V",EY, 2", (V3,\)),
where priorities and edges are defined in Table 1\&hi$ defined a¥" = {vi,...,Van, Ug, U1 }.

Table 1: The family#” of games; I<i <n.

Vertex | Player| Priority | Successors
Vi o i+2 | {Viig,Vnsif U{uo [1=1}
Vnii O i+2 | {Vi,Vn+iafU{u [i=1}
Uo < 0 {uo}
Uy O 1 {Ul}

The game# 4 is depicted in Figure 1. The family’ has the following characteristics.

@‘)@3@2 &=
(6]

))

A

SO S

(5] (4] [
V7 Ve U1

Figure 1: The game“.

Proposition 2 The game#" is of size linear im; i.e, |#"| = ¢&'(n), it contains 2+ 2 vertices, A+ 2
edges ana + 2 different priorities. Moreover, the gam¥" is a weak game.

Lemma 4 Inthe game#", vertices{up, vi, ...,V } are won by playet>, whereas verticefu;, Vo1, - - . ,Von}
are won by player].

Proof. Follows from the fact that, for & j < n— 1, the strategy,_j — Vn—j_1, V1 — Ug andup — Up is
winning for playerd for the set of verticegup,v11,...,vn} and the strategysn—j — Von—j—1, Vo1 — Up
andu; — uy is winning for player] from the set of vertice§us,Vni1,...,Von}. O

We next analyse the runtime of Zielonka’s algorithm on thaifg . Let a, be defined through the
following recurrence relation:

a =1

a1 =ap+n+1

Observe that the functio%un2 approximates, from below. The proposition below states that solving the
family 7 of weak parity games requires a quadratic number of reaussio

Proposition 3 Solving #", for n > 0, requires at least, calls toZIELONKA.

Proof: Follows from the observation that each ga#@*?! involves:

1. afirst recursive call taieLonkA for solving the game#™".

Maciej Gazda and Tim A.C. Willemse 15

2. asecond recursive callZoeLonkA for solving either” "\ {van, ..., Vny1,Ur} or #Z"\ {vn,...,v1,Uo};
both requiren+ 1 recursive calls t@IELONKA.

O
Theorem 2 Solving weak games usingeLoNkA requiresO(d- ([V |+ |E|)).

Note that this complexity is a factorworse than that of the dedicated algorithm. For practicablems
such as when solving parity games that come from model chggkioblemdd is relatively small; we
expect that for such cases, the difference between theatedialgorithm and Zielonka’s algorithm to
be small.

4.2 Dull and Nested Solitaire Games

We next prove that dull games and (nested) solitaire regxipenential time to solve USINGELONKA.
Given that dull games can be converted to weak games in liivear and that Zielonka solves weak
games in polynomial time, this may be unexpected.

Our focus is on solitaire games first. We construct a familyasfty gameg/" = (V",E", 22", (V3, V1))
with verticesV" = {vp,...,Von_1,U1,...Un}. All vertices belong to playe®; thatis, VS =V" andV] = 0.
The priorities and the edges are described by Table 2.

Table 2: The family¢ of games; I<i<2n,1<j<n.
Vertex| Priority | Successors

Vi i+2 {vi_1}
Vo 2 {vo}
Uj R CIACIEY

Proposition 4 The game¥" is of size linear inn; i.e. |4"| = ¢'(n), it has 3 vertices, 4 edges and
2n+ 1 different priorities. Moreover, the gan#’ is a (nested) solitaire game.

The game#? is depicted in Figure 2. Observe that in this game, vevigxas the maximal priority and
that this priority is odd. This means that Zielonka'’s algam will compute the odd-attractor tg in line
8 of the algorithmj.e. Attr;({vs}) = {vs}. We can generalise this observation for arbitrary géifiein
such a gameAttr;({van_1}) = {Van—_1}. Henceforth, we denote the subgafi®\ {von_1} by ™.

Lemma 5 The game4" is won by player>. In the games™—, all vertices except for vertax,, are won
by player<.

Proof: The fact that¢" is won by player> follows immediately from the strategy:V" — V", defined
aso(vi)=vi_gforall1<i<2n, o(u)=vy_1 foralli <nando(vp) = Vo, which is winning for player
<. For the game/™—, a strategyo’ can be used that is as strategyfor all verticesv # uy; for vertex
Un, e are forced to choos# (u,) = up, sinceu, is the sole successor af in ¥™~. Since the priority
of u, is odd, the vertex is won by playét. O

Vs \ V3 Vo Vi Vo
IS G G
Us (Do I XO= VR

Figure 2: The gam&3.

16 Zielonka’s Recursive Algorithm: dull, weak and solitairanges and tighter bounds

We now proceed to the runtime of Zielonka’s algorithm on taify & .
Proposition 5 Solving¥™", for n > 0, requires at least"2alls toZIELONKA.

Proof: Solving the gamé&/! requires at least one call HELONKA.

Consider the gam@", for n > 1. Observe thaZIELONKA is invoked recursively on the gans@~
in the first recursion on line 9. We focus on solving the lagi@me.

The vertex with the highest priority #" ™ isv,,_1). Observe thah = Attr({Von_1) }) = {Vo(n—1) }-
Note that™~ \ A contains¥"~! as a separate subgame. The first recursive call in sol¢ihg will
therefore also solve the subgasig .

Next, observe that, (anduy, alone) is won by player], see Lemma 5. We therefore need to compute
B = Attry({un}) = {un}. Now, note tha/™~ \ B subsumes the subgar#@-1, which is a separate game
in 9"~ \ B. Therefore, also the second recursive calfteLonka involves solving the subganié™2,

O

The lower bound on the number of iterations ZoeLoNkA is thus exponential in the number of vertices.

Theorem 3 Solving (nested) solitaire games usibgLonka requiresQ(2\V1/3).

We note that this improves on the boundsﬁ(ﬂ.6|v|/5) established by Friedmann. Being structurally
more complex, however, his games are robust to typical éotlyr known) improvements to Zielonka’s
algorithm such as the one presented in the next sectioro(@lththis is not mentioned or proved in [7]).
Still, we feel that the simplicity of our family fosters a better understanding of the algorithm.

Observe that the family is also a family of dull games. As a result, we immediatelyenéve
following theorem.

Theorem 4 Solving dull games usingiELonkA requiresQ(2\V1/3).

5 Recursively Solving Special Games in Polynomial Time

The ¢ family of games of the previous section are easily solvednytreprocessing the games using
priority propagation and self-loop elimination. Howewvieis straightforward to make the family robust

to such heuristics by duplicating the vertices that haveprduity, effectively creating odd loops that are
not detected by such preprocessing steps. In a similar tredrgommonly suggested optimisation to use
a strongly connected component decomposition as a preggiogestep can be shown to be insufficient
to solve (nested) solitaire games. The fanflycan easily be made robust to this preprocessing step: by
adding edges frong, to all u;, each game i¥ becomes a single SCC.

In this section, we investigate the complexity of a tighegration of a strongly connected compo-
nent decomposition and Zielonka’s algorithm, as suggesyeelg.[11, 8]. By decomposing the game
each time Zielonka is invoked, large SCCs are broken dowmaillsr SCCs, potentially increasing the
effectiveness of the optimisation. The resulting algonitis listed as Algorithm 2.

We will need the following lemma:

Lemma 6 If algorithm 2 is invoked on a game that is either dull or (e€tsolitaire, then in the entire
recursion tree all second recursive calls (line 16) argafriwith empty set as an argument).

Proof: In case of dull games, since garHes a connected component, each of its subgames is won by
player corresponding tm mod 2, namelyp. Hence after the line 11 is executed, we obt%h: H\A
andWz = 0. The second recursive call will therefore never be indoke

Maciej Gazda and Tim A.C. Willemse 17

Algorithm 2 Optimised Zielonka’s Algorithm
1: function ZIELONKA_SCC(G)

(WS,WS) « (0.0)

3 if V = 0then

4 = SCC.GRAPH_.DECOMPOSITIONG)

5 for eachfinal SCCC € . do

6: H<«+GNC

.

8

9

m<«— max{Z(v) | ve C}
if mmod 2= 0then p+ < elsep+ Oend if
U« {veC|Z(v)=m}

10: A< Attr (U)

11 (W5, W) < ZIELONKA_SCQOH \ A)

12: if W5= 0then

13: (Wp, Wp) + (AUW,,0)

14: else

15: B« Attrb (W)

16: (W5, W) < ZIELONKA_SCQH \ B)

17: (Wp, Wp) (Wp, WU B)

18: end if

19: (WE, W) < (WS UALrS (W), WS UALrE (W)
20: & := SCC.GRAPH.DECOMPOSITIONG\ (WS UWS))
21: end for

22: end if

23 return (WS, WS)
24: end function

Now assume that the game is solitaire and owned by playiémp = q, thenAttrF,| (U) =H (the game
is p-owned, and strongly connected), and the second call issmokéd at all. Otherwise, the second
call is invoked only ifWg 7 0. But thenB = Attr'g(WF’T) = AttrqH (Wg) = H (the game is owned bg, and
strongly connected), artd \ B = 0. O

We will now prove that the optimisation suffices to solve salegarity games in polynomial time.
Theorem 5 Algorithm 2 solves dull and (nested) solitaire game#ifiV| - (|V|+ |E|)) time.

Proof: Let #or(V) denote the total number of iterations of the loop in the entire recursion tree.
Observe that the total execution time aEZONKA_SCC can be bounded from above as follows:

T(V,E) = &(#or(V)- (V| +[E]))

Indeed, every iteration of the loop (not counting the ifiersg in subroutines) contributes a maximal fac-
tor of &(|V| + |E|) running time, which results from the attractor computatoi SCC decomposition.
We will use subscripts for the values of the algorithm vagahn iterationi € {1,...,k}, e.g. the
value of variableC in iterationi is C;. Furthermore, by; we will denote the set of vertices in the subgame
considered in the first recursive call, i\¢.= C; \ A;.
We will show that #or(V) < |V|. We have:

#or(V) < 1 for|V| <1 *)
#or(V) < #for(Vq)+--- +#for(Vk) +k for |V|>1

18 Zielonka’s Recursive Algorithm: dull, weak and solitairanges and tighter bounds

In the second inequalit is the total number of bottom SCCs considered in line 5. Ed¢hese
SCCs may give rise to a recursive call (at most one, see LemnTa® recursive call contributes in turn
#for(V;) iterations.

We proceed to showfér (V) < |V| by induction on|V|. The base holds immediately from the first
inequality. Now assume thafat(V) < |V|for [V| < m.

Obviously|Ci| +-- -+ |Ck| < |[V|. Observe that in every iteratidrthe setA; is nonempty, therefore
Vi < Gi. ThereforelVi|+--- + [W| < V| =k, or equivalentlyiVy| + - - -+ [Vk| + k < [V].

Applying the induction hypothesis in the right-hand sid€*dfyields #or(V) < |Vi|+--- + V| + K,
and due to the above observation we finally obtdmr®) < |V|. O

The above upper bound is slower by a factocompared to the dedicated algorithms for solving
weak and dull games. For nested solitaire games, the optinecursive algorithm has an above upper
bound comparable to that of standard dedicated algoritbmekted solitaire games when the number of
different priorities is of?’(V), and it is a facto¥ / log(d) slower compared to the most efficient algorithm
for solving nested solitaire games.

6 A Tighter Exponential Bound for Zielonka’s Optimised Algorithm

In view of the findings of the previous section, it seems beiafio always integrate Zielonka'’s recursive
algorithm with SCC decomposition. Observe that the famflg@ames we used to establish the lower
bound ofQ(2V!/3) in Section 4 does not permit us to prove the same lower bounthéoptimised
algorithm. As a result, the current best known lower boundtie algorithm is stillQ(1.6V1/%). In this
section, we show that the complexity of the optimised athariis actually als&(2V!/3). The family
of games we construct is, like Friedmann’s family, resilienall optimisations we are aware of.

Let.#" = (V",E", 2", (V8,V)), for n > 1 be a family of parity games with set of verticé8 =
{vi,ui,w; | 1<i<n}. The sets/] andV], the priority functionZ’" and the set of edges are described
by Table 3. We depict the gam#* in Figure 3.

Table 3: The family.# of games; <i <n.
Vertex | Player | Priority | Successors

Vi Oiff imod2=0| i+1 {U}U{viz1]i<n}
Ui Oiff imod2=0 | imod2| {w}U{vit1|i<n}
Wi O iff imod2=0 | imod2| {utu{w_1|1<i}

Figure 3: The gamez*.

Proposition 6 The game#" is won entirely by playet> for evenn and entirely by playeld for oddn.

Maciej Gazda and Tim A.C. Willemse 19

Theorem 6 Solving.#" using eitherZiELonkA or ZIELONKA _SCC require€(2V1/3) time.

Proof: The proof is similar to Prop. 5; we can show that the gam@ requires 2 calls to either
ZIELONKA Or ZIELONKA_SCC. The only significant difference in case aEZONKA _SCC is that the
game may be potentially simplified in line 4 of Alg.2. Howeveach game#" constitutes a strongly
connected subgame, and therefore will not be decomposed. O

We compared the performance of the PGSolver tool, a putdicdylable tool that contains an imple-
mentation of the optimised recursive algorithm, on the fam# to that of Friedmann’s family of games
(denoted with#), see Figure 4. The figure plots the number of vertices (bat& axis) and the time
required to solve the games (vertical log scale axis), §léléustrating that.# games are harder.

F T T A
104 x Ooo E
r X 1
. I x o :
[7p] - X o |
-g 1§ E <" © E
o = O 3
8 = X o 1
I % o ,
&£ " x o 1
(o) = x o -
g 10| .) |
— r O i
% I x o |
- X
= O .
10t B x o < family
[X .
F o o F family
L o |
10° ! I ! ! ! ! !

|
60 80 100 120 140160 180 200
Number of vertices

Figure 4: Runtime of the optimised recursive algorithm {jeat log scale axis) in seconds versus number
of vertices of the games (horizontal axis).

7 Conclusions

We explored the complexity of solving special parity gamgiagl Zielonka’s recursive algorithm, prov-
ing that weak games are solved in polynomial time and dullreexied solitaire games require exponen-
tial time. The family of game% we used to prove the exponential lower bounds in additidnteig the
lower bound taQ(2V1/3) for the original algorithm by Zielonka.

We show that a standard optimisation of the algorithm permitving all three classes of games
in polynomial time. The technique used in the optimisatiaright integration of a strongly connected
component decomposition and Zielonka’s algorithm) has lpeviously implemented in [8] and was
observed to work well in practice. Our results provide tledioal explanations for these observations.

We furthermore studied the lower bounds of Zielonka’s atgor with optimisation. In the last sec-
tion, we improve on Friedmann’s lower bound and arrive atelcbound ofQ(2V1/3) for the optimised
algorithm. For this, we used a family of game# for which we drew inspiration from the family and
the games defined in [7]. We believe that an additional adgnof the families of game€ and.#Z we
defined in this paper over Friedmann’s games lies in theudgiral) simplicity.

20 Zielonka’s Recursive Algorithm: dull, weak and solitairanges and tighter bounds

Our complexity analysis for the special games offers agldliti insight into the complexity of Zielonka’s
algorithm and its optimisation and may inspire future ojgations of the algorithm. In a similar vein,
the same type of analysis can be performed on other paritg gamming algorithms from the literature,
e.g.strategy improvement algorithms.

References

[1] A. Arnold, A. Vincent & |. Walukiewicz (2003)Games for synthesis of controllers with partial observatio
TCS303(1), pp. 7-34, d0i:10.1016/S0304-3975(02)00442-5.

[2] D. Berwanger & E. Gradel (20013ames and Model Checking for Guarded Logics LPAR, LNCS2250,
Springer, pp. 70-84, doi:10.1007/3-540-456583-8

[3] D. Berwanger & E. Gradel (2004 ¥ixed-Point Logics and Solitaire Game3heory Comput. SysB7(6),
pp. 675-694. Available atttp://dx.doi.org/10.1007/s00224-004-1147-5.

[4] T. Chen, B. Ploeger, J. van de Pol & T.A.C. Willemse (2007kquivalence Checking for In-
finite Systems Using Parameterized Boolean Equation Sgsterm: CONCUR'07 pp. 120-135,
doi:10.1007/978-3-540-74407B

[5] E.A. Emerson & C.S. Jutla (1991)free automata, Mu-Calculus and determinady: FOCS’'9]1 IEEE
Computer Society, Washington, DC, USA, pp. 368—-377, dol:109/SFCS.1991.185392.

[6] E.A. Emerson, C.S. Jutla & A.P. Sistla (2001pn model checking for thg-calculus and its fragments
Theor. Comput. ScR58(1-2), pp. 491-522, d0i:10.1016/S0304-3975(00)08034

[7] O. Friedmann (2011)Recursive algorithm for parity games requires exponetitiaé RAIRO — Theor. Inf.
and Applic.45(4), pp. 449-457, doi:10.1051/ita/2011124.

[8] O. Friedmann & M. Lange (2009)50lving Parity Games in Practicdn: ATVA'09, LNCS5799, Springer,
pp. 182-196, doi:10.1007/978-3-642-04761%

[9] J.F. Groote & M. Keinanen (2005)A Sub-quadratic Algorithm for Conjunctive and DisjunctiBeolean
Equation Systemdn: ICTAC, LNCS 3722, Springer, pp. 532-545, doi:10.1007/115608%.7

[10] M. Jurdzihski (1998):Deciding the Winner in Parity Games is in UP co-UP. IPL 68(3), pp. 119-124,
doi:10.1016/S0020-0190(98)00150-1.

[11] M. Jurdzihski (2000):Small Progress Measures for Solving Parity Gamés: STACS'0Q LNCS 1770,
Springer, pp. 290-301, doi:10.1007/3-540-4654243

[12] M. Jurdzihski, M. Paterson & U. Zwick (2006% Deterministic Subexponential Algorithm for Solving Bari
Games In: SODA’06, ACM/SIAM, pp. 117-123, doi:10.1145/1109557.1109571.

[13] J.J.A. Keiren (2009)An experimental study of algorithms and optimisations farity games, with an ap-
plication to Boolean Equation SystendMaster’s thesis, Eindhoven University of Technology.

[14] V. King, O. Kupferman & M.Y. Vardi (2001):0On the Complexity of Parity Word Automati: FoSSaC$S
LNCS2030, Springer, pp. 276—286, d0i:10.1007/3-540-4531%8-6

[15] R. McNaughton (1993): Infinite games played on finite graphs APAL 65(2), pp. 149-184,
doi:10.1016/0168-0072(93)90036-D.

[16] S. Schewe (200750lving Parity Games in Big Steplsi: FSTTCS'07 LNCS 4855, Springer, pp. 449-460,
doi:10.1007/978-3-540-77050-3.

[17] R.E. Tarjan (1972)Depth-First Search and Linear Graph AlgorithmSIAM J. Computl1(2), pp. 146-160,
doi:10.1137/0201010.

[18] W. Zielonka (1998)infinite games on finitely coloured graphs with applicatibmautomata on infinite trees
TCS200(1-2), pp. 135 - 183, doi:10.1016/S0304-3975(98)00009

Simple strategies for Banach-Mazur games
and fairly correct systems*

Thomas Brihaye Quentin Menet
UMONS UMONS
Mons, Belgium Mons, Belgium
University of Mons University of Mons
Place du Parc 20, 7000 Mons, Belgium Place du Parc 20, 7000 Mons, Belgium
thomas.brihaye@umons.ac.be quentin.menet@umons.ac.be

In 2006, Varacca and Volzer proved that on finite graghsegular large sets coincide witd-
regular sets of probability 1, by using the existence of fimsal strategies in the related Banach-
Mazur games. Motivated by this result, we try to understahations between sets of probability 1
and various notions of simple strategies (including thoseduced in a recent paper of Gradel and
LeRenich). Then, we introduce a generalisation of the idaBanach-Mazur game and in particular,
a probabilistic version whose goal is to characterise dgtsabability 1 (as classical Banach-Mazur
games characterise large sets). We obtain a determinadyfieghese games, when the winning set
is a countable intersection of open sets.

1 Introduction

Systems (automatically) controlled by computer progralrmiad in our everyday life. Clearly enough,
it is of a capital importance to know whether the programsegowg these systems arerrect Over the
last thirty years, formal methods for verifying computedssystems have been developed for validating
the adequation of the systems against their requirementsdeMchecking is one such approach: it
consists first in modelling the system under study (for imsgaby an automaton), and then in applying
algorithms for comparing the behaviours of that model againspecification (modelled for instance
by a logical formula). Model checking has now reached matuttirough the development of efficient
symbolic techniques, state-of-the-art tool support, amderous successful applications to various areas.
As argued in [9]:'Sometimes, a model of a concurrent or reactive system duiesatisfy a desired
linear-time temporal specification but the runs violatiig specification seem to be artificial and rare’
As a naive example of this phenomenon, consider a coin fligpeidfinite number of times. Classical
verification will assure that the property statitmne day, we will observe at least one heai$’false,
since there exists a unique execution of the system vigjdlia property. In some situations, for instance
when modeling non-critical systems, one could prefer tonkmehether the system ifairly correct
Roughly speaking, a system is fairly correct against a ptggethe set of executions of the system
violating the property iSvery small”; or equivalently if the set of executions of the system $4tig the
property is‘very big” . Afirst natural notion of fairly correct system is relategotobability: almost-sure
correctness A system is almost-surely correct against a property ifshieof executions of the system
satisfying the property has probability 1. Another intéires notion of fairly correct system is related to
topology: large correctnessA system is largely correct against a property if the setxetations of the

*This work has been partly supported by a grant from the NatiBank of Belgium, the ARC project (humber AUWB-
2010-10/15-UMONS-3), and the FRFC project (humber 2.4B45.
TThe second author is supported by a grant of FRIA.

Gabriele Puppis, Tiziano Villa (Eds.): Fourth Interna@bn © Thomas Brihaye & Quentin Menet
Symposium on Games, Automata, Logics and Formal Verifinatio This work is licensed under the
EPTCS 119, 2013, pp. 21-34, doi:10.4204/EPTCS.119.5 Creative Commons Attribution License.

22 Simple strategies for Banach-Mazur games and fairly coaystems

system satisfying the property large (in the topological sense). There exists a lovely charesztéon
of large setdy means of th®anach-Mazur gamesn [8], it has been shown that a $#&ftis large if and
only if a player has a winning strategy in the related Bansletzur game.

Although, the two notions ofairly correct systemslo not coincide in general, in [9], the authors
proved (amongst other results) the following result: whensideringw-regular properties on finite
systems, th@lmost-sure correctnesand thelarge correctnessoincide, for bounded Borel measures.
Motivated by this very nice result, we intend to extend it ttager class of specifications. The key
ingredient to prove the previously mentioned result of §hat when considering-regular properties,
positional strategies are sufficient in order to win the related Bardelzur game [1]. For this reason,
we investigatesimple strategietn Banach-Mazur games, inspired by the recent work [4] wirdieite
graphs are studied.

Our contributions. In this paper, we first compare various notions of simpletagjias on finite
graphs (includingpboundedand move-countingtrategies), and their relations with the sets of probabil-
ity 1. Given a seW, the existence of a bounded (resp. move-counting) winniragegy in the related
Banach-Mazur game implies that is a set of probability 1. However there exist sétsof probabil-
ity 1 for which there is no bounded and no move-counting wigrstrategy in the related Banach-Mazur
game. Therefore, we introduce a generalisation of theiclE€Banach-Mazur game and in particular, a
probabilistic version whose goal is to characterise sepsaifability 1 (as classical Banach-Mazur games
characterise large sets). We obtain the desired charsatien in the case of countable intersections of
open sets. This is the main contribution of the paper. As aduyzt of the latter, we get a determinacy
result for our probabilistic version of the Banach-Mazumgsafor countable intersections of open sets.

2 Banach-Mazur Games on finite graphs

Let (X,.7) be a topological space. A notion of topological “bignessyigen by large sets. A subset
W C X is said to benowhere dens# the closure oW has empty interior. A subsg¥ C X is said to be
meagreif it can be expressed as the union of countably many nowhemealsets and a sub¥eétC X is
said to be large WV° is meagre. In particular, we remark that a countable inttis® of large sets is still
large and that iWW C X is large, then any sé&t O W is large.

If G= (V,E) is a finite directed graph ang € V, then the space of infinite paths @ from vo,
denoted Pathi&, vp), can be endowed with the complete metric

d((Gn)nz0, (Pn)n=0) = 2% where k=min{n>0:0,# pn} (2.1)

with the conventions that min@ « and 2 = 0. In other words, the open sets in P&ths/) en-
dowed with this metric are the countable unions of cylindeveere a cylinder is a set of the form
{p € PathgG,vp) | ris a prefix ofp} for some finite pathrin G from vo.

We can therefore study the large subsets of the metric gpatbs$G,Vvp),d). Banach-Mazur games
allow us to characterise large subsets of this metric sgaocegh the existence of winning strategies.

Definition 2.1. A Banach-Mazur gam# on a finite graph is a tripletG, vo, W) whereG = (V,E) is a
finite directed graph where every vertex has a succeggarV is the initial state\V is a subset of the
infinite paths inG starting invp.

A Banach-Mazur gam& = (G, vp,W) on a finite graph is a two-player game where PI. 0 and PI. 1
alternate in choosing a finite path as follows: PIl. 1 begirth wihoosing a finitepath g starting invo;

1in this paper, we always assume that a finite path is non-empty

Thomas Brihaye & Quentin Menet 23

PI. 0 then prolongss by choosing another finite patip and so on. A play o is thus an infinite path
in G and we say that PI. 0 wins if this path belong&owhile PI. 1 wins if this path does not belong to
W. The seW is called the winning condition. It is important to remarkathin general, in the literature,
PI. 0 moves first in Banach-Mazur games but in this paper, wayd assume that PIl. 1 moves first in
order to bring out the notion of large set (rather than meagte The main result about Banach-Mazur
games can then be stated as follows:

Theorem 2.2([8]). Let¥ = (G,vp,W) be a Banach-Mazur game on a finite graph. PI. 0 has a winning
strategy for¢ if and only if W is large.

3 Simple strategies in Banach-Mazur games

In a Banach-Mazur gam, vp, W) on a finite graph, a strategy for PI. 0 is given by a functiatefined
on FinPath&G, vp), the set of finite paths @ starting fromvp, such that for anyr € FinPath$G, vp), we
havef(m) € FinPath$G, last(1T)). However, we can imagine some restrictions on the strateiel. O:

1. A strategyf is said to bepositional if it only depends on the current vertex, ifeis a function
defined orV such that for any € V, f(v) € FinPath$G,v) and a playp is consistent withf if p
is of the form (75 f (last(7%))i>1.

2. A strategyf is said to bdinite-memoryf it only depends on the current vertex and a finite memory
(see [3] for the precise definition of a finite-memory strggeg

3. A strategyf is said to beb-boundedif for any € FinPath$G,vp), f(m) has length less thaim
and a strategy is said to leundedf there isb > 1 such thaff is b-bounded.

4. A strategyf is said to banove-countingf it only depends on the current vertex and the number
of moves already played, i.€.is a function defined oW x N such that for any € V, anyn € N,
f(v,n) € FinPath$G,v) and a playp is consistent withf if p is of the form(7 f (last(7g),i))i>1.

5. A strategyf is said to bdength-countingf it only depends on the current vertex and the length of
the prefix already played, i.€.is a function defined oW x N such that for any € V, anyn € N,
f(v,n) € FinPath$G,Vv) and a playp is consistent withf if after a prefixr, the move of PI. O is
given by f (last(m), |r1).

The notions of positional and finite memory strategies amesital, bounded strategies are present
in [9], move-counting and length-counting strategies Hasen introduced in [4]. We first remark that,
by definition, the existence of a positional winning stratagplies the existence of finite-memory/move-
counting/length-counting winning strategies. MoreogarceG is a finite graph, a positional strategy is
always bounded. In [3], it is proved that the existence of iefimemory winning strategy implies the
existence of a positional winning strategy.

Proposition 3.1([3]). Let¥ = (G,Vp, W) be a Banach-Mazur game. PI. 0 has a finite-memory winning
strategy if and only if Pl. 0 has a positional winning strateg

Using the ideas of the proof of the above proposition, we daa show that the existence of a
winning strategy implies the existence of a length-countirinning strategy.

Proposition 3.2. Let¥ = (G,vp,W) be a Banach-Mazur game on a finite graph. PI. 0 has a length-
counting winning strategy if and only if Pl. 0 has a winningagtgy.

24 Simple strategies for Banach-Mazur games and fairly coaystems

Proof. Let f be a winning strategy for PI. 0. SinGis a finite graph, for angp > 0 and anyw €V, we can
consider an enumeratiam, . . ., 7, Of finite paths in FinPati{&, vp) of lengthn such that lagtg) = v.
We then let

h(v,n) = f(m) f (ref(m)) f (rsf(m) f(mf(m))) ... f(mf(m)f(ef(m))--).

If p is a play consistent with, thenp is a play where the stratedyis applied infinitely often. Thus such

a playp can be seen as a play1,0,T,--- where thet’s (resp. theg;’s) are the moves of PI. 0 (resp.
Pl. 1.) and wherd (0111 --- 6i) = T1;. Each play consistent with can thus be seen as a play consistent
with f, and we deduce that the stratdgis a length-counting winning strategy. O

On the other side, the notions of move-counting winningtstyi@s and bounded winning strategies
are incomparable.

Example 3.3(Set with a move-counting winning strategy and without a bouned winning strategy).
We consider the complete gra@ ; on{0, 1}. LetW be the set of any sequendes,),>1 in {0, 1} with
o1 = 0 such that{on)n>1 contains a finite sequence of 1 strictly longer than theahfinite sequence
of 0. In other wordsdn)n>1 € W if 01 = 0 and if there exis > 1 andk > 1 such thato; = 1 and
Oki1 =+ = Okyj = 1. Let¥ = (Gg1,0,W). The strategyf(-,n) = 1" is a move-counting winning
strategy for PI. O for the gamig. On the other hand, there does not exist a bounded winniagggyr for
Pl. 0 for the gamé/. Indeed, iff is ab-bounded strategy of PI. 0, then PI. 1 can start by playfhar@
then, always play 0.

Example 3.4(Set with a bounded winning strategy and without a move-counhg winning strategy).
We consider the complete gra@p, on {0,1}. Let (7)n>0 be an enumeration of FinPati@) with
= 0. We letW be the set of any sequences 1} starting by 0 except the sequenze- HTHTE. ...
Let ¥ = (Go1,0,W). It is obvious that PI. 0 has a 1-bounded winning strategy4dsut we can also
prove that PI. 0 has no move-counting winning strategy. éddé h is a move-counting strategy of PI. O,
then PI. 1 can start by playing a prefisof p so thatrth(last(71), 1) is a prefix ofp. Afterwards, PI. 1 can
play 17 such thatth(last(m),1)m'h(last(17'), 2) is a prefix ofp and so on.

We remark that the seW considered in these examples apensets, i.e. sets on a low level of the
Borel hierarchy. Moreover, by Proposition 3.2, there alsigtdength-counting winning strategies for
these two examples. The relations between the simple giatare thus completely characterised and
are summarised in Figure 1. This Figure also contains oihguls strategies which will be discussed
later.

4 Link with the sets of probability 1

Let G = (V,E) be a finite directed graph. We can easily define a probabiligasureP, on the set
of infinite paths inG, by giving a weightw, > 0 at each edge € E and by considering that for
anyv,vV eV, py(v,V) =0 if (v,V) € E and py(v,V) = Mrﬁ% else, wherep,(v,V) denotes
the probability of taking edgév,v') from statev. Givenv;---v, € FinPath$G,v;), we recall that
we denote by Cyl; ---vy) the cylinder generated by; ---v,, and defined as C---v,,) = {p €
Path$G,vy) | v1--- vy is a prefix ofp}.

Definition 4.1. Let G = (V,E) be a finite directed graph amd= (we)ecg @ family of positive weights.
We define the probability measuRg by the relation

Pu(CYl(V1-+Vn)) = pw(V1,V2) -+ Pw(Vn-1,Vn) 4.1)

Thomas Brihaye & Quentin Menet 25

and we say that such a probability measune#&sonable

We are interested in characterising the $éisf probability 1 and their links with the different notions
of simple winning strategies. We remark that, in generahd®&-Mazur games do not characterise sets
of probability 1. In other words, the notions of large setd arts of probability 1 do not coincide in
general on finite graphs. Indeed, there exist some larg®bptebability 0. We present here an example
of such sets:

Example 4.2(Large set of probability 0). We consider the complete gragy 12 on {0,1,2} and the
setW = {(WiwR)i>o € Path$Go12,2) : wi € {0,1,2}*}, where for any finite wordr € {0,1,2}* given
by o0 = 0(1)---a(n) with a(i) € {0,1,2}, we letoR = g(n)---g(1). In other wordsW is the set of
runsp starting from 2 that we can divide into a consecutive sega@néinite words and their reverse. It
is obvious that PI. 0 has a winning strategy for the BanacasMagameGo 1 2,2,W) and thus thatV is
large. On the other hand, K is the reasonable probability measure given by the weights 1 for any

e € E, then we can verify tha®(W) = 0. Indeed, we have

8

PW) < § P{wowi(wiwf)iz1 € W : [wo| = n})
n=1
5 P({wowfw € Path$Go 1 2,2) : [Wo| = n}) - P(W)
n=1
2 PW) _ }P W
S & 3n 2 ()

For certain families of sets, we can however have an equigalbetween the notion of large set and
the notion of set of probability 1. It is the case for the famuf setsW representingo-regular properties
on finite graphs (see [9]). In order to prove this equivaldioceo-regular sets, Varacca and Vélzer have
in fact used the fact that for these sets, the Banach-Mazue ga positionally determined ([1]) and that
the existence of a positional winning strategy for PI. O iegpP(W) = 1. This latter assertion follows
from the fact that every positional strategy is bounded &atl by the Borel-Cantelli lemma, the set of
plays consistent with a bounded strategy is a set of prabahil Nevertheless, ¥V does not represent
an w-regular properties, it is possible thatis a large set of probability 1 and that there is no positional
winning strategy for PI. 0 and even no bounded or move-cogmitiinning strategy.

Example 4.3(Large set of probability 1 without a positional/ bounded/ move-counting winning
strategy). We consider the complete gragp; on {0,1} and the reasonable probability meastre
given bywe = 1 for anyec E. Leta, = Y k. We letW = {(0k)k>1 € {0,1}* : 01 = 0 and gy, =
1 for somen > 1} and¥ = (Gg1,0,W). Since PI. 0 has a winning strategy f6r we deduce thaw is a
large set. We can also compute tR&¥V) = 1 because if we denote By, n > 1, the set

An = {(0k)k>1 € {0,1}? : 04, = 1 andoy, = 0 for anym < n},

we have: _ 1

W= UMAn and P(A,) = T
On the other hand, there does not exist any positional (réspinded) winning strategy for PI. 0.
Indeed, iff is a positional (resp. bounded) strategy for PI. 0 such th@} (resp. f () for any) has
length less tham, then PI. 1 has just to start by playiag zeros so that Pl. 1 does not reach the index
an. 1 and afterwards to complete the sequence by a finite numberas zo reach the next index, and

26 Simple strategies for Banach-Mazur games and fairly coaystems

so on. Moreover, there does not exist any move-counting imgnstrategyh for PI. 0 because PI. 1 can
start by playinga, zeros so thah(0,1)| < nand because, at each stgf?l. 1 can complete the sequence
by a finite number of zeros to reach a new indgxsuch thath(0,k)| <n.

On the other hand, we can show that the existence of a movdieguwvinning strategy for PI. 0
impliesP(W) = 1. The key idea is to realise that given a move-counting wigisirategyh, the strategy
h(-,n) is positional.

Proposition 4.4. Let¥ = (G,v,W) be a Banach-Mazur game on a finite graph and P a reasonable
probability measure. If Pl. 0 has a move-counting winnirmgtegy for¢, then RW) = 1.

Proof. Let h be a move-counting winning strategy Bf. 0. We denote byf, the strategyh(-,n). Each
set
Mn := {p € Path$G,vp) : pis a play consistent witff, }

has probability 1 sincé, is a positional winning strategy for the Banach-Mazur g&a®e/, M,,). More-
over, if p is a play consistent withi, for eachn > 1, thenp is a play consistent with. In other words,
sinceh is a winning strategy, we g¢f,M, C W. Therefore, as?(M,) = 1 for all n, we know that
P(NnMn) = 1 and we conclude th&(W) = 1. O

Let us notice that the converse of Proposition 4.4 is falsgeimeral. Indeed, Example 4.3 exhibit a
large seW of probability 1 such that Pl. 0 has no move-counting winrstigitegy. However, itV is
a countable intersection @#-regular sets, then the existence of a winning strategy dd Pnplies the
existence of a move-counting winning strategy for PI. 0.

Proposition 4.5. Let¥ = (G, vp,W) be a Banach-Mazur game on a finite graph where W is a countable
intersection oftw-regular sets W. Pl. 0 has a winning strategy if and only if Pl. 0 has a moventing
winning strategy.

Proof. LetW = N>, Wh whereW, is anw-regular set and a winning strategy of PI. 0 fa¢. For any
n> 1, the strategyf is a winning strategy for the Banach-Mazur gaf@ Vo, W,). Thanks to [1], we
therefore know that for any > 1, there exists a positional winning stratefjyof PI. 0 for (G, vo, Wh).

Let ¢ : N — Nsuch that for ank > 1, {n€ N : ¢(n) =k} is an infinite set. We consider the move-

counting strateg(v,n) = f,n) (V). This strategy is winning because each pagonsistent witth is a
play consistent with, for anyn and thus

{p € PathgG,vp) : p is a play consistent with}
- ﬂ{p € Path$G, Vo) : p is a play consistent witl,}
n

CWa=W.
n

O

Remark4.6. We cannot extend this result to countable union@atgular sets because the set of count-
able unions ofw-regular sets contains the open sets and Example 3.4 eechiniBanach-Mazur game
whereW is an open set and PI. 0 has a winning strategy but no movetinguminning strategy.

2Such a ma exists because one could build a surjectjorlN — N x N and then letp= g where(n) = (@1(n), 2(n)).

Thomas Brihaye & Quentin Menet 27

Remark4.7. We also notice that WV is a countable intersection af-regular sets, thew is large if and
only if W is a set of probability 1. Indeed, the notions of large setssats of probability 1 are stable by
countable intersection and we know thabaegular set is large if and only if it is of probability 1 [9].

As a consequence of Remark 4.7, we have that i§ awS-regular sets, as defined in [2], the ¥ét
is large if and only ifW is a set of probability 1. Indeed, it is shown in [6, 7] tha&-regular sets are
countable intersection @b-regular sets. Nevertheless, the following example shbafs tinlike the case
of w-regular sets, positional strategies are not sufficientd8regular sets.

Example 4.8 (wS-regular set with a move-counting winning strategy and witlout a positional/
bounded winning strategy). We consider the complete grag ; on {0,1} and the seiV correspond-

ing to thewS-regular expression(0*1)*051)“, which corresponds to the language of words where the
number of consecutive 0 is unbounded. The move-countiagesty which consists in playingconsec-
utive O’s at thenth step is winning for PIl. 0. However, clearly enough PI. Ogloet have a positional
(nor bounded) winning strategy fav.

Example 4.2 shows that Remark 4.7 does not extend-tmntext-free sets. Another notion of
simple strategies, natural inspired by Example 4.2, is thtgon of last-move strategy. A stratedy
for PI. O is said to bdast-moveif it only depends on the last move of PI. 1, i.e. for ang V, for
any 1 € FinPath$G,v), f(m) € FinPath$G,last(rr)) and a playp is consistent withf if it is of the
form (15 f(7%))i>1. It is obvious that there exists a last-move winning stratfeg Pl. 0 in the game
described in Example 4.2. In particular, we deduce that ¥igtence of a last-move winning strategy
for W does not imply tha¥V has probability 1. Example 4.2 allows also us to see thatxtstemce of a
last-move winning strategy does not imply in general thetexice of a move-counting winning strategy
or a bounded winning strategy. Indeed, \létbe the set{ (WiwR); € Path$Go12,2) : wi € {0,1,2}*}.
SinceP(W) = 0 (and thusP(W) # 1), we know that PI. 0 has no move-counting winning strategy b
Proposition 4.4 and no bounded winning strategy.

The notion of last-move winning strategy is in fact incongide with the notion of move-counting
winning strategy and the notion of bounded winning strateggleed, on the complete gray on
{0,1}, if we denote byW the set of runs Gy 1 such that for any > 1, the word 1 appears, then PI. 0
has a move-counting winning strategy for the gaig,0,W) but no last-move winning strategy. In
the same way, if we denote by the set of aperiodic runs dBp 1 then PI. 0 has a 1-bounded winning
strategy for the gam@Gg 1,0,W) but no last-move winning strategy (it suffices for PI. 1 toypda each
time the same word).

5 Generalised Banach-Mazur games

Let¥ = (G,vo,W) be a Banach-Mazur game on a finite graph. We know that theeexistof a bounded
winning strategy or a move-counting winning strategy of@Pfor ¢ implies thatP(W) = 1 for every
reasonable probability measuPe Nevertheless, it is possible thafw) = 1 and PI. 0 has no bounded
winning strategy and no move-counting winning strategyafiigle 4.3). We therefore search a new
notion of strategy such that the existence of such a winrtiregeg)y implies?(W) = 1 and the existence
of a bounded winning strategy or a move-counting winningtetry imply the existence of such a winning
strategy. To this end, we introduce a new type of Banach-Kgames:

Definition 5.1. A generalised Banach-Mazur garf#eon a finite graph is a tuples, vo, @, @, W) where

G = (V,E) is a finite directed graph where every vertex has a succeggar,V is the initial state,
W C Path$G,vp), and@ is a map on FinPatli&, vo) such that for anyt € FinPath$G, vo),

@(m) C Z(FinPath$G, last(m))) \ {0} and @(m) 0.

28 Simple strategies for Banach-Mazur games and fairly coaystems

A generalisedl Banach-Mazur game = (G, vo, @, @, W) on a finite graph is a two-player game
where PI. 0 and PI. 1 alternate in choossgjs of finite pathas follows: PIl. 1 begins with choosing
a set of finite path$1; € @ (vp); Pl. O selects a finite patip € M; and chooses a set of finite paths
M, € @(m); Pl 1. then selectss € M, and proposes a sBt; € @ (1w 7e) and so on. A play o is thus
an infinite pathrp 75 .. in G and we say that PI. 0 wins if this path belongdMowhile PI. 1 wins if
this path does not belong Y.

We remark that if we letpan(m) := {{m'} : ™ € FinPath$G,last(m))} for any 7 € FinPath$G, vo),
then the generalised Banach-Mazur game given ®yo, @hai, @ai, W) coincides with the classical
Banach-Mazur gaméG,vp,W). We also obtain a game similar to the classical Banach-Mgauore
if we consider the functiop(m) = & (FinPath$G, last(r))). On the other hand, if we consid@(m) :=
{{m'} : ' € FinPath$G,last(m)), || = 1}, we obtain the classical games on graphs such as the ones
studied in [5].

We are interested in defining a magp such that PI. 0 has a winning strategy @, Vo, @, @ai, W)
if and only if P(W) = 1. To this end, we notice that we can restrict actions of Pl fobcing each set
in @ () to be “big” in some sense. The idea to charactelfig4’) = 1 is therefore to force PI. 0 to play
with finite sets of finite paths of conditional probabilitygier thana for somea > 0.

Definition 5.2. Let¥ = (G,vp,W) be a Banach-Mazur game on a finite grapla,reasonable probability
measure and > 0. An a-strategyof Pl. 0 for¥ is a strategy of PI. O for the generalised Banach-Mazur
game¥y = (G, Vo, @, fhai, W) where

@ (1) = {I‘I C FinPath$G, last(m)) : P(U CyI(nn’)‘CyI(n)) > o andll is finite}.
el

We recall that, given two evenis, B with P(B) > 0, the conditional probability?(A|B) is defined by
P(A|B) := P(ANB)/P(B).

We notice that every bounded strategy can be seen assirategy for somer > 0, since for any
N > 1, there exist& > 0 such that for anyt of length less thalN, we haveP({rm}) > a. We can also
show that the existence of a move-counting winning strafegi?l. 0 implies the existence of a winning
o-strategy for PI. O for every & a < 1.

Proposition 5.3. Let¥ = (G,vp,W) be a Banach-Mazur game on a finite graph. If Pl. 0 has a move-
counting winning strategy, then PI. 0 has a winnimgstrategy for every < a < 1.

Proof. Let P be a reasonable probability measunea move-counting winning strategy for Pl. 0 and
0 < o < 1. We denote by, the positional strategy defined by

on(v) =h(v,1) h(last(h(v,1)),2) --- h(lastth(v,1) h(lasth(v,1)),2)---),n).

Let us notice that the definition of thg’s implies that for any increasing sequener), a play of the
form

™ On, (last(1m)) 7& gn, (1as{7e)) -+ 7k gn, (last(7%)) - (5.1)
is consistent withh. Sincegy is a positional strategy, we know that each set

Mp := {p € Path$G,vp) : p is a play consistent withg, }

3We only present here a generalisation of Banach-Mazur gamdisite graphs but this generalisation could be extended
to Banach-Mazur games on topological spaces by askingdhahf/ non-empty open sét ¢ (O) is a collection of non-empty
open subsets d@d.

Thomas Brihaye & Quentin Menet 29

has probability 1. In particular, for any € FinPath$G, vp), we deduce tha®(M,|Cyl(1p)) = 1. Since

Mn N Cyl(78) C U Cyl(momgn(last(m))),
meFinPaths$G,last(m))

we have

P(U Cyl(Tomgn(lasi(1))) | CyI(76)) = 1
nieFinPath$G,last(p))

and since FinPathi&, last(p)) is countable, we deduce that for any> 1, any o € FinPath$G, vp),
there exists a finite subsBt, (1) C FinPath$G, last(7p)) such that

P(U Cyl(rbngn(last(n)))‘Cyl(r@))za,
1eNn (o)

We denote by1;,(m) the set{ g, (last(m)) : me My ()} and we let

The above-defined stratedyis therefore a winningr-strategy for Pl. 0 since each play consistent with
f is of the form (5.1) for some sequen@®) and thus consistent with O

Moreover, the existence of a winnimg strategy for somer > 0 still impliesP(W) = 1.

Theorem 5.4. Let¥ = (G,vp,W) be a Banach-Mazur game on a finite graph and P a reasonable prob
ability measure. If Pl. 0 has a winning-strategy for somer > 0, then RW) = 1.

Proof. Let f be a winninga-strategy. We consider an increasing sequef@gg,~1 such that for any
n> 1, anymof lengtha,, eachrt’ € f(m) has length less tham,, ; — ay; this is possible because for any
m, f(m) is a finite set by definition ofr-strategy. Without loss of generalftywe can even assume that
for anyn > 1, anym of lengtha,,, eachrt’ € f(m) has exactly lengtl,. 1 — a,. We therefore let

A= {(0k)k=1 € PathgG,vo) : #{N: (Ok)a,+1<k<ans € F((Ok)1<k<a,)} = o}

In other words(oik)k>1 € Aif (0k) can be seen as a play wheréas been played on an infinite number
of indicesa,. Sincef is a winning strategyAis included inW and it thus suffices to prove thafA) = 1.
We first notice that for anyn> 1, anyn > m, if we let

Bmn = {(0k)k=1 € Path$G, Vo) : (Ok)a; +1<k<aj 1 ¢ f((Ok)1<k<a;), YM< j <nj,

thenP(Bmp) < (1— a)™1-Masf is ana-strategy. We therefore deduce that for amy 1,

P(ﬁmsmn> ~0

and sinceA® = Up=1Mh-mBmn, We conclude thal(A) = 1. 0

4Let 17 be a finite path and,; > max{|1| such thatr € f(7)}. One can definé () as the set of finite paths of lengthny;
such thatr is a prefix ofa, for somer € f(m). Given a playp, one can show that is consistent withf if and only if p is
consistent withf .

30 Simple strategies for Banach-Mazur games and fairly coaystems

If W is a countable intersection of open sets, we can prove theeczmof Theorem 5.4 and so obtain
a characterisation of sets of probability 1.

Theorem 5.5. Let¥ = (G, v, W) be a Banach-Mazur game on a finite graph where W is a countable
intersection of open sets and P a reasonable probabilitysuea Then the following assertions are
equivalent:

1. PW)=1,
2. Pl. 0 has a winningx-strategy for some > 0,
3. PI. 0 has a winningr-strategy for all0 < a < 1.

Proof. We have already proved 2> 1., and 3 = 2. is obvious.

1 =3 Let0O< a <1 LetW=_;W, whereW,’s are open sets. Sind&W) = 1, we deduce
that for anyn > 1, P(W,) = 1. We can therefore define a winnimgstrategyf of PIl. O as follows:

if Cyl (1) C N_iWk and Cyl11) ¢ Wh, we let (1) be a finite sefl C FinPath$G, last(7)) such that
P(Uﬁen CyI(nn’)|CyI(n)) > a and for anyr? € M, Cyl(mr’') € Wh. Such a finite seffl exists because
W, has probability 1 and\j, is an open set, i.e. a countable union of cylinders. This lcoles the
proof. O

Remarks.6. We cannot hope to generalise the latter result to anwse¥lore precisely, there exist sets
of probability 1 for which no winningx-strategy exists. Indeed, given a ¥t on the one hand, the
existence of a winningr-strategy folW implies the existence of a winning strategy ¥ and thus in
particular such &V is large. On the other hand, we know that there exists somgméia particular not
large) set of probability 1 (see Example 4.2). However, ameask whether the existence of a winning
a-strategy is equivalent to the fact th&tis a large set of probability 1.

WhenW is a countable intersection of open sets, we remark thateherglised Banach-Mazur game
Yo = (G,Vo, @, @an, W) is in fact determined.

Theorem 5.7. Let¥, be the generalised Banach-Mazur game give&hy-= (G, Vo, ¢, @ai, W) where
G is afinite graph, W is a countable intersection of open setsR a reasonable probability measure.
Then the following assertions are equivalent:

1. PW) <1,
2. Pl. 1 has a winning strategy f&f, for somea > 0,
3. Pl. 1 has a winning strategy fof, forall 0 < a < 1.

Proof. We deduce from Theorem 5.5 that2 1. becaus€/, is a zero-sum game, and-3- 2. is obvious.
1. = 3. LetW =nNy_;W, with P(W) < 1 andW, open. We know that there exists> 1 such that
P(Wh) < 1. It then suffices to prove that Pl. 1 has a winning strategytfe generalised Banach-Mazur
game(G, Vo, @, @ai, Wh) for all 0 < a < 1. Without loss of generality, we can thus assume \tag an
open set. We recall thalY is open if and only if it is a countable union of cylinders. &rany strategy
of PI. 1 is winning ifW = 0, we also suppose théf + 0.

Let 0< a < 1. We first show that there exists a finite pathe FinPath$G,vp) such that any set

M, € @y (™) contains a finite pathe satisfying
P(W|Cyl(mme)) < P(W) < 1. (5.2)

Let
lw = inf{P(W|Cyl(m)) : € FinPath$G,vp) }. (5.3)

Thomas Brihaye & Quentin Menet 31

SinceW is a non-empty union of cylinders, there exiets FinPath$G, vp) such thaP(W|Cyl(0)) = 1.

We remark thatP(W) = ¥ 7 n—o| P(W[CyI(1))P(CyI(1)) and ¥ r|ni—|o| P(Cyl(1)) = 1. Therefore,
sinceP(W|Cyl(0)) > P(W), we deduce that there existsc FinPath$G, vp) with || = |g| such that
P(W|Cyl(m)) < P(W). We conclude thaly < P(W) and thus, by definition ofy, there existsg €

FinPath$G, vp) such that

-+ (POWICYI(78)) —) < PW). (5.4)

LetM, € @, (mm). We consider, ..., 1, € My andos, ..., 0m € FinPath$G, last(rg)) such that cylinders
Cyl(t), Cyl(gj) are pairwise disjointJpn, Cyl(m) C UL, Cyl(t;) and

Path$G,last(rm)) = LnJCyI(Ti) U G Cyl(gj). (5.5)
i—1 =

Assume that for all K i < n, we have
P(W|Cyl(taT))) > P(W). (5.6)
Then, we get

PWI[Cyl(mm))

= iP(WmCyI(nlri)]Cyl(nl)) + g P(WNCyl(rmoj)|Cyl(rm)) by disjointness and (5.5)
i= =1

= 3 PWICH(mn) PICYI(T)[CYI(r) + 5 PIWICYI (a0, P(CYI(r0, Oy)
i= =1

> PW) imcmn)rcw(nl)) il iP(Cyl(maj)lel(m)) by (5.6) and (5.3)
1= =

>P(W) .ZlP(Cyl(mmICyl(nl)) +lw (1~ _zlP(Cyl(nln)\Cyl(nl))) by (5.5)

>PW)P(| Cyl(rmm)|Cyl(m)) +Iw(1—P(| Cyl(mm)|Cyl(ms))) by properties ofii's

nelly nell;

>PW)a +Ilw(l—a) (becausdl, € gy (mm) andP(W) > lw)

and thusP(W) < Iy + %(P(W|Cyl(n1)) —lw) which is a contradiction with (5.4). We conclude that if
1 is given by (5.4), then any s€l; € @, () contains a finite pathe satisfying (5.2).

We can now exhibit a winning strategy for Pl. 1. We assume Rthat begins with playing a finite
path g satisfying (5.4). Letf be ana-strategy. We know that Pl. 1 can select a finite pathe f(mm)
satisfying (5.2), i.eP(W|Cyl(rm %)) < P(W). By repeating the above method fromve, we also deduce
the existence of a finite patts such that any sdfl4 € @, (M R78) contains a finite pathy satisfying
P(W|Cyl(mmemsry)) < P(W). We can thus assume that PI. 1 plays such a finite gagémd then selects
m € f(mmems) such thatP(W|Cyl(raesmm)) < P(W). This strategy is a winning strategy for PI. 1.
Indeed, a$V is an open set and thus a countable union of cylindeBW|Cyl(r --- TBn)) < P(W) < 1
for anyn, thenmaerg--- ¢ W. O

Corollary 5.8. Let0 < a < 1. The generalised Banach-Mazur gasie= (G, Vo, @y , @hai, W) is deter-
mined when W is a countable intersection of open sets. Me@galy, Pl. 0 has a winning strategy for
Yy ifand only if ARW) = 1, and PI. 1 has a winning strategy féf, if and only if AW) < 1.

32 Simple strategies for Banach-Mazur games and fairly coaystems

Since the existence of a bounded winning strategy for PI.fli@s the existence of a winning-
strategy for PI. 0 and the existence of a move-counting wigpisirategy for Pl. O implies the existence
of a winning a-strategy for PI. 0, we deduce from Example 3.3 and Exampldltat in general, the
existence of a winningr-strategy for Pl. 0 does not imply the existence of a movaiting winning
strategy PI. 0 and the existence of a bounded winning sird@gPl. 0. On the other hand, we know
that there exists a Banach-Mazur game for which PI. 0 has adsslwinning strategy and no last-move
winning strategy. The existence of a winniagstrategy thus does not imply in general the existence of a
last-move winning strategy. Conversely, if we considergame(Go 1,0,W) described in Example 4.2,
Pl. 0 has a last-move winning strategy but no winringtrategy (a®(W) = 0). The notion ofx-strategy
is thus incomparable with the notion of last-move strategy.

6 More on simple strategies

We finish this paper by considering the crossings betweenriffezent notions of simple strategies and
the notion of bounded strategy i.e. the bounded lengthtooystrategies, the bounded move-counting
strategies and the bounded last-move strategies. Obyijdhselexistence of a bounded length-counting
winning strategy for PIl. 0 implies the existence of a lengblnting winning strategy for PI. 0, and we
have this implication for each notion of bounded strategiestheir no bounded counterpart. We start by
noticing that the existence of a bounded move-counting iwmstrategy is equivalent to the existence
of a positional winning strategy.

Proposition 6.1. Let¥ = (G,Vvp,W) be a Banach-Mazur game on a finite graph. PI. 0 has a bounded
move-counting winning strategy if and only if Pl. 0 has a posal winning strategy.

Proof. Leth be a bounded move-counting winning strategy for PIl. 0. WetkebyC,,...,Cy the bottom
strongly connected components (BSCC)afLet 1<i < N. Sinceh is a bounded strategy arlis

finite, there exist some finite patb\éi), ceey E) C G such that for any € G;, for anyn> 1,

h(v,n) € {W:(Li),...,ng)}.
LetveV. If ve G, we letf(v) = aow(li)alwg>02 .. -WE) whereg; are finite paths if€; such thatf (v) is
a finite path inC; starting fromv. If v ¢ (J;C;, we let f(v) = o, whereg, starts fromv and leads into a
BSCC ofG. The positional strategy is therefore winning as each playconsistent withf can be seen
as a play consistent with O

The other notions of bounded strategies are not equivabdeantyt other notion of simple strategy.

Example 6.2(Set with a bounded length-counting winning strategy and witout a positional win-

ning strategy). Let Go, be the complete graph di), 1}, (p,) an enumeration of finite words 0,1}

and prarget= 0p1p2---. We consider the s&V = {0 € {0,1}? : #{i > 1:0(i) = Prargefi) } = »}. Itis
evident that PIl. 0 has a bounded length-counting winnirafesgly for the gameGo 1,0,W). However,

Pl. 0 has no positional winning strategy. Indeed, i§ a positional strategy such thit0) = a(1)---a(k),

then PI. 1 can play according to the stratbglefined byh(o(1)---o(n)) = a(n+1)--- a(N) 0 such that
foranyn+1<i <N, 0(i) # Prargef(i), Prarge{ N+ 1) # 0 and for any K i <k, a(i) # prarged N+i+1).
Example 6.3 (Set with a bounded last-move winning strategy and without a psitional winning
strategy). Let Gg 12 be the complete graph di9, 1,2}. For anyg: {0,1,2}* — {0,1}, if we consider

the setV := {(15¢(7%))i>1: 75 € {0,1,2}* }, then PI. 0 has a 1-bounded last-move winning strategy given

Thomas Brihaye & Quentin Menet 33

by ¢ for the gamgGq12,2,W). On the other hand, we can choapeuch that PI. 0 has no positional
winning strategy. Indeed, it suffices to choase{0,1,2}* — {0, 1} such that for anyt € {0,1,2}*, any
n>1,anyo(1),...,a(n) € {0,1,2}, there exist& > 1 such thatp(r2¥) + (1) and for any I<i <n—1,
o(m2*o(1)---a(i)) # o(i+1). Such a function exists because the{&gll, 2}* is countable. Therefore,
Pl. 0 has no positional winning strategy for the gaf@g2,2,W) because, iff is a positional strategy
and f(2) = a(1)...a(n), then PI. 1 can play consistent with the stratégyefined byh() = 2 such
that(m2¢) # o(1) and forany I<i <n—1, @(m2*a(1)---a(i)) # a(i+1). PI. 0 has thus a 1-bounded
last-move winning strategy and no positional winning siggtfor the gameGg 1 2,2,W).

Example 6.4(Set with a bounded winning strategy and without a bounded legth-counting win-
ning strategy). Let Go123 be the complete graph 0f0,1,2,3}. For anyg:{0,1,2,3}* — {0,1},

if we denote byW the set of rung such that #n > 1:¢@(p(1)...p(n)) =p(n+1)} =, then PI. O
has a 1-bounded winning strategy given gyfor the game(Gg123,2,W). We now show how we
can definep so that PIl. 0 has no bounded length-counting winning styatéget ny = zik:13i. We
choose@: {0,1,2,3}* — {0,1} such that for anyk > 1, any m e {0,1,2,3}* of length ny and any
0(1),...,0(k) € {0,1,2,3}, there existg € {2,3}* of length X such thatp(mr 2) # o (1) and for any
1<i<k-1,¢(mr20(1)---a(i)) # a(i+1). Such a function exists because the cardinality2B}%<

is equal to the cardinality of0,1,2, 3} and the length oftt 20(1) - -- o(K) < n,1. Therefore, PI. 0 has
no bounded length-counting winning strategy becaudeisfak-bounded length-counting strategy (for
somek € N) and f(2,nx + k+ 1) = o, then PI. 1 can start by playing<2 2, wherer € {2,3}* of length
2k such thatp(rr 2) # o(1) and forany I<i <k—1,¢p(rmr20(1)---o(i)) # a(i+1), and if Pl. 1 keep
playing with same philosophy, then PI. 1 wins the play. Pla® thus a 1-bounded winning strategy and
no bounded length-counting winning strategy for the géa@e; 2, 2,W).

The relations between the different notions of simple stiais on a finite graph can be summarised as
depicted in Figure 1. We draw attention to the fact that theation is very different in the case of infinite
graphs. For example, a positional strategy can be unbourndechotion of length-counting winning
strategy is not equivalent to the notion of winning stratégycept if the graph is finitely branching),
and the notion of bounded move-counting winning strategyPio O is not equivalent to the notion of
positional winning strategy.

Example 6.5(Set on an infinite graph with a bounded move-counting winningstrategy and without

a positional winning strategy). We consider the complete gragh; onN and the gamé& = (Gy,0,W)
whereW = {(gx) e N®:¥n>1 3k>1, (0k 0kr1) = (n,n+1)}. Pl. 0 has a bounded move-counting
winning strategy given bf(v,n) = n n+ 1 but no positional winning strategy.

References

[1] Dietmar Berwanger, Erich Gradel & Stephan Kreutzer 20@nce upon a Time in a West - Determinacy,
Definability, and Complexity of Path Gameés:: LPAR, Lecture Notes in Computer Scien2850, Springer,
pp. 229-243, doi0.1007/978-3-540-39813-4_16.

[2] MikolajBojanczyk & Thomas Colcombet (2006B0ounds in w-Regularityin: LICS, IEEE Computer Society,
pp. 285-296, doi0.1109/LICS.2006.17.

[3] Erich Gradel (2008)Banach-Mazur Games on Graph: FSTTCS LIPIcs 2, Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, pp. 364-382, db@r. 4230/LIPIcs.FSTTCS.2008.1768.

[4] Erich Gradel & Simon Lef3enich (2012Banach-Mazur Games with Simple Winning Strategies CSL,
LIPIcs 16, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, fp5—319, doit0.4230/LIPIcs.CSL.
2012.305.

34 Simple strategies for Banach-Mazur games and fairly coaystems

1-Bounded Bounded Positional
2-Bounded i

& Positional
b-Bounded Finite memory

¢

Bounded

move-countin
ﬁ Bounded < 9 —— Bounded
Bounded<—— ength-counting l last-move
i Move-counting .- % -
a—strategy</ // PPt T Last-move
probal —-nT _
---------------------- Length-counting
notprobal

|

General

Figure 1: Winning strategies for Player 0 on finite graphs.

[5] Erich Gradel, Wolfgang Thomas & Thomas Wilke, editor®@2): Automata, Logics, and Infinite Games: A
Guide to Current ResearchNCS 2500, Springer.

[6] Szczepan Hummel & Michat Skrzypczak (201Zhe topological complexity of MSO+U and related automata
models Fund. Inform.119(1), pp. 87—111, ddi0.3233/FI-2012-728.

[7] Szczepan Hummel, Michat Skrzypczak & Szymon Toruncz2@1(0): On the Topological Complexity of
MSO+U and Related Automata Models: MFCS Lecture Notes in Computer Sciené281, Springer, pp.
429-440, doit0.1007/978-3-642-15155-2_38.

[8] John C. Oxtoby (1957)The Banach-Mazur Game and Banach Category Theonmals of Mathematical
Studies39, pp. 159-163. Contributions to the Theory of Games, vel@m

[9] Daniele Varacca & Hagen Volzer (2006)emporal Logics and Model Checking for Fairly Correct Syste
In: Proc. 21st Ann. Symp. Logic in Computer Science (LICS/QBEEE Comp. Soc. Press, pp. 389-398,
doi:10.1109/LICS.2006.49.

The Rabin index of parity games

Michael Huth and Jim Huan-Pu Kuo Nir Piterman
Department of Computing, Imperial College London Department of Computer Science, University of Leicester
London, SW7 2AZ, United Kingdom Leicester, LE1 7RH, United Kingdom
{m.huth, jimhkuo}@imperial.ac.uk nir.piterman@leicester.ac.uk

We study the descriptive complexity of parity games by taking into account the coloring of their
game graphs whilst ignoring their ownership structure. Colored game graphs are identified if they
determine the same winning regions and strategies, for all ownership structures of nodes. The Rabin
index of a parity game is the minimum of the maximal color taken over all equivalent coloring
functions. We show that deciding whether the Rabin index is at least k is in P for kK = 1 but NP-hard
for all fixed k > 2. We present an EXPTIME algorithm that computes the Rabin index by simplifying
its input coloring function. When replacing simple cycle with cycle detection in that algorithm, its
output over-approximates the Rabin index in polynomial time. Experimental results show that this
approximation yields good values in practice.

1 Introduction

Parity games (see e.g. [11]) are infinite, 2-person, 0-sum, graph-based games that are hard to solve.
Their nodes are colored with natural numbers, controlled by different players, and the winning condition
of plays depends on the minimal color occurring in cycles. The condition for winning a node, therefore,
is an alternation of existential and universal quantification. In practice, this means that the maximal color
of its coloring function is the only exponential source for the worst-case complexity of most parity game
solvers, e.g. for those in [11, 8, 9].

One approach taken in analyzing the complexity of parity games, and in so hopefully improving the
complexity of their solution, is through the study of the descriptive complexity of their underlying game
graph. This method therefore ignores the ownership structure on parity games.

An example of this approach is the notion of DAG-width in [1]. Every directed graph has a DAG-
width, a natural number that specifies how well that graph can be decomposed into a directed acyclic
graph (DAG). The decision problem for DAG-width, whether the DAG-width of a directed graph is at
most k, is NP-complete in k [1]. But parity games whose DAG-width is below a given threshold have
polynomial-time solutions [1]. The latter is a non-trivial result since DAG-width also ignores the colors
of a parity game.

In this paper we want to develop a similar measure of the descriptive complexity of parity games,
their Rabin index, a natural number that ignores the ownership of nodes, but does take into account the
colors of a parity game. Intuitively, the Rabin index is the number of colors that are required to capture
the complexity of the game structure. By measuring and reducing the number of colors we hope to
improve the complexity of analyzing parity games. ! The reductions we propose are related to priority
compression and propagation in [6] but, in contrast, exploit the cyclic structure of game graphs.

! We note that if we also were to account for ownership, we could solve the parity game and assign color 0 to nodes won
by player O and color 1 to nodes won by player 1. Thus, this would reduce the index of all games to at most 2. However, this
would prevent a more fine-grained analysis of the structural complexity of the game and defeats the purpose of simplifying
parity games before solving them.

Gabriele Puppis, Tiziano Villa (Eds.): Fourth International (© M. Huth, J. H. Kuo & N. Piterman
Symposium on Games, Automata, Logics and Formal Verification This work is licensed under the
EPTCS 119, 2013, pp. 35-49, doi:10.4204/EPTCS.119.6 Creative Commons Attribution License.

36 The Rabin index of parity games

The name for the measure developed here is inspired by related work on the Wagner hierarchy for
automata on infinite words [10]: Carton and Maceiras use similar ideas to compute and minimize the
Rabin index of deterministic parity automata on infinite words [2]. To the best of our knowledge, our
work is the first to study this notion in the realm of infinite, 2-person games.

The idea behind our Rabin index is that one may change the coloring function of a parity game to
another one if that change neither affects the winning regions nor the choices of winning strategies. This
yields an equivalence relation between coloring functions. For the coloring function of a parity game, we
then seek an equivalent coloring function with the smallest possible maximal color, and call that minimal
maximum the Rabin index of the respective parity game.

The results we report here about this Rabin index are similar in spirit to those developed for DAG-
width in [1] but there are important differences:

e We propose a measure of descriptive complexity that is closer to the structure of the parity game

as it only forgets ownership of nodes and not their colors.

o We prove that for every fixed k > 2, deciding whether the Rabin index of a parity game is at least

k is NP-hard.

e We can characterize the above equivalence relation in terms of the parities of minimal colors on

simple cycles in the game graph.

o We use that characterization to design an algorithm that computes the Rabin index and a witnessing

coloring function in exponential time.

o We show how the same algorithm efficiently computes sound approximations of the Rabin index

when simple cycles are abstracted by cycles.

o We derive from that approximation an abstract Rabin index of parity games such that games with

bounded abstract Rabin index are efficiently solvable.

o We conduct detailed experimental studies that corroborate the utility of that approximation, also

as a preprocessor for solvers.

Outline of paper. Section 2 contains background for our technical develeopments. In Section 3, we
define the equivalence between coloring functions, characterize it in terms of simple cycles, and use that
characterization to define the Rabin index of parity games. In Section 4 we develop an algorithm that
runs in exponential time and computes a coloring function which witnesses the Rabin index of the input
coloring function. The complexity of the natural decision problems for the Rabin index is studied in
Section 5. An abstract version of our algorithm is shown to soundly approximate that coloring function
and Rabin index in Section 6. Section 7 contains our experimental results for this abstraction. And we
conclude the paper in Section 9. An appendix contains selected proofs.

2 Background

We write N for the set {0, 1,...} of natural numbers. A parity game G is a tuple (V,Vp,V},E,c) where
V is a non-empty set of nodes partitioned into possibly empty node sets Vp and V;, with an edge relation
E CV xV (where for all vin V there is a w in V with (v,w) in E), and a coloring function ¢: V — N.

Throughout, we write s for one of 0 or 1. In a parity game, player s owns the nodes in V;. A play
from some node vy results in an infinite play P = vpv; ... in (V, E) where the player who owns v; chooses
the successor v;; such that (v;,v;41) is in E. Let Inf(P) be the set of colors that occur in P infinitely
often: Inf(P) ={keN|VjeN: JieN:i> jandk = c(v;)}. Player 0 wins play P iff minInf(P) is
even; otherwise player 1 wins play P.

M. Huth, J. H. Kuo & N. Piterman 37

Vol 3 V4
Vi
Vol 2 |« 1 |V3

Figure 1: A parity game with winning regions Wy = {v,v2} and W; = {vg,v3,v4}; winning strategies
for players 0 and 1 map v; to vy, respectively vy and v3 to vy4

A strategy for player s is a total function 7: V; — V such that (v, 7(v)) is in E for all v € V;. A play
P is consistent with 7 if each node v; in P owned by player s satisfies v;y; = 7(v;). It is well known
that each parity game is determined: node set V is the disjoint union of two sets W and Wi, the winning
regions of players 0 and 1 (respectively), where one of Wy and W; may be empty. Moreover, strategies
o:Vp—Vand m: V| — V can be computed such that

e all plays beginning in W and consistent with o are won by player 0; and

e all plays beginning in W; and consistent with 7 are won by player 1.

Solving a parity game means computing such data (Wy, W}, o,). We show a parity game and one of
its possible solutions in Figure 1.

3 Rabin Index

We now formalize the definition of equivalence for coloring functions, and then use that notion in order
to formally define the Rabin index of a parity game.

We want to reduce the complexity of a coloring function ¢ in a parity game (V, Vo, V), E,c) by trans-
forming ¢ to some coloring function ¢’. Since we do not want the transformation to be based on a solution
of the game we design the transformation to ignore ownership of nodes. That is, it needs to be sound for
every possible ownership structure V = VU V;. Therefore, for all such partitions V = VU V1, the two
parity games (V,Vp,V},E,c) and (V,Vy,V},E, ') that differ only in colors need to be equivalent in that
they have the same winning regions and the same sets of winning strategies. We formalize this notion.

Definition 1 Let (V,E) be a directed graph and c,c’: V — N two coloring functions. We say that ¢ and ¢/
are equivalent, written ¢ = ¢/, iff for all partitions Vo UV} of V the resulting parity games (V,Vy,V1,E,c)
and (V,Vy,V1,E,c") have the same winning regions and the same sets of winning strategies for both
players.

Intuitively, changing coloring function ¢ to ¢’ with ¢ = ¢’ is sound: regardless of what the actual
partition of V is, we know that this change will neither affect the winning regions nor the choice of
their supporting winning strategies. But the definition of = is not immediately amenable to algorithmic
simplification of ¢ to some ¢’. This definition quantifies over exponentially many partitions, and for each
such partition it insists that certain sets of strategies be equal.

We need a more compact characterization of = as the basis for designing a static analysis. To that
end, we require some concepts from graph theory first.

Definition 2 1. A path P in a directed graph (V,E) is a sequence vy,vi,...,v, of nodes in'V such
that (vi,viy1) is in E for every i in {0,1,...,n—1}.
2. A cycle C in a directed graph (V,E) is a path vy, ...,v, with (v,,vo) in E.

38 The Rabin index of parity games

3. A simple cycle C in a directed graph (V,E) is a cycle vy,vi,...,v, such that for every i # j in
{0,1,...n} we have v; # v,
4. For (V,E,c), the c-color of a cycle vy, ...,v, in (V,E) is ming<;<, c(v;).

Simple cycles are paths that loop so that no node has more than one outgoing edge on that path. A
cycle is defined similarly, except that it is allowed that v; equals v; for some i # j, so a node on that path
may have more than one outgoing edge. The color of a cycle is the minimal color that occurs on it.

For example, for the parity game in Figure 1, a simple cycle is vg,v4,v3,v2,v1 and its color is 1, a
cycle that is not simple is v, vy, vz, v and its color is 2.

We can now characterize = in terms of colors of simple cycles. Crucially, we make use of the fact
that parity games have pure, positional strategies [3].

Proposition 1 Let (V,E) be a directed graph and ¢,c’: V — N two coloring functions. Then ¢ = ¢’ iff
for all simple cycles C in (V,E), the c-color of C has the same parity as the c¢’-color of C.

Proof Sketch: We write ¢ ~ ¢’ iff for all simple cycles C in (V, E), the c-color of C has the same parity
as the ¢’-color of C. We have to show ~ equals =.

To prove that ~ is contained in =, let ¢ ~ ¢’ be given. For each subset V;, of V we have parity games
G.= (V,Vp,V\Vo,c) and G = (V,Vy,V \ Vy,¢’). We write W; (resp. W) for the winning region of player
s in G, (resp. G.).

Now let o be a strategy for player O that is winning on Wy in G.. We use that plays that begin in
Wo and are consistent with o and any strategy 7 of player 1 are decided by their periodic suffix — which
forms a simple cycle as both strategies are memoryless. As ¢ ~ ¢/, that decision is the same in both parity
games. So W, is contained in W;j and & is winning on Wy in game G as well.

A symmetric argument for the winning region W; and a & for player 1 that is winning on W in G,
then proves the claim by the determinacy of parity games.

To show that = is contained in ~, let ¢ = ¢’ be given. We construct, for each simple cycle C, a
1-player parity game (so one of Vj and V| is empty) which is controlled by the player that matches the
parity of the c-color of C. From ¢ ~ ¢’ is then follows that the ¢’-color of C also has that parity. (A full
proof is contained in the appendix.) (]

Next, we define the relevant measure of descriptive complexity, which will also serve as a measure
of precision for the static analyses we will develop.

Definition 3 1. For colored arena (V,E,c), its index p(c) is max,ecy c(v).
2. The Rabin index RI(c) of colored arena (V,E,c) is min{u(c’) | c =¢'}.
3. The Rabin index of parity game (V,Vy,V1,E,c) is Rl(c) for (V,E,c).

The index u(c) reflects the maximal color occurring in ¢. So for a coloring function c: V — N on
(V,E), its Rabin index is the minimal possible maximal color in a coloring function that is equivalent to
c. This definition applies to colored arenas and parity games alike.

As an aside, is [(c) a good measure, given that u(c+n) = n+ u(c) for c+n with (c +n)(v) =
c(v) +n when n is even? And given that ¢ may have large color gaps? Fortunately, this is not a concern
for the Rabin index of c. This is so as for all ¢ = ¢ with u(c’) = Rl(c¢) we know that the minimal color
of ¢’ is at most 1 and that ¢’ has no color gaps — due to the minimality of the Rabin index.

Intuitively, in order to prove that Rl(¢) < k for some k > 0 one has to produce a coloring ¢’ and show
that all simple cycles in the graph have the same color under ¢ and ¢. As we will see below, deciding for
a given colored arena (V, E,c) whether Rl(c) is at least k is NP-hard for fixed k > 2.

Next, we present an algorithm that computes a coloring function which witnesses the Rabin index of
a given c.

M. Huth, J. H. Kuo & N. Piterman 39

rabin(V,E,c) {

rank = ZVEV C(V);

do {
cache = rank;
cycle(); pop(Q);
rank = Yooy c(v);

} while (cache != rank)

return c;

}

cycle) {
sort V in ascending c-color ordering vi,v2,...,V,;
for (i=1..n) {
Jj = getAnchor (v;);
if (= -1 { c(vi) = c(vi)%2; }
else { c(v) = j+1; }
}
¥

getAnchor (v;) {
for (y = ¢(v;)—1 down to (c(vi)—1)%2; step size 2) {
if (3 simple cycle C with color ¥ through v;) { return y; }
}

return —1;

}

pop() {
m = max{ c(v)| ve V};
while (not 3 simple cycle C with color m) {
for win { we V| cw) = m}) {cv) = m — 1; }
m = m — 1;
}
}

Figure 2: Algorithm rabin which relies on methods cycle, getAnchor, and pop.

4 Computing the Rabin Index

We now discuss our algorithm rabin, shown in Figure 2. It takes a coloring function as input and
outputs an equivalent one whose index is the Rabin index of the input. Formally, rabin computes a
coloring function ¢ with ¢ = ¢’ and where there is no ¢ = ¢ with p(¢”) < u(c’). Then, Rl(c) = u(c)
by definition.

Algorithm rabin uses a standard iteration pattern based on a rank function which sums up all colors
of all nodes. In each iteration, two methods are called:

e cycle analyzes the cyclic structure of (V, E) and so reduces colors of nodes

e pop repeatedly lowers all occurrences of maximal colors by 1 until there is a simple cycle whose

color is a maximal color.

These iterations proceed until neither cycle nor pop has an effect on the coloring function. Method
cycle first sorts all nodes of (V,E,¢) in ascending color values for c. It then processes each node v; in
that ascending order. For each node v; it calls getAnchor to find (if possible) a maximal “anchor” for v;.

If getAnchor returns —1, then v; has no anchor as all simple cycles through v; have color ¢(v;).

40 The Rabin index of parity games

6 5 4 3 2

iteration ‘ cycle ‘ pop ‘
1 nil c(ve) =5
2 cve)=1 | c(vs) =4
3 c(vs) =2 | c(va)=3

Figure 3: Colored arena (V, E,c) and table showing effects of iterations in rabin(V,E,c)

Therefore, it is sound to change ¢(v;) to its parity. Otherwise, getAnchor returns an index j to an
“anchor” node that is maximal in that
e there is a simple cycle C through v; whose color j is smaller and of different parity than that of v;,
and
o for all simple cycles C’ through v;, either they have a color that has the same parity as the color of
v; or they have a color that is less than or equal to j.
A node on this simple cycle C with color j is thus a maximal anchor for node v;. Method cycle therefore
resets c(v;) to j+ 1.
The idea behind pop is that one can safely lower maximal color m to m — 1 if there is no simple cycle
whose color is m. For then all occurrences of m are dominated by smaller colors on simple cycles.
We now prove the soundness of our algorithm rabin.

Lemma 1 Let (V,E,c) be a given colored arena and let ¢’ be the coloring function that is returned by
the call rabin(V,E,c). Then ¢ = ¢’ holds.

We show some example runs of rabin, starting with a detailed worked example, for the parity game
in Figure 1. Let the initial sort of cycle be vzv4vavovy. Then cycle changes no colors at v3 (as the
anchor of v3 is —1), at v4 (as the anchor of v4 is 1 due to simple cycle v4v3), at v, (as the anchor of v; is
1 due to simple cycle vovivgvavs), but changes c(vp) to 1 (as the anchor of vy is —1). Also, ¢(v;) won’t
change (as the anchor of v; is 2 due to simple cycle v;v;).

Then pop changes ¢(v;) to 2 (as there is no simple cycle with color 3). Let the sort of the second
call to cycle be vgv3vivovs. Then the corresponding list of anchor values is —1,—1,1,1,1 and so cycle
changes no colors. Therefore, the second call to pop changes no colors either. Thus the overall effect of
rabin was to lower the index from 3 to 2 by lowering c¢(v;) to 2.

As a second example, in Figure 3, we see a colored arena with ¢(v;) = i (in red/bottom), the output
rabin(V,E,c) (in blue/top), and a table showing how the coloring function changes through repeated
calls to cycle and pop. Each iteration of rabin reduces the measure (i (c) by 1. This illustrates that the
number of iterations of rabin is unbounded in general.

We note that = cannot be captured by just insisting that the winning regions of all abstracted parity
games be the same. In Figure 4(a), we see a colored arena with two coloring functions c¢ (in red/bottom)
and ¢’ (in blue/top). The player who owns node v will win all nodes as she chooses between z or o the
node that has her parity. So ¢ and ¢’ are equivalent in that they always give rise to the same winning
regions. But if v is owned by player 1, she has a winning strategy for ¢’ (move from v to w) that is not
winning for c.

In Figure 4(b), colored arena (V, E, c) has odd index n and Rabin index 2. Although there are cycles
from all nodes with color n, e.g., to the node with color n — 1, there are no simple such cycles. So all
colors reduce to their parity.

M. Huth, J. H. Kuo & N. Piterman 41

1 1 1

Tee MO0

() l n—1 n

(a) Coloring functions ¢ and ¢’ (b) Coloring function ¢ has Rabin index 2, witnessed by ¢’
give rise to the same winning re-

gions, but not the same winning

strategies. Thus ¢ # ¢/

Figure 4: Two coloring functions ¢ (in red/bottom) and ¢’ (in blue/top) on the same game

Now we can prove that algorithm rabin is basically as precise as it could be. First, we state and
prove an auxilliary lemma which provides sufficient conditions for a coloring function c to have its index
U (c) as its Rabin index Rl(c). Then we show that the output of rabin meets these conditions.

Lemma 2 Let (V,E,c) be a colored arena where

1. there is a simple cycle in (V,E) whose color is the maximal one of ¢

2. forallvinV with ¢(v) > 1, node v is on a simple cycle C with color c¢(v) — 1.
Then there is no ¢’ with ¢ = ¢’ and u(c") < u(c). And so pu(c) equals Rl(c).

Proof : Let k be the maximal color of ¢ and consider an arbitrary ¢’ with ¢ = ¢

Proof by contradiction: Let the maximal color k" of ¢’ satisfy kK’ < k. By the first assumption, there
is a simple cycle Cy whose c-color is k. Since K’ < k and ¢ = ¢/, we know that the ¢’-color of Cy can be at
most k — 2. Let vy be a node on Cy such that ¢’(vy) is the ¢’-color of Cy. Then ¢’ (vg) < k—2. As all nodes
on Cy have c-color k, we have also ¢(vg) > k. For k < 2, then ¢/(vg) < k— 2 gives us a contradiction
c’(vo) < 0. It thus remains to consider the case when k > 2.

By the second assumption, there is some simple cycle C; through vy such that the color of C; is k — 1.
In particular, there is some node v;, in C; with color k — 1. But k— 1 cannot be the color of C; with respect
to ¢’ since vg is on C; and ¢/(vy) < k—2. Since ¢ = ¢/, the ¢’-color of Cj is therefore at most k — 3. So
there is some v on Cj such that ¢'(v;) <k—3 <k—1<c(v).

If ¢(v1) > 1, we repeat the above argument at node v; to construct a simple cycle C, through v; with
color ¢(vy) — 1. Again, there then have to be nodes v| and v, on C, such that the color ¢/(v}) is the
c’~color of C,, and such that ¢/(vy) <k—4 <k—2 < ¢(v;) holds.

We can repeat the above argument to construct simple cycles Cy, Cy,Cs, ... and nodes vo, vy, v, V), V2,5, ...

such that ¢'(vj) <k—j—2<k—j<c(vj)untilk—j<c(vj;) <1.Butthenc'(vj) <k—j—2<1-2=
—1, a contradiction. O

We now show that the output of rabin satisfies the assumptions of Lemma 2. Since rabin is sound
for =, we therefore infer that it computes a coloring function whose maximal color equals the Rabin
index of its input coloring function.

Theorem 1 Let (V,E,c) be a colored arena. And let c* be the output of the call rabin(V,E,c). Then
¢ =c* and p(c*) is the Rabin index of c.

Proof : By Lemma 1, we have ¢ = ¢*. Since = is clearly transitive, it suffices to show that there is no
¢ with ¢* = ¢’ and p(c’) < p(c*). By Lemma 2, it therefore suffices to establish the two assumptions of
that lemma for ¢*. As c¢* is returned by rabin neither cycle nor pop have an effect on it.

42 The Rabin index of parity games

Figure 5: Construction for NP-hardness of deciding whether RI(c) > k for k > 2

The first assumption of Lemma 2 is therefore true since pop has no effect on ¢* and so there must be
a simple cycle in (V,E) whose color is the maximal one in c. This also applies to the case when ¢* has
only one color, as (V, E) has to contain cycles since it is finite and all nodes have outgoing edges.

As for the second assumption, let by way of contradiction there be some node v with ¢*(v) > 1 and
no simple cycle through v with color ¢*(v) — 1. Then cycle would have an effect on ¢*(v) and would
lower it, a contradiction. O

5 Complexity

We now discuss the complexity of algorithm rabin and of the decision problems associated with the
Rabin index. We turn to the complexity of rabin first.

Let us assume that we have an oracle that checks for the existence of simple cycles. Then the
computation of rabin is efficient modulo polynomially many calls (in the size of the game) to that oracle.
Since deciding whether a simple cycle exists between two nodes in a directed graph is NP-complete (see
e.g. [4, 5]), we infer that rabin can be implemented to run in exponential time.

Next, we study the complexity of deciding the value of the Rabin index. We can exploit the NP-
hardness of simple cycle detection to show that the natural decision problem for the Rabin index, whether
RI(c) is at least k, is NP-hard for fixed k > 2. In contrast, for k = 1, we show that this problem is in P.

Theorem 2 Deciding whether the Rabin index of a colored arena (V,Ec) is at least k is NP-hard for
every fixed k > 2, and is in P for k = 1.

Proof : First consider the case when k > 2. We use the fact that deciding whether there is a simple cycle
through nodes s # ¢ in a directed graph (V,E) is NP-complete (see e.g. [5]). Without loss of generality,
for all v in V there is some w in V with (v,w) in E (we can add (v,v) to E otherwise). Our hardness
reduction uses a colored arena (V' E’, c), depicted in Figure 5, which we now describe:

We color s with kK — 1 and ¢ with k, and color all remaining nodes of V with 0. Then we add k+ 1
many new nodes (shown in blue/top in the figure) to that graph that form a “spine” of descending colors
from k down to 0, connected by simple cycles. Crucially, we also add a simple cycle between ¢ and that
new k node, and between s and the new k — 2 node.

We claim that the Rabin index of (V' E’c) is at least k iff there is a simple cycle through s and 7 in
the original directed graph (V,E).

1. Let there be a simple cycle through s and ¢ in (V, E). Since there is a simple cycle between s and
the new k — 2 node, cycle does not change the color at s. As there is a simple cycle through s and ¢,
method cycle also does not change the color at ¢. Clearly, no colors on the spine can be changed by
cycle. Since there is a simple cycle between ¢ and the new k node, method pop also does not change
colors. But then the Rabin index of ¢ is k and so at least .

M. Huth, J. H. Kuo & N. Piterman 43

6 u I3 4 ‘ w
1 3 0
Figure 6: Coloring functions ¢ (blue/top) and ¢’ (red/bottom) with ¢ = ¢ but ¢ Z* ¢/

2. Conversely, assume that there is no simple cycle through s and 7 in the original graph (V,E). It
follows that the anchor j of # has value O or, if & is even, has value —1. In this case, cycle changes the
color at 7 to the parity of k. Then, pop reduces the color of the remaining node colored k to k — 1. Thus,
it cannot be the case that the Rabin index of c is at least .

This therefore proves the claim. Second, consider the case when k = 1. Deciding whether Rl(c) is at
least 1 amounts to checking whether ¢ = 0 where ﬁ(v) =0 for all vin V. This is the case iff all simple
cycles in (V,E, c) have even c-parity. But that is the case iff all cycles in (V,E,c) have even c-parity.

To see this, note that the “if” part is true as simple cycles are cycles. As for the “only if” part, this is
true since if there were a cycle C with odd c-parity, then some node v on that cycle would have to have
that minimal c-color, but v would then be on some simple cycle whose edges all belong to C.

Finally, checking whether all cycles in (V, E, c) have even c-parity is in P. O

The decision problem of whether RI(c¢) = 1 cannot be in NP, unless NP equals coNP. Otherwise, the
decision problem of whether Rl(c¢) < 1 would also be in NP, since we can decide in P whether Rl(c) =0
and since NP is closed under unions. But then the complement decision problem of whether Rl(c) > 2
would be in coNP, and we have shown it to be NP-hard already. Therefore, all problems in NP would
reduce to this problem and so be in coNP as well, a contradiction.

We now discuss an efficient version of rabin which replaces oracle calls for simple cycle detection
with calls for over-approximating cycle detection.

6 Abstract Rabin index

We now discuss an efficient version of rabin which replaces oracle calls for simple cycle detection with
over-approximating cycle detection. In fact, this static analysis computes an abstract Rabin index, whose
definition is based on an abstract version of the equivalence relation =. We define these notions formally.

Definition 4 1. Let rabin® be rabin where all existential quantifications over simple cycles are
replaced with existential quantifications over cycles.
2. Let (V,E) be a directed graph and ¢,c’: V — N two coloring functions. Then:
(a) ¢ =* " iff for all cycles C, the parities of their c- and c’-colors are equal.
(b) The abstract Rabin index R1*(c) of (V,E,c) is min{u(c') | ¢ =* ¢'}.

Thus rabin® uses the set of cycles in (V, E) to overapproximate the set of simple cycles in (V,E). In
particular, ¢ =% ¢’ implies ¢ = ¢’ but not the other way around, as can be seen in the example in Figure 6.

In that example, we have ¢ = ¢’ since all simple cycles have the same parity of color with respect to
c and ¢’. But there is a cycle that reaches all three nodes and which has odd color for ¢ and even color
for ¢. Thus, ¢ Z% ¢ follows.

We now show that the overapproximation rabin® of rabin is sound in that its output coloring
function is equivalent to its input coloring function. Below, in Theorem 3, we further show that this
output yields an abstract Rabin index.

Lemma 3 Let (V,E,c) be a colored arena and let rabin®(V,E,c) return ¢'. Then ¢ =* ¢’ and u(c’) >

Rl(c).

44 The Rabin index of parity games

To prove this lemma, it suffices to show ¢ =% ¢/, as ¢ = ¢’ follows from that, and then this in turn

implies 1 (c’) > Rl(c) by the definition of the Rabin index.

Note that the definition of =% is like the characterization of = in Proposition 1, except that the
universal quantification over simple cycles is being replaced by a universal quantification over cycles for
=% In proving Lemma 3, we can thus reuse the proof for Lemma 1 where we replace = with =%, rabin
with rabin®, and “simple cycle” with “cycle” throughout in that proof.

We can now adapt the results for rabin to this abstract setting.

Lemma 4 Ler (V,E,c) be a colored arena where

1. there is a cycle in (V,E) whose color is the maximal one of ¢

2. forallvinV with ¢(v) > 1, node v is on a cycle C with color c(v) — 1.
Then there is no ¢’ with c =* ¢’ and pu(c') < u(c), and so p(c) = RI%(c).

Similary to the case for algorithm rabin, we now show that the output of rabin? satisfies the
assumptions of Lemma 4. Since algorithm rabin® is sound for =%, we therefore infer that it computes
coloring functions whose maximal color equals the abstract Rabin index of their input coloring function.

Theorem 3 Let (V,E,c) be a colored arena. And let c* be the output of the call rabin®(V,E,c). Then
¢ =% ¢* and U (c*) is the abstract Rabin index RI%(c).

We now study the sets of parity games whose abstract Rabin index is below a fixed bound. We define
these sets formally.

Definition 5 Let 2 be the set of parity games (V,Vy, V1, E,c) with RI1%(c) < k.

We can now show that parity games in these sets are efficiently solvable, also in the sense that
membership in such a set is efficiently decidable.

Theorem 4 Let k > 1 be fixed. All parity games in P can be solved in polynomial time. Moreover,
membership in P can be decided in polynomial time.

Proof : For each parity game (V,Vp,V},E,c) in 2%, we first run rabin® on it, which runs in polynomial
time. By definition of 27, the output coloring function c* has index < k. Then we solve the parity game
(V,Vo,V1,E,c*), which we can do in polynomial time as the index is bounded by k. But that solution is
also one for (V,Vy,V},E, c) since ¢ =% ¢* by Lemma 3, and so ¢ = ¢* as well.

That the membership test is polynomial in the running time can be seen as follows: for coloring
function ¢, compute ¢/ = rabin®(V,E,c) and return true if y(¢’) < k and return false otherwise; this
is correct by Theorem 3. U

We note that algorithm rabin® is precise for colored arenas A = (V, E, ¢) with Rabin index 0. These
are colored arenas that have only simple cycles with even color. Since a colored arena has a cycle with
odd color iff it has a simple cycle with odd color, rabin® correctly reduces all colors to O for such arenas.

For Rabin index 1, the situation is more subtle. We cannot expect rabin® to always be precise, as
the decision problem for Rl(c) > 2 is NP-hard. Algorithm rabin® will correctly compute Rabin index
1 for all those arenas that do not have a simple cycle with even color. But for ¢ from Figure 6, e.g.,
algorithm rabin® does not change ¢ with index 3, although the Rabin index of c is 1.

M. Huth, J. H. Kuo & N. Piterman 45

| Game Type [) [uGs@) [RI%C) [S| R #] Sol [Sol.S | SolR |
Clique[100] 100 100 99 || 0.08 | 388.93 2 13.23 13.06 13.01
Ladder[100] 2 2 2 | 0.11 8.93 1 1.87 1.66 1.68
Jurdzinski[5 10] 12 12 11 || 0.09 44 .25 2 76.98 76.94 76.38
Recursive Ladder[15] 48 46 16 || 0.04 10.46 2 || 310.21 | 309.21 | 174.91
Strategy Impr[8] 237 181 9 1 0.10 54.01 2 || 194.96 45.46 8.99
Model Checker Ladder[100] 200 200 0| 0.14 | 141.95 2 30.90 30.49 0.62
Tower of Hanoi[5] 2 2 1| 046 | 261.10 2 29.43 29.61 45.41

Figure 7: Indices and average times (in ms) for 100 runs for game types named in first column. Next three
columns: original, statically compressed, and rabin®-compressed index. Next three columns: times of
static and rabin®-compression, and the number of iterations within rabin®. Last three columns: Times
of solving the original, statically compressed, and rabin®*-compressed games with Zielonka’s solver

7 Experimental results

We now provide some experimental results. Our objective is to compare the effectiveness of color com-
pression of rabin® to a known color compression algorithm (called static compression), to observe the
performance improvement in solving compressed games using Zielonka’s parity game solver [11], and
to get a feel for how much the abstract Rabin index reduces the index of random and non-random games.

Our implementation is written in Scala and realizes all game elements as objects to simplify imple-
mentation. Our main interest is in descriptive complexity measures and relative computation time.

We programed algorithm rabin with simple cycle detection reduced to incremental SAT solving.
This did not scale to graphs with more than 40 nodes. But for those games for which we could compute
the Rabin index, rabin®(V,E,¢) often computed the Rabin index RI(c) or did get very close to it.

Our implementation of rabin® reduced cycle detection to the decomposition of the graph into
strongly connected components, using Tarjan’s algorithm (which is linear in the number of edges). The
rank function is only needed for complexity and termination analysis, we replaced it with Booleans that
flag whether cycle or pop had an effect.

The standard static compression algorithm simply removes gaps between colors, e.g. a set of colors
{0,3,4,5,6,8} is being compressed to {0, 1,2,3,4}. Below, we write s(c) for the statically compressed
version of coloring function c.

The experiments are conducted on non-random and random games separately. Each run of the ex-
periments generates a parity game G = (V,Vy, V1, E,c) of a selected configuration. Static compression
and rabin® are performed on these games. We report the time taken to execute static compression and
rabin?, as well as the number of iterations that rabin® runs until cycle and pop have no effect, i.e. the
number of iterations needed for (c) to reach RI%(c). Finally, we record the wall-clock time required to
solve original, statically compressed, and rabin®-compressed games, using Zielonka’s solver [11].

We use PGSolver to generate non-random games, detailed descriptions on these games can be found
in [7]. Each row in Figure 7 shows the average statistics from 100 runs of the experiments on correspond-
ing non-random game. We see that rabin® has significantly reduced the indices of Recursive Ladder,
Strategy Impr,andModel Checker Ladder, where RI%*(c) is 0% to 35% of the index p(s(c)) of the
statically compressed coloring function.

Applying rabin® improves performance of solvers. For all three game types, we observe 44% to
98% in solver time reduction between solving statically compressed and rabin®-compressed games.

The time required to perform static compression is low compared to the time needed for rabin®-
compression, but rabin®*-compression followed by solving the game is still faster than solving the orig-
inal game for Recursive Ladder.

46 The Rabin index of parity games
Game Configs | p(c) [u(s(c)) | RI%(c) | S| R #] Sol| SolS| SolR
100/1/20/100 99.16 4534 | 3597 || 0.48 57.04 || 2.05 6.71 5.21 4.84
200/1/40/200 198.97 9191 | 80.29 || 0.12 441.29 || 2.03 12.40 | 11.49 | 11.43
400/1/80/400 399.28 | 184.34 | 172.30 || 0.24 4337.04 || 2.10 || 42778 | 40.62 | 40.58
800/1/160/800 799.08 | 369.76 | 355.67 || 0.47 | 47241.70 || 2.05 || 181.73 | 173.59 | 173.83
1000/1/200/1000 || 999.14 | 462.48 | 447.37 || 0.59 | 106332.96 || 2.05 || 296.53 | 281.60 | 281.70

Figure 8: Indices and average times (in ms) for 100 runs of random games of various configurations
listed in the first column. Next three columns: average original, statically compressed, and rabin®-
compressed indices. The remaining columns are as in Figure 7

Games Ladder and Tower of Hanoi have very low indices and their colors cannot be compressed
further. Method cycle has no effect on Clique games, but pop manages to reduce its index by 1.

We now discuss our experimental results on random games. The notation used to describe randomly
generated parity games is xx/yy/zz/cc, where xx is the number of nodes (node ownership is determined
by a fair coin flip for each node independently), with between yy to zz out-going edges for each node,
and with colors at nodes chosen at random from {0,...,cc}. Also, the games used in the experiments
have 1 as the minimum number of out-going edges. This means that the nodes have no dead-ends. We
also disallow self-loops (no (v,v) in E).

Figure 8 shows the average statistics of 100 runs of experiments on five selected game configurations.
(Our experiments on larger games are consistent with the data reported here, and so not reported here.)
The results indicate that static compression is effective in reducing the colors for randomly generated
games, it achieves around 54% index reduction for all game types. The rabin®-compression achieves
further 3% to 21% reduction. Due to the relatively small index reduction by rabin®, we do not see
much improvement in solving rabin®-compressed games over solving statically-compressed ones. In
addition, rabin® reduces p(c) to RI%(c) in one iteration for all of the randomly generated games G.

The results in Figure 8 show that these games take an average of more than 2 rabin® iterations. This
indicates that certain game structure, such as the one found in the game in Figure 3, is present in our
randomly generated games

The experimental results show that rabin® is able to reduce the indices of parity games significantly
and quickly, for certain structure such as Recursive Ladder. Hence it effectively improves the overall
solver performance for those games.

However, algorithm rabin® has a negative effect on the overall performance for other non-random
games and experimented random games, when we consider rabin®-compression time plus solver time.

8 Related work

Carton and Maceiras develop an algorithm (denoted here Rabin,) that computes and minimizes the Ra-
bin index of deterministic parity word automata [2]. Deterministic parity word automata can be thought
of as 1-player parity games, where the player chooses input letters. An infinite word can be compared
to a strategy with memory for the player. The word is accepted if the strategy is winning, that is, if the
minimal color to be visited infinitely often is even. Minimization of the Rabin index should preserve the
language of the automaton or, put in our terms, every winning strategy should remain to be winning.
The pseudocode of Rabin, is shown in Figure 9. Algorithm Rabin, constructs the “coloring de-
pendencies” of all states in an automaton arena by decomposing the automaton into maximal strongly
connected components (SCCs). For each R being a maximal SCC, it removes the states with the maxi-
mal color (and pushes them onto a stack), then recursively SCC decomposes the remaining arena of R.

M. Huth, J. H. Kuo & N. Piterman 47

Rabin, (V,E,c) {
define a new colouring function ¢ for (V,E,c);
reduce(V,E,c,c');
return c;
}
reduce(V,E,c,c') {
i = 0; decompose (V,E) into maximal SCCs;
for (R € SCCs){
if (w(R) == 0) m = 0;
else {
R ={v € R | clv) # wn(R)}; m = reduce(R,E|g,c|r,c|r);
if (#(R) - m is odd) m = m + 1;

}
for (v € {ve R | ¢(v) = m(R)})
d(v) = m;
i = max{i, m};
}
return i;

}

Figure 9: Algorithm to compute Rabin index [2] for a parity automaton A = (V, E, ¢), where R C V, 7(R)
=max{c(v) | v € R}, E|g is E with restriction to nodes in R, and similarly for c|g.

Eventually, the input arena is reduced to a set of states that exist in their own respective SCCs (hence do
not exist in the same cycle as each other). These states are assigned the minimal colors m (which is 0
or 1 depending on their original parities). The algorithm then propagates the new colour m to the states
in the “layer” above. Those states receive a new colour m or m + 1, depending on whether their original
parities equal the parities of the states in the “layer” below. In essence, SCC decomposition is used to
detect the cycle dependency of states and this techniques is also used in our implementation of rabin®.

Our notion of Rabin index is a natural generalization to 2-player games. We require that for every
pair of strategies (o,), their outcome should not change. As mentioned, the weaker notion requiring
to preserve winning strategies of each player separately is not interesting. Such a Rabin index associates
rank O with the winning region of player 0 and 1 with the winning region of player 1. It can be computed
by solving the game.

The transition from 1-player setting to 2-player setting requires a more elaborate algorithm for com-
puting the Rabin index. Although presented differently, algorithm Rabin, has the same effect of cycle
in rabin®, which approximates the Rabin index. In our context of 2-player games one has to replace
SCC decomposition (or cycle detection) by simple-cycle detection. Furthermore, in order to compute the
Rabin index of a 2-player game we have to add the procedure pop. These two additional components are
crucial for the computation of the Rabin index of games (as shown in this paper).

The differences become crucially important in terms of the computational complexity and degree of
possible color compression in the setting of parity games. Using the colored arena in Figure 3 as an
example, Rabin, will make no change to the red coloring function, whereas rabin® reduces its index to
5 (using pop), and rabin reduces it even to 3.

9 Conclusions

We have provided a descriptive measure of complexity for parity games that (essentially) measures the
number of colors needed in a parity game if we forget the ownership structure of the game but if we do

48 The Rabin index of parity games

not compromise the winning regions or winning strategies by changing its colors.

We called this measure the Rabin index of a parity game. We then studied this concept in depth. By
analyzing the structure of simple cycles in parity games, we arrived at an algorithm that computes this
Rabin index in exponential time.

Then we studied the complexity of the decision problem of whether the Rabin index of a parity game
is at least k for some fixed k > 0. For k equal to 1, we saw that this problem is in P, but we showed
NP-hardness of this decision problem for all other values of k. These lower bounds therefore also apply
to games that capture these decision problems in game-theoretic terms.

Next, we asked what happens if our algorithm rabin abstractly interprets all detection checks for
simple cycles through detection checks for cycles. The resulting algorithm rabin® was then shown to
run in polynomial time, and to compute an abstract and sound approximation of the Rabin index.

Our experiments were performed on random and non-random games. We observed that rabin®-
compression plus Zielonka’s solver [11] in some cases speed up solving time. The combination achieved
29% and 85% time reduction for Jurdzinski and Recursive Ladder games, respectively, over solv-
ing the original games. But for other game types and random games, no such reduction was observed.
We also saw that for some structured game types, the abstract Rabin index is dramatically smaller than
the index of the game.

In future work we mean to investigate properties of the measure RI1%(¢) — RI(c). Intuitively, it mea-
sures the difference of the Rabin index based on the structure of cycles with that based on the structure
of simple cycles. From Figure 4(b) we already know that this measure can be arbitrarily large.

It will also be of interest to study variants of Rl(c) that are targeted for specific solvers. For example,
the SPM solver in [8] favors fewer occurrences of odd colors but also favors lower index. This suggests a
measure with a lexicographical order of the Rabin index followed by an occurrence count of odd colors.

References

[1] Dietmar Berwanger, Anuj Dawar, Paul Hunter & Stephan Kreutzer (2006): DAG-Width and Parity Games.
In: STACS 2006, Proceedings of the 23rd Symposium on Theoretical Aspects of Computer Science, LNCS
3884, Springer-Verlag, pp. 524436, doi:10.1007/11672142_43.

[2] Olivier Carton & Ramén Maceiras (1999): Computing the Rabin Index of a Parity Automaton. ITA 33(6),
pp. 495-506.

[3] E.A. Emerson & C. Jutla (1991): Tree Automata, 1-Calculus and Determinacy. In: Proc. 32nd IEEE Symp.
on Foundations of Computer Science, pp. 368-377, doi:10.1109/SFCS.1991.185392.

[4] Shimon Even, Alon Itai & Adi Shamir (1976): On the Complexity of Timetable and Multicommodity Flow
Problems. SIAM J. Comput. 5(4), pp. 691-703, doi:10.1109/SFCS.1975.21.

[5] Steven Fortune, John Hofcroft & James Wyllie (1980): The Directed Subgraph Homeomorphism Problem.
Theoretical Computer Science 10, pp. 111-121, doi:10.1016/0304-3975(80)90009-2.

[6] Oliver Friedmann & Martin Lange (2009): Solving Parity Games in Practice. In Zhiming Liu & Anders
Ravn, editors: Proc. of Automated Technology for Verification and Analysis, Lecture Notes in Computer
Science 5799, Springer, pp. 182-196, doi:10.1007/978-3-642-04761-9_15.

[7] Oliver Friedmann & Martin Lange (2010): The PGSolver Collection of Parity Game Solvers. Technical
Report, Institut fiir Informatik, LMU Munich. Version 3.

[8] Marcin Jurdziniski (2000): Small Progress Measures for Solving Parity Games. In: STACS ’00: Proceedings
of the 17th Annual Symposium on Theoretical Aspects of Computer Science, Springer-Verlag, London, UK,
pp- 290-301, doi:10.1007/3-540-46541-3 _24.

M. Huth, J. H. Kuo & N. Piterman 49

[9] J. Voge & M. Jurdziriski (2000): A Discrete Strategy Improvement Algorithm for Solving Parity Games. In:
Proc 12th Int. Conf. on Computer Aided Verification, Lecture Notes in Computer Science 1855, Springer,
pp- 202-215, doi:10.1007/10722167_18.

[10] K. Wagner (1979): On w-Regular Sets. Information and Control 43, pp. 123-177, doi:10.1016/S0019-
9958(79)90653-3.

[11] Wieslaw Zielonka (1998): Infinite Games on Finitely Coloured Graphs with Applications to Automata on
Infinite Trees. Theoretical Computer Science 200(12), pp. 135 — 183, doi:10.1016/S0304-3975(98)00009-7.

A Faster Tableau for CTL*

Mark Reynolds
School of Computer Science and Software Engineering, Theelsity of Western Australia

mark.reynolds@uwa.edu.au

There have been several recent suggestions for table@mss/&ir deciding satisfiability in the practi-
cally important branching time temporal logic known as CTLlfthis paper we present a streamlined
and more traditional tableau approach built upon the aiglearlier theoretical work.

Soundness and completeness results are proved. A prototpbEmentation demonstrates the
significantly improved performance of the new approach oarge of test formulas. We also see
that it compares favourably to state of the art, game andwmat®based decision procedures.

1 Introduction

CTL* [5, 3] is an expressive branching-time temporal logitemding the standard linear PLTL [13].
The main uses of CTL* are for developing and checking thesmtness of complex reactive systems [6]
and as a basis for languages (like ATL*) for reasoning abaultiragent systems [8].

Validity of formulas of CTL* is known to be decidable with antamata-based decision procedure of
deterministic double exponential time complexity [5, 4].IBhere is also an axiomatization [14]. Long
term interest in developing a tableau approach as well has because they are often more suitable
for automated reasoning, can quickly build models of sati$i formulas and are more human-readable.
Tableau-style elements have indeed appeared earlier ia smdel-checking tools for CTL* but tableau-
based satisfiability decision procedures have only justestdo be developed [17, 7].

Our CTL* tableau is of the tree, or top-down, form. To decitle validity of ¢, we build a tree
labelled with finite sets of sets of formulas using ideasechtiues and colours originally from [14]
and further developed in [16, 17]. The formulas in the lalzeisie from a closure set containing only
subformulas of the formula being decided, and their negatidhose earlier works proposed a tableau in
the form of a roughly tree-shaped Hintikka-structure, thait utilised labels on nodes which were built
from maximally consistent subsets of the closure set. Eachula or its negation had to be in each hue.
In this paper we make the whole system much more efficient byisig how we only need to consider
subformulas which are relevant to the decision.

In the older papers we identified two sorts of looping: goamplag allowed up-links in our tableau
tree while bad looping showed that a branch was just gettingdr and longer in an indefinite way. In
this paper we tackle only the good looping aspect and leagddoging for a follow-on paper.

A publicly available prototype implementation of the apgeb here is available and comparisons
with existing state of the art systems, and its Hintikkdestgredecessor, show that we are achieving
orders of magnitude speed-ups across a range of examplesvithany other pure tableau system,
though, this one is better at deciding satisfiable formudéiser than unsatisfiable ones.

In section 2 we give a formal definition of CTL* before secti®mefines some basic building block
concepts. Subsequent sections introduce the tableau, sltayt@in an example, look at a loop checking
rule and show soundness. Section 7 presents the tableawucbios rules and then we show complete-
ness. Complexity, implementation and comparison issuesligcussed briefly in section 10 before a
conclusion. There is a longer version of this paper avaslaisl[15].

Gabriele Puppis, Tiziano Villa (Eds.): Fourth Interna@bn © Mark Reynolds
Symposium on Games, Automata, Logics and Formal Verifinatio This work is licensed under the
EPTCS 119, 2013, pp. 50-63, d0i:10.4204/EPTCS.119.7 Creative Commons Attribution License.

Mark Reynolds 51

2 Syntax and Sematics

Fix a countable se¥’ of atomic propositions. A (transition) structure is a 8 = (S R, g) where:
S isthe non-empty set states
R is atotal binary relatio Sx Si.e. for everys € S, there is somé € Ssuch thafs;t) € R.
g :S— Z(Z)isalabelling of the states with sets of atoms.

Formulas are defined along-long sequences of states. féllpath in (SR) is an infinite sequence
(%0,51,%,...) Of states such that for ea¢h(s,s+1) € R For the fullpatho = (s,s1,%,...), and any
i > 0, we writeg; for the states and o for the fullpath(s,S+1,S+2,...).

The formulas of CTL* are built from the atomic propositioms.¥ recursively using classical con-
nectives— and A as well as the temporal connectivEs U andA. We use the standard abbreviations,
true, falsg, v, —, <>, Fa =trueUa, Ga = -F—-a, andEa = —-A—q.

Truth of formulas is evaluated at fullpaths in structureg Wite M, o = a iff the formulaa is true
of the fullpatho in the structureM = (SR, g). This is defined recursively by:
M,okE=p iff peg(op),anype ?
M,o = —a iff M,oka
M,oEanpB iff M,oFaandM,o =B
M,o = Xa iff M,0-1Fa
M,o=aUB iff thereisi >0 suchthaM,o-; = and foreach, if0 < j <ithenM,o>; =a
M,o = Aa iff for all fullpaths o’ such thatop, = o) we haveM, o’ |= a
We say thatr is valid in CTL*, iff for all transition structuredM, for all fullpathsg in M, we have
M, 0 = a. Saya is satisfiablein CTL* iff for some transition structurd and for some fullpatio in M,
we haveM, o = a. Clearlya is satisfiable iff~a is not valid.

3 Hues, Coloursand Hintikka Structures

Fix the formulag whose satisfiability we are interested in. We wuijie< @ if (¢ is a subformula ofp.
The length ofg is |¢@|. Theclosure sefor piscl o= {Y,—y | Y < @}.

Definition. [MPC] Say that C cl ¢ is maximally propositionally consistent (MP®&)r g iff for all
a,Bec o ML) if B=-athen @ caiff a £a);and M2)ifaAB €cl pthen @ A €aiffbotha €a
andp € a).

The concepts of hues and colours were originally inventefil4} but we use particular formal
definitions as presented in [16, 17, 15]. A hue is supposedjituce (approximately) a set of formulas
which could all hold together of one fullpath. Definition.ug] a C cl ¢ is ahuefor ¢, or ¢-hue, iff all

these conditions hold:
H1l) ais MPC;

H2) ifaUPB caandfB ¢ athena € a;
H3) ifaUBe(cle) \athenB ¢ a;
H4) if Aa € athena € a.

Further, letH, be the set of hues @.

For example, if-(AG(p — EXp) — (p — EGp)), the example known as6,, in [17], then here is

52 Tableau for CTL*

a hue known ak38:

{~(AG(p— EXp — (p—EGp),(AG(p =+ EXp A=(p—EGp)),
AG(p— EXp),G(p— EXp),true,~—(p— EXp),
(p—EXp),p,~—mEXpEXp-—Xp,Xp,
-(p—EGp),(pA—EGp),-EGpA-Gp,~Gp,F—p,~—p}

The usual temporal successor relation plays a role in detarghallowed steps in the tableau. The
relationry is put between huea andb if a fullpath o satisfyinga could have a one-step sufftx-1
satisfyingb: Definition. [rx] For huesa andb, puta rx b iff the following four conditions all hold:

R1) if Xa € athena € b;

R2) if -Xa € athen—a € b;

R3) ifaUB eaand—-f cathenaUp € b; and
R4) if-(aUB)ecaanda € athen-(aUpB)eh.

We also introduced an equivalence relation aiming to teletvr two hues could correspond to
fullpaths starting at the same state. We just need the huagrte on atoms and on universal path
quantified formulas: Definition. fa] For huesa andb, puta ra b iff the following two conditions both
hold: Al) forallpe .Z, p< aiff pe b; and A2)Aa € aiff Aa €b.

Now we move up from the level of hues to the level of coloursul@a@ set of hues be exactly the
hues corresponding to all the fullpaths starting at a palgticstate? We would need each pair of hues to
satisfy ra but we would also need hues to be in the set to witness all tiseeetial path quantifications:

Definition. [colour] Non-empty C H,, is acolour of ¢, or ¢-colour, iff the following two conditions
hold. For alla,b € ¢, C1)arp b; and C2) ifa € c and—Aa € athen there ib € c such that-a € b. Let
Cy be the set of colours ap.

The formulas—X p,EX pare both inh37, another hue from the example in [17], 887} is not a
colour. HoweverX p € h38 witnesses the existential path quantificatior{1s&7,h38} is a colour.

We define a successor relatiéty between colours. It is defined in terms of the successoiagnlak
between the component hues and it will be used to define tlressior relation between tableau nodes,
themselves corresponding to states in transition strestun terms of the colours which they exhibit.
Note that colours, and tableau nodes, will, in general, l@anen-singleton range of successors and this
relationRx just tells us whether one node can be one of the successanstbiea node.

Definition. [Rx] For all c,d € Cyp, putc Rx d iff for all b € d there isa € ¢ such thatarx b.

It is worth noting that colours and hues are induced by adtaalsition structures. We will need
these concepts in our completeness proof.

Definition. [actualg-hue] Suppos¢S R, g) is a transition structure. i is a fullpath throughS R)
then we say that = {a € cl ¢ | (SR, 9),0 = a} is theactual (¢p-) hueof o in (SR, Q).

It is straightforward to see that this isgahue. It is also easy to show that along any fullpaththe
relationry holds between the actual huemfand the actual hue of its successor fullpath .

Definition. [actualg-colour] If s € Sthen the set of all actual hues of all fullpaths throuygR)
starting atsis called theactual (¢-) colourof sin (SR, g).

Again, it is straightforward to show that this is indeeg-aolour and also thaRyx holds between the
actual colour of any state and the actual colour of any oflitsessors.

4 Tableau

The tableaux we construct will be roughly tree-shaped: thditional upside down tree with a root at
the top, predecessors and ancestors above, successorssaeddhnts below. However, we will allow

Mark Reynolds

{h28,h30}

{h37,h38}

Figure 1:

{h37,h38}

A Partial Tableau for6,»

53

54 Tableau for CTL*

Definition. Atableaufor @ € L is a tuple(T,s,n, 1) such that:
H1) T is a non-empty set afodes one distinguished element called tloet;
H2) n is the phue label enumerator, so that for eaetl, n; : N — Cloisa partial map,
H2.1) the domain ofy; is {0,1,...,n— 1} for somen > 0 denotedn;
H2.2) n(i) is theith label phue of (if defined);
H3) sis the successor enumerator, so that for éaefi, 5 : N — T is a partial map,
H3.1) the domain of is a subset 00, 1,...,|n:| — 1}; (i) theith successor df
H3.3) for each € T, there is a unigue finite sequenggr, ...,rx from T called theancestorof t
such that the; are all distinctyg is the rootr, =t and for eachj, rj 1 is a successor af;
H4) @€ Nroot(0);
H5) mtis the predecessor map whereby, if € T then eitherr, is undefined
and we say thatis not a predecessor af or for all j < |u|, 7,(j) =i < |t| and
we say that théh phue int is a predecessor of theth hue inu.
H6) if (i) = uthens,(0) =i (i.e. theith phue int is a predecessor of the Oth phuesifi));

Figure 2: Definition of Tableau

up-links from a node to one of its ancestors. Each node wilabelled with a finite sequence of sets of
formulas from the closure set. We will call such a sequencgets goroto-colouror pcolour. The sets,
or proto-hues (phues)n the pcolour are ordered and once completed the node ai# lone (ordered)
successor for each phue.

The ordering of the successors will match the ordering ohtles (H3.1 and H6) so that we know
there is a successor node containing a successor phue fopleae in the label. The respective orderings
are otherwise arbitrary.

A proto-hue (phuejs just a subset afl .

See Figure 2 for our definition of a tableau.

Definition. Say that the tableg, s, n, 1) hassupported labellingf each formula in each phue in
each label is supported, as follows. Consider a fornoutan; (i). Determining whethea is support for
not depends on the form of:

— pis supported im;(0). Otherwise, i.e. for > 0, it is only supported ip € n;(0).

— Same with—p.

— —-a supported iffa € ny(i).

— a AP supported iffo € n(i) andp € ne(i).

— —(a AP) supported iff eithera € (i) or =B € ne(i).

— Xa € n(i) supported iff 1) there is € T with u= (i) and 2) for allu € T, for all j with
(i) =1, a € nu(j).

— =Xa € n(i) supported iff 1) there is € T with u=5(i) and 2) for allu € T, for all j with
(1) =1, ~a € nu(j).

— aUpB e n(i) supported iff 1)8 € ny(i); or 2) all 2.1)a € n(i); 2.2) there isu € T with
u=s(i); and 2.3) for allu € T, for all j with 1¢,(j) =i, aUB € nu(j).

— —(aUpB) e n(i) supported iff 1)~ € n(i); and 2) either 2.13a e n(i); or 2.2) both 2.2.1)
there isu € T with u=s(i); and 2.2.2) for alu € T, for all j with 7§,(j) =i, ~(aUB) € nu(j).

— Aa e n(i) supported iff for allj < |, a € n(j).

— —Aa € n(i) supported iff there is some< |n|, ~a € ni(j).

A tableau issuccessfully finisheidf it has no leaves, the predecessor relation is definedIgrhaks
and the tableau does not fail any of the three checks that tnadirce below: LG, NTP and the non-

Mark Reynolds 55

—

/ Vo .

{pFE-p} {p,Cp}
ipr

Figure 3: Example tableau.

existence of direct contradictions (@ se) in phues.

It is common, in proving properties of tableau-theoretipraaches to reasoning, to refer to labelled
structures aslintikka structuresf the labels are maximally complete (relative to a closwgg.sWe say
that one of our tableauiT, s, n,) is a Hintikka tableau iff the elements of eaghare all hues (not just
any phues). The older tableau approach in [17] was basedruikké tableaux.

5 Tableau Examples

Figure 1 is an example (unfinished) tableau illustratingegainshape. There are 11 nodes, each with
successors marked, and each labeled with a set of phues. tiddteome of the successor relations
involve up-links:nl is a successor of3. We just name the phues rather than listing their contdiftsre
are more details about this example in [17] as, in fact, itlirgikka-tableau, which is a special type of
the tableau we are introducing in this paper. We use Hinitlkdeaux later in the completeness proof
here.

Figure 3 shows a smaller tableau in more detail. He we showlibes, which make up the pcolour
labels of nodes and we show the predecessor or tracebackimaeme cases.

6 ThelLG test and Soundness

In this section we will briefly describe the LG rule which isadkeau construction rule that prevents bad
up-links being added. LG is used to test and possibly failbéetau. The test is designed to be used
soon after any new up-link is added after being proposed &y @OP rule. If the new tableau fails the
LG test then “undo” the up-link and continue with alternatithoices. We then show that if a tableau
finishes, that is has no leaves, and passes the LG test thearétrgees satisfiability.

There was also a very similar LG test in the earlier work onattiginal slower tableau method [17].
In that paper, we show how to carry out the LG check on a taldealuwe prove some results about its
use. The check is very much like a model check on the tabledars®/e make sure that every phue
in a labelmatchesor is a subset of an actual hue at that node in a transitioictate defined using a

56 Tableau for CTL*

A — M
. {pXph {AF-p} . {pXpr {F-p}
\ R ST \ At S Q.-
N _ / N _ /
L {-p.G(p0),Fra)

Figure 5: These two loops fail LG.

valuation of atoms based on the labels. It has polynomiatingntime in the size of the tableau so it is
not a significant overhead on the overall tableau constm@tigorithm.

Due to space restrictions we do not go through the full dewiilthe only very slightly different
LG rule used for the faster tableaux here. Instead we giveedomef motivation examples. The first
example shows us that not all up-links are allowable: e.ggde labelled withp, AF—p which also has
an immediate loop. See left hand example in Figure 4. Thénkpalould not be allowed by the LG rule.

The right hand example in Figure 4, with an allowable up-lamd also separately an unsatisfiable
leaf, is allowed by LG.

The example in Figure 5 has two loops, each one individuabeptable but not both. The LG rule
fails the tableau when both up-links are added.

Now we show that ifp has a successfully finished tableau tlgeis satisfiable. This is the soundness
Lemma.

Lemma. Ifg has a successfully finished tableau tlyeis satisfiable.

Here we just outline the proof: details in [15]. Say tkats, n, m) is a successfully finished tableau
for @. Define a structurd = (T, R g) by interpreting thes relation as a transition relatiay and using
n to define the valuatiog on nodes.

By definition of matching, after a final check of LG there is attual hudo of the root such that
Nroot (0) C b. This means thap holds along some fullpath in the final structure.

Mark Reynolds 57

7 Building atree

In this section we briefly describe how a tableau is built vime simple operations, or rules. We start
with an initial tree of one root node labelled with just onauphcontaining onlyp. The rules allow
formulas to be added inside hues in labels, new hues to bel adldkbels and new nodes to be added as
successors of existing nodes. The rules are generally etanrdinistic allowing a finite range of options,
or choices, at any application.

There are some properties to check such as LG, described,adouy NTP described below. We also
check that there are no hues containing both a formula amggation, and we check th&dse is not
contained in a phue. If these checks fail then the tableaddilesl and we will need to backtrack to
explore other possible options at choice points along the wa

The tableau succeeds if there are no leaves.

7.1 Basic Tableau Rules

Here are most of the basic rules, in an abbreviated notation:

{{ma)) {{anB)) @B . (Xap) L {=Xa) -0
2NEG: "y CONI Ty DPISimayrimey NEX fxayys ey NNX (5xary=(-ap

: {{aUB > {{}) . ({=(@UB ({1}

UNT: meuss—0Tteusai=eopy VUN (S@up—p—a -0 T (-(a0p).~B.a1] > ((-(@Up)]]
. (o - {epL) . {{-Aa}) . {{Aa)0)

ATM: Torir VAT i ep POS e —ajiTiAar a7 VEC: ada) {a]]

The rules are described in detail in [15] but the notatioregithe main ideas. Here are details of a
few of the rules above.

DIS: If =(a AB) € ni(j) then can extendT,s, n,m) to (T',s,n’,) via either: DIS1 or DIS2 as
follows. DIS1 produces$T’,s,n’, ') suchthafl’ =T, s = s, and for allt’ #t, ny = n; and for alli’ #1i,
n{(i") = ni(i"). However,n{(i) = ni(i)U{—a}. DIS2 is similar but us§ instead ofa.

NEX: If Xa € ni(i) and there isi€ T andj with 1i(j) =i then can exten(T,s,n, m) to (T',s,n’,)
suchthafl’ =T,s =s,andn/(j) =nu(j)u{a}. Ift e T butthereis n&(j) € T then extendT,s,n, i)
to (T',s,n’, ') using new object™ such thafl’ =T U{t"}, §(i) =t*, n/, (0) = {} andr® (0) =i. For
all other argumentss, n’ and 7 inherit values frons, n and T respectively.

ATM: If an atomp € n;(j) andk < || then can extendT,s,n, m) to (T',s,n’,) suchthal’' =T,
s =s, and for allt’ #t, nv = ny and for alli’ # k, n{(i") = n:(i"). However,n{(k) = n:(k) U {p}.

POS: If =Aa € ni(j) andn = |n| then can extendT,s,n, m) to (T',s,n’,) via one of POgfor
somek =0,1,2,...,n as follows. Fok < n, PO% involves extendindT,s,n, m) to (T',s,n’, ') where
T'=T,d =s andforallt’ #t, ny = ny and for alli’ £k, n{(i") = n:(i"). Howevern{(k) = ni(k)U{—a}.
However, POginvolves extendindT,s,n,m) to (T',s,n’, M) whereT’ =T, s = s, and for allt’ #t,
nv = ny and for alli’ £k, n/(i") = n:(i"). However,n/(k) = ny(k) U{-a}.

There are also a couple of rules not sketched above.

PRED: If t,ue T anduis a successor afbut r(t,(j)) is not defined then we can exteil s,n, 1)
to (T',s,n’,) via one of PRERfor somek =0,1,2,...,|n;| — 1 as follows.

Fork < |n:|, PREL involves extendingT,s,n, m) to (T’,s,n’,) whereT' =T, s =s,andn’ =n.
However, ! (j) = k.

58 Tableau for CTL*

Fork = |nt|, PREL involves extendindT,s,n,m) to (T',s,n’,) whereT’ =T, butn’ = n but
giving t an extra empty phug(k) = {}; ands=s.

Later we need to addkih successor farand fill in formulas inn{ (k).

Note thatt now potentially becomes unsupported, untraceable andisiméidh, again.

LOOP: Supposs is an ancestor of the paremt of u, then we can choose either to replace tthe
to u edge by an up-link fronu~ tot, or to not do that replacement (and continue the branch riyoma

(It is worth remembering which choice you make and not try #gain if it did not work.)

Note that, as in normal successors, we will alsoquti) =t and 3" (0) =i where previously we
hads,- (i) = u. All the other phues im; will also have to have predecessors chosen amongst the phues
in ny-. We will use the PRED rule to do this for each one.

Note also that making such an up-link can possibly cause sesulent consequential failure of the
tableau. A contradiction could be introduced into the hd@stbhe NTP could fail and/or the LG property
could fail. It is possible to test for a few of these potentiedbblems just before making use of this rule
and act accordingly.

7.2 TheNTP check: nominated thread property

The LG property check that every looping path is noticed lgylétibels in nodes. The converse require-
ment is taken care of by the much simpler NTP check.

We put a special significance on the initial hue in each colabel. This, along with the next
condition, helps us ensure that each hue actually has afalipitnessing it. We are going to require the
following property, NTP, of the tableaux which we construct

First some auxiliary definitions: Definition. [hue thread]dposeo is a path throughiT,s,n, m). A
hue threadthrougho is a sequencé of hues such tha€ | = |0, for eachj < |&|, &; € n(ogj) and for
eachj < [&|—1,¢&jrx¢j 1.

Definition. [fulfilling hue thread] Suppose is a path throughT,s,n,m) and ¢ is a hue thread
througho. We say that is fulfilling iff either |o| < w, or |o| = w and all the eventualities in eadh
are witnessed by some latéy; i.e. if a U € ¢ then there ig > i such tha3 € &;.

Definition. [the nominated thread property] We say that #igddau(T,s, n,) has thenominated
thread property(NTP) iff the following holds. Suppose that for @l T such that 0< |s|, 5(0) is an
ancestor of and thatp = (0),ty, ..., t =t is a non-repeating sequence with eh = s, (0). Let g be
the fullpath(to,t1, ..., t, to, t1, ..., t, o, t1, ...) and& be the sequencgy, (0), N, (0), ..., Ny, (0), Ny, (0), ...) of
hues ing. Thené is a fulfilling hue thread fow.

It is straightforward to prove that this is equivalent to ckiag that each eventuality in,(0) (or
in all, or any,n; (0)) is witnessed in at least one of timg (0). So it is neither hard to implement nor
computationally complex.

Using the rules described above, using any applicable oranyatstage, allows construction of
tableaux. We know that the LG rule ensures that any sucdemséis which we build thus will guar-
antee thatp is satisfiable. In the next section we consider whether webodd a successful tableau for
any satisfiable formula in the way.

8 Completeness Using the Hintikka Tableau

In [17], the completeness result for the tableau in that pagbews that for any satisfiable CTL* formula
there is a finite model satisfying certain useful properdied from that we can find a successful tableau

Mark Reynolds 59

(as defined in that paper) for the formula. In fact the tableanstructed in that paper is just a special
form of the tableaux that we are constructing in this papgey tare Hintikka structures.

Definition. A structure(T,s,n, m) is a Standard Hintikka Tableator ¢ iff (T,s,n,n) is a finite
finished successful tableau fprand for each, for eachi, n;(i) is an MPC subset dafl ().

Thus, in a Hintikka tableau, the labels tell us exactly wHmtmulas hold there.

The completeness result in [17] shows the following, in ®ohthe concepts defined in this paper:

Lemma. Ifg € L is satisfiable then it has a Standard Hintikka Tableau.

The proof of this lemma is a straightforward translationted tlefinitions from [17] but we need to
specify how to define our current predecessor relatiand we also need to check that the tableau is
finished.

The predecessor relationis not made explicit in the tableau structures of the eapéggrer. Instead
we require that the colour of a notlés related by a successor relatiBg between colours to the colour
of any successdf. This means that for any hue in the coloutt'athere is a hué in the colour oft such
thath andh’ are related by a successor relation between hues. We canalsa buéh as the predecessor
of h" and so definer.

To show that the tablea(lr,s,n,) is finished, we just need to check all the rules of our tableau
construction and make sure none require the tableau to getian any way. This needs to be done
each rule at a time, and needs to be done carefully, althauglstraightforward.

The proof in [17] uses a finite model theorem for CTL* to obtaioranch boundednessgsult on the
Hintikka tableau. We can guarantee existence of a such eaalith a certain function of the length of
the formula bounding the length of each branch (before alinlp- The bound is triple exponential in
the length of the formula, so rather large.

Thus we can conclude that each satisfiable formula has aatalbat we can not yet claim that it is
a tableau which can be constructed by our rules.

In the rest of this section we describe how we can show thgidfsatisfiable then there is a sequence
of applications of our tableau rules that allow the constomcof a successful tableau fqr. Suppose
@ is satisfiable. From the lemma above we know that there is @esstul, branch-bounded, supported
tableauT > = (T',s,n’, 7) for ¢.

In [15], we show how to build a related, successful tableauwpfm a step by step manner only using
the construction rules from section 7.1. Thus we make a segie, T, ... of tableaux each one using
a construction step to get to the next.

In order to usd ~* to guide us, we also construct a sequence of maps1,W,, ..., eachw; relating
the phues of the labels of the nodesTbto the hues of the labels of the nodesTof.

Thus eachw; maps ordered pairs which are nodes paired with indices &r aiich pairs. Suppose
thatT' = (T,s,n,m) andT = = (T’,9,n’,17). Sayt € T' andj < |n|. Thenwi(t, j) will be defined: say
thatw;(t, j) = (u,k) forue T'. Thenk < |n/|. The idea in this example is that is associating thgth
phue oft with thekth phue ofu.

All the while during the construction we ensure thg@maps each node ifi' to a node ifT ~* which
has a superset label.

We also show that the constructed tableau does not fail astaigge if one of the check rules such as
LG, NTP or the existence of direct contradictions in phudsis Tollows from the fact that the phues in
its labels are subsets of the hues in the labels of the Himtikleau.

If T is finished (leafless), supported and all predecessorstbgistve are done. F is not supported
then choose any formula in any phue in the label of any node that is not supported. bdipg on the
form of o we apply one of the tableau rules to add some successor, ergune and/or some formula(s)
in a phue that will ensure that is then supported. See [15] for details.

60 Tableau for CTL*

There are only a finite number of formulas that can be addedi@s m labels in a finite structure
which is a subset of ~®. This guarantees that the process will eventually terrainat

Thus every satisfiable formula has a successful tableauhvdaie be found via our set of rules.

In fact, we can go further and get an even better completarsalt. We can show that each formula
@ only has a finite number of tableaux which respect the branchdbs and a simple bound on branching
factor. Furthermore, if there is a successful tableau theretwill be one obeying these bounds. There
are at most #l hues and so each node in a Hintikka tableau has at Mstiu@cessors: by the form of
completeness proof we can enforce the same bound on our repegajj tableaux. As we also have a
finite bound on the length of branches there are clearly oniiefiy many tableaux for any particular.

Lemma. Givenp, there are only a finite number of tableaux which respect thadh length bound
and the branching degree bounds.

In this definition of tableau we have guaranteed terminatifcemy tableau construction algorithm by
putting a simple but excessive bound on the length of branchkis allows us to conclude failure in a
finite time and to also abbreviate the search for succesabigdux.

9 Stopping Repetition: coming up in follow-on paper

In this paper we have only briefly mentioned the limit on thegkl of branches as a way of guaranteeing
that there are only finitely many tableau, and so that a seailtberminate one way or another. The
limit, based on a theoretical upper bound on the minimal Ciiriodel size, is very generous and hence
this is an inefficient way of cutting short tableau searclBzng so generous slows down both negative
and positive satisfiability reports.

In order to make some sort of working implementation to destraite the practicality of this tableau
it is necessary to have a better way of preventing the castgiruof wastefully long branches. For want
of better terminology we will call such a facility, a “repidin checker”.

The task of making a quick and more generally usable repetdhecker will be left to be advanced
and presented at a later date. In fact, eventually we hopeotode a useful set of criteria for earlier
termination of construction of branches depending on tbpgmties of the sequence of colours so far. A
simple example of the sort of criterion is the repeated ape of the same sequence of colours and
hues along a non-branching path without being able to asctstiny up-links. Other more sophisticated
ideas are easily suggested but we want to develop a moreratsteset of tests before presenting this in
future work.

In [17], we present some basic repetition checking testthiHintikka style tableau. These can be
used in order to allow some faster automated tableau catisinu The tests can be modified to work
with our sparser labels, and we will present full details fiutare paper. There are many opportunities
for more thorough repetition checks as well.

10 Complexity, Implementation and Comparisons

Say that|g| =1. Thusg has<| subformulas and! ¢ contains at mostl2formulas. Since each hue
contains, for eaclw < @ at most one ofr or —a, there are at most 2' hues. Thus there are less
than 2 colours. Itis straightforward to see that there is a tripipamential upper bound if the tableau
search algorithm uses the double exponential bound on lbtangth [17] to curtail searches down long
branches.

Mark Reynolds 61

A prototype implementation written by the author shows thatmany interesting, albeit relatively
small, formulas, the experimental performance of the systerelatively impressive. There are some
preliminary results detailed in [15] which show a compamigd running times with the older Hintikka-
style tableau technique of [17] and the state of the art ghased CTL* reasoner from [7]. In general the
new reasoner is more than an order of magnitude quicker aidgdormulas from a range of basic and
distinctive CTL* validities and their negations and a fewet satisfiable formulas. The implementation
is available as Java code for public download [15]. Onliresomer coming soon.

The implementation for the new technique that is used iretleegperiments, uses some basic repeti-
tion checking derived from the checks given earlier in thetikka-style system [17]. The new, slightly
modified versions of these mechanisms are not describec ioutient paper. Instead they will be de-
scribed in a future paper.

In [7], four series of formulas are suggested to examine agytic behaviour. Timing results for our
system on these formulas are presented in Table 6. We cottinggperformance of our new tableau with
the state of the art in game-based techniques for decidirig".CThis is using published performance
of the reasoner from [7] as reported in experiments in [1ldnsider the following series of formulas:
o1 =AFGq B; = AFAGqgand for each > 1, ai, 1 = AFGa; and 3 1 = AFAGS;. In table 6, we compare
the performance of the Hintikka-style tableau system fr@i#,[the game-based reasoner from [7] and
the new tableau system of this paper (using basic repetti@aking) on the growing series built from
these formulas. Although the running times, are on diffecemputers, and so not directly comparable,
we can see the difference in asymptotic performance. Rgniimes greater than an hour or two are
curtailed. From the results we see that we have achievednegigeable and significant improvements
in performance on the satisfiable examples.

Pure tableau-style reasoning on unsatisfiable formulas aft/olves exhaustive searches and the new
technique is not immune to such problems. See the 400 séegamples in the asymptotic experiments.
We will say more about these examples when proposing someeapstition mechanisms in the future.

There are some, more theoretical descriptions of other gamed and automata-based techniques
for model-checking CTL* in older papers such as [10], [2] 48 However, these do not seem di-
rectly applicable to satisfiability decisions and/or thdeenot seem to be any easily publicly available
implemented tools based on these approaches.

11 Conclusion

In this paper we have presented, albeit in a fairly high leskadtch, a traditional tableau approach to
reasoning with the important logic CTL*. Soundness and detepess results are proved and prototype
implementation demonstrates the significantly improvediopmance of the new approach on a range of
test formulas.

The next task in this direction is to build on the foundati@nehand present full details and proofs of
the repetition checking mechanisms that can be used wittakiheau construction. There are some basic
repetition mechanisms available in the previous, Hintiklyde tableau [17] but they need to be modified
slightly. There are opportunities for additional techrégult is also important to improve and document
the rule-choice algorithms which have a bearing on runrimes.

In the future, it will be useful to develop reasoning toolsiethcombine the latest in tableaux, au-
tomata and game-based approaches to CTL*. Having toolsimgpii parallel should allow faster de-
cisions. It will also be useful to extend the work to logicsmoiilti-agent systems such as ATL* and
strategy logic [12].

62

Tableau for CTL*

formula length sat? MRH FLL NEW
[17] [7] this paper
101 a1— B 20 Y 330 120 39
102 ax— B 35 Y >10 130 43
103 az— B3 50 Y out of time 120 69
108 ag— fs 125 Y outoftime 380 664
113 aiz— Pi3 200 Y outof time > 10° 2677
115 ai5— Pis 230 Y out of time > 10° 4228
119 ai9— Bio 290 Y outoftime outoftime 9468
201 (a1 — B) 21 Y 350 120 172
202 (a2 —B2) 36 Y >10 170 117
203 (a3 — Bs) 51 Y outoftime 2270 213
204 —(a4— B4) 66 Y outoftime >10P 377
205 —(as— f3s5) 81 Y outoftime outoftime 673
212 (012 — PB12) 186 Y outoftime outoftime 7153
301 BL— o 20 Y 340 130 48
302 B— 35 Y >10° 140 50
303 f(B3— 03 50 Y out of time 140 86
312 Bio—ago 185 Y outoftime 30970 3333
314 Pis— Qs 215 Y outoftime >1CP 5512
316 fig— Q16 245 Y out of time outoftime 8627
319 19— Q19 290 Y outoftime outoftime 15615
401 —(Bp—a1) 21 N 400 760 1801
402 —(Bp—az) 36 N >10 48670 > 10°
403 —(Bs — as3) 51 N out of time > 10° out of time

Figure 6: Asymptotic Examples: Running Times (millisecend

Mark Reynolds 63

References

(1]

(2]

(3]
(4]
(5]
(6]
(7]
(8]

(9]

(10]
(11]

[12]

(13]
(14]
(15]

(16]

(17]

(18]

Sergei N. Artémov & Anil Nerode, editors (2009)ogical Foundations of Computer Science, International
Symposium, LFCS 2009, Deerfield Beach, FL, USA, Januar28@®. Proceedingd.ecture Notes in Com-
puter Scienc&407, Springer. Available atttp://dx.doi.org/10.1007/978-3-540-92687-0.

Orna Bernholtz, Moshe Y. Vardi & Pierre Wolper (1994n Automata-Theoretic Approach to Branching-
Time Model Checking (Extended Abstractn David L. Dill, editor: CAV, Lecture Notes in Computer
ScienceB18, Springer, pp. 142-155. Availablelattp: //dx.doi.org/10.1007/3-540-58179-0_50.

E. Emerson & J. Halpern (1986)Sometimes’ and ‘not never’ revisited. ACM 33. Available athvttp://
dx.doi.org/10.1145/4904.4999.

E. Emerson & C. Jutla (1988 omplexity of Tree Automata and Modal Logics of Prograims 29th IEEE
Foundations of Computer Science, ProceeditgSE.

E. Emerson & A. Sistla (1984)Deciding full branching time logic Inf. and Control61, pp. 175 — 201.
Available athttp://dx.doi.org/10.1016/30019-9958(84)80047-9.

E.A. Emerson (1990)Temporal and modal logidn J. van Leeuwen, edHbk of Th. Comp. Scj.B, Elsevier.

O. Friedmann, M. Latte & M. Lange (2010A Decision Procedure for CTL* Based on Tableaux and Au-
tomata.In: [JCAR’10, pp. 331-345. Available atttp://dx.doi.org/10.1007/978-3-642-14203-1_
28.

Valentin Goranko & Dmitry Shkatov (2009Tableau-Based Procedure for Deciding Satisfiability in fod
Coalitional Multiagent Epistemic Logidn Artémov & Nerode [1], pp. 197-213. Availablelttp: //dx.
doi.org/10.1007/978-3-540-92687-0_14.

Orna Kupferman & Moshe Y. Vardi (2005)Safraless Decision Proceduresn: FOCS IEEE Computer
Society, pp. 531-542. Available Bttp://doi.ieeecomputersociety.org/10.1109/SFCS.2005.66.

M. Lange & C. Stirling (2000)Model Checking Games for CTLtn: In ICTL’00, pp. 115-125.

J. McCabe-Dansted (2011A Rooted Tableau for BCTLElectr. Notes Theor. Comput. S@i78, pp. 145—
158. Available ahttp://dx.doi.org/10.1016/j.entcs.2011.10.012.

Fabio Mogavero, Aniello Murano, Giuseppe Perelli & MesY. Vardi (2012)What Makes ATL* Decidable?
A Decidable Fragment of Strategy Logi Maciej Koutny & Irek Ulidowski, editors:CONCUR Lecture
Notes in Computer Scienc#454, Springer, pp. 193-208. Availableattp://dx.doi.org/10.1007/
978-3-642-32940-1_15.

A. Pnueli (1977):The temporal logic of programdn: Proceedings of the Eighteenth Symposium on Foun-
dations of Computer Sciengap. 46-57. Providence, RI.

M. Reynolds (2001)An Axiomatization of Full Computation Tree Logit S.L.66(3), pp. 1011-1057.

M. Reynolds (May, 2013)A Faster Tableau for CTL*, Long Versiofiechnical Report, CSSE, UWA. Avalil-
able athttp://www.csse.uwa.edu.au/~mark/research/Online/quicktab/. Implemented reasoner
also available here.

Mark Reynolds (2009)A Tableau for CTL* In Ana Cavalcanti & Dennis Dams, editorBM 2009: Eind-
hoven, 2009. ProcLecture Notes in Computer Scieng&50, Springer, pp. 403-418. Availabletattp: //
dx.doi.org/10.1007/978-3-642-05089-3_26.

M. Reynolds (2011)A tableau-based decision procedure for CTL¥ Formal Aspects of Comppp. 1-41.
Available athttp://dx.doi.org/10.1007/s00165-011-0193-4.

M. Vardi & L. Stockmeyer (1985)Improved Upper and Lower Bounds for Modal Logics of Prograins
17th ACM Symp. on Theory of Computing, Proceedind€M, pp. 240-251. Available a@ttp://dx.
doi.org/10.1145/22145.22173.

Deciding the Satisfiability of MITL Specifications®

Marcello M. Bersani* Matteo Rossi* Pierluigi San Pietro®*

* Dipartimento di Elettronica Informazione e Bioingegneria, Politecnico di Milano, Milano, Ital
p geg y
TCNR IEIIT-MI, Milano, Italy

{marcellomaria.bersani,matteo.rossi,pierluigi.sanpietro}@polimi.it

In this paper we present a satisfiability-preserving reduction from MITL interpreted over finitely-
variable continuous behaviors to Constraint LTL over clocks, a variant of CLTL that is decidable,
and for which an SMT-based bounded satisfiability checker is available. The result is a new complete
and effective decision procedure for MITL. Although decision procedures for MITL already exist,
the automata-based techniques they employ appear to be very difficult to realize in practice, and, to
the best of our knowledge, no implementation currently exists for them. A prototype tool for MITL
based on the encoding presented here has, instead, been implemented and is publicly available.

1 Introduction

Computer systems are inherently discrete-time objects, but their application to control and monitoring
of real-time systems often requires to deal with time-continuous external signals and variables, such as
position, speed and acceleration or temperature and pressure. Hence, many continuous-time models have
been developed for verification and validation of such systems, e.g., Timed Automata [3], or continuous-
time temporal logics, such as MITL (Metric Interval Temporal Logic) [4].

In general, the role of temporal logics in verification and validation is two-fold. First, temporal
logic allows abstract, concise and convenient expression of required properties of a system. Linear
Temporal Logic (LTL) is often used with this goal in the verification of finite-state models, e.g., in model
checking [5]. Second, temporal logic allows a descriptive approach to specification and modeling (see,
e.g., [19, 14]). A descriptive model is based on axioms, written in some (temporal) logic, defining a
system by means of its general properties, rather than by an operational model based on some kind of
machine (e.g., a Timed Automaton) behaving in the desired way. In this case, verification typically
consists of satisfiability checking of the conjunction of the model and of the (negation of) its desired
properties. An example of the latter approach is Bounded Satisfiability Checking (BSC) [20], where
Metric Temporal Logic (MTL) specifications on discrete time and properties are translated into Boolean
logic, in an approach similar to Bounded Model Checking of LTL properties of finite-state machines.

In general, verification of continuous-time temporal logics is not as well sopported as for discrete-
time models. Uppaal [6] is the de-facto standard tool for verification of Timed Automata. However,
Uppaal does not support continuous-time temporal logics: not only satisfiability checking is not avail-
able in Uppaal, but even the formalization of system properties in temporal logic is not allowed, aside
from rather simple invariants and reachability properties. Rather, non-trivial properties to be verified on
an operational model must be expressed as other Timed Automata, i.e., at a lower level of abstraction. In-
deed, there have been a few proposals for verifying continuous-time logics [17], but they do not appear to
be actually implementable, and, to the best of our knowledge, in fact they have never been implemented.

This paper proposes a new technique, based on generalizing BSC to MITL, by reducing satisfiability
of MITL to satisfiability of Constraint LTL over clocks (CLTL-oc), a new decidable variant of CLTL [12].

*This research was supported by the Programme IDEAS-ERC, Project 227977-SMScom.

Gabriele Puppis, Tiziano Villa (Eds.): Fourth International (© M. M. Bersani, M. Rossi, & P. San Pietro
Symposium on Games, Automata, Logics and Formal Verification This work is licensed under the
EPTCS 119, 2013, pp. 64-78, doi:10.4204/EPTCS.119.8 Creative Commons Attribution License.

M. M. Bersani, M. Rossi, & P. San Pietro 65

Mtl=pspeM() pEAP
MitE—-¢p <Mt
MtE Ay SMit=dandM,t =y
MitEoUyser+l: M =yand M,t" = ¢ V" € (t,1)

Table 1: Semantics of MITL.

In particular, a MITL formula may be encoded into an equisatisfiable CLTL-oc formula, which can then
be solved through the same techniques of [7, 9, 8]. The latter approach generalizes BSC to CLTL,
generating an encoding suitable for verification with standard Satisfiability Modulo Theories (SMT)
solvers such as Z3 [18]. This new technique has been implemented in an open-source prototype tool [1].

Although MITL is known to be decidable over unrestricted behaviors [16], we focus on so-called
finitely-variable models, i.e. such that in every bounded time interval there can only be a finite number
of changes. This is a very common requirement for continuous-time models, which only rules out patho-
logical behaviors (e.g., Zeno [14]) which do not have much practical interest. To define the encoding, we
start by focusing on models in which intervals are closed on the left end and open on the right end. This
restriction is later lifted to consider general, finitely-variable, signals.

The paper is organized as follows: Sect. 2 defines MITL and CLTL-oc, Sect. 3 defines a reduction
from MITL to CLTL-oc, based on the restriction that intervals are closed to the left and open to the right;
Sect. 4 generalizes the translation to intervals of any kind, also discussing the extension to include past
operators. Sect. 5 concludes, discussing applications to other logics and presenting a prototype tool.

2 Languages

Let AP be a finite set of atomic propositions. The syntax of (well formed) formulae of MITL is defined
as follows, with p € AP and I an interval of the form {a,b) or {a,+0o0), with a,b € N constants, a < b:

¢p:=plond|—9]|9oUd

The semantics of MITL is defined in Table 1 with respect to signals. A signal is a function M : R — 24P,
with R the set of nonnegative reals. A MITL formula ¢ is satisfiable if there exists a signal M such that
M,0 = ¢ (in this case, M is called a model of ¢). The globally G; and eventually F; operators can be
defined by the usual abbreviations: F;¢ = TU;¢ and G;¢ = —F;(—¢).

Constraint LTL (CLTL [12, 9]) is used in Sect. 3 to solve the satisfiability problem of MITL. CLTL
formulae are defined with respect to a finite set V' of variables and a constraint system &, which is a pair
(D, %) with D being a specific domain of interpretation for variables and constants and % being a family
of relations on D, such that the set AP of atomic propositions coincides with set %, of 0-ary relations.
An atomic constraint is a term of the form R(xy,...,x,), where R is an n-ary relation of % on domain D
and xp,...,x, are variables. A valuation is a mapping v : V — D, i.e., an assignment of a value in D to
each variable. A constraint is satisfied by v, written v =4 R(x1,...,x,), if (v(x1),...,v(x,)) € R. Given
a variable x € V over domain D, temporal terms are defined by the syntax: « := c | x | Xa, where ¢ is
a constant in D and x denotes a variable over D. Operator X is very similar to X, but it only applies
to temporal terms, with the meaning that X¢ is the value of temporal term ¢ in the next time instant.

66 Deciding the Satisfiability of MITL Specifications

(m,0),i =p< pen(i) for pe AP

(m,0),i =R(aty,...,0,) < (o(i+|ou|,xe)y, 0(i+|0|,Xq,)) €R
(7,0),i|=—¢ < (7,0),if~¢

(m,0),iE¢ Ay (7,0),if¢and(7,0),if=y

(m,0),i=X(¢9) e (m,0),i+1[=¢

(7,0),i=Y(9) e (m,0),i—1FE¢Ai>0

(m,0),iF Uy <3jzi:(m,0),jEY A(T,0),nE=PVi<n<j

(mr,0),iEdSy<3I0<j<i:(m,0),jEYA(m,0),n=9Vj<n<i

Table 2: Semantics of CLTL.

Well-formed CLTL formulae are defined as follows:

¢:=R(ai,..-,0,) [¢ AP [0 [X(9)|Y(9)|9US | ¢S

LT3 LR T3

where o;’s are temporal terms, R € #, X, Y, U and S are the usual “next”, “previous”, “until” and
“since” operators of LTL, with the same meaning. The dual operators “release” R, and “trigger” T may
be defined as usual, i.e.,)Ry is =(—9U—y) and ¢ Ty is —=(—¢S—y).

The semantics of CLTL formulae is defined with respect to a strict linear order representing time
(N, <). Truth values of propositions in AP, and values of variables belonging to V are defined by a pair
(m,0) where 0 : N x V — D is a function which defines the value of variables at each position in N and
7 : N — @(AP) is a function associating a subset of the set of propositions with each element of N. The
value of terms is defined with respect to ¢ as follows:

o(i,a) = o(i+|al,xq)

where x,, is the variable in V occurring in term « and || is the depth of a temporal term, namely the
total amount of temporal shift needed in evaluating o: |x| = 0 when x is a variable, and |Xeot| = |ot| + 1.
The semantics of a CLTL formula ¢ at instant i > 0 over a linear structure (7, o) is recursively defined
as in Table 2, where R € Z\%y. A formula ¢ € CLTL is satisfiable if there exists a pair (7, c) such that
(7,6),0 = 6.

In this paper, we consider a variant of CLTL, where arithmetic variables are evaluated as clocks and
set Z is {<,=}. A clock “measures” the time elapsed since the last time the clock was “reset” (i.e., the
variable was equal to 0). By definition, in CLTL-oc each i € N is associated with a “time delay” 8(i),
where 6 (i) > 0 for all i, which corresponds to the “time elapsed” between i and the next state i + 1. More
precisely, for all clocks x € V, 6(i+ 1,x) = o(i,x) + 6(i), unless it is “reset” (i.e., 6(i + 1,x) = 0).

3 Reduction of MITL to CLTL-over-clocks

This section devises a reduction from MITL to CLTL-oc. The inherent bounded variability of metric
operators in MITL allows a translation of a MITL formula ¢ into a CLTL-oc formula with a bounded
number of variables, depending on the subformulae of ¢.

As in [17, 13], it is actually convenient to introduce the operators U ;) and F; as primitive, and
instead derive the metric until Uy, as shown by the following result.

M. M. Bersani, M. Rossi, & P. San Pietro 67

Lemma 1. Let M be a signal. Then, for any t = 0,

(1) Mt EoU iy <Mt EGpa) (90U 0)¥) AFupn W
(2) M,t = oUpy <Mt = Gpog (90U 10y W) AF W
(3) M,t E Uy < M,t = 9Ug o)W AF ¥

When b is +c0, equivalences (1), (2) can be simplified, respectively, in U, o)W = Go,0)(9U(0 100) V)
and OU ;4 o)W = G001 (90U 40\ W)

The above equivalences make it possible to base the CLTL-oc translation on the U ;) and F;
operators, instead of Uy, therefore confining metric issues only to the translation of F;, which is much
simpler than the translation of Uj.

Reducing MITL to CLTL-oc requires a way to represent models of MITL formulae, i.e., continuous
signals over a finite set of atomic propositions, by means of CLTL-oc models where time is discrete.

Discrete positions in CLTL-oc models represent, for each subformula 6 of @, the occurrence of an
“event” at that point for the subformula. An “event” is a change of truth value (“become true” or “become
false) of 6. Hence, the signal is “stable” (i.e., there is no change) in the interval between two events:
a continuous-time signal is hence partitioned by the above events into intervals. Time progress between
two discrete points is measured by CLTL variables behaving as clocks: for each subformula 6 of ¢, there
are two clocks zg , z]9 measuring the time elapsed since the last “become true” and “become false” events,
respectively (i.e., they are reset when the corresponding event occurs). In case of subformulae of the form
0 = Fu10, also a finite set of auxiliary clocks is introduced, whose cardinality depends on the values
of a,b, namely d = 2 [ﬁ] auxiliary clocks xé (0 < j <d—1). Therefore, a CLTL-oc model embeds,
in every (discrete) position both the information defining the truth value of all the subformulae occurring
in ¢ and also the time progress between two consecutive events. Then, every position in the CLTL-oc
model captures the configuration of one of the intervals in which the MITL signals are partitioned by
the events. Therefore, our reduction defines, by means of CLTL-oc formulae, the semantics of every
subformula of ¢.

We start by restricting the set of signals defining models of MITL formulae to signals where intervals
are left-closed and right-open (l.c.ro0.), e.g.: -~ e—. We will lift this restriction later in the
paper. Hence, singularities (i.e., events being true in a single instant) cannot occur and may be ignored.
However, the semantics given here does not exclude a priori Zeno behaviors [14]: it admits signals
corresponding to an infinite sequence of events accumulating to the left of a time instant, i.e., where
events do not advance beyond that instant. However, since these signals correspond to behaviors that are
of little interest in practice, we restrict the set of models to non-Zeno signals, i.e., to models of CLTL-oc
formulae where time diverges:) . (i) = o0, by enforcing a suitable CLTL-oc constraint.

Let M be a signal, ¢ a MITL formula over AP and sub(¢) the set of all subformulae occurring in ¢.
We write g for the occurrence of an event making 6 € sub(¢) become true. With abuse of notation we
extend = as follows:

de>0V e (t,t +€) M,t' |= 0 and
M.t =Tg< M,t |= 0 and (() =)

t>0=3e>0V'e(t—et) Mt |=—6

We define | ¢ as an abbreviation for 1. These definitions impose that signals are defined over an infinite
sequence of intervals of the form [z,#,) where 7, > 1.

Not all temporal operators preserve l.c.r.o. intervals. For example, let 6 = F, ;¢ be a MITL formula
and let ¢ hold on a l.c.r.o. signal; then, the corresponding signal for 0 (i.e., the signal including also the

68 Deciding the Satisfiability of MITL Specifications

values for 1g), is not l.c.r.o.. In fact, let > b be the first position such that M,z |=14. If the signal for
0 were l.c.r.o., then it should be M,r — b =14, which is impossible because M,t — b = Fong < " e
t—b+{a,b) M,t" = ¢ and t” < r, but by hypothesis ¢ is false before 7. Nevertheless, the next result
shows that that Boolean connectives —, A and temporal operators U g ;). F(a], Fea,1-00) and Feg 1, do
indeed preserve l.c.r.o. intervals.

We extend MITL models to any subformulae occurring in MITL formulae by defining a mapping
My : R, — {F,0} such that:

0eMy(t)=M,t=0.

Lemma 2. Let M be a l.c.ro. signal, let ¢, be two formulae occurring in M and let 0 be a formula
=0, ¢ AY, Ugo100) (9, V) Fa) (0),F o 100)(9), Feo,07(9). Then, My is a l.c.r.o. signal.

In what follows, F(, |) is defined as primitive, instead of applying the known equivalence Fi, ,)¢ =
TU4+00)9 = G0, (9U(0,10) W), as formula Gpg 4y ¢ = —F[g o) —¢ violates the l.c.r.o. assumption.
We now show how to build a CLTL-oc model (7,0) of ¢ from a signal M. For each subformula

0 € sub(¢) we introduce two clock variables zg,zg and one atomic proposition 9. We will ensure
that @ is true at a position whenever 6 is true in the interval corresponding to the position. To ease
understanding, in the rest we use = — 6. We also introduce two abbreviations, g, g that play the

role of event markers (referred to as just “events” when the context is clear); more precisely, they denote,
respectively, events Tg and | g, and are defined as follows:

T =-Y(E)AE e = —Y(E)n &

Note that, as =Y (e) is true in the origin, no matter the argument, either g or "Lg holds at 0.
For cach 6 = Fy, ;Y € sub(9) we introduce d = 2 [,%1 auxiliary clocks x3, ...x%. The idea behind

the above definitions is that at each occurrence of an event marker (I°g or "Lg), exactly one of the clocks
zg,z}, is equal to O; the clock, then, measures the time elapsed from the last opposite event. Instead, the
auxiliary clocks associated with formulae F, ;Y are used to store the time elapsed since the occurrence
of events involving y between the current time instant ¢ and ¢ + b. In fact, [17] shows that formulae of the
form F, 5,y have inherent bounded variability (the result holds for signals with no l.c.r.o. restriction).

Lemma 3 ([17]). Let 6 = Fun W, M be a signal and let 0 <t <t be two instants such that M1, E=Te,
Mty =lg and Vi e (t',t") M,t = 0. Then, t —1) > b—a.

By Lemma 3, two consecutive events Tg and | for formulae 6 = F, ;,y cannot occur at a distance
less than b — a. However, this does not hold when Tg occurs at # = 0 and y is true at 0, but it becomes
false before b. For instance, let M,a |= p and M,a + € =] ,, where € > 0 is such that a 4+ € < b; assume
for simplicity that p remains false, i.e., for all # € [a + €,+0), M, |~ y. Then, we have that M,0 |=T¢
and M, € =] . This property will be exploited in Sect. 3.2 to define the translation of the F operator.

Corollary 1. Let 6 = F(, ;)¢ be a MITL formula, with a > 0, b # o0, and let t be an instant of time.
Then, in [t,t + b] there are at most d =2 [%] events Tg, lo.

The result of Corollary 1 can be significantly simplified for formulae of the form 6 = F ;¢ or of the
form 6 = F<a7+oo)¢. In fact, in the former case, let 1, > #; = 0 be two time instants such that M, ¢)=T¢,
M.t =lg and Vi’ € [tr,1, +b] M,t' [~ ¢. Then, by definition, we have M,1; —b =19, M,1; |=]¢ and
Vi' € [t1 —b,12) [= 6. Therefore, no event for 6 occurs over the interval [t —b,1). If 8 = F(,)0, by
definition, M, = 0 < 31’ € (t + a,+0) M,t' = ¢; hence, M, =60 = M,0 = 0, i.e., M,0 =1¢9. Event

M. M. Bersani, M. Rossi, & P. San Pietro 69

To occurs in 0 if, and only if: It = aM,t =Ty or It >aM,t =]y or It <aM,t =14 AV >t M,t' = ¢.
Moreover, M,t = 0 = Vi’ € {t +a,+0) M,t' = ¢, ie, M,t =Elg= Mt +a =y AG(—¢). By the
previous properties, the translation of formulae involving F¢ ;) and F(, | o) is simpler than the case
a > 0 and b # o0, because auxiliary clocks are not needed to represent the formula. For this reason, we
provide a direct translation for these subformulae.

Since signals are finitely variable, all the events in M can be enumerated as follows. A position i = 0
uniquely identifies a time instant along M. Let 7 < R be an infinite, but enumerable, set of time instants
that includes O and every instant when at least one event occurs. Let / : T — N be a one-to-one mapping,
consistent with the ordering of time, i.e, I(0) =0 and I(r) < I(t') &t <{', and such that forallt; <, € T
(1) =1(t;)+ 1< —3t (1) <t <1, nteT). By definition, for each subformula 6 an event (either g or
“Lg) always occurs at 1(0) = 0.

Now, given a MITL formula ¢ and a signal M such that M,0 }= ¢, we define how to build CLTL-oc
interpretations from M. We will prove afterwards that this interpretation is a model for the CLTL-oc
formula translating ¢. We say that a clock v is reset at position i when o (i,v) = 0.

Let (m,0) be a CLTL-oc interpretation. If an event for 6 € sub(¢) occurs at t > 0, the corresponding
event marker (g or "Lg) labels (I(¢)) and a reset for one of 23z} occurs at /(¢):

* Vieto.)y 0(1(1),2) =0and (7,0),1(r) = To if M.t =10
* Viego.y 0(1),25) =0and (r,0),1(t) L if M1 =l
e 5(0,z)) =0 forall 6.

e 5(0,x3) = 0 for all 6 of the form F, ;5 .

Note that, by definition, for all time instants ¢ € 7 where no events for 8 occur, neither g nor g
hold in w(I(¢)) (i.e., (7,0),1(t) = —T9 A —Lg).

Now we define how CLTL-oc models represent time progress. Let ¢,7' € T be two time instants such
that /(') = I(t) + 1. For all clocks z}; that are not reset in /(') we impose

o(I(r'),2y) = o(I(t),2) +1' —1.

In addition, i € {0,1} s.t. o(I(¢),z5) = 0 if and only if (7,0),1(¢) |= T or (7,0),1(t) = "Lg. Clocks

29z} cannot be reset at the same time, but alternate, and z3 is reset in the origin. Clocks x; are dealt with

analogously. As mentioned, there exist d = 2 [] clocks xe for a formula F, ,w € sub(¢). First, for

all positions i > 0, 6(i,z3) = 0 or 6(i,z}) = 0 if, and only if, \/J 0O 7x(’,) 0, i.e, whenever an event
for 6 occurs, (at least) one auxiliary clock is reset. To avoid simultaneous resets of different clocks if xe
is reset then no x6 is reset, for j' #] Auxiliary clocks are circularly reset modulo d; i.e., if xe is reset
at position i, then the next reset of xe, if it exists, occurs in a position 7/ > i such that all other clocks xel

(j' # j) are reset, in order, exactly once in (i,i'). Note that, if a clock x6 is reset at position i = I(t), the
next position i’ = I(z') when the clock is reset must be such that ' >t +b, i.e., given a formula 6 = F<a7;,],

every clock xé is reset only once over intervals of length b. The sequence of resets starts with xg =0.

Finally, if ¢ is satisfiable and M is a signal such that M,0 |= ¢ i.e., M,0 =14, then (7,0),0 = .

Let r4 (M) denote the (infinite) set of pairs (7,) obtained from M by means of the previous rules
for a MITL formula ¢. The inverse mapping r;l is also definable, but not all pairs (7, o) represent legal
signals. Hence, we restrict them to the set of CLTL-oc models that are images of a signal M under ry,
i.e., (m,0) is such that there exists a signal M such that (7,0) € r4(M). Sect. 3.1 provides a set of
CLTL-oc formulae whose models are exactly the set of pairs (7,0) such that (7,) € ry(M). For these
models the inverse map ! is well-defined.

70 Deciding the Satisfiability of MITL Specifications

3.1 Clocks and Events

The following formulae define how events 9, ¢ occur, for 0 € sub(¢), and when clocks zg,zé are
reset. However, they do not capture the semantics of subformulae 8, which is the object of Sect. 3.2, but
only the relations between events g and g and clock resets.

Formula (1) enforces that the occurrence of an event g, g entails the reset of one of zg,z},. In
addition, Formula zg = 0 evaluated in the origin states that clock zg is reset in the origin.

J’gv"l_(;(:)zg:Ovzézo (1)

Let a € N and value @, be (a mod k). The clocks associated with a subformula 6 are alternatively
reset, as shown on an example in Figure 1. Hence, between any two resets of clock zg there must be a
reset of clock z}, and vice-versa:

(A (h=0)=X ((zé’*”z — OR() # o>) . @

i€{0,1}

For a position i > 0 it may happen that neither "y nor g occur for any formula (i.e, no events
occur). The assumption that intervals are 1.c.r.o. entails that intervals have non-null durations, and events
76,16 cannot occur at the same time. Define eventsy = /\Gesub(q))(zg =0) AG((1) A (2)).

Lemma 4. Let 0 be a symbol of a MITL formula. For any non-Zeno signal M : R, — {(, 0} for 6 and
for all (m,0) € rg(M), then (7,0),0 = eventsy. Conversely, given (m,0) in which time is divergent
and s.t. (m,0),0 |= eventsyg, there is exactly one non-Zeno signal M s.t. M = r, ' ((,0)).

Let 6 be F(, ;. We introduce d = 2 [ﬁ] clocks xé, which behave in a similar way as zg , z},. Each

xé is needed to store the time elapsed since the occurrence of the last event of 8 (1 or |g). When one of
To,lg occurs, then a x’e is reset, i.e., x{, = 0. Each reset event marked by xie = 0 entails either Iy or Ly
and all Tg, | events are marked by a single reset xy = 0 (Formula (3)).

d—1 d—1 d—1
(Ievu@\/x{):o) AN/~ =0nax,=0) 3)

Jj=0 i=0 j=0,i#]

The occurrence of resets for clocks xie is circularly ordered and the sequence of resets starts from the

origin by xg (see an example in Figure 1). If x’é = 0, then, from the next position, all the other clocks are
i+1q

strictly greater than O until the next xy" ¢ = 0 occurs.
a1 [_ S
AlH=0=X[6""=0R A &">0) “4)
i=0 je0,d—1], j#i

Formula xg = 0, evaluated at position 0, sets the first reset of the sequence, constrained by formulae
(3)-(4). Moreover, we force all clock values to be strictly ordered in the origin by xg < ngl < < xé,
guaranteeing that resets are correctly associated with events occurring after the origin.

The following lemma (whose proof is similar to the one for Lemma 4) shows that auxclocksg,
defined as (x3 = 0) A G((3) A (4)) captures map r for F(,) formulae. .
Lemma 5. Let 0 = F(, Y. For any signal M : R, — {,0} for 0 and for all (n,0) € ro(M), it is
(m,0),0 |= auxclocksg. Conversely, if (r,0),0 = auxclocksy, there exists one, and only one, signal
M s.t. M =ry'((m,0)).

M. M. Bersani, M. Rossi, & P. San Pietro 71

{ @
]

)
O D

I
o O
= 2

I
o O

O DS

Il
o o
I

W O

I
o O
q?m o

I
o O

N

=
=
o= o=
Il
Il
=

Figure 1: Sequence of circular resets for formula 6 = F, 11y

3.2 Semantics of MITL Temporal Modalities

We now define a mapping m associating a MITL formula with an equisatisfiable CLTL-oc formula, thus
capturing the semantics of MITL in CLTL-oc.

The cases for Boolean connectives and the non-metric U operator are straightforward. In the follow-
ing we write O instead of —Y (T) to represent the first position of CLTL-oc models.

o O=peAP: it follows from the definition of I, and L,, representing events T,,|, over
discrete time. _

e O0=-y: inthiscaseitism(f)=0<V.

e O=yAy: wehave: m(0) —9=Y A V.

o 0=V my: similay: m(0) =g<Y A YUV.

e 0=Fq,y: Whenanevent Ty occurs, aclock xjé is reset, then event Ty, will eventually occur
after b time units and it has to occur after b — a instants from the last occurrence of |y (otherwise Tg has
already occurred in the past). The case for r = 0 is treated separately: Tg occurs at O when there is an
interval in which y holds that either starts in [a,b] or it spans a. Clock xg is used to measure the time
elapsing from the origin. In fact, by Corollary 1, xg, which is reset at 0, can only be reset again after b.

d—1
ﬁO/\\/(xé=O)/\X xp>0U [Ty Axh=bn \/ ziy>(b—a) v
Jj=0

Tee ie{0,1})

0A(0vx%>O)U(l,l7/\(a<xg<b vxg<a/\X(xg>a))>

=0 dy>b—a
v I
a b
Femmmm e <----1
xg=0 x’ézb

Figure 2: Rising edge

Formula (6) defines the condition to make I true exactly b instants before an event Iy, provided
that clock zy, is greater than (b —a) when Ty, occurs (i.e., the last time y became false was at least b —a

72 Deciding the Satisfiability of MITL Specifications

time units before). An illustration of Formulae (5) and (6) is in Figure 2.

d—1
Ty A \/z’;,,>(b—a):\/xé=b (6)
ie{0,1} Jj=0

When an event | g occurs, a clock x{g is reset, then the event |, will eventually occur after exactly
a time units and the next 1y, cannot occur before another b — a instants after that (otherwise |¢ cannot
occur). In the origin, however, | g occurs also in the case that Tg does not occur.

_I_g(:)j\/;(x{)=0)/\X<(xé>0)U<"l_1,,/\xé=a /\IV,Rﬁ(IV,/\xégb)>> v (OA—Tg) (7)

Formula (8) is the dual of (6) for a falling edge (Figure 3); it defines a sufficient condition forcing
Lo when an event Ly, occurs and "y, does not happen before (b — a) time units have passed since Ly,

d—1
Ly ATyR= | Ty A /\zi,,é(b—a) = xéza ®)
ie{0,1} =0
v [S
a b
R ¢----1
xi9=0 xieza xi9>b

9:F<a,b]w ___l———

Figure 3: Falling edge

Formula m () in this case is (5) A (6) A (7) A (8).

As already anticipated, we may study separately the case of formulae F, ;) y where a =0 or b = +c0.
The translation in the two cases is simpler than the general one because auxiliary clocks are no longer
required to measure the time elapsing between events involving signal for the formula.

e 0=Fquy: thetranslation for event g is analogous to the one of the general case where time
elapsing is measured with respect to the clock zé that is reset when g holds (recall that, by Corollary 1,
zé can be reset again only after the occurrence of _I"y). The semantics of | in this case is simpler than
for Formula (7) because events |y and | always occur simultaneously, provided that the next T, does
not occur within b time instants from |y,

R \/(ZéZO)AX z£>OU Ty /\zé:b/\ \/z’;,,>b v

Te < Jj=0 ie{0,1})

OA(OvZY >0)U(IT/ AZy < b)

Tyn \ dy>b=\/ zh=b (10)

i€{0,1} je{o,1}

M. M. Bersani, M. Rossi, & P. San Pietro 73

ToeLyalyR-|Tyn A\ &, <b (11)
i€{0,1}

e 0=Fq 0y: From thesemantics of F, 1o (y) itis easy to see that event 79 may only occur
at 0, if y eventually holds in the future after @ instants from the origin. Similarly, event |y may only
occur once, but not necessarily in the origin; more precisely, it holds at O if and only if ¢ does not hold at
0, while for every instant # > 0 it occurs when event |y occurs in 7 +a and y is always false afterwards.
As a consequence, zé is reset at most once, if "Ly occurs in an instant other than the origin.

TosONOVE>0U(Y A< vd) <anX (> a)) (12)
Loz =0AX(zp>0U(Lyrzp=a AG(—Ty)) v (OAr—Tp) (13)
Ty AG(—Ty)=z5=a (14)

3.3 Correctness

Let F be a set of formulae. We extend map r to sub(¢), written ry,;4) (M), to represent the set of CLTL-
oc models where atomic propositions are symbols associated with each subformula in ¢ and variables
includes all clocks Zg) z}, and the auxiliary clocks for the case F, .

Lemma 6. Let M be a signal, and ¢ a MITL formula. For any (Tt,0) € T4y (M) it is:

(m,0),0 = /\ G (m(0)) Aeventsy A /\ auxclocksg

0esub(¢) eeesi;bw)
=Hap]

and for all ke N, 0 € sub(¢) it is (7, 0),k |=m(0).
Lemma 7. Let M be a signal and let ¢ be a MITL formula. If

(m,0),0 = /\ G (m(60)) A eventsg A /\ auxclocksy

Oesub(¢9) ;isi;‘[;(j;]
and M = r;}y(q))((ﬂ, o)), then forallt e T itis (x,0),1(t) |= Ty iff Mt |=1¢ (similarly for Ly).

The main result, the equisatisfiability of MITL and of its CLTL-oc translation, follows.
Theorem 1. A MITL formula ¢ is satisfiable if, and only if the following formula is satisfiable:

Ton /\ G (m(0)) A eventsy A /\ auxclocksg. (15)

BEYMb((p) ;esfb(m
=¥ la,b]

74 Deciding the Satisfiability of MITL Specifications

3.4 Complexity

The reduction of MITL to CLTL-oc of Sect. 3.2 induces an EXPSPACE decision procedure for the
satisfiability of MITL (the problem is actually EXPSPACE-complete). In fact, consider a MITL formula
¢, and its CLTL-oc translation (15) obtained following the reduction of Sect. 3.2. In Formula (15) we
introduce two clocks for each subformula of ¢, unless the subformula is of the form F, ;1 in which
case we introduce at most b clocks, since a,b € N. Then, the size of (15) is O(|¢|K), where K is the
maximum constant appearing in ¢. It can be shown that satisfiability for a CLTL-oc formula ¢crrr is
PSPACE in the number of subformulae of ¢crrr. (which is O(|@|K) for Formula (15)) and in the size
of the string encoding the maximum constant occurring in it (K for Formula (15)). Hence, the decision
procedure induced by our encoding is in EXPSPACE when using a binary encoding of K. As remarked
in [4], if the MITL formula ¢ does not contain subformulae of type F(, ;¥ (with a > 0 and b # <0), the
reduction of Sect. 3.2 only introduces one clock variable for each subformula. As a consequence, the
size of Formula (15) is O(|¢|) and the algorithm is in PSPACE.

4 Generalized translation

Our translation from MITL to CLTL-oc can be extended to represent general signals where no assumption
is made on their shape, other than their finite variability, i.e., the l.c.r.o. assumption of Sect. 3 can be
relaxed. In this more general case, the truth of a formula ¢ can change in a singular manner, that is, there
can be instants where the value of ¢ is different than in a neighborhood thereof.

More precisely, we say that in a time instant ¢ of a signal M formula ¢ has an “up-singularity” s’(;) if
it holds in 7, but not before and after it; more precisely, we say that M, = s';, if and only if M, = ¢ and
Je>0s.t. Vi #r€(t—e,t+€)itis M,t’' |~ ¢. We say that ¢ has a “down-singularity” s¢ When —¢ has
an up-singularity (i.e., ¢ does not hold in ¢, but it does before and after it). Note that, by their definition,
singularities (either up or down), cannot occur in ¢ = 0.

To represent general signals in CLTL-oc we “split” the representation of the value of subformulae 0

—
in intervals [#,#') in two parts: ¢ captures the value of 6 in ¢, whereas 0 corresponds to its value in (¢,#').
With the new predlcates we can restrict represented signals to only include l.c.r. o intervals by i 1mposmg
the constraint T9<:>9 for all 6. In addition, 9 and 6 become: 9= To A 9 0=—19 A— 9
Then, the encoding of Sect. 3 can be used also with the new atomic predicates, provided constraint

“
l9<=0 is added for all subformulae. If, instead, general signals are to be allowed, the encoding must

be extended to include also the cases in which the values of (sub)formulae change in singular manners.
— e — «

To this end, we slightly modify the definition of Iz as =Y (&) A & and "Lg as =Y (= &) A = & and
we introduce the following abbreviations, which capture, respectively, up- and down-singularities (note
that neither ¢, nor ¢ hold at 0, as Y(e) is false there):

« « « «
=Y(=E)ATenmE Te=Y(E)A"Teng
_ € £
We also define the following: A=Tev e v(OA Te) L="le v ILg.

More precisely, _t corresponds to a situation where & does not hold the interval before the current one (if
such interval exists), and it is true sometimes in the current one (either in its first instant, in which case &

M. M. Bersani, M. Rossi, & P. San Pietro 75

can have a up-singularity, or in the rest of the interval). Dually, é holds if & is true in the first instant of
the current interval, or in the interval before it, and from that moment on it is false.

When general signals are allowed, there is no need to restrict the temporal operators only to F, 4 ().
For simplicity, we focus on the encoding of case 6 = F(, ;) (y), all other cases being similar.

e 0=Fy;y: Wehave the following result.

Lemma 8. If 6 = F(,)y is a MITL formula and M ,t |= 0 then s 3€ € R~ such that, for all t' € [t,t + €]
itis M,t' |= 0 and, whent > 0, there is also € € R~ such that € <t and for allt’ € [t —€,t] itis M,t’' = 6.

Because of Lemma 8, an up-singularity L g can never occur for 8 = F(, ;) y. In addition, if 6 holds
at the beginning of an interval (i.e., {g holds), then it must hold also in the rest of the interval and, if
t > 0, it must also hold in the interval before. Then, the following constraint holds in every instant:

To=6 A(Y(8) v 0) (16)

Formula (17) is similar to (5), but it specifies that, when 6 becomes true outside of the origin, it must
do so in a left-open manner (i.e., ¢ does not hold with _y); also, there is one additional condition that
makes 0 become true in 0 when Yy becomes true exactly at b, in which case 6 does not hold in 0.

1
-0OAn—1 9/\\/ /\X<x9>OU(_T /\xe—b/\\/zw (b— a))) Y%

i=0

I 17
0= O/\ﬁTg/\X<x9>OU(_T /\xe—b/\\/zw (b— a))) v (an

On g /\(OVX9>0)U(('|'V,VII/)/\a<xg<b v lI//\xg<a/\X(xg>a))

Formulae (18), (19) and (20) generalize, respectively, (6), (7) and (8) to include also the case in which y
changes its value in a singular manner (i.e., with _L, instead of Iy, or Ly,).

—TA\/ZW (b— a:>\/x{9= (18)
ie{0,1} Jj=0
v v v oo
Lo @\/ /\X(x6 > 0)U<L, AXp =a /\X(_TR_'(_T AXY < b)))) v (OA—Tg) (19)

v v VoA -
L,/\X(_TR—' <_T/\/\Zlu,§(b—a)>>=>\/x]6=a (20)
i=0 j=0

Finally, we need to consider an additional shape in which 8 can change value. More precisely, there
is also the case in which 6 becomes false with a down-singularity 1"g. This occurs in an instant ¢ (which
must be > 0, as singularities cannot occur in the origin by definition) such that y becomes false at f + a,
but it becomes true again at ¢ + b (and it stays false in interval (f +a,7 + b)). This condition is captured
by Formula (21), which is similar to Formula (19), except that it specifies that when y becomes true
again, the clock x{, that is reset when ¢ has the singularity has value b.

d—1 v . v v :
Toe—0nr\/(x)=0)A X((xe >0)U (u AXg=a A X(ﬁ U(ﬁ A = b)))) @h

j=0

76 Deciding the Satisfiability of MITL Specifications

Then, m(6) is (16) A (17) A (18) A (19) A (20) A (21).

To allow for signals of general shape, the encoding for subformulae of the form YU ; o)y must
also be revisited. As this is rather straightforward, we skip the details for reasons of brevity. Instead, we
point out that it is possible to define a CLTL-oc encoding also for MITL past operators S and P, 3. It is
known that past operators increase the expressiveness of MITL [11], but do not impact on decidability.
Hence, a decision procedure that also includes the possibility to handle past operators is more powerful
than one dealing with the future-only fragment. To conclude this section, we show the encoding m(0) for
the S operator (whose semantics is symmetric to the one of U shown in Table 1). The case for operator
P, 5 is omitted for brevity.

e 0=75040)¥: Inthiscaseit can be shown that, if M is a finitely variable signal and 6 holds
in an instant 7, then it must also hold in (¢ — €,¢), for some € > 0, and vice-versa. Then, in¢ =0 0 is
false, and there S formulae cannot have singularity points. In addition, when a S formula changes its
value after the origin, it must do so in a left-open manner (i.e., the value at the changing point is the same
as the one before the changing point). Then, we have

—

m(6) = (1o Y(8)) A (857 S((Ty v ¥)A 7). (22)

5 Conclusions

This paper investigates a bounded approach to satisfiability checking of the continuous-time temporal
logic MITL. We showed an encoding of MITL into a decidable logic (CLTL-oc), which allows, both in
principle and in practice, the use of SMT solvers to check satisfiability of MITL.

A decision procedure for CLTL-oc [10] is implemented in a plugin, called ae?zot, of our Zot
toolkit [2], whereas the reduction outlined in Sect. 3 and 4 is implemented in the gt1solver tool, avail-
able from [1]. The tool translates MITL (or the expressively equivalent QTL logic [16]) into CLTL-oc,
which can be checked for satisfiability by ae?zot. The resulting toolkit has a 3-layered structure, where
CLTL-oc is the intermediate layer between SMT-solvers and various temporal formalisms that can be
reduced to CLTL-oc. This not only supports (bounded) satisfiability verification of different languages,
but it also allows the expression of different degrees of abstraction. For instance, MITL abstracts away
the notion of clocks, inherently encompassed within temporal modalities, which are instead explicit in
CLTL-oc and actually available to a user, e.g., to express or verify properties where clocks are conve-
nient. In fact, preliminary experimental results point out that the time required to solve CLTL-oc may be
significantly smaller than the one needed for more abstract languages, such as MITL. This is caused by
the “effort” required to capture the semantics of temporal modalities, which, on the other hand, allow for
more concise and manageable high-level specifications. This layered structure also allows the resolution
of a formula to be compliant with constraints imposed at lower layers, for instance by adding at the
CLTL-oc layer some extra formula limiting the set of valid models (e.g., by discarding certain edges of
some events or by adding particular timing requirements). Also the third layer (the SMT solver) may be
used to add further constraints, e.g., to force the occurrence of a proposition or of a certain clock value
at a specific discrete position of the finite model.

The current implementation of qtlsolver supports the MITL-to-CLTL-oc translation, both with or
without the L.c.r.o0. restriction. In fact, the following encodings are currently available:

MITL providing a direct definition of MITL operators, assuming l.c.r.o. intervals;

QTL providing the definition of generalized QTL operators (e.g., F(q), P (o)) with unrestricted signals
(other than they be finitely variable), and MITL operators through abbreviations.

M. M. Bersani, M. Rossi, & P. San Pietro 77

We used the above two encodings to carry out some experiments (available from the qtlsolver
website [1], or described in [10]). Let us illustrate one of them. MITL Formula (23) specifies that
predicate p occurs in isolated points with a period of 100 (i.e., it occurs exactly at 0, 100, 200, etc.).

G1o,50) ((G(0,100)(—P) = G(100200)(—P)) A (P = F(9200)(P))) A P A Go.100)(—P) (23)

gtlsolver was able to find a model for Formula (23) in around 10 seconds, using a bound of 10.!
Note that, even if the constants appearing in Formula (23) are in the order of the hundreds, events in the
corresponding models occur only sparsely, hence a bound of 10 is enough for gt1solver to satisfy (23).
If we add to the specification Formula (24), which states that ¢ must hold within 1 time unit in the past
or in the future of each p, the solver finds a model (again, with bound 10) in about 40 seconds.

Go.00) (P = Fro.1)(2) vP.1)(q)) (24)

Formula (24) does not impose that g be false in between occurrences of p. A more restricted behavior is
obtained by adding also constraint (25), which imposes that g occurs only in isolated instants, and that
there must be at least 100 time units between consecutive occurrences of g.

G(0,00) (4 = G(0,100)(—9)) (25)

gtlsolver was able to find a model (with bound 20, in this case) for formula (23) A (24) A (25) in
around 10 minutes. As mentioned above, one can add constraints at different levels of abstraction. For
example, we can add SMT constraints imposing that the values of the clocks (instead of the clock regions)
associated with propositions p and g be periodic; this allows us to check that formula (23) A (24) A (25)
admits periodic models (qt1lsolver takes around 15 minutes to produce one with bound 20). Finally, if
in Formula (25) we replace Gg 190y With G(q,100], the behavior becomes strictly aperiodic. In this case
the solver takes around 80 minutes to find a model with bound 30, and in excess of 12 hours to show
that, with that bound, no model exists in which p and ¢ are periodic (i.e., that the specification, with the
added constraint that the values of the clocks associated with p and g be periodic, is unsatisfiable).

While the results presented above are promising, further research will focus on optimizing the im-
plementation of the solver and on extending the encoding to deal with richer constraints.

The techniques presented in this paper for MITL can be tailored also to other logics. We consider
an example here. A syntactic fragment of MITL was proposed in [15], namely MTL ., where temporal
modalities are restricted only to intervals of the form (0, b) or {(a,0) (e.g., the MITL formula F5 3¢ is
not acceptable). MTLg », is complete in the sense that every MITL formula can be transformed into an
equisatisfiable MTL o, formula. However, the transformation may lead to an exponential blow-up, since
satisfiability is EXPSPACE-complete for MITL and PSPACE-complete for MTLg o. In [15], MTLg o
was shown to be equivalent to a new temporal logic, called Event-Clock Logic (ECL), which is also in
PSPACE. Although our work only concerns MITL (and actually MTL , which is considered by our
translation provided that operator F, ;) is not primitive for the language), our results can directly be
applied for solving the satisfiability of (MTL « and) ECL as well, by means of the above equivalence of
the languages. However, an explicit encoding of ECL into CLTL-oc may be devised, since only a finite
number of explicit clocks are enough to capture ECL semantics; this may allow solving satisfiability of
both logics (MTLy «, and ECL) in PSPACE.

TAll tests have been carried out on a desktop computer with a 2.8GHz AMD PhenomTMII processor and SMB RAM; the
solver was Microsoft Z3 3.2. The encoding used was the one for QTL, with unrestricted signals.

78

Deciding the Satisfiability of MITL Specifications

References

(1]
(2]
(3]

(4]

(5]
(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

(14]

(15]

[16]

(17]

(18]

[19]

(20]

gtlsolver. available from qtlsolver.googlecode. com.
Zot: a Bounded Satisfiability Checker. available from zot . googlecode. com.

Rajeev Alur & David L. Dill (1994): A theory of timed automata. Theor. Comp. Sci. 126(2), pp. 183-235.
Available at http://dx.doi.org/10.1016/0304-3975(94)90010-8.

Rajeev Alur, Tomas Feder & Thomas A. Henzinger (1996): The Benefits of Relaxing Punctuality. Journal of
the ACM 43(1), pp. 116-146. Available at http://doi.acm.org/10.1145/112600.112613.

Christel Baier & Joost-Pieter Katoen (2008): Principles of Model Checking. MIT Press.

Johan Bengtsson & Wang Yi (2004): Timed Automata: Semantics, Algorithms and Tools. In: Lect. on
Concurrency and Petri Nets, LNCS 3098, Springer, pp. 87—124. Available at http://dx.doi.org/10.
1007/978-3-540-27755-2_3.

Marcello M. Bersani, Achille Frigeri, Angelo Morzenti, Matteo Pradella, Matteo Rossi & Pierluigi San Pietro
(2010): Bounded Reachability for Temporal Logic over Constraint Systems. In: TIME, IEEE Computer
Society, pp. 43-50. Available at http://dx.doi.org/10.1109/TIME.2010.21.

Marcello M. Bersani, Achille Frigeri, Angelo Morzenti, Matteo Pradella, Matteo Rossi & Pierluigi San Pietro
(2012): CLTL Satisfiability Checking without Automata. arXiv:1205.0946v1.

Marcello M. Bersani, Achille Frigeri, Matteo Rossi & Pierluigi San Pietro (2011): Completeness of the
Bounded Satisfiability Problem for Constraint LTL. In: Reachability Problems, LNCS 6945, pp. 58-71.
Available at http://dx.doi.org/10.1007/978-3-642-24288-5_7.

Marcello M. Bersani, Matteo Rossi & Pierluigi San Pietro (2013): A Tool for Deciding the Satisfiability
of Continuous-time Metric Temporal Logic. In: Proceedings of the International Symposium on Temporal
Representation and Reasoning (TIME). To appear.

Patricia Bouyer, Fabrice Chevalier & Nicolas Markey (2010): On the expressiveness of TPTL and MTL.
Information and Computation 208(2), pp. 97 — 116. Available at http://dx.doi.org/10.1016/j.1ic.
2009.10.004.

Stéphane Demri & Deepak D’Souza (2007): An automata-theoretic approach to constraint LTL. Information
and Computation 205(3), pp. 380—415. Available at http://dx.doi.org/10.1016/j.1ic.2006.09.006.
Deepak D’Souza & Nicolas Tabareau (2004): On Timed Automata with Input-Determined Guards. In: Proc.
of FORMATS/FTRTFT, LNCS 3253, Springer, pp. 68-83. Available at http://dx.doi.org/10.1007/
978-3-540-30206-3_7.

Carlo A. Furia, Dino Mandrioli, Angelo Morzenti & Matteo Rossi (2012): Modeling Time in Computing.
EATCS Monographs in Theoretical Computer Science, Springer. Available at http://dx.doi.org/10.
1007/978-3-642-32332-4.

Thomas A. Henzinger, Jean F. Raskin & Pierre Y. Schobbens (1998): The Regular Real-Time Languages. In:
Proc. of ICALP’98, LNCS 1343, pp. 580-591. Available at http://dx.doi.org/10.1007/BFb0055086.
Yoram Hirshfeld & Alexander Moshe Rabinovich (2004): Logics for Real Time: Decidability and Complex-
ity. Fundamenta Informaticae 62(1), pp. 1-28.

Oded Maler, Dejan Nickovic & Amir Pnueli (2006): From MITL to Timed Automata. In: Proc. of FORMATS,
LNCS 4202, pp. 274-289. Available at http://dx.doi.org/10.1007/11867340_20.

Microsoft Research (2009): Z3: An Efficient SMT Solver. Available at: http://research.microsoft.com/en-
us/um/redmond/projects/z3/.

Angelo Morzenti & Pierluigi San Pietro (1994): Object-Oriented Logical Specification of Time-Critical Sys-
tems. ACM Transactions on Software Engineering and Methodology (TOSEM) 3(1), pp. 56-98. Available
athttp://doi.acm.org/10.1145/174634.174636.

Matteo Pradella, Angelo Morzenti & Pierluigi San Pietro (2013): Bounded Satisfiability Checking of Metric
Temporal Logic Specifications. ACM Trans. on Soft. Eng. and Meth. (TOSEM). To appear.

Improving HyLTL model checking of hybrid systems

Davide Bresolin

University of Verona (Italy)
davide.bresolin@univr.it

The problem of model-checking hybrid systems is a long-time challenge in the scientific community.
Most of the existing approaches and tools are either limited on the properties that they can verify,
or restricted to simplified classes of systems. To overcome those limitations, a temporal logic called
HyLTL has been recently proposed. The model checking problem for this logic has been solved by
translating the formula into an equivalent hybrid automaton, that can be analized using existing tools.
The original construction employs a declarative procedure that generates exponentially many states
upfront, and can be very inefficient when complex formulas are involved. In this paper we solve
a technical issue in the construction that was not considered in previous works, and propose a new
algorithm to translate HyLTL into hybrid automata, that exploits optimized techniques coming from
the discrete LTL community to build smaller automata.

1 Introduction

Hybrid systems are heterogeneous systems characterized by a tight interaction between discrete and
continuous components. Typical examples include discrete controllers that operate in a continuous envi-
ronment, as in the case of manufacturing plants, robotic systems, and cyberphysical embedded systems.
Because of their heterogeneous nature, hybrid systems cannot be faithfully modeled by discrete only nor
by continuous only formalisms. In order to model and specify them in a formal way, the notion of hy-
brid automata has been introduced [1, 14]. Intuitively, a hybrid automaton is a “finite-state automaton”
with continuous variables that evolve according to dynamics characterizing each discrete state (called a
location or mode). Of particular importance in the analysis of hybrid automata is the model checking
problem, that is, the problem of verifying whether a given hybrid automaton respects some property of
interest. Unfortunately, the model checking problem is computationally very difficult. Indeed, even for
simple properties and systems, this problem is not decidable [11].

For very simple classes of hybrid systems, like timed automata, the model checking problem can
be solved exactly [2]. Tools like Kronos [20] and UPPAAL [13] can be used to verify properties of
timed automata. For more complex classes of systems, the problem became undecidable, and many
different approximation techniques may be used to obtain an answer, at least in some cases. Tools like
PhaVer [8] and SpaceEx [9] can compute approximations of the reachable set of hybrid automata with
linear dynamics, and thus can be used to verify safety properties. Other tools, like HSOLVER [17], and
Ariadne [4], can manage systems with nonlinear dynamics, but are still limited to safety properties.

We are aware of only very few approaches that can specify and verify complex properties of hybrid
systems in a systematic way. A first attempt was made in [12], where an extension of the Temporal Logic
of Actions called TLA+ is used to specify and implement the well-known gas burner example. Later on,
Signal Temporal Logic (STL), an extension of the well-known Metric Interval Logic to hybrid traces,
has been introduced to monitor hybrid and continuous systems [15]. More recent approaches include the
tool KeYmaera [16], that uses automated theorem proving techniques to verify nonlinear hybrid systems
symbolically, and the logic HRELTL [6], that is supported by an extension of the discrete model checker
NuSMYV, but it is limited to systems with linear dynamics.

Gabriele Puppis, Tiziano Villa (Eds.): Fourth International © D. Bresolin
Symposium on Games, Automata, Logics and Formal Verification This work is licensed under the
EPTCS 119, 2013, pp. 79-92, doi:10.4204/EPTCS.119.9 Creative Commons Attribution License.

80 Improving HyLTL model checking of hybrid systems

To overcome the limitations of the current technologies, an automata-theoretic approach for model
checking hybrid systems has been recently proposed [5]. The work is based on an extension of the well-
known temporal logic LTL to hybrid traces called HyLTL. The model checking problem for this logic has
been solved by translating the formula into an equivalent hybrid automaton, reducing the model checking
problem to a reachability problem that can be solved by existing tools. The original construction employs
a declarative procedure that generates exponentially many states upfront, and can be very inefficient when
complex formulas are involved.

In this paper we solve a technical issue in the construction that was not considered in previous works
by identifying the precise fragment of HyLTL that can be translated into hybrid automata, and we propose
a new algorithm to translate formulas into hybrid automata, that exploits optimized techniques coming
from the discrete LTL community to be more efficient than the original declarative approach.

2 Preliminaries

Before formally defining hybrid automata and the syntax and semantics of HyLTL we need to introduce
some basic terminology. Throughout the paper we fix the fime axis to be the set of non-negative real
numbers R*. An interval I is any convex subset of R™, usually denoted as [r1,52] = {t e R" :1; <1 <1p}.
We also fix a countable universal set V of variables, ranging over the reals. Given a finite set of variables
X CV, avaluation over X is a function x : X — R” that associates a value to every variable in X. The set
Val(X) is the set of all valuations over X.

A notion that will play an important role in the paper is the one of trajectory. A trajectory over a set
of variables X is a function 7 : I — Val(X), where [is a left-closed interval with left endpoint equal to
0. We assume trajectories to be differentiable almost everywhere on the domain, and we denote with
the corresponding (partial) function giving the value of the derivative of 7 for every point in the interior
of I where 7 is differentiable (note that 7 might not be differentiable neither continuous). With dom(7)
we denote the domain of 7, while with 7.ltime (the limit time of T) we define the supremum of dom(7).
The first state of a trajectory is 7.fstate = 7(0), while, when dom(7) is right-closed, the last state of a
trajectory is defined as 7.lstate = t(7.ltime). We denote with Trajs(X) the set of all trajectories over X.
If [£,¢'] is a subinterval of dom(7), we denote whith 7, ; the trajectory 7’ such that dom(7’) = [0,¢' —1]
and 7/(¢") = t(¢" +1) for every " € dom(7’). Given two trajectories 7 and 7, such that 7)./time < oo,
their concatenation 7, - 7, is the trajectory with domain [0, 7;.l/time + T,.ltime] such that T - 7o(t) = 7, (¢)
ift € dom(71), 71 - 2 (t) = (¢ — 71.ltime) otherwise.

Variables will be used in the paper to build constraints: conditions on the value of variables and on
their derivative that can define sets of valuations, sets of trajectories, and jump relations. Formally, given
a set of variables X, and a set of mathematical operators OP (e.g. +, —, -, exponentiation, sin, cos, ...),
we define the corresponded set of dotted variables X as {x|x € X} and the set of tilde variables X as
{X|]x € X}. We use OP, X, X and X to define the following two classes of constraints.

e Jump constraints: expressions built up from variables in X UX, constants from R, mathematical
operators from OP and the usual equality and inequality relations (<, =, >, ...). Examples of
jump constraints are x = 454z, x> < 3, § > cos(y).

e Flow constraints: expressions built up from variables in X UX, constants from R, mathematical
operators from OP and the usual equality and inequality relations (<, =, >, ...). Examples of
flow constraints are x = 4y +z, x+y > 0, sin(x) > cos(y).

D. Bresolin 81

We use jump constraints to give conditions on pairs of valuations (X,x). Given a jump constraint ¢, we
say that (X,x) respects ¢, and we denote it with (X,X) - ¢, when, by replacing every variable x with its
value in x and every tilde variable ¥ with the value of the corresponding normal variable in X we obtain
a solution for c. Flow constraints will be used to give conditions on trajectories. Given a flow constraint
¢, we say that a trajectory 7 respects ¢, and we denote it with T I~ ¢, if and only if for every time instant
t € dom(7), both the value of the trajectory 7() and the value of its derivative 7(¢) respect ¢ (we assume
that ©(¢) respects ¢ when 7 is not defined on ¢).

3 HyLTL: syntax and semantics

The logic HyLTL is an extension of the well-known temporal logic LTL to hybrid systems. Given a
finite set of actions A and a finifte set of variables X, the language of HyLTL is defined from a set of flow
constraints FC over X by the following grammar:

pu=fcFClacA|-@o|ornp|oVe|Xo|oUo|pRo (1)

In HyLTL constraints from FC and actions from A take the role of propositional letters in standard
temporal logics, =, A and V are the usual boolean connectives, X, U and R are hybrid counterpart of the
standard next, until and release temporal operators.

The semantics of HyLTL is given in terms of hybrid traces mixing continuous trajectories with dis-
crete events. Formally, given a set of actions A and a set of variables X, an hybrid trace over A and X is
any infinite sequence & = Tja; Tra>T3as ... such that 7; is a trajectory over X and q; is an action in A for
every i > 1. For every i > 0, the truth value of a HyLTL formula ¢ over ¢ at position i is given by the
truth relation I, formally defined as follows:

e forevery f € FC, a,il fif and only if 7; - f;

o foreveryac€ A, a,ilFaiffi>1and ;-1 = a;

e «,ilF—e@ifand only if a,i I} @;

o o,ilF o Ayifandonlyif o,ilF @ and ,ilF y;

e o,ilF@Vyifandonlyif a,ilk ¢ or a,il- y;

e o,ilFXg if and only if a,i+ 1 IF ¢;

e ¢,ilF ¢ Uy if and only if there exists j > i such that «, j I y, and for every i < k < j, a, k|- ¢;

o o,ilF @Ry if and only if for all j > i, if forevery i <k < j, o,k | ¢ then a, j IF .

Other temporal operators, such as the “always” operator G and the “eventually” operator F can be
defined as usual:

Fo=TUg Gop=-F-¢

3.1 HyLTL with positive constraints

In this paper we will pay a special attention on formulas of HyLTL where flow constraints from FC
appears only in positive form, because it will turn out that they constitue the class of formulas that can be

82 Improving HyLTL model checking of hybrid systems

whena € A : n(a) = a (—a) = —a

when f€ FC: z(f)= fAX(TAf)U-T) m(=f)= fFVX(TU(T Af))
n(oAy) = (@) Ar(y) n(oVy)=n(Q)Vr(y)
n(eUy) = (TVr(9))U(-TAx(y)) n(eRy)= (=T Ax(¢))R(TVr(y))

n(Xe) = X(TU (=T A7(9)))
Table 1: The translation function 7 from HyLTL to HyLTL™"

translated into hybrid automata. This particular fragment is called HyLTL with positive flow constraints,
denoted by HyLTL™, and formally defined by the following grammar:

yu=feFClacA|acA|lyAy|yVy|Xy|yUy|yRy 2

Despite being a syntactical fragment, HyLTL™ turns out to be equally expressive as the full language,
at the price of adding an auxiliary action symbol. In the following, given a constraint ¢ we denote with
¢ the corresponding “dual” constraint obtained by replacing < with >, > with <, = with #, and so on.
Notice that a trajectory 7 that satisfies the negation of a flow constraint —~c does not necessarily satisfy ¢.
Indeed, by the semantics of HyLTL we have that T - —c if there exists a time instant ¢ such that 7(7) I/ c,
while 7 I ¢ if for all time instants r we have that 7(7) I/ c.

Hence, given a trajectory T with domain dom(7) = [0, %] such that T - —¢, it is possible to find
a point ¢ € [0,%,4,] such that 7(7) I/ ¢ and we can split 7 into three sub-trajectories 75, Tz, T, such that
T = Thjoy]> Te = Tdpy and Tp = Ty, 10 it is easy to see that 7; - ¢. In the following, the auxiliary
action symbol T will be used to represent the splitting points of trajectories when translating formulas
with negated flow constraints to formulas with positive flow constraints only.

Given a formula of HyLTL in in negated normal form ¢, consider the translation function 7 defined
in Table 1. To compare hybrid traces satisfying the original formula ¢ with the ones satisfying w(¢) we
have to remove the occurrences of T from the latter. To this end, we define a suitable restriction operator
over hybrid traces.

Definition 1. Let A a set of action, and B C A. Given a hybrid trace @ = TiaxTyay . .. over A we define
its restriction to B as the hybrid trace ol obtained from o by first removing the actions not in B and
then concatenating adjacent trajectories.

The following lemma states that () is a formula of HyLTL™ equivalent to ¢.

Lemma 1. For every hybrid trace a over A and X and every HyLTL-formula @ we have that o, 1 I+ @ if
and only if there exists a hybrid trace B over AU{T} and X such that Bl, = o and B,1 - ().

Proof. Let @ = T1a;may ... be an hybrid trace over A such that o, 1 IF ¢, and let FC be the set of flow
constraints that appears in ¢. We will build a sequence of hybrid traces By, Bi, B2,... over AU{T} as
follows.

1. Bo is the empty sequence.

2. For every i > 1, consider the i-th trajectory 7; in @, and let C; = {f € FC | t; t/ f}. Given an

enumeration f1,..., f; of C;, we have that it is possible to find a set of time instants 71, ...,#, such
that 7;(¢;) - f forevery 1 < j <n. W.lo.g., we can assume that 7; flime =t <t; <t) < ... <t, <
ty+1 = T;.ltime and we can define the sequence of trajectories U, Ly, ..., Uzn+1 such that

= Tikjro.0,]> M2j = Tiljs 1) M2jt1 = Tidjy; 1] forevery 1< j<n (3)

We define B; = Bi_ i1 TpoT ... T topy 14

D. Bresolin 83

The hybrid trajectory we are looking for is the limit trajectory B = lim; . 3;.

Given an index i, we will denote by o and 3 the suffix of & and of 3 starting at position i. We show
that f respects the following property: “for every subformula y of ¢ andi > 1, a,il- wiff B, jIF n(y),
where j is the unique index such that /], = o'”. The proof is by induction on .

o If y =a or y = —a for some a € A the property holds trivially.

e Suppose ¥ = f for some f € FC. By the semantics, we have that 7; - f. Consider now the

sequence Ui T U T ... T Uy, +1a; built in the construction of f;, and let j be the index of y; in .
By (3) we have that u, - f for every 1 < h < 2n+ 1. This implies that 3, jIF f AX((T A f)U—T).

o If w = —f for some f € FC then we have that 7; I/ f. Let 4y T T ... T U+ 1a; be the sequence
built in the construction of B;. Since f € C;, we have that there exists 7y < #; < £, such that
7(t) F f. By (3), this implies that i - f. Let j be the index of y; in 8. Two case may arise:
either t, = p; and thus B, j I f, or g # wy and then B, I- X(T U (T A f)). In both cases the
property is satisfied.

e The cases of the boolean operators V and A are trivial and can be skipped.

e Suppose ¥ = y; U y», and let i be such that «,i I y; Uy,. By the semantics, we have that
there exists k > i such that o,k I y, and, for every i < h <k, a,h |- y;. Now, let j and [be
the two indexes such that /|, = &’ and B}, = a*. By inductive hypothesis we can assume
that 8,1 I m(y»), while by the definition of the |, operator we have that 8,1 |- a; # T. Hence,
B,l1- =T Am(y,). Consider now any index m such that j < m < [. Two cases may arise: either
B,m - T, or not. In the latter case, we have that it is possible to find an index i < & < k such that
B4 = o”. Since o,k I- yy, by inductive hypothesis we have that 8,m I (7). Hence, in both
cases 3,m |- T V (). This proves that B, j IF (T V w(y1)) U(=T An(yr)) = n(y).

To prove the converse implication, suppose that 3, I- (T V() U (=T Am(yz)). By the se-
mantics, we have that there exists / > j such that B,/ IF =T A (y») and, for every j < m < I,
B,mI- TV x(y;). Since B,1 - =T it is possible to find an index k such that B'|, = . Hence,
by inductive hypothesis we have that o,k I y,. Now, let & be such that i < & < k, and consider
the index m such that], = a”. By the semantics we have that B,m |- TV 7(y;). Since, by
definition of the restriction operator, 3, m | T, we have that B, m I- (y;) and thus, by inductive
hypothesis, that o, & I y;. This proves that ¢, i I- y; U y,.

o The cases of the temporal operators X and R can be proved by a similar argument.
By the property it is immediate to conclude that, since o, 1 I+ ¢ then B, 1 |- 7(@).

To conclude the proof, suppose that there exists a hybrid trace 8 such that 8,1 IF w(¢), and let

o = B 4. By an induction on the structure of ¢ similar to the one above, we can prove that a, 1 |- ¢@. [

4 Hybrid Automata

An hybrid automaton is a finite state machine enriched with continuous dynamics labelling each discrete
state (or location), that alternates continuous and discrete evolution. In continuous evolution, the discrete
state does not change, while time passes and the evolution of the continuous state variables follows the
dynamic law associated to the current location. A discrete evolution step consists of the activation of
a discrete transition that can change both the current location and the value of the state variables, in
accordance with the reset function associated to the transition.

In this section we recap the definition of Hybrid Automata introduced in [5] to solve the model
checking problem for HyLTL.

Definition 2. A hybrid automaton is a tuple H = (Loc,X, A,Edg, Dyn, Res, Init) such that:

84 Improving HyLTL model checking of hybrid systems

Loc is a finite set of locations;

X is a finite set of variables;

A is a finite set of actions;

Edg C Loc x A x Loc is a set of discrete transitions;

Dyn is a mapping that associates to every location { € Loc a set of flow constraints Dyn({) over

X UX describing the dynamics of /;

6. Res is a mapping that associates every discrete transition ({,e,l') € Edg with a set of jump con-
straints Res({, e, V') over X UX describing the guard and reset function of the transition;

7. Init C Loc is a set of initial locations.

LR N~

The state of a hybrid automaton H is a pair (¢,x), where ¢ € Loc is a location and x € Val(X) is a
valuation for the continuous variables. A state (¢,x) is said to be admissible if (¢,x) F Dyn(¢). Tran-
sitions can be either continuous, capturing the continuous evolution of the state, or discrete, capturing
instantaneous changes of the state.

Definition 3. Let H be a hybrid automaton. The continuous transition relation Ly between admissible
states, where T is a bounded trajectory over X, is defined as follows:

(6,x) 5 (0,x) <= t.fstate = x A\ T.Istate =x' AT+ Dyn({). 4)
The discrete transition relation — between admissible states, where a € A, is defined as follows:
(4,x) % (¢ ,xX') <= xFDyn({) AX'FDyn(¢') A (x,X') - Res(£,a,0). (5)

The above definitions allows an infinite sequence of discrete events to occur in a finite amount of time
(Zeno behaviors). Such behaviors are physically meaningless, but very difficult to exclude completely
from the semantics. In this paper we assume that all hybrid automata under consideration do not generate
Zeno runs. This can be achieved, for instance, by adding an extra clock variable that guarantees that the
delay between any two discrete actions is bounded from below by some constant. Moreover, we assume
that all hybrid automata are progressive, that is, that all runs can be extended to an infinite one: it is not
possible to stay forever in a location and never activate a new discrete action.

We can view progressive, non-Zeno hybrid automata as generators of hybrid traces, as formally
expressed by the following definition.

Definition 4. Ler H be a progressive, non-Zeno hybrid automaton, and let & = Tia1a; ... be a in-
finite hybrid trace over X and A. We say that o is generated by J{ if there exists a corresponding
sequence of locations (0, ... such that ¢, € Init and, for every i > 1: (i) ({;, 7;.fstate) LN (4;, 7;.Istate),
and (ii) (¢;, 7;.Istate) =N (liv1, Tiy1 fstate).

Our definition of hybrid automata admits composition, under the assumpion that all variables and
actions are shared between the different automata. The formal definition of the parallel composition
operator || can be found in [5]. In this paper it is sufficient to recall that it respects the usual “composi-
tionality property”, that is, that the set of hybrid traces generated by a composition of hybrid automata
corresponds to the intersection of the hybrid traces generated by the components (up to projection to the
correct set of actions and variables).

5 Model checking HyLTL

In analogy with the classical automata-theoretic approach, in [5] the model checking problem for HyLTL
has been solved by translating the HyLTL formula into an equivalent hybrid automaton, enriched with

D. Bresolin 85

a suitable Biichi acceptance condition to identify the traces generated by the automaton that fulfills the
semantics of HyLTL.

Definition 5. A Hybrid Automaton with Biichi condition (BHA) is a tuple H = (Loc,X,A,Edg,Dyn,
Res, Init,F) such that (Loc,X,A,Edg,Dyn,Res,Init) is a Hybrid Automaton, and § C Loc is a finite set
final locations.

We say that a hybrid trace a = Tja;Ta; ... is accepted by a BHA H if there exists an infinite
sequence of locations ¢1/; ... such that:
(i) ¢; € Init;
(i) forevery i > 1, (¢;, 7 fstate) = (¢;, 7;.Istate);
(iii) forevery i > 1, (¢;,1;.Istate) SN T,11fState);
(iv) there exists £y € J that occurs infinitely often in the sequence.
By the above definition, not all sequences generated by the automaton are accepting: only those that
respect the additional accepting condition are considered.
By the definition of the dynamics, hybrid automata can enforce only positive constraints on the
continuous flow of the system. Hence, they can only recognize formulas of the positive flow fragment of
HyLTL, as summarized by the following theorem.

Theorem 1 ([5]). Given a HyLTL" formula ¢, it is possible to build a BHA H, that accepts all and only
those hybrid traces that satisfies Q.

Theorem 1 and Lemma 1 can be exploited to solve the model checking problem for full HyLTL as
follows. Let Hg be a hybrid automaton representing the system under verification, and let ¢ be the
HyLTL formula representing a property that the system should respect. Consider the formula —¢ and
its translation @ = 7(—¢@). By Lemma 1 we have that @ is a formula of HyLTL™ that is equivalent to
=@, and thus we can build a BHA Jg that is equivalent to the negation of the property: it accepts all
the hybrid traces that violates the property we want to verify. Now, if we compose the automaton for the
system with the automaton for ¢ we obtain a BHA (|| g that accepts only those hybrid traces that are
generated by the system and violates the property. This means that J(g respects the property ¢ if and
only Hs||Hg does not accept any hybrid trace.

It is worth pointing out that the reachability problem of hybrid automata is undecidable. This means
that the model checking of HyLTL is an undecidable problem as well (reachability can be expressed by
an eventuality formula). However, this does not mean that out logic is completely intractable. A number
of different approximation techniques have been developed in the past years to obtain an answer to the
reachability problem (at least in some cases), and they can be exploited to solve the model checking
problem of HyLTL as well. Indeed, Hs||Hg accepts an hybrid trace if and only if there exists a loop that
includes a final location and that is reachable from the initial states. As shown in [5], this property can be
reduced to a reachability property that can be tested by existing tools for the analysis of hybrid automata.
The only thing that one needs to do is to write a procedure implementing the construction of Hg, and
then send the results to the reachability analysis tool.

6 An improved construction algorithm

The algorithm presented in [5] to build a BHA equivalent to a HyLTL"-formula ¢ is based on a declar-
ative construction. While being simple to understand, it suffers of a major drawback from the efficiency
point of view: it generates exponentially many locations upfront, even though many of them may be in-
consistent, redundant or unreachable. This implies that the resulting BHA can be very big, even for very

86 Improving HyLTL model checking of hybrid systems

Y(@) = N2y ~bi A 1o(@)
Y(a) = b(a) wif)=r whena € Aor f € FC
W(=9) = ~1(p) W(eAY) = 1(e)An(v) W(@eVYy)=1n(e)Vn(y)

nXe) = X(1(9) w(eUy) = n(e)Un(y) (@RY) = 10(9) R1(Y)
Table 2: The translation function y from HyLTL to LTL

simple formulas. In this section we describe an improved construction algorithm, based on the following
steps:

A. the HyLTL"-formula ¢ is first translated into a suitable formula of discrete LTL y(¢);

B. adiscrete Biichi automaton A, equivalent to y(¢), is built using one of the many optimized tools
available in the literature;

C. aBHA J{y, equivalent to ¢, is built from A y).

The new algorithm improves the original one by building a smaller BHA, thanks to the use of opti-
mized tools for LTL in step B.

6.1 From HyLTL to discrete LTL

Let FC and A be respectively the set of all flow constraints and discrete actions appearing in ¢. For
the sake of simplicity, we will assume that [AU{T}|| = 2" — 1 for some n € N (if this is not the case,
we can always add some fresh action symbols to A that will not appear in the formula). Under this
assumption we can represent action symbols from AU {T} by means of a set of n propositional letters
B = {by,...,by—1}, where every possible combination of the truth values, but the one where all letters
are false, uniquely identify one action symbol. For every a € AU{T} let b(a) be the corresponding
encoding. By definition, we put b(7) = /\?:_01 b;.

If we consider AP = FCU{by,...,b,_1} as a set of propositional letters for discrete LTL, we have
that we can transform any hybrid trace & = Tja1T2a; ... into a discrete sequence X(¢t) = 610,203 ...
where every element is a subset of AP defined as follows: o) = {f € FC | 7y - f}; for every i > 1,
o;={f€FC|ttF ftU{b; € B|bjholds true in b(a;_1)}.

Now, let y(¢@) be the discrete LTL formula obtained from ¢ by means of the translation function y
defined in Table 2. It is easy to see that £(a) is a model for y(¢), as proved by the following lemma.

Lemma 2. For every hybrid trace o, a, 11+ @ if and only if (), 1 I+ y(@).

Proof. Let ¢ be a HyLTL formula, and ¢ a hybrid trace. We prove the lemma by showing that the
following stronger claim holds:

forevery i > 1, o, i |- @ if and only if X(a),i IF 10(@).

We reason by induction on the structure of @:
e if @ =a, with a € A, then Y (a) = b(a) and the claim follows easily by the definition of X();
if @ = f, with f € FC, then %(f) = f and the claim follows easily by the definition of X(¢t);
the boolean cases are trivial and thus skipped;
when @ = Xy, we have that o, i IF Xy iff «,i4 1 IF y. By inductive hypothesis we have that
X(a),i+ 11k (), from which we can conclude that X(a),i I- X 1 (y);

D. Bresolin 87

e suppose ¢ = v U y,. By the semantic of HyLTL, we have that «,i |- y; U v, iff there exists j > i
such that a, j IF y», and for every i < k < j, o,k IF y;. By inductive hypothesis we have that
X(a),jlIF 1(y2) and that X(a),k IF 9 (yq) for every i < k < j. Hence, ()il yo(y1) U (yr)
and the claim is proved.

e the case when @ = y; Ry, is analogous.

To conclude the proof it is sufficient to consider that, by definition, X(ct), 1 I /\?:_01 —b;. Hence, from the

claim it is immediate to conclude that X(a), 1 I A7) =b; A Y (¢) if and only if a, 1 I ¢. O

When ¢ is a formula of HyLTL™ we have that also y(¢) is a formula where flow constraints appear
only in positive form. Hence, y(¢) cannot force the negation of a flow constraint to hold in any of the
elements o; of a discrete sequence, as formally stated by the following lemma.

Lemma3. Let X =010,...andP=pp;... be two discrete sequences such that for everyi > 1, 6;N\B =
Pi N B (the sequences agrees on the propositional letters in B) and o; C p; (every flow constraint that is
true in ¥ is true also in P). Then, for every LTL formula vy where flow constraints appear only in positive
form and index j > 1, if X, jIF Y then P, j I 7.

Proof. Suppose X, j I v. We prove the claim by induction on the structure of 7.
o If Y= by or y = —by, for some by € B, we have that the claim follows immediately by the fact that
0;NB=p;NB;
e If y= f for some f € FC, by the semantics of LTL we have that f € o;. By hypothesis ¢; C p;
and this implies that P, j I f;
e The remaining cases can be easily proved from the inductive hypothesis and the semantics of
LTL. O

6.2 Building the Biichi automaton A,

Since the seminal work of Vardi and Wolper [19], translation of LTL formulas into equivalent Biichi
automata plays an important role in many model checking and satisfiability checking algorithms. This
led to the development of many translation algorithms exploiting several heuristics and optimization
techniques. According to the experiments in [18], two leading tools are LTL2BA [10] and SPOT [7]. A
new version of the former, called LTL3BA, has been recently introduced [3]. According to the authors,
it is faster and it produces smaller automata than LTL2BA, while it produces automata of similar quality
with respect to SPOT, being usually faster.

We choose to use LTL3BA as the tool for translating the formula y(¢) into the Biichi automaton
Ay(g), since it is a state-of-the-art tool that is freely available under an open source license. Nevertheless,
the high level HyLTL™" translation algorithm is independent from the specific tool used to build Ayip)s
and can be easily adapted to use other tools.

The output of LTL3BA is a Biichi automaton A, of the form (Q, qo,8,F), where Q is the set of
states, go is the unique initial state, § is the transition relation and F is the set of final states. To merge
many transitions into a single one, the transitions are labelled with conjunctions of atomic propositions
from AP: the automaton can fire a transition (g,,q’) whenever it reads a symbol o; of the discrete
sequence that satisfies the boolean formula . Since y(¢) is a formula where flow constraints appear
only positively, Lemma 3 guarantees that we can assume, without loss of generality, that in the boolean
formulas labeling the transitions of A,y flow constraints appear only positively. The following lemma
connects the language of A, with the set of hybrid traces satisfying ¢.

88 Improving HyLTL model checking of hybrid systems

Algorithm 1: how to build the BHA equivalent to ¢

Input: 'A}/((p) = <Q7q07 5>F>
Output: J(, = (Loc,X,AU{T},Edg,Dyn,Res, Init, J)

1 Loc =0, Edg = 0;

2 L=0;

3 foreach transition (qo,,q) € 6 do

a4 | if B— A=) —b; then

s | | c={reFc|B— sy

6 add (¢,C) to Loc;

7 add (¢, C) to Init;

8 set Dyn(q,C) =C;

9 add (¢,C) to L;

10 end

11 end

12 while the queue £ is not empty do

13 extract an element (g,C) from £;
14 | foreach transition (q,B,4') € & do
15 C'={feFC|B—f}

16 if (¢/,C") & Loc then

17 add (¢’,C") to Loc;

18 set Dyn(q',C") = C';

19 add (¢/,C") to L;
20 end
21 foreacha €c AU{T} do

22 if B — b(a) then

23 add transition (¢,C,a,q’,C") to Edg;
24 set Res(¢,C,a,q',C") =T;
25 end

26 end

27 end

28 end

29 F={(q,C) eLoc|qecF};

Lemma 4. Let ¢ be a HyLTL" formula, and o a hybrid trace. Then o, 11+ @ if and only if L(at) is
accepted by Ay(p).

6.3 From Ay(q)) to Hy

By Lemma 4, we have that the language of A, contains all the discrete sequences X(a) such that

a satisfies @. However, Ay,) may accepts also “spurious” discrete sequences that do not represent a

hybrid trace (for instance, sequences where flow constraints are contradictory). Algorithm 1 accepts as

input the discrete automaton A, and build a BHA J{,, that accepts only the hybrid traces satisfying ¢.
The following theorem proves that the algorithm is correct.

D. Bresolin 89

Theorem 2. Let ¢ be a formula of HyLTL", and let 3y be the BHA built by Algorithm 1. For every
hybrid trace @, we have that Hy accepts o if and only if a, 1 I+ @.

Proof. Let ¢ = T1a1Tay ... be a hybrid trace such that ¢, 1 I- ¢. By Lemma 4, we have that Ay((p)

accepts the discrete sequence X(ot). Let g LR Q1 b, 72 Py bean accepting run of A,,) over X(a).

Forevery i > 1,let C; = {f € FC| B; — f}, and consider the sequence (q1,C1),(g2,C2),(g3,C3).... By
Algorithm 1 we have that:

1. every pair (g;,C;) of the sequence is a location of H;

2. (¢1,Cy) € Init;

3. every set of flow constraints C; is such that Dyn(g;, C;) = Cj;

4. the transition (g;, G, a;,qi+1,Ci+1) € Edg with reset condition T.
By definition of () we have that 7; - C;, and thus we can conclude that for every i > 1, both
(qi,Ci, 7 fstate) KN (qi,Ci, 1;.Istate) and (q;,C;, T;.Istate) N (qi+1,Cit1, Tiy1 fstate) are valid transitions
of He. This means that « is generated by H,. Since () is accepted by the discrete automaton A
is possible to find a location (gr,Cy) € F that occurs infinitely often in the sequence. This proves that ¢
is accepted by FH,.

To conclude the proof, consider a hybrid trace @ = Tja1Ta; ... that is accepted by Hep, and let
X(a) = 010,... be the corresponding discrete sequence. By the semantics of BHA, it is possible
to find an accepting sequence of locations (gq1,C}),(g2,C2),(q3,C3) ... such that (g;,C;, T, fstate) LN

(i, C;, ti.Istate) and (q;,C;, 7.Istate) <5 (giy1,Ciy1, Tiy1.fstate) for every i > 1. By Algorithm 1 we have
that there exists an accepting run go LiN q1 LEN P P2, .. of the discrete automaton Ay(p) over the discrete
sequence P = p;p,... where p; = C;U{b; € B | b; holds true in b(a;_)} for every i > 1. Since every
location (g;,C;) is such that Dyn(g;,C;) = C; we have that for every f € C;, 7; - f and thus that p; C o;.
From Lemma 3 we can conclude that, since A,y accepts P then Ay) accepts also X(a). By Lemma 4
we can conclude that o, 1 I . O

7 The improved algorithm at work

In [5] feasibility of the automaton-based model checking approach has been tested by verifying the well-
known Thermostat example against the HyLTL formula ¢, = = F (x > 21 A Xon) corresponding to the
property that “it is not possible that the heater turns on when the temperature is above 21 degrees”.

To verify the example it is necessary to build the automaton for =@y, = F(x > 21 AXon) = TU
(x > 21 A Xon). The original declarative construction builds a BHA with 18 locations. In this section we
will apply the new algorithm to the formula and we will show that the resulting BHA is much smaller
that the previous one. Notice that the formula —¢y,,, is a formula where flow constraints appears only
in positive form. Hence, it is not necessary to apply the translation 7 of Table 1 to obtain a formula
of HyLTL™. The first step of the translation algorithm is thus the application of function y (Table 2) to
obtain the following formula of discrete LTL:

V(= @uyp) = —~bo A=by AT 8h(x > 21 AX(bg A —by)),

where we assume that b(on) = by A —by. By using the tool LTL3BA we obtain the Biichi automa-
ton Ay(ﬁ(phyb) depicted in Figure la. Then, by applying Algorithm 1 we can build the BHA depicted
in Figure 1b. In both pictures initial states/locations are identified by a bullet-arrow while the final
states/locations have a double border. The final BHA obtained by the new construction algorithm is
made of only 3 location, with a great improvement over the original declarative construction.

90 Improving HyLTL model checking of hybrid systems

q2 q1
x>21 T :)0”

on gﬁ"

(a) Biichi automaton A, . (b) Hybrid automaton H-g,, .

Figure 1: The discrete and hybrid automata for —qy,y,,.

As a second example, consider the globally-eventually formula ¢, = G(—x > 18 — XFon) ex-
pressing the liveness property to “eventually switch the heater on if the temperature falls below 18
degrees”. 1In this case the negation of the property is the formula —¢;, = F(—x > 18 AX G —on) =
TU(—x > 18 AX(_LR—on)), that do not belongs to the language of HyLTL™. Hence, it is necessary to
apply the translation function 7 to obtain the following equivalent formula:

P = (TU (= 18AX(LR=0n))) = (T T)U (=T Ax(=x > 18 AX(LR~on)))

=TU (ﬂmn(ﬁxz 18)A7r(X(iRﬁ0n)))

TU <ﬁTA (x< 18VX(TU(T Ax < 18))) /\X(TU(ﬂT/\n(J_Rﬁon)))>

—TU (4/\ (x< 18VX(TU(T Ax < 18))) /\X(TU(ﬁT/\J_R(Tvﬂon)))>

The input formula for LTL3BA is thus

Y @rage) = —boA—bi AT 8L (%boAbl) A (x <18V X((bo Aby) 8 (bg Ay Ax < 18)))

/\%((bo/\bl)ﬂ<ﬁ(bg/\b1)/\J_9%((bo/\bl)\/ﬁ(bo/\—'bl))>>>

while the resulting discrete Biichi automaton is depicted in Figure 2a. Algorithm 1 transforms it into the
BHA with 5 locations shown in Figure 2b. Notice that, despite the increased complexity of the formula
due to the translation into HyLTL™ the final result is still of very small size.

We have verified that the thermostat example given in [5] respects the two example properties @y
and @y;, using the software package PhaVer [8]. Since the system and the automata for the properties are

very simple, the computation time was almost instantaneous: less than 0.1s for both formulas on an Intel
Core 2 Duo 2.4 GHz iMac with 4 Gb of RAM.

D. Bresolin 91

—by N\ —b I —bygAN—b; Ax < 18 I I

q1 on,off 0
T,on,oﬁC T
—by A by T T :)
bo A\ —by T
T @ by N\ by on, off
—bo Ax < 18, 1 5
by A—b; Ax <18 bonbinx <18 .- x?ls T 6{; :DT
i)
off

.‘@ —by q4
? T
bo Abi T T

(a) Biichi automaton Ay,). (b) Hybrid automaton Hg, .

Figure 2: The discrete and hybrid automata for —¢y;,,.

8 Conclusion

In this paper we extended the current research on HyLTL, a logic that is able to express properties of
hybrid traces, and that can be used to verify hybrid systems. We identified the fragment of HyLTL that
can be transformed into hybrid automata, that is, the positive flow constraints fragment HyLTL". Then,
we have shown that every property definable in the full language is also definable by HyLTL™. Finally,
we developed a new algorithm to translate formulas into hybrid automata, that turned out to be much
more efficient than the original declarative algorithm.

This work can be extended in many directions. The expressivity of the logic can be extended by
adding jump predicates to the language, to express properties on the reset functions of the system. A
comprehensive tool support for the logic is currently missing: an implementation of the complete model
checking algorithm into the software package Ariadne [4] is under development.

References

[11 R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P. h. Ho, X. Nicollin, A. Olivero, J. Sifakis &
S. Yovine (1995): The Algorithmic Analysis of Hybrid Systems. Theoretical Computer Science 138, pp.
3-34, doi:10.1016/0304-3975(94)00202-T.

[2] R. Alur & D. L. Dill (1994): A Theory of Timed Automata. J. of Theor. Computer Science 126(2), pp.
183-235, doi:10.1016/0304-3975(94)90010-8.

[3] T. Babiak, M. Kretinsky, V. Rehdk & J. Strejcek (2012): LTL to Biichi Automata Translation: Fast and More
Deterministic. In: Proc. of the 18th Int. Conf. on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS 2012), LNCS 7214, pp. 95-109, doi:10.1007/978-3-642-28756-5_8.

[4] L. Benvenuti, D. Bresolin, P. Collins, A. Ferrari, L. Geretti & T. Villa (2012): Assume-guarantee verification
of nonlinear hybrid systems with ARIADNE. Int. J. Robust Nonlinear Control, doi:10.1002/rnc.2914.

[5] D. Bresolin (2013): HyLTL: a temporal logic for model checking hybrid systems. In: Proc. of the 3rd
International Workshop on Hybrid Autonomous Systems (HAS 2013), EPTCS 118, pp. 64-75. To appear.

[6] A. Cimatti, M. Roveri & S. Tonetta (2009): Requirements Validation for Hybrid Systems. In: CAV, LNCS
5643, pp. 188-203, doi:10.1007/978-3-642-02658-4_17.

92

(7]

(8]

(9]

(10]

(11]

[12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

Improving HyLTL model checking of hybrid systems

A. Duret-Lutz (2011): LTL translation improvements in SPOT. In: Proc. of the 5th Int. Conf. on Verification
and Evaluation of Computer and Communication Systems (VECoS’11), British Computer Society, pp. 72—
83.

G. Frehse (2008): PHAVer: algorithmic verification of hybrid systems past HyTech. International Journal on
Software Tools for Technology Transfer (STTT) 10, pp. 263-279, doi:10.1007/s10009-007-0062-x.

G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, R. Ripado, A. Girard, T. Dang &
O. Maler (2011): SpaceEx: Scalable Verification of Hybrid Systems. In: Proc. 23rd International Confer-
ence on Computer Aided Verification (CAV 2011), LNCS 6806, Springer Berlin / Heidelberg, pp. 379-395,
doi:10.1007/978-3-642-22110-1_30.

P. Gastin & D. Oddoux (2001): Fast LTL to Biichi Automata Translation. In: Proc. of the 13th Int. Conf. on
Computer Aided Verification (CAV 2001), LNCS 2102, Springer, pp. 53—65, doi:10.1007/3-540-44585-4 6.

T. A. Henzinger, P. W. Kopke, A. Puri & P. Varaiya (1998): What’s Decidable about Hybrid Automata?
Journal of Computer and System Sciences 57(1), pp. 94 — 124, doi:10.1006/jcss.1998.1581.

L. Lamport (1993): Hybrid systems in TLA+. In: Hybrid Systems, LNCS 736, Springer, pp. 77-102,
doi:10.1007/3-540-57318-6_25.

K. G. Larsen, P. Pettersson & W. Yi (1997): UPPAAL in a nutshell. Int. J. on Software Tools for Technology
Transfer 1(1-2), pp. 134-152, doi:10.1007/s100090050010.

O. Maler, Z. Manna & A. Pnueli (1991): From Timed to Hybrid Systems. In: Real-Time: Theory in Practice,
LNCS 600, Springer-Verlag, pp. 447-484, doi:10.1007/BFb0032003.

O. Maler & D. Nickovic (2004): Monitoring Temporal Properties of Continuous Signals. In: Formal Tech-
niques, Modelling and Analysis of Timed and Fault-Tolerant Systems, LNCS 3253, Springer, pp. 152-166,
doi:10.1007/978-3-540-30206-3_12.

A. Platzer & J.-D. Quesel (2008): KeYmaera: A Hybrid Theorem Prover for Hybrid Systems. In: Proc. of
the 3rd International Joint Conference on Automated Reasoning (IJCAR 2008), LNCS 5195, Springer, pp.
171-178, doi:10.1007/978-3-540-71070-7_15.

S. Ratschan & Z. She (2007): Safety Verification of Hybrid Systems by Constraint Propagation Based Ab-
straction Refinement. ACM Trans. in Embedded Computing Systems 6(1), doi:10.1145/1210268.1210276.
K. Y. Rozier & M. Y. Vardi (2010): LTL satisfiability checking. Int. J. on Software Tools for Technology
Transfer 12(2), pp. 123-137, doi:10.1007/s10009-010-0140-3.

M. Y. Vardi & P. Wolper (1986): An Automata-Theoretic Approach to Automatic Program Verification. In:
Proc. of the 1st Symposium on Logic in Computer Science (LICS’86), IEEE Computer Society, pp. 332-344.

S. Yovine (1997): Kronos: a verification tool for real-time systems. Int. J. on Software Tools for Technology
Transfer 1(1-2), pp. 123-133, doi:10.1007/s1000900500009.

Upwards Closed Dependencies in Team Semantics

Pietro Galliani

Department of Mathematics and Statistics
Helsinki, Finland

pgallian@gmail.com

We prove that adding upwards closed first-order dependédnaysato first-order logic with team se-
mantics does not increase its expressive power (with régpsentences), and that the same remains
true if we also add constancy atoms. As a consequence, tlaiomg of functional dependence,
conditional independence, inclusion and exclusion ataansatl be added to first-order logic without
increasing its expressive power.

Furthermore, we define a class of bounded upwards closechdepeies and we prove that
unbounded dependencies cannot be defined in terms of boonded

1 Introduction

Team semantics is a generalization of Tarski's semantigghioh formulas are satisfied or not satisfied
by sets of assignments, calleshms rather than by single assignments. It was originally duwed by
Hodges, in [14], as a compositional alternative to the ifgmtfinformationgame theoretic semantics
for independence friendly logic [13, 18].

Over the past few years team semantics has been used toyspeditudy many other extensions
of first-order logic. In particular, since a team describeglation between the elements of its model
team semantics offers a natural way to add to first-ordeclatgims corresponding to database-theoretic
dependency notions

This line of thought led first to the developmentadpendence logifl9], and later to that oin-
dependence logif12] andinclusion and exclusion logici8].> By now there are many results in the
literature concerning the properties of these logics, arfkiction 2 we recall some of the principal ones.

One common characteristic of all these logics is that theynanch stronger than first-order logic
proper, even though they merely afifgt-order definablelependency conditions to its language. Indeed,
the rules of team semantics straddle the line between fidss@rond order, since they evaluate first-order
connectives by means of second-order machinery: and, whilee case of first-order logic formulas
team semantics can be reduced to Tarski’'s semantics, if diéoamlir language atoms corresponding to
further conditions the second-order nature of team segta#in take over.

The purpose of the present paper is to investigate the bopbédawveen first and second order “from
below”, so to say, taking first-order logic with team semestnd trying to find out how much we can
add to it while preserving first-orderness. In Section 3 windea fairly general family of classes of
first-order definable dependency conditions and prove thaye safely added to first-order logic; then
in Section 4 we expand this family, and in Section 5 we show; tia consequence, the negations of
all the main dependency atoms studied in team semanticstdblow up” first-order logic into a higher

*Research supported by Grant 264917 of the Academy of Finland
IThe literature contains many other extensions of first{olatgic with team semantics, but we do not examine them in this
work.

Gabriele Puppis, Tiziano Villa (Eds.): Fourth Interna@bn
Symposium on Games, Automata, Logics and Formal Verifinatio © P. Galliani
EPTCS 119, 2013, pp. 93-106, doi:10.4204/EPTCS.119.10

94 Upwards Closed Dependencies

order one. Finally, in Section 6 we introduce a notiorbofindednesfor dependencies and use it to
demonstrate som@on-definability results

2 Preliminaries

In this section we will recall some fundamental definitionsl @esults concerning team semantics.
Definition 1 (Team) Let M be a first-order model and I&om(M) be the set of its elemertsEurther-
more, let V be a finite set of variables. TheteamX over M withdomainDom(X) =V is a set of
assignments s from V ®@om(M).

Given ateam X and a tuple of variablésontained in the domain of X, we write[X/ for the team
obtained by restricting all assignments of X to the variabtéVv and X(V) for the relation{s(V) : s e
X} C Dom(M)IV.,

As it is common when working with team semantics, we will assuhat all our expressions are in

negation normal form.

Definition 2 (Team Semantics for First-Order Logic) Let ¢(X) be a first-order formula in negation

normal form with free variables ik. Furthermore, let M be a first-order model whose signatunetains

the signature ofp and let X be a team over it whose domain contan3hen we say that Xatisfiesp

in M, and we write M=x ¢, if and only if this follows from these rulé's:

TS-lit: For all first-order literalsa, M =x a if and only if for all s€ X, M |=s a according to the usual
Tarski semantics;

TS-v: Forall ¢ and 8, M =x gV 8 if and only if X=Y UZ for two subteams Y and Z such that
M =y ¢ and M=z 6;
TS-A: Forall g and6, M =x @A 6 if and only if ME=x @ and M =x 6;
TS-3: For all ¢ and all variables v, M=x vy if and only if there exists a function
H: X — Z(Dom(M))\{0}
such that Mi=x iy Y, where XH /v] = {sim/Vv] : s€ X,m¢e H(s)} and & (Dom(M)) is the pow-
erset ofDom(M);
TS-V: For all ¢ and all variables v, M=x Vv if and only if M{=xm ¢, where XM /v] = {sm/V] :
se X,me M}.
Given a sentence (that is, a formula with no free variablegind a model M over its signature, we
say thatg is truein M and we write M= ¢ if and only if M}=(q, ¢.*
The following is a useful and easily derived rule:

Lemma 3 LetV=v;...Vv, be a tuple of n variables and levyy be a shorthand fosv; ... 3vy. Then
M [=x 3vy if and only if there exists a function HX — &2 (Dom(M)")\{0} such that M=y W,
where XH /V] = {smM/V] : s€ X,Mme H(s)}.

2We always assume that models have at least two elementsiinidmeain.

3What we give here is the so-calléak version of team semantics. There also exiss&riat version, with slightly different
rules for disjunction and existential quantification; batpinted out in [8]Jocality — in the sense of Theorem 8 here — fails
in strict team semantics for some of the logics we are intedeim. Therefore, in this work we will only deal with lax team
semantics.

40f course, one should not confuse the tedh which contains only the empty assignment, with énepty tean®), which
contains no assignments at all.

P. Galliani 95

With respect to first-order formulas, team semantics cartieaed to Tarski’'s semantics. Indeed,

Proposition 4 ([14, 19]) Let ¢(X) be a first-order formula in negation normal form with free iednles
in X. Furthermore, let M be a first-order model whose signatwmstains that ofp, and let X be a team
over M whose domain contains Then ME=x @ if and only if, for all s€ X, M =5 ¢ with respect to
Tarski’'s semantics.

In particular, a first-order sentence is true in a model M with respect to team semantics if and only
if it is true in M with respect to Tarski’'s semantics.

Therefore, not all first-order definable properties of iefas correspond to the satisfaction conditions of
first-order formulas: for example, the non-emptiness ofatimn R is definable bydXRX, but there is no
first order@ such thatM =x @ if and only if X £ 0. More in general, lep*(R) be a first-order sentence
specifying a property of thik-ary relationR and letX = x; ... X be a tuple of new variables: then, as it
follows easily from the above proposition, there existsst4irder formulap(X) such that

M Ex ¢(X) & M, X(X) E ¢"(R)

if and only if ¢*(R) can be put in the fornX(RX — 6(X)) for some# in which R does not occui.

Itis hence possible to extend first-order logic (with teamastics) by introducing new atoms corre-
sponding to further properties of relations. Databaserthisca most natural choice as a source for such
properties; and, in the rest of this section, we will redadl fundamental database-theoretic extensions
of first-order logic with team semantics and some of theipprtes.

Dependence logid=O(=(-,-)), from [19], adds to first-order logiftinctional dependence atoms
=(X,y) based on database-theordtioctional dependencigf2]). Their rule in team semantics is

TS-fdep: M E=x=(X,y) if and only if for all s,s" € X, s(X) = S (X) = s(¥) =S (Y).

This atom, and dependence logic as a wholelownwards closedfor all dependence logic formulas
@, modelsM and teamsX, if M |=x @ thenM =y @ for all Y C X. It is not howevemnion closed if
M E=x @ andM =y @ then we cannot in general conclude tNat=x y @.

Dependence logic is equivalent to existential secondrdadgc over sentences:

Theorem 5 ([19]) Every dependence logic sentenges logically equivalent to some ESO sentegte
and vice versa.

Constancy logicFO(=(-)) is the fragment of dependence logic which only allows furei dependence
atoms of the form=(0,X), which we will abbreviate as-(X) and callconstancy atom<Clearly we have
that

TS-const: M =x=(X) if and only if for all ;s € X, s(X) = S(X).

As proved in [8], every constancy logic sentence is equitaie some first-order sentence: therefore,
constancy logic is strictly weaker than dependence logiondtheless, constancy logic is more ex-
pressive than first-order logic with respect to the secawi@gorelations generated by the satisfaction
conditions of formulas: indeed, it is an easy consequené&rayiosition 4 that no first-order formula is
logically equivalent to the constancy ateatx).

Exclusion logic FQ(|), from [8], adds to first-order logiexclusion atomg | ¥, wherexX andy are
tuples of variables of the same length. Just as functionaénldence atoms correspond to functional
database-theoretic dependencies, exclusion atoms ponedoexclusion dependencig8]; and their
satisfaction rule is

SThat is, according to the terminology of [19], if and onlygf (R) is flat.

96 Upwards Closed Dependencies

TS-excl: M |=x X | ¥if and only if X(X) N X(Y) = 0.

As proved in [8], exclusion logic is entirely equivalent tepndence logic: every exclusion logic for-
mula is logically equivalent to some dependence logic fdagnand vice versa.

Inclusion logic FO(C), also from [8], adds instead to first-order lognclusion atom C y based
on database-theoretioclusion dependencid6]. The corresponding rule is

TS-inc: M =x XC yif and only if X(X) C X(V).

Inclusion logic is stronger than first-order logic, but weathan existential second-order logic: indeed,
as shown in [9], sentence-wise it is equivalent to positieatest fixed point logic GFP Formula-wise,
it is incomparable with constancy, dependence or exclusigice, since its formulas are union closed but
not downwards closed.

Independence logid=O(_L), from [12], adds to first-order logimdependence aton¥L y with the
intended meaning of “the values ¥andy are informationally independent”. More formally,

TS-ind: M =x X L yifand only if X(Xy) = X(X) x X(y).

This notion of informational independence has a long hystsee for example [11] for an analysis of
this concept from a probabilistic perspective.

The conditionalindependence aton¥_L; Y, also from [12], relativize the independencexaindy
to all fixedvalue ofZ Their semantics is

TS-c-ind: M =x X Ly if and only if for all tuplesm € Dom(M)Z and forX,_m = {s€ X : s(2) = m} it
holds thath:m(W) = X—Z':m(X) X X—Z':m(Y).

As pointed out in [4], the rule foK L5 ¥ corresponds precisely to the database-theortibedded
multivalued dependend$] (Z— X|).

In [12] it was shown that every dependence logic formula is\edent to soméO(_L) (conditional
independence logic) formula, but not vice versa; and sestense, both of these logics are equivalent
to each other (and to ESO). Furthermore, in [8] it was proved £Q_L:) is equivalent toinclu-
sion/exclusion logi€ FO(C,|), even with respect to open formulas, and that this is, rgugheaking,
the most general logic obtainable by adding first-order (@neexistential second-order) definable de-
pendency conditions to first-order logidore recently, in [10], it was shown that FQ) and FQ L)
are also equivalent.

We conclude this section with Figure 1, which depicts thatrehs between the logics we discussed
so far.

3 Upwards Closed Dependencies

In this work we will study the properties of the logics ob&inby adding families oflependency con-
ditionsto the language of first-order logic. But what is a dependexndition, in a general sense? The
following definition is based on thgeneralized atomsf [17]:

Definition 6 Let ne N. A dependencyf arity n is a classD, closed under isomorphisms, of models
over the signaturgd R} where R is a n-ary relation symbol. fis a tuple of n variables (possibly with
repetitions), M is a first-order model and X is a team over ibgd domain contains all variables ®f
then

6That is, to first-order logic plus inclusicand exclusion atoms.
"To be more precise, for every ESO formgi&(R) there exists a FQL) formula(X) such that, for all suitable modeld
and nonempty teams$, M =x @(X) if and only if M, X(X) = ¢*(R).

P. Galliani 97

PO FOLQ PO RO TN RO
\ {_ FO(=(,))FO() 17
I S e 001 LT T
FO(]) Y
Fo(C]: = Grp*

FO(=(-))
D
C O FO(= ()1 FO
L

(a) (b)
Figure 1: Relations between logics wrt formulas (a) andeserds (b).

TS-D: M =x DX if and only if(Dom(M), X (X)) € D.

Definition 7 Let 2 = {D1,D2,...} be a family of dependencies. Then we write(B for the logic
obtained by adding to the language of first-order logicddlpendency atormisX, whereD € & andX is
a tuple of variables of the arity db.

It is not difficult to represent the logics of Section 2 in thistation. For example, dependence logic is
FO(=(:,-)) for =(-,-) = {=(n,m) : n,m € N}, where(Dom(M),R) € =(n,m) if and only if

ab,accR=b=¢
for all tuples of elementd =a; ... ay,, b=b;...bp, C=C1...Cn € Dom(M).
The following property can be easily verified, by inductiamtbe formulagp:8

Theorem 8 (Locality) Let 2 be a family of dependencies and &) be a formula of FQ2) with free
variables inX. Then for all models M and all teams X over it whose domainainsX, M E=x ¢(X) if
and only if Mi=xx @(X).

In this work, we will be mainly interested in dependencieschircorrespond to first-order definable
properties of relations:

Definition 9 A dependency notioD is first-order definabléf there exists a first-order senten€e (R)
over the signaturd R}, where R is a new relation symbol, such that

MeD < M E=D(R)

for all models M= (Dom(M), R).

8For the sake of reference, we mention Theorem 4.22 of [8] iithvthe same result is proved in detail for (conditional)
independence logic. The only new case here is the one in wi{ih= Dy for someD € 2 andy is contained irx; and for it
the result follows at once from conditiof5-D and from the fact thaX(y) = (X | X)(Y).

98 Upwards Closed Dependencies

It is not necessarily the case thatl¥fis first-order definable then KD) and FO are equivalent with
respect to sentences. For examplg, m)*(R) is VXyZ(RXY A RZ — ¥ = Z), whereX has lengtm andy, Z
have lengthm; but as we said in Section 2, dependence logic is strongarfitst-order logic.

When is then the case that dependency conditions can be adtidd to first-order logic, without
increasing the expressive power? The following definitiothprovide us a partial answer:

Definition 10 A dependency notioR is upwards closed
(Dom(M),R) € D,RC S=- (Dom(M),S) € D

for all models(Dom(M),R) and all relations S ovebom(M) of the same arity of R.

It is easy to see that upwards closed dependencies inducardpwlosed satisfaction rules: Of is
upwards closedM =x DX andX C Y then it is always the case thit =y DX. However, differently
from the case of downwards or union closure, upwards cldsuret preserved by team semanticsDif
is upwards closedp € FO(D) andM [=x @ then it is not in general true th =y ¢ for all Y D X (for
example, letp be a nontrivial first-order literal and recall Rul&-lit).

Some examples of upwards closed dependencies follow:

Non-emptiness: M [=x NE if and only if X # 0;

Intersection: M [=x ¢(X=Y) if and only if there exists a € X with s(X) = s();

Inconstancy: M [=x#(X) if and only if | X(X)| > 1;

n-bigness: For alln€ N, M =x [X| > nif and only if | X(X)| > n;

Totality: M =x A11(X) if and only if X(X) = Dom(M)X;

Non-dependence:M =x#(X,) if and only if there exist, s’ € X with s(X) = §(X) buts(y) # s (y);°
Non-exclusion: M |=x Xty if and only if there exist, s € X with s(X) = S(y);

Infinity: M [=x |X| > wif and only if X(X) is infinite;

K-bigness: For all cardinals<, M |=x |X| > « if and only if [X(X)| > K.

All the above examples except infinity ardbigness are first-order definable. T¥ieatom is the adap-
tation to first-order team semantics of the non-emptiness antroduced in [20] for the propositional
version of dependence logic, and the totality atorm is due to Abramsky and Vaananen ([1]).

The main result of this section is the following:

Theorem 11 Let ¥ be a collection of upwards closed first-order definable depegy conditions. Then
for every formulap(X) of FO(2) with free variables irX there exists a first-order senteng&R), where
R is a newX|-ary relation symbol, such that

Mx @(X) < M, X(X) = ¢"(R)

for all models M over the signature gfand all teams X.
In particular, every sentence of K@) is equivalent to some first-order sentence.

Let us begin by adapting the notion ftdtteningof [19] to the case of an arbitrary logic FQ):

9The same symbgck(X,y) has been used in [7] to describe a different non-dependestaennstating that foevery s X
there exists & € X with s(X) = s(X),s(¥) # §(¥). In that thesis it was proved that the resulting “non-depeweé logic” is
equivalent to inclusion logic. As we will see, this is not tteese for the non-dependence notion of this paper.

P. Galliani 99

Definition 12 Let 2 be any set of dependency conditions andgdte a FQ %) formula. Then its
flatteningg' is the first-order formula obtained by replacing any nontfmsder atom withT, where T
is the trivially true atom.

It is trivial to see, by induction oip, that
Lemma 13 For all 2, all ¢ € FO(2), all models M and all teams X over M, if Mx @ then M=y ¢'.

As we said, even i contains only upwards closed dependency conditions ittirne that all formulas
of FO(2) are upwards closed. However, the following restrictedararof upwards closure is preserved:

Theorem 14 Let ¢ be a FQ Z) formula, whereZ contains only upwards closed dependencies. Let M
be a first-order model, and let X, Y be teams such that¥X, M =x @, and M=y ®f. Then M=y @.

Proof:
The proof is by structural induction ap

1. If @is a first-order literalp’ = @ and there is nothing to prove;
2. If gis of the formDX for someD € 2, M |=x ¢ andX CY, then by upwards closuid =y @;

3. Suppose thadl =x @V @ andM =y (plf V(pzf. Now X = X3 U X; for two X, Xp such thaM =x, ¢
andM =yx, @, and therefore by Lemma 13 |=x, (plf andM =, (pzf FurthermoreY =Y, UY, for
two Y1, Y2 such thatM |:Y1 (pf andM ':Yz (pzf LetZ; = XUY1 andZ, = XoUYo; thenZ, U Z, =
XUY =Y, and by Proposition M |=z, (plf andM =z, (pzf ButM =x, @ andX; C Z;, so by
induction hypothesid =z, @; and similarly,M |=x, @ and X, C Zp, sOM =z, . Therefore
M Ey @V @, as required.

4. If M E=x o A @ thenM =x @ andM =x @. Then by induction hypothesis, sinbé =y (plf and
X CY,M vy @; and similarly, sinceM =y qazf andX CY, M Ey @, and thereforéM =y @1 A @.

5. If M [=x 3ve then there is a functiom : X — £?(Dom(M))\{0} such thatM =x; @, and

therefore (by Lemma 13) such thislt =x i @'. Similarly, if M =y 3ve' then for someK we
have thaM =y @ Now letW : Y — 2 (Dom(M))\ {0} be such that

W(s):{ H(s)UK(s) if seX;

K(s) if se Y\X.

ThenY W /v] = X[H /v]UY[K/V], and therefore by PropositionM =y @'. Then by induction
hypothesisM =y @, sinceX[H /v] satisfiesp and is contained it [W /v]; and thereforéM =y
dve, as required.

6. If M [=x Y@ thenM =x iy @ and ifM =y W' thenM =y @F. Now X[M/v] C Y[M/V],
so by induction hypothesidl =y @, and thereforvl =y V.

0

Definition 15 If 6 is a first-order formula andgpis a FO(Z) formula we definég | 6) as(—0) Vv (6 A @),
where—0 is a shorthand for the first-order formula in negation nornfiaim which is equivalent to the

negation ofo.
The following lemma is obvious:

100 Upwards Closed Dependencies

Lemma 16 For all first order 8 andg € FO(2), M =x (@ |) ifand only if M=y @forY = {se X :
M = 8}.

One can observe théap | 0) is logically equivalent td@ — @, where— is themaximal implicationof
[16]:

TS-maximp: M =x 6 — @if and only if for all maximaly C X s.t. M =y 6, M =y .

We use the notatiofy | 8), instead o6 — @, to make it explicit thab is first order and that Lemma 16
holds.

The next step of our proof of Theorem 11 is to identify a fragtrad our language whose satisfaction
conditions do not involve quantification over second-omlgiects such as teams or functions. We do so
by limiting the availability of disjunction and existentiguantification:

Definition 17 A FO(2) formula @ is cleanif

1. Allits disjunctive subformulag; \ Y5, are first order or of the formy | 6 for some suitable choice
of ¢ and 8 (where@ is first order);

2. Allits existential subformulasvy are first order.
As the next proposition shows, clean formulas correspotiidstsorder definable properties of relations.

Proposition 18 Let % be a class of first-order definable dependencies an@(®t € FO(2) be a clean
formula with free variables iX. Then there exists some first-order sentept@), where R is a new
|X|-ary relation, such that

ME=x @(X) < M, X(X) = ¢*(R). (1)

Proof:
By induction overg.

1. If @(X) is a first-order formula (not necessarily just a literal)rthet ¢* (R) = VX(RX — @(X)). By
Proposition 4, (1) holds.

2. If @(X) is a dependency atoidy, whereD € & andy is a tuple (possibly with repetitions) of
variables occurring ift, let ¢*(R) be obtained fronD*(S) by replacing every instanc® of Sin it
with IX(Z= YA RX). Indeed M [=x Dy if and only if M, X(y) = D*(S), andm € X(¥y) if and only
if M,X(X) = IX(M=YARX).

3. If ¢(X) is of the form(y(X) | B(X)), let ¢* (R) be obtained fromy*(R) by replacing every instance
Rz of Rwith RZA 6(Z). Indeed, by Lemma 18 |=x (¢(X) [(X)) if and only if M =y @(X) for
Y={seX: M0}, andMme Y (X) & me X(X) andM = 6(m).

4. If (X) is of the formy(X) A B(X) simply letg*(R) = ¢*(R) A 6%(R).

5. If ¢(X) is of the formvvy (X, v), where we assume without loss of generality thastdistinct from
all x € X, andy*(S) corresponds tgy(X,v) then letg*(R) be obtained fromp*(S) by replacing
everySZwwith RZ. Indeed M [=x Yvy if and only if M x4 @(X,v) andmimt € X[M /v](Xv) if
and only ifm e X(X).

O
All that is now left to prove is the following:

Proposition 19 Let & be a family of upwards closed dependencies. Then evef@@rmula is
equivalent to some clean K@) formula.

P. Galliani 101

Proof:
It suffices to observe the following facts:

o If @ (X) and@(X) are in FQ2) thengi(X) V @ (X) is logically equivalent to

f f

@VehA(@le)A (@]).

Indeed, suppose th& =x @ V @: then, by Lemma 13\ =x (plf Vv (pzf FurthermoreX =YUZ
for twoY andZ such thaM =y @ andM =z . Now letY’' = {se X: M = (plf} andZ’' = {se

X:M g (pzf}: by Lemma 13 and Proposition 4 we have tfat Y’ and thaz C Z’, and therefore

by Theorem 1M =y ¢ andM =z @. Thus by Lemma 18 =x (@ [(plf) andM Ex (@ [(pzf),

as required.
f

Conversely, suppose thislt =x ((plf v cpzf) Aol @)N (@] (&f). Thenlety = {se X: M |=s cplf}
andZ = {se X : M = @ }. By Proposition 4 and sindd =x @ V@, X = YUZ; and by Lemma
16,M =y @ andM =z @. SOM =x @ V @, as required.

e If @(X,v) € FO(2) then3dvg(X,v) is logically equivalent to

(Fve" (X)) AYV(@R,V) | @' (%,V)).

Indeed, suppose thdd |=x 3vp(X,v). Then by Lemma 13 =x Ive’ (X, v). Furthermore, for
someH : X — Z(Dom(M))\{0} and forY = X[H/V] it holds thatM =y ¢(X,v). Now letZ =
{he X[M/V] : M = 0f (X,v)}. By Proposition 4M =z @' (X,v); and sinceY C Z, by Theorem
14M =z @(X,v), and therefore by Lemma 18 =xpv) (9(X,V) I @' (X,v)), as required.
Conversely, suppose thistt =x (v’ (X,v)) AY(@(X,v) | ¢f (X,v)). Then, forallsc X, letK(s) =
{me Dom(M) : M [=gmp @' (X.V)}. SinceM =x Fve' (X,v), K(s) is nonempty for alk € X, and
by constructionX[K/V] = {s€ X[M/V] : M |=s @' (X,V)}. Now M =xmp (@(X.V) | @ (%,v)), so
by Lemma 16V =xk v ¢(X,V) and in conclusioM =x Fve(X, V).

Applying inductively these two results to all subformuldsomeg € FO(Z) we can obtain some clean
¢ to which @ is equivalent, and this concludes the proof.
]
Finally, the proof of Theorem 11 follows at once from Progiosis 18 and 19.

Since, as we saw, the negations of functional and exclustgpenntiencies are upwards closed, we
obtain at once the following corollary:

Corollary 20 Any sentence of FG:(-,-),1) (that is, of first-order logic plus negated functional and
exclusion dependencies) is equivalent to some first-olgeace.

4 Adding Constancy Atoms

As we saw in the previous section, upwards closed deperaeteoan be added to first-order logic without
increasing its expressive power (with respect to sentgnaesl as mentioned in Section 2, this is also
true for the (non upwards-closed) constancy dependerdigs

But what if our logic contains both upwards closaadd constancy dependencies? As we will now
see, the conclusion of Theorem 11 remains valid:

102 Upwards Closed Dependencies

Theorem 21 Let ¥ be a collection of upwards closed first-order definable depegy conditions. Then
for every formulap(X) of'® FO(=(-),) with free variables irX there exists a first-order sentengg(R),
where R is a newX|-ary relation symbol, such that

ME=x @(X) < M, X(X) = ¢"(R).

In particular, every sentence of K@) is equivalent to some first-order sentence.
The main ingredient of our proof will be the following lemma.

Lemma 22 Let 2 be any family of dependencies and¢gK) be a FQ=(-), Z) formula. Thenp(X) is
equivalent to some formula of the foft(=(V) A (X, V)), wherey € FO(Z) contains exactly the same
instances oD-atoms (for allD € 2) that ¢ does, and in the same number.

The proof of this lemma is by induction ap, and it is entirely analogous to the corresponding proof
from [8].

Now we can prove Theorem 21.
Proof:
Let (X) be a F@=(-),2)-formula. Then by Lemma 2®(X) is equivalent to some sentence of the
form 3V(=(V) A Y(X,V)), where(X,V) € FO(Z). But then by Theorem 11 there exists a first-order
formula ¢*(S) such thatM |=x (X, V) if and only if M, X(XV) = ¢*(S). Now let 8(R,V) be obtained
from *(S) by replacing any5yZ with RYAZ= V. SinceX[m/V](XV) = {@m:&ec X(X)} it is easy to see
thatM =x JV(=(V) A ¢(X,V)) if and only if M, X(X) = 3vO(R,V), and this concludes the proof.
U

5 Possibility, Negated Inclusion and Negated Conditionalidependence

By Corollary 20, the negations of exclusion and functionapehdence atoms can be added to first-
order logic without increasing its power. But what about tisgations of inclusion and (conditional)
independence? These are of course first-order definabléhdyutre not upwards closed: indeed, their
semantic rules can be given as

TS-Z: M Ex XZ yif and only if there is & € X such that for als’' € X, s(X) # S (Y);

TS-Lc: M Ex X L3V if and only if there ares, s € X with s(Z) = S(Z) and such that for a’ € X,
s'(X2) # s(X2) or s'(y2) # S(¥2).
However, we will now prove that, nonetheless, (EQ-,-),Z,1, £¢) is equivalent to FO on the level of

sentences. In order to do so, let us first define the follovdagsibility operatorand prove that it is
uniformly definable in FQ=(-),#(-)):

Definition 23 Let @ be any F@2) formula, for any choice of. Then
TS-0: M =x O@if there exists a YC X, Y # 0, such that M=y @.

Lemma 24 Let @ be any FQ2) formula, for anyZ. Then{ g is logically equivalent to

Fuour IV(=(Up) A =(U)) A(V=UpVV=U1) A (@ [V=U1)A #(V)). 2

10Here:(~) represents the class of all constancy dependencies oft@kaBut it is easy to see that the one of arity 1 would
suffice: indeed, iKis x; ... X, then=(X) is logically equivalent to=(x1) A ... A =(Xn).

P. Galliani 103

Proof:
Suppose that there isYaC X, Y # 0, such thaM =y @. Then let 01 € Dom(M) be such that @ 1, let
H : X[01/upus] — Z?(Dom(M))\{0} be such that

H(s[01/upuy]) = { }87}1} :1]: zg ;{(\Y

and letZ = X[01/upup|[H /v]. ClearlyM Ez=(up)A =(u1) A(V=UpVV=uUp)A(@ | Vv=u), and it

remains to show tha¥l =z (v). But by hypothesi¥ is nonempty, and therefore there existsaY C X

such thaf{s[010/upuyVv],s[011/uguVv]} C Z. Sovis not constant iz, as required, an¥ satisfies (2).
Conversely, suppose thAtsatisfies (2), let 0 and 1 be our choices tgrandu;, and letH be the

choice function fow. Then letY = {se X : 1€ H(s[01/upui])}. By locality, Lemma 16 and the fact that

M Exjo1H /uuy (@ [V= U1) we have thaM =y ¢; andY is nonempty, since

Mz (V=UpVV=uUp)A #(V).

O

It is now easy to see that the negations of inclusion and tiondi independence are in FO(-),#(+)):

Proposition 25 For all X,y with [X| = |y|, X Z ¥ is logically equivalent to
(=) NO(Z=X)NZ#Y).
Proposition 26 For all X,y andZ,X /5 YV is logically equivalent to

3par (=(par) A O(r = X2) A O(GF = ¥2) A BT # Xy2).

Corollary 27 Every sentence of HG(-,-), Z,1, L¢) is equivalent to some sentence of
FO(=(),#(-,-),1), and hence to some first-order sentence.

6 Bounded Dependencies and Totality

Now that we know something about upwards closed dependgricigould be useful to classify them in
different categories and promen-definabilityresults between the corresponding extensions of firstrorde
logic. As a first such classification, we introduce the follogvproperty:

Definition 28 (Boundedness)Let k be a (finite or infinite) cardinal. A dependency conditidris k-
boundedf whenever M=x DX there exists a Y_ X with|Y| < k such that M=y DX.
We say thaD is boundedf it is k-bounded for some. 1!

For example, non-emptiness and intersection are 1-boymiszhstancy and the negations of functional
dependence and exclusion are 2-bounded; and for all finitdioite k, k-bigness ix-bounded. How-
ever, totality is not bounded at all. Indeed, for angonsider a modeV of cardinality greater thar and
take the teanX = {0}[M/x]. ThenM [=x A11(x), but if Y C X has cardinality< k thenY (x) C Dom(M)
andM Ay A11(X).

As we will now see, the property of boundedness is preserya@ldsconnectives of our language.

Definition 29 (Height of a formula) Let 2 be any family of bounded dependencies. Then for all for-
mulasg € FO(2), theheightrt(@) of @ is defined as follows:

11after a fashion, this notion of boundedness may be thoughsaf dual of the notion afoherenceof [15].

104

Upwards Closed Dependencies

1. If gis a first-order literal thenkt(¢) = 0;

3.
4.

If @ is a functional dependence atobX thenht(g) is the least cardinak such thatD is k-
bounded;

If @ is of the formyn Vv Y or Yn A Y thenht(p) = ht(Yn) + ht(Yn);
If @ is of the formavy or Y. thenht(@) = ht(y).

In other words, the height of a formula is the sum of the haigtitall instances of dependency atoms
occurring in it.

Theorem 30 Let 2 be a family of bounded upwards closed dependencies. Thell flmrmulas ¢
FO(2)

ME=x @ = 3JY C X with|Y]| < ht(@) s.t. M=y @.

Proof:
The proof is by induction owp.

1.
2.

O

If @is a first-order literal theht (@) = 0 and it is always the case thdt = @, as required.

If @ is an atomDX then the statement follows at once from the definitions ofmdlediness and
height.

. If @ is a disjunctiony; V @, thenht(®) = ht(1) +ht(Yr). Suppose now thad¥l F=x YV Yo:

thenX = X1 U Xz for two X; and Xz such thatM =x, Y1 andM [=x, yr. This implies that there
existY; C Xi, Y2 C Xz such thatM =y, @y andM =y, Wo, |Ya| < ht(ygr) and|Yz| < ht(yo). But
thenY =Y, UY; satisfiess V), and has at mogtt () +ht(¢») elements.

. If @is a conjunctionp; A g5, then, againht (@) =ht(1) +ht(Yr). Suppose tha¥l =x Wi A Yb:

thenM =x g1 andM =x ¢k, and therefore by Lemma 18 =x llllf andM =x L,sz; and, by
induction hypothesis, there exist,Y>, C X with |Y1| < ht(yn), |Yo| < ht(Yr), M =y, Y1 and
M =y, Y. Now letY =Y, UY: sinceY C X, by Proposition 4V =y L,Ulf andM =y wzf. But
Y1,Y2 CY, and therefore by Theorem M =y ()1 andM =y g, and in conclusioM =y Y A .

. If @ is of the form3vy thenht (@) = ht(Y). Suppose thaM E=x Ivy: then for someH we

have thatM x4y ¥, and therefore by induction hypothesis there exis& @ X[H /v] with
|Z| <ht(y) such thaM =z . For anyh € Z, letf(h) be as < X such that € s|H /v] = {s|m/V] :
me H(s)},*2 and lety = {§(h) : he Z}. Now Z C Y[H/v] C X[H/V]. SinceM f=xy,y ¢ and
Y[H/v] € X[H/v], we have thaM =y @'; and sinceM =z , this implies that EyHpn @
and thatM =y Jvy. FurthermordY| = |Z| < ht(y), as required.

. If @ is of the formVvy then, againht(@) = ht(y). Suppose thaM [=xm Y: again, by

induction hypothesis there iZaC X[M /v] with |Z| <ht(y) and such tha¥l =z . Foranyhe,
let g(h) pick somes € X which agrees wittn on all variables except, and letY = {g(h) : he Z}.
Similarly to the previous cas& C Y[M/v] C X[M/v]: therefore, sincé/ |=xm @' we have that
M Eym @', and sinceM |=z ¢ we have thai Fvmpy @ So in conclusiorM =y Y, as
required, andY| = |Z| <n.

Even though constancy atoms are not upwards closed, it &lijp@so extend this result to F&(-), 2).
Indeed, constancy atoms are trivially 0-bounded, sincethpty team always satisfies them, and

12gjncez C X[H/V], such asalways exists. Of course, there may be multiple ones; indhse, we pick one arbitrarily.

P. Galliani 105

Corollary 31 LetZ be afamily of upwards closed bounded dependencies. Thal tpe FO(=(-), 2)
ME=x @=3JY C X with|Y| < ht(@) s.t. M=y @.

Proof:

Let ¢ € FO(=(-),Z): then by Lemma 22p is equivalent to some formula of the fore¥(=(V) A),
wherey does not contain constancy atoms andy) = ht(¢@). Now suppose tha¥l =x @: then, for
some choice of elements € Dom(M), M Fximy @- Now by Theorem 30 there existsZaC X[m/V],
with |Z| < ht(¢), such thatM =z ; andZ is necessarily of the forny[m/V] for someY C X with
IY| = |Z] <ht(¢). But thenM =y 3V(=(V) A), as required.

]

This result allows us to prove at once a number of nondefiyalvésults concerning upwards closed
dependencies. For example, it is now easy to see that

Corollary 32 Let 2 be a family of upwards closed bounded dependencies. Théotdliey dependency
Al is not definable in FQ=(-),2). In particular, totality atoms cannot be defined by meanshef t
negations of inclusion, exclusion, functional dependemmmkindependence atoms.

Corollary 33 Let 2 be a family ofk-bounded upwards closed dependencies and’let k be infinite.
Thenk’-bigness is not definable in R&(-), 2).

Corollary 34 LetD be a k-bounded upwards closed dependency, and3eknlf ¢(X) of FO(=(-),D)
characterizes n-bigness, in the sense that for all M and X

M=x @(X) < [X(X)] = n,

theng(X) contains at leasfy| instances oD.

7 Conclusions and Further Work

In this work we discovered a surprising asymmetry betweavnalards closed and upwards closed first-
order definable dependency conditions: whereas, as it wasrksince [19], the former can bring the
expressive power of a logic with team semantics beyond thedider, the latter cannot do so by their
own or even together with constancy atoms. As a consequémeeaegations of the principal depen-
dency notions studied so far in team semantics can all bedaddest-order logic without increasing its
expressive power.

Our original question was: how much can we get away with agltiinthe team semantics of first-
order logic before ending up in a higher order logic? The amsivis now apparent, iguite a lot This
demonstrates that team semantics is useful not only (as ibéen employed so far) as a formalism for
the study of very expressive extensions of first-order ldgit also as one for that of more treatable ones.

Much of course remains to be done. The notion of boundedrie€sation 6 allowed us to find some
non-definability results between our extensions; but tlassification of these extensions is far from
complete. In particular, it would be interesting to find resagy and sufficient conditions for F@) to
be equivalent to FO over sentences. The complexity-thiequedperties of these logics, or of fragments
thereof, also deserve further investigation.

Another open issue concerns the development of sound angdletnproof systems for our logics.
Of course, one can check whether a thebrynplies a formulag simply by using Theorems 11 and 21
to translate everything in first-order logic and then use ainthe many well-understood proof systems
for it; but nonetheless, it could be very informative to find directly which logical laws our formalisms
obey.

106 Upwards Closed Dependencies

Acknowledgments The author thanks the referees for a number of useful suggesind corrections.

References

[1] Samson Abramsky & Jouko Vaananen (201Bgpendence logic, social choice and quantum physios
preparation.

[2] William W. Armstrong (1974).Dependency Structures of Data Base RelationsHiusProc. of IFIP World
Computer Congrespp. 580-583.

[3] Marco A. Casanova & Vania M. P. Vidal (1983Jowards a sound view integration methodolodyy: Pro-
ceedings of the 2nd ACM SIGACT-SIGMOD symposium on Pringspbf database systen30ODS '83,
ACM, New York, NY, USA, pp. 36—47, doi0.1145/588058.588065.

[4] Fredrik Engstrom (2012)Generalized quantifiers in dependence logifournal of Logic, Language and
Information21(3), pp. 299-324, ddi0.1007/s10849-012-9162-4.

[5] Ronald Fagin (1977)Multivalued dependencies and a new normal form for relalatatabases ACM
Transactions on Database Systémngp. 262—278, dai0.1145/320557.320571.

[6] Ronald Fagin (1981)A normal form for relational databases that is based on dorsaind keys ACM
Transactions on Database Syst@ngp. 387—415, dai0.1145/319587.319592.

[7] Pietro Galliani (2012):The Dynamics of Imperfect InformatiorPh.D. thesis, University of Amsterdam.
Available athttp://dare.uva.nl/record/425951.

[8] Pietro Galliani (2012)inclusion and exclusion dependencies in team semanticso@®e logics of imperfect
information Annals of Pure and Applied Loglt63(1), pp. 68 — 84, dain.1016/j.apal.2011.08.005.

[9] Pietro Galliani & Lauri Hella (2013)Inclusion Logic and Fixed Point LogicArXiv:1304.4267.
[10] Pietro Galliani & Jouko Vaananen (201¥)n Dependence Logi@rXiv:1305.5948.

[11] Dan Geiger, Azaria Paz & Judea Pearl (199%jioms and algorithms for inferences involving probaliitis
independencénformation and Computatic®i (1), pp. 128 — 141, ddi0.1016/0890-5401(91) 90077-F.

[12] Erich Gradel & Jouko Vaananen (201Bependence and IndependenSéudia Logicd 01(2), pp. 399-410,
do0i:10.1007/511225-013-9479-2.

[13] Jaakko Hintikka & Gabriel Sandu (1989nformational independence as a semantic phenomeiod.E
Fenstad, I.T Frolov & R. Hilpinen, editord-ogic, methodology and philosophy of scien&dsevier, pp.
571-589, doit0.1016/S0049-237X(08) 70066-1.

[14] Wilfrid Hodges (1997):Compositional Semantics for a Language of Imperfect In&tion. Journal of the
Interest Group in Pure and Applied Logi4), pp. 539-563, dain.1093/jigpal/5.4.539.

[15] Jarmo Kontinen (2013)Coherence and Computational Complexity of Quantifier-ibependence Logic
Formulas Studia Logicdl01(2), pp. 267—291, ddi0.1007/s11225-013-9481-8.

[16] Juha Kontinen & Ville Nurmi (2009): Team Logic and Second-Order Logic In Hiroakira Ono,
Makoto Kanazawa & Ruy de Queiroz, editor&ogic, Language, Information and Computatidrec-
ture Notes in Computer Sciencg514, Springer Berlin / Heidelberg, pp. 230-241, tl0i:1007/
978-3-642-02261-6_19.

[17] Antti Kuusisto (2013): Defining a Double Team Semantics for Generalized Quantiffergended
Version) Available athttps://utal7-kk.lib.helsinki.fi/bitstream/handle/10024/68064/
defining_double_team_2013.pdf?sequence=1. Manuscript.

[18] Allen L. Mann, Gabriel Sandu & Merlijn Sevenster (201kjJdependence-Friendly Logic: A Game-Theoretic
Approach Cambridge University Press, dbr. 1017/CB09780511981418.

[19] Jouko Vaananen (2007): Dependence Logic Cambridge University Press, dbo@.1017/
CB09780511611193.

[20] Jouko Vaananen & Fan Yang (201®ropositional dependence logiManuscript.

Profile Trees for Buichi Word Automata, with Application to
Determinization*

Seth Fogarty Orna Kupferman
Computer Science Department School of Computer Science and Engineering
Trinity University Hebrew University of Jerusalem
Moshe Y. Vardi Thomas Wilke
Department of Computer Science Institut fur Informatik
Rice University Christian-Albrechts-Universitat zu Kiel

The determinization of Biichi automata is a celebratedlprobwith applications in synthesis, prob-
abilistic verification, and multi-agent systems. Since1Bé0s, there has been a steady progress of
constructions: by McNaughton, Safra, Piterman, Schewego#rers. Despite the proliferation of so-
lutions, they are all essentially ad-hoc constructionth Vititle theory behind them other than proofs
of correctness. Since Safra, all optimal constructionsleynpees as states of the deterministic au-
tomaton, and transitions between states are defined omeallyi over these trees. The operational
nature of these constructions complicates understanoimementing, and reasoning about them,
and should be contrasted with complementation, where d #@ory in terms of automata ruaGs
underlies modern constructions.

In 2010, we described profile-based approach to Biichi complementation, where a prdfile i
simply the history of visits to accepting states. We devetba structural theory of profiles and used
it to describe a complementation construction that is dat@stic in the limit. Here we extend the
theory of profiles to prove that every rinG contains gorofile treewith at most a finite number
of infinite branches. We then show that this property prowideheoretical grounding for a new
determinization construction where macrostates are gquielordered sets of states. In contrast to
extant determinization constructions, transitions inribes construction are described declaratively
rather than operationally.

1 Introduction

Biichi automata were introduced in the context of decisimybiems for second-order arithmetic [3].
These automata constitute a natural generalization ofraatibover finite words to languages of infinite
words. Whereas a run of an automaton on finite words is acapfftihe run ends in an accepting state,
a run of a Biichi automaton is accepting if it visits an acicgpstate infinitely often.

Determinization of nondeterministic automata is a fundataeproblem in automata theory, going
back to [19]. Determinization of Buchi automata is emphkbye many applications, including synthesis
of reactive systems [18], verification of probabilistic t®mas [4, 25], and reasoning about multi-agent
systems [2]. Nondeterministic automata over finite words loa determinized with a simple, although
exponential,subset constructiofil9], where a state in the determinized automaton is a setatéss
of the input automaton. Nondeterministic Buchi automata,the other hand, are not closed under
determinization, as deterministic Biichi automata aiietitriess expressive than their nondeterministic

*Work supported in part by NSF grants CNS 1049862 and CCFaHB9by NSF Expeditions in Computing
project “EXCAPE: Expeditions in Computer Augmented Pragr&ngineering”, by a gift from Intel, by BSF grant
9800096, and by a stipend from Trinity University. A full g&n, with appendices and missing proofs, is available at
http://www.cs.trinity.edu/~sfogarty/papers/gandalf13rj.pdf

Gabriele Puppis, Tiziano Villa (Eds.): Fourth Interna@bn © S. Fogarty, O. Kupferman, M.Y. Vardi, & Th. Wilke
Symposium on Games, Automata, Logics and Formal Verifinatio This work is licensed under the
EPTCS 119, 2013, pp. 107-121, doi:10.4204/EPTCS.119.11 Creative Commons Attribution License.

108 Profile Trees for Biichi Word Automata, with Application t@terminization

counterparts [13]. Thus, a determinization constructarBfuichi automata must result in automata with
a more powerful acceptance condition, such as Muller [18hiR[20], or parity conditions [9, 17].

The first determinization construction for Biichi automaias presented by McNaughton, with a
doubly-exponential blowup [15]. In 1988, Safra introducedingly exponential construction [20],
matching the lower bound of°(™ [14]. Safra’s construction encodes a state of the deterethau-
tomaton as a labeled tree, now calle8afra tree of sets of states of the input Biichi automaton. Subse-
quently, Safra’s construction was improved by Pitermam simplified the use of tree-node labels [17],
and by Schewe, who moved the acceptance conditions froesdiatedges [22]. In a separate line of
work, Muller and Schupp proposed in 1995 a different singigamential determinization construction,
based orMuller-Schupp treefl6], which was subsequently simplified by Kahler and Wilgg

Despite the proliferation of Buchi determinization coostions, even in their improved and simpli-
fied forms all constructions are essentially ad-hoc, witteltheory behind them other than correctness
proofs. These constructions rely on the encoding of detéparil-automaton states as finite trees. They
are operational in nature, with transitions between deteéred-automaton states defined “horticultur-
ally,” as a sequence of operations that grow trees and themepthem in various ways. The opera-
tional nature of these constructions complicates undailsig, implementing, and reasoning about them
[1, 23], and should be contrasted with complementation,reva@ elegant theory in terms of automata
run DAGS underlies modern constructions [8, 11, 21]. In fact, tHifécdity of determinization has mo-
tivated attempts to find determinization-free decisioncptures [12] and works on determinization of
fragments of LTL [10].

In a recent work [6], we introduced the notion mfilesfor nodes in the rumac. We began by
labeling accepting nodes of tlmaG by 1 and non-accepting nodes by 0, essentially recordinits s
accepting states. The profile of a node is the lexicograpihicaaximalsequence of labels along paths of
the runbDAG that lead to that node. Once profiles and a lexicographicr angkr profiles were defined, we
removed from the rubAG edges that do not contribute to profiles. In the prunedxam, we focused on
lexicographically maximal runs. This enabled us to defineaeh profile-based Biichi complementation
construction that yieldsleterministic-in-the-limitautomata: one in which every accepting run of the
complementing automaton is eventually deterministic [G§tate in the complementary automaton is a
set of states of the input nondeterministic automaton, aunged with the preorder induced by profiles.
Thus, this construction can be viewed as an augmented stdosstuction.

In this paper, we develop the theory of profiles further, amstder the equivalence classes of nodes
induced by profiles, in which two nodes are in the same cla®if have the same profile. We show
that profiles turn the rumAG into aprofile tree a binary tree of bounded width over the equivalence
classes. The profile tree affords us a novel singly expoaleBfichi determinization construction. In
this profile-based determinization construction, a sthteedeterminized automaton is a set of states of
the input automaton, augmented witho preorders induced by profiles. Note that while a Safra tree is
finite and encodes a single level of the miG, our profile tree is infinite and encodes the entirema,
capturing the accepting or rejecting nature of all pathausTwhile a state in a traditional determinization
construction corresponds to a Safra tree, a state in oumdligistic automaton corresponds to a single
level in the profile tree.

Unlike previous Bichi determinization constructiongngitions between states of the determinized
automaton are defined declaratively rather than operdiyon&le believe that the declarative character
of the new construction will open new lines of research ortBideterminization. For Bichi comple-
mentation, the theory of runaGs [11] led not only to tighter constructions [8, 21], but atsca rich
body of work on heuristics and optimizations [5, 7]. We f@esinalogous developments in research on
Biichi determinization.

S. Fogarty, O. Kupferman, M.Y. Vardi, & Th. Wilke 109

2 Preliminaries

This section introduces the notations and definitions eypgalan our analysis.

2.1 Relations on Sets

Given a seR, a binary relatior< overR s apreorderif < is reflexive and transitive. Anear preorder
relates every two elements: for evanyr, € Reitherry <rj, orrp <rq, or both. A relation isantisym-
metricif ry <r, andr, <rqimpliesr; =r». A preorder that is antisymmetric igoartial order. A linear
partial order is dotal order. Consider a partial ordet. If for everyr € R, the set{r’ |’ <r} of smaller
elements is totally ordered by, then we say that is atree order The equivalence class oE Runder
<, written[r], is {r’ | I’ <r andr <r’}. The equivalence classes under a linear preorder form idytota
ordered partition oR. Given a seR and linear preordex overR, define the minimal elements &as
min<(R) = {r1 € R| r1 <rzforallr, € R}. Note thatmin< (R) is either empty or an equivalence class
under<. Given a non-empty sé® and a total ordex, we instead definein-(R) as the the unique
minimal element oR.

Given two finite setfk andR where|R| < |R|, a linear preordex overR, and a total ordex’ over
R, define the(<, <’)-minjectionfrom Rto R to be the functiomj that maps all the elements in tkeh
equivalence class d® to thek-th element ofR. The number of equivalence classes is at nfildstand
thus at mostR/|. If < is also a total order, than tHe<, <’)-minjection is also an injection.

Example2.1 Let R= Q andR' = Z be the sets of rational numbers and integers, respectideljne the
linear preorder<; overQ by x <1 X' iff [x| < [X|, and the total ordex, overZ by x <z X if x < X..
Then, the(<1, <2)-minjection fromQ to Z maps a rational numbaerto |x|.

2.2 w-Automata

A nondeterministiau-automatoris a tupleA = (Z, Q, Q" p, a), whereX is a finite alphabetQ is a finite
set of statesQ" C Q is a set of initial statesp: Q x = — 29 is a nondeterministic transition relation,
and a is an acceptance condition defined below. An automatateisrministicif |Q"| = 1 and, for
everyge Qando € 3, we have|p(g,0)| = 1. For a functiond: Q x T — 29, we lift 5 to setsR of
states in the usual fashiod(R o) = ;g d(r, 0). Further, we define the inverse &f written 51, to
bed1(r,o)={q|r€d(q,0)}.

A run of anw-automatonA on a wordw = gp07 - - - € 2 is an infinite sequence of statgs qs, . .. €
Q% such thatgy € Q™ and, for everyi > 0, we have that,1 € p(q;,d;). Correspondingly, &inite run
of Atogonw=0gy---0n_1 € =* is a finite sequence of statgs, ..., pn such thatpy € Q", p, = g, and
for every 0<i < nwe havepi1 € p(pi, Gi).

The acceptance conditiom determines if a run isccepting If a run is not accepting, we say it
is rejecting A word w € 2% is accepted by if there exists an accepting run @f onw. The words
accepted byA form the languageof A, denoted byL(A). For aBuchi automatonthe acceptance
condition is a set of statds C Q, and a rurgo, ds1, . . . is accepting iffg; € F for infinitely manyi’s. For
convenience, we assun@' NF = 0. For aRabin automatonthe acceptance condition is a sequence
(Go, By), .., (G, Bk) of pairs of sets of states. Intuitively, the s&sre “good” conditions, and the sets
B are “bad” conditions. A rumy,qs, ... is accepting iff there exists @ j < k so thatg; € G; for infinitely
manyi’s, while g; € Bj for only finitely manyi’s. Our focus in this paper is on nondeterministic Buchi
automata on words (NBW) and deterministic Rabin automataas (DRW).

110 Profile Trees for Biichi Word Automata, with Application t@terminization

2.3 Safra’s Determinization Construction

This section presents Safra’s determinization constractising the exposition in [17]. Safra’s construc-
tion takes an NBW and constructs an equivalent DRW. Intiifiva state in this construction is a tree of
subsets. Every node in the tree is labeled by the statedatal The label of a node is a strict superset
of the union of labels of its descendants, and the labelsbtihgs are disjoint. Children of a node are
ordered by “age”. Le#l = (£,Q,Q", p,F) be an NBWn = |Q|, andV = {0,...,n—1}.

Definition 2.2. [17] A Safra treeover A is a tuplet = (N,r, p, ¢, |, G, B) where:
e N CV isaset of nodes.
r € N is the root node.
p: (N\{r}) — Nis the parent function ovex \ {r}.
Y is a partial order defining 'older than’ over siblings.
| : N — 29 s a labeling function from nodes to non-empty sets of stafée label of every node
is a proper superset of the union of the labels of its sons.|8Feds of two siblings are disjoint.
e G,BCV are two disjoint subsets &f.

The only way to move from one Safra tree to the next is througieguence of “horticultural”
operations, growing the tree and then pruning it to enswaketkie above invariants hold.

Definition 2.3. Define the DRWDS(A) = (2, Qs, ps, to, a) Where:

e Qsis the set of Safra trees ovér.

e to=({0},0,0,0,10,0,{1,...,n—1}) wherelp(0) = Q"

e Fort = (N,r,p,,I,G,B) € Qs and o € Z, the treet’ = ps(t, o) is the result of the following
sequence of operations. We temporarily use avéedf names disjoint fromV. Initially, let
t'=(N.,r",p,¢/'I",G ,B)whereN' =N, =r, p=p, ¢ =, is undefined, an®&' =B’ = 0.

(1) Foreverywe N/, letl’(v) = p(l(v),0).
(2) Forevery e N’ such that’(v) NF # 0, create a new nodé € V' where:p(V) =v; I'(V) =
I’(v)NF; and for everyw’ € V' wherep(w') = vadd(w,V) to .
(3) For everyv e N andq € I'(v), if there is aw € N" such that(w,v) € ¢ andq € |’(w), then
removeq from I’(v) and, for every descendavitof v, removeq from I'(V).
(4) Remove all nodes with empty labels.
(5) Foreverywe N',if I'(v) =U{lI'(V) | p'(V) = v} remove all children of, addv to G.
(6) Add all nodes iV \ N’ to B.
(7) Change the nodes ff to unused nodes M.
e a={(Go,Byp),...,(Gn-1,Bn-1)}, where:
-G = {<erv p7L»U7|>GvB> € QS| NS G}
- B ={(N,r,p,y,1,G,B) € Qs|i € B}

Theorem 2.4.[20] For an NBWA with n states, [DS(A))=L(A) and D>(A) has (" states.

3 From Run DAGS to Profile Trees

In this section, we present a framework for simultaneousagsoning about all runs of a Blichi automaton
on a word. We use aAG to encode all possible runs, and give each node inthis a profile based
on its history. The lexicographic order over profiles indtiegpreorder<; over the nodes on levelof
the runDAG. Using=;, we prune the edges of the romaG, and derive a binary tree of bounded width.
Throughout this paper we fix an NBW = (2, Q,Q", p,F) and an infinite wordv = go07 - - -

S. Fogarty, O. Kupferman, M.Y. Vardi, & Th. Wilke 111

3.1 RunbDAGs and Profiles

The runs ofA onw can be arranged in an infinitaG G = (V,E), where
e V C Qx Nissuch thatq,i) €V iff there is a finite run ofA toqon ogp- - - G;_1.

o E CUi»o(Qx{i})x(Qx{i+1}) is such thaE((q,i), (d,i+1)) iff (q,i) €V andq € p(q,q;).

The DAG G, called therun DAG of A on w, embodies all possible runs gf onw. We are primarily
concerned withnitial pathsin G: paths that start iQ" x {0}. A node(q,i) is anF-node ifq € F, and
a path inG is acceptingf it is both initial and contains infinitely mank-nodes. An accepting path &
corresponds to an accepting rundbonw. If G contains an accepting path, we say tGas accepting
otherwise it isrejecting Let G’ be a subbAG of G. Fori > 0, we refer to the nodes iQ x {i} aslevel i
of G'. Note that a node on levek- 1 has edges only from nodes on leueWe say thatG’ hasbounded
width of degree df every level inG’' has at most nodes. By constructior; has bounded width of
degre€Q).

Consider the rumaG G = (V,E) of A onw. Let f: V — {0,1} be such thaf ((q,i})) =1ifqeF
and f((qg,i)) = 0 otherwise. Thusf labelsF-nodes by 1 and all other nodes by 0. Trefile of a
path inG is the sequence of labels of nodes in the path. We define tHidepod a node to be the
lexicographically maximal profile of all initial paths toghnode. Formally, the profile of a finite path
b=wVo,V1,...,Vnin G, writtenhy, is f(vp) f(v1)--- f(vn), and the profile of an infinite path= vp, v, ...
is hy = f(vo)f(v1)---. Finally, the profile of a node, written hy, is the lexicographically maximal
element of{h, | b is an initial path tov}.

The lexicographic order of profiles induces a linear preom@r nodes on every level @. We
define a sequence of linear preordetisover the nodes on levélof G as follows. For nodes andv
on leveli, letu <; vif hy < h,, andu=; v if hy = h,. We group nodes by their equivalence classes
under <. Since the final element of a node’s profile is 1 if and only & thode is ar--node, all
nodes in an equivalence class agree on memberstip iGall an equivalence class &iclass when
all members ar&-nodes, and a noR-class when none of its members &aodes. When a state can
be reached by two finite runs, a node will have multiple inamgnédges irG. We now remove from
G all edges that do not contribute to profiles. Formally, defrepruned rumac G' = (V,E’) where
E'= {{u,v) e E[foreveryu €V, if (U,v) € E thenu’ <, u}. Note that the set of nodes & andG’
are the same, and that an edge is removed fE6only when there is another edge to its destination.

Lemma 3.1 states that, as we have removed only edges that dormobute to profiles, nodes derive
their profiles from their parents i@'.

Lemma 3.1. [6] For two nodes u and’un V, if (u,u’) € E’, then ky = h,0 or hy = hy1.

While nodes with different profiles can share a child@GnLemma 3.2 precludes this &.
Lemma 3.2. Consider nodes u and v on level i of@d nodes tand v on level i+ 1 of G. If (u,u) e E/,
(v,V) € E',and U =1 V, then ux; v.

Proof: Sinceu =1V, we havehy = hy. If U is anF-node, therv is anF-node and the last letter in
bothhy andhy is 1. By Lemma 3.1 we have,1 = hy = h, = h,1. If U andV are nonF-nodes, then
we haveh,0 = hy = hy = h,0. In either caseh, = hy andu =; v.]

Finally, we have tha@’ captures the accepting or rejecting natur&ofhis result was employed to
provide deterministic-in-the-limit complementation &1

Theorem 3.3.[6] The pruned rurbAG G’ of an NBWA on a word w is accepting iffl accepts w.

112 Profile Trees for Biichi Word Automata, with Application t@terminization

3.2 The Profile Tree

Using profiles, we define thprofile tree T which we show to be a binary tree of bounded width that
captures the accepting or rejecting nature of the prunedamnG’. The nodes of are the equivalence
classeq[u] |ueV} of G = (V,E’). To remove confusion, we refer to the node§ adsclassesand use
andU andW for classes ifT, while reservingu andv for nodes inG or G'. The edges i are induced
by those inG’ as expected: for an edda,Vv) € E’, the clasqV] is the child of[u] in T. A classW is a
descendantf a clasdJ if there is a, possibly empty, path frochto W.

Theorem 3.4. The profile tree T of an n-state NB¥on an infinite word w is a binary tree whose width
is bounded by n.

Proof: ThatT has bounded width follows from the fact that a class on legehtains at least one node
on leveli of G, andG is of bounded width of degrel®|. To prove that every class has one parent, for
aclasdn letU = {u| there isv € W such that{u,v) € E’}. Lemma 3.2 implies tha#l is an equivalence
class, and is the sole parentwf To show thafl has a root, note that &" NF = 0, all nodes on the
first level of G have profile 0, and every class descends from this class @sna@dh profile 0. Finally,

as noted Lemma 3.1 entails that a cldssan have at most two children: the class with prdiile, and
the class with profildyy 0. ThusT is binary. L]

A branchof T is a finite or infinite initial path inT. SinceT is a tree, two branches share a prefix
until they split. An infinite branch isacceptingif it contains infinitely manyF-classes, andejecting
otherwise. An infinite rejecting branch must reach a suffirsisting only of non--classes. A class
U is calledfinite if it has finitely many descendants, and a finite cldsdies outon levelk if it has a
descendant on lev&l- 1, but none on levet. SayT is acceptingf it contains an accepting branch, and
rejectingif all branches are rejecting.

As all members of a class share a profile, we define the pilefitef a clasdJ to beh, for some node
ueU. We extend the functioffi to classes, so thdtU) =1 if U is anF-class, and (U) = 0 otherwise.
We can then define the profile of an infinite brarch Ug,Us, ... to beh, = f(Up)f(U1)---. For two
classedJ andW on leveli, we say thatl <; W if hy < hy. For two infinite brancheb andb/, we say
thatb < b’ if hy < hy. Note that<; is a total order over the classes on levelnd that< is a total order
over the set of infinite branches.

As proven above, a clags has at most two children: the classFinodes with profileny 1, and the
class of nor--nodes with profilehy 0. We call the first class thie-child of U, and the second class the
non+-child of U. While thepAaG G’ can have infinitely many infinite branches, bounding the lwifta
tree also bounds the number of infinite branches it may have.

Corollary 3.5. The profile tree T of an NBW on an infinite word w has a finite number of infinite
branches.

Example3.6. Consider, for example, the NBW in Figure 1.(a) and the firat fevels of a tree of equiv-
alence classes in Figure 1.(b). This tree corresponds toiradl of the NBW on the wordb®. There

is only one infinite branch{(q,0)},{(p,1)},{(p,2)},..., which is accepting. The set of labels and the
global labelinggl are explained below, in Section 4.1.

We conclude this section with Theorem 3.7, which enable® usduce the search for an accepting
path inG’ to a search for an accepting branchlin

S. Fogarty, O. Kupferman, M.Y. Vardi, & Th. Wilke 113

h=0
labels = {}

h=00
labels = {0} {}
gl=0
h=011
labels = {0,1} labels = {}

g =0
a a,b labels = {0,1,2}
g =0
a . h=0111
start °. . labels = {}
b g=3
(a) An automaton (b) T for automaton (a) oab®.

Figure 1: An automaton and tree of classes. Each class is a singldtdraekets are omitted for brevity.
F-classes are circled twice. Each class is labeled with wfilpth, as well as the seatabels and the
global labelgl as defined in Section 4.1.

Theorem 3.7. The profile tree T of an NBW on an infinite word w is accepting it accepts w.

Proof: If we L(A), then by Theorem 3.3 we have that contains an accepting path,us,.... This
path gives rise to an accepting brarich], [u1],... in T. In the other direction, iff has an accepting
branchUg, Uy, ..., consider the infinite subgraph & consisting only of the nodes I, fori > 0. For
everyi > 0 there existay € Uj andu; 1 € U1 so thatE'(u;,ui,1). Because no node is orphaned in
G/, Lemma 3.2 implies that every nodelify,; has a parent ibJ;, thus this subgraph is connected. As
each node has degree of as mg¥onig’s Lemma implies that there is an infinite initial paty,uy, ...
through this subgraph. Further, at every lewahereU; is anF-class, we have that € F, and thus this
path is accepting and € L(A).]

4 Labeling

In this section we present a method of deterministicall\elimlg the classes it with integers, so we
can determine i is accepting by examining the labels. Each lahebpresents the proposition that the
lexicographically minimal infinite branch through the ficdass labeled withm is accepting. On each
level we give the labein to the lexicographically minimal descendant, on any braw€lthis first class
labeled withm. We initially allow the use of global information abotitand an unbounded number of
labels. We then show how to determine the labeling using tbedinnformation about each level of
and how to use a fixed set of labels.

114 Profile Trees for Biichi Word Automata, with Application t@terminization

4.1 LabelingT

We first present a labeling that uses an unbounded numbebeigland global information abouit We
call this labeling thaglobal labeling and denote it witlgl. For a clasdJ on leveli of T, and a clasyV
on level j, we say thaW is before Uif j <ior j =i andW =<; U. For each labein, we refer to the first
class labeledn asfirst(m). Formally,U = first(m) if U is labeledm and, for all classe¥V before
U, the label oW is notm. We define the labeling functiogl inductively over the nodes &f. For the
initial classUp = {(g,0) | g€ Q"} with profile 0, letgl(Ug) = 0.

Each labem follows the lexicographically minimal child afirst(m) on every level. When a class
with label m has two children, we are not certain which, if either, is @dran infinite branch. We are
thus conservative, and follow the nénehild. If the nonF-child dies out, we revise our guess and move
to a descendant of the-child. For a labemand leveli, let thelexicographically minimal descendaot
mon leveli, written 1md(m,i), bemin~ ({W | W is a descendant d@first(m) on leveli}): the class with
the minimal profile among all the descendants ofst(m) on leveli. For a clasd) on leveli, define
labels(U) ={m|U =1md(m,i)} as the set of valid labels f&f. When labellingJ, if U has more than
one valid label, we give it the smallest label, which coresis to the earliest ancestor.1dibels (U)
is empty,U is given an unused label one greater than the maximum labatmmg earlier inT .

min(labels(U)) if labels(U) # 0,
max({gl(W) |W is beforeU})+1 if labels(U) = 0.

Lemma 4.2 demonstrates that every class on a level gets aautaqiel, and that despite moving
between nephews the labeling adheres to branches in the tree

Definition 4.1. gl(U) = {

Lemma 4.2. For classes U and W on level i of T, it holds that:

(1) fU #£W then g(U) # gl(W).

(2) U is adescendant dfirst(gl(U)).

(3) IfU is a descendant afirst(gl(W)), then W=; U. Consequently, if U<; W, then U is not a
descendant afirst(gl(W)).

(4) first(gl(V)) is the root or an F-class with a sibling.

(5) IfU # first(gl(U)), then there is a class on levelil that has label glU).

(6) Ifgl(U) < gl(W) thenfirst(gl(U)) is beforefirst(gl(W)).

As stated above, the label represents the proposition that the lexicographicallyimmah infinite
branch going throughiirst(m) is accepting. Every time we pass throughFaehild, this is evidence
towards this proposition. Recall that when a class withllalbbas two children, we initially follow the
non+-child. If the nonF-child dies out, we revise our guess and move to a descentithe B-child.
Thus revising our guess indicates that at an earlier poaibtanch did visit air-child, and also provides
evidence towards this proposition. Formally, we say thatbellm is successful on levelif there is a
classU on leveli — 1 and a clas®)’ on leveli such thagl(U) = gl(U’) = m, and eithet)’ is theF-child
of U, orU’ is not a child ofU at all.

Example4.3. In Figure 1.(b), the only infinite brancfq,0)},{(p,1)},... is accepting. At level O this
branch is labeled with 0. At each leveb 0, we conservatively assume that the infinite branch beginni
with (g,0) goes througH(q,i)}, and thus labe{(q,i)} by 0. As{(q,i)} is proven finite on level + 1,

we revise our assumption and continue to follow the pathuiing (p,i)}. Since{(p,i)} is anF-class,
the label O is successful on every level 1. Although the infinite branch is not labeled O after the first
level, the label 0 asymptotically approaches the infinienbh, checking along the way that the branch
is lexicographically minimal among the infinite branchetigh the root.

S. Fogarty, O. Kupferman, M.Y. Vardi, & Th. Wilke 115

Theorem 4.4 demonstrates that the global labeling captheeaccepting or rejecting nature of
Intuitively, at each level the cladd with label m is on the lexicographically minimal branch from
first(m). If U is on the lexicographically minimahfinite branch fromfirst(m), the labelm is
waiting for the branch to next reach &naclass. IfU is not on the lexicographically minimal infinite
branch fromfirst(m), thenU is finite andmis waiting forU to die out.

Theorem 4.4. A profile tree T is accepting iff there is a label m that is ssstel infinitely often.

Proof: In one direction, assume there is a labethat is successful infinitely often. The lab®lcan
be successful only when it occurs, and ttm®ccurs infinitely oftenfirst(m) has infinitely many
descendants, and there is at least one infinite branch thmigst(m). Letb = Ug,Uy,... be the lexi-
cographically minimal infinite branch that goes througlrst(m). We demonstrate thatcannot have a
suffix consisting solely of nof—classes, and therefore is an accepting branch. By way dfazhation,
assume there is an indgxso that for everyk > j, the clasdJy is a nonF-class. By Lemma 4.2.(4),
first(m) is anF-class or the root and thus occurs before Igvel

Let U = {W |W <;U;, Wis adescendant dfirst(m)} be the set of descendants first(m),
on level j, that are lexicographically smaller thah. Sinceb is the lexicographically minimal infinite
branch througltirst(m), every class il must be finite. Le§’ > j be the level at which the last class in
U dies out. At this pointl;: is the lexicographically minimal descendantfafrst(m). If gl(Uj) #m,
then there is no class on levglwith labelm, and, by Lemma 4.2.(5m would not occur after levej'.
Sincem occurs infinitely often, it must be that(U;) = m. On every levek > |/, the clasdJy is a non-
F-child, and thudJy is the lexicographically minimal descendantlf on levelk and sogl(Ux) = m.
This entailsm cannot be not successful after leyjgland we have reached a contradiction. Therefore,
there is no such rejecting suffix bf andb must be an accepting branch.

In the other direction, if there is an infinite accepting lotanthen letb = Uy, U, ... be the lexi-
cographically minimal infinite accepting branch. LEtbe the set of infinite branches that are lexico-
graphically smaller thab. Every branch iB’ must be rejecting, do would not be the minimal infinite
accepting branch. Lgtbe the first index after which the last branchBhsplits fromb. Note that either
j =0, orU;_1 is part of an infinite rejecting brandl,...,U;_1,W;,W,;1,... smaller tharb. In both
cases, we show thél; is the first class for a new labed that occurs on every levél> j of T.

If j =0, then letm= 0. Asmis the smallest label, and there is a descendaktjain every level
of T, it holds thatm will occur on every level. In the second case, where 0, thenW; must be the
non+-child of Uj_;, and saJ; is theF-child. Thus,U; is given a new labei whereU; = first(m).
For every labeim’ < m and levelk > j, since for every descendadt of U; it holds thatW < U’, it
cannot be thatmd(n7, k) is a descendant &f;. Thus, on every levét > j, the lexicographically minimal
descendant dfi; will be labeledm, andm occurs on every level of .

We show tham is successful infinitely often by defining an infinite sequentlevels,jo, j1, j2,. ..
so thatmis successful orj; for all i > 0. As a base case, I§ = j. Inductively, at levelj;, letU’ be the
class on levej; labeled withm. We have two cases. U’ # Uj,, then as all infinite branches smaller than
b have already split fronb, U’ must be finite inT. Let ji.; be the level at whicly’ dies out. At level
Ji+1, mwill return to a descendant &f;,, andm will be successful. In the second cabé,= Uj,. Take
the firstk > j; so thatUy is anF-class. Adbis an accepting branch, suctkanust exist. As every class
betweerlJ; andUy is a nonF -class gl (Ux—1) = m. If Uy is the only child olUy_1 then letji, 1 = k: since
gl(Ux) = mandUy is not the non-child of Uy_1, it holds thatmis successful on levéd. Otherwise let
Uy, be the nor--child of Ux_1, so thatgl(Uy) = m. Again,Uy is finite. Letji;1 be the level at whichy,
dies out. At levelji 1, the labelmwill return to a descendant &f, andmwill be successful. O

116 Profile Trees for Biichi Word Automata, with Application t@terminization

4.2 Determining Lexicographically Minimal Descendants

Recall that the definition of the labelingl involves the computation afmd(m,i), the class with the
minimal profile among all the descendantstatst(m) on leveli. Finding1md(m,i) requires knowing
the descendants d@first(m) on leveli. We show how to store this information with a partial order,
denoteds;, over classes that tracks which classes are minimal cookother classes. Using this partial
order, we can determine the claisd(m,i + 1) for every labelm that occurs on level, using only
information about levelsandi+ 1 of T. Lemma 4.2.(5) implies that we can safely restrict oursetee
labels that occur on level

Definition 4.5. For two classet) andW on leveli of T, say thatJ is aminimal cousinof W, written

U W, iff W is a descendant dfirst(gl(U)). SayU <;W whenU ;W andU # W.

For a labelm and leveli, we can determingmd(m,i + 1) given only the classes on levélandi+ 1
and the partial ordex;. LetU be a clas®) on leveli. Because labels can move between branches, the
minimal descendant dfirst(gl(U)) on leveli + 1 may be a nephew &f, not necessarily a direct de-
scendant. Define the;-nephew ol asneph;(U) =min<,,,({W’' |W is the parent ofV' andU <;W}).
Lemma 4.6. For a class U on level i of T, it holds thaid(gl(U),i + 1) = neph; (U).

Proof: We prove tha{W’ | W is the parent ofV’ andU <;W} contains every descendantfdfrst(gl(U))
on leveli+ 1, and thus that its minimal elementlisd(gl(U),i+1). LetW’ be a class on levék- 1, with
parentW on leveli. If U <;W, thenW is a descendant dfirst(gl(U)) andW’ is likewise a descendant
of first(gl(U)). Conversely, agl(U) exists on level, if W' is a descendant dfirst(gl(U)), then its
parentW must also be a descendantfafrst(gl(U)) andU <W. U

By usingneph;, we can in turn define the set of valid labels for a cld$®n leveli + 1. Formally,
define the<;-uncles ofU’ asuncj(U’) = {U |U’ =neph;(U)}. Lemma 4.7 demonstrates hawic;
corresponds t@abels.

Lemma 4.7. Consider a class Uon level i+ 1. The following hold:
(1) 1abels(U")Nn{gl(W)|W onlevel} ={gl(U)|U €unc;(U’)}.
(2) labels(U’) = 0iff unc;(U’) = 0.
Proof:
(1) LetU be a class on leval By definition,gl(U) € labels(U’) iff U’ = 1md(gl(U),i +1). By
Lemma 4.6, it holds thatmd(gl(U),i + 1) = neph;(U). By the definition ofunc;, we have that
U’ =neph;(U) iff U € uncj(U’). Thus every label inabels(U’) that occurs on level labels
some node imnc;(U’).
(2) Ifuncij(U’) #0, then part (1) impliesabels(U’) # 0. In other direction, lelm=min(labels(U’)).
By Lemma 4.2.(5), there isld on leveli so thatgl(U) = m, and by part (1J € unc;(U’).
0

Finally, we demonstrate how to computg, 1 only using information about the levelof T and
the labeling for levei + 1. As the labeling depends only of, this removes the final piece of global
information used in definingl.

Lemma 4.8. Let U' and W be two classes on levekil of T, where U#W'. Let W be the parent of
W’. We have that Ug; 1 W' iff there exists a class U on level i so thatldl) = gl(U’) and U;W .

Proof: If there is no clas®) on leveli so thatgl(U) = gl(U’), thenU’ = first(gl(U’)). SinceW’
is not a descendant &f’, it cannot be thatl’ <j, 1 W’'. If such a clas®) exists, therlJ ;W iff W is a
descendant ofirst(gl(U)), which is true iff W' is a descendant dfirst(gl(U’)): the definition of
U/gi+1W/. l:‘

S. Fogarty, O. Kupferman, M.Y. Vardi, & Th. Wilke 117

4.3 Reusing Labels

As defined, the labeling functiogl uses an unbounded number of labels. However, as there asat m
|Q| classes on a level, there are at m@§tiabels in use on a level. We can thus use a fixed set of labels by
reusing dead labels. For convenience, we U&g RAbels, so that we never need reuse a label that was in
use on the previous level. The full version demonstratestbavge|Q| — 1 labels. There are two barriers
to reusing labelings. First, we can no longer take the nuallyiminimal element ofabels(U) as the
label ofU. Instead, we calculate which label is the oldest throdglsecond, we must ensure that a label
that is good infinitely often is not reused infinitely oftero do this, we introduce a Rabin condition to
reset each label before we reuse it.

We inductively define a sequence of labelingseach from theth level of T to {0,...,2|Q|}. As
a base case, there is only one equivalence tlaes level 0 of T, and defindo(U) = 0. Inductively,
given the set of classdd; on leveli, the functionl;, and the set of classds ; on leveli + 1, we
definel;;, as follows. Define the set of unused labelg(IFLto be {m| mis not in the range df}. As
T has bounded widthQ|, we have thatQ| < [FL(l;)|. Letmj; , be the(=i 1, <)-minjection from
{U’ on level i+1] unc;j(U’) = 0} to FL(l;). Finally, define the labeling.; as

_ i Jli(ming (unci(U))) if unci(U’) # 0,
ha(U) = {mji+1(U’) if unc;(U’) = 0.

Because we are reusing labels, we need to ensure that aHabisl good infinitely often is not reused
infinitely often. Say that a labehis bad int if m¢ FL(li_1), butm € FL(l;). We say that a labehis
good in | if there is a clas) on leveli — 1 and a clasb’ on leveli such thati;_1(U) =1;(U’) = mand
U’ is either theF-child of U or is not a child otJ at all.

Theorem 4.9 demonstrates that the Rabin condition of a ladiely good infinitely often, but bad
only finitely often, is a necessary and sufficient conditiofl toeing accepting. The proof, ommitted for
brevity, associates each latmin gl with the labell;(first(m)).

Theorem 4.9. A profile tree T is accepting iff there is a label m whére m is bad in{} is finite, and
{i | mis good in|l} is infinite.

5 A New Determinization Construction for Buchi Automata

In this section we present a determinization construct@nAf based on the profile tree. For clarity,
we call the states of our deterministic automanoacrostates

Definition 5.1. Macrostates oveA are six-tuplegS =<, 1, <, G, B) where:
e SC Qis a set of states.
<is a linear preorder oves.
I: S—{0,...,2|Q|} is a labeling.
< C <is another preorder ov&
G, B are sets of good and bad labels used for the Rabin condition.

For two stateg] andr in Q, we say thagy~ r if g <r andr < g. We constrain the labelingso that
it characterizes the equivalence classe$ aohder=, and the preordet to be a partial order over the
equivalence classes &f. Let Q be the set of macrostates.

118 Profile Trees for Biichi Word Automata, with Application t@terminization

do ={({q}%,0,G=0,B=0

a a,b

a 91 = [({a}° < {p}"), q<p, G=0, B=10
start ° % =[({a)° < {p}), q<p, G= {0}, B= {1}

s = | ({a}° < {p}"), a<p, G={0}, B={2}

(a) An automatoriB (b) The first four macrostates in the runDR(B) onab®.

Figure 2: An automaton and four macrostates. For each macro&atel, <,G,B), we first display the
equivalence classes 8funder= in angle brackets, superscripted with the labels. diVe then display
the < relation, and finally the sets andB.

Before defining transitions between macrostates, we regethe pruning of edges fro® by re-
stricting the transition functiop with respect tdSand <. For a statey € Sando € Z, let ps<(q,0) =
{d € p(q,0) | for everyr € p~Y(¢,0) NS r < q}. Thus, when a state has multiple incomingransitions
from S the functionps~ keeps only the transitions from states maximal under<£helation. For ev-
ery stateq € p(S o), the seto, }(q,0) NSis an equivalence class under We note thaip (S o) =

Ps=(S 0).

Example5.2 Figure 2 displays the first four macrostates in a run of thiemeinization construction.
Consider the state; = ({q, p}, <,l,<,0,0) whereq < p, q<p, I(g) =0, andl(p) = 1. We have
p(g,a) = {p,q}. However,p € p(p,a) andq < p. Thus we discard the transition fromto p, and

ps=(a,a) = {q}. In contrastps-(p,a) = p(p,a) = {p}, because while € p(q,a), it holds thatg < p.

For o € Z, we define theg-successor ofS <,1,<,G,B) to be(S,<’,I',<',G',B') as follows. First,
S = p(S o). Second, define’ as follows. For stateg,r’ € S, letq e p1(d,0) andr € p 1(r', 0).
As the parents off andr’ underps . are equivalence classes the choice ahdr is arbitrary.

e If g=<r,thenq <'r'.

e If q~randq eFiff I’ € F, thend ~'r'.

o fg~r,q ¢F,andr’ € F, thenq <'r’.

Examples.3 As a running example we detail the transition from= ({q, p}, =<,1,<,0,0) to
g2 =(S,=,I',<,G,B’) onb. We haveS = p({q, p},b) = {q, p}. To determine<’, we note thap € S

) =

is the parent of botly € S andp € S. Sinceq ¢ F, andp € F, we haveq <’ p.

Third, we define the labeling as follows. As in the profile tre&, on each level we give the label
mto the minimal descendants, under tkeelation, of the first equivalence class to be labeated-or a
stateq € S, define thenephews of ¢o beneph(q,0) =min (ps<({r € S| q<r},o)). Conversely, for a
stater’ € S we define thaincles of f to be beunc(r’,0) = {q |’ € neph(q,0)}.

Each state’ € S inherits the oldest label from its uncles.rifhas no uncles, it gets a fresh label. Let
FL(l) = {m| mnot in the range of} be the free labels ih, and letmj be the(=<’, <)-minjection from
{r" € S |unc(r',0) = 0} to FL(l), where< is the standard order of0,...,2|Q|}. Let

(') = I(q), for someq € min<(unc(r’,0)) if unc(r’,o)#0,
I mj(r) if unc(r’,o) =0.

S. Fogarty, O. Kupferman, M.Y. Vardi, & Th. Wilke 119

Example5.4. The nephews of] € Sis the <’-minimal subset of the sgds-({r € S|q<r},o). Since
g<qandqgs<p, we have thaheph(q,b) =min ({q, p}) = {q}. Similarly, for p € Swe havep<p and
neph(p,b) =min({p,q}) = {q}. Thus forg € S, we havenin-(unc(q,b)) =min<({p,q}) ={q} and
we setl’(g) =1(g) = 0. Forp € S, we haveunc(p,b) = 0 andl’(p) is the first unused label‘(p) = 2.

Fourth, define the preordef as follows. For stateg,r’ € S, defined <'r’ iff ¢ ~' r’ or there exist
g,r € Sso thatir’ € ps~(r,0); g€ unc(q,0); andg<r. The labeling’ depends on recalling which states
descend from the first equivalence class with a given labelgatracks these descendants.

Finally, for a labelmlet S, = {r € S|I(r) =m} andS,,= {r’' € S| I’(r') = m} be the states i,
respS, labeled withm. Recall that a labehis good either when the branch it is following visksstates,
or the branch dies and it moves to another branch. Thusmdagoodwhen: Sy, # 0; S,, # 0; and either
S, CF or ps=(Sm,0) NS, = 0. G is then{m| mis good;. Conversely, a label is bad when it occurs in
S but not inS. Thus the set dbadlabels isB' = {m| S, # 0, S,,= 0}.

Example5.5. As p € ps<(p,b); g € unc(q,b); andg< p, we haveq<’ p. Sincel (g) = 0 andl’(g) =0, but
g ¢ ps<(g,b), we have = G/, and as nothing is labeled 1l we have 1 B'.

Lemma 5.6, proven in the full version, states tt@it<’,1’, <, G',B') is a valid macrostate.
Lemma 5.6. For a macrostatey € Q and o € %, the o-successor of] is a macrostate.

Definition 5.7. Define the DRW automatoBR(A) to be(Z,Q,Q‘”,pQ, a), where:
e Q" ={(Q",<0,lo, <0,0,0)}, where:
- Zo=<=Q"xQ"
— lp(q) =0forallge Q"
e Forge Qando € Z, let pg(q,0) = {q'}, whereq’ is theg-successor o
e a=(Gop,Bo),...,{Gyq;Bzq), where for alabein € {0,...,2|Ql}:
— Gm={(S%,1,5,G,B) | me G}
- Bn={(§=%,1,5,G,B) | me B}
Theorem 5.8, proven in the full version, asserts the camess of the construction and says that its
blowup is comparable with known determinization consfourd.

Theorem 5.8. For an NBWA with n states, [DR(A)) = L(A) and DX(A) has P(" states.

There are two simple improvements to the new constructiemailéd in the full version. First, we
do not need B)| labels: it is sufficient to us@| — 1 labels. Second, Piterman’s technique of dynamic
renaming can reduce the Rabin condition to a parity conditio

6 Discussion

In this paper we extended the notion of profiles from [6] andettgped a theory of profile trees. This
theory affords a novel determinization construction, vehdeterminized-automaton states are sets of
input-automaton states augmented with two preorders. drfutture, a more thorough analysis could
likely improve the upper bound on the size of our construrctidVe hope to see heuristic optimization
techniques developed for this construction, just as hiéeiggtimization techniques were developed for
Safra’s construction [24].

More significantly, profile trees afford us the first thearatiunderpinnings for determinization.
Decades of research on Biichi determinization have resuita plethora of constructions, but a paucity
of mathematical structures underlying their correctnddss is the first new major line of research in
Buchi determinization since [16], and we expect it to leadflirther research in this important area.

120 Profile Trees for Biichi Word Automata, with Application t@terminization

One important question is to understand better the cororebgtween profile trees and Safra’s con-
struction. A key step in the transition between Safra treg¢s iemove states if they appear in more than
one node. This seems analogous to the pruning of edgesGfoithe second preorder in our construc-
tion, namely the relatiory;, seems to encodes the order information embedded in Saés tPerhaps
our approach could lead to declarative definition of comsitbns based on Safra and Muller-Schupp
trees. In any case, it is our hope that profile trees will eragel the development of new methods to
analyze and optimize determinization constructions.

References

[1] C.S. Althoff, W. Thomas & N. Wallmeier (20050bservations on determinization ofiéhi automata In:
ICALP, doi:10.1016/j.tcs.2006.07.026.

[2] R. Alur, T. A. Henzinger & O. Kupferman (2002):Alternating-time temporal logic J. ACM,
doi:10.1145/585265.585270.

[3] J.R. Biichi (1962)On a decision method in restricted second order arithmetic/ICLMPS.

[4] C. Courcoubetis & M. Yannakakis (1995)The complexity of probabilistic verification J. ACM,
d0i:10.1145/210332.210339.

[5] L. Doyen & J.-F. Raskin (2007)mproved algorithms for the automata-based approach toetotecking
In: TACAS, doi:10.1007/978-3-540-7120934.

[6] S. Fogarty, O. Kupferman, M.Y. Vardi & Th. Wilke (2011)nifying Biichi complementation constructions
In: CSL, doi:10.4230/LIPlcs.CSL.2011.248.

[7] S. Fogarty & M.Y. Vardi (2010): Efficient Bichi universality checking In: TACAS,
doi:10.1007/978-3-642-1200247.

[8] E. Friedgut, O. Kupferman & M.Y. Vardi (2006):Buchi complementation made tighter IJFCS
doi:10.1142/S0129054106004145.

[9] D. Kahler & Th. Wilke (2008):Complementation, disambiguation, and determinizatioBiathi automata
unified In: ICALP, doi:10.1007/978-3-540-7057559.

[10] J. Kretinsky & J. Esparza (2012)Deterministic automata for the (F, G)-fragment of LTUn: CAV,
doi:10.1007/978-3-642-3142471,

[11] O. Kupferman & M.Y. Vardi (2001): Weak alternating automata are not that weak TOCL,
doi:10.1145/377978.377993.

[12] O. Kupferman & M.Y. Vardi (2005)Safraless decision procedurds: FOCS do0i:10.1109/SFCS.2005.66.
[13] L.H. Landweber (1969)Decision problems fow—automata MST, doi:10.1007/BF01691063.

[14] C. Loding (1999): Optimal bounds for the transformation of omega-automataln: FSTTCS
doi:10.1007/3-540-46691-8.

[15] R. McNaughton (1966): Testing and generating infinite sequences by a finite autmmat/CONT,
doi:10.1016/S0019-9958(66)80013-X.

[16] D.E. Muller & P.E. Schupp (1995):Simulating alternating tree automata by nondeterminisdic-
tomata: new results and new proofs of theorems of Rabin, MgN®n and Safra TCS
doi:10.1016/0304-3975(94)00214-4.

[17] N. Piterman (2006)From nondeterministic 8chi and Streett automata to deterministic parity automata
LICS, doi:10.2168/LMCS-3(3:5)2007.

[18] A. Pnueli & R. Rosner (1989)0n the synthesis of a reactive modulle: POPL, doi:10.1145/75277.75293.

[19] M.O. Rabin & D. Scott (1959): Finite automata and their decision problems IBM JRD,
doi:10.1147/rd.32.0114.

S. Fogarty, O. Kupferman, M.Y. Vardi, & Th. Wilke 121

[20] S. Safra (1988)On the complexity ab-automata In: FOCS doi:10.1109/SFCS.1988.21948.
[21] S. Schewe (2009Buchi complementation made tighth: STACS doi:10.4230/LIPlcs.STACS.2009.1854.

[22] S. Schewe (2009): Tighter bounds for the determinisation ofuéhi automata In: FOSSACS
doi:10.1007/978-3-642-0059648.

[23] S. Tasiran, R. Hojati & R.K. Brayton (1995)anguage containment of non-deterministic omega-autamat
In: CHARME, doi:10.1007/3-540-60385-16.

[24] M.-H. Tsai, S. Fogarty, M. Y. Vardi & Y.-K. Tsay (2010)State of Bichi complementatiaonIn: CIAA,
doi:10.1007/978-3-642-180987B.

[25] M.Y. Vardi (1985): Automatic verification of probabilistic concurrent finigtate programs In: FOCS
doi:10.1109/SFCS.1985.12.

Weighted Automata and
Monadic Second Order Logic

Nadia Labai Johann A. Makowsky
Faculty of Computer Science Faculty of Computer Science
Technion-Israel Institute of Technology Technion-Israel Institute of Technology
nadia@cs.technion.ac.il janos@cs.technion.ac.il

Let . be a commutative semiring. M. Droste and P. Gastin havedoted in 2005 weighted
monadic second order logiwMSOL with weights in.. They use a syntactic fragmeRMSOL

of WMSOL to characterize word functions (power series) recognebpweighted automata, where
the semantics of quantifiers is used both as arithmeticabtipes and, in the boolean case, as quan-
tification.

Already in 2001, B. Courcelle, J.Makowsky and U. Rotics haw®duced a formalism for graph
parameters definable in Monadic Second order Logic, heledddISOLEVAL with values in a ring
Z. Their framework can be easily adapted to semiritr§js This formalism clearly separates the
logical part from the arithmetical part and also applies twahfunctions.

In this paper we give two proofs thRMSOL andMSOLEVAL with values in# have the same
expressive power over words. One proof shows directly BM&OLEVAL captures the functions
recognizable by weighted automata. The other proof showstbdranslate the formalisms from
one into the other.

1 Introduction

Let f be a function from relational structures of a fixed relatlor@abularyt into some field, ring, or
a commutative semiring” which is invariant under-isomorphisms..& is called aweight structure
In the case where the structures are graphs, such a funsticalléd a graph parameter, or. ¥ is a
polynomial ring, a graph polynomial. In the case where tmecstires are words, it is called a word
function.

The study of definability of graph parameters and graph mtyials in Monadic Second Order Logic
MSOL was initiated in [6] and further developed in [22, 20]. For aight structure? we denote the
set of functions ofr-structures definable IMSOL by MSOLEVAL (1), or if the context is clear, just
by MSOLEVAL . The original purpose for studying functions MSOLEVAL was to prove an
analogue to Courcelle’s celebrated theorem for polynonmgls as weight structures, which states that
graph parameters € MSOLEVAL o are computable in linear time for graphs of fixed tree-widh,
and various generalizations thereBfSOLEVAL can be seen as an analogue of 8kelem elementary
functionsakalower elementary function§25, 26], adapted to the framework wfeta-finite model theory
as defined in [15].

In [8] a different formalism to define”-valued word functions was introduced, which the authors
calledweighted monadic second order logic WMS@hd used a fragmerRMSOL, of it to prove that
a word function is recognized by a weighted automaton i iliefinable irRMSOL. This can be seen
as an analogue of the Buchi-Elgot-Trakhtenbrot Theorearattterizing regular languages for the case
of weighted (aka multiplicity) automata.

Gabriele Puppis, Tiziano Villa (Eds.): Fourth Interna@bn © N. Labai & J.A. Makowsky
Symposium on Games, Automata, Logics and Formal Verifinatio This work is licensed under the
EPTCS 119, 2013, pp. 122-135, doi:10.4204/EPTCS.119.12 Creative Commons Attribution License.

N. Labai & J.A. Makowsky 123

Main results

Our main results explore various features of the two foremadiMSOLEVAL and RMSOL for word
functions with values in a semiring’. In the study oMSOLEVAL we show howmodel theoretic tools
can be used to characterize the word functiomgd8BOLEVAL as the fuctions recognizable by weigthed
automata. This complements the automata theoretic agpresed in the study of weighted automata,
[9, 11]. In particular, we give two proofs th&MSOL andMSOLEVAL with values in a semiring”
have the same expressive power over words. To see this wethkledwllowing for a word functionf
with values in.?:

(i) If fisdefinable NMSOLEVAL , itis contained in a finitely generated stable semimodulearti
functions, Theorem 11.

(i) If fisrecognizable by some weighted automaton, it is definad#SOLEVAL , the “if” direction
of Theorem 8.

(i) If fisdefinable iMRMSOL, we can translate it, using Lemma 15, into an expressidiSOLEVAL |,
Theorem 16.

(iv) If fis definable iMTMSOLEVAL , we can, again using Lemma 15, translate it into an expne$sio
RMSOL, Theorem 17.

Items (i) and (ii) together with a classical characteratof recognizable word functions in terms
of finitely generated stable semimodules, Theorem 10, cf. 171 13], give us a direct proof that
MSOLEVAL captures the functions recognizable by weighted autom@taprove item (i) we rely
on and extend results abdUSOLEVAL from [22, 14, 18].

Items (iii) and (iv) together show how to translate the folisras RMSOL andMSOLEVAL into
each other. Lemma 15 also shows how the fragn®MBOL of the weighted logiGVMSOL comes
into play.

The point of separating (i) and (ii) from (ii) and (iv) and gig two proofs of Theorem 8 is to
show that the model theoretic methods developed in the E358hd further developed in [22] suffice to
characterize the functions recognized by weighted autamat

Background and outline of the paper

We assume the reader is familiar with Monadic Second Ordgidand Automata Theory as described in
[12, 1] or similar references. In Section 2 we introddd8OLEVAL by example, which suffices for our
purposes. A full definition is given in Appendix 2.2. In Secti3 we show that the word functions which
are recognizable by a weighted automaton are exactly thd fumctions definable iMSOLEVAL .

In Section 4 we give the exact definitions\WWMSOL andRMSOL, and present translations between
MSOLEVAL andRMSOL in both directions. In Section 5 we draw our conclusions.

2 Definable word functions

Let . be a commutative semiring. We denote structures over a figlidé¢éional signature (aka vocab-
ulary) T by & and their underlying universe b The class of functions iIMSOLEVAL o consists

of the functions which map relational structures igtg and which are definable in Monadic Second
Order LogicMSOL. The functions irMSOLEVAL « are represented as terms associating with each

structuress a polynomialp(</, X) € .[X]. The class of such polynomials is defined inductively where

124 Weighted Automata

monomials are products of constantssihand indeterminates X and the product ranges over elements
a of A which satisfy arlMSOL -formula ¢(a). The polynomials are then defined as sums of monomials
where the sum ranges ovenary relationsU C A satisfying arMSOL -formula /(U). The word func-
tions are obtained by substituting elementssffor the indeterminates. The details of the definition
of MSOLEVAL . are given at the end of this section. We first explain the idesiSOLEVAL o by
examples for the case where structures represent words divxexd alphabek.

2.1 Guiding examples

Let f: 2* — . be an¥-valued function on words over the alphakeind letw be a word in=*. We call
such functionsvord functions following [3, 4]. They are also callefbrmal power seriesn [1], where
the indeterminates are indexed by words and the coefficfexi, @& f(w).

We denote byw/i] the letter at position in w, and byw[U] the word induced by, for U a set of
positions inw. We denote the length of a wowdby ¢(w) and the concatenation of two wordss € Z*
by uov. We denote byn| the set{1,2,...,n}.

We will freely pass between words and structures represgmiords. For the sequel, I1Bt= {0,1}
andw € {0,1}* be represented by the structure

= ({0} U[e(w)], <", R, PY).

Py, Pl C [4(w)] andPy NP = 0 andPy' U P} = [£].

As structures are always non-empty, the universe of a wastrepresented by a structure containing
the zero positiorin) U{0} = {0,1,...,n}. So strictly speaking the size of the structure of the empiydw
is one, and of a word of lengthit is n+ 1. The zero position, represented by 0, has no letter attietche
it, and the elements of the structure different from O repmépositions in the word which carry letters.
The positions irPy’ carry the letter 0 and the positionsRf carry the letter 1.

Examples 1. In the following examples the functions are word functiorb walues in the ringZ or the
polynomial ringZ[X].

(i) The functiont; (w) counts the number of occurrencesldh a word w and can be written as

f1(w) = 1.
' ie[n%’l(i)

(i) The polynomial X\ can be written as

XhW) — X.
ie[nl]jll(i)

(iii) Let L be a regular language defined by tihMSOL -formula .. The generating function of the
number of (contiguous) occurrences of words Lin a word w, can be written as

ﬁL(W) = X,

UQ[n]:\%UH:wLiE
wherey (U) says that U is an interval ang", the relativization ofg_to U, holds.

(iv) The functionsqw) = 2" anddexpw) = 22 are not representable iIMSOLEVAL .

N. Labai & J.A. Makowsky 125

The tropical semiring Zmin is the semiring with univers®& U {«}, consisting of the real numbers
augmented by an additional element andmin as addition witheo as neutral element and real addi-
tion + as multiplication with 0 as neutral element. The tropicahBang Jmax also sometimes called
arctic semiring is defined analogously, wheseis replaced by-c andmin by max The choice of the
commutative semiring” makes quite a difference as illustrated by the following:

Examples 2. In the next examples the word functions take values in tleZiwith addition and mul-
tiplication, or in the subsemiring afjax generated byZ. A block of 1's in a wordw € {0,1}* is a
maximal set of consecutive positions j¢(w)] in the word w with Fi).

(i) The function kb(w) counts the number of blocks B in w. by (w) can be written as

bl(W) = z 1
BC[¢(w)):B iS a block of 1's

which is inMSOLEVAL 7. Alternatively, it can be written as

by(W) =)3 1 &)
ve[l(w)]:First—in—Block(v)

where First—in — Block(v) is the formula inlMSOL which says that v is a first position in a block
of I's. Equation (1) can be expressedMSOLEVAL 7 and also in bottMSOLEVAL . and
MSOLEVAL ..

(i) Let mb"®{w) be the function which assigns to the word w the maximum ofitles sf blocks of
1's, and mif""(w) be the function which assigns to the word w the minimum ofies f blocks
of 1's. One can show, see Remark 3, that/lftand ml!{“” are not definable over the ring.
However, they are definable ovéf,ax respectively ovetnin, by writing

mb"® = max

o B:B is a block of 1’5\,;%3

and _

mg"" = min

o B:B IS a block of 1’sv;é5

(i) The function l;i(w)2 is definable iINMSOLEVAL 7 becauseMSOLEVAL 7 is closed under the
usual product, cf. Proposition 7. However, it is not defimablver either of the two tropical
semirings. To see this one notes that polynomials in a tedgiemiring are piecewise linear.

Remark 3. Let f be a word function which takes values in a figkd The Hankel matrixs#’(f) is the

infinite matrix where rows and columns are labeled by wordsand the entry#(f),, = f(uov). Itis

shown in [14] that for word functions f iIMSOLEVAL 4 the Hankel matrixZ’(f) has finite rank. To
show non-definability of f it suffices to show thét(f) has infinite rank over a field# extendingZ.

2.2 Formal definition of MSOLEVAL

Let . be a commutative semiring, which contains the semiring tdinahnumbersN. We first define
MSOL -polynomials, which are multivariate polynomials. Thedtiaons inMSOLEVAL are obtained
from MSOL -polynomials by substituting values froif for the indeterminates.

MSOL -polynomials have a fixed finite set of variables (indeteates, if we distinguish them from
the variables oSOL), X. We denote bycardy v(¢(v)) the number of elementgin the universe that

126 Weighted Automata

satisfy ¢. We assume contains a relation symb®< which is always interpreted as a linear ordering
of the universe.
Let 90t be ar-structure. We first define tHdSOL (7)-monomialsnductively.

Definition 4 (MSOL-monomials)
(i) Let ¢(v) be a formula inMSOL (1), where v is a first order variable. Lete¢ XU (.¥ —{0}) be
either an indeterminate or an integer. Then

rearch (@(V))

is a standardMSOL (7)-monomial (whose value depends on gagdp(v)).
(i) Finite products ofMSOL (7)-monomials areM/SOL (T)-monomials.

Even if r is an integer, and’®v(®(") does not depend dit, the monomial stands as it is, and is not
evaluated.

Note the degree of a monomial is polynomially bounded by Hrdinality of 9.
Definition 5 (MSOL -polynomials) The polynomials definable MSOL (1) are defined inductively:
(i) MSOL (1)-monomials areMSOL (1)-polynomials.

(i) Letpbearu {R_’}-formula inMSOL Whe_reﬁz (R1,...,Rny) is afinite sequence aharyrelation
symbols not irr. Lett be aMSOL (1 U {R})-polynomial. Then

t
R(M.R)=9(R)
is aMSOL (1)-polynomial.
For simplicity we refer ta'SOL (1)-polynomials asM'SOL -polynomials wherr is clear from the

context.
We shall use the following properties BISOL -polynomials. The proofs can be found in [21].

Lemma 6.
(i) Every indeterminate x X can be written as aMSOL -monomial.
(i) Every integer c can be written as anSOL -monomial.
Proposition 7. The pointwise product of tMdSOL -polynomials is again aiMSOL -polynomial.

3 MSOLEVAL & and Weighted Automata

Let . be a commutative semiring azda finite alphabet. A weighted automatérof sizer over.” is
given by:
(i) Two vectorsa,y e .¥", and
(i) foreacho € ~ a matrixpy € ..
For a matrix or vectoM we denote byMT the transpose d¥l.
For a wordw = 0102 ... 0y the automator defines the function

fA(W) = 0 - iy - .- Moy - V-

A word functionf : ¥* — . is recognized by an automaténf f = fa. f is recognizable if there exists
a weighted automatoA which recognizes it.

N. Labai & J.A. Makowsky 127

Theorem 8. Let f be aword function with values in a commutative semuiigThen fe MSOLEVAL
iff f is recognized by some weigthed automaton A o¥er

In this section we prove Theorem 8 using model theoreticstomithout going through weighted
logic. We need a few definitions.

Thequantifier rank g f) of a word functionf in MSOLEVAL is defined as the maximal quantifier
rank of the formulas which appear in the definitionfoflt somehow measures the complexityfofout
we do not need the technical details in this paper. Quantdigks of formulas ifMSOL are defines as
usual, cf. [12].

We denote by7>" the set of word functiong* — .. A semimodule/ is a subset of”>" closed
under point-wise addition of word functions i, and point-wise multiplication with elements of.
Note that>" itself is a semimodule.

M C .*" is finitely generatedf there is a finite seE C .#>" such that eacli € M can be written
as a (semiring) linear combination of elementg-inLet w be a word and a word function. Then we
denote byw 1 f the word functiorng defined by

g(u) = (W)(u) = f(wou)

M is stableif for all wordsw € =* and for all f € .# the word functionw 1f is also inM.

3.1 Word functions in MSOLEVAL . are recognizable

To prove the “only if” direction of Theorem 8 we use the folliog two theorems.

For a commutative semiring” and a sequence of indeterminates= (Xy,...,X) we denote by
<[X] the commutative semiring of polynomials with indetermésaX and coefficients in. The first
theorem is from [22].

Theorem 9(Bilinear Decomposition Theorem for Word Functions)
Let. be a commutative semiring. LetsfMSOLEVAL . be a word functior=* — . of quantifier
rank qr(f). There are:

(i) afunctionB:N — N,
(i) afinite vector F=(g1,...,9p(qr(f))) Of functions iNTMSOLEVAL of lengthB(qr(f)), with f =g
for some i< B(qr(f)),
(i) and for each g € F, a matrix M¥) e .#7Bar(f))=B(ar(f))
such that _
gi(uov) =F(u)-MOF ()T,
The other theorem was first proved by G. Jacob, [17, 1].

Theorem 10(G. Jacob 1975)Let f be a word function f2* — .. Then f is recognizable by a
weighted automaton ove¥ iff there exists a finitely generated stable semimoddfeC .>" which
contains f.

In order to prove the “only if” direction of Theorem 8 we refiaulate it.

Theorem 11(Stable Semimodule Theoren)et.” be a commutative semiring and leeMSOLEVAL
be a word function of quantifier rank gf).
There are:

(i) afunctionf :N — N,

128 Weighted Automata

(i) afinite vector F= (gu,...,0p(qr(f))) Of functions iIMSOLEVAL of lengthB(qr(f)), with f =g
for some i< B(qr(f)),

such that the semimodule [F| generated by F is stable.

Proof. We takeF and the matriceM (") from Theorem 9 stated in the introduction.
We have to show that for every fixed worcand f € . [F] the functiorw 1f ¢ .Z[F]. As f € .Z[F]
there is a vectoA = (ax, ..., ap(qr(1))) € PN such that

f(w)=A-FT(w)

for every fixed wordwv. HereF (w) is shorthand fo(gy (w), .. ., 9gqr(f)) (W)).
Let u be a word. We computev—f)(u).

(wif)(u) = f(wOu) :A'FT(Wou) =
Bar())

i; agi (wou) Z aF FT(u)

We putB; = aF (W)M() and observe tha; € .7B@ (1) If we take B = ziﬁ(qr(f))Bi we get that
(W 1f)(u) =B-FT(u), hencew 1f ¢ .Z[F]. O

3.2 Recognizable word functions are definable in MSOLEVAL

For the “if” direction we proceed as follows:

Proof. Let A be a weighted automaton of siz@ver.” for words inX*. For a wordw with ¢(w) = n,
given as a functionv : [n] — Z, the automator defines the function

fA(W) =0 - Py - Hwn) - VT- (2)

We have to show thatta € MSOLEVAL .
To unify notation we define

M = (Ha)i j

Equation (2) is a product of matrices and two vectors.
Let P be the product of these matrices,

P= I!jllw(k)

Using matrix algebra we get for the enty, of P:

r r
3
Pap = Z < Z ((Z Mall ' |1l2 > Mivzv,(is)>) MIV:ET)b
in_1=1 \in_2=1 i1=1

= 3 (M M)

i1,..0n_1<r

N. Labai & J.A. Makowsky 129

Let 7t: [n— 1] — [r] be the function withr(k) = ix. We rewritePy, as:

B w(1) w(2) w(n)
Pab = Z (Mamn'MmDﬂﬁY”'Mmmﬁb>)
[n—1]—[r]

Next we compute the coordinate of the vectar - P:

r

(a-Pp=> ai-Rp
2,
Therefore

faw)=a-P-y= i(a-P)b-yb
b=1

r r
—z<zaa'Pa,b>'Vn— Oa-Pap- Wb
b=1 \a=1 a,

<r

and by using Equation (3) fd?,, we get:

w(1) w(2) w(n)
g aa‘< > <Ma,n<1>'Mn<1>7n<2>""Mnm—l),b)) Ra
a,b<r . [n—1]—[r]

Now let 7' : [n]U {0} — [r] be the function for which7 (0) = a, 7 (n) = band ' (k) = ri(k) = ik for
1<k<n-1. Then we get

fa(w) =
w(1) w(n) _
Qr (o [Mn’(O),n’(l) My n’(n)} Yt (n) =
17:[n|u{0}—1r]
w(k)
> On)- < [Mn’(k—l),n’(k)) Y (n) (4)
1 [nju{0}—r] ke[n]

To convert Equation (4) into an expressiornMi$OLEVAL . we use a few lemmas:

First, letSbe any set andr: S— [r] be any functionsrinduces a partition odinto setsU,...,U/"
by U"= {se S: n(s) = i}. Conversely, every partitiod” = (Uy,...,U,) of Sinduces a functiort, by
settingrry (s) =i for s€ U;. To pass between functiomswith finite range[r] and partitions inta-sets
we use the following lemma:

Lemma 12. Let E(71) be any expression depending @n

E(m) = ;E(WZ/) E(ry)

Uy,...U;:Partition(Uy,...,Ur)

TS—r]

where % ranges over all partitions of S into r sets Ui € [r]. Clearly, PartitionUy,...,U;) can be
written inMSOL.

Second, to convert the factoss,) andyy () we proceed as follows:

130 Weighted Automata

Lemma 13. Let a; be the unique value of the coordinateafuch that0 € U;. Similarly, lety be the
unique value of the coordinate pfsuch that ne U;.

=

Ar(0) = ai
i=10ey;
r
Yre(n) = Yi
" il:l n|;|Ji I

Proof. First we note that, a% is the partition induced byr, the restriction ofr’ to U; is constant for

all'i € [r]. Next we note that the product ranging over the empty sesgdive value 1. O
Similarly, to convert the factof]xeq Mg(('gflw(k) use the following lemma:

Lemma 14. Let m j w(, be the unique value of thg, j)-entry of the matrixu,, such that v U; and

v+1leU;.

r
My = mj,
kle_[!1] el i,lj_:ll (vle i, veUj JVW(V))

Using the fact that every element which is the interpretatib a term in. can be written as an
expression ilMSOLEVAL ., Lemma 6 in Section 2.2, we can writg(v) instead ofv € U;, and see
that the monomials of Lemmas 12, 13 and 14 are inde&dSOLEVAL . Now we apply the fact that
the pointwise product of two word functions MSOLEVAL is again a function iMSOLEVAL o,
Proposition 7 in Section 2.2,

to Lemmas 12, 13 and 14 and complete the proof of Theorem 8. O

4 Weighted MSOL and MSOLEVAL

In this section we compare the formalism of weighM80L, WMSOL , with our MSOLEVAL . for
arbitrary commutative semirings. In [7, 8] and [2] two fragmts of weightedMSOL are discussed.
One is based onnambiguougormulas (a semantic concept), the othersbtep formulaased on the
Boolean fragment of weightedSOL (a syntactic definition). The two fragments have equal esgive
power, as stated in [2], and characterize the functionsgrdzable by weighted automata. We denote
both versions bRMSOL.

4.1 Syntax of WMSOL, the weighted version of MSOL

The definitions and properties WWMSOL and its fragments are taken literally from [2]. The syntax of
formulasg of weightedMSOL, denoted by MSOL, is given inductively in Backus—Naur form by

@ =K[Py(X) | ~Pa(X) [x<y| x<y[xe X|xZX
loVvy | oAyY | 3Ix@|3IX.@|Vx@|VX.@
wherek € ., a€ Z. The set of weightedMSOL-formulas over the field” and the alphabek is

denoted byMSOL (.7, %). bMSOL formulasandbMSOL -step formulasare defined belonoMSOL is
the Boolean fragment aVMSOL, and its name is justified by Lemma 1BMSOL is the fragment of

N. Labai & J.A. Makowsky 131

WMSOL where universal second order quantification is restricbdsMSOL and first order universal
quantification is restricted toMSOL -step formulas.
The syntax of weighteBMSOL is given by

@:i=0[1[P(X) [X<y[xeX|[-@| @AY |Vx@|VX.@

wherea e Z.

The set of weightedMSOL -formulas over the commutative semiriog and the alphabel is de-
noted byWMSOL (.7, Z).

Instead of defining step-formulas as in [2] we use Lemma 3 fi@Jras our definition.

A bMSOL -step formulay is a formula of the form

¢ =\/(anrk) (5)
iel

wherel is a finite setg € bMSOL andk; € ..

4.2 Semantics of WMSOL, and translation of RMSOL into MSOLEVAL

Next we define the semanticsWIMSOL and, where it is straightforward, simultaneously alsordss-
lations intoMSOLEVAL .

The evaluations of weighted formulgss WMSOL (., %) on a wordw are denoted bW E(¢,w, 0),
whereo is an assignment of the variables@fo positions, respectively sets of positionsyin

We denote the evaluation of tetmof MSOLEVAL o for a wordw and an assignment for the free
variableso by E(t,w,0). tv(¢) stands for the truth value @ (subject to an assignment for the free
variables), i.e.E(tv(p),w,0) =0 € . for false andE(tv(¢),w,0) = 1 € .7 for true. The term typ) is
used as an abbreviation for

= 5 1
U:U=AAQ

whereU = A stands foivx(U (x) <+ x = X) andU does not occur freely ip. Indeed, we have

1 wo)kE=o
0 else

E(tv(g),w,0) = {

We denote byT RUE(X) the formulax = x with free first order variablex. Similarly, TRUE(X)
denotes the formulay € X v -3y € X with free set variable.
The evaluations of formulag € WMSOL and their translations are now defined inductively.

(i) Forke . we havetr(k) =k andWE(k,w,0)) = E(tr(k),w,0)) = k.
(i) For atomic formulas9 we havetr(0) = tv(0) and

WE(6,w,0) = E(tr(8),w.0) = E(tv(6),w,0)
(iii) For negated atomic formulas we have
tr(—=0)=1—tr(0) =1—tv(0)

and
WE(-08,w,0) =1—E(tv(0),w,0).

132 Weighted Automata

(iv) tr(gV @) =tr(g@)+tr(g) and
WE(@V @,w,0) =E(tr(@) +tr(g),w,0) = E(tr(g),w,0) +E(tr(g),w, o).

(V) tr(3Ix.) = Y xTrRUEX tr () and

WE@Ex@ewo)=E(5 tr(pwo))= 5 E(tr(pwo)).
xTRUE(x) xTRUE(X)

(Vi) tr(3X.9) = Yx:TruEX)tr (@) and

WEEX.gwo)=E(5 tripwo))= 5 E(tr(pwo0)).
X:TRUE(X) X:TRUE(X)

(vii) tr(@g A @) =tr(gn)-tr(¢) and
WE(@ A @, W, 0) = E(tr(gn) -tr(gz),w,0) = E(tr(gn),w, 0) - E(tr(¢), wo).

So far the definition oV E was given using the evaluation functi@hand the translation was straight-
forward. Problems arise with the universal quantifiers.

The unrestricted definition &V E for WMSOL given below gives us functions which are not rec-
ognizable by weighted automata, and the straightforwanastation defined below gives us expressions
which are not irMSOLEVAL . :

(viii) tr(Vx.qo) = Hx:TRUE(x)tr(q’) and

WE(Wx.owo)=E([] tr(ewo))= [] E(tr(ewo0)).
x:TRUE(x) x:TRUE(x)

The formulagq = Vx.Vy.2 gives the function 4%? and is not abMSOL -step formula. The
straightforward translatiotr gives the term

2| = 2,
xTRUE(X) (y:TRUE(y)) (xy):TRUE(xy)

which is a product over the tuples of a binary relation, hamatesn MSOLEVAL .
(i) tr(vX.9) = Mx:TruEx)tr(9) and

WE(WX.gwo)=E([] tr(ewo))= T[] E(tr(ew0).
X:TRUE(X) X:TRUE(X)

Here the translation gives a prodygk.trugx) ranging over subsets, which is not an expression
in MSOLEVAL .
In RMSOL, universal second order quantification is restricted tofdas ofboMSOL, and first order

universal quantification is restricted bkd1SOL -step formulas.
In [2, page 590], after Figure 1, the following is stated:

Lemma 15. The evaluation WE of BMSOL -formula ¢ assumes values {D,1} and coincides with
the standard semantics @fas an unweighte81SOL -formula.

N. Labai & J.A. Makowsky 133

Because the translation of universal quantifiers usirgads outside oMSOLEVAL ., we define
a proper translatiotr’ : RMSOL — MSOLEVAL .

Using Lemma 15 we sét’ (@) = tv(¢), for ¢ abMSOL -formula.

For universal first order quantification bMSOL -step formulas

w=\/(ank) (6)
iel
we computeN E(Vx.(,w, o) andE(tr(vx.¢/),w, o) as follows, leaving the steps for the translation of
tr(vx.g) to the reader.

WE((Vx.),w,0) = E(tr(Vx.{),w, 0) =
Etr(vx.\/(a Ak)),w,0) =
i€l
E(”(\/(fﬂ A K))),W, G) =

xTRUE(x) iel

(Z(E(”’(Cn)) ki), w,0)) =

xTRUE(x) 1€
(Z(E(tv(mw,a%ka)))

xTRUE(x) 1€

Clearly, the formula of the last ling].trugx) (Yicl (tv(@)) - ki) is an expression iIMSOLEVAL .
For universal second order quantificationbdSOL -formulasy we use Lemma 15 and get

WEWVX.,w, a) = E(tr' (VXy),w,0) = E(tv(YX{),w,0)

Clearly, the expression tvXy) is an expression iMSOLEVAL . Thus we have proved:

Theorem 16. Let.¥ be a commutative semiring. For every expresgion RMSOL there is an expres-
sion tr'(¢) € MSOLEVAL o such that WE@,w,0) = E(tr'(¢),w,0), i.e.,p and tr (¢) define the same
word function.

4.3 Translation from MSOLEVAL o to RMSOL

It follows from our Theorem 8 and the characterization in §8Jrecognizable word functions as the
functions definable iIRMSOL, that the converse is also true. We now give a direct prodi@tbnverse
without using weighted automata.

Theorem 17. Let . be a commutative semiring. For every expressianMISOLEVAL o there is a
formula@g € RMSOL such that WE@,w,0) = E(t,w,0), i.e.,@ and t define the same word function.

Proof. (i) Lett=[]xgx 0 be aMSOLEVAL - monomial. We note that

a if gistrue

a-tv(e)+tv(-@) = {1 olse

Furthermore, by Lemma 146 € bMSOL. So we put
@ =x((e(x) A a)V =e(X))

134 Weighted Automata

(i) Letty = yy.pu)t and letq be the translation df Then

@, =.(aNpU))

5 Conclusions

We have given two proofs th&MSOL andMSOLEVAL with values in. have the same expressive
power over words. One proof uses model theoretic tools tershi@ctly thatMSOLEVAL captures the
functions recognizable by weighted automata. The otheofbows how to translate the formalisms
from one into the other. Adapting the translation proofhibsld be possible to extend the result to tree
functions as well, cf. [10].

Although in this paper we dealt only with word functions, dormalismMSOLEVAL , introduced
first fifteen years ago, was originally designed to deal wefirgbility of graph parameters and graph
polynomials, [6, 22, 24, 21]. It has been useful, since, imynapplications in algorithmic and struc-
tural graph theory and descriptive complexity. Its use iaralterizing word functions recognizable by
weighted automata is neWwMSOLEVAL can be seen as an analogue of 8l@lem elementary func-
tionsakalower elementary function$25, 26], adapted to the framework wfeta-finite model theorgs
defined in [15].

The formalismWMSOL of weighted logic was first invented in 2005 in [7] and sincertlused to
characterize word and tree functions recognizable by wetghutomata, [10]. These characterizations
need some syntactic restrictions which lead to the formmaisfRMSOL . No such syntactic restrictions
are need for the characterization of recognizable wordtiomg usingMSOLEVAL . The weighted
logic WMSOL can also be defined for general relational structures. Hewéus not immediate which
syntactic restrictions are needed, if at all, to obtain @ijmic applications similar to the ones obtained
usingMSOLEVAL , cf. [6, 5, 23].

Acknowledgements We are thankful to Jacques Sakarovitch, Géraud Sénigsrgnd Amir Shpilka for useful guidence on
the subject of weighted automata. We are thankful to Maniresste, Tomer Kotek and Elena Ravve and several anonymous
readers, for their valuable comments.

References

[1] J. Berstel & C. Reutenauer (1984Hational Series and their languagdsATCS Monographs on Theoretical
Computer Scienck2, Springer.

[2] B. Bollig, P. Gastin, B. Monmege & M. Zeitoun (2010Pebble weighted automata and transitive closure
logics In: ICALP’10, Lecture Notes in Computer Scien6&99, Springer, pp. 587-598, doi.. 1007/
978-3-642-11301-7.

[3] J.W. Carlyle & A. Paz (1971)Realizations by Stochastic Finite Automath Comp. Syst. S&, pp. 26—40,
doi:10.1016/380022-0000(71)80005-3.

[4] A. Cobham (1978)Representation of a Word Function as the Sum of Two Functidashematical Systems
Theoryll, pp. 373-377, dai0n.1007/BF01768487.

[5] B. Courcelle, J.A. Makowsky & U. Rotics (2000Q)inear Time Solvable Optimization Problems on Graphs of
Bounded Clique-WidthTheory of Computing Systen®3.2, pp. 125-150, ddi0 . 1007/s002249910009.

N. Labai & J.A. Makowsky 135

[6] B. Courcelle, J.A. Makowsky & U. Ratics (2001(n the Fixed Parameter Complexity of Graph Enumeration
Problems Definable in Monadic Second Order Logi2iscrete Applied Mathematick08(1-2), pp. 23-52,
doi:10.1016/80166-218X(00)00221-3.

[7] M. Droste & P. Gastin (2005)Weighted Automata and Weighted Logida: ICALP 2005 pp. 513-525,
do0i:10.1007/11523468_42.

[8] M. Droste & P. Gastin (2007)Weighted automata and weighted logicBheor. Comput. ScB80(1-2), pp.
69-86, doi10.1016/j.tcs.2007.02.055.

[9] M. Droste, W. Kuich & H. Vogler, editors (2009} andbook of Weighted Automat&ATCS Monographs
on Theoretical Computer Science, Springer.

[10] M. Droste & H. Vogler (2006)Weighted tree automata and weighted logi@heor. Comput. ScB66, pp.
228-247,doit0.1016/j.tcs.2006.08.025.

[11] Manfred Droste & Werner Kuich (2013)Veighted finite automata over semiringeor. Comput. ScA85,
pp. 38-48, doit0.1016/j.tcs.2013.02.028.

[12] H.-D. Ebbinghaus & J. Flum (1995Finite Model Theory Perspectives in Mathematical Logic, Springer,
doi:10.1007/978-3-662-03182-7.

[13] M. Fliess (1974)Matrices de HankelJ Maths Pures Apfd3, pp. 197—222. Erratum in volume 54.

[14] B. Godlin, T. Kotek & J.A. Makowsky (2008)Evaluation of graph polynomialsin: 34th International
Workshop on Graph-Theoretic Concepts in Computer Sciene)8 Lecture Notes in Computer Science
5344, pp. 183-194, ddi0.1007/978-3-540-92248-3_17.

[15] E. Gradel & Y. Gurevich (1998)Metafinite Model Theoty Information and Computatiob40, pp. 2681,
do0i:10.1006/inco.1997.2675.

[16] J. E. Hopcroft & J. D. Ullman (1980)introduction to Automata Theory, Languages and Computatio
Addison-Wesley Series in Computer Science, Addison-Wesle

[17] G. Jacob (1975)Repisentations et substitutions matricielles dans kottie algebrique des transductions
Ph.D. thesis, Université de Paris, VII.

[18] T. Kotek (March 2012)Definability of combinatorial functionsPh.D. thesis, Technion - Israel Institute of
Technology, Haifa, Israel. Submitted.

[19] T. Kotek & J.A. Makowsky (2012)Connection Matrices and the Definability of Graph Parametér: CSL
2012 pp. 411-425, doi:0.4230/LIPIcs.CSL.2012.411.

[20] T. Kotek, J.A. Makowsky & B. Zilber (2008): On Counting Generalized Colorings In: Com-
puter Science Logic, CSL’Q8Lecture Notes in Computer Scien&213, pp. 339-353, ddi0.1007/
978-3-540-87531-4_25.

[21] T. Kotek, J.A. Makowsky & B. Zilber (2011)On Counting Generalized Coloringdn M. Grohe & J.A.
Makowsky, editors:Model Theoretic Methods in Finite CombinatoricSontemporary Mathematidshs8,
American Mathematical Society, pp. 207-242, (10i:1090/conm/558/11052.

[22] J.A. Makowsky (2004):Algorithmic uses of the Feferman-Vaught theoreAnnals of Pure and Applied
Logic126.1-3, pp. 159-213, dai0.1016/j .apal.2003.11.002.

[23] J.A. Makowsky (2005)Coloured Tutte polynomials and Kauffman brackets for geapitbounded tree width
Discrete Applied MathematidA5(2), pp. 276-290, ddi0.1016/j .dam.2004.01.016.

[24] J.A. Makowsky (2008)From a Zoo to a Zoology: Towards a general theory of graph poiyials Theory
of Computing Systemé3, pp. 542-562, dain .1007/s00224-007-9022-9.

[25] Th. Skolem (1962)Proof of some theorems on recursively enumerable $éwgre Dame Journal of Formal
Logic3.2, pp. 6574, doi0.1305/ndjf1/1093957149.

[26] S.A. Volkov (2010):0n a class of Skolem elementary functiodeurnal of Applied and Industrial Mathe-
matics4.4, pp. 588-599, dai0.1134/S1990478910040149.

Approximating the minimum cycle mean

Krishnendu Chatterjée

IST Austria
Institute of Science and Technology
Klosterneuburg, Austria

Monika HenzingetSebastian Krinningéieronika Loitzenbauér

University of Vienna
Faculty of Computer Science
Vienna, Austria

We consider directed graphs where each edge is labeled wiiteger weight and study the fun-
damental algorithmic question of computing the value of deyith minimum mean weight. Our
contributions are twofold: (1) First we show that the altiriic question is reducible iB(n?) time

to the problem of a logarithmic number wfin-plusmatrix multiplications of x n-matrices, where

n is the number of vertices of the graph. (2) Second, when thghtseare nonnegative, we present
the first(1+ €)-approximation algorithm for the problem and the runnimgetiof our algorithm is
O(n®log® (nW/¢)/¢)t, whereO(n®) is the time required for thelassic nx n-matrix multiplication
andW is the maximum value of the weights.

1 Introduction

Minimum cycle mean problem. We consider a fundamental graph algorithmic problem of aging
the value of a minimum mean-weight cycle in a finite directedph. The input to the problem is a
directed grapl = (V, E,w) with a finite sev of n vertices E of medges, and a weight functiamthat
assigns an integer weight to every edge. Given a @yctbe mean weight!(C) of the cycle is the ratio
of the sum of the weights of the cycle and the number of edg#iseicycle. The algorithmic question
asks to computgr = min{(C) | Cis a cyclg: the minimum cycle mean. The minimum cycle mean
problem is an important problem in combinatorial optimizatand has a long history of algorithmic
study. AnO(nm)-time algorithm for the problem was given by Karp [17]; ané turrent best known
algorithm for the problem, which is over two decades old, blnGand Ahuja requiréd(m,/nlog (nW))
time [22], wheréW is the maximum absolute value of the weights.

Applications. The minimum cycle mean problem is a basic combinatoriahagttion problem that has
numerous applications in network flows [2]. In the contexfioomal analysis of reactive systems, the per-
formance of systems as well as the average resource consaropsystems is modeled as the minimum
cycle mean problem. A reactive system is modeled as a ditegsph, where vertices represent states of
the system, edges represent transitions, and every edggidaed aonnegativanteger representing the
resource consumption (or delay) associated with the tiansiThe computation of a minimum average

*Supported by the Austrian Science Fund (FWF): P23499-N2B3311407-N23 (RiSE), an ERC Start Grant (279307:
Graph Games), and a Microsoft Faculty Fellows Award.

TSupported by the Austrian Science Fund (FWF): P23499-N28\Vtenna Science and Technology Fund (WWTF) grant
ICT10-002, and the University of Vienna (IK 1049-N).

*Supported by the Austrian Science Fund (FWF): P23499-Na3t University of Vienna (IK 1049-N).

SSupported by the Vienna Science and Technology Fund (WWi&ftdCT10-002.

1The O-notation hides a polylogarithmic factor.

© K. Chatterjee, M. Henzinger,
S. Krinninger & V. Loitzenbauer
This work is licensed under the
Creative Commons Attribution License.

Gabriele Puppis, Tiziano Villa (Eds.): Fourth Interna@bn
Symposium on Games, Automata, Logics and Formal Verifinatio
EPTCS 119, 2013, pp. 136-149, doi:10.4204/EPTCS.119.13

K. Chatterjee, M. Henzinger, S. Krinninger & V. Loitzenbaue 137

resource consumption behavior (or minimum average regpime) corresponds to the computation of
the minimum cycle mean. Several recent works model othantgatve aspects of system analysis (such
as robustness) also as the mean-weight problem (also kremean-payoff objectivie$d, 9].

Results. This work contains the following results.

1. Reduction to min-plus matrix multiplicatione show that the minimum cycle mean problem is
reducible inO(n?) time to the problem of a logarithmic number of min-plus matriultiplications
of n x n-matrices, wher@ is the number of vertices of the graph. Our result implies$ #hgorith-
mic improvements for min-plus matrix multiplication wilacry over to the minimum cycle mean
problem with a logarithmic multiplicative factor ar@(n?) additive factor in the running time.

2. Faster approximation algorithmWhen the weights are nonnegative, we present the(firste)-
approximation algorithm for the problem that outpfitsuch thatu < (1 < (1+ €)u and the run-
ning time of our algorithm i©(n“log® (NW/¢)/¢). As usual, theD-notation is used to “hide” a
polylogarithmic factor, i.e.O(T (n,mW)) = O(T (n,m,W) - polylog(n)), andO(n®) is the time
required for theclassic nx n-matrix multiplication. The current best known bound faris
w < 2.3727. The worst case complexity of the current best knowordhgn for the minimum
cycle mean problem i©(my/nlog (nW)) [22], which could be as bad @(n*°log(nW)). Thus
for (1+ €)-approximation our algorithm provides better dependence Note that in applications
related to systems analysis the weights are always nonnedtiey represent resource consump-
tion, delays, etc); and the weights are typically small, ighe the state space of the system is large.
Moreover, due to imprecision in modeling, approximatiomsvieights are already introduced dur-
ing the modeling phase. Hen¢g+ g)-approximation of the minimum cycle mean problem with
small weights and large graphs is a very relevant algorittproblem for reactive system analysis,
and we improve the long-standing complexity of the problem.

The key technique that we use to obtain the approximatioorithgn is a combination of the value
iteration algorithm for the minimum cycle mean problem, antechnique used for an approx-
imation algorithm for all-pair shortest path problem foredited graphs. Table 1 compares our
algorithm with the asymptotically fastest existing algjoms.

Reference Running time Approximation Range
Karp [17] O(mn) exact [—W,W]
Orlin and Ahuja [22] O(my/nlog (NW)) exact [-W,W]|NZ
Sankowski [24] (implicit) O(W rlog (nW)) exact [-W,W]|NZ
Butkovic and Cuninghame-Green [6] o(r?) exact {0,1}
This paper O(n®log® (NW/¢) /€) 14¢ [0,W]NZ

Table 1: Current fastest asymptotic running times for catmpithe minimum cycle mean

1.1 Related work

The minimum cycle mean problem is basically equivalent twisg a deterministic Markov decision
process (MDP) [31]. The latter can also be seen as a singlepmean-payoff game [10, 13, 31]. We
distinguish two types of algorithms: algorithms that ardependent of the weights of the graph and
algorithms that depend on the weights in some way. VBywe denote the maximum absolute edge
weight of the graph.

138 Approximating the minimum cycle mean

Algorithms independent of weights. The classic algorithm of Karp [17] uses a dynamic prograngmin
approach to find the minimum cycle mean and runs in tid{en). The main drawback of Karp’s
algorithm is that its best-case and worst-case runningstiane the same. The algorithms of Hartmann
and Orlin [15] and of Dasdan and Gupta [8] address this idauteglso have a worst-case complexity of
O(mn). By solving the more general parametric shortest path propKarp and Orlin [18] can compute
the minimum cycle mean in tim@(mnlogn). Young, Tarjan, and Orlin [27] improve this running time
to O(mn+n?logn).

A well known algorithm for solving MDPs is the value iterati@lgorithm. In each iteration this
algorithm spends tim®(m) and in total it performgO(nW) iterations. Madani [20] showed that, for
deterministidMIDPs (i.e., weighted graphs for which we want to find the mimimcycle mean), a certain
variant of the value iteration algorithm “converges” to tpimal cycle afteO(n?) iterations which gives
a running time ofo(mr?) for computing the minimum cycle mean. Using similar ideaslse obtains
a running time ofO(mn). Howard’s policy iteration algorithm is another well-knovalgorithm for
solving MDPs [16]. The complexity of this algorithm for dat@nistic MDPs is unresolved. Recently,
Hansen and Zwick [14] provided a class of weighted graphs bitlwHoward’s algorithm performs
Q(n?) iterations where each iteration takes ti@@m).

Algorithms depending on weights.If a graph is complete and has only two different edge wejghen
the minimum cycle mean problem problem can be solved in @{r&) because the matrix of its weights
is bivalent [6].

Another approach is to use the connection to the problemtettieg a negative cycle. Lawler [19]
gave a reduction for finding the minimum cycle mean that perfoO(log(nW)) calls to a negative
cycle detection algorithm. The main idea is to perform birsgarch on the minimum cycle mean. In
each search step the negative cycle detection algorithemi®m a graph with modified edge weights.
Orlin and Ahuja [22] extend this idea by the approximate bireearch technique [29]. By combining
approximate binary search with their scaling algorithmtfer assignment problem they can compute the
minimum cycle mean in tim®(my/nlognWw).

Note that in its full generality the single-source shortesths problem (SSSP) also demands the
detection of a negative cycle reachable from the sourcex@rTherefore it is also possible to reduce
the minimum cycle mean problem to SSSP. The best time boum@&S&P are as follows. Goldberg’s
scaling algorithm [12] solves the SSSP problem (and thezedtso the negative cycle detection problem)
in time O(my/nlogW). McCormick [21] combines approximate binary search witHdBerg’s scaling
algorithm to find the minimum cycle mean in tin@&m,/nlognW), which matches the result of Orlin
and Ahuja [22]. Sankowski's matrix multiplication baseda@ithm [24] solves the SSSP problem intime
O(Wrf%). By combining binary search with Sankowski’s algorithme thinimum cycle mean problem
can be solved in im®(W rf°lognw)

Approximation of minimum cycle mean. To the best of our knowledge, our algorithm is the first
approximation algorithm specifically for the minimum cyceteean problem. There are both additive
and multiplicative fully polynomial-time approximatiortsemes for solving mean-payoff games [23, 5],
which is a more general problem. Note that in contrast to figdhe minimum cycle mean it is not
known whether the exact solution to a mean-payoff game catob®uted in polynomial time. The
results of [23] and [5] are obtained by reductions to a psqaalgnomial algorithm for solving mean-
payoff games. In the case of the minimum cycle mean probleeset reductions do not provide an
improvement over the current fastest exact algorithms imesed above.

2Remember that, for example, Dijkstra’s algorithm for comimy single-source shortest paths requires non-negatige e
weights which excludes the possibility of negative cycles.

K. Chatterjee, M. Henzinger, S. Krinninger & V. Loitzenbaue 139

Min-plus matrix multiplication. Our approach reduces the problem of finding the minimum cycle
mean to computing the (approximate) min-plus product ofiiceg. The naive algorithm for computing
the min-plus product of two matrices runs in tif¥n®). To date, no algorithm is known that runs
in time O(n-7) for somea > 0, so-calledtruly subcubictime. This is in contrast to classic matrix
multiplication that can be done in tinf@(n®) where the current best bound anis w < 2.3727 [25].
Moreover, Williams and Williams [26] showed that computithg min-plus product is computationally
equivalent to a series of problems including all-pairs &girpaths and negative triangle detection. This
provides evidence for the hardness of these problems, t&&lrunning time ofD(n) for the min-plus
product can be improved by logarithmic factors and by assgrasmall integer entries.

Fredman [11] gave an algorithm for computing the min-plupct with a slightly subcubic running
time of O(n®(log logn)/3/(logn)!/3). This algorithm is “purely combinatorial’, i.e., it doestrrely on
fast algorithms for classic matrix multiplication. Afterl@ng line of improvements, the current fastest
such algorithm by Chan [7] runs in tin@(n(loglogn)3/(logn)?).

A different approach for computing the min-plus product wbtinteger matrix is to reduce the
problem to classic matrix multiplication [28]. In this waiie min-plus product can be computed in time
O(Mn®logM) which is pseudo-polynomial sindd is the maximum absolute integer entry [3]. This
observation was used by Alon, Galil, and Margalit [3] and @wfi30] to obtain faster all-pairs shortest
paths algorithms in directed graphs for the case of smamt edge weights. Zwick also combines
this min-plus matrix multiplication algorithm with an ada scaling technique that allows to compute
(1+ €)-approximate all-pairs shortest paths in graphs with negative edge weights. Our approach of
finding the minimum cycle mean extensively uses this teaimiq

2 Definitions

Throughout this paper we |1& = (V,E,w) be a weighted directed graph with a finite set of verti¢ces
and a set of edgds such that every vertex has at least one outgoing edge. Tlghtifanctionw assigns
a nonnegative integer weight to every edge. We denote thyg number of vertices d& and bym the
number of edges db. Note thatm > n because every vertex has at least one outgoing edge.

A pathis a finite sequence of edgBs= (ey,...,&) such that for all consecutive edges= (x;,Y;)
ande ;1 = (Xi+1,Yi+1) of P we havey; = ;1. Note that edges may be repeated on a pattdavgotonly
consider simple paths. gycleis a path in which the start vertex and the end vertex are time sdhe
length of a path Rs the number of edges & Theweight of a path P= (ey,...,&), denoted byw(P) is
the sum of its edge weights, i.@(P) = 31 j«w(&).

The minimum cycle meaaf G is the minimum mean weight of any cycle @ For every vertex
we denote byu(x) the value of the minimum mean-weight cycle reachable froffihe minimum cycle
mean ofG is simply the minimum(x) over all verticex. For every vertex and every integer> 1 we
denote by (x) the minimum weight of all paths starting xathat have length, i.e., consist of exactly
edges. For all pairs of verticesandy and every integer > 1 we denote by (X,y) the minimum weight
of all paths of length from x toy. If no such path exists we set(x,y) = c.

For every matrixA we denote byA[i, j] the entry at the-th row and thej-th column ofA. We only
considem x n matrices with integer entries, whamés the size of the graph. We assume that the vertices
of G are numbered consecutively from 1rpwhich allows us to usé|x,y| to refer to the entry oA
belonging to verticeg andy. Theweight matrix D of Gs the matrix containing the weights Gf. For
all pairs of verticesx andy we setD[x,y] = w(x,y) if the graph contains the edd@r,y) andD[x,y] = «
otherwise.

140 Approximating the minimum cycle mean

We denote thenin-plus producof two matricesA andB by A® B. The min-plus product is defined
as follows. IfC = A® B, then for all indices X i, j < nwe haveCl|i, j] = mini<k<n(Ali, K| + B[k, j]). We
denote byA' thet-th power of the matrixA. Formally, we seAl = A andA™t = A Al fort > 1. We
denote byw the exponent of classic matrix multiplication, i.e., theguct of twon x n matrices can be
computed in timé(n®). The current best bound anis w < 2.3727 [25].

3 Reduction of minimum cycle mean to min-plus matrix multiplication

In the following we explain the main idea of our approach wahigto use min-plus matrix multiplication
to find the minimum cycle mean. The well-known value itenatgorithm uses a dynamic programming
approach to compute in each iteration a value for every xerfeom the values of the previous iteration.
After t iterations, the value computed by the value iteration dtigar for vertexx is equal to(x), the
minimum weight of all paths with lengthstarting atx. We are actually interested jm(x), the value
of the minimum mean-weight cycle reachable framit is well known that lim_,. & (x)/t = u(x) and
that the value ofu(x) can be computed frork (x) if t is large enougtit = O(n®wW)) [31].3 Thus, one
possibility to determingu(x) is the following: first, compute} (x) for t large enough with the value
iteration algorithm and then computgx) from & (x). However, using the value iteration algorithm for
computingé (X) is expensive because its running time is linearamd thus pseudo-polynomial.

Our idea is to computé (x) for a large value of by using fast matrix multiplication instead of the
value iteration algorithm. We will compute the mati¥, thet-th power of the weight matrix (using
min-plus matrix multiplication). The matriR' contains the value of the minimum-weight path of length
exactlyt for all pairs of vertices. GiveB', we can determine the valdgx) for every vertex by finding
the minimum entry in the row db' corresponding te.

Proposition 1. For every t> 1 and all vertices x and y we have (ij)(&,y) = D![x,y] and (ii) &(x) =
minyey DY, Y].

Proof. We give the proof for the sake of completeness. The cldifr,y) = D[x,y] follows from a
simple induction ort. If t = 1, then clearly the minimal-weight path of length 1 fronto y is the edge
from x toy if it exists, otherwises (x,y) = co. If t > 1, then a minimal-weight path of lengtlfirom xtoy
(if it exists) consists of some outgoing edgeesf (X, z) as its first edge and then a minimal-weight path
of lengtht — 1 fromztoy. We therefore havek(x,y) = min ,cg W(X,2) +k—1(zY). By the definition
of the weight matrix and the induction hypothesis wedjét,y) = min,y D[,z +D!"1[zy]. Therefore
the matrixD ® D'~! = D! contains the value ak(x,y) for every pair of vertices andy.

For the second claim(x) = minyey D'[x,Y], observe that by the definition @ (x) we obviously
haved (x) = minyey dk(X,y) because the minimal-weight path of lengttarting atx hassomenodey as
its end point. O

Using this approach, the main question is how fast the méairigan be computed. The most im-
portant observation is th&' (and therefore alsé (x)) can be computed by repeated squaring with only
O(logt) min-plus matrix multiplications. This is different fromehvalue iteration algorithm, whete
iterations are necessary to COmpatex).

Proposition 2. For every t> 1 we have ' = D' ® D!. Therefore the matrix Dcan be computed with
O(logt) many min-plus matrix multiplications.

3Specifically, fort = 4n3W the unique number i (x)/t — 1/[2n(n—1)], & (X) /t +1/[2n(n—1)]) NQ that has a denomi-
nator of at mosh is equal tou(x) [31].

K. Chatterjee, M. Henzinger, S. Krinninger & V. Loitzenbaue 141

Proof. We give the proof for the sake of completeness. It can easilyebified that the min-plus matrix
product is associative [1] and therefdé = D' @ Dt. Therefore, ift is a power of two, we can compute
D' with logt min-plus matrix multiplications. If is not a power of two, we can decompd3einto D' =
D" ®...® D% where eacly <t (for 1 <i <k) is a power of two and < [logt]. By storing intermediate
results, we can compuf@? for every 0< i < [logt] with [logt] min-plus matrix multiplications. Using
the decomposition above, we have to multiply at ndsgjt] such matrices to obtaid'. Therefore the
total number of min-plus matrix multiplications needed ¢omputingD! is O(logt). O

The running time of this algorithm depends on the time neddedomputing the min-plus product
of two integer matrices. This running time will usually degeon the two parametersandM where
n is the size of then x n matrices to be multiplied (in our case this is equal to the loemof vertices
of the graph) and the parameter denotes the maximum absolute integer entry in the matricde t
multiplied. When we multiply the matri® by itself to obtainD?, we haveM = W, whereW is the
maximum absolute edge weight. Howevdrjncreases with every multiplication and in general, we can
bound the maximum absolute integer entry of the madfionly by M = tW. Note thatO(n?) operations
are necessary to extract the minimum cycle mgéx) for all verticesx from the matrixD'.

Theorem 3. If the min-plus product of two r n matrices with entries if—M,...,—1,0,1,... M, o}
can be computed in time(f, M), then the minimum cycle mean problem can be solved in timgW) logt
where t= O(n®w).4

Unfortunately, the approach outlined above does not imatelgi improve the running time for the
minimum cycle mean problem because min-plus matrix midtgilon currently cannot be done fast
enough. However, our approach is still useful for solving thinimum cycle mean problepproxi-
matelybecause approximate min-plus matrix multiplication caddee faster than its exact counterpart.

4 Approximation algorithm

In this section we design an algorithm that computes an appation of the minimum cycle mean in
graphs with nonnegative integer edge weights. It followesdpproach of reducing the minimum cycle
mean problem to min-plus matrix multiplication outlinedSection 3. The key to our algorithm is a fast
procedure for computing the min-plus product of two intagatrices approximately. We will proceed as
follows. First, we explain how to compute an approximationf I?‘, thet-th power of the weight matrix
D. From this we easily get, for every vertgxan approximatior (x) of & (x), the minimum-weight of
all paths of lengtit starting atx. We then argue that fdrlarge enough (in particular= O(n®W/¢)),
the valueg (x)/t is an approximation ofi(x), the minimum cycle mean of cycles reachable franBy
combining both approximations we can show thdk)/t is an approximation of:(x). Thus, the main
idea of our algorithm is to compute an approximatiorDbfor a large enough.

4.1 Computing an approximation of D!

Our first goal is to compute an approximation of the mabix thet-th power of the weight matriD,
givent > 1. Zwick provides the following algorithm for approximataémplus matrix multiplication.

Theorem 4 (Zwick [30]). Let A and B be two x n matrices with integer entries ifd,M] and let
C:=A®B. Let R> logn be a power of two. The algorithapprox-min-plugA, B, M, R) computes the

“Note that necessarilj(n,M) = Q(n?) because the result matrix ha&entries that have to be written.

142 Approximating the minimum cycle mean

approximate min-plus produ@ of A and B in tim& O(n“Rlog(M)log?(R)log(n)) such that for every
1<i,j <nitholds that i, j] <Cli, j] < (1+4/R)C[i, j].

We now give a modification (see Algorithm 1) of Zwick’s algbrn for approximate shortest paths [30]
such that the algorithm compute B+ €)-approximationF of D' whent is a power of two such that
for 1 <i,j < nwe haveD'[i, j] < F[i,j] < (1+€)D'[i, j]. Just as we can compul® exactly with log
min-plus matrix multiplications, the algorithm computé® {1+ £)-approximation ofd! in logt iter-
ations. However, in each iteration only an approximate plus product is computed. L&; be the
approximation oD := DZ. In thes-th iteration we use approx-min-pl(i5_1,Fs_1,tW,R) to calculate
Fs with R chosen beforehand such that the desired error bound iss@géa- = Fogt.

Algorithm 1: Approximation ofD!

input :weight matrixD, error bounce, t (a power of 2)
output : (1+ &)-approximation oD!

F<«D
r < 4logt/In(1+¢)
R« Zﬂogﬂ
for logt timesdo
F «+ approx-min-plugF, F, 2(W, R)
end
return F

Lemma 5. Given an0 < € < 1and a power of two & 1, Algorithm 1 computes @l + €)-approximation
F of D' in time

¢ <n‘*’~ @ -log (tW) log? <M> Iog(n)) =0 (n‘*’~ @ -log (tW))

£
such that Ofi, j] < F[i, j] < (1+¢€)DYi,j] forall 1L<i,j <n.

Proof. The basic idea is as follows. The running time of approx-plirs depends linearly oR and
logarithmically onM, the maximum entry of the input matrices. Algorithm 1 cafigex-min-plus log
times. Each call increases the error by a factoflof 4/R). However, as only logapproximate matrix
multiplications are used, settifigjto the smallest power of 2 that is larger than 419gIn(1+ ¢) suffices
to bound the approximation error % +). We will show that 2V is an upper bound on the entries
in the input matrices for approx-min-plus. The stated rogrime follows directly from these two facts
and Theorem 4.

Let Fs be the approximation dbs := DZ computed by the algorithm after iteratien Recall that
25W is an upper bound on the maximum entryDg. As we will show, all entries ir~ are at most
(1+ ¢)-times the entries iDs. Since we assume < 1, we have } ¢ < 2. Thus 2 is an upper
bound on the entries iRs. Hence AWV is an upper bound on the entrieskafwith 1 < s < logt, i.e., for
all input matrices of approx-min-plus in our algorithm.

5The running time of approx-min-plus is given l(n®logM) times the time needed to multiply two(Rlogn)-bit
integers. With the Schénhage-Strassen algorithm for largeger multiplication, twok-bit integers can be multiplied in
O(klogkloglogk) time, which gives a running time @(n“Rlog(M) log(n) log(Rlogn) log log(Rlogn)). This can be bounded
by the running time given in Theorem 4Rf> logn, which will always be the case in the following.

K. Chatterjee, M. Henzinger, S. Krinninger & V. Loitzenbaue 143

This results in an overall running time of
O(n“Rlog (tW) log(R) loglog(R) log(n) - log(t))

o _log’(t) log(t)
=0 <n Tog(Tre) log (tW) log? <m> Iog(n)>

=0 (n“’. @ -log (tW) log? <M> Iog(n)> .

&

The last equation follows from the inequality lh(1+ &) < (1+¢€)/¢ for € > 0. Sincee < 1 it follows
that 1/log(1+ &) = O(1/¢).
To show the claimed approximation guarantee, we will prénee the inequality

D) < i) < (145) Dall]

holds after thesth iteration of Algorithm 1 by induction os. Note that the(1+ €)-approximation
follows from this inequality because the paramd®as chosen such that after tlilvgt)-th iteration of
the algorithm it holds that

logt logt
R logt

Fors= 0 we havels = Dg and the inequality holds trivially. Assume the inequalitlds fors. We
will show that it also holds fos+ 1.

First we prove the lower bound d®.1[i, j]. LetCs, 1 be the exact min-plus product Bf with itself,
i.e.,Csi1 = Fs®Fs. Letk be the minimizing index such th&t, 1[i, j] = mini<k<n(Fs[i, K + Fs[k, j]) =
Fsli, k] + Fs[ke, j]. By the definition of the min-plus product

sl j] = min (Dsfi.k|+Dslk. i]) < Dyl ke + sl] ®

<
By the induction hypothesis and the definitionkgfve have
Dsfi, k] + Dslke, j] < Fs[i, ke] + Fs[ke, j] = Csuali, J]- 2
By Theorem 4 the values &%, ; can only be larger than the valuesGg, 1, i.e.,
Corali, J] < Fssali,] ®3)
Combining Equations (1), (2), and (3) yields the claimeddoiound,
Dsiafi, j] < Fsali, j].

Next we prove the upper bound &g, 1]i, j]. Letky be the minimizing index such th8ts 4], j| =
Dsli,kq] + Dslkq, j]. Theorem 4 gives the error from one call of approx-min-piws, the error in the
entries off, 1 compared to the entries 6%, 1. We have

Fonai i} < (145) Gual. - @

144 Approximating the minimum cycle mean

By the definition of the min-plus product we know that

By the induction hypothesis and the definitionkgfwe can reformulate the error obtained in the first
iterations of Algorithm 1 as follows:

Pk Pk] < (14 3) Dkl + (1475 Dula i

_ <1+ ﬂ)s(os[i,kd] +Delka. J1) ,

R
4 S
—(1+3) Daaliil ©
Combining Equations (4), (5), and (6) yields the upper bound
4\ St1
F5+1[i,j] < <1+ ﬁ) DS+1[I7J} [

Once we have computed an approximation of the mddfixwe extract from it the minimal entry
of each row to obtain an approximation @{x). Here we use the equivalence between the minimum
entry of rowx of D' and & (x) established in Proposition 1. Remember ##x) /t approaches:(x) for
t large enough and later on we want to use the approximatidn(f to obtain an approximation of the
minimum cycle mean(Xx).

Lemma 6. The valuea(x) = minyey F[X,y] approximatesy (x) with & (x) < 8(x) < (14 €)&(x).

Proof. Letys andyy be the indices where theth rows of F andD! obtain their minimal values, respec-
tively, i.e.,
yf :=argminF[x,y] and yg:=argminD'[x,y].
yev yev

By these definitions and Lemma 5 we have
&(x) = D'xya] < D'[x,ys] < Flx,y] = &(X)

and

&(X) = Fxys] <F[xyg] < (1+&)D'X,yq]. O

4.2 Approximating the minimum cycle mean

We now add the next building block to our algorithm. So far, ee® obtain an approximatioa(x)

of &(x) for anyt that is a power of two. We now show that(x)/t is itself an approximation of the
minimum cycle meanu(x) for t large enough. Then we argue tlgatx)/t approximates the minimum
cycle mearp(x) for t large enough. This value obounds the number of iterations of our algorithm. A
similar technique was also used in [31] to bound the numbéeiations of the value iteration algorithm
for the two-player mean-payoff game.

We start by showing thak (x) /t differs from u(x) by at mosnW/t for any t Then we will turn this
additive error into a multiplicative error by choosing aglarenough value df. A multiplicative error
implies that we have to compute the solution exactlyi¢x) = 0. We will use a separate procedure
to identify all verticesx with p(x) = 0 and compute the approximation only for the remaining vesti
Note thatu(x) > 0 implies(X) > 1/n because all edge weights are integers.

K. Chatterjee, M. Henzinger, S. Krinninger & V. Loitzenbaue 145

Lemma 7. For every x€ V and every integer* 1 it holds that
t-U(X) —nW < &(x) <t-p(x)+nW.

Proof. We first show the lower bound ak(x). LetP be a path of lengthstarting atx with weight & (x).
Consider the cycles iR and letE’ be the multiset of the edges ihthat are in a cycle oP. There can
be at mosh edges that are not in a cycle Bf thus there are at least m@x n,0) edges inE’. Since
u(X) is the minimum mean weight of any cycle reachable fogrthe sum of the weight of the edges in
E’ can be bounded below ky(x) times the number of edges Ei. Furthermore, the value @f(x) can
be at mosW. As we only allow nonnegative edge weights, the sum of thgktsiof the edges iR’ is

a lower bound o (x). Thus we have

800> T W(e) > (t—MH(X) > t-u(x) —n-p(x) > t-p(x) - W,

eck’

Next we prove the upper bound d(x). Let| be the length of the shortest path frorto a vertexy
in a minimum mean-weight cycle reachable fronx (such that onlyy is both in the shortest path and in
C). Letc be the length of. Let the pathQ be a path of length that consists of the shortest path from
xtoy, [(t—1)/c| rounds orC, andt — | —c|(t —I)/c| additional edges i€. By the definition ofd (x),
we haved (x) < w(Q). The sum of the length of the shortest path frero y and the number of the
remaining edges dp not in a complete round dd can be at most because in a graph with nonnegative
weights no shortest path has a cycle and no vertic€seircepty are contained in the shortest path from
xtoy. Each of these edges has a weight of at ésThe mean weight of is u(x), thus the sum of the
weight of the edges in all complete rounds®is p(x)-c|(t —1)/c] < u(x)-t. Hence we have

() <W(Q) <t-p(x)+nW. O

In the next step we show that we can use the factdi{aj/t is an approximation ofi(x) to obtain a
(1+ &)-approximationfl(x) of u(x) even if we only have an approximati@q(x) of & (x) with (1+ €)-
error. We exclude the caggx) = 0 for the moment.

Lemma 8. Assume we have an approximati&r@x) of & (x) such thatd (x) < &(x) < (14 ¢€)a(x) for
O<e<l/2If

, and [(x):=

2
Sl

t>—, ux= R

then
U9 < A(X) < (1+78)u(x).

Proof. We first show thafi(x) is at least as large agx). From Lemma 7 we havé (x) >t - u(x) — nW.
Ast is chosen large enough,

%X) > u(x)— #V > H(X)—% > p(X) — ep(x) > (1—€)u(x).

Thus, by the assumptiod (x) < cﬁ(x) we have

146 Approximating the minimum cycle mean

For the upper bound ofi(x) we use the inequalityx (x) < t- u(x) +nW from Lemma 7. Ag is
chosen large enough,

With & (X) < (1+ £)&(x) this gives

S 2
() = (f_(xg))t < <(11+_?) u(x).

It can be verified by simple arithmetic that fer- 0 the inequalitye < 1/2 is equivalent to

(1+¢€)?
(1-¢)

<(1+7¢). O

As a last ingredient to our approximation algorithm, we desi procedure that deals with the special
case that the minimum cycle mean is 0. Since our goal is amigdgowith multiplicative error, we have
to be able to compute the solution exactly in that case. Tashe done in linear time because the
edge-weights are nonnegative.

Proposition 9. Given a graph with nonnegative integer edge weights, we adrofiit all vertices x such
that 1(x) = 0in time Q(m).

Proof. Note that in the case of nonnegative edge weights we péxe> 0. Furthermore, a cycle can
only have mean weight O if all edges on this cycle have weightlfus, it will be sufficient to detect
cycles in the graph that only contain edges that have weight 0

We proceed as follows. First, we compute the strongly camgecomponents o, the original
graph. Each strongly connected compor@niwhere 1<i <k) is a subgraph o with a set of vertices
V; and a set of edges;. For every 1< i < kwe IetGi0 = (Eio,\/i) denote the subgraph &; that only
contains edges of weight 0, i.&° = {e € E;jjw(e) = 0}. As argued above5; contains a zero-mean cycle
if and only if Gi0 contains a cycle. We can check whetl??rcontains a cycle by computing the strongly
connected components 6f: G contains a cycle if and only if it has a strongly connected gonent
of size at least 2 (we can assume w.l.0.g. that there are fitbepk). LetZ be the set of all vertices in
strongly connected components®@fthat contain a zero-mean cycle. The verticeZ iare not the only
vertices that can reach a zero-mean cycle. We can identifegdices that can reach a zero-mean cycle
by performing a linear-time graph traversal to identify\adttices that can reach

Since all steps take linear time, the total running time & #gorithm isO(m). O

Finally, we wrap up all arguments to obtain our algorithm &mproximating the minimum cycle
mean. This algorithms performs lbgpproximate min-plus matrix multiplications to compute et
proximation ofD! and& (x). Lemma 8 tells us that= n®W/¢ is just the right number to guarantee that
our approximation of(x) can be used to obtain an approximationugk). The value of is relatively
large but the running time of our algorithm dependg only in a logarithmic way.

Theorem 10. Given a graph with nonnegative integer edge weights, we oampate an approximation
[1(x) of the minimum cycle mean for every vertex x such thaj < fi(x) < (1+¢&)u(x)for0<e <1

in time
o) (g log® <%V> log? (%) Iog(n)) =0 <¥Iog3 (%V>> :

K. Chatterjee, M. Henzinger, S. Krinninger & V. Loitzenbaue 147

Proof. First we find all verticex with 11(x) = 0. By Proposition 9 this takes tim@(n?) for m= O(n?).
For the remaining verticeswe approximateu(x) as follows.

Let ¢’ :=€/7. If we execute Algorithm 1 with weight matri®, error bounds” andt such that is
the smallest power of two with> nPW/¢’, we obtain &1+ &')-approximationF [x,y] of D[x,y] for all
verticesx andy (Lemma 5). By calculating for everythe minimum entry of-[x,y] over ally we have a
(1+ ¢)-approximation o (x) (Lemma 6). By Lemma §i(x) := &(x)/((1— €’)t) is for this choice of
t an approximation ofi(x) such thatu(x) < f1(x) < (14 7¢’)u(x). By substitutinge’ with £/7 we get
H(X) < (x) < (L+¢)u(x) i.e., a(l+ g)-approximation ofu(x).

By Lemma 5 the running time of Algorithm 1 for= 2/109(™W/€)1 — O(n?W /¢) is

) 2 2 log W
0 n?logz<nw)log(nzw >Iog2 ¥ log(n)

& &

With log(nPW) < log((nW)?) = O(log(nW)) we get that Algorithm 1 runs in time

n® nw log (%)
o) <? log® (T) log? (T) Iog(n)) . (7D)

5 Open problems

We hope that this work draws attention to the problem of agxprating the minimum cycle mean. It
would be interesting to study whether there is a faster aqiation algorithm for the minimum cycle
mean problem, maybe at the cost of a worse approximation.rdmgng time of our algorithm imme-
diately improves if faster algorithms for classic matrix lifplication, min-plus matrix multiplication
or approximate min-plus multiplication are found. Howewvedifferent approach might lead to better
results and might shed new light on how well the problem caaggroximated. Therefore it would be
interesting to remove the dependence on fast matrix mighifpbn and develop a so-called combinatorial
algorithm.

Another obvious extension is to allow negative edge weighthe input graph. Furthermore, we
only consider the minimum cycle mean problem, while it milgltinteresting to actually output a cycle
with approximately optimal mean weight.

References

[1] Alfred V. Aho, John E. Hopcroft & Jeffrey D. Ullman (1974The Design and Analysis of Computer Algo-
rithms Addison-Wesley.

[2] Ravindra K. Ahuja, Thomas L. Magnanti & James B. Orlin 9B3: Network flows: theory, algorithms, and
applications Prentice Hall.

[3] Noga Alon, zvi Galil & Oded Margalit (1997)0n the Exponent of the All Pairs Shortest Path Problem
Journal of Computer and System Scierisé@Q), pp. 255-262, ddi0 . 1006/jcss . 1997.1388. Announced
at FOCS '91.

[4] Roderick Bloem, Karin Greimel, Thomas A. Henzinger & Bara Jobstmann (2009%ynthesizing robust
systemsin: FMCAD, pp. 85-92, doit0.1109/FMCAD.2009.5351139.

[5] Endre Boros, Khaled Elbassioni, Mahmoud Fouz, Vladi@irrvich, Kazuhisa Makino & Bodo Manthey
(2011): Stochastic Mean Payoff Games: Smoothed Analysis and Apmtan Schemesin: ICALP, pp.
147-158, doit0.1007/978-3-642-22006-7_13.

148 Approximating the minimum cycle mean

[6] Peter Butkovic & Raymond A. Cuninghame-Green (1992 O(n?) algorithm for the maximum cy-
cle mean of an x n bivalent matrix. Discrete Applied Mathematic35(2), pp. 157-162, ddi0.1016/
0166-218X(92)90039-D.

[7] Timothy M. Chan (2010)More Algorithms for All-Pairs Shortest Paths in Weighteda@ins SIAM Journal
on Computing@9(5), pp. 2075-2089, dai0 . 1137/08071990X. Announced at STOC '07.

[8] Ali Dasdan & Rajesh K. Gupta (1998Faster Maximum and Minimum Mean Cycle Algorithms for System
Performance AnalysisIEEE Transactions on Computer-Aided Design of Integratgduls and Systems
17(10), pp. 889-899, ddi0 . 1109/43.728912.

[9] Manfred Droste & Ingmar Meinecke (201@pescribing Average- and Longtime-Behavior by Weighted MSO
Logics In: MFCS pp. 537-548, doi:0.1007/978-3-642-15155-2_47.

[10] Andrzej Ehrenfeucht & Jan Mycielski (1979Rositional strategies for mean payoff gamdsaternational
Journal of Game Theo®(2), pp. 109-113, dai0.1007/BF01768705.

[11] Michael L. Fredman (1976New Bounds on the Complexity of the Shortest Path Prab&#\V Journal on
Computings(1), pp. 83—-89, doi:0.1137/0205006.

[12] Andrew V. Goldberg (1995)Scaling Algorithms for the Shortest Paths ProbleBtAM Journal on Comput-
ing 24(3), pp. 494-504, ddi0 . 1137/S0097539792231179.

[13] V.A. Gurvich, A.V. Karzanov & L.G. Khachiyan (1988)Cyclic games and an algorithm to find minimax
cycle means in directed graphdJSSR Computational Mathematics and Mathematical Phyz8¢S), pp.
85-91, doi10.1016/0041-5553(88)90012-2.

[14] Thomas Dueholm Hansen & Uri Zwick (201@)ower Bounds for Howard’s Algorithm for Finding Minimum
Mean-Cost Cycledn: ISAAC, pp. 415-426, doi:0.1007/978-3-642-17517-6_37.

[15] Mark Hartmann & James B. Orlin (1993}inding Minimum Cost to Time Ratio Cycles With Small Intégra
Transit Times Networks23(6), pp. 567-574, ddi0 . 1002/net . 3230230607.

[16] Ronald A. Howard (1960)Dynamic Programming and Markov Process8HT Press.

[17] Richard M. Karp (1978)A characterization of the minimum cycle mean in a digrapfscrete Mathematics
23(3), pp. 309-311, ddi0.1016/0012-365X (78) 90011-0.

[18] Richard M. Karp & James B. Orlin (1981Parametric shortest path algorithms with an applicatiorcyalic
staffing Discrete Applied Mathematic¥(1), pp. 37—45, doi0.1016/0166-218X(81)90026-3.

[19] Eugéne L. Lawler (1976 ombinatorial optimization: Networks and MatroidSover Publications.

[20] Omid Madani (2002)Polynomial Value Iteration Algorithms for DeterministidWs In: UAI, pp. 311-318.
Available athttp://dl.acm.org/citation.cfm?id=2073913.

[21] S. Thomas McCormick (1993Approximate Binary Search Algorithms for Mean Cuts and €ycDpera-
tions Research Lettetd(3), pp. 129-132, ddi0.1016/0167-6377(93)90022-9.

[22] James B. Orlin & Ravindra K. Ahuja (1992)ew scaling algorithms for the assignment and minimum mean
cycle problemsMathematical Programmirig(1-3), pp. 41-56, daip0 . 1007/BF01586040.

[23] Aaron Roth, Maria-Florina Balcan, Adam Kalai & Yishayavisour (2010)On the Equilibria of Alternating
Move Gamesin: SODA, pp. 805-816. Available atttp://dl.acm.org/citation.cfm?id=1873667.

[24] Piotr Sankowski (2005)Shortest Paths in Matrix Multiplication Timén: ESA pp. 770-778, doi0.1007/
11561071_68.

[25] Virginia Vassilevska Williams (2012Multiplying Matrices Faster Than Coppersmith-Winograd: STOG
pp. 887-898, doi.0.1145/2213977.2214056.

[26] Virginia Vassilevska Williams & Ryan Williams (2010Bubcubic Equivalences between Path, Matrix and
Triangle Problemsin: FOCS pp. 645—654, doi:0.1109/F0CS.2010.67.

[27] Neal E. Young, Robert Endre Tarjan & James B. Orlin (19%aster Parametric Shortest Path and Minimum-
Balance algorithmsNetworks21(2), pp. 205221, ddi0.1002/net .3230210206.

K. Chatterjee, M. Henzinger, S. Krinninger & V. Loitzenbaue 149

[28] Gideon Yuval (1976)An algorithm for finding all shortest paths using &t infinite-precision multiplications
Information Processing Letted$6), pp. 155—-156, dai0.1016/0020-0190(76)90085-5.

[29] Eitan Zemel (1987)A Linear Time Randomizing Algorithm for Searching Rankeddtions Algorithmica
2(1-4), pp. 81-90, doin.1007/BF01840350.

[30] Uri Zwick (2002): All Pairs Shortest Paths using Bridging Sets and Rectanrdd&trix Multiplication. Jour-
nal of the ACM49(3), pp. 289-317, ddi0.1145/567112.567114. Announced at FOCS '98.

[31] Uri Zwick & Mike Paterson (1996)The complexity of mean payoff games on gragtieoretical Computer
Sciencel58(1-2), pp. 343—-359, dai0. 1016/0304-3975(95)00188-3. Announced at COCOON '95.

Probabilistic data flow analysis: a linear equational apprach

Alessandra Di Pierro Herbert Wiklicky
University of Verona Imperial College London
Verona, Italy London, UK
alessandra.dipierro@univr.it herbert@doc.ic.ac.uk

Speculative optimisation relies on the estimation of thebpbilities that certain properties of the
control flow are fulfilled. Concrete or estimated branch tabties can be used for searching and
constructing advantageous speculative and bookkeegingformations. We present a probabilistic
extension of the classical equational approach to datadtmlysis that can be used to this purpose.
More precisely, we show how the probabilistic informatiotréeduced in a control flow graph by
branch prediction can be used to extract a system of linasat@ms from a program and present a
method for calculating correct (numerical) solutions.

1 Introduction

In the last two decades probabilistic aspects of softwave baecome a particularly popular subject of
research. The reason for this is arguablyegonomicaland resource consciouguestions involving
modern computer systems. While program verification andysisaoriginally focused on qualitative
issues, e.g. whether code is correct or if compiler optitiiea are valid, the focus is now more often
also on the costs of operations.

Speculative optimisation is part of this trend; it plays erportant role in the design of modern
compiler and run time architectures. A speculative apgrdes been adopted in various models where
cost optimisation claims for a more optimistic interprigtatof the results of a program analysis. It is in
fact often the case that possible optimisations are disdabe&cause the analysis cannot guarantee their
correctness. The alternative to this sometimes overlyipéestg analysis is to speculatively assume in
those cases that optimisations are correct and then ellgritaaktrack and redo the computation if at a
later check the assumption turns out to be incorrect.

Speculative optimisation relies on the optimal estimatibthe probabilities that certain properties
of the control flow are fulfilled. This is different from theadsical (pessimistic) thinking where one aims
in providing bounds for what can happen during execution [8]

A number of frameworks and tools to analyse systems’s pibitabaspects have been developed,
which can be seen as probabilistic versions of classichhiques such as model checking and abstract
interpretation. To provide a basis for such analysis vargemantical model involving discrete and con-
tinuous time and also non-deterministic aspects have beesiaped (e.g. DTMCs, CTMCs, MDPs,
process algebraic approaches etc.). There also exist sowarfpl tools which implement these meth-
ods, e.g. PRISM [14], just to name one.

Our own contribution in this area has been a probabilistisiea of the abstract interpretation frame-
work [6], called Probabilistic Abstract InterpretationAQlP[12, 9]. This analysis framework, in its basic
form, is concerned with purely probabilistic, discretedimmodels. Its purpose is to give optimal esti-
mates of the probability that a certain property holds natitven providing probabilities bounds. As such,
we think it is well suited as a base for speculative optinnisat

Gabriele Puppis, Tiziano Villa (Eds.): Fourth Interna@bn © A. Di Pierro, H. Wiklicky
Symposium on Games, Automata, Logics and Formal Verifinatio This work is licensed under the
EPTCS 119, 2013, pp. 150-165, doi:10.4204/EPTCS.119.14 Creative Commons Attribution License.

A. Di Pierro, H. Wiklicky 151

~

S ::= skip S ::= [skip]
X :=€e(X1,...,%) X :=e(Xg,...,%)]"
X7=p x 7= p)*
Si;

if [0’ then S else S fi
while [b]’ do Sod

if bthen S else S fi

|
|
| S S
|
| whilebdo Sod

Table 1: The syntax

The aim of this paper is to provide a framework for a probatidi analysis of programs in the
style of a classical data flow approach [18, 1]. In particwae are interested in a formal basis for
(non-static) branch prediction. The analysis techniquepresent consists of three phases: (i) abstract
branch prediction, (ii) specification of the actual datavfeuations based on the estimates of the branch
probabilities, and (iii) finding solutions. We will use vecispace structures to specify the properties and
analysis of a program. This allows for the construction dbigons via numerical (linear algebraic)
methods as opposed to the lattice-theoretic fixed-poingtcoction of the classical analysis.

2 A Probabilistic Language

2.1 Syntax and Operational Semantics

We use as areference language a simple imperative langusage\syntax is given in Table 1. Following
the approach in [18] we extend this syntax with unique pnoglabels/ € Lab in order to be able to
refer to certain program points during the analysis.

The dummy statemerkip has no computational effect. For the arithmetxpressions (&, ..., Xn)
on the right hand side (RHS) of the assignment as well as étetbid = b(xy,...,%y) in if andwhile
statements, we leave the details of the syntax open as taéyreevant for our treatment. The RHS of a
random assignmemt?= p is a distributionp over some set of values with the meaning thiestassigned
one of the possible constant valuewith probability p(c).

An operational semantics in the SOS style is given in Taldle Phis defines a probabilistic transition
relation on configurations i€onf = Stmt x State with Stmt the set of all statements in our language
together withstop which indicates termination artate= Var — Value. The details of the semantics
of arithmetic and boolean expressidig = & (a) and[[b] = & (b) respectively are again left open in our
treatment here and can be found in [10].

2.2 Computational States

In any concrete computation or execution — even when it ishtng probabilistic elements — the com-
putational situation is uniquely defined by a mappin/ar — Value to which we refer to as elassical
state Every variable irivar has a unigue value iMalue possibly includingL € Value to indicate unde-
finedness. We denote [8tatethe set of all classical states.

In order to keep the mathematical treatment simple we wsiias here that every variable can take
values in a finite sétalue. These sets can be nevertheless quite large and coveraiopé, all finitely
representable integers on a given machine.

152 Equational Data Flow

RO (stop,S)=-1(stop,S) R4, (SL.9=p(S.,S)
R1 (skip,S)=1(stop,s) (S1S,9=p(SS:S)
R2 (v:=es)=1(stop,slv— &(€)9) R4 (S1,9)=p(stop,s)
R3 (v?=p,5)=p)(stop,S[Vir]) 2 (31,9,9=p(S,9)
R5; (if bthen S else £i,9=1(S,9) if &(b)s=true

R5, (if bthen S else $ fi,§=1(,9) if &(b)s=false

R6; (while bdo Sod,s)=1(S while bdo Sod,s) if &(b)s=true

R6; (while bdo Sod,s)=1(stop,S) if &£(b)s=false

Table 2: The rules of the SOS semantics

For a finite seX we denote byZ?(X) the power-set oK and by (X) the free vector space over
X, i.e. the set of formal linear combinations of elementsin We represent vectors via their coor-
dinates(xy, ..., X,) as rows, i.e. elements iR*! with |X| denoting the cardinality ok and use post-
multiplication with matrices representing linear maps, A(x) = x-A. The seDist(X) of distributions
onX —ie.p:X—[0,1 andy;p(x) =1 — clearly correspond to a sub-set®6{X). We will also use a
tuple notation for distributionsp = {(a, 1), (b, 1), {c,)} will denote a distribution whera has prob-
ability p(a) = 3 andb andc both have probabilitys. For uniform distributions we will simply specify
the underlying set, e.da,b,c} instead of(a,), (b, 3),(c, $)}.

The tensor product is an essential element of the desarigtigprobabilistic states. The tensor
product of two vectors(xy, ..., X,) and(yi, ..., Ym) is given by(Xiyi, ..., X1Ym, - - -, XaY1, - - - , XnYm) @1Nm
dimensional vector. Similarily for matrices. The tensoodurct of two vector spaceg ® # can be
defined as the formal linear combinations of the tensor @isoki® w; with v; andw; base vectors i’
and?/, respectively. For further details we refer e.g to [19, CHaR.

Importantly, the isomorphisrt’ (X xY) = 7/ (X) ® 7 (Y) allows us to identify set of all distributions
on the cartesian product of two sets with the tensor produtiteospaces of distributions ofandy.

We define aprobabilistic stateo as any probability distribution over classical states, i@ <
Dist(State). This can also be seenasc ¥/ (State) = ¥ (Var — Value) = ”V(Value'va”) =¥ (Value)®V
thev-vold tensor product o’ (Value) with v = |Var|.

In our setting we represent (semantical) functions andipaées or tests as linear operators on the
probabilistic state space, i.e. as matrices. For any fondti: X — Y we define a linear representation
|X| x |Y| matrix by:

1 if f(Xi) =Yj
0 otherwise

(Fe)ij = (F(F))ij = (F)ij = {

where we assume some fixed enumeration on o#mdY. For an equivalence relation ofiwe can
also represent the function which maps every elemeXttmits equivalence class: x — [x] in this way.
Such aclassification matrixontains in every row exactly one non-zero entry 1. Clasgifbio matrices
(modulo reordering of indices) are in a one-to-one corredpace with the equivalence relations on a set
X and we will use them to define probabilistic abstractionfaranalysis (cf. Section 4.2). A predicate
p: X — {true,false} is represented by a diagona| x |X| matrix:

1 ifi=jandp(x)=true
0 otherwise

(ol = (PP = (Pl = {

IMore precisely, the Kronecker product — the coordinate dasesion of the abstract concept of a tensor product.

A. Di Pierro, H. Wiklicky 153

2.3 Probabilistic Abstraction

The analysis technique we present in this paper will maketiagarticular notion of abstraction of the
state space (given as a vector space) which is formalisedritstof Moore-Penrose pseudo-inverse [19].

Definition 1 Let% and 2 be two finite dimensional vector spaces, andets — 2 be a linear map
between them. The linear mad = G : 2 — ¢ is theMoore-Penrose pseudo-inversA iff

AoG = Pp and GoA = Pc
wherePa and Pg denote orthogonal projections onto the range®\adnd G.

An operator or matrix is anrthogonal projectiorif P* = P2 = P where.* denotes thadjoint which for
real matrices correspond simply to the transpose matrix P' [19, Ch 10].

For invertible matrices the Moore-Penrose pseudo-inverdbe same as the inverse. A special
example is théorgetful abstractiomA s which corresponds to a mdp X — {x} which maps all elements
of X onto a single abstract one. It is represented by|a< 1 matrix containing only 1, and its Moore-
Penrose pseudo-inverse is given by [IX| matrix with all entriesz; ‘X‘

The Moore-Penrose pseudo-inverse allows us to constractitisest, in a least square sense (see
for example [5, 3]), approximatioR” : 2 — 2 of a concrete linear operatét: € — ¢ for a given
abstractiomlA : € — 2 as

FF=AT.F-A=G.-F-A=AcFoG.

This notion of probabilistic abstraction is central in thelfabilistic Abstract Interpretation (PAI) frame-
work. For further details we refer to e.g. [10]. As we will ubés notion later for abstracting branching
probabilities, it is important here to point out the guaesstthat such abstractions are able to provide. In
fact, these are not related to any correctness notion inléissical sense. The theory of the least-square
approximation [7, 3] tells us that # andZ be two finite dimensional vector spacés, ¢ — Z a linear
map between them, arAll = G : 2 — ¥ its Moore-Penrose pseudo-inverse, then the vegtery- G

is the one minimising the distance betweer\, for any vectoix in ¢, andy, i.e.

inf [[x-A—=y| = %A=Yl
Xe€

This guarantees that our probabilistic abstractions spoed to theclosestapproximations in a
metric sense of the concrete situations, as they are cotetrusing the Moore-Penrose pseudo-inverse.

3 Data-Flow Analysis

Data-flow analysis is based on a statically determined fldatiom. This is defined in terms of two
auxiliary operations, namelyit : Stmt — Lab andfinal: Stmt — &?(Lab), defined as follows:

init([skip]’) = ¢ final([skip]’) = {¢}

init([v :=¢’) =/ final([v :=€’) = {¢}

init(ve=¢’) =/ final([v 7= €’) = {¢}

init(Sy; &) = init(Sy) final(S1; S) = final(S)

init(if [b]’ then S else S fi) =/ final(if [b)’ then S else S fi) = final(S) U final(S,)
init(while [b]‘ do Sod) =/ final(while [b]’ do Sod) = {¢}.

154 Equational Data Flow

The control flow.# (S) in S€ Stmt is defined via the functiofiow : Stmt — &?(Lab x Lab):

flow([skip]’) = flow([v := €) = flow([v 7= €’) = 0
flow(S1; S) = flow(S) U flow(S) U{(¢,init(S)) | ¢ € final(S) }
flow(if [0 then S else S £i) = flow(S)) U flow(S) U { (¢, init(Sy)), (4, init(S)) }
flow(while [b]* do Sod) = flow(S) U {(¢,init(S))}U{(¢,£)| ¢ € finallS)}

The definition of flow only records that a certain control fldesis possible. For tesltsin condition-
als and loops we indicate the branch corresponding to theewehsn the test is successful by underlining
it. We identify a statemerwith the block[S that contains it and with the (unique) lafehssociated
to the block. We will denote block = Block(P) the set of all the blocks occurring iR, and use
indistinctly Block andLab to refer to blocks.

3.1 Monotone Framework

The classical data-flow analysis is made up of two componartecal” part which describes how the
information representing the analysis changes when erecpasses through a given block/label, and
a “global” collection part which describes how informatimnaccumulated when a number of different
control flow paths (executions) come together.

This is formalised in a general scheme, called Monotone Evaork in [18, Section 2.3], where a
data-flow analysis is defined via a number of equations owefatticeL modelling the property to be
analysed. For every program lalfelve have two equations: one describing the generalisedy'dntr
terms of the generalised ‘exit’ of the block in question, #melother describing ‘exit’ in terms of ‘entry’
— for forward analysis we have=entry ande=exit, for a backward analysis the situation is reversed.

Analysig (¢) = f,(Analysis (¢))
. 1L,iffeE
Analysis () - = { LI{Analysig (¢) | (¢,¢) € F},otherwise

For the typical classical analyses, such as Live Variableand Reaching DefinitioRD, the property
lattice L is often the power-set of some underlying set (N as in the case of the LV analysis). For a
may-analysis the collecting operatianof L is represented by set unianand for must-analysis it is the
intersection operation. The flow relationF can be the forward or backward flowspecifies the initial
or final analysis information on “extreme” labels i) whereE is {init(S,)} or final(S,), and f, is the
transfer function associated wiBi € Block(S) [18, Section 2.3].

3.2 Live Variable Analysis

We will illustrate the basic principles of the equationapegach to data flow analysis by considering
Live Variable analysisL(V) following the presentation in [18, Section 2.1]. The peohlis to identify at
any program point those variables which hve, i.e. which may later be used in an assignment or test.
There are two phases of classi¢d analysis: (i) formulation of data-flow equations as set équa
(or more generally over a property latticg (i) finding or constructing solutions to these equatidios
example, via a fixed-point construction. In the classicalysis we associate to every program point or
label ¢ — to be precise the entry and the exit of each label — the irdtam which describes (a super-set
of) those variables which are alive at this program point.
Based on the auxiliary functiorgen,, : Block — 22 (Var) andkill \ : Block — &7(Var) which only
depend on the syntax of the local bld@}‘ and are defined as

A. Di Pierro, H. Wiklicky 155

kil v([x :=d") = {x} geny([x:=d") = FVY(a)

kil ([x 7= p]") = {x} geny(x?=p]") = 0

kill v ([skip]') = 0 geny([skipl’) = ©
kill (b)) = 0 geny(b]') = FV(b)

we can define the transfer functions for theé analysisf¥ : 2 (Var,) — &(Var,) by

f7Y(X) = X\ kill v ([B]) U geny ([B])

This allows us to define equations over the property spaee?’(Var), i.e. set equations, which
associate to every label entry and exit the analysis infoomd Venyy : Lab — 22(Var) and LV i
Lab — Z£2(Var). These set equations are of the general form for a backwaycanedysis:

Wenry(6) = Y (LVexit(4))

LVexit(e) = U LVentry(E,)
(e,0)eflow

At the beginning of the analysis (i.e. for final labels, as ihia backward analysis) we d&teyii(¢) = 0.
Example 1 Consider the following program:

[x7={0,1}]%; [y 7= {0,1,2,3}]%; [x :=x+y mod 43;
if [x>2*then [z:=xX]"else [z:=y]® fi

Although the program is probabilistic we still can perforntiassical analysis by considering non-zero
probabilities simply as possibilities. The flow is given{§¥, 2), (2,3),(3,4),(4,5),(4,6)}.
With the auxiliary functionill \\y and gen,, we can now specify the data-flow equations:

geny (E) kill o (E) LVemW(1) = LVeXit(l) \ {X} I—Vexit(l) = LVentry(Z)
1 0 {x} LVentry(Z) = LWVeit(2)\ {y} WVexit(2) = I-Ventry(3)
§ {X(Dy} ?)g WVentry(3) = LVexit(3) \{X}U{Xy} LVexit(3) = LVentry(4)
4 {;(} 0 LVentry(4) = LVexit(4) U {X} LVexit(4) = LVentry(5) U LVentry(6)
5 {x} {2} | NVeny(5) = Wew(®\{ZU{X} Wex(5) = 0
6] {v} {z} | Weny(6) = We(6)\{Z4U{y} LVew(6) = 0

LVentry(1) 0 WVeit(1) = {X}
WVenty(2) = {x} WVexit(2) = {XY}
LVentry(3) = {X7 Y} LVexit(3> = {X, y}
LVentry(4) = {xy} WVexit(4) = {Xy}
Wenry(5) = {x} WVeit(5) = 0
WVenry(6) = {y} LVeit(6) = 0.

156 Equational Data Flow

4 The Probabilistic Setting

In order to specify a probabilistic data flow analysis using analogue of the classical equational ap-
proach (as presented in the previous sections), we havefitedbe main ingredients of the analysis
in a probabilistic setting namely a vector space as propayace (replacing the property lattitg, a
linear operator representing the transfer functiénsand a method for the information collection (in
place of theg | operation of the classical monotone framework). Morecagsnve will work with proba-
bilistic states, the second point implies that the corflay+ graph will be labelled by some probability
information.

As aproperty spacewe consider distributionBist(L) C #'(L) over a set, e.g. the corresponding
classical property space. For a relational analysis, wiiereclassical property lattice corresponds to
L = Lj x Ly (cf [11]), the probabilistic property space will be the tengroduct?'(L1) ® ¥ (L,); this
allows us to represent properties via joint probabilitielsiol are able to express the dependency or
correlation between states.

We can define probabilistiansfer functions by using the linear representation of the classical
f,, i.e. a matrixF, = Fy, as introduced above in Section 2.2. In general, we will dedipeobabilistic
transfer function by means of an appropriate abstractidgheofoncrete semanti@B)‘] of a given block
[B] according to PAl, i.eF, = AT[[[B]‘]JA for the relevant abstraction matrix

In the classical analysis we treat tebtaon-deterministically, to avoid problems with the poteahti
undecidability of predicates. Moreover, we take evenghivhich is possible i.e. the collection of
what can happen along the different execution paths, egytwtb branches of anf statement. In the
probabilistic setting weollect information by means of weighted sums, where the ‘weights’ are the
probabilities associated to each branch. These probasilibme from an estimation of the (concrete
or abstract) branch probabilities and are propagated atlengontrol flow graph representing tfew
relation.

4.1 Control Flow Probabilities

If we execute a program in classical stagaghich have been chosen randomly according to some prob-
ability distribution p then this also induces a probability distribution on theggae control flow steps.

Definition 2 Given a program gwith init(S;) = ¢ and a probability distributionp on State, the proba-
bility p,»(p) that the control is flowing frond to ¢’ is defined as:

Pro(p) =3 {P-p(5) | IS St (S,9) =p (S5}

In other words, if we provide with a certain probabilip(s) a concrete execution environment or
classical stats for a programs,, then the control flow probabilityp, » (p) is the probability that we end
up with a configurationS,...) for whatever state in the successor configuration.

Example 2 Consider the programix 7= {0,1}]%; if [x > 0]2 then [skip]® else [x :=0]* £i. We can
have two possible states at lal#zlnamely § = [x — 0] and § = [x — 1]. After the first statement has
been executed in one of two possible ways (with any intié sia

([x7={0,1}]%; if [x> 0]? then [skip]® else [x := 0]* £i,s) =1
=1 (if [x > 0] then [skip]® else [x :=0]* £i,5)
or ([x?={0,1}}%; if [x> 0]? then [skip|® else [x := 0]* fi,s) =1

=1 (if x> 0]% then [skip]® else [x := 0]* £i,5;)

1
2

A. Di Pierro, H. Wiklicky 157

the distribution over states is obviousty= {({so,3) (s1,3)}. However, in each execution path we have
at any moment a definite value for x (the distributjpilescribes a property of the set of all executions,
not of one execution alone).

The branch probability in this case (independently of tlaests and of any distributiop) is simply
p12(p) = 1 because, although there are two possible execution stepsuccessor configurations are
‘coincidently’ equipped with the same prograim [x > 0] then [skip]® else [x := 0]* f1i.

The successive control steps from labéb 3 and4, respectively, both occur with probabilifiyas in
each stategand g the value of x is a definite one.

(if [x> 0] then [skip|® else [x := 0] fi,5) =1 ([x:=0]*)
and (if [x>0]° then [skip]®else [x :=0* fi,s;) =>1 ([skip|3 ;)

Thus the branch probabilities with= {(so,3)., (s1,3)} are p3(p) = 3 and p4(p) = 3. In general
foranyp = {(so, po) , (1, P1) } we have p3(p) = p1 and p 4(p) = po despite the fact that the transitions
are deterministic. It is the randomness in the probabtigtiate that determines in this case the branch
probabilities.

For all blocks in a control flow graph — except for the tdststhere is always only one next statement
S so that the branch probability, . (p) is always 1 for allp. For testsb in if andwhile Statements
we have only two different successor statements, one @ameting to the case whefb]’ evaluates to
true and one foffalse As the corresponding probabilities must sum up to 1 we oabdrto specify the
first case which we denote lpy(p).

The probability distributions over states at every exegupoint are thus critical for the analysis as
they determine the branch probabilities for tests, and vee ne provide them. The problem is, of course
that analysing these probabilities is nearly as expensiemalysing the concrete computation or program
executions. 1t is therefore reasonable to investigateratisbranch probabilities, based on classes of
states, or abstract states. It is always possible to liftiag distributions to ones over (equivalence)
classes.

Definition 3 Given a probability distributiorp on State and an equivalence relation on states then
we denote by* = p* the probability distribution on the set of equivalence sksState” = State/~
defined by

p*([g~) = p(s)

sels~

wherel[s|.. denotes the equivalence classes of swrt

4.2 Estimating Abstract Branch Probabilities

In order to determine concrete or abstract branch protliakilive need to investigate — as we have seen
in Example 2 — the interplay between distribution over stated the tesb]’ we are interested in. We
need for this the linear representatiBg of the test predicate as defined in Section 2.2, which for a
given distribution over states determines a sub-disiobubf those states that lead into one of the two
branches by filtering out those states where this happens.

Example 3 Consider the simple programf [x >= 1] then [x := x— 1]? else [skip]® fi and assume
that x has values 0, 1,2} (enumerated in the obvious way). Then the test(x >= 1) is represented

158 Equational Data Flow

by the projection matrix:

0 0O 1 00
Px>=1)=| 0 1 0] andP(x>=1)*=| 0 0 0 | =P(x=0)
0 01 0 0O
For any given concrete probability distribution over s = {(0, po), (1, p1),(2, p2)} = (Po, P1, P2)
we can easily compute the probabilities to go from labéb label 2 as pP(x >= 1) = (0, p1, p2) and

thus

Pr2(P) =[lp-P(x>=1)[lx = p1+ p2,
where||.||1 is the 1-norm of vectors, i.e||(X)i|| = ¥;|x|, which we use here to aggregate the total
probabilities. Similarly, for the else branch, with- = | — P:

P3(p) = [l -P*(x>=1)[1 = po.

In general, the branching behaviour at a tes described by the projection opera®@fb) and its
complementP*(b) = P(=b). For a branching poinfo]* with (¢,¢),(¢,¢") € flow, we denoteP(b) by
P(¢,¢") andP(-b) = P(b)* by P(¢,¢"). Each branch probability can be computed for any given input
distribution asp, ¢ (p) = ||pP(¢,¢)||1 andp, e (p) = ||pP(£,£")||1, respectively.

Sometimes it could be useful or practically more appropriatconsider abstract branch probabilities.
These can be obtained by means of abstractions on the state sprresponding to classifications
State — State’ that, as explained in Section 2.2, can be liftedclassification matrices Given an
equivalence relation- on the states and its matrix representatfon, we can compute the individual
chance of abstract states (i.e. equivalence classes e$kstattake thérue or false branch of a test by
multiplying the abstract distributiop” by an abstract versioR(b)* of P(b) that we can use to select
those classes of states satisfylmgn doing so we must guarantee that:

pP(b)A = p"P¥(b)
pP(b)A = pAP*(b)
P(bA = AP*b)

In order to give an explicit description & we only would need to multiply the last equation from the
left with A—1. However,A is in general not a square matrix and thus not invertible. 8aise instead
the Moore-Penrose pseudo-inverse to have the closedtskpaare approximation possible.

ATP(b)A = ATAP*(b)
ATP(b)A = P#(b)

The abstract test matri*(b) contains all the information we need in order to estimateathstract
branch probabilities. Again, we denote By/, ¢')* = P#(b) and P(¢,¢")* = P#(=b) = P#(b)* for a
branching pointb)® with (¢,£),(¢,¢") € flow.

Branch prediction/predictors in hardware design has lasigty [16, 20]. It is used at test poinfs}’
to allow pre-fetching of instructions of the expected btabefore the test is actually evaluated. If the
prediction is wrong the prefetched instructions need toibeadded and the correct ones to be fetched.
Ultimately, wrong predictions “just” lead to longer rungitimes, the correctness of the program is not
concerned. It can be seen as a form of speculative optimisaflypical applications or cases where
branch prediction is relevant is for nested tests (loop$spr Here we get exactly the interplay between
different tests and/or abstractions. We illustrate thighanfollowing example.

A. Di Pierro, H. Wiklicky 159

Example 4 Consider the following program that counts the prime nuraber
i :=2]%; while [i < 1002 do if [prime(i)]® then [p := p+1]* else [skip]® fi; [i :=i+1]% od

Within our framework we can simulate to a certain degree tohysdependent branch prediction. If
the variable p has been updated in the previous iteratios fiighly unlikely it will so again in the next —
in fact that only happens in the first two iterations. One cloanterpret this as follows: For i even the
branch probability p4(pe) at label3 is practically zero for any reasonable distribution, e.gumiform
distribution pe, On evens. To see this, we need to investigate only the form of

P(prime(i))* = AIP(prime(i))Ae,
where A is the abstraction corresponding to the classification iareand odd.

In order to understand how an abstract property interadtstive branching in the program, as in the
previous example we look &'P(b)A in order to evaluate how good a branch prediction is for sagert
predicate/tesb if it is based on a certain abstraction/propefty This is explained in the following
example where we consider two properties/abstractioncamdsponding tests.

Example 5 Let us consider two tests for numbers in the range0, 1,2, 3,...,n):

1 ifi=2k
0 otherwise

1 if prime(i)
0 otherwise

Pe = (Pleverin))s = { P (P(primem))s = {

Likewise we can consider two corresponding abstractions {1 = true, 2 = false}):

1 ifi=2k+1Aj=2 1 ifprime(i) A j=2
(Ae)ij = 1 ifi=2knj=1 (Ap)ij = 1 if —prime(i) A j=1
0 otherwise 0 otherwise
Then we can use” and its orthogonal complemer(f*)*- = | — P¥ to determine information about

the quality of a certain property or its corresponding alasttion via the number of false positives. In

fact, this will tell us how precise the abstraction is witlspect to tests (such as those controlling a loop
or conditional). With rounding the values to 2 significangits we get, for example the following results

for different concrete ranges of the concrete valQgs. , n.

AlPpA. AlPSA. ATPeAp ATPAp

n_10 (020 Q00 0.80 000 0.25 000 0.75 000
- 0.00 060 0.00 040 0.00 067 0.00 033
n—100 [002 Q00 0.98 000 0.04 000 0.96 000
- 0.00 048 0.00 052 0.00 065 0.00 035
n— 1000 [000 Q00 1.00 000 0.01 000 0.99 000
- 0.00 033 0.00 067 0.00 060 0.00 040
1— 10000 (©-00 Q00 1.00 000 0.00 000 1.00 000
- 0.00 025 0.00 Q75 0.00 057 0.00 043

Note that the positive and negative versions of these neat@dways add up to the identity matfix
Also, the entries in the upper left cornermgPpAe give us information about the chances that an even

160 Equational Data Flow

number is also a prime number: For small n the percentage idtla findeed2 is a prime and it is
one out of5 even numbers unddiQ); the larger n gets the less relevant is this single even erilvith
AI,PeAp we get the opposite information: Among the prime num2y8,5,7} smaller thanl0there is
one which is even, i.e. 25%; again this effect diminisheddiaer n. Finally, the lower right entry in
these matrices gives us the percentage that a non-prime enisbdd and/or that an odd number is not
prime, respectively.

4.3 Linear Equations Framework

A general framework for our probabilistic data-flow anadysan be defined in analogy with the classical
monotone framework by defining the following linear equiasio

Analysig(¢) = Analysis (¢)-F,
{ 1,ifCeE

Analysis (f) = s {Analysig (¢') - P(¢',£)* | (¢ ,¢) € F},otherwise

The first equation is a straight forward generalisation efdfassical case, while the second one is
defined by means of the linear sums over vectors. A simpleiaelis obtained by considering static
branch prediction:

Analysis,(£) = 5 {pe - Analysig (¢') | (¢'.0) € F}
with py ¢ is @ numerical value representingitatic branch probability.

We have as many variables in this systems of equations asdheindividual equations. As a result
we get unique solutions rather than least fix-points as irthkssical setting.

This general scheme must be extended to include a preliynptease of probability estimation if one
wants to improve the quality of the branch prediction. Irstbase, the abstract state should carry two
kinds of information: OneRrob, to provide estimates for probabilities, the othetalysis, to analyse the
actual property in question. The same abstract branch pililes P(¢, ¢)* — which we obtain viéProb
— can then be used in both cases, but we have different infammar properties and different transfer
functions forProb andAnalysis.

4.4 Probabilistic Live Variable Analysis

We can use the previously defined probabilistic setting fdata flow analysis, to define a probabilis-
tic version of the Live Variable analysis extending the ond1i8] in order to also cover for random
assignments and to provide estimates for ‘live’ probadesit

The transfer functions, which describe how the programyaisinformation changes when we pass
through a blocKBJ’, is for the classical analysis given via the two auxiliarpdtionsgen,, andKkill
(cf. Example 1). Probabilistic versions of these operatioan be defined as follows. Consider two
propertiesd for ‘dead’, and for ‘live’ and the space’ ({0,1}) = 7 ({d,l}) = R? as the property space
corresponding to a single variable. On this space definepgbrators:

0 1 10
L—(O 1) and K_<1 O>'

The matrixL changes the “liveliness” of a variable from whatever it iedd or alive) into alive, while
K does the opposite. The local transfer operators

Fo=FY :v({0,11)°Varl s v ({o,1))=IVarl

A. Di Pierro, H. Wiklicky 161

for the block[x := a]’ can thus be defined as (withthe identity matrix)

L ifx e FV(a)
Fr= @ Xiwith Xij=4 K if x=xAX¢&FV(a)
xevar | otherwise.

and similarly for testsbl’

Fo= (& X with Xj=

xevVar

L if x € FV(b)
| otherwise.

For [skip]* and random assignmerijts?= p]‘ we simply haveF; = ®, -var |-
In the following example we demonstrate the use of our géfr@mmework for probabilistic data-flow
analysis by defining a probabilistid/ analysis for the program in Example 1.

Example 6 For the program in Example 1 we presenL¥ analysis based on concrete branch proba-
bilities. That means that in the first phase of the analyshi¢wdetermines the branch probabilities) we
will not abstract the values of x and y (and ignore z all toge}h If the concrete state of each variable
is a value in{0,1,2,3}, then the probabilistic state is an elementf{{0,1,2,3})¥3 = R¥ = R4 The
abstraction we use when we compute the concrete branch Ipiiies is| ® | ® As, i.e. z is ignored.
This allows us to reduce the dimensions of the probabilstite space frond4 down to justl6. The
abstract transfer functions for the fir8tstatements are given in the Appendix.

We can now compute the probability distribution at laddior any given input distribution. The
abstract transfer functionsZ andF# are the identity as we have restricted ourselves only todhniables
xandy.

We can now set the linear equations for the joint distribusi@ver x and y at the entry and exit to
each of the labels:

Probenty(1) = p Probexit(1) = Probenty(1)-F}
Probentry(2) = Probexit(1) Probeyit(2) = Probenty(1)-F4
Probentry(3) = Probexit(2) Probexit(3) = Probentry(l)‘Fg
Probentry(4) = Probexit(3) Probexit(4) = Probentry(4)
Probentry(5) = Probexit(4) - P} Probeyit(5) = Probentry(5)
Probentry(6) = Probexit(4) - (I —Pﬁ) Probexit(6) = Probentry(6)

These equations are easy to solve. In particular we cana@ipldetermine

PrObentry(S) = p- Ff- Fg~ Fg- Pﬁ
Probenty(6) = p-Fi-F5-F3-Pj,

that give us the static branch probabilitieg 410) = ||Probentry(5)||1 = %1 and p.6(p) = ||Probentry(6)(1 =
%. These distributions can explicitly be computed and do epedd on the initial distributiom.

We then perform a probabilisticV analysis using these probabilities as required. Using thstiect
property space and the auxiliary operators we get:

162 Equational Data Flow

LVentry(l) = LVexit(l) (K ®l®) LVexit(l) = LVemry(Z)

LVentry(Z) = LVexit(Z) (®K®I) LVeXit(z) = LVentry(3)

LVentry<3) = I—Vexit(3) (L QL®I) LVexit(3) = LVentry(4)

LVentry(4) = LVexit(4) (I— ®l®) LVexit(4) = p4,5|-Ventry(5) + P46 LVentry(G)
LVentry(5) = LVeXit(s) (I— RI® K) LVeXit(5) = (1a 0) ® (1a 0) ® (17 0)
WVentry(6) = LVexit(6)- (1 ©L ©K) WVexit(6) = (1,0)®(1,0)® (1,0)

And thus the solutions for the probabilistié/ analysis are given by:

WVenry(1) = (1,0)®(1,0)®(1,0) . - (0 0 0
Va2l = 0000 0 T T
Ventry(3) = 0.25-(0,1) ®(0,1) ® (1,0) + WVexit(3) = O.’25-(0 1;@(1 O;®(1 0)+
+ 0.75-(0,1) ® (0,1) ® (1,0) n 0.75.(071)@9(071)@(170)
= 01)® 0110 WVext(4) = 0.25-(0,1)® (1,0)® (1,0) +
Wenry(4) = 0.25:(0,1)®(1,0)®(1,0)+ + 0.75-(1,00®(0,1)® (1,0)
T 0 ODeODe@0 e (106 (L0)o(L0)
Wenty(5) = (0.1)®(1,0)®(1,0) Wext(6) = (1,0)@(1,0)® (1,0)
WVenty(6) = (1,0)®(0,1)®(1,0) . | | |

This means that, for example, at the beginning lahéle. the test x> 2 there are two situations: It
can be with probability‘—l1 that only the variable x is alive, or with probabilit% both variables x and y
are alive. One could say that x for sure is alive and y only wiff6% chance. At the exit of labélthe
probabilistic LV analysis tells us that with 25% chanoaly x is alive and with 75% that y is thenly
live variable. To say that x is alive with probabili®/25 and y with0.75 probability would be wrong: It
is either x or y which is alive and this is reflected in the jadigtributions represented as tensors, which
we obtain as solution. This illustrates that the probalidigproperty space cannot be jugt({x,y,z})
but that we need indeed ({d,1})%3.

5 Conclusions and Related Work

This paper highlights two important aspects of probaliilistogram analysis in a data-flow style: (i) the
use of tensor products in order to represent the correldtgdween a number of variables, and (i) the
use of Probabilistic Abstract Interpretation to estimatnich probabilities and to construct probabilistic
transfer functions. In particular, we argue that statioqgpam analysis does not mean necessarily con-
sideringstatic branch predictioninstead — by extending single numbgxs' as branch probabilities to
matrices as abstract branch probabilitig, ¢)# — the PAI framework allows us to express dynamic or
conditional aspects.

The framework presented here aims in providing a formalddfasispeculative optimisation. Specu-
lative optimisation [15, 2] has been an element of hardwasgth for some time, in particular to branch
prediction [16] or for cache optimisation [17]. More redgntelated ideas have also been discussed in
the context of speculative multi-threading [4] or probaiit pointer analysis [9, 13].

A. Di Pierro, H. Wiklicky 163

The work we have presented in this paper concentrates onotieeptual aspects of probabilis-
tic analysis and not on optimal realisation of, for examglencrete branch predictors. Further work
should however include practical implementations of thespnted framework in order to compare its
performance with the large number of predictors in existen¬her research direction concerns the
automatic construction of abstractions so that the indédl)* are optimal and maximally predictive.

References

[1] A.V. Aho, M.S. Lam, R. Sethi & J.D. Uliman (2007E€ompilers: Principles, Techniques, and Tqascond
edition. Pearson Education.

[2] A. A. Belevantsev, S. S. Gaisaryan & V. P. Ilvannikov (2R0&onstruction of Speculative Optimization
Algorithms Programming and Computer Softw&4(3), pp. 138-153, d0i:10.1134/S036176880803002X.

[3] A.Ben-Israel & T.N.E. Greville (2003)Generalised Inverse&nd edition. Springer Verlag.

[4] A. Bhowmik & M. Franklin (2004): A General Compiler Framework for Speculative Multi-
threaded Processors IEEE Transactions on Parallel and Distributed Systst&m8), pp. 713-724,
doi:10.1109/TPDS.2004.26.

[5] S.L.Campbell & D. Meyer (1979)Generalized Inverse of Linear Transformatioi@onstable, London.

[6] P. Cousot & R. Cousot (1977):Abstract Interpretation: A Unified Lattice Model for Statfnal-
ysis of Programs by Construction or Approximation of Fixgei In: POPL77 pp. 238-252,
doi:10.1145/512950.512973.

[7] F. Deutsch (2001)Bet Approximation in Inner Product Space€MS Books in Mathematicg, Springer
Verlag, New York — Berlin, doi:10.1007/978-1-4684-9298-9

[8] A.Di Pierro, C. Hankin & H. Wiklicky (2007):Abstract Interpretation for Worst and Average Case Analysi
In: Program Analysis and Compilation, Theory and PractidéCS 4444, Springer Verlag, pp. 160-174,
doi:10.1007/978-3-540-713228

[9] A. Di Pierro, C. Hankin & H. Wiklicky (2007): A Systematic Approach to Probabilistic Pointer Anal-
ysis In Z. Shao, editor: Proceedings of APLAS'Q7LNCS 4807, Springer Verlag, pp. 335-350,
doi:10.1007/978-3-540-7663728.

[10] A. Di Pierro, C. Hankin & H. Wiklicky (2010): Probabilistic Semantics and Analysisin: Formal
Methods for Quantitative Aspects of Programming Languag®kCS 6155, Springer Verlag, pp. 1-42,
doi:10.1007/978-3-642-1367818

[11] A. Di Pierro, P. Sotin & H. Wiklicky (2008):Relational Analysis and Precision via Probabilistic Alzstr
Interpretation In C. Baier & A. Aldini, editors: Proceedings of QAPL’O&lectronic Notes in Theoretical
Computer Science, Elsevier, pp. 23-42, doi:10.10164<2008.11.017.

[12] A. Di Pierro & H. Wiklicky (2000): Concurrent Constraint Programming: Towards ProbabilisBbstract
Interpretation In: PPDP’0Q pp. 127-138, doi:10.1145/351268.351284.

[13] M.-Y. Hung, P.-S. Chen, Y-S. Hwang, R. D.-C. Ju & J. K. L&812): Support of Probabilistic Pointer
Analysis in the SSA FormIEEE Transactions on Parallel Distributed Systst&@®€12), pp. 2366—2379,
doi:10.1109/TPDS.2012.73.

[14] M.Z. Kwiatkowska, G. Norman & D. Parker (2004pRISM 2.0: A Tool for Probabilistic Model Checking
In: International Conference on Quantitative Evaluation cftéms (QEST 2004)EEE Computer Society,
pp. 322-323, doi:10.1109/QEST.2004.10016.

[15] J.Lin, T. Chen, W.-C. Hsu, P.-C. Yew, R. D.-C. Ju, T.-|gal& S. Chan (2003)A compiler framework for
speculative analysis and optimizatioria: Proceedings Conference on Programming Language Design and
Implementation (PLDI)pp. 289-299, doi:10.1145/781131.781164.

[16] S. McFarling (1993)Combining Branch PredictorsTechnical Report WLR TN-36, Digital.

164 Equational Data Flow

[17] D. Nicolaescu, B. Salamat & A.V. Veidenbaum (2008)ast Speculative Address Generation and Way
Caching for Reducing L1 Data Cache Energin: Proceedings of the 24th International Conference on
Computer Design (ICCD 2008EEE, pp. 101-107, doi:10.1109/ICCD.2006.4380801.

[18] F. Nielson, H. Riis Nielson & C. Hankin (1999Principles of Program AnalysisSpringer Verlag, Berlin —
Heidelberg, doi:10.1007/978-3-662-03811-6.

[19] S. Roman (2005)Advanced Linear Algebr&nd edition. Springer Verlag.

[20] H. Styles & W. Luk (2004):Exploiting Program Branch Probabilities in Hardware Cortgiion. |[EEE
Transaction on Computes8(11), pp. 1408-1419, doi:10.1109/TC.2004.96.

Appendix

For completeness, we present here the abstract transfdidius in the probabilistic analysis of Exam-
ple 6.

g

[oNeoNeoNeolNeoNoNoleNeoNeNell®NolNolNo)
[oNeoNeoNeolNeNoNelNeoNoNell®NeolNolNo)
[eNoNeNolNeNoNoll*NoNoNoleNoNoNe)

Il
O O ONFO O ONFO O ONFO O ONIF
O ONFPFO O ONFPFO O ONFO O ONF O
ONFO O ONFO O ONFO O ONFO O
NFO O oONFO O ONMFO O ONFO O O
O O ONFO O ONFO O ONFO O oMk
O ONFO O ONFO O ONFO O ONFO
ONFO O ONFO O ONFO O ONFO O
NFO O oNFO O ONFO O ONFO O O
[eNeoNeoNeloNeNeNelNeNoNel=NeNoNe)
[eNoNeoNeleNeNeNelNeNeoNel=NeNoNe)
[oNoNeoNeolNeoNoNelNeoNeoNell®NeolNolNo)
[eNeoNeoNelNeNeoNelNeoNoNell=NeoNoNe)
[eNeoNeoNoloNoNoNolleNoNoNollelNoNoNe)

TI
XSS
|

RENEARENE O O 0 0 6 o o o

DERNRPANREAR, O O O O oo oo

O OO O OO OO O O O OARFRARPARPARS
OCO0OO0OO0OO OO O O O OARARNANR
OO0 OO0 O0O OO O O O ORNPRRPNRPANR
OCOOOOO OO O O O OARRENEN-
OO0 OO0 OO O ORFRNRPRENFO O O O
OO OO0 OO O ofRRRNFFO OO0 O
cCoo oo o o oS O o o
cooocooo ON»—\N»—\N»—\N»—\O [oNeNe)
oo o omr—wr—mn—m\po O OO ocooo
oooONHNHNHNHOOOOOOOO
-NH-NHNHND—‘OOOOOOOOOOOO
NHNHNHNHOOOOoooOoooO
-NH-NHNHNHOOOOOOOOOOOO
-NH-NHNHNHoooooooooooo

O oOoo
O O oo

165

A. Di Pierro, H. Wiklicky

0

1 00 0 O0OOOOOOOTG OO OO
0O 0 0O 0OO1 0000 0 0 0 00O
000 O0OOOOOOOT11O0O0TO0TG0OSTO

0 0 0O0OOOOOOOOOOTOT 01

00 0O0O1O0O0OO0O0ODO0OO0ODO0OTQO0OOTQ OO

00 0 0O O0OOOOTOZ11I 00 O0O0O0TO

000 O0OOOOOOOOOOOTI1ILO

00 01O0O0O0OO0OOOOOOOTQ OO

00 0 00O O0OOODI11O0O0OUO0TU0TQO0TG0OSFO

00 0O0OOOOOOOOOOTI1IO0TO

001 0O0O0O0OO0OOOOOOOTGOTO

000 O0OOOOI11O0O0O0DO0OO0OTO0OOQO0OO

000 O0OOOOOOOOOTI1IO0O0TO0

01 0 00 O0OOOOOOOUOTO0OTG O0OO
0O 0 0O OOO1O0O0OO0OOTO0OTO0OTGOO
00 0 00 OO OOOTOTZI1O0O00

d
)

001 00O0OO0OOO0OO0OTOOTOOTO0OTQ OO
0O 0 01 00O OO OOUOUOU OO OTU OO O
00 0 010 O0OO0OO0OOO0OTOTO0ODTG OO
00 0 0 O0O1O0O0OO0OO0O0ODO0OTO0OTUO0ODTGO0OTGO
0O 0 0O 0OOO1 0 O0OOOUOUOTOTGODO

00 0 0O O0OOT1O0O0O0O0OTO0OTUO0OTGO0OSO

1000 O0OO0OOOOOOOOQOO
01 0 0O0OOOOOOOOOU OO

00 0 OO0 O0OOOTI11O0O0O0O0O0TQO0TGO

000 O0OOOOOOTI1TO0HO0O0OO0OTG0OO

00 0 OO0 O0OOOOOTI 1O0TUO0TO0OTUO0OSTO

00 0 OO0 O0OOOOOOTZI1o0O000O0

000 O0OOOOOOOOOOOTQOTO

00 0 00 OO OOOTOOTO OO OTGO0OTO
00 0 OO0 OO OOUOTOOTUOTGO OO
O 0 0O OOO OO OOUOTOTGOOTO

d

P

Slot Games for Detecting Timing Leaks of Programs

Aleksandar S. Dimovski
Faculty of Information-Communication Tech., FON UnivéysEkopje, 1000, MKD

aleksandar.dimovski@fon.edu.mk

In this paper we describe a method for verifying secure mfation flow of programs, where apart

from direct and indirect flows a secret information can b&éekthrough coverttiming channels. That
is, no two computations of a program that differ only on hggeurity inputs can be distinguished by
low-security outputs and timing differences. We attaclk ghrioblem by using slot-game semantics
for a quantitative analysis of programs. We show how sletvggmodel can be used for performing
a precise security analysis of programs, that takes intowattcboth extensional and intensional
properties of programs. The practicality of this approamtelutomated verification is also shown.

1 Introduction

Secure information flow analysis is a technique which penfor static analysis of a program with the
goal of proving that it will not leak any sensitive (secratiarmation improperly. If the program passes
the test, then we say that it is secure and can be run safelgreTdre several ways in which secret
information can be leaked to an external observer. The naaton are direct and indirect leakages,
which are described by the so-called non-interferencegutgpl3, 18]. We say that a program satisfies
the non-interference property if its high-security (s€cieputs do not affect its low-security (public)
outputs, which can be seen by external observers.

However, a program can also leak information through itsrnigrbehaviour, where an external ob-
server can measure its total running time. Such timing leag&glifficult to detect and prevent, because
they can exploit low-level implementation details. To detaning leaks, we need to ensure that the total
running time of a program do not depend on its high-secunipyis.

In this paper we describe a game semantics based approgoérforming a precise security analy-
sis. We have already shown in [8] how game semantics can bie@pqr verifying the non-interference
property. Now we use slot-game semantics to check for tingals of closed and open programs. We
focus here only on detecting covert timing channels, siheenbn-interference property can be verified
similarly as in [8]. Slot-game semantics was developed it fbr a quantitative analysis of Algol-
like programs. It is suitable for verifying the above setyugroperties, since it takes into account both
extensionalWhatthe program computes) and intensior@\wthe program computes) properties of pro-
grams. It represents a kind of denotational semantics gdiby the theory of operational improvement
of Sands [19]. Improvement is a refinement of the standamiyhef operational approximation, where
we say that one program is an improvement of another if itsuti@n is more efficient in any program
context. We will measure efficiency of a program as the sunosfscassociated with basic operations
it can perform. It has been shown that slot-game semantftdlysabstract (sound and complete) with
respect to operational improvement, so we can use it as datimmal theory of improvement to analyse
programming languages.

The advantages of game semantics (denotational) basedbappior verifying security are several.
We can reason about open programs, i.e. programs with ratiylalefined identifiers. Moreover, game
semantics is compositional, which enables analysis abagram fragments to be combined into an

Gabriele Puppis, Tiziano Villa (Eds.): Fourth Interna@bn © A. S. Dimovski
Symposium on Games, Automata, Logics and Formal Verifinatio This work is licensed under the
EPTCS 119, 2013, pp. 166-179, doi:10.4204/EPTCS.119.15 Creative Commons Attribution License.

A. S. Dimovski 167

analysis of a larger program. Also the model hides the detdilocal-state manipulation of a program,
which results in small models with maximum level of absti@ttwhere are represented only visible
input-output behaviours enriched with costs that measwee efficiency. All other behaviour is ab-
stracted away, which makes this model very suitable forrigcanalysis. Finally, the game model for
some language fragments admits finitary representationsing uegular languages or CSP processes
[10, 6], and has already been applied to automatic prograification. Here we present another appli-
cation of algorithmic game semantics for automaticallyifyerg security properties of programs.

Related work. The most common approach to ensure security propertiesogrgms is by using
security-type systems [14]. Here for every program compbage defined security types, which contain
information about their types and security levels. Progrémat are well-typed under these type systems
satisfy certain security properties. Type systems for reirig non-interference of programs have been
proposed by Volpano and Smith in [20], and subsequently liage been extended to detect also covert
timing channels in [21, 2]. A drawback of this approach idrtprecision, since many secure programs
are not typable and so are rejected. A more precise analyysisograms can be achieved by using
semantics-based approaches [15].

2 Syntax and Operational Semantics

We will define a secure information flow analysis for Ideadiz&gol (IA), a small Algol-like language
introduced by Reynolds [16] which has been used as a metagegn the denotational semantics com-
munity. It is a call-by-nama -calculus extended with imperative features and locailypgd variables.
In order to be able to perform an automata-theoretic arabfthe language, we consider here its second-
order recursion-free fragment ($4or short). It contains finitary data typ&s int, = {0,...,n—1} and
bool = {tt,ff }, and first-order function typed: ::= B | B— T, whereB ranges over base types: expres-
sions éxpD), commandsdom), and variablesvarD).

Syntax of the language is given by the following grammar:

M ::=x|Vv|skip | diverge | MopM | M;M | if M thenM else M | whileM doM
|M:=M |!M | newp x:=VinM | mkvarpMM |A x.M | MM

wherev ranges over constants of type

Typing judgements are of the form- M : T, whererl is a typecontextconsisting of a finite number
of typed free identifiers. Typing rules of the language aaedard [1], but the general application rule is
broken up into the linear application and the contractida tu

r’-FM:B—T AFN:B FX T, % :TEM:T
MAFMN:T FX: T EMX/Xg,X/%] - T
We use these two rules to have control over multiple occogerof free identifiers in terms during
typing.
Any input/output operation in a term is done through glokatdiables, i.e. free identifiers of type

varD. So an input is read by de-referencing a global variableleagr output is written by an assignment
to a global variable.

1 M|N/x] denotes the capture-free substitutiorNofor x in M.

168 Slot Games for Detecting Timing Leaks of Programs

[- nLopny,s—*r n s, wheren = nyopn,
[+ skip; skip,s —skeaskip, &

[k ifttthen M elseMy, s —Kt My, s

[F if ff then My elseMy,s —Kt My, s

[x:=V,s® (X V) —Ksuskip, s® (X V)
[X, S® (X V) —Ker v s@ (X V)

M (AXM)M’ s —ko M[M’/x], s

[newp X:=Vinskip,s —kew skip, s

Table 1: Basic Reduction Rules

The operational semantics is defined in terms of a smallestejuation relation using a notion of an
evaluation context [9]. A small-step evaluation (reduclficelation is of the form:

r-m,s—M,¢d

whererl is a so-calledrar-context which contains only identifiers of typerD; s, S arel -states which
assign data values to the variabled irandM, M’ are terms. The set of dll-states will be denoted by
StIr).

Evaluation contexts are conteXtsontaining a single hole which is used to identify the nekttrm
to be evaluated (reduced). They are defined inductively éydtowing grammar:

E =[] |EM|E; M | skip; E | EopM | vopE | if EthenMelseM | M :=E | E:=V |IE

The operational semantics is defined in two stages. Firgt afdasic reduction rules are defined
in Table 1. We assign different (non-negative) costs to eadhction rule, in order to denote how much
computational time is needed for a reduction to completeyHrne only descriptions of time and we can
give them different interpretations describing how muchl tene they denote. Such an interpretation
can be arbitrarily complex. So the semantics is parameiiin the interpretation of costs. Notice that
we write s® (x — V) to denote I, x}-state which properly extends s by mappiig the valuev.

We also have reduction rules for iteration, local variaptg®imkvarp construct, which do not incur
additional costs.

I - whilebdoM,s — if bthen (M; whilebdo M) elseskip, s
ryFMly/X,s@(y—v) —M.s@(y—V)

I F newpX:=VvinM,s— newp x:=V inM’[x/y],s
M- (mkvarD Mle) ‘=V,5s— M1V,S r I—!(mkvarD Mle),S—> My, s

Next, the in-context reduction rules for arbitrary terms defined as:
r=M,s—"M'.¢
I+ EM],s—"E[M'],
The small-step evaluation relation is deterministic, sintbitrary term can be uniquely partitioned into

an evaluation context and a sub-term, which is next to becestiu
We define the reflexive and transitive closure of the smalb-seduction relation as follows:

2A contextC[—] is a term with (several occurrences of) a hole in it, suchifhlat- M : T is a term of the same type as the
hole thenC[M] is a well-typed closed term of typ®m, i.e.- C[M] : com.

A. S. Dimovski 169

r-M,s—"M'.¢ FEM,s~"M'.§ TFM.,s~"M" ¢
r=M,s~~"M' s FEM, s~ M7 g

Now a theory of operational improvement is defined [19]. Lét M : com be a term, wher€ is a
var-context. We say tha¥l terminates in n stepat state s, writtetM, s |}", if [= M, s~" skip,s for
some state’s If M is a closed term ant¥,0 ||, then we writeM |". If M " andn < r/, we write
M |=". We say that a terri - M : T may beimprovedby I - N : T, denoted by + M 2 N, if and only
if for all contextsC[—], if C[M] |" thenC|[N] {=". If two terms improve each other they are considered
improvment-equivalentienoted by - M = N.

Let,A- M : T be aterm wheré is avar-context andA is an arbitrary context. Such terms are
calledsplit terms and we denote them &s| AF- M : T. If A is empty, then these terms are calksini-
closed The semi-closed terms have only some global variablesthendperational semantics is defined
only for them. We say that a semi-closed teimvarD | — - M : com does not havéiming leaksif the
initial value of the high-security variabledoes not influence the number of reduction stepsloMore
formally, we have:

Definition 1. A semi-closed term tvarD | — - M : com has notiming leaksif

Vs, € St({h}). si(h) #s2(h) A
h:varDFM,s; ~M skip,s;’ Ah:varD - M, s ~M skip, s’ (D)
=N =N

Definition 2. We say that asplit termh: varD | A+ M : com does not have timing leaks, wheke=
X1:Ta,...,X: Tk, if for all closed terms- N3 : Ty,...,F Nk : Ty, we have that the term hvarD | — F
MI[N1/X,...,Nk/X] : com does not have timing leaks.

The formula (1) can be replaced by an equivalent formula,revivesstead of two evaluations of the
same term we can consider only one evaluation of the segli@atinposition of the given term with
another its copy [3]. So sequential composition enable® ydace these two evaluations one after the
other. Leth: varD - M : com be a term, we defin®!’ to bea-equivalent taV [/h] where all bound vari-
ables are suitable renamed. The following can be shtmnM, s; ~"skip, s’ A N - M’,s; ~" skip, s,
iff h,h FM; M1 @5~ skip; skip,s1’ ® S/. In this way, we provide an alternative definition to
formula (1) as follows. We say that a semi-closed térm- - M : T has natiming leaksif

Vs € St({h}),s2 € S{{N'}). si(h) # s2(h) A
hh =M; M, 51 @5, ~M skip; M', s’ @ S ~"M skip; skip, s’ ® &’
=N =N

()

3 Algorithmic Slot-Game Semantics

We now show how slot-game semantics fop kéan be represented algorithmically by regular-languages.
In this approach, types are interpreted as games, whichthavearticipants: the Player representing
the term, and the Opponent representing its context. A gamend) is defined by means of a set of
moves, each being either a question move or an answer mowh rgave represents an observable
action that a term of a given type can perform. Apart from nspemother kind of action, calleédken
(slot), is used to take account of quantitative aspectsrofdelt represents a payment that a participant
needs to pay in order to use a resource such as time. A congputatinterpreted as a play-with-
costs, which is given as a sequence of moves and token-aqgtieged by two participants in turns.

170 Slot Games for Detecting Timing Leaks of Programs

We will work here with complete plays-with-costs which repent the observable effects along with
incurred costs of a completed computation. Then a term iseftemtiby a strategy-with-costs, which
is a set of complete plays-with-costs. In the regular-laggurepresentation of game semantics [10],
types (arenas) are expressedbhabets of movesomputations (plays-with-costs) werds and terms
(strategies-with-costs) asgular-language®ver alphabets.

Each typeT is interpreted by an alphabet of movesr;, which can be partitioned into two subsets
of questions @) andanswers Ay). For expressions, we hav®e,,pj = {q} andAj,p) = D, i.e. there
are a question move to ask for the value of the expression and values fidrare possible answers.
For commands, we haveQ(.,m) = {run} and A, = {dong}, i.e. there are a question moven
to initiate a command and an answer malaneto signal successful termination of a command. For
variables, we haveQy,..p] = {read write(a) | a € D} and Ay,,pj = D U {0k}, i.e. there are moves
for writing to the variablewrite(a), acknowledged by the mowk, and for reading from the variable,
we have a question movead, and an answer to it can be any value fr@m For function types, we
have;zf[[BM BB = Zl<|<k~<27[+ </|g], where+ means a disjoint union of alphabets. We will use
superscrlpt tags to keep recoroi from which type of the disjonion each move comes from. We denote
the token-action by®. A sequence o token-actions® will be written as).

For any 3-normal) term we define a regular language specified bgxéended regular expression R
Apart from the standard operations for generating regupressions, we will use some more specific
operations. We define composition of regular expressivdsfined over alphabe* + %2 + {®} and
Sover#?+¢3+{@®} as follows:

Ry S={w[s/a?-b?] | weSa?-s-b? € R}

whereR s a set of words of the forra® - s- b?, such that?, b> € %2 ands contains only letters fromy*

and{@?}. Notice that the composition is defined ove® + €3+ {@®}, and all letters o2 are hidden.
The shuffle operatioR < S generates the set of all possible interleavings from wofd? and S, and
the restriction operatioR |+ (Rdefined overy and.«#’ C /) removes from words dR all letters from
.

If w, w are wordsmis a move, andR is a regular expression, define-w ~w = m-w -w, and
R~w ={w~Ww |we R}. Given a word with coste defined over + { @}, we define the underlying
word ofw asw’ = w \{@}, and the cost ofv asw | ,,= (@, which we denote alsw |=n.

The regular expression fort- M : T is denoted[l" - M : T] and is defined over the alphabefr) =
(Yxtrer gfﬁ,ﬂ) + o1+ {@}. Every word in[[l - M : T] corresponds to a complete play-with-costs in
the strategy-with-costs fdr-M: T.

Free identifiersx € " are interpreted by the copy-cat regular expressions, wtoadlain all possible
computations that terms of that type can have. Thus theyiggdhie most general closure of an open
term.

[r.x:Bf' = .. .BY = B*Fx:Bl —...B{— B] = _
9 (Y (oo > a-a))") aa
9eQqg) 1si<k 1€Qpg aehg] acA[g]

When a first-order non-local function is called, it may eedduany of its arguments, zero or more times,
and then it can return any value from its result type as an endvor example, the terffi’,x : expD* -
x: expD] is modelled by the regular expressian:q*- 3 nepn*- n.

The linear application is defined as:

[F,AFMN:T]=[AFN:BYg, [[F}—M Bl = TJ

A. S. Dimovski 171

Since we work with terms i8-normal form, function application can occur only when thedtion term
is a free identifier. In this case, the interpretation is thee as above except that we add the &ggt
corresponding to function application. Notice tkgj, denotes certain number & units that are needed
for a function application to take place. The contractidnx : T* M[x/x1,X/x,] : T']] is obtained from
[F,x1: T, % : T2 =M : T']], such that the moves associated witrandx, are de-tagged so that they
represent actions associated with

To represent local variables, we first need to define a (stpragll’ regular expressiorell, which
imposes the good variable behaviour on the local variabtecef, responds to eachrite(n) with ok,
and plays the most recently written value in responsedal, or if no value has been written yet then
answers theeadwith the initial valuev. Then we have:

cell, = (read- v)* EDwrlte k- (read-n)*)"

[T,x:varD - M]ocellf = ([[r X :varD FM]| N (cell§ o<t (g + @)")) |
[T Fnewpx:=vinM] = [[I,x: varD = M] o cell}y ~ kyar

DoarD]

Note that all actions associated wittare hidden away in the model aéw, sincex is a local variable
and so not visible outside of the term.
Language constants and constructs are interpreted asg$ollo

[v:expD]] ={q-v} [skip:com] = {run-done [diverge:com]=0

[op: exle x expD? — expD'] = q-Kop* G T mep M+ G2+ S nep NP (MoOpPN

[; : com® — com? — com] = run-runt - doné - kseq- run? - doné - done

[[if : expbool* — com? — com® — com] = run- kg - g - tt! - run?- doné - done+
run-ki - gt - ff1-run®- doné - done

[while : expbool* — com? — com]| = run- (ki - g* - tt* - run? - doné?)* - ki - g* - ff1 - done

[:=: varD! — expD? — com]| = ¥ nep FuN- Kasg- g2 - n? - write(n)* - ok! - done

[!: varD! — expD] = S nep 9 Kder - read' - n

Although it is not important at what position in a word costs placed, for simplicity we decide to attach
them just after the initial move. The only exception is thie fier sequential composition (;), where the
cost is placed between two arguments. The reason will baiegal later on.

We now show how slot-games model relates to the operati@mbstics. First, we need to show
how to represent the state explicitly in the modell Atate s is interpreted as follows:

[s:varD} x ... x varD¥] = cell)s%xl) DI... D cellz'(‘xk)
The regular expressioffg] is defined over the alphabest’[[xla oy T +£%[[VarD I and words ins]| are
such that projections ontg-component are the same as those of suitable Initiakzggl,, strategies.
Note that[g] is a regular expression without costs. The interpretationtoM : com at state s is:

[=MJ o [s] = ([= MIN([S] > (Feom) +®)")) lerr,

which is defined over the alphabetj..,; +{®}. The interpretation[l" - M] o [s] can be studied
more closely by considering words in which moves fre#f}; are not hidden. Such words are called
interaction sequencesFor any interaction sequencen -t-donex @ from [= M] o [s], wheret

is an even-length word over/r, we say that it leaves the stateifsthe last write moves in eack-
component are such that is set to the value’6g). For example, let s= (x — 1,y — 2), then the

172 Slot Games for Detecting Timing Leaks of Programs

following interaction:run- write(5)Y - ok - read- 1*- doneleaves the staté s- (x+— 1,y +— 5). Any two-
move word of the formrun - n* or write(n)* - ok’ will be referred to asitomic state operatioof .7ry.
The following results are proved in [11] for the full ICA (IAlys parallel compaosition and semaphores),
but they also hold for the restricted fragment of it.

Proposition 1. If ' = M : {com,expD} andl' - M,s —" M’, ¢, then for each interaction sequencd i
from [T = M’] o [S] (i is an initial move) there exists an interactionty-t ~ @ € [= M] o [[s] such
that t, is an empty word or an atomic state operationadf which leaves the staté.s

Proposition 2. If ' = M,s~"M’,§ then[r - Mo [S] > @ C [- M] o [s].
Theorem 1(Consistency) If M,s " then3w € [[I - M] o [s] such thaf w |= n and W = run-done .
Theorem 2 (Computational Adequacy)f 3w € [l - M] o [g] such that w |= n and W = run-done,
then M s ™.

We say that a regular expressiBris improved byS, denoted aR = S if Yw € R, 3t € S, such that
wh =tTand|w|>|t].
Theorem 3(Full Abstraction) ' =M = N iff [= M] = [= N].

This shows that the two theories of improvement based oratipaal and game semantics are iden-
tical.

4 Detecting Timing Leaks

In this section slot-game semantics is used to detect whatterm with a secret global variabtecan
leak information about the initial value bfthrough its timing behaviour.

For this purpose, we define a special commskid” which similarly asskip does nothing, but its
slot-game semantics igfskip”] = {run-#-done}, where # is a new special action, callddlimiter.
Since we verify security of a term by running two copies of siaene term one after the other, we will
use the commanskip” to specify the boundary between these two copies. In this wawill be able
to calculate running times of the two terms separately.

Theorem 4. Let h: varD | — - M : com be a semi-closed term, afd
R= [[k: expD I- newp h:=kinM); skip®; newp I :=kinM’ : com]] (3)

Any word of R is of the form w wy - #-ws such that wy |=| wy | iff M has no timing leaks, i.e. the fact
(2) holds.

Proof. Suppose that any woml € Ris of the formw = wj - #- w, such thatf wy |=| w, |. Let us analyse
the regular expressidr defined in (3). We have:

R= {run-kyar- ¢ V¥- Wy - Kseq- #- Kseq- Kvar - @€ - V- Wy - done|
run-w; - donec [[h+ M] o cell?, run-ws - donec [- M ocelll}

for arbitrary values/,v € D. In order to ensure that orlgeq unit of cost occurs before and after the
delimiter action kseqis played between two arguments of the sequential composis was described

in Section 3. Given thatun-w; - donec [h+ M] o cell? andrun-w; - donec [+ M’ o cell”y for any

3The free identifiek in (3) is used to initialize the variablésandh' to arbitrary values fronD.

A. S. Dimovski 173

v,V € D, by Computational Adequacy we have thdt (h — v) ||| and M/, (i — V) |*l. Since
| wy |=| wa |, it follows that the fact (2) holds.

Let us consider the opposite direction. Suppose that th¢Xabolds. The term in (3) ie-equivalent
to ki newp h:=kinnewp I :=kinM; skip”; M’. Consider[h, i - M; skip”; M'J o [(h— V)@ (K — V)],
wherev,V € D. By Consistency, we have thaw; € [h,h' - MJ] o [(h+— v) ® (W — V)] such that
| wi |= nandw; leaves the statéh— v;) @ (b — V), and3w, € [h,h' E M [o[[(h— vi) ® (K — V)]
such that w, |= n andw; leaves the statéh— v;) @ (h' — V;). Any wordw € R is obtained fromw;
andw;, as above|(w; |=| w; |), and so satisfies the requirements of the theorem. O

We can detect timing leaks from a semi-closed term by varifithat all words in the model in (3)
are in the required form. To do this, we restrict our attantaly to the costs of words iR.

Example 1. Consider the term:
h:varinty Fif (Th > 0)thenh:=!h+1; elseskip : com
The slot-game semantics of this term extended as in (3) is:

This model includes all possible observable interactidriieeterm with its environment, which contains
only the identifierk, along with the costs measuring its running time. Note thaffirst value fok read
from the environment is used to initialize while the second value fdris used to initializeY.

By inspecting we can see that the model contains the word:

run - Kyar - qk -0k Kseq- #- Kseq Kvar - qk -1k Kger - Ky - done

which is not of the required form. This word (play) corresgsro two computations of the given term
where initial values oh are 0 and 1 respectively, such that the cost of the second wtatign has
additionalkger + Ky units more than the first one. O

We now show how to detect timing leaks of a split (open) térnvarD | A+ M : com, whereA =
X1 : T1,...,%: Tk. To do this, we need to check timing efficiency of the follogiimodel:

[h,H s varD - M[Ny /X1, ..., Ni/x]; skip®; M/[N1/xq, ..., Ni/]] 4)

at state(h — v,h’ — V), for any closed terms Nj : Ty,...,F Nk : Ty, and for any values,V € D. As
we have shown slot-game semantics respects theory of @pedaimprovement, so we will need to
examine whether all its complete plays-with-castse of the forrs; - #- s, where| s; |=| s, |. However,
the model in (4) can not be represented as a regular langsadtezan not be used directly for detecting
timing leaks.

Let us consider more closely the slot-game model in (4). $&irandM’ are run in the same context
A, which means that each occurrence of a free identififrom A behaves uniformly in botM andM’.
So any complete play-with-costs of the model in (4) will beoa@atenation of complete plays-with-costs
from models forM andM’ with additional constraints that behaviours of free idés fromA are the
same inM andM’. If these additional constraints are removed from the alnovdel, then we generate
a model which is an over-approximation of it and where framtidiers fromA can behave freely iM
andM’. Thus we obtain:

[, varD B M[Ny/Xq, ..., Ni/x]; skip”; M/[Ny/xq, ..., Ni/xd]] €
[h, bz varD F M; skip®; M/[Ny/xq, ..., Ni/X]]

174 Slot Games for Detecting Timing Leaks of Programs

If - N1:Ty,..., Ng: T are arbitrary closed terms, then they are interpreted bwtiigte(copy-cat)
strategies corresponding to their types, and so we have:

[h,H :varD F M; skip; M/[N1 /X1, ..., Ne /] = [h, b : varD,A - M; skip®; M|

This model is a regular language and we can use it to deteiciilmaks.
Theorem 5. Let h: varD | A+ M : com be a split (open) term, whet®=x; : Ty,...,X : Tk, and

S=[k: expD,AF newp h:=kinM; skip”; newph :=kinM’: com]] (5)

If any word of S is of the form w wy - #-wy such thatf wy |=| wa |, Then it varD | A M has no timing
leaks.

Note that the opposite direction in the above result doesolot That is, if there exists a word from
Swhich is not of the required form then it does not follow thahas timing leaks, since the found word
(play) may be spurious introduced due to over-approximaiticthe model in (5), and so it may be not
present in the model in (4).

Example 2. Consider the term:
h : varint,, f : expinty"t — com' - f(!h) : com

wheref is a non-local call-by-name function.
The slot-game model for this term is as follows:

run- kapp-run’ - (g1 - kger - read - (0"- 0" 4-1"- 171))* . donéd - done

Oncef is called, it may evaluate its argument, zero or more timed,then it terminates successfully.
Notice that moves tagged withrepresent the actions of calling and returning from the tiond , while
moves tagged with, 1 indicate actions of the first argumentfof

If we generate the slot-game model of this term extended € jnve obtain a word which is not in
the required form:

This word corresponds to two computations of the term, whigedirst one call$ which evaluates its
argument once, and the second chighich does not evaluate its argument at all. The first contjouta
will have the cost okger Units more that the second one. However, this is a spurioustesexample,
sincef does not behave uniformly in the two computations, i.e.llsdts argument in the first but not in
the second computation. O

To handle this problem, we can generate an under-appragimaf the model given in (4) which can
be represented as a regular languagehletrD | A+ M be a term derived without using the contraction
rule for any identifier fromA. Consider the following model:

[h,K :varD | AF M; skip®; MM = [, :varD | A+ M; skip®; M| N
(delta%‘m ... < delta%m > (A varDr-com] 7))

(6)

wherem > 0 denotes the number of times that free identifiers of functigpes may evaluate its argu-
ments at most. The regular expressideiart n, are used to repeat zero or once an arbitrary behaviour
for terms of typeT, and are defined as follows.

deltaepp,0 =0 SnepN- (E+0-N) deltacom o = run-done (£ +run-done
deltayapo = (read- Yncpn- (€+read-n)) + (3 nepWrite(n) - ok- (€ + write(n) - ok))

A. S. Dimovski 175

If T is a first-order function type, thefeltar n will be a regular language only when the number of times
its arguments can be evaluated is limited. For example, we thet:

m
= run- Zo(run1 -doné)" -done (¢4 run- (runt-doné)" - done

r=

delta

coml—comm

If T is a function type wittk arguments, then we have to remember not only how many tingesreants
are evaluated in the first call, but also the exact order irclvhrguments are evaluated.

Notice that we allow an arbitrary behavior of typeo be repeated zero or oncedaltaT m, since it
is possible that depending on the current valub ah occurrence of a free identifier frofnto be run in
M but not inM’, or vice versa. For example, consider the term:

h:varinty | X,y : expint, F newint, Z:=0inif ('h > 0) then z:=Xelse 2=y +1

This term has timing leaks, and the corresponding coui@mele contains only one interaction with
occurred in a computation, and one interaction wittccurred in the other computation. This counter-
example will be included in the model in (6), onlydéltat m is defined as above.

Leth:varD | AF M be an arbitrary term where identifiers fralnmay occur more than once in
M. Leth:varD | A; F M; be derived without using the contraction by, such thath: varD | AF M
is obtained from it by applying one or more times the contoactule for identifiers fromA. Then
[h,h :varD | A M; skip”; M’]™is obtained by first computinfj, Y : varD | A; - My; skip”; M]™ as
defined in (6), and then by suitable tagging all moves astmtiaith several occurrences of the same
identifier fromA as described in the interpretation of contraction. We hhae t

[n,1 :varD,AF M; skip”; M/J™ C [h,l : varD = M[Ng/Xq, ..., Ne/%]; skip®; M/[Ny/Xq, ..., Nk/Xd]]

for anym> 0 and arbitrary closed termisN1 : Tq, ..., Nk : Tk.

In the case thak contains only identifiers of base typBsvhich do not occur in anwhile-subterm of
M, then in the above formula the subset relation becomes tadiggfor m= 0. If a free identifier occurs
in awhile-subterm oM, then it can be called arbitrary many timedvin and so we cannot reproduce its
behaviour inV’.

Theorem 6. Let h: varD|A+ M be a split (open) term, whe®= x;: Ty, ..., X: Tk, and
T= [k:expD,AF newph:=kinM; skip”; newph :=kinM’: com]™ (7)
(i) LetA contains only identifiers of base types B, which do not oataniywhile-subterm of M. Any

word of T (where m= 0) is of the form w-#-w, such that wy |=| w, | iff M has no timing leaks.

(i) LetA be an arbitrary context. If there exists a word=aw; - #-w, € T such thaf wy |#|wz |, Then
M does have timing leaks.

Note that if a counter-example witnessing a timing leakadeund, then it provides a specific context
A, i.e. a concrete definition of identifiers frafy) for which the given open term have timing leaks.

5 Detecting Timing-Aware Non-interference

The slot-game semantics model contains enough inform&iaheck the non-interference property of
terms along with timing leaks. The method for verifying trenrinterference property is analogous to

176 Slot Games for Detecting Timing Leaks of Programs

the one described in [8], where we use the standard game sesnarodel. As slot-game semantics
can be considered as the standard game semantics augméihtedeannformation about quantitative
assessment of time usage, we can use it as underlying maddefiection of both non-interference
property and timing leaks, which we céilining-aware non-interference

In what follows, we show how to verify timing-aware non-irfezence property for closed terms. In
the case of open terms, the method can be extended straigutfthy by following the same ideas for
handling open terms described in Section 4.

Let|:varD,h:varD’ - M : com be a term wheré and h represent low- and high-security global
variables respectively. We defifig =1:varD,h:varD’, "} =1":varD,H : varD’, andM’ is a-equivalent
to M[I’/I,h’ /h] where all bound variables are suitable renamed. We say thiat- - M : com satisfies
timing-aware non-interferencé

Vs € StI1),5 € SKM). si(l) =s(I') Asi(h) # () A
F1FM; M, 5105~ skip; M, 51" ® s, ~~" skip; skip,s1’ @ 5’
=5 =51) An=mn

Suppose thadbort is a special free identifier of typ®m?2°°tin I'. We say that a terrfi - M is safe
iff I - M|skip/abort] © M[diverge/abort] 4; otherwise we say that a termussafe It has been shown in
[5] that a terml” - M is safe iff [- M] does not contain any play with moves fro;wﬁabort, which we

com]
call unsafe plays. For examplbort : com?°™t |- skip; abort : com]] = run - run?°. doné®°". dong
so this term is unsafe.
By using Theorem 4 from Section 4 and the corresponding tréssutiosed terms from [8], it is easy
to show the following result.

L = [k: expD,K : expD’,abort : com + newp | :=kinnewp h:=K'in
newp I’ :=!linnewp h":=K'in (8)
skip™: M; skip®; M’; skip®; if (1l £!1")then abort : com]]

The regular expression contains no unsafe word (plays) and all its words are of the fo = w; - #-

W, - #- Wz - #-wy such that wo |=| ws | iff M satisfies the timing-aware non-interference property.
Notice that the free identifigt in (8) is used to initialize the variablésandl’ to any value fronD

which is the same for bothand!’, while K’ is used to initializeh andh’ to any values fronD’. The last

if command is used to check valuesl @ndl’ in the final state after evaluating the term in (8). If their

values are different, thexbort is run.

6 Application

We can also represent slot-game semantics model . 0byAusing the CSP process algebra. This can be
done by extending the CSP representation of standard ganasies given in [6], by attaching the costs
corresponding to each translation rule. In the same way,ave hdapted the verification tool in [6] to
automatically convert an lAterm into a CSP process [17] that represents its slot-gamargés. The
CSP process outputted by our tool is defined by a script in maagkadable CSP which can be analyzed
by the FDR tool. It represents a model checker for the CSPegmalgebra, and in this way a range of
properties of terms can be verified by calls to it.

4C denotes observational approximation of terms (see [1])

A. S. Dimovski 177

Figure 1: Slot-game semantics for the linear search kwith

In the input syntax of terms, we use simple type annotationglicate what finite sets of integers will
be used to model free identifiers and local variables of tgpegier. An operation between values of types
intn, andintn, produces a value of typi@tmayn, n,3- The operation is performed moduteax{ng, nz}.

In order to use this tool to check for timing leaks in terms,veed to encode the required property
as a CSP process (i.e. regular-language). This can be ddnéd we know the cost of the worst plays
(paths) in the model of a given term. We can calculate the tazase cost of a term by generating its
model, and then by counting the number of tokens in its play® property we want to check will be:
Sito@®-#- @, wheren denotes the worst-case cost of a term.

To demonstrate practicality of this approach for automatrification, we consider the following
implementation of the linear-search algorithm.

h: varinty, x[K] : varint -
newint, a[K] :=0in
NeWing,, 1 :=0in
while (i < K)do{ai] :=!X[i]; i:=li+1;}
newint, y:='hin
newpgolpresent= ff in
while (i < k&& —presenjdo{
if (comparé!a(i],!y)) then present= tt;
i=li+1;
} 1com
The meta variablé& > O represents the array size. The term copies the input &iirdyg a local arraya,
and the input value df into a local variabley. The linear-search algorithm is then used to find whether
the value stored iy is in the local array. At the moment when the value is founchimdrray, the term
terminates successfully. Note that arrays are introdutdigel model as syntactic sugar by using existing
term formers. So an arragk] is represented as a setloflistinct variablex(0], ..., xk— 1] (see [6, 10]
for details).
Suppose that we are only interested in measuring the efficieithe term relative to the number of
compareoperations. It is defined as follove®mpare: expint, — expint, — expbool, and its semantics
compares for equality the values of two arguments with @st

[compare: expint — expint3 — expbool] = q- @ - g (FmznMt- 7 - n?-ff) + (T oMt - g2 - n?- tt)

wherem,n € {0,1}. We assume that the costs of all other operations are relathegligible (e.g.
kvar:kder:---zo)-

178 Slot Games for Detecting Timing Leaks of Programs

We show the model for this term with= 2 in Fig. 1. The worst-case cost of this term is equal to
the array’s siz&k, which occurs when the search fails or the valué &f compared with all elements of
the array. We can perform a security analysis for this terradnsidering the model extended as in (7),
wherem = 0. We obtain that this term has timing leaks, with a countamgple corresponding to two
computations, such that initial valuestoére different, and the search succeeds in the one after aely o
iteration ofwhile and fails in the other. For example, this will happen whervallles in the array are
0’s, and the value di is O in the first computation and 1 in the second one.

We can also automatically analyse in an analogous way teitmesenthe array sizkis much larger.
Also the set of data that can be stored into the global variabihd arrayx can be larger thaf0, 1}. In
these cases we will obtain models with much bigger numbetatés, but they still can be automatically
analysed by calls to the FDR tool.

7 Conclusion

In this paper we have described how game semantics can befarsegtifying security properties of
open sequential programs, such as timing leaks and noriergace. This approach can be extended to
terms with infinite data types, such as integers, by usingesohthe existing methods and tools based
on game semantics for verifying such terms. Counter-exargpided abstraction refinement procedure
(ARP) [5] and symbolic representation of game semanticsaii@diare two methods which can be used
for this aim. The technical apparatus introduced here appibt only to time as a resource but to any
other observable resource, such as power or heating of tteegsor. They can all be modeled in the
framework of slot games and checked for information leaks.

We have focussed here on analysing the IA language, but weasily extend this approach to any
other language for which game semantics exists. Since dlibfract game semantics was also defined
for probabilistic [4], concurrent [12], and programs witkceptions [1], it will be interesting to extend
this approach to such programs.

References

[1] Abramsky, S., and McCusker, G: Game Semantics. In Pdinge ofthe 1997 Marktoberdorf Summer
School: Computational Logic(1998), 1-56. Springer.

[2] Agat, J: Transforming out Timing Leaks. In: Wegman, M.Reps, T.W. (eds.) POPL 2000. ACM, pp.
40-53. ACM, New York (2000), doi:10.1145/325694.325702.

[3] Barthe, G., D’'Argenio, P.R., Rezk, T: Secure informatitow by self-composition. In: IEEE CSFW
2004. pp. 100-114. IEEE Computer Society Press, (20041 @4il109/CSFW.2004.17.

[4] V. Danos and R. Harmer. Probabilistic Game Semantic®rateedings of LICS 2000. 204-213. IEEE
Computer Society Press, Los Alamitos (2000), doi:10.111ka2%.2000.855770.

[5] Dimovski, A., Ghica, D. R., Lazi¢, R. Data-Abstracti®tefinement: A Game Semantic Approach. In:
Hankin, C., Siveroni, I. (eds.) SAS 2005. LNCS vol. 3672, pp2—-117. Springer, Heidelberg (2005),
doi:10.1007/11547663.

[6] Dimovski, A., Lazi€¢, R: Compositional Software Verifiton Based on Game Semantics and Process
Algebras. Inint. Journal on STTB(1), pp. 37-51, (2007), doi:10.1007/s10009-006-0005-y.

[7] Dimovski, A: Symbolic Representation of Algorithmic @& Semantics. In: Faella, M., Mu-
rano, A. (eds.) GandALF 2012. EPTCS vol. 96, pp. 99-112. Gpelplishing Association, (2012),
doi:10.4204/EPTCS.96.8.

A. S. Dimovski 179

[8] Dimovski, A: Ensuring Secure Non-interference of Preogs by Game Semantics. Submitted for pub-
lication.

[9] Cartwright, R., Curien, P. L., and Felleisen, M: Fullysatact semantics for observably sequential
languages. Iitnformation and Computatioh11(2) pp. 297-401, (1994), doi:10.1006/inc0.1994.1047.

[10] Ghica, D. R., McCusker, G: The Regular-Language Seitanf Second-order Idealized Algol. Theo-
retical Computer Scienc#09(1-3), pp. 469-502, (2003), d0i:10.1016/S0304-3975@3)6-3.

[11] Ghica, D. R. Slot Games: a quantitative model of comiporta In Palsberg, J., Abadi, M. (eds.) POPL
2005. ACM, pp. 85-97. ACM Press, New York (1998), doi:10.3/14940305.1040313.

[12] Ghica, D. R., Murawski, A: Compositional Model Extramt for Higher-Order Concurrent Programs.
In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS @03 pp. 303-317. Springer, Heidelberg
(2006), d0i:10.1007/116913720.

[13] Goguen, J., Meseguer, J: Security polices and seamogels. In: IEEE Symp. on Security and Privacy
1982. pp. 11-20. IEEE Computer Society Press, (1982).

[14] Heintze, N., Riecke, J.G: The SLam calculus: prograngmwith secrecy and integrity. In:
MacQueen, D.B., Cardelli, L. (eds.) POPL 1998. ACM, pp. 3B~ ACM, New York (1998),
doi:10.1145/268946.268976.

[15] Joshi, R., and Leino, K.R.M: A semantic approach to seauformation flow. InScience of Computer
Programming37, pp. 113-138, (2000), d0i:10.1016/S0167-6423(99)00R24-

[16] Reynolds, J. C: The essence of Algol. In: O'Hearn, P.ig &ennent, R.D. (edshlgol-like languages
(Birkhauser, 1997).

[17] Roscoe, W. A:Theory and Practice of Concurrencirentice-Hall, 1998.

[18] Sabelfeld, A., and Myers, A.C: Language-based infaromaflow security. In IEEEJournal on Selected
Areas in Communicatiorsl (1), (2003), 5-19, doi:10.1109/JSAC.2002.806121.

[19] Sands, Dimprovement Theory and its Application@ambridge University Press, 1998.

[20] Volpano, D., Smith, G., and Irvine, C: A sound type systior secure flow analysis. ldournal of
Computer Securit¢(2/3), (1996), 167—-188, d0i:10.3233/JCS-1996-42-304.

[21] Volpano, D., Smith, G: Eliminating covert flows with nimum typings. In: IEEEComputer
Security Foundations Workshop (CSFWR97, 156-169. IEEE Computer Society Press, (1997),
doi:10.1109/CSFW.1997.596807.

Social Network Games with Obligatory Product Selection

Krzysztof R. Apt Sunil Simon

Centre for Mathematics and Computer Science (CWI), Centre for Mathematics and Computer Science (CWI)
ILLC, University of Amsterdam, The Netherlands

k.r.apt@cwi.nl

s.e.simon@cwi.nl

Recently, we introduced in [1] a model for product adoptiesdcial networks with multiple prod-
ucts, where the agents, influenced by their neighbours, daptane out of several alternatives
(products). To analyze these networks we introduce soetalark games in which product adoption
is obligatory.

We show that when the underlying graph is a simple cyclegtiea polynomial time algorithm
allowing us to determine whether the game has a Nash equitibdn contrast, in the arbitrary case
this problem is NP-complete. We also show that the problemletérmining whether the game is
weakly acyclic is co-NP hard.

Using these games we analyze various types of paradoxesahatrise in the considered net-
works. One of them corresponds to the well-known Braessdoaran congestion games. In partic-
ular, we show that social networks exist with the propergt thy adding an additional product to
a specific node, the choices of the nodes will unavoidablyvevim such a way that everybody is
strictly worse off.

1 Introduction

Social networks became a huge interdisciplinary researeh &ith important links to sociology, eco-
nomics, epidemiology, computer science, and mathematidturry of numerous articles, notably the
influential [11], and books, e.g., [7, 3], helped to delimeheétter this area. It deals with many diverse
topics such as epidemics, spread of certain patterns aildmthaviour, effects of advertising, and emer-
gence of ‘bubbles’ in financial markets.

Recently, we introduced in [Hocial networks with multiple products which the agents (players),
influenced by their neighbours, can adopt one out of sevéghatives (products). To study the situa-
tion when the product adoption is obligatory we introduceshsocial network games in which product
adoption is obligatory. An example of a studied situatiowigen a group of people chooses an obliga-
tory ‘product’, for instance, an operating system or a nmebthone provider, by taking into account the
choice of their friends. The resulting games exhibit théfeing join the crowdproperty:

the payoff of each player weakly increases when more playferese his strategy.

that we define more precisely in Subsection 2.3.

The considered games are a madification of the strategic gémewe recently introduced in [14]
and more fully in [15], in which the product adoption was optl. The insistence on product selection
leads to a different analysis and different results tharoties reported there. In particular, Nash equilib-
ria need not exist already in the case when the underlyinghgsaa simple cycle. We show that one can
determine in polynomial time whether for such social nelwga Nash equilibrium exists. We prove that
for arbitrary networks, determining whether a Nash equiliin exists is NP-complete. We also show
that for arbitrary networks and for networks whose undegygraph has no source nodes, determining
whether the game is weakly acyclic is co-NP hard.

Gabriele Puppis, Tiziano Villa (Eds.): Fourth Interna@bn © Krzysztof R. Apt & Sunil Simon
Symposium on Games, Automata, Logics and Formal Verifinatio This work is licensed under the
EPTCS 119, 2013, pp. 180-193, doi:10.4204/EPTCS.119.16 Creative Commons Attribution License.

Krzysztof R. Apt & Sunil Simon 181

The considered social networks allow us to analyze vari@radoxes that were identified in the
literature. One example is thEaradox of choicdirst formulated in [13]. It has been summarised in [6,
page 38] as follows:

The more options one has, the more possibilities for expeirig conflict arise, and the
more difficult it becomes to compare the options. There isiatpshere more options,
products, and choices hurt both seller and consumer.

The point is that consumers choices depend on their frieamutd’acquaintances’ preferences.

Another example is a ‘bubble’ in a financial market, where eisien of a trader to switch to some
new financial product triggers a sequence of transacti@e result of which all traders involved become
worse off.

Such paradoxes are similar to the renowned Braess paradoR sthtes that in some road networks
the travel time can actually increase when new roads aredadde, e.g., [12, pages 464-465] and a
‘dual’ version of Braess paradox that concerns the remoivabad segments, studied in [4, 5]. Both
paradoxes were studied by means of congestion games. Houvegentrast to congestion games, Nash
equilibria do not need to exist in the games we consider l@@rasequently, one needs to rely on different
arguments. Moreover, there are now two new types of paradired correspond to the situations when
an addition, respectively, removal, of a product can leaagame with no Nash equilibrium.

For each of these four cases we present a social networkthddits the corresponding paradox.
These paradoxes were identified first in [2] in the case wheadoption of a product was not obligatory.
In contrast to the case here considered the existence afrayest paradox within the framework of [2]
remains an open problem.

2 Preliminaries

2.1 Strategic games

A strategic gamdor n > 1 players, written a$S;,..., S, p1,---,Pn), consists of a non-empty sgtof
strategiesand apayoff functionp; : S; x --- x §,— R, for each player.

Fix a strategic gamé& := (Sy,..., S, P1,---, Pn). We denotes; x - - - x §, by S call each elemerge S
ajoint strategy denote theth element o6 by s, and abbreviate the sequer{sg) ;i tos_;j. Occasionally
we write (s,5_i) instead ofs.

We call a strategys of playeri a best responséo a joint strategys_; of his opponents if/'s
S pi(s,s.i) > pi(5,s-i). We call ajoint strategg a Nash equilibriumif eachs is a best response $o;.
Further, we call a strategy of playeri abetter responsegiven a joint strateggif pi(s,s_i) > pi(s,S-i).

By a profitable deviationwe mean a paifs,s) of joint strategies such that= (s,s_;) for somes
andp;(s) > pi(s). Following [10], animprovement pathis a maximal sequence of profitable deviations.
Clearly, if an improvement path is finite, then its last eletis a Nash equilibrium. A game is called
weakly acyclig(see [16, 9]) if for every joint strategy there exists a finitgprovement path that starts at
it. In other words, in weakly acyclic games a Nash equiliirican be reached from every initial joint
strategy by a sequence of unilateral deviations. Given tivit trategies ands' we write

e s>difforalli, pi(s) > pi(s).

Whens > s holds we say that' is strictly worsethans.

182 Social Network Games with Obligatory Product Selection

2.2 Social networks

We are interested in strategic games defined over a spegiBafysocial networks introduced in [1] that
we recall first.

LetV = {1,...,n} be a finite set ohgentsandG = (V,E,w) a weighted directed graph withj €
[0,1] being the weight of the edge, j). Given a node of G, we denote byN(i) the set of nodes from
which there is an incoming edge o We call eachj € N(i) a neighbourof i in G. We assume that
for each node such thatN(i) # 0, ¥ jene)Wji < 1. An agent €V is said to be aource noden G if
N(i) = 0. Given a (to be defined) network’ we denote bysource€.”) the set of source nodes in the
underlying grapliG.

By asocial network(from now on, jusinetwork we mean a tuple” = (G, £, P, 8), where

G is a weighted directed graph,

e Zis afinite set of alternatives @roducts

P is function that assigns to each ageatnon-empty set of producki) from which it can make
a choice,

0 is athreshold functionthat for each € V andt € P(i) yields a valued(i,t) € (0,1].

{ta}

0.5
1ttt}
05 05
{t2.,t3} / \{tl 13}
fle) =543 05 2=a

Figure 1: A social network

Example 1. Figure 1 shows an example of a network. Let the threshold ®&00 all nodes. The set of
products?’ is {t1,t,,t3,t4}, the product set of each agent is marked next to the nodeidgriband the
weights are labels on the edges. Each source node is refmédsrihe unique product in its product set.
O

Given two social networks” and.”” we say that¥” is anexpansionof . if it results from adding
a product to the product set of a nodedfi We say then also tha¥ is acontractionof ..

2.3 Social network games

Next, introduce the strategic games over the social nesvoilhey form a modification of the games
studied in [14, 15] in that we do not admit a strategy represgrthe fact that a player abstains from
choosing a product.

Fix a network.” = (G, 2, P, 8). With each network” we associate a strategic gaf#ié). The
idea is that the agents simultaneously choose a producte§ubntly each node assesses his choice by
comparing it with the choices made by his neighbours. Fdymak define the game as follows:

¢ the players are the agents (i.e., the nodes),

e the set of strategies for playeis § := P(i),

Krzysztof R. Apt & Sunil Simon 183

e ForieV,teP(i)and a joint strategsg, let .4 (s) := {j € N(i) | s; =t}, i.e., . 4'(s) is the set of
neighbours of who adopted irs the product.
The payoff function is defined as follows, whaxgis some given in advance positive constant:

— fori € sourcé.v),
pi(S) == Co,
— fori ¢ sourcéd.”),
pi(s):== S w;ji—0(i,t),wheres =t andt € P(i).
jeA(s)

In the first case we assume that the payoff function for thecgouodes is constant only for simplicity.
The second case of the payoff definition is motivated by tleving considerations. When ageinis
not a source node, his ‘satisfaction’ from a joint strateggehds positively from the accumulated weight
(read: ‘influence’) of his neighbours who made the same ewaschim, and negatively from his threshold
level (read: ‘resistance’) to adopt this product. The ag#tion that6(i,t) > O reflects the view that there
is always some resistance to adopt a product.

We call these gamesocial network games with obligatory product selectjdn short,social net-
work games

Example 2. Consider the network given in Example 1 and the joint stsategghere each source node
chooses the unique product in its product set and nodes I 3 ahoosd;, t3 andt, respectively. The
payoffs are then given as follows:

e for the source nodes, the payoff is the fixed constgnt
pi(s) =05-0.3=0.2,
p2(s) =0.4—0.3=0.1,
p3(s) =0.4—-0.3=0.1.

Let ' be the joint strategy in which player 3 chooggsnd the remaining players make the same
choice as given irs. Then(s,s) is a profitable deviation sincps(s’) > ps(s). In what follows, we
represent each profitable deviation by a node and a stratsgytches to, e.g., 3t3. Starting ats, the
sequence of profitable deviations 8,1 : t4 is an improvement path which results in the joint strategy
in which nodes 1, 2 and 3 chookgts andts respectively and, as before, each source node chooses the
unique product in its product set. O

By definition, the payoff of each player depends only on thatsgies chosen by his neighbours, so
the social network games are related to graphical games|.oH8wever, the underlying dependence
structure of a social network game is a directed graph. Egrtfote that these games satisfy jibia the
crowd property that we define as follows:

Each payoff functiorp; depends only on the strategy chosen by plaged the set of players
who also chose his strategy. Moreover, the dependence oaeghis monotonic.

The last qualification is exactly opposite to the definitidrcongestion games with player-specific
payoff functions of [9] in which the dependence on the abatdssantimonotonic. That is, when more
players choose the strategy of playethen his payoff weakly decreases.

3 Nash equilibria

The first natural question we address is whether the sodialonke games have a Nash equilibrium.

184 Social Network Games with Obligatory Product Selection

3.1 Simple cycles

In contrast to the case of games studied in [14] the answeegative already for the case when the
underlying graph is a simple cycle.

Example 3. Consider the network given in Figure 2, where the producteaich agent is marked next
to the node denoting it and the weights are all equal and plabas on the edges.

1 {tate}

{tat1} / \ {213}

B2
Figure 2: A simple cycle no Nash equilibrium

Let the thresholds be defined as follov1,t;) = 0(2,ty) = 6(3,t3) =rp andB(1,ty) = O(2,t3) =
0(3,t1) =ro wherery > rp. We also assume that> r; —rp. Hence for alls; andss

P1(t1, S,t1) > pi(tz, S,) > Pa(ty, S, 13)

and similarly for the payoff functiong, and pz. So it is more profitable for playerto adopt strategy
provided its neighbour also adoftts

It is easy to check that the game associated with this nethaskno Nash equilibrium. Indeed, here
is the list of all the joint strategies, where we underline #trategy that is not a best response to the
choice of other pIayers(Il,t_z,tl), (tl,t_z,tg), (tl,tg,t_l), (t_l,tg,tg), (t_z,tz,t]_), (tz,tz,t_g), (t_z,t3,t1), (tz,t_3,t3).
O

This example can be easily generalized to the case of amaayb@imple cycle. Below, 1 andio1
stand for addition and subtraction defined cyclically overset{1,...,n}. Son@l=1and I©1=n.
Indeed, consider a social network witmodes that form a simple cycle and assume that each player
has strategie andtjs;;. Choose for each playethe weightswaio ;i and the threshold functioé(i,t) so
that

Wis1i — 0(i,t) > —0(i,tig1) > —0(i,t),

so that (we put on first two positions, respectively, thetstgi@s of players © 1 andi, while the last
argument is a joint strategy of the remainimg 2 players)

pi(ti,ti,s) > pi(t' tiw1,S) > pitics,ti,s’),

wheret’,s, s ands’ are arbitrary. It is easy to check then that the resultingesoetwork game has no
Nash equilibrium.

A natural question is what is the complexity of determininigether a Nash equilibrium exists. First
we consider this question for the special case when the iymaggraph is a simple cycle.

Theorem 4. Consider a network” whose underlying graph is a simple cycle. It takg® Q.2|*) time
to decide whether the ganm¥(.”) has a Nash equilibrium.

Proof. Suppose¥ = (G, Z,P,0). When the underlying graph of is a simple cycle, the concept of a
best response of playe® 1 to a strategy of playeris well-defined. Let

R = {(ti,tiw1) | ti € P(i),tie1 € P(i®1),ti1 is a best response tgd,

Krzysztof R. Apt & Sunil Simon 185

= {(t,t) |t € 2},

and leto stand for the composition of binary relations.

The question whethe# (') has a Nash equilibrium is then equivalent to the problem hdrehere
exists a sequena@®, ...,a, such that(a;,az) € Ry, ..., (a&-1,a) € Ry_1,(an,a1) € R,. In other words, is
(Rio---oRy) NI non-empty?

To answer this question we first construct successirelyl composition®R; oRy, (R1oRz)oRs, ...
('-'(RloRZ)"'ORn—l)ORn-

Each composition construction can be carried olt#i* steps. Indeed, given two relatioAsB C & x
2, to compute their compositioAo B requires for each paifa,b) € A to find all pairs(c,d) € B such
thatb = c. Finally, to check whether the intersectionRyfo - - - o R, with | is non-empty requires at most
| 2| steps.

So to answer the original question tak@@- | #|*) time. O

Note that this proof applies to any strategic game in whielnelis a reordering of playerg1),.. ., (n)
such that the payoff of playert(i) depends only on his strategy and the strategy chosen byrpiéyei).

It is worthwhile to note that for the case of simple cycleg éxistence of Nash equilibrium in the
associated social network game does not imply that the gameadkly acyclic.

1 {tutota} <t17t37t,1> - (let3) = (t21t§st3)
W W ﬂ ﬂ
{ta,tr,ta} {to.t3,ta} (it 1) <= (tat2t1) <= (t2.t2,t3)
3 m 2
() (b)

Figure 3: A simple cycle and an infinite improvement path

Example 5. Consider the network in Figure 3(a) which is a modificatiorthed network in Figure 2.
We add a new produdf, to the product set of all the nodésvith 6(i,t;) > r1. We also assume that
w— 0(i,t4) > —ro. Then the joint strategyty, t4,t4) is a Nash equilibrium. However, Figure 3(b) shows
the unique improvement path starting(iq, ts,t;) which is infinite. For each joint strategy in the figure,
we underline the strategy that is not a best response. Tbigsstihat the game is not weakly acyclic]

In Section 4 we shall study the complexity of checking whethaocial network game is weakly
acyclic.

3.2 Arbitrary social networks

In this section we establish two results which show thatdiegi whether a social network has a Nash
equilibrium is computationally hard.

Theorem 6. Deciding whether for a social network’ the game? () has a Nash equilibrium is NP-
complete.

To prove the result we first construct another example of @boetwork game with no Nash equi-
librium and then use it to determine the complexity of thesttice of Nash equilibria.

Example 7. Consider the network given in Figure 4, where the producbeach agent is marked next
to the node denoting it and the weights are labels on the edgedes with a unique product in the
product set is simply represented by the product.

186 Social Network Games with Obligatory Product Selection

{t.}
Wi
1 {tte}

Wa Wa
{t2.ta} {tuts}
3 W3 2

Figure 4: A network with no Nash equilibrium

{te} —; W e}

We assume that each threshold is a constarwhere8 < w; < w»,. So it is more profitable to a
player residing on a triangle to adopt the product adoptelidpeighbour residing on a triangle than by
the other neighbour.

The game associated with this network has no Nash equitibrilt suffices to analyze the joint
strategies involving nodes 1, 2 and 3 since the other nodes dxeactly one product in their product
sets. Here we provide a listing of all such joint strategiasere we underline the strategy that is not a
best response to the choice of other playétists, t2), (t,t1,13), (t1,t3,t2), (t1,13,13), (t2,t1,t2), (t2,11,13),
(t2,13,12), (t2,13,13). In contrast, what will be of relevance in a moment, if we aegl{t,} by {t{}, then
the corresponding game has a Nash equilibrium, namely thegtrategy corresponding to the triple
(ta,t3,t3). O
Proof of Theorem 6As in [1], to show NP-hardness, we use a reduction from thecbiRplete PAR-
TITION problem, which is: givem positive rational numberéay, ..., a,), is there a se6 such that
Yies@ = Yigsd? Consider an instandeof PARTITION. Without loss of generality, suppose we have
normalised the numbers so thgt ; & = 1. Then the problem instance sounds: is there &sath that
Yiesdi = Yigsd = 3?

To construct the appropriate network we employ the netwgiken in Figure 4 and in Figure 5,
where for each nodiec {1,...,n} we setwi; = wi, = &, and assume that the thresholds of the nades
andb are constant and equ%]

{taty} {taty} {taty}
1 2 A
Wop

W1a Wnb

W2a Wip
ty,t] ty.t
{ 1 1} a W b{ 1}

Figure 5: A network related to the PARTITION problem

To finalize the construction we use two copies of the netwarkrgin Figure 4, one unchanged and
the other in which the produtt is replaced everywhere 1, and construct the desired netwagk by
identifying with the node marked bft; } in the network from Figure 4, the nodeof the network from
Figure 5 and with the node marked Bty } in the modified version of the network from Figure 4 the node
b.

Suppose that a solution to the considered instance of thd FABN problem exists, i.e., for some
setSC {1,...,n} we haveycsa = Yigsa = 3. Consider the gam@ (%) and the joint strategg
formed by the following strategies:

e t; assigned to each node Sin the network from Figure 5,
e t] assigned to each node {1,...,n}\ Sin the network from Figure 5,

Krzysztof R. Apt & Sunil Simon 187

e t] assigned to the nodesandt; to the nodeb,

e t, assigned to node 1 ang assigned to the nodes 2, 3 in both versions of the networks fro
Figure 4,

e t; andtz assigned respectively to the nodes markedtby and{ts}.

We claim thats is a Nash equilibrium. Consider first the player (i.e., node)The accumulated
weight of its neighbours who chose strategys % Therefore, the payoff foa in the joint strategys is
0. The accumulated weight of its neighbours who chose gyaids % as well. Therefor¢] is indeed
a best response for playaras both strategies yield the same payoff. For the same ressra best
response for playds. The analysis for the other nodes is straightforward.

Conversely, suppose that a strategy prafiise a Nash equilibrium ir(.#). From Example 7 it
follows thats, =t} ands, = t;. This implies that] is a best response of nodgto s_, and therefore
Yie{L..n}s=t, Wia = Yic{1... n}js=t; Wia- By @ similar reasoning, for nodewe haveyic(; . nyjs—t, Wib >
Sie(1,..njis—t Wib. Sincey L a =1 and fori € {1,...,n}, Wia = Wip = &, ands; € {t1,t;} we have for
S:i={ie{l,...,n} |s =t1}, Jics& = Jigsa. In other words, there exists a solution to the considered
instance of the partition problem. O

Theorem 8. For a network¥ whose underlying graph has no source nodes, deciding whitthgame
¢ () has a Nash equilibrium is NP-complete.

Proof. The proof extends the proof of the above theorem. Given darios of the PARTITION problem
we use the following modification of the network. We ‘twin’aanode € {1,...,n} in Figure 5 with a
new node’ with the product sefts,t; }, by adding the edges,i’) and(i’,i). We also ‘twin’ nodes marked
{t2} and{ts} in Figure 4 with new nodes with the product &t} and{t3} respectively. Additionally,
we choose the weights on the new edggs wi; and the corresponding thresholds so that whend

i” adopt a common product, their payoff is positive. Then theeulying graph of the resulting network
does not have any source nodes and the above proof remaih$ovahis new network. O

4 Weakly acyclic games

In this section we study the complexity of checking whethepeial network game is weakly acyclic.

We establish two results that are analogous to the onedisk&abin [15] for the case of social networks
in which the nodes may decide not to choose any product. Téwfpare based on similar arguments
though the details are different.

Theorem 9. For an arbitrary network?’, deciding whether the gan#é(.#) is weakly acyclic is co-NP
hard.

Proof. We again use an instance of the PARTITION problem in the fofm positive rational numbers
(a1,...,an) such thaty! ; & = 1. Consider the network given in Figure 6. For each niod€1,...,n}
we setP(i) = {t,to}. The product set for the other nodes are marked in the figusebefore, we set
Wia = Wip = §;.

Since for alli € {1,...,n}, & is rational, it has the forna; = :—'I Lett = Tlrn The following
property holds.

Property 1. Given an instancéay,...,a,) of the PARTITION problem anddefined as above, for all
SC{1,...,n}

188 Social Network Games with Obligatory Product Selection

1 2
Wy
C
R /

€ {t1.tz}

:
9 {tz}

{2t}

W1

W2 {t2.t3}

{tot2}

O<—0oO<——25

Figure 6: A network related to weakly acyclic games

(i) if Yiesa < 3, thenyjesa < 3 -7,
(ii) if Yicsai > 3, thenyicsa >3 +T.

Proof. By definition, eaclg; and% is a multiple oft. Thusyjcsa =X- T and% =y- T wherex andy are
integers.

(i) If x-T <y-T,thenx-T < (y—1) - T. Thereforey;csa < 3 — 1.

The proof of(ii) is analogous. O

Note that given(a,...,a,), T can be defined in polynomial time. Let the thresholds be defase
follows: B(a,t;) = 8(b,tz) = % and 0< B(a,ty) = O(b,t5) < 1. The threshold for nodesd ande s a
constanif; such tha; < wi < ws. Thus, like in the network in Figure 4, it is more profitableatplayer
residing on a triangle to adopt the product adopted by highteiur residing on a triangle than by the
other neighbour.

Suppose that a solution to the considered instance of the HAGN problem exists. That is, for
some seBC {1,...,n} we haveycsa = Y igsai = 1. Inthe gameZ(.7), take the joint strateggformed
by the following strategies:

¢ t; assigned to each node Sand the nodea andc,
e t assigned to each node {1,...,n}\ Sand the nodeb andd,
e t3 assigned to the nodesandg.

Any improvement path that starts in this joint strategy wik change the strategies assigned to the
nodesa,b andg. So if such an improvement path terminates, it produces & Basilibrium in the game
associated with the network given in Figure 4 of Example A vBaiargued that this game does not have
a Nash equilibrium. Consequently, there is no finite impnoget path in the gam(.7) that starts in
the above joint strategy and thereféfé.”) is not weakly acyclic.

Now suppose that the considered instance of the PARTITIGiWIpm does not have a solution.
Then we show that the gan(.’) is weakly acyclic. To this end, we order the nodess6fas follows
(note the positions of the nodesd ande): 1,2,...,n,g,a,b,c,e d. Given a joint strategy, consider an
improvement path in which at each step the first node in theealist that did not select a best response
switches to a best response. After at mosteps the nodes 2, ..., n all selected a produdt ort,. Let
s be the resulting joint strategy.

Krzysztof R. Apt & Sunil Simon 189

First suppose thdic(a ... nys—t, Wia > % This implies thatyica.. .. nys=t, Wib < % By Property 1,
Yic{l,. . .n}s=t, Wib < % — 1. The payoff of the nodé depends only on the choices made by the source
nodes 12,....n, so we havepy(tz,s-p) < —1. SinceB(b,ts) < 17, we also havepy(ts,sp) > —T and
thereforets is a best response for notle Let s° be the resulting strategy in which nobeselectsts.
Consider the prefix of starting ats® (call it £°). We argue that irf®, t, is never a better response for
noded. Suppose thaag = t3. We have the following two cases:

. $ =t3: then pd(§°) =W, — 6; and sdj is the best response for node

o L =1t3: thenpy(s®) = —6; and if noded switches tdt, then py(tz, ;) = — 61 (sinces) = ts).
Thust; is not a better response.
Using the above observation, we conclude that there existsfix of £° (call it £9) such that nodel
never chooses. This means that i§9 the unique best response for nadie t; and for nodeeist;. This
shows tha€ 9 is finite and hencé is finite, as well.
The case Wheic 1 ... nyjg—t, Wib > % is analogous with all improvement paths terminating in atjoi
strategy where nodechooses, and nodec choosed;. O

Theorem 10. For a network. whose underlying graph has no source nodes, deciding whéibe
game¥(.¥) is weakly acyclic is co-NP hard.

Proof. The proof extends the proof of the above theorem. Given adarins of the PARTITION problem
we use the following modification of the network given in Figé. We ‘twin’ each nodé < {1,...,n}
with a new node’, also with the product set;,t,}, by adding the edges,i’) and(i’,i). We also ‘twin’
the nodeg with a new nodey, also with the product seft3}, by adding the edgeq,d’) and(d',9).
Additionally, we choose the weights;j; andw;; and the corresponding thresholds so that wihamdi’
adopt a common product, their payoff is positive.

Suppose that a solution to the considered instance of thefTHABN problem exists. Then we
extend the joint strategy considered in the proof of Theogdny additionally assigning to each node
i” such that € S t, to each nod& such that € {1,...,n} \ Sandtz to the nodey'. Then, as before, there
is no finite improvement path starting in this joint strategy¥ () is not weakly acyclic.

Suppose now that no solution to the considered instance®ARTITION problem exists. Take the
following order of the nodes o¥:

1,1,2,2,...,n,n",9,9,a,b,c,ed,

and as in the previous proof, given a joint strategy, we amisain improvement path in which at each
step the first node in the above list that did not select a lesgionse switches to a best response.

Note that each node from the listl1,2,2',....n,n’,g,d is scheduled at most once. So there exists a
suffix of & in which only the nodesg, b, c, e d are scheduled. Using now the argument given in the proof
of Theorem 9 we conclude that there exists a suffi dfiat is finite. This proves th&# (.7) is weakly
acyclic. O

5 Paradoxes

In [2] we identified various paradoxes in social networkswnitultiple products and studied them using
the social network games introduced in [14]. Here we cartyaouanalogous analysis for the case when
the product selection is obligatory. This qualificationstjlike in the case of social network games,
substantially changes the analysis. We focus on the mampfaadoxes that we successively introduce
and analyze.

190 Social Network Games with Obligatory Product Selection

5.1 Wulnerable networks

The first one is the following. We say that a social netwefks vulnerableif for some Nash equilibrium
sin ¥(.¥), an expansion”’ of . exists such that each improvement patt¥if”’) leads froms to
a joint strategys which is a Nash equilibrium both i#(.#’) and ¢ (%) such thats > s. So the
newly added product triggers a sequence of changes thapidasly move the players from one Nash
equilibrium to another one that is strictly worse for evegh.

The following example shows that vulnerable networks exiftre and elsewhere the relevant ex-
pansion is depicted by means of a product and the dotted qwowing to the relevant node.

Example 11. Consider the directed graph given in Figure 7, in which thedpct set of each node is
marked next to it.

/\
(itata) T~ — 24

g}V it
{_23}3 4{g,3}
~_

Figure 7: A directed graph

We complete it to the desired social network below. Let *dnst for an arbitrary strategy of the
relevant player. We stipulate that

P2(_t2, _,t2) > pa(ty,ty, _,),
P1(ts,t2, _,) > pa(te,to,_,) > pa(ta,to,_,),
P3(ts, _,t3,_) > p3(_,_, 12, 12),
Pa(_, _13,t3) > pa(_, _,13,12),
pZ(_>t4a_7_) > pz(_,tz,_,tg),
pl(t4at47_a_) > pl(t37_a_7_) > pl(t17t47_’_)l

sothat 2 1p,1:t3,3:t3,4 :13,2 :14,1 : 14 is a unique improvement path that startstint;, t>,t;) and ends

in (tg,ta,13,t3).
Additionally we stipulate that

Pr(te,ty, _,_) > pr(ta,ts, _,),
P2(ty,t1, _,) > p2(ta,ta, _,),
P3(__t2,t2) > p3(_,_,13,13),
Pa(_, _t2,t2) > pa(_, _13,13),

so that(ts,ty,ta,t2) > (ta,ta,t3,13).
These requirements entail constraints on the weights aadtblds that are for instance realized by
W12 = 0, Woq = 0.27 Wg2 = 0.3, W13 = 0.2, W3q = 0.27 Wy3 = 0,

and
0(1,t1) =0.2, 6(1,t3) =0.1, 6(1,t4) =0.3, 8(2,t;) = 0.1, 6(2,t) = 0.3,
0(2,t4) =0.2, 6(3,t2) =0.1, 6(3,t3) = 0.2, 8(4,t;) =0.1, 6(4,t3) =0.2. O
Itis useful to note that in the setup of [2], in which for eadayer the ‘abstain’ strategy is allowed, it

remains an open problem whether vulnerable networks (tHikre because of various other alternatives
Vs-vulnerable networks) exist.

Krzysztof R. Apt & Sunil Simon 191

5.2 Fragile networks

Next, we consider the following notion. We say that a socaivork. is fragile if ¢(.#) has a Nash
equilibrium while for some expansior” of .7, 4(.") does not. The following example shows that
fragile networks exist.

Example 12. Consider the network” given in Figure 8, where the product set of each node is marked
next to it.

o} 1<———1

{ta,t1} / \ {t2t3}

32
Figure 8: A fragile network

Let the thresholds be defined as follovg2,t;) = 6(3,t3) =ry andf(1,t;) = 8(2,t3) = 6(3,t1) =r2
wherer; > r,. We also assume that>r; —r».

Consider the joint strategy, in which nodes 1, 2 and 3 chooset, andt; respectively. It can be
verified thatsis a Nash equilibrium i7 (). Now consider the expansio#’ of . in which product;
is added to the product set of node 1 andd€t,t;) =r;. Then.”” is the network in Example 3 which,
as we saw, does not have a Nash equilibrium. O

5.3 Inefficient networks

We say that a social networK is inefficient if for some Nash equilibriunsin ¢ (%), a contractions”

of . exists such that each improvement patl¥in”’) starting ins leads to a joint strategy which is

a Nash equilibrium both i (") and¥ () such thas' > s. We note here that if the contraction was
created by removing a product from the product set of npde impose that any improvement path in
¢ ("), given a starting joint strategy frof(.#), begins by having nodemaking a choice (we allow
any choice from his remaining set of products as an impromemeve). Otherwise the initial payoff of
nodei in 4(.7") is not well-defined.

Example 13. We exhibit in Figure 9 an example of an inefficient network.eWreight of each edge is
assumed to b&, and we also have the same product-independent threghdtat,all nodes, withw > 6.

{tz}

{tz} / /W\ {tnto}

4
\y

w

Figure 9: An example of an inefficient network

Consider as the initial Nash equilibrium the joint strategy (t2,t2,t1,t1). It is easy to check that this
is indeed a Nash equilibrium, with the payoff equairte- 6 for all nodes. Suppose now that we remove
productt; from the product set of node 3. We claim that the unique imgmoent path then leads to the
Nash equilibrium in which all nodes adapt

192 Social Network Games with Obligatory Product Selection

To see this, note that node 3 moves first in any improvemehtgad it has a unique choidg, Then
node 4 moves and necessarily switcheis td his yields a Nash equilibrium in which each node selected
t, with the payoff of 2v— 0, which is strictly better than the payoff m 0

5.4 Unsafe networks

Finally, we analyze the following notion. We call a sociatwmerk .7 unsafeif ¥(.) has a Nash
equilibrium, while for some contractioy” of ., 4 (") does not. The following example shows that
unsafe networks exist.

Example 14. Let .1 be the modification of the network” given in Figure 2 where node 1 has the
product set{ty,t,t4}, where8(1,t4) < rpo. Then the joint strategyts,ts, t3) is a Nash equilibrium in
¢ (1). Now consider the contractios; of .1 where product, is removed from node 1. The#] is
the networks”, which as we saw in Example 3 has no Nash equilibrium. O

6 Conclusions

In this paper we studied dynamic aspects of social netwotikis mwultiple products using the basic
concepts of game theory. We used the model of social networiginally introduced in [1] that we
subsequently studied using game theory in [14], [15] and [2]

However, in contrast to these three references the prodiagitian in this paper is obligatory. This
led to some differences. For example, in contrast to the abEil], a Nash equilibrium does not need
to exist when the underlying graph is a simple cycle. Furtimecontrast to the setup of [2], we were
able to construct a social network that exhibits the strehfygm of the paradox of choice. On the other
hand, some complexity results, namely the ones concerna@akly acyclic games, remain the same as
in [14], though the proofs had to be appropriately modified.

References

[1] K. R. Apt & E. Markakis (2011):Diffusion in Social Networks with Competing Producks: Proc. 4th In-
ternational Symposium on Algorithmic Game Theory (SAGT1Ekcture Notes in Computer Scieng@82,
Springer, pp. 212-223, dab.1007/978-3-642-24829-0_20.

[2] K. R. Apt, E. Markakis & S. Simon (2013):Paradoxes in Social Networks with Multiple Products
Manuscript, CWI, Amsterdam, The Netherlands. Computinggaech Repository (CoRRyttp: //arxiv.
org/abs/1301.7592.

[3] David Easley & Jon Kleinberg (2010Networks, Crowds, and Market€ambridge University Press.

[4] D. Fotakis, A. C. Kaporis, T. Lianeas & P. G. Spirakis (2)210n the Hardness of Network Design for
Bottleneck Routing Gameb: SAGT, pp. 156-167, doi:0.1007/978-3-642-33996-7_14.

[5] D. Fotakis, A. C. Kaporis & P. G. Spirakis (2012Efficient methods for selfish network desighheor.
Comput. Sci448, pp. 9—20, doi0.1016/j.tcs.2012.04.033.

[6] G. Gigerenzer (2008)5ut Feelings: The Intelligence of the UnconscioBenguin. Reprint edition.
[7] M.O. Jackson (2008)Social and Economic NetworkBrinceton University Press, Princeton.

[8] M. Kearns, M. Littman & S. Singh (2001)Graphical models for game thearyn: Proceedings of the 17th
Conference in Uncertainty in Atrtificial Intelligence (UAD1), Morgan Kaufmann, pp. 253-260.

[9] I. Milchtaich (1996): Congestion Games with Player-Specific Payoff Functidbames and Economic Be-
haviourl3, pp. 111-124, dain . 1006/game . 1996 .0027.

Krzysztof R. Apt & Sunil Simon 193

[10] D. Monderer & L. S. Shapley (1996potential GamesGames and Economic Behavidi#, pp. 124-143,
doi:10.1006/game . 1996 .0044.

[11] S. Morris (2000)Contagion The Review of Economic Studié3 (1), pp. 57—78,doi0.1111/1467-937X.
00121.

[12] N. Nisan, T. Roughgarden, E. Tardos & V. J. Vaziranitedi (2007):Algorithmic Game TheoryCambridge
University Press.

[13] B. Schwartz (2005)Paradox of Choice: Why More Is Lesdarper Perennial.

[14] S. Simon & K. R. Apt (2012)Choosing Products in Social Networks: Proc. 8th International Workshop
on Internet and Network Economics (WINHE)ecture Notes in Computer Scien¢@95, Springer, pp. 100—
113, d0i10.1007/978-3-642-35311-6_8.

[15] S. Simon & K. R. Apt (2013):Social Network GamesJournal of Logic and Computatipdoi:10.1093/
logcom/ext012. To appear.

[16] H. Peyton Young (1993)The evolution of conventionsEconometricé1(1), pp. 57-84, dain.2307/
2951778.

Alternating-time temporal logic with finite-memory strate gies

Steen Vester

DTU Compute
Technical University of Denmark

stve@dtu.dk

Model-checking the alternating-time temporal log&EL and AT L* with incomplete information
is undecidable for perfect recall semantics. However, wiestricting to memoryless strategies the
model-checking problem becomes decidable. In this pap&onsider two other types of semantics
based on finite-memory strategies. One where the memonrgab@eed is bounded and one where
the memory size is unbounded (but must be finite). This isvat#d by the high complexity of
model-checking with perfect recall semantics and the selmnitations of memoryless strategies.
We show that both types of semantics introduced are diftdrem perfect recall and memoryless
semantics and next focus on the decidability and complefityjodel-checking in both complete
and incomplete information games fAT L/ATL*. In particular, we show that the complexity of
model-checking with bounded-memory semanticAjscomplete forAT L and PSPACEcomplete
for ATL* in incomplete information games just as in the memorylese.ci/e also present a proof
thatAT L andAT L* model-checking is undecidable for> 3 players with finite-memory semantics
in incomplete information games.

1 Introduction

The alternating-time temporal logigsT L and ATL* have been studied with perfect recall semantics
and memoryless semantics in both complete and incomplé&enmation concurrent game structures
[2, 3, 12]. The model-checking problems for these logicseteplications in verification and synthesis
of computing systems in which different entities interadte complexity of model-checking with perfect
recall semantics, where players are allowed to use an mfamtount of memory, is very high in some
cases and even undecidable in the cas&Tdf [3, 8] with incomplete information. On the other hand,
model-checking with memoryless semantics, where playersiat allowed to use any memory about
the history of a game, is decidable and has a much lower caitpl[@2]. The drawback is that there
are many games where winning strategies exist for sometiooalbut where no memoryless winning
strategies exist. In this paper, we focus on the tradeoffibeth complexity and strategic ability with
respect to the memory available to the players. Insteadrdidering the extreme cases of memoryless
strategies and infinite memory strategies we look at finiegamry strategies as an intermediate case of
the two. The motivation is the possibility to solve more gantiean with memoryless strategies, but
without the cost that comes with infinite memory.

We introduce two new types of semantics called bounded-mes®mantics and finite-memory se-
mantics respectively. For bounded-memory semantics therdound on the amount of memory avail-
able to the players, whereas for finite-memory semantiggeptacan use any finite amount of memory.
We will study the expressiveness of these new types of sétsatampared to memoryless and perfect
recall semantics iAT LandAT L* with both complete and incomplete information. Afterwandsfocus
on the complexity and decidability of the model-checkinglyem for the different cases.

Gabriele Puppis, Tiziano Villa (Eds.): Fourth Interna@bn (© Steen Vester
Symposium on Games, Automata, Logics and Formal Verifinatio This work is licensed under the
EPTCS 119, 2013, pp. 194-207, doi:10.4204/EPTCS.119.17 Creative Commons Attribution License.

Steen Vester 195

Our approach have similarities with the work done in [12],dBd [1]. It is a natural extension of the
framework used in [12] where memoryless semantics and giedeall semantics are considered. In [5]
AT L/AT L* with bounded-memory semantics and strategy context sdotred for complete information
games, where bounded-memory strategies are defined adlgeintithe same way as here. However,
their use of strategy context makes the problems and aigasiconsidered different from ours. In [1] a
version with bounded-recall is considered where agent®obnremember the lash states of the play.
This contrasts our approach where the players can decidetavimre in the memory about the past.

2 Concurrent game structures

A concurrent game is played on a finite graph by a finite numbetayers, where the players interact
by moving a token between different states along the edgttsearaph. The game is played an infinite
number of rounds where each round is played by letting eviaryep independently and concurrently
choose an action. The combination of actions chosen by #yerd along with the current state uniquely
determines the successor state of the game. More formally,

Definition 1. A concurrent game structure (CGS) with n players

¢ = (StatesAgt,Act,Mov, Tab)
consists of
e States- A finite non-empty set of states

Agt={1,...,n} - A finite non-empty set of players

Act - A finite non-empty set of actions

Mov : States< Agt — 24°\ {0} - A function specifying the legal actions at a given state gian
player

Tab : Statesx Act” — States A transition function defined for eadhy, ...,ay) € Act” and state s
such thatae Mov(s,j)for1<j<n

Unless otherwise noted, we implicitly assume from now on tha players in a game are named
1,...,n wheren = |Agt|. Note that every player must have at least one legal acti@aah state. The
transition function Tab is defined for each state and allllagaes of actions in that state. We also refer
to such legal tuples of actions as moves. To add meaning tuo@mt game structures we introduce the
concept of a concurrent game model which consists of a cosrtiugame structure as well as a label-
ing of the states in the structure with propositions from edixed, finite set Prop of proposition symbols.

Definition 2. A concurrent game model (CGM) is a p&i#, 1) where¥ is a concurrent game structure
andrt: States— 2 (Prop) is a labeling function.

An example of a CGM can be seen in Figure 1, where the statelramn as nodes. Transitions are
drawn as edges between nodes such that there is an edgetivahiabeled with the movéay, ..., ay) if
Tah(s, (a1, ...,an)) = . The states are labelled with propositions from the set Prép, g} in the figure.

We define an incomplete information concurrent game stracs a CGS where each playjehas
an equivalence relatiorj on the set of states. The intuitive meaning is that; s’ if player j cannot
distinguish between the stateands.

196 Alternating-time temporal logic with finite-memory strgies

(@a
(b.b)
(.b)
e < > > 9
S S1

Figure 1. CGM.#

Definition 3. A concurrent game structure with incomplete informatiddGiS) with n players is a tuple

¢ = (StatesAgt,Act,Mov, Tab (~)1<j<n)
where
e (StatesAgt,Act,Mov, Tab) is a CGS
e ~jC States« Stateds an equivalence relation forall < j <n
e If s~j s thenMov(s, j) =Mov(s,j) for all s,s" € Statesand all j € Agt

Note that we require the set of actions available to a play&wo indistinguishable states to be the
same. We extend the notion to concurrent game models witlripkete information in the natural way.

Definition 4. A concurrent game model with incomplete information (iICG8#8 pair (¢,) where¥
is an iCGS andt: States— 2P"Pis a labeling function.

For each playey, the relation~; induces a seft]; of equivalence classes of states. We denotks|py
the class that statebelongs to for playef. These classes are refered to as the observation sets ef play
j. Since the set of legal actions of playjeis required to be the same in states from the same observation
set, we can define Mdls|;, j) = Mov(s, j) for all statess. Note that the concepts of iCGS and iCGM
generalize CGS and CGM respectively, since they are theapases where-| is the identity relation
for all players;j.

3 Outcomes, histories and strategies

Let ¥ = (StatesAgt,Act,Mov, Tab) be a CGS wit players. An outcome (or play) of a concurrent
game is an infinite sequence of states in the game structatediresponds to an infinite sequence of
legal moves. Formally, the set of outcomes &8} of ¢4 from s € States is defined as
Outy (s) = {pop1... € State&’ | pp =sAYj > 0.dme Act".Tab(pj,m) = pj;1}
Outy = Usestae QU (9) is the set of all outcomes ¢f. A history of a concurrent game is a non-
empty, finite prefix of an outcome. The set Hi&s) of histories of¢ from s € States is defined as
Histy (s) = {pop1...Px € States | po=sA3p’ € Outy(s).VO< j < k.pj = pi}

Histy = UscstatediStz (S) is the set of all histories o . For a (finite or infinite) sequengeof states
we write pg for the first statep; for the (j + 1)th state.p<; is the prefixppp:...p; of p andpsj is the

Steen Vester 197

suffix pjpj+1... of p. Whenp = po...p« is a finite sequence we denote the lengthpdiy |p| = k and
write las{p) = px.

For a given CG3/ = (StatesAgt, Act,Mov, Tab) we define a strategy for playgras a mapping
0j : Histy — Act such that for alh € Histy, we haveg;(h) € Mov(last(h), j). Thus, a strategy for player
j maps any given history to an action that is legal for player the final state of the history. We will
also refer to these strategies as perfect recall strategiafinite-memory strategies, since a player using
such a strategy can use the entire history of a play up to tbiside point to choose his next action.
A memoryless (positional, no recall) strategy for playes a strategyo; such that for alh, i’ € Histy
with last(h) = last(h’) we haveo;(h) = oj(K). Itis called a memoryless strategy since the player is only
using the last state of the history to decide on his action.défete by Str?tthe set of perfect recall
strategies for playej and by Stra}t the set of memoryless strategies for playeiVe write Ouy (s, o)
for a strategyo = (0a)acagt for coalition A and a statsto denote the set of possible outcomes from state
swhen players in coalitiod play according tao.

Next, we define finite-memory strategies in which a playeniy allowed to store a finite amount of
memory of the history of the game. He can then combine his memith the current state of the game
to choose an action. To model a strategy with finite memory seeaudeterministic finite-state transducer
(DFST). A DFST is a 6-tupléM,mp, 2, I, T,G) whereM is a finite, non-empty set of statesy is the
initial state,X is the input alphabef; is the output alphabe®, : M x £ — M is the transition function
andG: M x Z — I is the output function. The set of states of the DFST are thlsipte values of the
internal memory of the strategy. We will also call these mgnstates. The initial state corresponds to
the initial memory value. The input symbols are the stateb®game and the set of output symbols is
the set of actions of the game. In each round of the game thd D&&ls a state of the game. Then it
updates its memory based on the current memory value andghbestate and performs an action based
on the current memory value and the input state. More foymatk say that a strategy, for playerj is
a finite-memory strategy if there exists a DFAE (M, my, StatesAct, T, G) such that for alh € Histy
we have

0j(h) = G(.7 (Mo, h< 1), last(h))

where.7 is defined recursively by’ (m,p) = T(m, po) for any memory staten and any historyp
with [p| =0 and.7 (m,p) = T(.7 (M, p<|p—1),last(p)) for any memory staten and any history with
|p| > 1. Intuitively .7 is the function that repeatedly applies the transition fiemcT on a sequence of
inputs to calculate the memory state after a given histoycel .7 the repeated transition function. We
say thato; is ak-memory strategy if the number of states of the DFSK. /e also say that the strategy
oj is represented by the DFSA. We denote the set of finite-memory strategies for plgyey Straf
and the set ok-memory strategies for playgrby Strafk. Thus, Streft = Ukzlstrafk. In addition, we
have that the memoryless strategies are exactly the firet@ary strategies with one memory state, i.e.
Straf* = Strat.

Next, we generalize the notions of strategies to incompigtemation games by defining them on
observation histories rather than on histories, sincegptagbserve sequences of observation sets during
the play rather than sequences of states. We define the $§tdﬂisbservation histories for playérin
iICGS¥ as

Hist), = {[sol;[s1]; .. [8] | S0t~ € Histy }

For each player, a given history induces a particular olagienv history which is observed by the
player. Then, strategies are defined as mappings from alig®rvhistories to actions, memoryless

198 Alternating-time temporal logic with finite-memory strgies

strategies are strategies where the same action is chosamyfmbservation history ending with the

same observation set and finite-memory strategies aresmypeal by DFSTs where the input symbols
are observation sets rather than states of the game. Nothéhdefinitions coincide for complete infor-

mation games.

4 ATL/AT L* with finite-memory and bounded-memory semantics

The alternating-time temporal logi@sT L and AT L* generalize the computation tree logic3 L and
CTL* with the strategic operatafA))¢ which expresses that coalitioh has a strategy to ensure the
property ¢. For a fixed, finite set Agt of agents and finite set Prop of psijmm symbols theAT L*
formulas are constructed from the following grammar

¢ =p|d1| 91V 2| Xd1| 91Uz | (A)¢1

wherep € Prop, ¢4, ¢, are ATL* formulas andA C Agt is a coalition of agents. The connectives—,
&, G andF are defined in the usual way. The universal path quan#ief computation tree logic can
be defined ag0). AT Lis the subset oAT L* defined by the following grammar

¢ =p|d1| 1V 2| (A)XP1| (A)Gh1| (A)($1Ug2)

wherep € Prop, ¢, ¢, are AT Lformulas andA C Agt is a coalition of agents.
We distinguish between state formulas and path formulaihwdre evaluated on states and paths of
a game respectively. The state formulas are defined as ®llow

e pis a state formula ip € Prop
e If ¢1 and¢, are state formulas, thengp, and¢, Vv ¢, are state formulas

e If ¢1is anATL* formula andA C Agt, then((A) ¢ is a state formula

All ATL* formulas are path formulas. Note that Al L formulas are state formulas.

In [12] ATL andAT L* are defined with different semantics based on (1) whethegainee is with
complete or incomplete information (2) whether perfectliestrategies or only memoryless strategies
are allowed. Hereandl are used to denote incomplete and complete informatiorecéisply. r andR
are used to denote memoryless and perfect recall strategipsctively. We extend this framework by
considering finite-memory semantics where only finite-mgnstrategies are allowed and denote this
by F. In addition we extend it with an infinite hierarchy of bouddmemory semantics, wheFg for
k > 1 denotes that onlli-memory strategies are allowed. We denote the satisfatiations=xy where
X e{i,I}andY € {r,Fi,F,...,F,R}. We will also writeAT Lxy andAT Ly to denote the logics obtained
with the different types of semantics.

The semantics of formulas in alternating-time temporaldag given with respect to a fixed CGM
M = (¢, 1) where the players that appear in the formulas must app&aaimd the propositions present
in the formulas are in Prop. For state formulas we define fo€@Ms .# = (¢, m), all statess, all
propositionsp € Prop, all state formulag; and ¢, all path formulagps, all coalitionsA € Agt and all
Y e{r,F,F,.. . FR}

Steen Vester 199

M SEN P if pe n(s)

M ,SE=y 1 if A, sl ¢1

M SEY G1V Q2 i A sy QrOr A sy 92

M ,sE (A)ds i there exist strategiefon)aca € [aca Straf such that
Vp € Outy (s, 0n)..Z,p iy §3

For path formulas we define for all CGM# = (¢, n), all pathsp, all propositionsp € Prop, all
state formulags, all path formulasp, and¢s, all coalitionsA € Agt and allY € {r,F;,F,,...,F,R}

AP Ey $1 if #,p0 iy $1

AP FEy —¢2 if #,p Fy ¢2

M,p Ery $2V o3 if A p Iy p20r AP Iy §3

AP FEy X2 if A,p>1F ¢2

AP Ery 92Uz if KA, po =y Pz andVj <K, psj =iy 92

For iCGMs the semantics are defined similarly, but{{éi) ¢ to be true in statsthe coalitionA must
have a strategy to make supeis satisfied in all plays starting in states that are indigtishable frons
to one of the players iA. Now, for state formulas we define for all ICGMg& = (¢, n), all statess, all
propositionsp € Prop, all state formulag; and¢,, all path formulagps, all coalitionsA € Agt and all
Y e {r, Fi,F,....F, R}

M ,SEv P if pe (s

M, S =iy 1 if A,slEiv ¢1

///,S’:iy o1V o if g//,S’:iY ¢1OI’.//,S’:W [

M, sy (A)¢s if there exist strategiefoa)aca € [Taca Strat, such that
for everya € A, everys ~, sand everyp € Outy (S, 0a)
we haveZ,p =iy ¢3

For path formulas we define for all ICGM# = (¢,), all pathsp, all propositionsp € Prop, all
state formulag;, all path formulasp, and ¢s, all coalitionsA € Agt and allY € {r,F,F,...,F,R}

M P iy $1 if A ,po =iy ¢1

AP Eix P2 if #,p v ¢2

MLp FEiy 92V 3 i A, p iy p20r A, p iy §3

AP Eiy X2 if A,p>1Fiy ¢2

AP iy $2Ups if Ik pok iy 93 andVj <k, p> Fiv ¢2

We will occasionally write=Y, to emphasize that the semantics is for the Idgibut omit it when
the logic is clear from the context as above.

5 Expressiveness

With the new types of semantics introduced we are intereist@chen the new types of semantics are
different and when they are equivalent. For instance, ihifA2as noted thal=|, and=r are equivalent
for ATL, but notATL*. We do a similar comparison for the different kinds of seritanin order to
understand the capabilities of different amounts of meniifferent games. In addition, since there
is equivalence in some cases this gives us fewer differesgscp solve when considering the model-
checking problem. We start by looking only at formulas of then (A)¢ whereA C Agt and¢ is an

200 Alternating-time temporal logic with finite-memory strgies

LTL formula. Denote the fragments &T L and AT L* restricted to this kind of formulas b&T Ly and
AT L respectively. A nice property of these fragments is thefwilhg proposition, which tells us that to
have equivalence of semantics for two types of memory fee&AT L or AT L* it is sufficient to consider
the fragmentAT Lo andAT L respectively.

Proposition 5. For X € {i,l1} and Y,Z € {r,F,F,...,F,R} we have
1. {1 = E4TE ifand only if (=5t = 500

* * . . ATLE ATLE
2. EATY — AT ifand only if =hy® = o™

Proof. We treat both cases simultaneously and.let {ATL,ATL"}. (=) The first direction is trivial,
since the set of(formulas is included in the set &f formulas. (<) For the second direction suppose
)L& = >L<°Z. Let . # = (¢, m) be an ())CGM over the set Prop of proposition symbols. ¢die an
arbitrary formula fronl that containgk strategy quantifiers. L@t = ¢g andr= . We transfornipg and
Tp in k rounds, in each round 4 j <k the innermost subformul@’ of ¢;_; with a strategy quantifier
as main connective is replaced by a new propogip Prop to obtaing;. The labeling function is

extended such that for all states/e have

o [e U{p} i (9, m1),SE 9
"‘(S)_{ - a9 otherwise

Note that because of our initial assumption we hg@er_1),sf=xy ¢’ ifand only if (4, 11_1),Sf=xz
¢’ since¢’ is anLq formula. Therefore, for eachand all pathg we also have

(¢, m-1),p F=xy ¢j-1if and only if (¥, 1), p F=xv ¢j and
(4,m_1),p Fxz ¢j-1ifand only if (4, 75), 0 Fxz @]

In particular, @y is anLT L formula and therefore for ajp we have(¥, i), p Exvy ¢« if and only if
(9,1%), p =xz o« Together with the above we get for allthat

(%,10),p Fxy ¢o iff (4,m),pExy ¢ iff .. iff (4,7%),p FExy ¢ iff

(Y, 1%),p FExz ¢ iff ... iff (4, m),pExz¢1 iff (¥,10),0 Fxz do

Thus, =5y = E%7 since¢ and.# was chosen arbitrarily.
U

The relations between different types of semantics predentFigure 2 provide insights about the
need of memory for winning strategies in games with variousuants of information and types aff L
objectives that can be specified AT Lo/ATL{. In addition, according to Proposition 5 the cases of
equivalence in Figure 2 are exactly the cases of equivalfamdbe full AT L/ATL". We will use the rest
of this section to prove the results of this table.

Steen Vester 201

Logic Expressiveness
AT Ly w. complete info AT — |:f*FT2L0 - |:f*FT3L0 = .. = ke = b
ATLow. incompleteinfo| =3 C g c ER® c .. c Ep® c ERY
ATL§ w. complete info _ﬁTLES C HgLa C Ff\FTSLB C .. C ER® = _,ARTLB
AT L§ w. incomplete info ﬁm’ C Hg% C HAFZLE c .. C iAFTLé C i/;TLé

Figure 2: Relations between the different types of semantic

5.1 Complete information games

For complete information games, the question of whethere{aryless/finite-memory/perfect recall)
winning strategy exists for a coalitiohcan be reduced to the question of whether a (memorylessffinit
memory/perfect recall) winning strategy exists for playén a two-player turn-based game. The idea is
to let player 1 control coalitios and let player 2 control coalition A§tA and give player 2 information
about the action of player 1 before he has to choose in eactu rafthe game in order to make it turn-
based. SincéT Ly can only be used to express reachabilithf ¢1U@,), safety ((A)G¢1) and 1-step
reachability ((A))X¢1) objectives where no memory is needed for winning stragefdig it follows that

all types of semantics considered are equaATi. with complete information as noted in [12]. Since
ATL; can only be used to expre&d L objectives, it follows that={'* = /" since only finite
memory is needed for winning strategies in such games [11].

5.2 The bounded-memory hierarchy

The bounded-memory hierarchy is increasingAdry /AT L because when a coalition hak-anemory
winning strategy, then it also haskar 1-memory winning strategy which can be obtained by adding a
disconnected memory-state to the DFST representing thiegy: FOrAT L with complete information
the hierarchy is strict. This can be seen since the farhily- ({1})X¥p of formulas fork > 1 has the
property that 7, s =ik, ¢k and . Z, s =i, @k for k > 2 for the one-player CGM/# illustrated in
Figure 3. Here player 1 wins if he choosggwait) the firstk — 1 rounds and then choosgggo) in the

kth round.
Ore=s
w p ng
=@ s g
S S1 S

Figure 3: CGM.#

The reason that the propetf p cannot be forced by player 1 usingla— 1)-memory strategy is that
the DFST representing the strategy would have to outputdtieraw in the firstk — 1 rounds followed
by an output of the actiog when reading the same inpsgtin every round. This is not possible, because
afterk — 1 rounds there must have been at least one repeated meratayastl from such a repeated
state, the DFST would keep repeating its behavior. Thezefowill either outputw forever or output

202 Alternating-time temporal logic with finite-memory strgies

g before thekth round, making it unable to enforé&p. For AT Lo/AT L with incomplete information,
we can show the same result for the formyla= ({1}) Fp for the family .# of iCGMs illustrated in
Figure 4 wher& > 1. In this game all states exceptare in the same observation set for player 1. Here

we have%ka&)):iFk QU and%k?&) I#iFk,l l1u

Figure 4: iCGM.#

Player 1 wins exactly if he choosesfor the firstk rounds and theg, which is not possible for a
(k—1)-memory strategy when it receives the same input symbolényawund after the initial round as
in the previous example.

The reason why the bounded-memory hierarchies are notisiog forAT L/AT L in general is the
possibility of using negation of strategically quantifiedrhiulas. For instance, given &1 Ly formula
¢, an iCGM.# and a states such that#,s |=ir, ¢ and.Z,s (i, , ¢ for somek, then for theATL
formula—¢ we haveZ,s g, ¢ and.Z,sk=ir, , —¢.

5.3 Infinite memory is needed

Finally, infinite memory is actually needed in some caseibky/AT L with incomplete information.
This is shown in a slightly different framework in [4] whera example of a game is given with initial
statesy such that#,s =ir ({1,2}))G—p and .Z,s e ({1,2}))G—p for a propositionp. We will

not repeat the example here, but in the undecidability piro&ection 6.3 an example of such a game
is given. This means thaty # =k for L € {ATLy,ATLy}. We have=k: C =k since all finite-
memory strategies are perfect recall strategies and treref- C =k which concludes the last result
of Figure 2.

6 Model-checking

In this section we look at the decidability and complexityneddel-checkingAT L/AT L* with the new
semantics introduced and compare with the results for mgass and perfect recall semantics. We
adopt the same way of measuring input size as in [2, 3, 12, h8tevthe input is measured as the size of
the game structure and the size of the formula to be checkdtielcase of bounded-memory semantics,
we also include in the input size the size of the memory-bduadcoded in unary. Our results can be
seen in Figure 5 along with known results for memoryless aantept recall semantics.

As can be seen in the figure, we obtain the same complexitydondied-memory semantics as for
memoryless semantics in all the cases which is positiveesive can solve many more games while

Steen Vester 203

ATL ATL*

Eir PTIME [3] PSPACH12]

=g || PTIME PSPACE

=iF || PTIME 2EXPTIME

=R | PTIME[3] 2EXPTIME[3]
ATL ATL*

=i || AD[12, 10] PSPACH12]

Eir || A PSPACE

Eir Undecidable Undecidable

Eir || Undecidable [3, 8] Undecidable [3, 8]

Figure 5: Model-checking complexity f&T L, AT L*. All complexity results are completeness results.

staying in the same complexity class. We also obtain the samglexity for finite-memory semantics
as perfect recall semantics, including undecidabilityifmomplete information games, which is disap-
pointing. We will use the rest of the section to prove theselts. In many cases this is done by using
known results and techniques and modifying them slightiwel$ as using the results from Section 5.

6.1 Using expressiveness results

In section 5 it was shown thati™- = - = =i = = 't which means that the model-
checking problem is the same for these cases. acnqﬁ*,@ is known to bePTIME-complete [3] the

result is the same for finite-memory semantics and boundadery semantics. It was also shown
that =" = /N1, Since model-checkingT Lj; is 2EXPTIME-complete [3] so is model-checking

AT Lji since it is the same problem.

6.2 Bounded-memory semantics

For model-checkind\T Lig,, AT L, andAT Li, we employ some of the same ideas as in [12] for mem-
oryless semantics, but extend them to deal with boundedenesirategies. We first consider model-
checking AT L formulas withiF, semantics. Model-checking aiT L formula (A)¢ in an iCGM

M = (9, m) with & = (StatesAgt, Act, Mov, Tah (~j)1<j<n) and initial states, can be done using non-
determinism as follows. First, assume without Ioss of galitgrthat A = {1,...,r} with r <n. Use
non-determinism to guesskamemory strategy = (0;)1<j<r for each of the players iA represented
by DFSTs«} = (Mj,mjo, [];,Act, T}, Gj) for j € A. Check that this strategy enforcgsby creating a
labelled and initialized transition systef(s,, o) = (Q,R,L,qp) for all s, ~; s for some 1< j <r in
which the set of paths corresponds to th@utcomes frong, in 4. The setQ of states, the transition
relationR C Q x Q, the labeling functior. : Q € 2°™Pand the initial statejp are constructed as follows.

e Q= States< [1j_ 1Mj
e ([s,(m,....,m)],[S,(M,...,m)]) € Rif and only if there existsy 1, ...,an € Act SO

— Tah(s, (G1(my, [S]1), .-, Gr (M, [S]r), @41, ..,@n)) = S @and
= Tj(mj,[g)) =mjfor 1< j<r

o L(s (M,...,m)) = ri(s) for all (s,(my,...,m)) € Q

204 Alternating-time temporal logic with finite-memory strgies

® OJo= (%, (m107~-~7m0))

Intuitively, each state in the transition system corresjgoto a state of the game as well as pos-
sible combinations of memory values for playersAn It can then be shown thad = pgps... is a
g-outcome in% from po = g if and only if there existgmy;,...,myj) € [j_; M for j > 0 such that
P’ = (po, (M, ...,Mr0))(P1, (M1, ...,Mr1))... is @ path inT (s, 0). This means that is a witness that
M %0 =ir, (A)¢ if and only if T(s,0),00 =cTi- A¢ for all 5 ~j s for some 1< j <r. Note that
the size of the transition systems are polynomial in the gfzbe input becausg| = k', the numben
of agents is fixed and < n. In addition, the transition systeni§s;,0) andT(s,,0) are equal for any
s1,S € States except for the initial state of the transition systefhus, we can use the same transition
system to do the check for the different initial states. We parform this check of a strategy in
PSPACEsinceCT L* model-checking can be done REPACE[7]. Moreover, when(A)¢ is anAT Ly
formula, the check can be doneRT IME sinceCT L model-checking can be doneRT IME [6]. Thus,
we can do model-checking &T Lo andAT L with iF, semantics ilNP andPSPACErespectively.

We extend the above algorithm to flllT L andAT L* by evaluating the strategically quantified sub-
formulas in a bottom up fashion, starting with the innernfostnula and moving outwards resembling
the technique typically used @T L* model-checking [7]. In both cases we need to make a lineauamo
of calls to theAT Lo/AT L algorithm in the size of the formula to be checked. This giveaA) = PNP
algorithm and éPSPACEalgorithm inATL and AT L* respectively. SincéTL" with IF, semantics is
a special case, theSPACEalgorithm also works here. THeSPACEhardness foAT L, andAT L,
follows from PSPACEhardness oATL}; [12] since this is a special case of the two. In the same way
Ab-hardness oAT Lig, follows from A5 hardness oAT L, [10].

6.3 Undecidability of finite-memory semantics

In [8] it was proven that model-checkin§T L and AT L* with iR semantics is undecidable, even for as
simple a formula agA)G—p for n > 3 players. We provide a proof sketch for the same resultFHor
semantics inspired by a technique from [4] which also iatgts that infinite memory is needed in some
games. The idea is to reduce the problem of whether a detistimifuring machine with a semi-infinite
tape that never writes the blank symbol repeats some coafigartwice when started with an empty
input tape, with the convention that the Turing machine wéep looping in a halting configuration
forever if a halting state is reached. This problem is urdhdadie since the halting problem can be
reduced to it. From a given Turing machifie= (Q,qo, 2, d,B,F) of this type whereQ is the set of
states is the initial statey is the tape alphabe§ : Q x (ZU{B}) — Q x Z x {L,R} is the transition
function, B is the blank symbol anHB is the set of accepting states, we generate a three-plageucent
game model#t = (%, 1) with a statesy such that#+1, s =ir ({1,2}))G—pif and only if T repeats
some configuration twice.

Consider the three-player gam&s in Figure 6. To make the figure more simple, we only write
the actions of player 1 and 2 along edges and let player 3 ehmasiccessor state, given the choices of
player 1 and 2. If player 1 and 2 choose an action tuple thadtipresent on an edge from the current
state of the game, the play goes to a sink state whésdrue. In all other statep is false. Both player
1 and 2 have three observation sets, which are denoteand, | (though, they are not equal for the two
players). In the figure we writg | y in a state if the state is in observation gdbr player 1 andy for
player 2. The play starts is which is the only state in observation set O for both playend 2. The
rules of the game are such that player 3 can choose when tajetrfl receive observation I. He can
also choose to either let player 2 receive observation leas#me time as player 1 or let him receive it

Steen Vester 205

in the immediately following state of the game. Both playeantl 2 can observe | at most once during
the game. It can be seen from the game graph that both played 2 anust play actiom until they
receive observation | in order not to lose. We design the gsorikey must play theth configuration of
the Turing machingd when receiving observation | afterounds in a winning strategy for all> 1. To

do this we let the tape alphabet and the set of control stdt€sbe legal actions for player 1 and 2. By
playing a configuration, we mean playing the contents of threlslank part of the tape Gf one symbol

at a time from left to right and playing the control state intliagely before the content of the cell that
the tape head points to.

——————————————————————————

f“\ Player 1 and 2 must play configs
'/ C; andC, such thatC; 1 C,

Figure 6: iCGM.+

We design#+ with three modules#:,.#> and.#3 as shown in Figure 6. They are designed with
the following properties

e /1 is designed such that when player 1 and 2 both observe | hédirst round, then in a winning
strategy they must both play the initial configuration (gg).in order to maintair-p. If they don't,
then player 3 has a counter-strategy that takes the pla#ito

e /> is designed such that when player 1 and 2 both observe | aathe 8me, then in a winning
strategy they must both play the same sequence of symbelsaifterving | ¢ stands for any
action and*, *) means any action pair where the two actions are equal). rié ke number > 1
so they don’t comply with this when observing | after rounthen player 3 has a counter-strategy
that takes the play to#, after roundr.

e _//3is designed such that if player 1 observes | in the round bedtatyer 2 does, then in a winning
strategy they must player configuratiois andC, respectively such that; Ft C, wheret is
the successor relation for configurationslofDue to space limitations, the specific design of this
module is omitted here.

Now, suppos€él has a repeated configuration. Then player 1 and 2 have a gistiategyo that
consists in both players playing thHéh configuration of the run of when observing | after théth
round. This strategy is winning because no matter if playelhn@ses to go to module?;,.#>, .#3 or
none of them, themp will always hold given how they are designed when player 12pthy according

206 Alternating-time temporal logic with finite-memory strgies

to g. Next, the sequence of configurations in the ruf aé of the formr- T wheremmandt are finite
sequences of configurations siriténas a repeated configuration. Then, player 1 and 2 only neigal fin
memory to play according to since they only need to remember a finite number of configuratand
how far on the periodic patit- % the play is. Thus, they have a finite-memory winning strategy

Suppose on the other hand tAatioes not have a repeated configuration and assume for cictibad
that player 1 and 2 have lamemory winning strategy for somek. Since player 1 and 2 cannot
see whether the play is w71, .#> or .43 player 1 must, when playing according dq play the first
configurationD4 of the run ofT when observing | after the first round. Otherwise, playerS8aeounter-
strategy taking the play to7; after the first round. Then, player 2 must play the second gordtion
D, of the run of T when observing | after the second round. Otherwise, playes3a counter-strategy
taking the play to#3 after the first round since player 1 must ply when observing | after the first
round and player 2 must play a successor configuration of plager 1 plays. Next, when using,
player 1 must playD, when observing | after the second round. Otherwise, playleas3a counter-
strategy that takes the play 145 after the second round since player 2 pl®gswhen observing | after
the second round. Repeating this argument, it can be seea thast consist of player 1 and 2 playing
the jth configuration of the run of when observing | after thgh round for allj > 1. However, this is
not possible for &-memory strategy when the run dfdoes not have a repeated configuration. This is
because the current memory value of the DFST representingtthtegy at the point when | is observed
determines which sequence of symbols the strategy will (dige it will receive the same input symbol
for the rest of the game). Thus, it is not capable of playingertbank different configurations. And
since for anyk a winning strategy must be able to play more thadifferent configurations there is a
contradiction and a finite-memory winning strategy themeftannot exist.

In conclusion.Z7,% =ie ({1,2})G—pif and only if T repeats some configuration twice, which
means that the model-checking problem is undecidabl&TdrandAT L* with iF semantics. This game
also illustrates that infinite memory is needed in some gasmese player 1 and 2 can win the game with
perfect recall strategies whé@nhdoes not have a repeated configuration. This is simply dorgayng
the sequence of configurations of the runTof

7 Concluding Remarks

We have motivated the extension of the alternating-timeptaad logicsAT L/ATL* with bounded-
memory and finite-memory semantics and have explored theessipeness for both complete and
incomplete information games. Both finite-memory semanéind the infinite hierarchy of bounded-
memory semantics were shown to be different from memoryéess perfect recall semantics. We
have also obtained complexity and decidability resultstii@er model-checking problems that emerged
from the newly introduced semantics. In particular, the etathecking results for bounded-memory
semantics were positive with as low a complexity as for mamiess semantics fokT L/AT L* and com-
plete/incomplete information games. Unfortunately mexhadcking with finite-memory semantics was
shown to be as hard as with perfect recall semantics in thesgamsidered, even though it was shown
to be a different problem.

References

[1] Thomas,&gotnes & Dirk Walther (2009)A Logic of Strategic Ability Under Bounded Memotjournal of
Logic, Language and Informatidr8(1), pp. 55-77, dain.1007/s10849-008-9075-4.

Steen Vester 207

[2] Rajeev Alur, Thomas A. Henzinger & Orna Kupferman (199%ternating-time Temporal Logidn: FOCS
pp. 100-109, doi.0.1109/SFCS. 1997 .646098.

[3] Rajeev Alur, Thomas A. Henzinger & Orna Kupferman (2Q08)ternating-time temporal logicJ. ACM
49(5), pp. 672—713, ddi0 . 1145/585265 .585270.

[4] Dietmar Berwanger & Lukasz Kaiser (2010kformation Tracking in Games on Graphdournal of Logic,
Language and Informatidt®(4), pp. 395-412, ddio.1007/s10849-009-9115-8.

[5] Thomas Brihaye, Arnaud Da Costa Lopes, Francois Lainies& Nicolas Markey (2009)ATL with Strategy
Contexts and Bounded Memoliy: LFCS pp. 92-106, dot:0.1007/978-3-540-92687-0_7.

[6] Edmund M. Clarke & E. Allen Emerson (1981pesign and Synthesis of Synchronization Skeletons Using
Branching-Time Temporal Logidn: Logic of Programspp. 52—71, doit0.1007/BFb0025774.

[71 Edmund M. Clarke, E. Allen Emerson & A. Prasad Sistla (BP8Automatic Verification of Finite-State
Concurrent Systems Using Temporal Logic Specificatida®V Trans. Program. Lang. Sy$X(2), pp. 244—
263. Available ahttp://doi.acm.org/10.1145/5397.5399.

[8] Catalin Dima & Ferucio Laurentiu Tiplea (2011Model-checking ATL under Imperfect Information and
Perfect Recall Semantics is UndecidableoRRabs/1102.4225. Available attp://arxiv.org/abs/
1102.4225.

[9] E. Allen Emerson & Charanjit S. Jutla (1991)ree Automata, Mu-Calculus and Determinacy (Extended
Abstract) In: FOCS pp. 368-377, doi:0.1109/SFCS.1991.185392.

[10] Wojciech Jamroga & Jiurgen Dix (2008Model Checking Abilities of Agents: A Closer LooKheory
Comput. Syst42(3), pp. 366—410, ddi0.1007/s00224-007-9080-z.

[11] Amir Pnueli & Roni Rosner (1989)Y0n the Synthesis of a Reactive Modute POPL, pp. 179-190, doi:0.
1145/75277.75293.

[12] Pierre-Yves Schobbens (2004lternating-time logic with imperfect recallElectr. Notes Theor. Comput.
Sci.85(2), pp. 82—93, doin.1016/S1571-0661(05) 82604-0.

Satisfiability of ATL with strategy contexts

Frangois Laroussinie Nicolas Markey
LIAFA — Univ. Paris Diderot & CNRS LSV — ENS Cachan & CNRS
francoisl@liafa.univ-paris-diderot.fr markey@lsv.ens-cachan.fr

Various extensions of the temporal logi€ L have recently been introduced to express rich properties
of multi-agent systems. Among thes®] Ls; extendsATL with strategy contextswhile Strategy
Logic hasfirst-order quantificatiorover strategies. There is a price to pay for the rich expressiss

of these logics: model-checking is non-elementary, andfaiility is undecidable.

We prove in this paper that satisfiability is decidable inesal/special cases. The most important
one is when restricting tturn-basedgames. We prove that decidability also holds for concurrent
games if the number of moves available to the agents is balrirally, we prove that restricting
strategy quantification to memoryless strategies bringk badecidability.

1 Introduction

Temporal logics are a convenient tool to reason about cagripatl systems, in particular in the setting
of verification [4)]. When systems are interactive, the models usually invebxeral
agents (or players), and relevant properties to be checdked question the existence strategiesfor
these agents to achieve their goals. To handle tladteenating-time temporal logiwas introduced, and
its algorithmic properties were studied: model checkingTsME-complete |], while satisfiabil-
ity was settledEXPTIME-complete |].

While model checking is tractabl&TL still suffers from a lack of expressiveness. Over the last
five years, several extensions or variant?\dL. have been developed, among whi¥hL with strategy

contexts[] and Strategy Logid 4]. The model-checking problem for these
logics has been proved non-elementary /110,], while satisfiability is undecidable, both when
looking for finite-state or infinite-state models | , 1. Several fragments of these logics have
been defined and studied, with the aim of preserving a richessiveness and at the same time lowering
the complexity of the decision problemis/[, ,]

In this paper we prove that satisfiability is decidable (giowith non-elementary complexity) for
the full logic ATLgc (andSL) in two important cases: first, when satisfiability is regted to turn-based
games (this solves a problem left open [itil\[] for SL), and second, when the number of moves
available to the players is bounded. We also consider a thiridtion, where quantification is restricted
to memorylesstrategies; in that setting, the satisfiability problemrsven undecidable, even for turn-
based games.

Our results heavily rely on a tight connection betwedn_sc and QCTL [], the extension
of CTL with quantification over atomic propositions. For instgnte QCTL formula3dp. ¢ states that
it is possible to label the unwinding of the model under cdesition with propositiorp in such a way
that¢ holds. This labeling with additional proposition allowstosmark the strategies of the agents and
the model-checking problem f&TLs. can then be reduced to the model-checking problen@Qfor L.

This work was partly supported by ERC Starting grant EQué&B@087) and by European project Cassting (FP7-ICT-
601148).

Gabriele Puppis, Tiziano Villa (Eds.): Fourth Interna@bn © Francois Laroussinie, Nicolas Markey
Symposium on Games, Automata, Logics and Formal Verifinatio This work is licensed under the
EPTCS 119, 2013, pp. 20823, doi:10.4204/EPTCS.119.18 Creative Commons Attributiohicense.

Francois Laroussinie, Nicolas Markey 209

However, in this transformation, the resultiQf_ TL formula depends both on thel Ls. formula to be
checked and on the game where the formula is being checkesl waly, the procedure does not extend
to satisfiability, which is actually undecidable. We proweéthat this difficulty can be overcome when
considering turn-based games, or when the number of alaiabves is fixed. The satisfiability prob-
lem for AT Ls is then reduced to the satisfiability problem ®€TL, which we proved decidable (with
non-elementary complexity) in[Vi13]. When restricting to memoryless strategies, a similancédn to
QCTL exists, but in a setting where the quantified atomic projarstdirectly label the model, instead of
its unwinding. The satisfiability problem f&@CTL under that semantics is undecidabied0], 1s
and we adapt the proof of that result to show that satisftghitf ATL. (in which quantification is
restricted to memoryless strategies) is also undecidable.

2 Definitions

2.1 ATL with strategy contexts

In this section, we define the framework of concurrent gamesires, and define the logiTL with
strategy contexts. We fix once and for all a A€tof atomic propositions.

Definition 1. A Kripke structures is a 3-tuple (Q, R, ¢) where Q is a countable set of statesCR)? is
a total relation {.e., for all g € Q, there is € Q s.t.(q,q) € R) and/: Q — 2P is a labelling function.

A path in a Kripke structure? is a mappingp: IN — Q such that(p(i),p(i+ 1)) € R for all i.
We write first(p) = p(0). Given a pathp and an integef, thei-th suffix of p, is the pathpsi: n—
p(i+n); thei-th prefix of p, denotedo, is the finite sequence made of ihel first state op. We write
Exec’(q) for the set of finite prefixes of paths (bistorieg with first stateg. We writelast(71) for the last
state of a historyt. Given a historyp<; and a patht such thatiast(p<j) = first(1), the concatenation
A =p<i-mis defined byA (j) = p(j) whenj <iandA(j)=rm(j—i)whenj >i.

Definition 2 ([). AConcurrent Game Structu€GS ¢ is a7-tuple(Q,R, ¢, Agt,.# ,Mov, Edge)
where: (Q,R,¢) is a (possibly infinite-state) Kripke structurégt = {ay,...,ap} is a finite set ofagents
A is a non-empty set of movedov: Q x Agt — Z(.#) . {&} defines the set of available moves of
each agent in each state, afidge: Q x .#”8 — R is a transition table associating, with each state q
and each set of moves of the agents, the resulting transiggarting from q.

The size of a CG% is |Q| + |Edge|. For a stateg € Q, we write Next(q) for the set of all states
reachable by the possible moves frogmandNext(q, a;,m;), with m; € Mov(q,a;), for the restriction
of Next(q) to possible transitions fromg when playera; plays movem;. We extendMov and Next to
coalitions (.e., sets of agents) in the natural way. We say that a CG&isbasedwhen each statq is
controlled by a given agent, called the ownegdgénd denote®wn(q)). In other terms, for everg € Q,
for any two move vectorsn and m’ in which Own(q) plays the same move, it hold&ge(gq,m) =
Edge(q,m’) (which can be achieved by letting the sbtsv(q,a) be singletons for everst = Own(q)).

A strategyfor some playelig; € Agt in a CGS% is a function f; that maps any history to a possi-
ble move fora,, i.e., satisfying fi(17) € Mov(last(),a;). A strategyf; is memorylessf fi(m) = fi(m')
wheneverlast(m) = last(17). A strategy for a coalitiorA is a mapping assigning a strategy to each
agent inA. The set of strategies fa@x is denotedStrat(A). Thedomaindom(Fa) of Fa € Strat(A) is A.
Given a coalitionB, the strategy(Fa) g (resp.(Fa)..s) denotes the restriction &} to the coalitionANB
(resp.A~ B). Given two strategieF € Strat(A) andF’ € Strat(B), we defineF oF’ € Strat(A(JB) as
(FoF)a (P) = Fa(p) (resp.F|;j (p))if aj € A(resp.a; € B\ A).

210 Satisfiability of ATL with strategy contexts

Let p be a history. A strateglfa = (fj)a;ca for some coalitiomA induces a set of paths from called
the outcomef F4 after p, and denote®ut(p,Fa): an infinite pathrr= p - q10z. .. is in Out(p, Fa) if,
and only if, writinggo = last(p), for all i > 0 there is a set of MOVESY,) o, cag: SUCh thatm, € Mov (g, a)
for all ax € Agt, m = f(7Tp 1) if a € A, andg;; is the unique element diext(q;, Agt, (M)aecAgt)-
Also, given a history and a strategia = (fj)a,ea, the strategﬁ’f is the sequence of strategi(d#’)ajeA
such thatfjp(n) = fj(p - m), assumindast(p) = first(7).

We now introduce the extension AT L with strategy contexts ,]:

Definition 3. Given a set of atomic propositionsP and a set of agentdgt, the syntax oATL is
defined as follows (where p ranges over AP and A @0¢¥):

ATL;c 9 ¢state7 state :p | - ¢state | ¢state \/ L)Ustate | >A< d)state ‘ <A> ¢path
¢path7 wPath :::¢state | - ¢path ‘ ¢path \/ wpath | X ¢path ‘ ¢path U L)Upath'

That a (state or path) formulf is satisfied at a positionof a pathp of a CGS% under a strategy
contextF € Strat(B) (for some coalitiorB), denoteds’, p,i = ¢, is defined as follows (omitting atomic
propositions and Boolean operators):

C, 0,1 FF A buare iff C, 0,1 FF 5 Datare
@.p,i or (A) B iff TFac Strat(A). Vo' € Out(pei,FacF). €,0'si =ruor Bous
CP I FEF X 1ff G, 0,1 +1EF Poun
C,P 1 FF Ppan Uy iff 3] >0.4,0,1+ | FF Y andVO <K < . €, 0,1 + K EF Ppan

Notice how the (existential) strategy quantifier contaimgaplicit universal quantification over the set of
outcomes of the selected strategies. Also notice that fstateilas do not really depend on the selected
path: indeed one can easily show that

%7p7i):F ¢state Iff (ga plaj):F, ¢state

where we assumg(i) = p'(j) and where~ andF’ verifies:F (p<i - p") = F'(pZj - p”) for any finitep”
starting inp(i). In particular this is the case when the; = p’Sj andF =F/.

In the sequel we equivalently writ€, 11(0) = @..... in place of¢’, 11,0 =g ¢..... When dealing with
state formulas.

For convenience, in the following we allow the constryé) ¢....., defining it as a shorthand for
(A) LU¢.... We also use the classical modalitiEsand G, which can be defined using. Also,
[A] @, = 7 (A) ~ @, €XPresses that amy-strategy has at least one outcome whgrg holds.

The fragmen®ATLg of ATLZ, is defined as usual, by restricting the set of path formulas to

¢path7 wpath n=o ¢path | X ¢state ‘ ¢state U Lpstate'

It was proved in [] that ATLs. is actually as expressive @8 Lg.. Moreover, for any given
set of players, anAT Ls. formula can be written without using negation in path foras,lreplacing for
instance(-A) G ¢ with (A - (Agt\ (AUB)-)F -~ ¢, whereB is the domain of the context in which the
formula is being evaluated. While this is not a generic eajence (it depends on the context and on the
set of agents), it provides a way of removing negation fromgiven AT Ls. formula.

Francois Laroussinie, Nicolas Markey 211

2.2 QuantifiedCTL

In this section, we introduc®CTL, and define itéree semantics

Definition 4. Let Z be a finite alphabet, and S be a (possibly infinite) set of doms. AZ-labelled
Streeis a pair 7 = (T,l), where TC S* is a non-empty set of finite words on S s.t. for any non-empty
word n=m-sin T with me S* and s€ S, the word mis also in T; and IT — X is a labelling function.

Theunwinding(or execution trepof a Kripke structure” = (Q,R,¢) from a stateg € Q is the 2\P-
labelledQ-tree 7 (q) = (Exec’(q),¢7) with £5(qo---q) = £(q;). Note thatZ, (q) = (Exec'(q),£7)
can be seen as an (infinite-state) Kripke structure whersehef states i§xec’(q), labelled according
to £ 7, and with transitiongm, m-s) for all me Exec’(q) ands € Q s.t. m-s¢ Exec’(q).

Definition 5. For P C AP, two2AP-labelled trees7 = (T,¢) and.7"’ = (T',¢') are P-equivalen{denoted
by 7 =p 7') whenever T=T’, and/(n)NnP=/¢(n)NP forany ne T.

In other terms,7 =p 7' if .7’ can be obtained fron¥” by modifying the labelling function of7
for propositions not irP. We now define the syntax and semanticQafTL":

Definition 6. The syntax oQCTL" is defined by the following grammar:

QCTL* > ¢statev state :p | _\¢state | ¢state \/Lnustate ‘ E¢path | A¢path ‘ E|p ¢state
¢path7 anpath :::¢state | - ¢path | ¢path \/ Lppath ‘ X ¢path | ¢path U wpath'

QCTL* is interpreted here over Kripke structures through thewindings-: given a Kripke struc-
ture., a stateq and a formulap € QCTL*, that¢ holds atq in .7, denoted with,q |=; ¢, is defined
by the truth value of7(q) |= ¢ that uses the standard inductive semanticSf* over trees extended
with the following case:

T3t 3T Zppp) T 5L T e

Universal quantification over atomic propositions, dedotgth the constructp. ¢, is obtained by du-
alising this definition. We refer tol[V/13] for a detailed study ofQCTL* and QCTL. Here we just
recall the following important properties of these logi€stst note thaQCTL is actually as expressive
asQCTL" (with an effective translation)c0],]. Secondly model checking and satisfiability
are decidable but non elementary. More precisely givQ€aL formula¢ and a (finite) set of degrees
2 C NN, one can build a tree automate#, 5 recognizing theZ-trees satisfyingp. This provides a
decision procedure for model checking as the Kripke strectd fixes the setZ, and it remains to check
whether the unwinding of” is accepted by#, . For satisfiability the decision procedure is obtained
by building a formulag, from ¢ such thatp, is satisfied by somél, 2}-tree iff ¢ is satisfied by some
finitely-branching tree. Finally it remains to notice thaQ&TL formula is satisfiable iff it is satisfiable
in a finitely-branching tree (aQCTL is as expressive d4S0) to get the decision procedure fQICTL
satisfiability. By consequence we also have th&@rL formula is satisfiable iff it is satisfied by a
regular tree (corresponding to the unwinding of some finitke structure).

3 From ATLgcto QCTL

The main results of this paper concern the satisfiabilitybjgnm for ATLs: given a formula inAT Lgg,
does there exists a CG& and a state such that¢’,q =4 ¢ (with empty initial context)? Before we

INote that several semantics are possibleJaTL* and the one we use here is usually calleditbe semantics

212 Satisfiability of ATL with strategy contexts

present these results in the next sections, we briefly expiaiv we reduce the model-checking problem
for AT L (which consists in deciding whether a given statef a given CGS¢” satisfies a giver\T Ls¢
formula ¢) to the model-checking problem fQCTL. This reduction will serve as a basis for proving
our main result.

3.1 Model checking

Let? = (Q,R, ¢, Agt,.# ,Mov, Edge) be afinite-state CGS, with a finite set of moves= {my, ..., m}.
We consider the following sets of fresh atomic propositioRg = {pq | g € Q}, P!, = {m],...,m}}
for everya; € Agt, and writeP , = U eagt P"//. Let .#, be the Kripke structuréQ,R,¢;) where
for any stateq, we have: ¢, (q) = ¢(q) U{pq}. A strategy for an agerd; can be seen as a function
fj: Exec(q) — P’/// labeling the execution tree of, with propositions irPJ///.

Let F € Strat(C) be a strategy context ardl € ATLg.. We reduce the question wheth€rq =g ®

to a model-checking instance fQCTL" over.%. For this, we define QCTL" formula®” inductively:
for non-temporal formulas,

———C
R U 2 At R L L
For a formula of the forn*('A'>X c,b with A= {a;,,...,a; }, we let:
46 .
(AYX @ = Im): mi.mll. \ AG (®arac(ay)) A AP =X §%4)
ajceA
where:

Dyirat(aj) = \/ (pq/\ \/ (mij/\/_'mHD

qeQ meMov(q,a;) 14

oh=6| A (Gem=x(V)

9eQ g €Next(g,A,m)
meMov(qg,A)

wherem s a move(mi),;ca € Mov(g, A) for A and Py, is the propositional formulg\, cam’ character-
izing m. Formula®y.¢(aj) ensures that the labelling of propositioms describes a feasible strategy
for a;. FormuladD([JAu]t characterizes the outcomes of the strategyAfdhat is described by the atomic

propositions in the model. Note th@ﬂﬁ}t is based on the transition taliielge of ¢ (via Next(qg, A, m)).
For a formula of the form-A-) (¢ U t,u) with A= {aj,,...,a; }, we let:

AT @UY) [CUA
(A (pUY) = Elm mk /\ AG (strat al)> (ouLtJ ! @AUTEH)
ajeA
Then:
Theorem 7. [] Letq be a state in a CG%'. Let® be anATLs: formula and F be a strategy

context for some coalition C. Lef”’ be the execution tr_egﬂﬁ(q) with a labelling function?’ s.t. for
every T € Exec’(q) of length i and any pc C, ¢(m)n P!, =m] if, and only if, F(1)a, = m. Then
%,q = ®if, and only if, 77, q = o

Combined with the (non-elementary) decision procedur&for L* model checking, we get a model-
checking algorithm for model checkingTLs.. Notice that our reduction above is in@CTL", but as
explained before everQCTL* formula can be translated in@CTL. Finally note that model checking
is non elementaryktEXPTIME-hard for anyk) both forQCTL andAT Lsc []

Francois Laroussinie, Nicolas Markey 213

3.2 Satisfiability

We now turn to satisfiability. The reduction @CTL we just developed for model checking does not
extend to satisfiability, because tRECTL formula we built depends both on the formula and on the
structure. Actually, satisfiability is undecidable fAf Lgc, both for infinite CGS and when restricting
to finite CGS |]. It is worth noticing that both problems are relevant A84_s; does not have the
finite-model property (nor does it have the finite-branchangperty). This can be derived from the fact
that the modal logi&s" does not have the finite-model propertyf07], and from the elegant reduction
of satisfiability of S5" to satisfiability of AT Lsc given in []12.

In what follows, we prove decidability of satisfiability imo different settings: first in the setting
of turn-based games, and then in the setting of a bounded ewailactions allowed to the players.
A consequence of our decidability proofs is that in both sgbased on automata constructios)Lsc
does have the finite-model property (thanks to Rabin’s eggyltheorem). We also consider the setting
where quantification is restricted to memoryless stratedpet prove that then satisfiability is undecidable
(even on turn-based games and with a fixed number of actions).

Before we proceed to the algorithms for satisfiability, wevera generic resuft about the number
of agents needed in a CGS to satisfy a formula involving argset of agents. This result has already
been proved foATL (e.g.in []). Given a formula® € ATLg., we useAgt(®P) to denote the
set of agents involved in the strategy quantifier&in

Proposition 8. An ATLg. formula® is satisfiable iff, it is satisfiable in a CGS withgt(®)| + 1 agents.

Proof. Assume® is satisfied in a CG% = (Q,R,¢,Agt,.# ,Mov,Edge). If |Agt| < Agt(®P), one can
easily add extra players @ in such a way that they play no role in the behavior of the gametsire.
Otherwise, if|Agt| > Agt(®) + 1, we can replace the agentsAgt that do not belong té\gt(®) by a
unigue agent mimicking the action of the removed players.ekample, a coalitiodh = {a, ..., a} can
be replaced by a playerwhose moves aretuples in.ZX. O

4 Turn-based case

Let @ be anATLsg formula, and assumagt(®) is the set{as,...,a,}. Following Prop.8, let Agt be
the set of agentdgt(®) U {ap}, whereag is an additional player. In the following, we use an atomic
propositions(turnj)a,cagt t0 specify the owner of the states. A strategy for an aggean be encoded
by an atomic propositiomovj: indeed it is sufficient to mark ongsuccessoof every aj-state (notice
that this is a crucial difference with CGS). The outcomesuahsa strategy are the runs in which every
a;-state is followed by a state labelled witiov;; this is the main idea of the reduction below.

Given a coalitionC (which we intend to represent the agents that have a stratethe current
context), we define CTL* formula®© inductively:

e for non-temporal formulas we let:
c

— N c . o
AP =" FAT =AD" =g =-9° Pe=P
e for path formulas, we define:

X6C =X §C $UG = p°uge

2Indeed the finite-branching property fail Lsc would imply the finite-model property fd85".
SNote that it still holds true when restricting to turn-baggnes.

214 Satisfiability of ATL with strategy contexts

e for formulas of the form(-A;) ¢ with A= {a;,,...,a; }, we let:

——0°C

(A)¢ =3Imovj,...movj,.

AG /\(turnj:>EX1movJ-)/\A[G(/\ (turnj:>XmovJ-)):>¢CUAH

ajeA ajeAUC

whereEX; a is a shorthand foEX a AVp. (EX(aAp)= AX (a= p)), specifying the existence
of a unique successor satisfying

Now we have the following proposition, whose proof is donetsyctural induction over the formula:

Proposition 9. Let® € ATLg, andAgt = Agt(®) U{ap} as above. Le¥ be a turn-based CGS, q be a
state of¢’, and F be a strategy context. L& (q) = (T, ¢) be the execution tree of the underlying Kripke
structure of¢” (including a labelling with propositiongturnj)a cagt)- LEt/F be the labelling extending
such that for every node of T belonging to someja dom(F) (i.e., such thatast(p) € Own(a;)), its
successop - q according to F (i.e., such thatjfp) = q) is labelled withmov;. Then we have:

C,qlr © iff (T, fe) | lom®)

Proof. The proof is by structural induction ovér. The cases of atomic propositions and Boolean opera-
tors are straightforward.

o ®=(A)(pUy): assume’,q =g P. Thenthere existBa € Strat(A) s.t. for anyp € Out(q,FacoF),
there exists > 05.t.%, p(i) =g, op s Y andvO< j <i, we haved’, p(j) =g, o)e<i - Letlr,or
be the extension of labelling T with propositions(movj)a cag: according to the strategy con-
textFaoF. By induction hypothesis, the following two statementschinlie:
_ <T7£FAOF>pSi): /Lﬁdom(F)UA, and
— (T lrsoR)p.; = oM/ A for any 0< j <.
(where (U, 1) is the subtree ofU,l) rooted at nodet € U). As this is true for every in the

outcomes induced biyaoF, it holds for every path in the execution tree satisfying ¢bastraint
over the labelling ofturnj)a cag: and(movj)a eagt- It follows that

(T lror) EA {G (/\ (turnj=X mOVj)) :>¢dom(F)UA}
ajeAUC

Moreover we also know thaAG A ca(turnj=- EX1mov;) holds true in(T, ¢k,) since the la-
belling /g, . includes the strategy. Hence(T, /g) = ®%m(F) with the labelling for(mov;)ajea
being obtained fronfra.

Now assumeT, /¢) = ®%°m(F), Write A= {aj,,...,aj }. Then we have:

(T lp) E Eimovil...mOle.{AG /\ (turnj= EX 1movj) A

ajeA

A[G(/\ (turnj=X mOVj)>j(@dom(F)UAdeom(F)uA)H

ajeAUC

Francois Laroussinie, Nicolas Markey 215

The first part of the formula, namelAG Ag ca(turnj= EX1movj), ensures that the labeling
with (movj)a, ca defines a strategy for the coalitidn The second part states that every run belong-
ing to the outcomes dfaoF (remember thafr already contains the strategy contExtsatisfies
(@dom(FIUAY gydom(F)UA) - Finally it remains to use the induction hypothesis ovetestalong the
execution to deduc#’,q =¢ (A) (¢ UY).

o ® =)A(: assumes’,q =r ®. Then?,q=r,, .. ¥- APplying the induction hypothesis,
we get(T, (e, o, .) = @ FIA And it follows that(T, ¢¢) = ™)\ because the labeling of
strategies for coalitio in F is not used for evaluatinggd°™(F)\A, Conversely, assum@, (¢) =
@em(F\A. Then we haveT, ¢k, .) = @9 (F)\A (again the labeling oA strategies irf is not
used for evaluating the formula). Applying induction hyipesis, we get’,q):Fdom(F)\A and then
%7q):F ®.

e ®= (A)X ¢ and® =)A(- X ¢: the proofs are similar to the previous ones. O

Finally, let @y, be the following formula, used to make the game turn-based:

(Dtb:AG[\/ (turnj/\ N ﬂturm)}

ajeAgt a #a;

and let® be the formulathb/\$@. Then we have:

Theorem 10. Let® be anATLSCfoanuIa and® be theQCTL* formula defined as above? is satisfiable
in a turn-based CGS if, and only @ is satisfiable (in the tree semantics).

Proof. If @ is satisfiable in a turn-based structure, then there exists a structuré&’ with |Agt(P)|+ 1
agents. Assum@’,q = ®. Now consider the execution tre&,(q) with the additional labelling to mark
states with the correct propositioftsirnj)a, cagt, indicating the owner of each state. From Proposifipn
we haveZ,(q) = ®?. Thus clearly.Z(q) = ®.

Conversely assumg = ®. As explained in Sectio?, we can assume thaf is regular. Thus
T = Oy AD?: the first part of the formula ensures that every state of titerying Kripke structure
can be assigned to a unique agent, hence defining a turn-8&®drl he second part ensures thdtolds
for the corresponding game, thanks to Proposifion O

The above translation fromTLgc into QCTL* transforms a formula witk strategy quantifiers into
a formula with at mosk+ 1 nested blocks of quantifiers; satisfiability o TL* formula withk+ 1
blocks of quantifiers is iiftk + 3)-EXPTIME []. Hence the algorithm has non-elementary complex-
ity. We now prove that this high complexity cannot be avoided

Theorem 11. Satisfiability ofAT Lsc formulas in turn-based CGS is non-elementary (i.e. ktESXPTIME-
hard, for all k).

Proof (sketch). Model checkingAT Lgc over turn-based games is non-elementaryJi12], and it can
easily be encoded as a satisfiability problem. ¥et (Q,R, ¢, Agt,.# ,Mov, Edge) be a turn-based CGS,
and® be anATLs. formula. LetPq be a fresh atomic proposition for evesyc Q. Now we define an
ATLs formulaWy to describe the gant€ as follows:

We=AG (\/ (Par \ =Pqr A\ PA A =P))A
qeQ q7q Pel(a) P'¢i(q)

AG[\/(Pq:>(/\ (own(@) XPgA A ﬂ<<0wn(q)>>XPq'))]

aeQ a—q o. g~

216 Satisfiability of ATL with strategy contexts

whereq — denotes the existence of a transition frgito g in 4. Any turn-based CGS satisfyirgy
corresponds to some unfolding ®f, and then has the same execution tree. Finally we clearly theat
%,q= @ if, and only if, W, A Py A @ is satisfiable in a turn-based structure. O

5 Bounded action alphabet

We consider here another setting where the reducti@Q®dL* can be used to solve the satisfiability of
ATLsc we assume that each player has a bounded number of availtzdas. Formally, it corresponds
to the following satisfiability problem:
Problem: (Agt, #)-satisfiability
Input: a finite set of moves#, a set of agentagt, and amAT Lsc formula® involving
the agents iM\gt;
Question: does there exist a CG8 = (Q,R ¢,Agt,.# ,Mov,Edge) and a state] € Q
such thatz’,q = ®.

AssumeZ ={1,...,a} andAgt = {&,...,an}. With this restriction, we know that we are looking
for a CGS whose execution tree has nodes with degrees intties€{1,2,...,a"}. We consider such
Z-trees where the transition table is encoded as followsefery ageng and movamin .#, we use the
atomic propositiormov" to specify that agerd; has played movenin thepreviousnode. Any execution
tree of such a CGS satisfies formula

s~ A [/| EXamo A () o)

me.#" me.#"

wheremov™ stands forAa cagt movrjﬁj. Notice that the second part of the formula is needed beaafuse
the way we handle thienplicit universal quantification associated with the strategy tiiers of AT Lsc.
Given a coalitiorC, we define @QCTL* formula ®° inductively as follows:

e for non-temporal formulas we let

C

N c
ALY =g SAp = ATC =7° = -3¢ c_p
¢ for temporal modalities, we define
—C —C
X¢ =X§° pUY =FUT".

e finally, for formulas of the form(-A;) ¢ with A= {a;,,...,a; }, we let:

(A ¢C = Jchoose], ... choosef. ... choose] ... choosef.
[AG (/\ \/ (choose]'A N ﬂchooseT)) A
ajeA m=1..a n#m
A [G (A/ (choose]'=X movﬁn)) = $CUA” :

ajeALC m=1..a

The first part of this formula requires that the atomic prajpmss choose’jn describe a strategy,
while the second part expresses that every execution foigpihe labelled strategies (including
those forC) satisfies the path formu®-A.

Francois Laroussinie, Nicolas Markey 217

Now, letting® be the formulaPggge A®?, we have the following theorem (similar to Theoréi):

Theorem 12. Let ® be anATLs. formula, Agt = {ay,...,an} be a finite set of agents#Z = {1,...,a}
be a finite set of moves, addbe the formula defined above. Th@ris (Agt,.#)-satisfiable in a CGS f,
and only if, theQCTL* formula® is satisfiable (in the tree semantics).

We end up with a non-elementary algorithm (kn+ 2)-EXPTIME for a formula involvingk strategy
quantifiers) for solving satisfiability of aATLs. formula for a bounded number of moves, both for a
fixed or for an unspecified set of agents (we can infer the segefts using Pro@). SinceATLsgc
model checking is non-elementary even for a fixed number afasi¢the crucial point is the alternation
of strategy quantifiers), we deduce:

Corollary 13. (Agt,.#)-satisfiability forATLsc formulas is non-elementary (i.&-EXPTIME-hard, for
all k).

6 Memoryless strategies

Memoryless strategies are strategies that only dependeoprésent state (as opposed to general strate-
gies, whose values can depend on the whole history). Risfristrategy quantifiers to memoryless
strategies in the logic makes model checking much easiexfimte game, there are only finitely many
memoryless strategies to test, and applying a memorylesigegy just amounts to removing some tran-
sitions in the graph. Still, quantification over memorylessitegies is not possible in plaiTLgc, and

this additional expressive power turns out to make satifiglhindecidable, even when restricting to turn-
based games. One should notice that the undecidabilityf pfdd] for satisfiability in concurrent
games uses one-step gameas, (they only involve oneX modality), and hence also holds for memoryless
strategies.

Theorem 14. Satisfiability ofATLZ, (with memoryless-strategy quantification) is undecidaélen when
restricting to turn-based games.

Proof. We prove the result for infinite-state turn-based games, dapting the corresponding proof
for QCTL under the structure semanti¢s 07, which consists in encoding the problem of tiling a quad-
rant. The result for finite-state turn-based games can lznaat using similar (but more involved) ideas,
by encoding the problem of tiling all finite grids (se€\[13] for the corresponding proof faRCTL).

We consider a finite sel of tiles, and two binary relationsl andV indicating which tile(s) may
appear on the right and above (respectively) a given tilea. gPoof consists in writing a formula that is
satisfiable only on a grid-shaped (turn-based) game steuctpresenting a tiling of the quadrang(
of IN x IN). The reduction involves two players: Player 1 controlsasgqustates (which are labelled
with [J), while Player 2 controls circle states (labelled with. Each state of the grid is intended to
represent one cell of the quadrant to be tiled. For technézdons, the reduction is not that simple, and
our game structure will have three kinds of states (seelfig.

e the “main” states (controlled by Player 2), which form th@gEach state in this main part has a
right neighbour and #&p neighbour, which we assume we can identify: more precisedymake
use of two atomic propositiong andv, which alternate along the horizontal lines of the grid. The
right successor of & -state is labelled withr,, while itstop successor is labelled with;

o the “tile” states, labelled with one item @f (seen as atomic propositions). Each tile state only has
outgoing transition(s) to a tile state labelled with the sdite;

218 Satisfiability of ATL with strategy contexts

¢ the “choice” states, which appear between “main” states'tiliet] states: there is one choice state
associated with each main state, and each choice state tass#didn to each tile state. Choice
states are controlled by Player 1.

Fig. 1: The turn-based game encoding the tiling problem

Assuming that we have such a structure, a tiling of the gridesponds to anemorylesstrategy of
Player 1 (who only plays in the “choice” states). Once suchemuoryless strategy for Player 1 has
been selected, that it corresponds to a valid tiling can Ipressed easily: for instance, in any cell
of the grid (assumed to be labelled with), there must exist a pair of tilef;,t;) € H such that
VIA (29X X t1 A (29X (V2 AX X t2). This would be written as follows:

vi= \/ {(2)0XX 1A (2)gX (v2AXX)
(tl,tz)EH
<'1‘>OG /\

Vo= \/ (290X Xt A (2)pX (ViAXX o)
(Il,tz)GH

The same can be imposed for vertical constraints, and foosing a fairness constraint on the base line
(under the same memoryless strategy for Player 1).

o c-state

Fig. 2: The cell gadget Fig. 3: Several cells forming (part of) a grid

It remains to build a formula characterising an infinite grithis requires a slight departure from
the above description of the grid: each main state will it faeca gadget composed of four states, as
depicted on Fig2. The first state of each gadget will give the opportunity tayel 1 tocolor the state
with eithera or 3. This will be used to enforce “confluence” of several traosg to the same state
(which we need to express that the two successors of anyfabl grid share a common successor).

Francois Laroussinie, Nicolas Markey 219

We now start writing our formula, which we present as a cotijom of several subformulas. We re-
quire that the main states be labelled withthe choice states be labelled withand the tile states be
labelled with the names of the tiles. We 8P’ = {m,c} UT andAP = AP’ U{vi,v»,a,3,00,0}. The
first part of the formula reads a follows (where universahggiantification can be encoded, as long as
the context is empty, usinge-),):

AG AA(MWC)A AG lc;» (D/\/\ (1) Xt A AX (\/ AGt))} A

teT teT

Voern A -F

pEAP’ p' eAP'\{p}

AG {(D@ﬂ@)/\ <D: /\ (EXp& (L)X p)) A <O:> /\ (EXpe (29X p))} (1)

peAP peAP

This formula enforces that each state is labelled with dxacte proposition fromAP’. It also enforces
that any path will wander through the main part until it pbsgoes to a choice state (this is expressed
as A(mW c), wheremW ¢ meansGmVv mUc, and can be expressed a negated-until formula). Finally,
the second part of the formula enforces the witnessingtsires to be turn-based.

Now we have to impose that the-part has the shape of a grid: intuitively, each cell hasethre
successors: one “to the right” and one “to the top” in the npeairt of the grid, and one-state which we
will use for associating a tile with this cell. For technicahsons, the situation is not that simple, and
each cell is actually represented by the gadget depictedgr2FEach state of the gadget is labelled
with m. We constrain the form of the cells as follows:

AG [m=((OA=aA=B)VOA~(aAB)))|AAG [((MAD)=(vie va)) A((vi Vo) = (mAD))| A
AG [(mAD) =[AX (MAOA(a VB)AAX (MAOA=aA=B)) A (L)X aA (1)X BH 2)

This says that there are four types of states in each cellspecifies the possible transitions within such
cells. We now express constraints on the transitions |lgaxicell:

AG [(EXcV EX 1V EXVo) =(mAOA-~a A= B)| A
AG [(m/\O/\—'O{/\—'B):(EXC/\ EXvi A EXVa A AX (CVVl\/vz)] A3)

It remains to enforce that the successor ofdhand 3 states are the same. This is obtained by the
following formula:

AG [(m/\[]):> [2]o ((@9X3(cVvr)V <'®'>0X3(CVV2))] (4)

Indeed, assume that some cell has two different “final” statieen there would exist a strategy for
Player 2 (consisting in playing differently in those two fistates) that would violate Formuld)(Hence
each cell as a single final state.

We now impose that each cell in the main part has exactly im&uccessors, and these twe
successors have amsuccessor in common. For the former property, Formajalfeady imposes that
each cell has at least two-successors (one labelled with and one withv,). We enforce that there
cannot be more that two:

AG [(mAD) = [(200X 3(wAX @) A (2)X3(VaAX @) = [2]g (299X X a]|. (5)

220 Satisfiability of ATL with strategy contexts

Notice that[2], (@-),¢ means thatp has to hold along any outcome of amemorylesstrategy of
Player 2. Assume that a cell has three (or more) succesdsr €Then at least one is labelled withand
at least one is labelled withp. There is a strategy for Player 1 to color onesuccessor cell and one
Vo-successor cell witlr, and a third successor cell wifh thus violating Formula) (as Player 2 has a
strategy to reach a successor cell colored @ith

For the latter property (the two successors have a commaessar), we add the following formula
(as well as itsr-counterpart):

[1o (290G [(MADIAV) = ([(2)0X 3 A F21oX3X)] 5[(206X (v AX3(-viAXa))])] - (6)

In this formula, the initial (universal) quantification av&rategies of Player 1 fixes a color for each cell.
The formula claims that whatever this choice, if we are in semcell and can move to anothey-cell
whose two successors have cotgrthen also we can move tova-cell having onex successor (which
we require to be a,-cell). As this must hold for any coloring, both successdr¢he originalv;-cell
share a common successor. Notice that this does not préweigtritd to be collapsed: this would just
indicate that there is gegular infinite tiling.

We conclude by requiring that the initial state be in a sqetaite of a cell in the main part. O

7 Results for Strategy Logic

In this section, we extend the previous results to Strateggid (SL). This logic has been initially

introduced in {] for two-player turn-based games. It has then been extetwegblayers concur-
rent games inlJ]. As explained in the introduction, satisfiability has bedrown undecidable
when considering infinite structures||], and the proof in] for finite satisfiability of AT Lgc

straightforwardly extends t6L. Here we show that satisfiability is decidable when consideturn-
based games and when fixing a finite alphabet, and that it nrsnu@idecidable when only considering
memoryless strategies.

Strategy Logic in a nutshell. We start by briefly recalling the main ingredientsSif. The syntax is
given by the following grammar:

¢ Wi=ploAY|—d|XP[dUY] (x)o][(ax)¢

wherea € Agt is an agent and is a (strategy) variable (we use Var to denote the set of thasables).
Formula(x)) ¢ expresses the existence of a strategy, which is storediatl@x, under which formula
holds. In¢, theagent bindingoperator(a, x) can be used to bind ageato follow strategyx. An assign-
menty is a partial function fromAgt U Var to Strat. SL formulas are interpreted over paitg,q) where
qis a state of some CGS apds an assignment such that every free strategy variablefagecurring in
the formula belongs tdom(x). Note that we havégt C dom(x) when temporal modalitieX and U

are interpreted: this implies that the set of outcomes isicésd to a unique execution generated by all
the strategies assigned to playerd\gt, and the temporal modalities are therefore interpreted thig
execution. Here we just give the semantics of the main twetcocts (seel|] for a complete
definition of SL):

C.X,q= (x)¢ iff IFeStrats.t. €, x[x—Fl,q=¢
¢, X9k @x¢ iff ¢ xla—xX).q=¢

4We use the standard notion of freedom for the strategy vesakith the hypothesis thgtx) bindsx, and for the agents
with the hypothesis thdh, x) bindsa and that every agent iigt is free in temporal subformula.¢., with U or X as root).

Francois Laroussinie, Nicolas Markey 221

In the following we assume w.l.0.g. that every quantifiei) introduces a fresh strategy varialxtethis
allows us to permanently use variabléo denote the selected strategy éor

Turn-based case. The approach we used fAil Lsc can be adapted f&L. Given arSL formula® and a
mappingV : Agt — Var, we define CTL" formula®Y inductively as follows (Boolean cases omitted):

—V —V

(xX) ¢ = Imovy. [AG (EX 1movx) A (;SV} @xep =V

Note that in this case we require tlesteryreachable state has a (unique) successor labeleanawitf
indeed when one quantifies over a stratggthe agent(s) who will use this strategy are not known yet.
However, in the turn-based case, a given strategy shouldetieated to a single agent: there is no
natural way to share a strategy for two different agentsherather way around, any two strategies for
two different agents can be seen as a single strategy), yautberot playing in the same states. When
the strategy is assigned to some agemtonly the choices made in tlzestates are considered.

The temporal modalities are treated as follows:

¢UL[J —A{G(/\ (turnj =X movy)>:>(}5VUL[J}

ajeAgt

X8' = A6 (A (twmi=Xmowe,))=X3"]

ajeAgt

Now let ® be the formulacbtb/\@’@. Then we have the following theorem:

Theorem 15. Let @ be anSL formula and@§ be theQCTL* formula defined as above. Tha@nis
satisfiable in a turn-based CGS if, and onlydf;s satisfiable (in the tree semantics).

Bounded action alphabet Let .# be {1,...,a}. The reduction carried out fohTLg; can also be
adapted foSL in this case. Given aBL formula® and a partial functioV : Agt — Var, we define the
QCTL* formula®V inductively as follows:

(x) ¢ = 3Ichoosel...Ichoosel. AG(\/ choose}' A /\ ﬂchoose)r('> APV (ax)¢p =gV

1<m<a n#m

The temporal modalities are handled as follows:

PUB" = Al(e A (eroosdly, = xman?)) = (307
ajeAgt I<m<a

—C

X¢ = {(G A A (choose\, :>Xmovj>)=>(X$V)]

ajeAgt 1I<m<a

Remember that in this casepv?‘ labels the possible successors of a state where agefdysm.
Finally, let® be the formulaPove/ PY. We have:
Theorem 16. Let® be anSL formula based on the sigt = {ay,...,an}, let.#Z = {1,...,a} be afinite

set of moves, an® be theQCTL* formula defined as above. Théris (Agt,.#)-satisfiable if, and only
if, @ is satisfiable (in the tree semantics).

222 Satisfiability of ATL with strategy contexts

7.1 Memoryless strategies

We now extend the undecidability result&T LS. to SL with memoryless-strategy quantification. Notice
that there is an important difference betweéhnéngC andSL° (the logic obtained fronsL by quantifying
only on memoryless strategies): tAg& Lsc-quantifier (-A;), still has an implicit quantification oveall
the strategies of the other players (unless their stratefiyad by the context), while iSL° all strategies
must be explicitly quantified. Henc.° andATLgC have uncomparable expressiveness. Still:

Theorem 17. SLY satisfiability is undecidable, even when restricting tatiased game structures.

Proof (sketch). The proof uses a similar reduction as for the proof4diLl.. The difference is that the
implicitly-quantified strategies iATLSC are now explicitly quantified, hence memoryless. Howeveisim
of the properties that our formulas impose are “local” ctinds (involving at most four nested “next”
modalities) imposed in all the reachable states. Such piepecan be enforced even when considering
only the ultimately periodic paths that are outcomes of mmgtess strategies. The only subformula not
of this shape is formul&mW c, but imposing this property along the outcomes of memosydéategies

is sufficient to have the formula hold true along any path. O

8 Conclusion

While satisfiability forATLsc andSL is undecidable, we proved in this paper that it becomes dbtgd
when restricting the search to turn-based games. We alsidesad the case where strategy quantifi-
cation in those logics is restricted to memoryless stragegwhile this makes model checking easier,
it makes satisfiability undecidable, even for turn-basedctires. These results have been obtained by
following the tight and natural link between those temptwglcs for games and the logieCTL, which
extendsCTL with quantification over atomic propositions. This witnesshe power and usefulness of
QCTL, which we will keep on studying to derive more results abeutporal logics for games.

Acknowledgement. We thank the anonymous reviewers for their numerous suggsstvhich helped
us improve the presentation of the paper.

References

[AHKO02] R. Alur, T. A. Henzinger, and O. Kupferman. Alterig-time temporal logic.J. ACM 49(5):672—
713, 2002. doit0.1145/585265.585270

[BDLMO9] Th. Brihaye, A. Da Costa, F. Laroussinie, and N. May. ATL with strategy contexts and bounded
memory. InProceedings of the International Symposium Logical Fotieda of Computer Science
(LFCS’09) LNCS 5407, p. 92—106. Springer, 2009. d6i:1007/978-3-540-92687-0

[CE82] E. M. Clarke and E. A. Emerson. Design and synthessg¢hronization skeletons using branching-
time temporal logic. IrProceedings of the 3rd Workshop on Logics of Programs (LORBNCS
131, p. 52-71. Springer, 1982. dbi.1007/BFb0025774

[CHPO7] K. Chatterjee, T. A. Henzinger, and N. Piterman.ategy logic. InProceedings of the 18th Inter-
national Conference on Concurrency Theory (CONCUR'QRICS 4703, p. 59—73. Springer, 2007.
doi:10.1007/978-3-540-744078

Francgois Laroussinie, Nicolas Markey 223

[DLM10]

[DLM12]

[Fre01]

[HSW13]

[Kuro2]

[LM13]

[MMPV12]

[MMV10]

[Pnu77]

[QS82]

[TW12]

[WHY11]

[WLWWO06]

A. Da Costa, F. Laroussinie, and N. Markey. ATL witlrategy contexts: Expressiveness and model
checking. InProceedings of the 30th Conferentce on Foundations of SwdtWechnology and
Theoretical Computer Science (FSTTCS;10PIcs 8, p. 120-132. Leibniz-Zentrum fur Informatik,
2010. doi10.4230/LIPIcs.FSTTCS.2010.1.20

A. Da Costa, F. Laroussinie, and N. Markey. QuantifiéTL: Expressiveness and model checking.
In Proceedings of the 23rd International Conference on Corenay Theory (CONCUR'12).NCS
7454, p. 177-192. Springer, 2012. d6i:1007/978-3-642-329404114.

T. French. Decidability of quantified propositibiaanching time logics. IrProceedings of the
14th Australian Joint Conference on Artificial Intelligen€AJCAI'01) LNCS 2256, p. 165-176.
Springer, 2001. dol:0.1007/3-540-45656-25.

C.-H. Huang, S. Schewe, and F. Wang. Model-checkemgted games. I[fProceedings of the
19th International Conference on Tools and Algorithms fan€truction and Analysis of Systems
(TACAS’13)LNCS 7795, p. 154-168. Springer, 2013. d6i1007/978-3-642-3674217L.

A. Kurucz. S5 x S5 x Sb lacks the finite model property. IARroceedings of the 3rd Workshop on
Advances in Modal Logic (AIML'0Qp. 321-327. World Scientific, 2002.

F. Laroussinie and N. Markey. Quantified CTL: exprigesess and complexity. Research Report
LSV-13-07, Lab. Spécification & Vérification, ENS Cach&nance, 2013.

F. Mogavero, A. Murano, G. Perelli, and M. Y. Vard/hat makes ATL decidable? a decidable frag-
ment of strategy logic. IProceedings of the 23rd International Conference on Corenay Theory
(CONCUR’12) LNCS 7454, p. 193-208. Springer, 2012. d6i1007/978-3-642-32940415.

F. Mogavero, A. Murano, and M. Y. Vardi. Reasoning catb strategies. InProceed-

ings of the 30th Conferentce on Foundations of Software n@oly and Theoretical Com-
puter Science (FSTTCS'10LIPIcs 8, p. 133-144. Leibniz-Zentrum fur Informatik, @M

doi:10.4230/LIPIcs.FSTTCS.2010.133

A. Pnueli. The temporal logic of programs. Rroceedings of the 18th Annual Sympo-
sium on Foundations of Computer Science (FOCS'p7¥46-57. IEEE Comp. Soc. Press, 1977.
doi:10.1109/SFCS.1977.32

J.-P. Queille and J. Sifakis. Specification and \e&ifon of concurrent systems in CESAR. In
Proceedings of the 5th International Symposium on Prograngig8OP’82) LNCS 137, p. 337-351.
Springer, 1982. dol:0.1007/3-540-11494-72.

N. Troquard and D. Walther. On satisfiability in atltivistrategy contexts. IRroceedings of the
13th European Conference in Logics in Artificial Intelligen(JELIA’12) LNCS 7519, p. 398-410.
Springer, 2012. dol:0.1007/978-3-642-33353:&L.

F. Wang, C.-H. Huang, and F. Yu. A temporal logic fbetinteraction of strategies. Rroceedings of
the 22nd International Conference on Concurrency TheoNCUR’11) LNCS 6901, p. 466—481.
Springer, 2011. dol:0.1007/978-3-642-232173L.

D. Walther, C. Lutz, F. Wolter, and M. WooldridgeTA satisfiability is indeed EXPTIME-complete.
Journal of Logic and Computatioi6(6):765—-787, 2006. ddi0.1093/logcom/exI009

Modularity and Openness in Modeling Multi-Agent Systems

Wojciech Jamroga Artur Meski
Computer Science and Communication, and Institute of Computer Science
Interdisciplinary Centre on Security, Reliability and Trust Polish Academy of Sciences, Warsaw, Poland,
University of Luxembourg and FMCS, University of £.6dZ, Poland
wojtek.jamrogaQuni.lu meski@ipipan.waw.pl

Maciej Szreter

Institute of Computer Science
Polish Academy of Sciences, Warsaw, Poland

mszreter@ipipan.waw.pl

We revisit the formalism of modular interpreted systems (MIS) which encourages modular and open
modeling of synchronous multi-agent systems. The original formulation of MIS did not live entirely
up to its promise. In this paper, we propose how to improve modularity and openness of MIS by
changing the structure of interference functions. These relatively small changes allow for surprisingly
high flexibility when modeling actual multi-agent systems. We demonstrate this on two well-known
examples, namely the trains, tunnel and controller, and the dining cryptographers.

Perhaps more importantly, we propose how the notions of multi-agency and openness, crucial
for multi-agent systems, can be precisely defined based on their MIS representations.

1 Introduction

The paradigm of multi-agent systems (MAS) focuses on systems consisting of autonomous entities acting
in a common environment. Regardless of whether we deem the entities to be intelligent or not, proactive
or reactive, etc., there are two design-level properties that a multi-agent system should satisfy. First, it
should be modular in the sense that it is inhabited by loosely coupled components. That is, interaction
between agents is crucial for the system, but it should be relatively scarce compared to the intensity
of local computation within agents (otherwise the system is in fact a single-agent system in disguise).
Secondly, it should be open in the sense that an agent should be able join or leave the system without
changing the design of the other components.

Models and representations of MAS can be roughly divided into two classes. On one hand, there
are models of various agent logics, most notably modal logics of knowledge, action, time, and strategic
ability [7, 8, 2]. These models are well suited for theoretical analysis of general properties of agent
systems. However, they are too abstract in the sense that: (a) they are based on abstract notions of global
state and global transition so the structure of a model does not reflect the structure of a MAS at all, and (b)
they come with neither explicit nor implicit methodology for design and analysis of actual agent systems.
At the other extreme there are practical-purpose high-level representation languages like Promela [11],
Estelle [6], and Reactive Modules (RM) [1]. They are application-oriented, and usually include too many
features to be convenient for theoretical analysis. The middle ground consists of formalisms that originate
from abstract logical models but try to encapsulate a particular modeling methodology. For instance,
interpreted systems [8] support local design of the state space; however, transitions are still global, i.e.,
they are defined between global rather than local states. Synchronous automata networks [10] and ISPL
specifications [17, 19] push the idea further: they are based on local states and semi-local transitions,

Gabriele Puppis, Tiziano Villa (Eds.): Fourth International © W. Jamroga, A. Mgski & M. Szreter
Symposium on Games, Automata, Logics and Formal Verification This work is licensed under the
EPTCS 119, 2013, pp. 224-239, doi:10.4204/EPTCS.119.19 Creative Commons Attribution License.

W. Jamroga, A. Meski & M. Szreter 225

i.e., the outcome of a transition is local, but its domain global. This makes agents hard to separate from
one another in a model, which hampers its modularity. On the other hand, concurrent programs [16] and
asynchronous automata networks [10] are fairly modular but they support only systems whose execution
can be appropriately modeled by interleaving of local actions and/or events.

Modular Interpreted Systems (MIS) are a class of models proposed in [13] to achieve separation of
the interference between agents from the local processing within agents. The main idea behind MIS was
to encapsulate the way agents’ actions interfere by so called interaction tokens from a given alphabet .7n,
together with functions out;, in; that define the inferface of agent i. That is, out; specifies how i’s actions
influence the evolution of the other agents, whereas in; specifies how what rest of the world influences
the local transition of i. Modular interpreted systems received relatively little attention, though some
work was done on studying computational properties of the related verification problem [12], facilitating
verification by abstraction [14], and using MIS to analyze homogeneous multi-agent systems [4]. This
possibly stems from the fact that, in their original incarnation, MIS are not as modular and open as one
would expect. More precisely, the types of functions used to define interference fix the number of agents
in the MIS. Moreover, the assumption that all the functions used in a model are deterministic limit the
practical applicability, as modeling of many natural scenarios becomes cumbersome.

In this paper, we try to revive MIS as an interesting formalism for modeling multi-agent systems.
We propose how to improve modularity and openness of the original class by changing the structure of
interference functions out,in. The idea is to use multisets of interference tokens instead of k-tuples. This
way, we do not need to “hardwire” information about other modules inside a module. Additionally, we
assume that the “manifestation” function out can be nondeterministic. These relatively small changes
allow for surprisingly high flexibility when modeling MAS. We demonstrate that on two well-known
benchmark examples: trains, tunnel and controller, and the dining cryptographers.

Perhaps more importantly, we propose how two important features of multi-agent systems can be
formally defined, based on MIS representations. First, we show how to decide if a system is designed
in a proper multi-agent way by looking at the relation between the complexity of its interference layer
to the complexity of its global unfolding. Moreover, we define the degree of openness of a MIS as the
complexity of the minimal transformation that the model must undergo in order to add a new agent to
the system, or remove an existing one. We apply the definitions to our benchmark models, and show that
different variants of cryptographers grossly differ in the amount of openness that they offer.

The paper has the following structure. In Section 2, the new variant of MIS is defined, along with
its execution semantics. Section 3 presents MIS representations for two benchmarks: Tunnel, Trains and
Controller (TTC) and Dining Cryptographers (DC). A graphical notation is provided to make the exam-
ples easier to read. In Sections 4 and 5, we propose formal definitions of multi-agency and openness,
respectively, and apply them to several variants of the benchmarks. Section 6 concludes the paper.

1.1 Related Work

The modeling structures discussed in this paper share many similarities with existing modeling frame-
works, in particular with Reactive Modules [1]. Still, MIS and RMs have different perspectives: Reactive
Modules is an application-oriented language, while the focus of modular interpreted systems is more the-
oretic. This results in a higher abstraction level of MIS which are based on abstract states and interaction
tokens. MIS aim at separating internal activities of modules and interactions between modules, what is
not (explicitly) featured in RM.

Modularity in models and model checking has been the focus of many papers. Most notably, Hi-
erarchical State Machines of Alur et al. [3, 20] and the approach of hierarchical module checking by

226 Modularity and Openness in Modeling Multi-Agent Systems

Murano et al. [18] feature both “horizontal” and “vertical” modularity, i.e., a system can be constructed
by means of parallel composition as well as nesting of modules. Similarly, dynamic modifications and
“true openness” of models has been advocated in [9]. In that paper, Dynamic Reactive Modules (DRM)
were proposed, which allow for dynamic reconfiguration of the structure of the system (including adding
and removing modules). Our approach differs from the ones cited above in two ways. On one hand, we
focus on an abstract formulation of the separation of concerns between modules (and agents), rather than
providing concrete mechanisms that implement the separation. On the other, we define indicators that
show how good the resulting models is. That is, our measures of agentivity and openness are meant to
assess the model “from the outside”. In particular, the focus of the DRM is on providing a mechanism for
adding and removing agents in the RM representation. We implement these operations on the meta-level,
as a basis of the mathematical measure of openness. Our work could in principle be applied to DRMs
and other formalisms, but it would require defining the appropriate multi-agent mechanisms which are
already present in Interpreted Systems.

2 Modular Interpreted Systems Revisited

Modular interpreted systems were proposed in [13] to encourage modular and open design of syn-
chronous agent systems. Below, we present an update on the formalism. The new version of MIS differs
from the original one [13] as follows. First, a single agent can be now modeled by more than one module
to allow for compact design of agents’ local state spaces and transition functions. Secondly, the type of
function in; is now independent from the structure and cardinality of the set of agents, thus removing the
main obstacle to modularity and openness of representation in the previous version. Thirdly, the interac-
tion functions in;, out; are nondeterministic in order to enable nondeterministic choice and randomization
(needed, e.g., to obtain fair scheduling or secure exchange of information). Fourthly, we separate agents
from their names. This way, agents that are not present in the “current” MIS can be referenced in order
to facilitate possible future expansion of the MIS.

2.1 New Definition of MIS

Let a bag (multiset) over set X be any function X — N. The set of all bags over X will be denoted by
(X), and the union of bags by W.

Definition 1 (Modular interpreted system) We define a modular interpreted system (MIS) as a tuple
S = (Agtnames,Act, In,Agt),

where Agtnames is a finite set of agent names, Act is a finite set of action names, % is a finite interaction
alphabet, and Agt = {ay,...,ar} is a finite set of agents (whose structure is defined in the following
paragraph). A set of directed tokens, used to specify the recipients of interactions, is defined as Jok =
In x (Agmames U {€e}), where € denotes that the interaction needs to be broadcasted to all the agents
in the system.

Each agent a; = (id,{mi,...,m,}) consists of a unique name id € Agtnames (also denoted with
name(a;)), and one or more modules m; = (St;,Init;,d;,out;,in;,0;,11;,7;), where:

e St; is a set of local states,
e Init; C St is the set of initial states,

o dj:Stj — P(Act) defines local availability of actions; for convenience of the notation, we addi-
tionally define the set of situated actions as D; = {(q;,) | gj € Stj, o € dj(q;)},

W. Jamroga, A. Meski & M. Szreter 227

e outj, in; are interaction (or interference) functions:

- outj:Dj — P (P (Jok)) refers to the set of influences (chosen nondeterministically) that a
given situated action (of module mj;) may possibly have on the recipients of the embedded
interaction symbols, and

— inj: Stj x B(In) — P (In) translates external manifestations from the other modules into
the (nondeterministically chosen) “impression” that they make on module m; depending on
the local state of mj; we assume in(-) # 0;

® 0j:Djx In— P(St;) is alocal transition function (possibly nondeterministic),

o II; is a set of local propositions of module mj (we require that I1; and I1,, are disjoint when j # m),

o 7;:I1; — Z(St;) is a valuation of these propositions.

Additionally, we define the cardinality of S (denoted card(S)) as the number of agents in S.

Typically, each agent in a MIS consists of exactly one module, and we will use the terms interchange-
ably. Also, we will omit Init; from the description of a module whenever Init; = St;.

Note that function in; is in general infinite. For practical purposes, finite representation of in; is
needed. We use decision lists similarly to [15, 19]. Thus, in; will be described as an ordered list of pairs
of the form condition — value. The first pair on the list with a matching condition decides on the value
of the function. The conditions are boolean combinations of membership and cardinality tests, and are
defined over the variable s for the conditions defined on states, and over H for the conditions on multisets
of received interferences. We require that the last condition on the list is T, so that the function is total.
Several examples of MIS’s are presented in Sections 3 and 5.

2.2 Execution Semantics for MIS

Definition 2 (Explicit models) A nondeterministic concurrent epistemic game structure (NCEGS) is a
tuple C = (&, St, St0, PV, V , olct,0,t,~1,...,~), where: of ={1,... k} is a nonempty set of agents,
S is a nonempty set of states, Sty C .St is the set of initial states, PV is a set of atomic propositions,
VPV — P(S1) is a valuation function, 0 : 9 X St — P (gct) assigns nonempty sets of actions
available at each state, and t is a (nondeterministic) transition function that assigns a nonempty set
0=1t(q,04,...,0) of outcome states to a state q, and a tuple of actions (.. ., 04) that can be executed
in q.
We define the semantics of MIS through an unfolding to NCEGS.
Definition 3 (Unfolding of MIS) Unfolding of the modular interpreted system S from Definition I to a
nondeterministic concurrent epistemic game structure NCEGS(S) = (&', A1, S\, PV', V', otct' o' 1)
is defined as follows:

o o' ={1,...,k}, and ct' = Act,

o ' =TI, St

o th={(q1,...,qx) | Vie{1,...,k}) q; € Init;},

o PV' = 1N, and V' (p) = mi(p) when p € 11,

e 0'(i,q) = di(q;) for global state ¢ = (q1,- . .,qx), and i € &,

e The transition function t' is constructed as follows. Let q = (qi,...,qx) be a state, and o =
(ai,...,) be a joint action. We define an auxiliary function 0i;(q;, ;) of all the possible interfer-
ences of agent i, for q;, and o;: Y € 0i;(q;, @) iff there exist Ty, ..., Ty such that Tj € out((q;, @;)),

and Y € ini(g;, /1¥...0 I), where S; = {y; | (3r € {name(a;),e}) (y;,r) € T;} forall j € o
Then (qlla .o ’qz) € I(Qaalw . .,Olk) lﬁ(‘ql, € Oi((qivai)7y)’ where ve Oii(qiaal');

228 Modularity and Openness in Modeling Multi-Agent Systems

o g~;q iff gand ¢ agree on the local states of all the modules in agent a;.

Definition 3 immediately provides some important logics (such as CTL, LTL, ATL, epistemic logic,
and their combinations) with semantics over modular interpreted systems. By the same token, the model
checking and satisfiability problems for those logics are well defined in MIS.

3 Modeling with MIS

We argue that the revised definition of MIS achieves a high level of separation between components
in a model. The interaction between an agent and the rest of the world is encapsulated in the agent’s
interference functions out;,in;. Of course, the design of the agent must take into account the tokens
that can be sent from modules with which the agent is supposed to interact. For instance, the out,in
functions of two communicating agents must be prepared to receive communication tokens from the
other party. However, the interference functions can be oblivious to the modules with which the agent
does not interact. In this section, we demonstrate the advantages on two benchmark scenarios: Trains,
Tunnel, and Controller (TTC), and Dining Cryptographers (DC).

3.1 Tunnel, Trains, and Controller (TTC)

TTC is a variant of classical mutual exclusion, and models » trains moving over cyclic tracks sharing a
single tunnel. Because only one train can be in the tunnel at a time, trains need to get a permission from
the controller before entering the tunnel. We model the scenario by MIS TTC, = (Agt,Act,In), where:

o Agtnames = {try,... ,try,ctrl},
e Act = {nop,approach,request,enter,leave},

o In = {idle,appr,try;,...,try,, retry, granted, left,enter,aw_regs, grant, grant,,...,grant,,
no_reqs, infd, ack_release, aw_leave}.

o Agt={try,... tr,,ctrl},
The system includes n trains tr; = (¢r;, {(St;, Init;,d;,out;, in;,0;,11;, ;) }) for i € {0,...,n} such that:
St; = {out ,tun_needed, granted, in}, and Init; = {out }. d; out; is defined as:
is defined as: (out, nop) v {{(idle,rr)}},

(out,approach) — {{(appr,tr;)}},
(tun_needed,request) — {{(try;,ctrl)}},
(

(

e out — {nop,approach}, N

tun_needed — {request},

granted — {enter},

granted enter) — {{(enter,tr;)}},

in,nop) > {{(idle, 1)} },
(in,leave) — {{(left,ctrl), (left,zri) } }

in— {nop,leave}

0; is defined as:

o ((out,nop),idle) — {out} in; is defined as:

o ((out,approach),appr) — {tun_needed}, e s=out Nappr € H — {appr},

* ((tun_needed, request), retry) — {tun_needed}, o s=tun_needed N\grant € H — {granted},
o ((tun_needed,request),granted) — {granted}, o s=tun_needed — {retry},

e ((granted,enter),enter) — {in}, e s = granted Nenter € H — {granted},

e ((in,nop),idle) — {in}, o s=inAleft € H — {left},

o ((in,leave),leave) — {out} o T {idle}

IT; = {in_tunnel } 7; = {in — in_tunnel}

W. Jamroga, A. Meski & M. Szreter 229

Moreover, the agent ctrl = (ctrl, {(St., Init.,d.,out.,in.,0.,I1., nc.)}) modeling the controller is defined
as follows:

St. = {tun_free,infd,trgranted, ... trpgranted}, and out, is defined as:

Init, = {tun_free}.

d. is defined as: o (tun_free,accepting) — {{(aw_regs,€)}},

o (infd,waiting) — {{(aw_leave,ctrl)}},
o (trigranted,inform) — {{(grant,rr1)}},

tun_free — {accepting},
infd — {waiting},
trigranted — {inform},

o (trygranted,inform) — {{(grant,tr,)}},

in, is defined as:

trpgranted — {inform}

0 is defined as: e s=tun_free Ntry, € H — {grant; },

((tun_free,accepting),no_reqs) — {tun_free},
infd,waiting),aw_leave) — {infd},

(o s=rtun_free Atry, € H— {grant,},
((infd,waiting),ack_release) — {tun_free},
((

e s=rtun_free— {no_reqs},

o s=trigranted\ ...\ s = trygranted — {infd},
o s=infd Nleft € H — {ack_release},
e s=infd+— {aw_leave},

tun_free,accepting),granty) — {trigranted},

o ((tun_free,accepting),grant,) — {tr,granted},

o T {idle}

o ((trigranted,inform),infd) — {infd},

o ... 1. = {tunnel_busy}

o ((trpgranted,inform),infd) — {infd} 7. = {infd — tunnel_busy}

The model is illustrated in Figure 1 using the notation introduced in Section 3.2. The protocol focuses
on the procedure of gaining a permission to access the tunnel. Before requesting the permission, a train
approaches the tunnel, and its state changes to tun_needed. In this state it requests the permission from
the controller. When the controller grants the permission to one of the nondeterministically chosen trains
(tr;granted) it informs the train that got access to the tunnel about this fact, and moves to the state
infd. The train enters the tunnel in the next step of the protocol, and changes its state to in, whereas the
remaining trains may continue requesting the access (they remain in tun_needed). When the train leaves
the tunnel, it changes its state to tun_free.

3.2 Graphical Representation

As the definitions of MIS tend to be verbose, we introduce a simple graphical notation, based on networks
of communicating automata. Let us explain it, based on Figure 1, which is a graphical representation of
the tunnel, trains, and controller model from Section 3.1:

e Modules defining different agents and belonging to the same agent are separated by solid and
dashed lines, respectively,

e Circles correspond to local states. An arrow with loose end pointing into a circle denotes an initial
state,

e Boxes define local actions associated with a state,

e For alocal action, dashed lines going out of it define emitted influences, specified with the receiver
and the influence at the left and right side of an harpoon arrow pointed left, respectively. When no
receiver is specified, the influence is broadcasted,

230 Modularity and Openness in Modeling Multi-Agent Systems

— iy — »GRANT,

ctrl

7 Yn | GRANT,
T | o NO_REQUESTS

NO_REQUEST'S
GRANTED
—»
“RETRY GRANT,
GRANTED } :
\
LEFT trngranted
T (e iert ey oRe
" e nter <« - - 1 inform Thform Tform
try ~ grant - - *t; > ant
tr; ~— enter . ENTER — g

AW _LEAVE

ctrl — aw_leave
>

waitjng -

— left — > ACK_RELEASE
T | AW_LFAVE

Figure 1: Tunnel, trains and controller (TTC) in the graphical representation

ctrfﬁ left
tr; — left

e Solid lines with arrows, connecting an action with a local state, correspond to a local transition
function,

e For alocal state, guarded commands (possibly in a box) define the translation of external manifes-
tations received by an agent into local impressions. A harpoon arrow pointed right corresponds to
a sender at the left side and the message at the right side, and if the sender is not specified it means
receiving from anyone. For a transition, dotted arrows pointing at it correspond to application of
those impressions.

The number of interactions x received by an agent is denoted with n(x). The notation x labeling a
transition means that it is executed when none of the remaining transitions are enabled. For example, it
could be used instead of directly specifying the generation and application of aw_leave manifestation in
the controller.

Some parts can be skipped or abstracted away if it does not lead to confusion. For example, if
no influence is emitted and only one transition is associated with an action, this action needs not be
directly specified. In Figure 1, the self-loop from the in state is not accompanied by the associated
local impression nor the impression. Similarly, a single influence addressed to the very module that
issued it can be omitted. For example, we do not show the manifestation id/e in the graph. Valuations of

W. Jamroga, A. Meski & M. Szreter 231

Cz' Who,pays — pay_decided
//’ Cp ~— payn
SAY EQUAL ‘9
Bi |-
Y TAY DIFF
\
ys 01 — pay

Ci- ~— head .
ia_ - — pay_decided

— pay,deczded

P
\‘ Counter ~— say_equal; = false

Counter < say_equal; = true
a; : ((Ci — tail ANn(Who_pays — pay;) = 0)
V(Ci+ — head N Who_pays — pay;))
AW ho_pays — pay_decided)

Vien,nCi — say-equal; = false ‘H IS ODD

ViennCi — say-equal; = true l—»]S,EVEN

Bi : ((Ci+ — head A n(Who_pays — pay;) = 0)
V(Ci+ — tail N Who_pays — pay;))

AW ho_pays — pay decided)

Figure 2: MIS for dining cryptographers (DC1)

propositions can be depicted in a similar way as for networks of automata. We omit them in our examples
throughout, as they do not play a role in this paper.

3.3 Dining Cryptographers: Standard Version (DC1)

Dining Cryptographers is a well-known benchmark proposed by Chaum [5]. n cryptographers are having
dinner, and the bill is to be paid anonymously, either by one of them or by their employer. In order to
learn which option is the case without disclosing which cryptographer is paying (if any), they run a two-
stage protocol. First, every cryptographer is paired with precisely one other participant (they sit around
the table), thus forming a cycle. Every pair shares a one-bit secret, say by tossing a coin behind a menu.
In the second stage, each cryptographer publicly announces whether he sees an odd or an even number
of coin heads, saying the opposite if being the payer.

In the simplest case (DC1) the number of cryptographers is fixed, and each cryptographer is directly

232 Modularity and Openness in Modeling Multi-Agent Systems

bound with its neighbours. Cryptographers announce their utterances by broadcasting them. A modular
interpreted system modeling this setting is presented in Figure 2. For n cryptographers, the ith cryptogra-
pher is modeled by agent C; (0 < i < n). We introduce notation i" and i~ to refer to the right and the left
neighbour of cryptographer i, respectively. The system includes also two additional agents. Who_pays
initializes the system by determining who is the payer, and communicating it to the cryptographers. Ac-
cording to the protocol definition, either one of the cryptographers is chosen, or none of the participants
pays. Agent Counter counts the utterances of the cryptographers, computes the XOR operation (denoted
by V and assuming that utterances different and equal correspond to true and false values, respectively,
thus the result is true iff the number of different utterances is odd), and determines the outcome of the
protocol. Figure 2 shows the modular interpreted system for DC1.

4 How to Measure Multi-Agency

In this section, we present our preliminary attempt at defining what it means for a design to be multi-
agent. Intuitively, separate agents should have only limited coordination and/or communication capabil-
ities. Otherwise, the whole system can be seen as a single agent in disguise. The idea is to measure the
complexity of interference between different agents, and relate it to the complexity of the system. The
former factor will be captured by the number of directed interaction tokens that a given agent can gener-
ate; the latter by the number of global transitions that can occur. We say that the agent is well designed
if its interference complexity is reasonably smaller than overall complexity of the system.

Definition 4 (Interaction complexity) 7he interaction complexity of agent i in modular interpreted sys-
tem M, denoted IC(i), is defined as follows. Let #out;(q;) be the the maximal number of directed to-
kens generated by function out; to modules of other agents in state q;. Furthermore, let #in;(q;) be
the maximal number of tokens admitted by function in; from modules of other agents in state q;. Now,
1C(i) = Lyes, (Houti(qi) + #ini(qi)).

The interaction complexity of M is defined as IC(M) = ¥ jc 5o IC(i).

Definition 5 (Global complexity) The global complexity of MIS M, denoted GC(M), is the number of
transitions in the NCEGS unfolding of M.

How can we express that IC(M) is “reasonably smaller” than GC(M)? Such a requirement is rela-
tively easy to specify for classes of models, parameterized with values of some parameter (for instance,
the number of identical trains in the tunnel-controller scenario).

Definition 6 (%’-sparse interaction, multi-agent design) Let .# be a class of MIS and € a class of
complexity functions f : N — R U{0}. We say that .# is characterized by € -sparse interaction iff there
is a function f € € such that IC(M) < f(GC(M)) for every M € A .

Furthermore, we say that .# has multi-agent design iff .# has LOGTIME-sparse interaction, and
card(M) > 2 for everyM € M.

Proposition 1 Classes TTC and DC1 have multi-agent design.

The proof is straightforward. It is easy to see that the other variants of Dining Cryptographers, discussed
in Section 5, also have multi-agent design.

W. Jamroga, A. Meski & M. Szreter 233

S How Open is an Open System?

The idea of open systems is important for several communities: not only MAS, but also verification,
software engineering, etc. It is becoming even more important now, with modern technologies enabling
dynamic networks of devices, users and services whose nodes can be created and removed according to
current needs. Traditionally, the term open system is understood as a process coupled with the environ-
ment, which is rather disappointing given the highly distributed nature of MAS nowadays. One would
rather like “openness” to mean that components (agents in our case) can freely join and leave the system
without the need to redesign the rest of it.

Perfectly open systems are seldom in practice; usually, adding/removing components requires some
transformation of the remaining part (for instance, if a server is to send personalized information to an
arbitrary number of clients then it must add the name of each new client to the appropriate distribution
lists). So, it is rather the degree of openness that should be captured. We try to answer the question How
open is the system? (or, to be more precise, its model) in the next subsection.

5.1 A Measure of Openness

We base the measure on the following intuition: openness of a system is simplicity of adding and remov-
ing agents to and from the model. That is, we consider two natural transformations of models: expansion
(adding agents) and reduction (removing agents). We note that the simplicity of a transformation is best
measured by its algorithmic complexity, i.e., the number of steps needed to complete the transformation.
A perfectly open system requires no transformation at all (0 steps) to accommodate new components,
whereas at the other extreme we have systems that require redesigning of the model from scratch when-
ever a new agent arrives.

Note that the openness of a model depends on which agents want to join or leave. For instance,
the system with trains and controllers should be able to easily accommodate additional trains, but not
necessarily additional controllers. Likewise, departure of a train should be straightforward, but not nec-
essarily that of the controller. No less importantly, the context matters. We are usually not interested in
an arbitrary expansion or reduction (which are obviously trivial). We want to add or remove agents while
keeping the “essence” of the system’s behavior intact. The following definitions formalize the idea.

Definition 7 (Expansion and reduction of a MIS) Let M = (Agmames,Act,.9n,Agt) be a MIS, and a
an agent (in the sense of Definition 1). By agt(a) (resp. act(a), in(a)) we denote the set of agent names
(resp. action symbols, interaction symbols) occurring in a. Moreover, ns(a,M) will denote the set of a’s
namesakes in M.! Note that ns(a,M) can contain at most 1 agent.

The expansion of M by a is defined as the modular interpreted system M ®a = (Agtnames’,Act', 9n’, Agt')
where: Agtnames' = AgtnamesUagt(a), Act' = ActUact(a), 90’ = InUin(a), and Agt’ = Agt\ ns(a,M)U
{a}. The reduction of M by a is defined as M S a = (Aginames,Act, 9n, Agt') where Agt' = Agt\ {a}.

Thus, expansion corresponds to “dumb” pasting an agent into a MIS, and reduction corresponds to
simple removal of the agent. The operations are well defined in the following sense.
Proposition 2 Expansion/reduction of a MIS is always a MIS.?

It is easy to see that removing an agent and pasting it in again does not change the MIS. The reverse
sequence of operations does change the MIS. However, both structures have the same unfoldings:

! That is, agents in M that have the same id as a.
2 The proofs of results in Section 5 are straightforward from the construction of MIS, and we leave them to the reader.

234 Modularity and Openness in Modeling Multi-Agent Systems

Proposition 3 Ler a be an agent in M. Then, (M ©a) ©a = M. Moreover, let a be an agent with no
namesake in M. Then, NCEGS((M &a) ca) = NCEGS(M).

Now we can make our first attempt at a measure of openness.

Definition 8 (Degree of openness) Let 0 be a property of models,> M a modular interpreted system,
and a an agent. The degree of openness of M wrt expansion by a under constraint 0 is defined as the
minimal number of steps that transform M &a into a MIS M' such that card(M') = card(M & a) and M’
satisfies 6.

Likewise, the degree of openness of modular interpreted system M wrt reduction by agent a under
constraint 0 is the minimal number of steps that transform M &a into an M' such that card(M') =
card(M S a) and M’ satisfies 6.

The constraint 6 can for example refer to liveness of the system or some of its components, fairness
in access to some resources, and/or safety of critical sections. Note that the cardinality check is essential
in the definition — otherwise, a possible transformation would be to simply delete the newly added agent
from M @ a (respectively, to restore a in M Sa).

Definition 9 (Openness of a class of models) Ler .# be a class of MIS, a an agent, and 0 a property
of models. Moreover, let € be a class of complexity functions f: N — R, U{0}. 4 is €-open wrt
expansion (resp. reduction) by a under constraint 0 iff there is a complexity function f € € such that for
every M € M the degree of openness of M wrt expansion (resp. reduction) by a under 0 is no greater
than f(|M]|).

The most cumbersome part of the above definitions is the constraint 8. How can one capture the
“essence” of acceptable expansions and reductions? Note that, semantically, 8 can be seen as a subclass
of models. We postulate that in most scenarios the class that defines acceptable expansions/reductions
is the very class whose openness we want to measure. This leads to the following refinement of the
previous definitions.

Definition 10 (Openness in a class) The degree of openness of M wrt expansion (resp. reduction) by a
in class M is the minimal number of steps that transform M & a (resp. M Sa) into a MIS M’ € .# such
that card(M') = card(M ®a).

Moreover, M is € -open wrt expansion (resp. reduction) by a iff there is a complexity function f € €
such that for every M € . the degree of openness of M wrt expansion (resp. reduction) by a in A is no
greater than f(|M|).

We explain the measure in greater detail in the remainder of Section 5. It is important to note that
(in contrast to the measure of multi-agentivity proposed in Section 4) our measure of openness is not
specific to MIS, and can be applied to other modeling frameworks.

Remark 4 Alternatively, we could define the openness of M wrt a and 0 by the Kolmogorov complexity
of an appropriate expansion/reduction, i.e., by the size of the shortest algorithm that transforms M in
an appropriate way. We chose time complexity instead, for two reasons. First, Kolmogorov complexity
often obscures the level of difficulty of a process (e.g., a two-line algorithm with an infinite while loop
can implement infinitely many changes, which gives the same complexity as changing the names of
two communication channels for a controller). Secondly, computing Kolmogorov complexity can be
cumbersome as it is Turing-equivalent to answering the halting problem.

3 We do not restrict the language in which 6 is specified. It can be propositional logic, first-order temporal logic, or even
the general language of mathematics. The only requirement is that, for every MIS M, the truth of 6 in M is well defined.

W. Jamroga, A. Meski & M. Szreter 235

Cz' Who,pays — pay_decided
On A pay’n
SAY _EQUAL v
" SAY EQUAL B
B; Qi |
— SAY_DIFF
; i C1 — pay;
“ tﬂ' - G- ﬁiﬂi({ 7 — pay_decided
SAY EQUAL ‘
Q__:____ Counter;

SAY _DIFF

IS,ODD
say different
e A 1
» Counter; < say_equal; = false :
Counff’rj — say_equal; = true for j € [l,n],j #1 3
forje(l,n],j#i
@i : ((Cir — tail An(Who-pays — pay;) = 0) Vienn,j#Ci — say-equal; = false ’—» IS ODD

V(Ci+ — head AN Who_pays — pay;))
AW ho_pays — pay_decided

Ve, j#Ci — say-equal; = true ’—PIS,EVEN

Bi : ((Cy+ — head A n(Who_pays — pay;) = 0)
V(Ci+ — tail N Who_pays — pay;))
AW ho_pays — pay_decided

Figure 3: Dining cryptographers version DC2: direct channels instead of broadcast

We observe, however, that a Kolmogorov-style measure of openness can be a good alternative for
infinite models, especially ones that require infinitely many steps to accommodate changes in the config-
uration of components.

5.2 How to Open Up Cryptographers

In Section 3.3 we modeled the standard version of the Dining Cryptographers protocol as a modular
interpreted system (class DC1). In this section, we will determine the openness of DC1, plus two other
classes of MIS modeling other versions of the protocol. To comply with classical rules of composition,
we begin with the least open variant.

236 Modularity and Openness in Modeling Multi-Agent Systems

5.2.1 DC-Net, Direct Channels, No Broadcasting (DC2)

Let us assume that no broadcast channel is available, or it is too faulty (or insecure) to be of use in multi-
party computation. In such case, every pair of cryptographers must use a direct secured channel for
communicating the final utterance. The result of the computation is calculated independently by every
cryptographer. We denote this class of models by DC2, and construct it as follows. Each cryptographer i
is modeled by agent C;, similar to the cryptographer agents in DC1. Instead of a single global counter of
utterances, there is one counter per every cryptographer (Counter;). The final utterance is sent by direct
point-to-point channels to the counters of all other participants. The resulting MIS is shown in Figure 3.

Adding a new cryptographer C; to DC1,, requires the following changes. First, modifying links
among the new neighbours of C; yields 10 changes. Secondly, every agent C; in DC1,, must be modified
in order to establish a communication channel with C;. This requires 2 -5 changes per cryptographer,
thus 10n changes are needed. Thirdly, for the agent Who_pays, we add the state payy with corresponding
transitions: a single non-deterministic transition from start to payy (17 steps: 2 for d; + 4 for out; + 8 for
in; + 3 for 0;), and the loop sending payment information (19 steps: 4 for d; + 4 for out; + 4 for in; + 3 for
0;). Finally, Counter needs to be updated to take into account the new participant. A XOR argument is
added with receiving a manifestation, yielding 2 - 4 = 8 changes. Thus, the overall openness complexity
for DC2,, is 10n + 54.

Proposition 5 Class DC2 is O(n)-open wrt expansion by a cryptographer.

5.2.2 Dining Cryptographers: Standard Version with Broadcast (DC1)

Let us now go back to the standard version of the protocol, presented in Section 3.3 Adding a new
cryptographer C; requires the following changes. First, modifying links for the new neighbors of C;
requires 10 changes. Secondly, changes in Who_pays and Counter are the same as for DC2,, yielding
44 steps. Thus, 54 changes are needed to accommodate the new cryptographer, regardless of the number
of agents already present in the system.

Proposition 6 Class DCI is O(1)-open wrt expansion by a cryptographer.

5.2.3 Fully Open System, Cryptographers without Identifiers (DC0)

In our most radical variant, cryptographers are not arbitrarily assigned as neighbors. Instead, they es-

tablish their neighborhood relation on their own before starting the protocol. Every cryptographer is

modeled by two modules C; and Pay;, and there are two additional agents Oracle and Counter, cf. Fig-
ure 4. The system proceeds as follows:

Setting up the payer. Every cryptographer sends the oracle his declaration whether he is going to pay
or not (chosen nondeterministically). This is performed by module Pay;. If Oracle receives at most
one statement want _pay, it confirms to all cryptographers. If more than one statements want_pay
is sent, the round is repeated until the payment issue becomes resolved.

Establishing the neighbourhood relation and tossing coins. Each cryptographer either nondetermin-
istically tosses a coin and announces the outcome, or listens to such announcements from the other
agents. If there is exactly one cryptographer announcing and one listening, they become paired.
They register the value of the announcement, and proceed further. A cryptographer who started
with announcing will now listen, and vice versa. This takes several rounds, and completes when
every cryptographer has been paired with two neighbors (one to whom he listened, and one to
whom he announced).

W. Jamroga, A. Meski & M. Szreter 237

Oracle Pay;

Oracle <— want_pay

n(— want_pay;) <1 — ACCEPT

0
ACCEPT
l

Oracle <— not_want_pay

— CONFIRMED
A

«— CONFIRMED

AN ‘Ci ~— i_pay

»
Ci ~— i_not_pay

Counter Ci .
— wait
% i /l;LLL
 tail RTAIL
R-HEAD
— head ‘

f — tail
| ,‘ «— head
I / ‘

V(— say-equal) = false
An(— o | 0 # say-equal) =0 — NOT_EQ

V(— say-equal) = true
An(— o | 0 # say_equal) = 0 — EQ

22
AN
=

ead) = n(— tail) =0 — R.WAITS

n(— wait) = OA

n(— tail) = 0 An(— head) =1 - R_-HEAD say_equal "
n(— wait) = OA
: u

n(tail) = 1 A n(head) =0 — RTAIL [.

Counter <— say_equal N

Y Counter — —say_equal
n(— wait) = 0 An(— tail) = 1 A Pay; — i_pay — H_SE
n(— wait) = 0 An(— head) = 1 A Pay; — i-not_pay — H_SD
n(— wait) = 1 An(— head) = n(— tail) = 0 A Pay; — i-pay — SD
()=1

n(— wait An(— head) = n(— tail) = 0 A Pay; — i-not_pay — SE

Figure 4: Cryptographers without identifiers (DCO)

238 Modularity and Openness in Modeling Multi-Agent Systems

Computation. A broadcast channel is used for sending around the utterances (say_equal or —say_equal).
Counter counts the utterances and computes their XOR on the spot, in the way described before.

DCO is fully open, as adding a new cryptographer requires no adaptation of DCO,.
Proposition 7 Class DCO is O(0)-open wrt expansion by a cryptographer.

By comparing their classes of openness, it is clear that DC1 is significantly more open wrt expansion
than DC2 (constant vs. linear openness). On the other hand, it seems that the gap between DC1 and DCO
is rather slight (O(1) vs. 0(0)). Is that really the case? We believe that the difference between O(1)-
openness and O(0)-openness is larger than one is used to in complexity of algorithms. First, constant
openness means that, when expanding the MIS by a ser of new agents, the required transformation can
be linear in the size of the set. More importantly, non-zero openness signifies the need to come up with
a correct procedure of expansion. In contrast, zero openness means zero hassle: the new agents can join
the system as they come. There is no need for “maintenance” of the system so that it stays compliant
with its (usually implicit) specification.

6 Conclusions

In this paper, we propose a new version of modular interpreted systems. The aim is to let modeling
and analysis of multi-agent systems benefit from true separation of interference between agents and the
“internals” of their processes that go on in a system. Thanks to that, one can strive for a more modular
and open design. Even more importantly, one can use the MIS representation of a system to assess its
agentivity and openness through application of simple mathematical measures.

We emphasize that it was not our aim to create yet another agent programming language or represen-
tations that will be used as input to cutting-edge model checkers. Instead, we propose a class of models
which enables to expose the internal structure of a multi-agent system, and to define the concepts of
openness and multi-agentivity in a precise mathematical sense. While our definition of multi-agentivity
is specific to MIS, the measure of openness is in fact generic, and can be applied to models defined in
other formalisms (such as Reactive Modules). We plan to look closer at the degree of openness provided
by different representation frameworks in the future.

We would also like to stress that the focus of this paper regarding the measures of agentivity and
openness is on formalizing the concepts and showing how they work on benchmarks. An formal study
of the measures and their properties is a matter of future work.

Acknowledgements. The authors thank Andrzej Tarlecki for his suggestion to improve modularity of
MIS by using multisets, and Thomas Agotnes for discussions. Wojciech Jamroga acknowledges the
support of the FNR (National Research Fund) Luxembourg under project GALOT — INTER/DFG/12/06.
Artur Meski acknowledges the support of the European Union, European Social Fund. Project PO KL
“Information technologies: Research and their interdisciplinary applications” (UDA-POKL.04.01.01-
00-051/10-00).

References

[1] R. Alur & T. A. Henzinger (1999): Reactive Modules. Formal Methods in System Design 15(1), pp. 748,
doi:10.1023/A:1008739929481.

W. Jamroga, A. Meski & M. Szreter 239

(2]

(3]

(4]
(5]

(6]

(7]

(8]
(9]

(10]

(11]

(12]

(13]

(14]

[15]

(16]

(17]

(18]

[19]
(20]

R. Alur, T. A. Henzinger & O. Kupferman (2002): Alternating-Time Temporal Logic. Journal of the ACM
49, pp. 672-713, doi:10.1145/585265.585270.

R. Alur, S. Kannan & M. Yannakakis (1999): Communicating Hierarchical State Machines. In: Proceedings
of ICALP, pp. 169-178, doi:10.1007/3-540-48523-6_14.

J. Calta (2012): Synthesis of Strategies for Multi-Agent Systems. Ph.D. thesis, Humboldt University Berlin.

D. Chaum (1988): The Dining Cryptographers Problem: Unconditional Sender and Recipient Untraceabil-
ity. Journal of Cryptology 1(1), pp. 6575, doi:10.1007/BF00206326.

P. Dembiniski, A. Janowska, P. Janowski, W. Penczek, A. Pétrola, M. Szreter, B. WoZzna & A. Zbrzezny
(2003): Verics: A Tool for Verifying Timed Automata and Estelle Specifications. In: Proceedings of the of the
9th Int. Conf. on Tools and Algorithms for Construction and Analysis of Systems (TACAS’03), LNCS 2619,
Springer, pp. 278-283, doi:10.1007/3-540-36577-X20.

E. A. Emerson (1990): Temporal and Modal Logic. In J. van Leeuwen, editor: Handbook of Theoretical
Computer Science, B, Elsevier Science Publishers, pp. 995-1072.

R. Fagin, J. Y. Halpern, Y. Moses & M. Y. Vardi (1995): Reasoning about Knowledge. MIT Press.

J. Fisher, T. A. Henzinger, D. Nickovic, N. Piterman, A. V. Singh & M. Y. Vardi (2011): Dynamic Reactive
Modules. In: Proceedings of CONCUR, pp. 404418, doi:10.1007/978-3-642-23217-6_27.

F. Gecseg (1986): Products of Automata. EATCS Monographs on Theor. Comput. Sci., Springer,
doi:10.1007/978-3-642-61611-2.

G. J. Holzmannn (1997): The Model Checker SPIN. IEEE Transactions on Software Engineering 23(5), pp.
279-295, doi:10.1109/32.588521.

W. Jamroga & T. Agotnes (2006): Modular Interpreted Systems: A Preliminary Report. Technical Report
IfI-06-15, Clausthal University of Technology.

W. Jamroga & T. Agotnes (2007): Modular Interpreted Systems. In: Proceedings of AAMAS 07, pp. 892—
899, doi:10.1145/1329125.1329286.

M. Koster & P. Lohmann (2011): Abstraction for model checking modular interpreted systems over ATL. In:
Proceedings of AAMAS, pp. 1129-1130.

F. Laroussinie, N. Markey & G. Oreiby (2008): On the Expressiveness and Complexity of ATL. Logical
Methods in Computer Science 4, p. 7, doi:10.2168/LMCS-4(2:7)2008.

O. Lichtenstein & A. Pnueli (1985): Checking that finite state concurrent programs satisfy their linear spec-
ification. In: POPL ’85: Proceedings of the 12th ACM SIGACT-SIGPLAN symposium on Principles of
programming languages, ACM, New York, NY, USA, pp. 97-107, doi:10.1145/318593.318622.

A. Lomuscio & F. Raimondi (2006): MCMAS : A Model Checker for Multi-agent Systems. In: Proceedings
of TACAS, Lecture Notes in Computer Science 4314, pp. 450-454, doi:10.1007/11691372_31.

A. Murano, M. Napoli & M. Parente (2008): Program Complexity in Hierarchical Module Checking. In:
Proceedings of LPAR, pp. 318-332, doi:10.1007/978-3-540-89439-1_23.

F. Raimondi (2006): Model Checking Multi-Agent Systems. Ph.D. thesis, University College London.

S. La Torre, M. Napoli, M. Parente & G. Parlato (2008): Verification of scope-dependent hierarchical state
machines. Information and Computation 206(9-10), pp. 1161-1177, doi:10.1016/j.ic.2008.03.017.

Model checking coalitional games in shortage resource

scenarios
Della Monica, Dario Napoli, Margherita Parente, Mimmo
ICE-TCS, School of Computer Science Dipartimento di Informatica Dipartimento di Informatica
Reykjavik University, Iceland University of Salerno, Italy University of Salerno, Italy
dariodm@ru.is napoli@dia.unisa.it parente@unisa.it

Verification of multi-agents systems (MAS) has been regesttidied taking into account the need
of expressing resource bounds. Several logics for spegifyioperties of MAS have been presented
in quite a variety of scenarios with bounded resources.itngaper, we study a different formalism,
calledPriced Resource-Bounded Alternating-time Temporal LEBRB-ATL), whose main novelty
consists in moving the notion of resources from a syntaetiell(part of the formula) to a semantic
one (part of the model). This allows us to track the evolutibthe resource availability along the
computations and provides us with a formalisms capable tdetn® number of real-world scenar-
ios. Two relevant aspects are the notion of global avaitstlf the resources on the market, that
are shared by the agents, and the notion of price of resquiepending on their availability. In
a previous work of ours, an initial step towards this new falism was introduced, along with an
EXPTIME algorithm for the model checking problem. In thigppawe better analyze the features of
the proposed formalism, also in comparison with previoygaaches. The main technical contribu-
tion is the proof of the EXPTIME-hardness of the the model&imey problem folPRB-ATL, based
on a reduction from the acceptance problemLfimearly-Bounded Alternating Turing Machinds
particular, since the problem has multiple parameters heerswofixed-parametereductions.

1 Introduction

Verification of multi-agents systems (MAS) is a topic undevestigation by several research groups
in computer science in the last ten years ([8]). Most of treeaech is based on logical formalisms,
maybe the most famous being tAéernating-time Temporal Logio®ATL) [3] and theCoalition Logic
(CL) [15, 16], both oriented towards the description of coliectbehaviors and used as specification
languages for open systems. These scenarios are hencallganodeled as games. In [10] it has been
shown thatCL can be embedded in®®T L. Recently, these two logics have been used for the veridicati
of multi-agent systems (MAS), enhanced with resource caimés [1, 2, 5, 6, 9]. The intuitive idea is
that agent actions consume and/or produce resources,huhoice of a given action of an agent is
subject to the availability of the resources. In [1], Alethiet al. introduce the logiResource-Bounded
Coalition Logic(RBCL), whose language extends the one&Cbfwith explicit representation of resource
bounds. In [2], the same authors propose an analogous mxiefos ATL, called Resource-Bounded
Alternating-time Temporal Logic§RB-ATL), and give a model checking procedure that runs in time
O(|¢|?"** x |G]|), where|¢| is the length of the formulg to be checked|G| is the size of the model

*The work of Dario Della Monica has been partially supportgdtive projectProcesses and Modal Logidproject
nr. 100048021) of the Icelandic Research Fund and the prbjecidability and Expressiveness for Interval Temporal 1L.og
ics (project nr. 130802-051) of the Icelandic Research Fundaitnership with the European Commission Framework 7 Pro-
gramme (People) under “Marie Curie Actions”. The work of Blagrita Napoli has been partially supported by the Italian
PRIN 2010 project.ogical Methods of Information Managementhe work of Margherita Napoli and Mimmo Parente has
been partially supported by the Italian FARB projects 2Q002.

Gabriele Puppis, Tiziano Villa (Eds.): Fourth Interna@bn © D. Della Monica, M. Napoli, M. Parente
Symposium on Games, Automata, Logics and Formal Verifinatio This work is licensed under the
EPTCS 119, 2013, pp. 240-255, doi:10.4204/EPTCS.119.20 Creative Commons Attribution License.

D. Della Monica, M. Napoli, M. Parente 241

G, andr is the number of resources. However, the problem of deténgnia lower bound to the model
checking problem is left open. In [6], Bulling and Farweratuce twdResource-Bounded Agent Logics
calledRAL andRAL". The former represents a generalization of Alechina etRB-ATL, the latter is an
analogous extension &TL* (analogous extensions for, respectivély,L andCTL* were presented by
the same authors in [5]). The authors study several syotastl semantic variants BAL andRAL* with
respect to the (un)decidability of the model checking peohbl In particular, while previous approaches
only conceive actionsonsumingresources, they introduce the notion of actipnsducingresources.

It turned out that such a new notion makes the model checkiolglgm undecidable. Formulae of the
formalisms proposed in [1, 2, 5, 6] allow one to assign an amaent of resources to the agents by
means of the so-callegam operatorgborrowed fromATL). The problem is then to determine whether
the agents in theroponentteam have a strategy for the game to carry out the assignédsl \gith that
bounded amount of resources, whatever the agents mpibpenenteam do.

In this paper we study a different formalism, calledced Resource-Bounded Alternating-time Tem-
poral Logic (PRB-ATL), introduced in [9], but in a much less mature version. Theflkatures of this
new approach toward the formalization of such complex systean be summarized as follows.

e Boundedness of the resourcesghis is a crucial point in our formalization. In order to mbde
boundedness of the resources, a notiomglobal availability of resources on the market (or in
nature), which evolves depending on both proponent andrapgdehaviors, is introduced. Such a
global availability is a semantic component (it is part af gtiructure where the logic is interpreted)
and its evolution is tracked during the executions of théesys Agents’ moves are affected by the
current global availability (e.g., agents cannot consumardounded amount of resources).

e Resources are sharedResources are global, that is, they are shared by all thetsagdihus,
the agents either consume or produce resources out of adghaok of bounded capability, and
acquisition (resp., release) of a resource by an agentgemdiently if the agent belongs to the
proponent or opponent team) implies that the resource willnmilable in smaller (resp., greater)
quantity. In this way, we can model several scenarios wheaees resources are acquired at a cost
that depends on that resource current availability (fonga in concurrent systems where there
iS a competition on resources).

e Money as a meta-resourcdn addition to public shared resources, our setting alsmaallone
to modelprivate resources, that is, resources that are possessed by agellis (esources are
present in the market and will be acquired by the agents ia tteesy need). The idea is to provide
the agents with the unique private resourt@ney that can be used to acquire (public) resources
needed to perform the tasks. In this sense, money represa@rasresource combinations and can
be considered as a meta-resource. Unlike the other respuirgea syntactic component (money
endowment is part of the formula), and is the only (metaguese which is private for an agent.
At this stage, our formalization only features the postibibf assigning to agents one private
resource. Nevertheless, in principle, it is possible t@edtthe idea to admit a vector of private
resources. Furthermore, one could think of including theeseesource in both the pool of public
resources and in the pool of private ones. For instance, ar aace one of the players (the cars)
possesses some gasoline in the tank (private resourceg igetals to acquire more gasoline at the
gas station (public resource) to complete the race.

e Resource productionProduction of resources is allowed in a quantity that is meatgr than a
fixed amount. Thus, we extend the model still preserving #w@dability of the model checking
problem. Observe that the constraint we impose still allog/$o describe many interesting real-
world scenarios, such as acquiring memory by a program,asinig a car during a travel, or, in

242 Model checking coalitional games in shortage resourceasien

general, any release of resources previously acquiredniasisetting has been already observed
also in [6].

e Opponent powerFirst observe that we use the standard terminology whichraggs the role of
the agents in a proponent team and those in the opponent Tdasdistinction is not within the
game structure, but it is due to the formula under consiagrafAgents of the opponent team are
subject to resource availability in choosing the actiongdqrm, in the same way as the agent of
the proponent team, thus the opponent team cannot intevidre proponent strategy performing
actions which either consume or produce too much (see Exafpi Section 3). However, it
is common practice to consider opponent having maximum powdook for robust strategy.
We give unlimited economic power to the agents in the oppbteam, in the sense that at each
moment they have money enough to acquire the resources ¢leeyfor a move, provided that the
resources are available.

Actually in [9] an EXPTIME algorithm for the model checkinggblem was given, along with a
PSPACE lower bound. The main technical contribution here igrovide an EXPTIME lower bound
for the model checking problem fd?RB-ATL. This result shows that the model checking problem
for this logic is EXPTIME-complete. The hardness proof igaifed by means of a reduction from
the acceptance problem fainearly-Bounded Alternating Turing Machin€sB-ATM), known to be
EXPTIME-complete [7], to the model checking problem fIRB-ATL. More precisely, leh be the
number of agents, the number of resources, aiithe maximum component occurring in the initial
resource availability vector, the algorithm given in [9hauin exponential time in, r, and the size of the
representation d¥l (assuming thal is represented in binary). To prove here the inherent diffiauith
respect to multiple input parameters, we show two redustione parametric in the representatiorivbf
(the digit size), that assumes constant botindr, and another parametric im and assuming constant
bothn and the value oM.

2 Comparison with related works

In this section we compare our approach with the existimgditure underlining differences and similar-
ities respect to [2] and [6].

In the work by Alechina et al. [2], resource bounds only apjrethe formulae and are applied solely
to the proponent team, but they are not represented ins@mddel. Indeed, agents of the proponent
team are endowed with new resources at the different steffeeafystem execution. This means that
it is possible to ask whether a team can reach a goal with ar giveount of resources, but it is not
possible to keep trace of the evolution of the global avditgof resources. Moreover, resources are
private to agents of the proponent team (not shared, as iappmoach) and resource consumption due
to the actions of the opponent is not controlled. Here instege keep trace of resource global avail-
ability, whose evolution depends on both proponent and @piomoves. In this way, it is possible to
avoid undesired/unrealistic computations of the systeah ss, for instance, computations consuming
unboundedly. Let us see a very simple example. Consideotheufay = ((A%)Op. Its semantics is
that agents in tearA have together a strategy which can guaranteeplatvays holds, whatever agents
of the opponent team do (without consuming too many ressyera provided the expense of the agents
in A does not exceefl. A loop in the structure where the joint actions of agentssome resources with-
out producing them, cannot be a model for On the contrary, consider the formufd = ((AP))Op,
belonging to the formalism proposed in [2], expressing alamproperty, with the only difference that
the agents oA use an amount of resources boundedbyA model for ¢y’ must contain a loop where

D. Della Monica, M. Napoli, M. Parente 243

the actions of agents ik do not consume resources, but the actions of agents in tleeppteam may
possibly consume resources, leading to an unlimited copgsamof resources.

As a further difference, recall that in [2] actions can ongnsume resources. Without resource
productions, the model for many formulae (for example thomataining theglobal operator]) must
have a loop whose actions do not consume resoud@sidthingactions), and a run satisfying these
formulae is eventually formed by only such actions. On thetrewy, by allowing resource production,
we can model more complex situations when dealing with itigfigames.

Finally, observe that a similarity with the cited paper ighie role of money, that could be seen as a
private resource, endowed to the agents of the proponeant tea

Bulling and Farwer [6] adopted an “horizontal” approach the sense that they explored a large
number of variants of a formalism to model these complexesgyst In particular, they explored the
border between decidability and undecidability of the mMatiecking problem for all such variants, and
they showed how the status of a formalisms (wrt decidahiltits model checking problem) is affected
by (even small) changes in language, model, and semantiosw@k takes advantage of this analysis
in order to propose a logic that captures several desirableepties (especially concerning the variety
of natural real world scenario that is possible to exprestdl), preserving decidability. However, our
approach presents conceptual novelties that make it diffwaccomplish a direct comparisons between
the formalisms presented here and the ones proposed in [6]aré/referring here to both the above
mentioned idea of dealing with resources as global enfitieg/hich agents compete, and the notion of
cost of resource acquisition (price of the resources) tiiatuwhically changes depending on the global
availability of that resource (thus allowing one to modeat tHassic market law that says that getting
a resource is more expensive in shortage scenario). InHéketis no such a notion as resources are
assigned to (team of) agents and proponent and opponent domgpete for their acquisition.

As regards the complexity issue, in [6], no complexity as@yfor the model checking problem)
is performed, while, in [2], an upper bound is given RB-ATL, that matches the one given in [9]
for PRB-ATL. The algorithm forPRB-ATL runs in exponential time in the numberof agents, the
numberr of resources, and the digit size of the maximum compolentcurring in the initial resource
availability vector (assuming a binary reppresentatioAnalogously, the model checking algorithm
for RB-ATL runs in exponential time im, in the digit size of the maximum component of resource
endowment vectorb occuring in team operator§AP)) of ¢ and in the numben of the agents (this is
implicit in set of states ofG|). Actually, bothn andr are often treated as constant [2, 3] (without this
assumption, the complexity &TL model-checking is shown to be exponential in the number ehty
[11]). However, no complexity lower bound has been exhibifss. Aim of this paper is to fill this gap,
by providing an EXPTIME lower bound fd?RB-ATL.

3 Alogical formalization: PRB-ATL

Syntax. We start with the introduction of some notations we will usethe rest of the paper. The
set ofagentsis /¥ = {aj,ay,...,an} and ateamis any subset ofr%. The integersh andr will be
used throughout the paper to denote the number of agentseaadrce typegor simply resource}
respectively. Let# = (NU{e})" denote the set aflobal availabilities of resources on the market (or
in nature)and let./" = (NU {c})" denote the set ahoney availabilities for the agenteshereN is the
set of natural numbers (zero included). Given a money aiifia$ € .+, itsi-th componené[i] is the

244 Model checking coalitional games in shortage resourceasien

money availability of agers;®. Finally, the sefl is a finite set oltomic propositions
The formulae ofPRB-ATL are given by the following grammar:

- - -

Pu=pl-¢ NG| {(ANO| (A2 | (A%))DP | ~m

wherepe N, AC ¥, ~e {<,<,=,>,>}, me A and$ € .. Formulae of the kind- m test the
current availability of resources on the market. As usudieostandard operators can be considered as

abbreviation, e.g., the operatgA®)) O can be defined agA®)) T% y, for every formulay.

Priced game structure. Priced game structureare defined by extending the definitions of concurrent
game structure and resource-bounded concurrent gameustrgiven in, respectively, [3] and [2].

Definition 1 A priced game structur@ is a tuple(Q, r,d, D, qty, , p, My, where:

e Qs the finite set ofocations qg € Q is calledinitial location

e 11: Q — 2" is theevaluation functionwhich determines the atomic propositions holding true in
each location.

e d: Qx &Y — N is theaction functiongiving the number (},a) > 1 of actionsavailable to an
agent ac &7% at a location ge Q. The actions available to a at q are identified with the nurse
1,...,d(g,a) and a generic action is usually denoted doyWe assume that each agent has at least
one available action at each location, that could be thougihés the actiordo-nothingand we
assume that it is always the first.

e D:Q— 2V is a function that maps each location q to the set of vecfdrs..,d(q,a;)} x ... x
{1,...,d(q,a,)}. Each vector, calledction profileand denoted by, identifies a choice among
the actions available for each agent in the location g. (Tboa of the agent a i is d(a).)

e gty: Qx &9 x N — Z' is a partial function, where gty,a,), with1 < a < d(q,a), defines at
location g the amount of resources required by the a’s actioWe define qtyg, a,1) = 0, that is
the vector whose components are all equatfor every ge Q, a€ &7¥¢ (doing nothing neither
consumes nor produces resources).

e 0:QxN"— Q is thetransition function For g€ Q andd € D(q), d(q,d) defines the next
location reached from q if the agents perform the actiondndction profiled.

e p:./# xQx .29 — N'is theprice function It returns theprice vectorof the resources (a price for
each resource), based on the current resource availakilityf location, and on the acting agent.

e My € ./ is the initial global availability of resources. It reprases the resource availability on the
market at the initial state of the system.

Note that a negative value miy(qg,a,d) represents a resource consumption, while a positive one
represents a resource production. We also consider thesgotteof the functiorgty, called again with
the same name, to get the amount of resources required byea ggam. Thus, for a locatiog, a
teamA and an action profilé, qty(q,A,d) = S.caqty(q,a,d (a)). Moreover, we will use the function
consd: Q x @94 x N — N' that for the tuple(q,a, a) returns the vector of the resources which are
consumed by an ageaf being in stateg, for an actiona. This vector is obtained fromty(qg,a, o)
by replacing the positive components, representing a resquroduction, with zeros, and the negative
components, representing a resource consumption, withathgolute values.

Example 1 A priced game structure with two agents and & and one resource Ris depicted in
Figure 1. The only atomic propaosition is p, labeling the lboas @, g1, go. The action profiles, labeling

IThroughout all the paper, symbols identifying vectors ameaded with an arrow on the top (e.@,,m).
2No ambiguity will arise from the fact that actions of diffeteagents are identified with the same numbers.

D. Della Monica, M. Napoli, M. Parente 245

B o9 ={a,&}, R={Ri}, Q= {00,01,02,03,%}, Mo = (1)
1(0o) = 1(t) = 1(d2) = {p}, T(03) = 11(cla) = {}
d(do,a1) = 2,d(qo,a2) = 1,d(qr,a1) = 1,d(r,a2) =2
d(0z,a1) = d(0,82) :d(%al) =d(gz,a2) =1
d(04,a1) = d(0g,82) =

D(do) = {[L,1],[2, 1}} D(Ql) {[1,1],[1,2]}

D(qz) = D(g3) = D(aa) = {[1,1]}
aty(go,a1,1) = (0), qty(qo,al, 2) =(-1), qty(qo, a2, 1) = (0)
qty(ds, a1, 1) = (0), qty(ds,a2,1) = (0), aty(ds, &, 2) = (1)
aty(g.a,1) =(0), Vg € {02, U3, }, 2 € ¥

Figure 1: Example of priced game struct@e= (Q, 77,d, D, qty, d, p, Mo).

the transitions in the graph and depicted with square brégkare as follows. Dgo) = {[1,1],[2,1]}
is due to the existence of two actions efaad one action of aat location @, D(q;) = {[1,1],[1,2]}
corresponds to a single action of and two actions of aat location q. In all the other locations
the only action profile i$1, 1] corresponding to the existence of a single action of botretfents. The
function qty is represented by parentheses. The price vexctmt depicted.

Semantics.In the following, given a resource availabilify, by .# <™ we denote the se{ﬁf €M | m <
m}. In order to give the formal semantics let us first define ttieviong notions.

Definition 2 A configurationc of a priced game graph G is a paiig,m) € Q x .#Z=". Given two
configurations c= (g,M) and ¢ = (¢/,m), and an action profiled € D(q), we say that ¢+ C if
o = 3(q,d) andm = M+ qty(q, /¥, d). Acomputationover G is an infinite sequence-€c;c;... of
configurations of G, such that for each i there is an actiorfifgar; such that c—4 Ci11.

LetC =c;c;... be a computation. We denote 6¥i] thei-th configuratiorc; in C and byCJi, j], with
1 <i < |, the finite sequence of configurations;,;...c;j in C. Given a configuratiort = (g, M) and
a teamA, a functiona : A — N is calledA-feasible in af there exists an action profilé € D(q) with
da(a) = d(a) for allac AandO < qty(q,A, @) + M < M. In this case we say that extendsia.

Definition 3 A strategyFa of a team A is a function which associates to each finite sexuehconfigu-
rations gC,...Cs, a functionds : A— N which is A-feasible ing

In other words, a stratedya returns a choice of the actions of the agents in the tAaoonsidering
only those actions whose resource consumption does nat@oe available amount and whose resource
production does not exceed the amount consumed so far.\G & constraint will limit both proponent
and opponent team.

For each strateglfa of a teamA and for each sequence of configuratiogs; . . . cs, there are several
possibilities for the next configuratioty, 1, depending on the different choices of the opponent team
A= a9\ A Anyway, fixed a strategyz of the opponent team, there is at most one action profile
obtained according to both the strategies, that is the ragiofile & extending bothaa, given by the
strategyFa, andds, given by the strateglx (i.e. @ is such thati (a) = dx(a), for X € {A A} anda € X).

A computationC = c¢1,C; .. ., is theoutcome of the strategies fand F; from the configuration cif, for
eachi > 1, there is an action profilg obtained according to boffy andFg, such that; — 4 ¢ 1. Given
a strategyFa and a configuratiom, out(c, Fa) denotes the set of the outcomedfandF; from c, for all
the strategie$; of the teamA. Observe that, given a finite sequence of configurat®ascic;.. . Cs, if
the action profiled according to the two strategies is not such that qty(gs, Y, a) + ms < My, then
there is no next configuration. Thus outcome of the strasdgi@ndF; from a given configuration may
be undefined (recall that we consider only infinite compates).

246 Model checking coalitional games in shortage resourceasien

Example 2 Consider the priced game structure in Figure 1, with teams fa;} and B= {ay}, one
resource type and initial global availabilityiy = (1). Let c= (go, (1)) be a sequence of configurations
(of length1). Team A has two possible strategies in c, one for each desadiion of agent ¢ and
team B has one strategy for the single available action ohage. Suppose that, according to the
strategy I, agent a chooses to perform the actidh(Fa(c)(a1) = 2), then the action profilg2,1] is
performed and one unit of the unique resource is consumethelobtained configuratiofas, (0)) the
agent a has one available action while the agent laas two actions. AnywaygFcannot return the
action 2 for the agent g, since this action would require an amount of the resour@atgr than0, which

is the current availability. Thus only the configuratidgy, (0)) can be reached and the computation
C = (qo, (1))(q1,(0)) {0, (0))(gz,(0)) ... is the only one that belongs to @uatFa).

Now we introduce the concept of consistent strategy. Tw@gnttes have to be satisfied: first, the
outcomes starting frons are always defined and also the agents of the proponent teanehaugh
money to realize the chosen actions.

Definition 4 Let$e .4, cbea configuration, & /¥ be the proponent team, akd= .=/% \ A be the
opponent team. A strategy Bf A is said to beonsistent with respect andc ((@, c)-strategy, if

1. for any strategy fof A, the outcome ofFand F; from the configuration c is defined,

2. forevery C=ciCy... € out(c,Fa), with g = (g, M), for every i> 1and g € A: z‘jzlp(rﬁj,qj,ak) .

consda;, a, Fa(CI1, j])(ax)) < $[K].

In the above condition the dot operator denotes the usul@rgmaduct of vectors. Observe that only
the money availability of the tear is tested. Actually, we suppose that the opponent téaaiways
has money enough to make its choice. Notice also that therasgiroducingresources do not cause a
reimbursement of money to the agents. As it is usual wherndgalith temporal logics, we guarantee
that priced game structures are non-blocking, in the sdraeat least @, c)-strategy exists for a given
teamA. Indeed, agents @&k can always jointly choose thao-nothingaction.

A formula of PRB-ATL is evaluated with respect to a priced game struc@iend a configuration
c = (g,m). The definition of the semantics is completed by the defimitibthe satisfaction relatiop-:

e (G,c) =piff pe m(q)

e (Go) Eyiff (Gc)Ey

e (G,o) =y nYriff (G,c) = ¢nand(G,c) |= ¢

e (G,c) = ((A%) O y iff there exists a(é, c)-strategyFa such that, for alC € out(c,Fa), it holds

that(G,C[2]) = ¢

o (G,C) = ((A%))yn % y, iff there exists a$, c)-strategyFa such that, for alC € out(c, Fa), there

existsi > 0 such thatG,C]i]) = ¢» and, for all 1< j <, it holds that(G,C[j]) = yn

e (G,c) = ((A%)Oy iff there exists &$, c)-strategyFa such that, for alC € out(c, Fa), it holds that

(GCl)) Eyforalli>1
e (G,C) £~ iff M~ where~e {<,<,=,>,>}.
Given aPRB-ATL formula and a priced game srtuctuB we say thaiG satisfiesg, G = ¢, if

(G,co) = ¢ wherecy = (qo,mMp). The model checkingoroblem for PRB-ATL consists in verifying
whetherG |= ¢.

Example 3 Consider the priced game structure in Figure 1, with teams fa;} and B= {a;}. A

formulay = (<d%§>) O <<A§')>Dp holds true in the configuratiofgo, (1)), provided tha and§ are
enough to make the move. Indeed,aad g together are able to force the computation to reach the

D. Della Monica, M. Napoli, M. Parente 247

(g1, (0)) (one unit of resource is consumed). From such a configuratioe opponent team B cannot
force the computation intosgas the actior® is not allowed for a (no resources are available to per-
form the action), and thug/ holds. Insteadyp is false in the configuratiorig, (2)) (actually in each
configuration(do, (x)), with x> 1), becauseq;, (1)) is reached after the execution of the first transition,
and in that configuration actio@ for a, in B is allowed, leading to 4 Finally, notice that the formula is
false also when evaluated {qo, (0)), as the only possible transition is the one leading frayoogy (no
resources are available to perform actidrfor agent g).

4 Complexity lower bounds for the model checking problem

In [9], the authors presented an algorithm for model cherRIRB-ATL, providing an exponential upper
bound for the problem. In particular, letbe the number of agentsthe number of resources, aktithe
maximum component occurring in the initial resource awdily vector, the proposed algorithm runs
in exponential time im, r, and the size of the representationMf(assuming thaM is represented in
binary). In this section we prove that an algorithm that lvesaasymptotically better cannot exist, thus
proving that the problem is EXPTIME-complete. To prove thkeerent difficulty with respect to the
multiple input parameters, we show two reductions: onerpatdc in the representation M (the digit
size), which assumes bothandr constant, and the other parametricrjrthis time assuming constant
both n and the value oM. We conjecture the existence of a third EXPTIME reductionywhichr and
M are constant and the parameten.ign fact, if it was not the case, it would be possible to imgroe
proposed model checking algorithm in a way that its compfexbuld not be exponential in.

We first recall the formalism diinearly-bounded alternating Turing machin€isB-ATM) and the
notion of hierarchical representationa succinct way of representing priced game structuresratsfo
the work done in [4] for classical Kripke structures. Figallve present the two reductions from the
acceptance problem faB-ATM, known to be EXPTIME-complete [7], to the model checkinglypeon
for PRB-ATL.

4.1 Linearly-bounded alternating Turing Machines

A linearly-bounded alternating Turing machinéisB-ATM) is a tuple(2,I",.¥.qo,), Where 2 is the
set of states partitioned in2y (universal statesand 25 (existential statgs I is the set oftape sym-
bols including the ‘blank’ symboB, and two special symbolsand_, denoting the left and rigtltape
delimiters .# C 2 xT x 2 x T x {<-,—} is theinstruction setqp € 2 is theinitial state

Symbols fronT are stored in theape cellsand the first and the last cell of the tape store, respegtivel
the symbols. and .. A tape configuratiors is a sequence of the symbols stored in the tape cells, and
keeps trace of ahead cell A configuration ds a pair(q,s) of a stateq and a tape configuratios) and
% is the set of the configurations. The initial configuratior is (qo,so), Wheresy contains the input,
possibly followed by a sequence of blanks, and its head ks the first input symbol.

An instruction i= (q,A,r,v,~) € . is also denotedq,A) — (r,v,~), where(q,A) is called &full
state Its intuitive meaning is as follows: “whenever the machimé@ the stateg and the symbol in the
head cell isA, then the machine switches to statéhe symbol in the head cell is replaced withand
the head position is moved to the left or to the right (acaaydo~)". An execution stepf the machine

is denotect 5 ¢/, wherec,c € €, i € .# andq:’ is the configuration reached frooafter the execution

of the instructioni. Let 6eqc) =1{C €% |cC 1, ¢ is an execution step, for some .#}. All the tape
configurations are linear in the length of the input and wkfolthe common practice to only consider

248 Model checking coalitional games in shortage resourceasien

machines whose tape length does not vary during the conqoutafVe can also assume tHzaB-ATM
have no infinite computations since abg-ATM can be transformed into another, accepting the same
language and haltingin a finite number of steps. SutB-&\TM counts the number of execution steps
and rejects any computation whose number of steps exceedsithber of possible configurations.

Theacceptance conditiois defined recursively. A configuratian= (q,s) is said to beacceptingif
either one of the following conditions is verified) q € 2, andc’ is accepting for alt’ € Gpexqc) OF
(i) g € 25 and there exists’ € Gpexc) such thatt’ is accepting. Notice that an universal (existential)
state always accepts (rejects)ifexc) = 0. A LB-ATM accepts on an initial input tapey, if the initial
configuration(qo, so) is accepting.

Hierarchical representation. In order to exhibit our encoding proposal, we make use of eltchical
representation analogous to the one described in [4, 1Zpf8&}odel checking, and in [14] for module
checking procedures. Given a finite state machine, the iflbgearchical representation is to replace
two or more substructures of the machine that are struggueguivalent, by another (structurally equiv-
alent) module, that is a finite state machine itself. The ddaevarchical representation results in an
exponentially more succinct representation of the systhat, amounts (in most cases) to more effi-
cient model checking procedures (in the other cases, tlds dot yield a more efficient behavior, as the
analysis requires a flattening of the machine itself, thaariring in an exponential blow up in its size).

In our context, this idea can be suitably adapted to deal thighpresence of resources, as follows.
Modules do not represent structurally equivalent subsiras, but substructures that have the same
impact on the values of resource variables. In principleendver the analysis is focused on the evolution
of resource variables, it makes sense to consider as eguivalo substructures that can possibly differ in
their structure but whose effect on the set of resource biasas exactly the same. This approach could
be thought of as a hierarchical representation basddraionalequivalence between substructures, as
opposed to the classical notion of hierarchical repretientbased orstructural equivalence.

4.2 A reduction from the acceptance problem forl.B-ATM

Given anLB-ATM .7 and an input tape configuratiap, we provide a priced game structugg, s, with
two agentsag; andag, and a formulap,, s, such thalG,, s, = @. s, if and only if &7 accepts oBy.

In the following, we exhibit the game structure by using apfjieal (hierarchical) representation
(Figures 2-7 in Appendix). Notice that only significant infaation is explicitly shown in the pictures.
In particular, labels on transitions (arcs) represent gongions/productions of resources due to the
execution of the joint move (proponent and opponent moves)@ated to that transition. For example,
the label “~1i,+1i, +10u,, — 100" on the loop transition of Figure 4b means that the actiossciated
to the transition will consume 1 unit of the (type) resourcand 10 unit offi, and will produce 1
unit of the resource and 10 unit ofy . Availability of other resources is unchanged, then thatieg
information is omitted.

The reduction uses the three resource variaplest, and g to encode the tape configuration, plus
three auxiliary resource variablésr, andt, that will be useful during the construction. Moreover,
we associate to the above set of variables the sebofiterbalanced variable§fi, [T, [ir,i,7,t}. The
idea behind the use of counterbalanced variables, thasisthe key idea of the reduction, consists
of designing the game structure in a way that to every conomgresp., production) of a resource,
say for instanceu, a corresponding production (resp., consumption) of itseerbalancedi exists. In
particular, this is true inside each module of the hierarahstructure, thus the sum of the availability of
a resource variable and its counterbalanced variable isdagstant along all the computation at every
module’s entry and exit points, equal to a vaMax, which depends on the input of th&-ATM. This

D. Della Monica, M. Napoli, M. Parente 249

will allow us to force the execution of specific transitionisspecific availabilities of resource variables.
Consider, for example, the node of Figure 4b with 2 outgoiagditions, one of which is a loop transition.
The presence of 2 outgoing transitions means that eithepriygonent or the opponent can choose
between 2 moves. But such a freedom is only potential, as ynnamment of the computation the
choice of the next move by the proponent/opponent is canstiaby the resource availability: if the
loop transition is enabled, then the availability of theowggei is greater than 0, and thus the availability
of its counterbalanced variablés less tharMax, that means that the other transition, which consumes
Max units of the resourcg is disabled. On the contrary, if the non-loop transitioerigsbled, there are
Max units of the resourceavailable, and thus the availability of the resourig 0, that means that the
loop transition is disabled. Thus, by taking advantage efféatures of counterbalanced variables, we
are able to force the executions to have a somehow detetimibehavior.

Encoding of the tape.Without loss of generality, we consideB-ATM on input alphabek = {1,2,B},
thusl is the set{1,2,B,.,.}. Recall that the symbolB, ., and denote the ‘blank’ symbol, the left
delimiter, and the right delimiter, respectively. Tape $gis are encoded by the digits102,3 and

4, in a pretty natural way: 0 encodes the ‘blank’ symbol, 1 @rehcode the input symbolsand 2,
and 3 and 4 encode the left and right delimiters. The tape gunafiion is encoded by means of the
three resource variablgsg , u, and ur. The value ofu ranges over the s€,1,2,3,4} and encodes
the value stored in the cell currently read by the head (a@ogrto the above encoding of tape symbols
into digits). The value ofi_ encodes the tape configuration at the left of the current peaiion in a
forward fashion. The value giz encodes the tape configuration at the right of the currerd peaition

in a reverse fashion, that igr encodes the reverse of the string corresponding to the taggaration at
the right of current head position. As an example, considetape configuratioa= B11211B2BB,
the symbol read by the head is the underlined one. Such a ocetfign is encoded by means of the
three resource variables as followgs: = 30112, = 1, andugr = 400201. It can be noticed that the
length of the representation of the three varialplesu, andug is proportional to the length of the tape
configuration which is at most linear in the size of the inpiatmelyO(|sp|). Using such an encoding, the
machine operation “shift the head to the left” can be reprieseby means of the following operations
on resource variables:

e the new value ofig is Ur* 10+

e the new value of1 is u. mod 10,

e the new value ofy _is y /10 (/ is the integer division),

The operation “shift the head to the right” can be encodedbgoasly.

Notice that in order to encode in polynomial time the operatiof shifting the head to left and right,
we encode the string to the right of the current head positianreverse order. Indeed, in this way the
symbol stored on the cell immediately to the right of the headesponds to the least significant digit of
Ur, and thus can be accessed by using the module operationmod 10).

Encoding of the instructions. The encoding of the instructions is depicted in Figure 2.n3it#ons
starting from a node labeled, A) represent all the possible instructions matching the fatiesq,A) of
theLB-ATM, that is, all the instructions that can be possibly perfatratthe full stateq, A).

More in detail, given a full statgq,A) of the machine, withq € 25, the encoding of the
set{(q,A) — (r1,v1,~1),(q,A) = (ra,Vo,~2),...,{(q,A) = (rm,Vm,~m)} of matching instructions is
shown in Figure 2a, (recall thatie {+-,—}). Analogously, the encoding of the set of instructions
matching the full statéq,A), with q € 2y, is shown in Figure 2b. Let us underline that the action pro-
files (a1, B),...,{(am,B) labeling transitions corresponding to an existentialestae such that the first
agentag; has the capability to force a specific transition (instutfito be executed, depending on the

250 Model checking coalitional games in shortage resourceasien

move move

ellale
ellale

Q?@@@
Q?E@@

(a) Full state(q, A), with q € 2. (b) Full state(q,A), with q € 2y.

Figure 2: Encoding of the set of instructions matching adtdte(q,A) of aLB-ATM.

choice of then; for the next action, independently from the choef the other agerag,. On the other
hand, the action profile&x, 1), ..., (o, Bm) labeling transitions corresponding to an universal stege a
such that the roles of the agents are exchanged.

The LB-ATM representation of Figure 2 is hierarchical and involvesrttoeluleswrite and move
The former encodes the rewriting of the head cell performeg/band, to this aim, makes use of one of
the following modules (Figure 3), depending on the symbeoéad by the head, and on the symbdb
be written:

e inc, depicted in Figure 3a, is used when the rewriting corredpda an increment, for example,

when the symba?2 has to be written in place of the symtiol

e doubleinc, depicted in Figure 3b, is used when the rewriting corredpdn a double increment,

for example, when the symb®l(encoded as 2) has to be written in place of the syrBh@ncoded
as 0);

e dec depicted in Figure 3c, is used when the rewriting corredpdo a decrement, for example,

when the symbol has to be written in place of the symtiyl

e doubledeg depicted in Figure 3d, is used when the rewriting corredpdn a double decrement,

for example, when the symb8l has to be written in place of the symisbl
Obviously, the module does nothing when the symbol to beewitorresponds to the symbol currently
stored in the head cell.

The modulemoveencodes the shift (to right or to left) of the head. It is dasidjin a way that the
only next location that can be reached by the game is constisfieh the value stored on the new head
cell (after the shift operation). In Figure 4 and 5 the suldaoies encoding the operation “shift to right”
are depicted. The encoding of the operation “shift to lefth de realized analogously.

As an example, we describe the first two modules of Figure 4 mbduleshift_right, depicted in

D. Della Monica, M. Napoli, M. Parente 251

Figure 4a, is performed through the following steps:

e multiply by 10 the value ofy. (moduletimes10(y)),

e increment the value qfi. by the value ofu (moduleadd(y , 1)),

e divide by 10 the value ofir (modulediv_10(pur) — the remainder of the division is stored in the
resource variable),

e assign to the resource varialilethe value ofr (moduleassigrip,r)),

e suitably lead the computation to the location correspapdmthe next state of theB-ATM,
depending on the value read by the head, that is, the valuedstm the resource variabje
(modulechoosenext statg 11)).

The modulgimes10(Ly), that multiplies by 10 the value @f. (Figure 4b), is performed by storing the
value of_ in the resource variablie by setting the value gfi. to 0, and then by executing a transition
(the loop transition), which consumes 1 uniticind produces 10 units @i (the suitable quantity of
the counterbalanced variables is produced or consumed lgstavkeep the sum constant) as long as
items of the resource are available. When the availability ofgoes down to 0, the other transition
is executed (the last transition is needed to keep condtensum between and its counterbalanced
variablei). It is easy to convince oneself that the valueupfin the exit node is equal to its value in
the entry node times 10, and that the sum of each variabletamdunterbalanced one is constant. As
a last remark, we point out that the names of some of the meduteparametric, in the sense that the
arguments between parenthesis are not actual resouredbleati but parameters (e.g,,x1, X2) to be
instantiated. We adopted this notation for modules thatiseel more than once, and that are instantiated
with actual resource variables when they are used (e.gntitileassigndepicted in Figure 4c is called
assigrixi,x2) and it is used, for instance, inside the modtees10(yy) (Figure 4b), whereqy (resp.,

X2) is instantiated with (resp.,u.), and inside the moduladd(p , 1) (Figure 5a), where (resp.,x2)

is instantiated with (resp.,u).

Now, as resource productions are involved in the reductiemneed to guarantee that the avail-
ability of each resource never exceeds the initial one. ®ehd the values of the components of the
vectormy of initial resource availability are set to the valax = 322...224, that is the largest num-
ber corresponding to an encoding of any tape configuraticetigely, it encodes the tape configuration
L22...221). Before starting the simulation of tHeB-ATM, a preliminary step, depicted in Figure 6,
modifies the value of the resource variables in such a waytbsgtcorrectly encode the input taggand
the sum of the availability of each resource variable andatsmterbalanced is equal Max. Thus, the
value of the resource variables never excikk

At this point, given aLB-ATM &7 and an input tape configuratias, the game structur&,, o,
presents, among others, the following features (the ottaufes of,, 5, are either irrelevant or repre-
sented in the graphical representation of the encoding —Figgges 2-6):

e 2 agentsag; andag;

¢ 5 |ocations, namelyq,B), (q,1), (q,2), (q,.), (q,2), for each internal statg of .z (plus other
locations — the circles in the pictures — that do not corresito particular states of thd3-ATM,
but are needed to perform the encoding);

¢ only one atomic propositiop, that holds true over all and only the locations having nocimiag

~or o (99 —oe (9 9~

(a) Moduleinc. (b) Moduledoubleinc. (c) Moduledec (d) Moduledoubledec

Figure 3: Encoding of the modulerite.

252 Model checking coalitional games in shortage resourceasien

umele(yL) add(uL u) choosenextstatef)

4,[
—1i,+1i
assign(ip) to_zerof) +10u , — 100
div_10(uR) aSS|gny N (] q
Maxi

+Maxi,

O—0O—
(a) Moduleshift right. (b) Moduletimes10(uy).

—Ix, +1X
+1xg, —1xg
to_zero(x) to_zero(t) 41t -1

—1x,+1X
—Maxxz »Q—Maxx +Maxx

+Maxxy —Maxt +Maxt O—
—1t, +1f
(c) Moduleassign(x, X2). (d) Moduleto_zero(x)

Figure 4: Encoding of the modulhift right - part I.

instructions;

e initial global availability iy is such that all resources are available in quariityx, as already
mentioned above; notice thddax also represents the maximum value occurring in the initial
resource availability vector, that i8] = Max;

e initial location <q0,)\) whereqq is the initial state of th& B-ATM andA is the first input symbol.
The formulag,, 5, = <<A$>><> p, with A= {ag; } and the value o$ being irrelevant for our purposes, is
such thaG,, o, = @ s, if and only if o7 accepts on inpudp.

Notice that, for the sake of readability, the game structised in the reduction does not respect the
requirement that, in every location, the first action of gv&gent is thedo-nothingaction, which does
not consume or produce resources. Nevertheless, thisiomidses not affect the correctness of our
reduction, that can be easily adapted using a game strdaliitling the above requirement.

Theorem 1 Model checking®RB-ATL is EXPTIME-hard even assuming n and r constant.

Let us stress that the above reduction makes use of a constautier of agents and resources, while
the digit size ofM (the maximum value occurring i) is linear in the size of the tape configuration.
This is consistent with the complexity of the algorithm irj,[%hich remains exponential even if we
consider a constant number of agents and resources as input.

Corollary 1 The model checking problem fBRB-ATL is EXPTIME-complete.

4.3 Another reduction.

As noted at the beginning of Section 4, it is possible to gkimn more reductions according to which
two parameters, out of three, are assumed constant. Inltbeifag, we briefly outline how to obtain a
reduction from the acceptance problem i@&-ATM, whenn andM are constant.

This reduction is simpler than the previous. Here the emgpdf the tape is obtained using a number
of resources which is linear in the length of the tape. |kebe the length of the tape, we use 2 sets of

D. Della Monica, M. Napoli, M. Parente 253

—10i,+100
+1pR, — 1R

to_zero(r) assign(ipr) to_zeroug)

~{ I—(I—(

—1t,+1F

assign(tp)

9~

+(Max—9)im —Maxi +Maxi
+1r, -1
—1i,+10
(a) Moduleadd(uy , u). (b) Modulediv_10(UR).
—Max@ +Max@ ~
Ny
—1y,+1g —Maxp o) +Max o
—Max +Max
—1u,+1g ~
—Max +Max
—1p,+1g O

=1y, +1g
(c) Modulechoosenextstate().

Figure 5: Encoding of the modushift right - part II.

Is| sl

|s| resource variables, namelyl, u2,..., > andpd, u3,. .., us', plus the resource variabje. Each
variable encodes the content of a tape cell: variablencodes the content of the head cell, while, for
eachi, the variableuli_ (resp.,uiR) encodes the content of tlith cell on the left (resp., right) of the tape
cell. Notice that, since there are finitely many possiblaigalfor a tape cell, the value M is upper
bounded. Now, the encoding of the set of instructions matchi full state(q,A) of aLB-ATM is the
same used for the previous reduction and depicted in Figureertheless, the encoding of the module
move which encodes the shift (to right or to left) of the head, lighdly different. In Figure 7, the
sub-modules encoding the operation “shift to right” areickepl. Essentially, the value of the variable
representing a cell is transmitted to the variable reptasgthe cell on the right, and the next location
reached on the game structure is set according to the vaterlsin the current head cell (after the shift
operation). The encoding of the operation “shift to lefthiade analogously.

Theorem 2 Model checking®RB-ATL is EXPTIME-hard even assuming n and M constant.

5 Discussion

In this paper we have presented a formalism which is venablgitto model properties of multi-agent
systems when the agents share resources and the need afgnaridunbounded consumption of such
resources is crucial. Within our framework it is possibl&kéep trace of a real global availability of the

—Maxmg —Maxi
—Maxi —Maxr assignfy , Iv) assignft,hy) assignfig, rv)

—omE=o—(—(9—{(G0

Figure 6: Preliminary step of the reductidg, f,, andr, encode the input tape configuration).

254 Model checking coalitional games in shortage resourceasien

assignyl‘_s‘, yl‘_s"l) assigny,‘_s‘fl, ul‘_s‘fz) assignfi?, ut) assigniit, p)

I T s T

assignf, Hg) assignfig, H3) assignu‘f"l, u‘f‘) g
S

Figure 7: Encoding of the modughiftright.

resources, used by both the proponent and opponent playeiding thus unrealistic situations in which
an unbounded quantity of resources is used in a game.

The technical focus of the paper has been on the complexityeahodel checking problem, and we
proved that it is EXPTIME complete (recall that also for slexgormalism this problem is in EXPTIME,
though the lower bound is not known). Other problems of ggeexist in the context of multi-agents
system verification. The most important one is tb@&chability problemthat is the problem of determin-
ing whether a team, with a given amount of money and a givéialigjlobal resource availability, has a
strategy to force the execution of the system to reach a doeation. More precisely, the reachability
problem for a tearf\ on a priced game structufgis a particular instance of the model checking prob-
lem, namely, the problem of verifying the truth at the iditanfiguration ofG of a PRB-ATL formula of
the kind ((A%))¢p, for a teamA, a money endowmerst andp € IN. An upper bound on the complexity
of this problem is clearly given by the algorithm for solvitige model checking problem f&RB-ATL.
Let us observe that the reductiogs given in section 4 apply t the reachability problem, since the

formula used there wag, ¢, = ((A*))Op, thus we have the following corollary.
Corollary 2 The reachability problem foPRB-ATL is EXPTIME-complete.

One of the novelties of our logic is th#te resource productiors allowed in the actions, though
with some limitations. Model checking and reachability ldemms seem both to be simpler in the case
one restricts our formalism by considering agent actioas¢hnnot produce resources. The reachability
problem is indeed NP-hard in this case: it immediately f@drom a result in [11], when the number
of agents is not constant. Anyway, we can prove the NP-hasdfoe just two agents using a reduction
from 3-SAT (due to lack of space we omit here the proof). Thelehahecking problem, instead, turns
out to be PSPACE-hard, since the reduction from QBF problemngin [9] works also in this case,
when actions cannot produce resources. ObservePRBtATL with this restriction is again different
from other formalisms in literature, mainly for the poskipiof tracking resources avalability and for
considering shared resources.

Finally, we want to note that also the more general problesied optimal coalition problemis
EXPTIME-complete (the upper bound was shown in [9]). It is firoblem of finding optimal (with
respect to a suitable cost function) coalitions that areibkgpto satisfy a giveparametricPRB-ATL
formula, that is, @RB-ATL formula in whichparametric team operator§X®)) may occur in place of
the classical team operatof&®)). One could also investigate other optimization problemse ost
interesting is, perhaps, to consider the money availghilitt as an input of the problem, but rather as
a parameter to minimize, that is to establish how much moaep egent should be provided with, to
perform a given task.

Further research directions concern the study of varidritsedogic. First, one can consider exten-
sions based on the full alternating-time temporal languee’, as already done in [6], and its fragment
ATL™.

D. Della Monica, M. Napoli, M. Parente 255

References

(1]

(2]

(3]
(4]

(5]

(6]

[7]
(8]
(9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

Natasha Alechina, Brian Logan, Nguyen Hoang Nga & AbdakiR (2009): A Logic for Coalitions with
Bounded Resourcem: Proc. of the 21st International Joint Conference on Ar#fitiitelligencelJCAI 09,
pp. 659-664.

Natasha Alechina, Brian Logan, Nguyen Hoang Nga & AbdakiR (2010):Resource-bounded alternating-
time temporal logic In: Proc. of the 9th International Conference on Autonomous¥giand Multiagent
Systems: Volume ,JAAMAS 10, pp. 481-488.

Rajeev Alur, Thomas A. Henzinger & Orna Kupferman (200Rkernating-time temporal logicJournal of
ACM 49(5), pp. 672—713, ddi0.1145/585265 .585270.

Rajeev Alur & Mihalis Yannakakis (2001)Model checking of hierarchical state machinedCM Trans-
actions on Programming Languages and Systems (TOPRA®), pp. 273-303, ddi0.1145/503502.
503503.

Nils Bulling & Berndt Farwer (2009):Expressing Properties of Resource-Bounded Systems: TdiesLo
RTL* and RTL In Jurgen Dix, Michael Fisher & Peter Novak, edito€@mputational Logic in Multi-Agent
Systems (CLIMA X) Springer, pp. 22-45, ddio.1007/978-3-642-16867-3_2.

Nils Bulling & Berndt Farwer (2010):On the (Un-)Decidability of Model Checking Resource-Badd
AgentsIn: Proc. of the 19th European Conference on Atrtificial Intelfige ECAI '10, pp. 567-572, doi0 .
3233/978-1-60750-606-5-567.

Ashok K. Chandra, Dexter C. Kozen & Larry J. Stockmeye&¥§1): Alternation Journal of ACM28(1), pp.
114-133, doit0.1145/322234.322243.

Mehdi Dastani, Koen V. Hindriks & John-Jules Charles Mgeditors (2010)Specification and Verification
of Multi-agent Systemd st edition. Springer Publishing Company, Incorporated.

D. Della Monica, M. Napoli & M. Parente (2011Pn a Logic for Coalitional Games with Priced-Resource
Agents Electronic Notes in Theoretical Computer Science (ENTZB), pp. 215-228, ddi0.1016/j.
entcs.2011.10.017. Proc. of the 7th Workshop on Methods for Modalities (M4M 2Dand the 4th
Workshop on Logical Aspects of Multi-Agent Systems (LAMAS12).

Valentin Goranko (2001)Coalition games and alternating temporal logids: Proc. of the 8th Conference
on Theoretical Aspects of Rationality and Knowled§&RK '01, Morgan Kaufmann, pp. 259-272.

Woijciech Jamroga & Jurgen Dix (2009)0 Agents Make Model Checking Explode (Computationally)?
Proc. of the 4th International Central and Eastern Eurofarference on Multi-Agent Systems (CEEMAS
2005) Lecture Notes in Computer Scien@é90, Springer, pp. 398-407, do.. 1007/11559221_40.

Salvatore La Torre, Margherita Napoli, Mimmo Parent&&nnaro Parlato (2003Hierarchical and Recur-
sive State Machines with Context-Dependent Propertieslos C. M. Baeten, Jan Karel Lenstra, Joachim
Parrow & Gerhard J. Woeginger, editoRroc. of the 30th International Colloquium on Automata, §aages
and Programming (ICALR).ecture Notes in Computer ScierZél9, Springer, pp. 776—789, doi:.. 1007/
3-540-45061-0_61.

Salvatore La Torre, Margherita Napoli, Mimmo Parenté&c&nnaro Parlato (2008)erification of scope-
dependent hierarchical state machindaformation and Computatio206(9-10), pp. 1161-1177, dod.
1016/j.1c.2008.03.017.

Aniello Murano, Margherita Napoli & Mimmo Parente (280 Program Complexity in Hierarchical Module
Checking In lliano Cervesato, Helmut Veith & Andrei Voronkov, ediso Proc. of the 15th International
Conference on Logic for Programming, Atrtificial Intelliggg) and Reasoning (LPAR)ecture Notes in
Computer Scienc&330, Springer, pp. 318-332, dif:. 1007/978-3-540-89439-1_23.

Marc Pauly (2001)A Logical Framework for Coalitional Effectivity in Dynamirocedures Bulletin of
Economic ResearcdB(4), pp. 305-324, ddi0.1111/1467-8586.00136.

Marc Pauly (2002):A Modal Logic for Coalitional Power in GamesJournal of Logic and Computation
12(1), pp. 149-166, ddi0.1093/1logcom/12.1.149.

