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Preface

This volume contains the proceedings of theFourth International Symposium on Games, Automata,
Logic and Formal Verification(GandALF 2013). The symposium took place in Borca di Cadore,Italy,
from 29th to 31st of August 2013.

The GandALF symposium was established by a number of Italiancomputer scientists interested in
mathematical logic, automata theory, game theory, and their applications to the specification, design,
and verification of complex systems. It aims to provide a forum where people from different areas, and
possibly with different backgrounds, can fruitfully interact. Even though the idea of the symposium
emerged within the Italian research community, the event has a truly international nature, as witnessed
by the composition of the conference committees and by the country distribution of the submitted papers.

In response to the Call for Papers, the program committee received 34 submissions and selected 17 of
them to be included in the conference program. Each paper wasrevised by at least three referees and the
selection was based on originality, quality, and relevanceto the topics of the symposium. The scientific
program consisted of papers on a wide variety of topics, including algorithmic and behavioral game
theory, game semantics, formal languages and automata theory, modal and temporal logics, software
verification, hybrid systems.

This fourth edition of GandALF has also hosted three invitedtalks:

• Games with delay for automaton synthesis, by Christof Löding (Lehrstuhl Informatik 7, RWTH
Aachen University, Germany)

• New trends in program synthesis, by Thomas A. Henzinger (IST, Austria)

• Temporal logic satisfiability for the design of complex systems, by Alessandro Cimatti and Stefano
Tonetta (Center for Information Technology, Fondazione Bruno Kessler, Trento, Italy)

We wish to express our thanks to the authors who submitted extended abstracts for consideration.
We would like to thank also the steering committee for givingus the opportunity and the honor to super-
vise GandALF 2013, as well as the program committee members and the additional reviewers for their
excellent work, fruitful discussions and active participation during the evaluation process.

We would like to thank the people, institutions, and companies for contributing to the success of this
edition of GandALF. In particular, we gratefully acknowledge the financial support from private and pub-
lic sponsors, including: Dipartimento d’Informatica - Università di Verona, Dipartimento d’Informatica -
Università di Salerno, Comune di Borca di Cadore. We also thank the EasyChair organization for sup-
porting all the tasks related to the selection of contributions, EPTCS and arXiv for hosting the proceed-
ings.

Finally, we would like to extend special thanks to the organizing chair, Pietro Sala, for his care and
tireless efforts in making the local arrangements and organizing an attractive social program. Without
his dedicated help and diligent work the conference would not have been such a success.

August 2013,
Gabriele Puppis and Tiziano Villa
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Games with delay for automaton synthesis

Christof Löding
Lehrstuhl Informatik 7

RWTH Aachen University
Germany

loeding@cs.rwth-aachen.de

Abstract

The framework of infinite two-player games is a powerful and flexible tool to verify and synthesize
systems from given specifications. The origin of this work isthe problem of automatic circuit synthesis
from specifications, as posed in [3]. A circuit can be viewed as a device that transforms input sequences
of bit vectors into output sequences of bit vectors. If the circuit acts as a kind of control device, then
these sequences are assumed to be infinite because the computation should never halt.

The task in synthesis is to construct such a circuit based on aformal specification describing the
desired input/output behaviour. This problem setting can be viewed as a game of infinite duration be-
tween two players: The first player provides the bit vectors for the input, and the second player produces
the output bit vectors. The winning condition of the game is given by the specification. The goal is to
find a strategy for the second player, such that all pairs of input/output sequences that can be produced
according to the strategy, satisfy the specification. Such astrategy can be seen as a realisation of the
specification.

This approach using games as a model for the synthesis problem has been taken in [1], where it
is shown that the synthesis problem can be solved by an algorithm for specifications that are written
in monadic second-order logic. Furthermore, for a given specification, one can construct a strategy
represented by a finite transducer that reads the input sequence and synchronously produces an output
sequence such that the resulting pair of input/output sequence satisfies the specification.

An interesting variation of the problem arises when the constructed strategy can use a lookahead: it
does not need to produce an output in each step. In the corresponding game this means that the second
player, who is in charge of the output, can delay some of his moves. An early decidability result in such
a setting has been obtained in [6], where the strategy is allowed to skip a bounded number of moves in
order to obtain a bounded look-ahead.

The aim of this presentation is to survey some recent resultsthat have been obtained for games with
delay, as for example, games with arbitrary (not necessarily bounded) delay [5], delay games with deter-
ministic pushdown specifications [4], and delay games over finite words for the synthesis of sequential
transducers [2].

References

[1] J. Richard Büchi & Lawrence H. Landweber (1969):Solving sequential conditions by finite-state strategies.
Transactions of the American Mathematical Society138, pp. 295–311, doi:10.2307/1994916.
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New Trends in Program Synthesis

Thomas A. Hemzinger
IST Austria

tah@ist.ac.at

The synthesis of reactive programs from omega-regular specifications is based on finding winning
strategies in graph games. In recent years, program synthesis has seen a revival due to several vari-
ations and extensions of this basic theme. We survey three such new trends. First, partial program
synthesis shifts the emphasis from the problem of synthesizing whole programs from specifications to
the problem of completing a partial program so that it satisfies a desired property. Second, quantita-
tive program synthesis aims to find a solution that optimizesa given criterion, such as performance,
robustness, or resource consumption. Third, concurrent program synthesis may require the com-
putation of equilibria in graph games with multiple playersthat represent independent concurrent
processes. Recent progress in these directions promises toreplace some particularly intricate aspects
of programming, such as the placement of synchronization orsecurity primitives, by automatic code
generation.

This work has been supported in part by an ERC Advanced Grant (QUAREM - Quantitative Reactive
Models) and by an FWF National Research Network (RISE - Rigorous Systems Engineering).
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Temporal logic satisfiability
for the design of complex Systems

Alessandro Cimatti and Stefano Tonetta
Center for Information Technology, Fondazione Bruno Kessler, Trento, Italy

{cimatti,tonettas}@fbk.eu

The development of computer-based dynamic systems is a veryhard task. On the one hand, the re-
quired functionalities are very complex, and often includeinherently contradicting aspects (e.g. moving
trains in a railways station versus avoiding crashes). On the other hand, it is required to integrate the
continuous dynamics of physical plants with the discrete dynamics in the control modules and proce-
dures. In addition, such systems often carry out critical functions, which calls for rigorous means to
support a development process. The use of a formal approach,coupled with suitable reasoning tools,
has found its way in several practical domains, such as railways [5], industrial production [20], hardware
design [2, 13, 11], and avionics [15].

Most formal approaches focus on a behavioral characterization of a system, possibly expressed as an
automaton or network/hierarchy of automata. Model-based approaches build this behavioral model as a
result of semantics-preserving transformation of some design language, and use the model to verify the
system description. The verification uses some properties,in form of first-order or temporal formulas,
which represent the requirements and are typically assumedto be correct.

More recently, the role of properties is being recognized asincreasingly important. For example, in
hardware design, specification languages for properties (e.g. PSL [10], SVA [19]) have been introduced
to increase expressive power (augmenting for example Linear-time Temporal Logic (LTL) with regular
expressions) and usability (using natural language expressions and maximizing the syntactic sugar). The
quality of the assertions expressed with such languages hasemerged as a problem leading to the de-
velopment of specialized techniques for their validation [3, 6]. Interestingly, the same type of problem
has been addressed in requirements engineering, across domains, for many years. According to studies
sponsored by NASA in 90s, many software bugs in safety-critical embedded systems were due to flaws
in requirements [14]. The role of formal methods in finding such errors is becoming more and more
important (e.g., [7]). The role of properties is also fundamental in compositional reasoning [17], where a
global verification problem is decomposed into a number of localized problems. Finally, contract based
design [18] allows to decompose the properties of the architectural blocks according to the hierarchical
system decomposition, before behavioral descriptions areavailable, and provides a strong support for
property-based refinement and reuse of components [9].

In the talk, we explore the role of temporal logic satisfiability in the design of complex systems,
focusing on a property-based design, where behaviors of systems are expressed as formulas in temporal
logics. We first discuss the challenges resulting in practice from requirements analysis, compositional
reasoning, and contract-based design, showing that satisfiability of temporal formulas is a crucial prob-
lem.

Then, we analyze the satisfiability problem for various logics of interest. We adopt a linear model of
time, and take into account two kinds of traces: discrete traces and hybrid traces. Properties are therefore
represented by sets of traces and temporal formulas are usedto specify such sets. We analyze two
classes of temporal logics of practical interest. The first class is interpreted over discrete traces, that are
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sequences of states (assignments to sets of variables). It includes the usual temporal operators of Linear
Temporal Logic (LTL) [16], regular expression and suffix operators [10, 4]. In addition, it allows for
first order atoms, composed of symbols to be interpreted according to a background theory, similarly to
Satisfiability Modulo Theories [1]. We call this class RELTL(T), LTL with regular expressions Modulo
Theory. This class is decidable for specific classes of theories and if the variable interpretation is local to
each state [12].

The second class, referred to as HRELTL, for Hybrid RELTL [8], is interpreted over hybrid traces.
Hybrid traces are useful to model the behaviors of systems featuring continuous transitions, with discrete,
instantaneous transitions. Continuous variables are interpreted as functions of time, and the predicates
are required to have a uniform interpretation over all interval. The satisfiability problem for HRELTL
is undecidable. However, there exists a satisfiability-preserving reduction from HRELTL to RELTL(T)
over discrete traces [8]. The main idea is to introduce a sufficient number of constraints on the temporal
evolution of the evaluation of predicates to guarantee thatthe nature of the hybrid dynamics is retained
also in the discrete case.

We conclude the talk with an overview of the practical effectiveness of the current methods, and the
open challenges in the area.
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Zielonka’s Recursive Algorithm:
dull, weak and solitaire games and tighter bounds

Maciej Gazda and Tim A.C. Willemse
Eindhoven University of Technology, The Netherlands

Dull, weak and nested solitaire games are important classesof parity games, capturing, among others,
alternation-freeµ-calculus and ECTL∗ model checking problems. These classes can be solved in
polynomial time using dedicated algorithms. We investigate the complexity of Zielonka’sRecursive
algorithm for solving these special games, showing that thealgorithm runs inO(d · (n+m)) on weak
games, and, somewhat surprisingly, that it requires exponential time to solve dull games and (nested)
solitaire games. For the latter classes, we provide a familyof gamesG , allowing us to establish
a lower bound ofΩ(2n/3). We show that an optimisation of Zielonka’s algorithm permits solving
games from all three classes in polynomial time. Moreover, we show that there is a family of (non-
special) gamesM that permits us to establish a lower bound ofΩ(2n/3), improving on the previous
lower bound for the algorithm.

1 Introduction

Parity games [5, 15, 18] are infinite duration, two player games played on a finite directed graph. Each
vertex in the graph is owned by one of the two players and vertices are assigned a priority. The game
is played by moving a single token along the edges in the graph; the choice where to move next is
decided by the player owning the vertex on which the token currently resides. A parity winning condition
determines the winner of this infinite play; a vertex in the game is won by the player that can play such
that, no matter how the opponent plays, every play from that vertex is won by her, and the winner of each
vertex is uniquely determined [15]. From a practical point of view, parity games are interesting as they
underpin verification, satisfiability and synthesis problems, see [4, 5, 1].

The simplicity of the gameplay is fiendishly deceptive. Despite continued effort, no polynomial
algorithm for solving such games (i.e. computing the set of vertices won by each player) has been
found. Solving a parity game is known to be in UP∩ coUP [10], a class that neither precludes nor
predicts the existence of a polynomial algorithm. In the past, non-trivial classes of parity games have
been identified for which polynomial time solving algorithms exist. These classes includeweakanddull
games, which arise naturally from alternation-free modalµ-calculus model checking, see [3], andnested
solitaire games which are obtained frome.g. theL2 fragment of the modalµ-calculus, see [3, 6]. Weak
and dull games can be solved inO(n+m), wheren is the number of vertices andm is the number of
edges, whereas (nested) solitaire games can be solved inO(log(d) · (n+m)), whered is the number of
different priorities in the game.

One of the most fundamental algorithms for solving parity games is Zielonka’srecursive algo-
rithm [18]. With a complexity ofO(nd), the algorithm is theoretically less attractive thane.g.Jurdziński’s
small progress measuresalgorithm [11], Schewe’sbigstepalgorithm [16] or the sub-exponential algo-
rithm due to Jurdzińskiet al. [12]. However, as observed in [8], Zielonka’s algorithm is particularly
effective in practice, typically beating other algorithms. In view of this, one might therefore ask whether
the algorithm is particularly apt at solving natural classes of games, taking advantage of the special struc-
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ture of these games. We explore this question by investigating the complexity of solving weak, dull and
nested solitaire classes using Zielonka’s algorithm. Our findings are as follows:

• in Section 4.1, we prove that Zielonka’s algorithm solves weak games in polynomial time.

• in Section 4.2, we demonstrate that, somewhat surprisingly, Zielonka’s algorithm is exponential
on dull games and solitaire games.

The exponential lower bounds we obtain utilise a family of dull, solitaire gamesG k with 3k vertices on
which the algorithm requires 2k iterations, allowing us to establish a lower bound ofΩ(2n/3). This lower
bound improves on previously documented lower bounds for this algorithm (e.g., in [7] a lower bound of
Ω(1.6n/5) is established).

In addition to the above complexity results we investigate whether the most common improvement of
the algorithm permits it to run in polynomial time for all three special classes of games. That is, we prove
in Section 5 that integrating Zielonka’s algorithm in astrongly connected componentdecomposition
algorithm, as suggested in [11, 8], permits solving all three classes in polynomial time. We analyse the
complexity of the resulting algorithm for these three classes, showing that the optimised algorithm runs
in O(n· (n+m)) for weak, dull and (nested) solitaire games. Note that theseworst-case complexities are
slightly worse than those for the dedicated algorithms, butthat the applicability of the algorithm remains
universal;e.g., it is capable of solving arbitrary nestings of dull and solitaire games, and it does not
depend on dedicated algorithms for detecting whether the game is special.

The optimised algorithm still requires exponential time onnon-special games. For instance, Fried-
mann’s games are resilient to all known optimisations. Drawing inspiration from our family of gamesG k

and the games of [7], we define a new family of gamesM k containing 3k vertices, that is also resilient
to all known optimisations and requires 2k iterations of the algorithm. This again allows us to establish a
lower bound ofΩ(2n/3), also improving on the lower bound established by Friedmannin [7]. We exper-
imentally compare the running time of the optimised algorithm on our games to those of Friedmann.

Outline. Before we present our results, we briefly describe parity games in Section 2 and Zielonka’s
algorithm in Section 3. Our runtime analysis of Zielonka’s original algorithm on special games is pre-
sented in Section 4. We prove that an optimisation of the algorithm runs in polynomial time on special
games in Section 5, and we prove that, in general, the optimisation’s complexity isΩ(2n/3) in Section 6.
In Section 7, we wrap up with some conclusions.

2 Parity Games

A parity game is an infinite duration game, played by playersodd, denoted by� andeven, denoted by
3, on a directed, finite graph. The game is formally defined as follows.

Definition 1 A pseudo parity game is a tuple(V,E,P,(V3,V�)), where

• V is a finite set of vertices, partitioned in a setV3 of vertices owned by player3, and a set of
verticesV� owned by player�,

• E ⊆V×V is an edge relation,

• P:V → N is a priority function that assigns priorities to vertices,players.

We writev→ w iff (v,w) ∈ E. A pseudo parity game is aparity gameif the edge relation is total;i.e. for
eachv∈V there is at least onew∈V such that(v,w) ∈ E.
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We depict (pseudo) parity games as graphs in which diamond-shaped vertices represent vertices
owned by player3 and box-shaped vertices represent vertices owned by player�. Priorities, associated
with vertices, are written inside vertices.

For a given (pseudo) parity game, we are often interested in the subgame that is obtained by restrict-
ing the game to a given set of vertices in some way. Formally, we define such subgames as follows.

Definition 2 Let G= (V,E,P,(V3,V�)) be a (pseudo) parity game and letA⊆V be an arbitrary non-
empty set. The (pseudo) parity gameG∩A is the tuple(A,E∩ (A×A),P|A,(V3 ∩A,V� ∩A)). The
(pseudo) parity gameG\A is defined as the gameG∩ (V \A).

Throughout this section, assume thatG = (V,E,P,(V3,V�)) is an arbitrary pseudo parity game.
Note that in general, wheneverG is a parity gamethen it is not necessarily the case that the pseudo
parity gamesG\A andG∩A are again parity games, as totality may not be preserved. However, in what
follows, we only consider constructs in which these operations guarantee that totalityis preserved.

The gameG is said to bestrongly connected, see [17], if for all pairs of verticesv,w ∈V, we have
v→∗ w andw→∗ v, where→∗ denotes the transitive closure of→. A strongly connected componentof
G is a maximal setC⊆V for which G∩C is strongly connected.

Lemma 1 LetC⊆V be a strongly connected component. IfG is a parity game, then so isG∩C.

Henceforth, we assume thatG is a parity game (i.e. its edge relation is total), and# denotes an
arbitrary player. We writē# for #’s opponent;i.e. 3̄ =� and�̄= 3. A sequence of verticesv1, . . . ,vn

is apath if vm→ vm+1 for all 1≤m< n. Infinite paths are defined in a similar manner. We writepn to
denote thenth vertex in a pathp.

A game starts by placing a token on a vertexv∈V. Players move the token indefinitely according
to a simple rule: if the token is on some vertexv∈V#, player# gets to move the token to an adjacent
vertex. The choice where to move the token next is determinedby a partial functionσ :V+→V, called
a strategy. Formally, a strategyσ for player# is a function satisfying that whenever it is defined for a
finite pathv1, . . . ,vn, we haveσ(v1, . . . ,vn) ∈ {w∈V | v→ w} andvn ∈V#. We say that an infinite path
v1,v2, . . . is consistentwith a strategyσ for player# if for all finite prefixesv1, . . . ,vn for which σ is
defined, we haveσ(v1, . . . ,vn) = vn+1. An infinite path induced by strategies for both players is called a
play.

The winner of a play is determined by theparity of the highestpriority that occurs infinitely often
on it: player3 wins if, and only if this priority is even. That is, we here considermaxparity games.
Note that, alternatively, one could demand that thelowestpriority that occurs infinitely often along a play
determines the winner; such games would beminparity games.

A strategyσ for player# is winning from a vertexv if and only if # is the winner of every play
starting inv that is consistent withσ . A vertex is won by# if # has a winning strategy from that vertex.
Note that parity games arepositionally determined, meaning that a vertex is won by player# if # has a
winning positional strategy: a strategy that determines where to move the token next based solely on the
vertex on which the token currently resides. Such strategies can be represented by a functionσ :V#→V.
A consequence of positional determinacy is that vertices are won by exactly one player [5].Solvinga
parity game essentially is computing the partition(W3,W�) of V of vertices won by player3 and player
�, respectively. We say that a gameG is aparadisefor player# if all vertices inG are won by#.

Special games. Parity games pop up in a variety of practical problems. Theseinclude model checking
problems for fixed point logics [5], behavioural equivalence checking problems [4] and satisfiability and
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synthesis problems [1]. In many cases, the parity games underlying such problems arespecial games:
parity games with a particular structure. We here consider three such special games:weak, dulland
nested solitairegames; these classes have previously been studied in the literature, seee.g.[3] and the
references therein. The definitions that we present here aretaken from [3].

Weak games are game graphs in which the priorities along paths are monotonically descending (this
is not to be confused with parity games withweak parityconditions). That is, for each pair of vertices
v,w in the graph, ifv→ w, thenP(v) ≥P(w). Such games correspond naturally to model checking
problems for the alternation-free modalµ-calculus.

Definition 3 A parity game isweakif the priorities along all paths are descending.

Dedicated solvers for weak games can solve these inO(|V|+ |E|). The algorithm that does so is
rather straightforward. Since parity games are total, the set L of vertices with lowest prioritiesm are
immediately won by player3 iff m is even. Any vertex in the game that can beforcedto L by the player
winning L can then be removed from the game; technically, this is achieved by computing theattractor
set(see the next section) intoL. What remains is another weak parity game which can be solvedfollow-
ing the same steps until no vertex is left.

Weak games are closely related to dull games: the latter are game graphs in which allbasic cyclesin
the graph are disjoint. A basic cycle is a finite pathv1, . . . ,vn for which vn→ v1 and no vertexvi occurs
twice on the path. Anevencycle is a cycle in which the dominating (i.e. highest) priority is even; the
cycle is anoddcycle if the dominating priority occurring on the cycle is odd.

Definition 4 A parity game isdull if even cycles and odd cycles are disjoint.

Note that every weak game is dull; every dull game, on the other hand, can be converted in linear time
to a weak game by changing priorities only. This is achieved by assigning a priority that has the same
parity as the highest priority present in a strongly connected component to all vertices in that component.
This is harmless as each strongly connected component is either entirely even dominated or entirely odd
dominated: if not, even cycles and odd cycles would overlap,contradicting the fact that the game is
dull. Working bottom-up, it is straightforward to ensure that the priorities along the paths in the game
are descending. As a result, dull games can also be solved inO(|V |+ |E|) using the same algorithm as
that for solving weak games. Dull games, too, can be obtainedfrom alternation-freeµ-calculus model
checking problems, and they correspond naturally to the alternation-free fragment of LFP, see [2].

Solitaire games are games in which only one of the two playersgets to make non-trivial choices
where to play the token next; nested solitaire games generalise solitaire games to games in which both
players may make non-trivial moves, but the interactions between both players is still restricted. Such
games arise from model checking problems for the fragmentL2 of the modalµ-calculus, see [6], and
they correspond with the solitaire fragment of LFP [3].

Definition 5 A parity game issolitaire if all non-trivial moves are made by a single player. The gameis
nested solitaireif each strongly connected component induces a solitaire game.

Nested solitaire games can be solved inO(log(d) · (|V |+ |E|)), see [9], although most implemen-
tations use a somewhat less optimal implementation that runs in O(d · (|V|+ |E|)), see [3]. The latter
algorithm works by computing the strongly connected components of a graph and start searching for an
even cycle if all non-trivial moves in the component are madeby player3 and an odd cycle otherwise.
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Computing whether there is an even cycle (resp. odd cycle) can be done inO(log(d) · (|V|+ |E|)) using
the techniques of [14] or, inO(d · (|V|+ |E|)) by repeatedly conducting a depth-first search, starting at
the lowest even priority in the component. Clearly, in a component where only player3 gets to make
non-trivial moves, all vertices are won by player3 iff an even cycle is found. Iteratively solving the
final strongly connected component and removing it togetherwith the attractor for the winner of this
component solves entire nested solitaire games.

3 Zielonka’s Recursive Algorithm

Throughout this section, we assumeG is a fixed parity game(V,E,P,(V3,V�)), and# is an arbitrary
player.

Zielonka’s algorithm for solving parity games, listed as Algorithm 1, is a divide and conquer algo-
rithm. It constructs winning regions for both players out ofthe solution of subgames with fewer different
priorities and fewer vertices. It removes the vertices withthe highest priority from the game, together
with all verticesattractedto this set of vertices. Attractor sets are formally defined as follows.

Definition 6 The#-attractor into a setU ⊆V, denotedAttr#(U), is defined inductively as follows:

Attr0#(U) = U
Attrn+1# (U) = Attrn#(U)

∪ {u∈V# | ∃v∈ Attrn#(U) : u→ v}
∪ {u∈V#̄ | ∀v∈V : u→ v =⇒ v∈ Attrn#(U)}

Attr#(U) =
⋃
i≥0

Attri#(U)

If needed for clarity, we writeAttrG#(U) to indicate that the#-attractor is computed in game graphG.

The lemma below states that whenever attractor sets are removed from a parity game, totality is
preserved.

Lemma 2 Let A= Attr#(U)⊆V be an arbitrary attractor set. IfG is a parity game, then so isG\A.

The correctness of Zielonka’s algorithm hinges on the fact that higher priorities in the game dominate
lower priorities, and that any forced revisit of these higher priorities is beneficial to the player aligning
with the parity of the priority. For a detailed explanation of the algorithm and proof of its correctness,
we refer to [18, 7].

4 Solving Special Games

Zielonka’s algorithm is quite competitive on parity games that stem from practical verification prob-
lems [8, 13], often beating algorithms with better worst-case running time. While Zielonka’s original
algorithm is known to run in exponential time on games definedby Friedmann [7], its behaviour on spe-
cial parity games has never before been studied. It might just be the case that this algorithm is particularly
apt to solve such games. We partly confirm this hypothesis in Section 4.1 by proving that the algorithm
indeed runs in polynomial time on weak games. Somewhat surprisingly, however, we also establish that
Zielonka’s algorithm performs poorly when solving dull and(nested) solitaire games, see Section 4.2.
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Algorithm 1 Zielonka’s Algorithm
1: function ZIELONKA (G)
2: if V = /0 then
3: (W3,W�)← ( /0, /0)
4: else
5: m←max{P(v) | v∈V}
6: if m mod 2= 0 then p←3 elsep←� end if
7: U ←{v∈V |P(v) = m}
8: A← Attrp(U)
9: (W′3,W′�)← ZIELONKA (G\A)

10: if W′p̄ = /0 then
11: (Wp,Wp̄)← (A∪W′p, /0)
12: else
13: B← Attrp̄(W

′
p̄)

14: (W′3,W′�)← ZIELONKA (G\B)
15: (Wp,Wp̄)← (W′p,W

′
p̄∪B)

16: end if
17: end if
18: return (W3,W�)
19: end function

4.1 Weak Games

We start with a crucial observation —namely, that for weak games, ZIELONKA solves a paradise in
polynomial time— which permits us to prove that solving weakgames can be done in polynomial time
using ZIELONKA . The proof of the latter, formalised as Proposition 1, depends on three observations,
which we first prove in isolation in the following lemma.

Lemma 3 Let G = (V,E,P,(V3,V�)) be a weak parity game. SupposeG is a paradise for player#;
i.e., G is won entirely by#. ThenZIELONKA , applied toG, has the following properties:

1. in the first recursive call in line 9, the argumentG\A is also a paradise for player#.

2. if the second recursive call (line 14) is reached, then itsargument (G\B) is the empty set.

3. edges that are used in the computation of attractor sets (lines 8 and 13) are not considered in
subroutines.

Proof: We prove all three statements below.

1. Observe thatA= Attrp(U) =U , since, in a weak game, no vertex with lower priority has an edge
to a vertex inU . In particular, the subgameG\A is #̄-closed, and hence must be won entirely by
#, if G is a#-paradise.

2. The second recursive call can be invoked only ifW′p̄ 6= /0. From the above considerations we know
that this implies ¯p = #, andW′p̄ = G\A is a paradise for#. We also haveG = W′p̄∪A. Since
every game staying inA would be losing for#, it must be the case thatA⊆ Attrp̄(W′p̄). But then
B= Attrp̄(W′p̄) = G, and henceG\B= /0.

3. Edges that are considered in the computation of bothAttrp(U) (line 8) andAttrp̄(W
′
p̄) have sources

only in U ; since no vertices fromU are included in the subgame considered in the first recursive
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call, and the second call can only take the empty set as an argument. Therefore, these edges will
not be considered in the subroutines.

2
Proposition 1 Let G= (V,E,P,(V3,V�)) be a weak parity game. SupposeG is a paradise for player
#; i.e., G is won entirely by#. ThenZIELONKA runs inO(|V|+ |E|).
Proof: We analyse the running timeT(k) of ZIELONKA when it is called on a subgameGk of G with
exactlyk priorities. Letvk denote the number of nodes with the highest priority inGk, and withek the
number of edges that are considered in the attractor computations (lines 8 and 13) onGk.

If we assume that the representation of the game has some built-in functionality that allows us to
inspect the nodes in the order of priority, then the time required to execute the specific lines of the
procedure can be bounded as follows:

• line 7: c·vk for some constantc

• lines 8 and 13 in total:c·ek for some constantc

• the remaining lines:z for some constantz∈N
We obtain:

T(k) ≤ c· (vi +ei +z)+T(k−1)

T(k) ≤
k
∑

i=1
c· (vi +ei +z)

T(k) ≤ c· (
k
∑

i=1
vi +

k
∑
i=1

ei +
k
∑
i=1

z)

Let d denote the total number of priorities occurring inG. Observe that from Lemma 3, we have:

d

∑
i=1

vi = |V| and
d

∑
i=1

ei = |E|

The total execution time ofZIELONKA on G can be bounded by:

T(d,V,E) ≤ c· (|V|+ |E|+O(d))

Hence we obtainT(d,V,E) = O(|V |+ |E|). 2
The above proposition is used in our main theorem below to prove that solving weak games using

ZIELONKA can be done in polynomial time: each second recursive call toZIELONKA will effectively be
issued on a paradise or an empty game. By proposition 1, we know thatZIELONKA will solve a paradise
in linear time.

Theorem 1 ZIELONKA requiresO(d · (|V|+ |E|)) to solve weak games withd different priorities,|V|
vertices and|E| edges.

Proof: The key observation is thatZIELONKA , upon entering the second recursive call in line 14 is
invoked on a game that is a paradise. Consider the set of verticesV \B of the gameG at that point. It
contains the entire setW′p, and possibly a subset ofU . Now, if player p̄ could force a play in a node
v∈W′p toW′p̄, it could be done only via setU . But this would violate the weakness property. Playerp has
a winning strategy onV \B, which combines the existing strategy onW′p and if necessary any strategy on
U (because whenever a play visitsU infinitely often, it is won byp). Thus, the gameG\B that is then
considered is ap-paradise.
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As a result, by Proposition 1, the gameG\B is solved inO(|V|+ |E|). Based on these observations,
we obtain the following recurrence forZIELONKA :

T(0,V,E) ≤ O(1)
T(d+1,V,E) ≤ T(d,V,E)+O(|V |)+O(|E|)

Thus, a non-trivial upper bound on the complexity isO(d · (|V|+ |E|)). 2
Next, we show this bound is tight. Consider the family of parity gamesW n = (Vn,Ev,Pn,(Vn3,Vn

�)),
where priorities and edges are defined in Table 1 andVn is defined asVn = {v1, . . . ,v2n,u0,u1}.

Table 1: The familyW of games; 1≤ i ≤ n.
Vertex Player Priority Successors

vi 3 i +2 {vi−1,vn+i}∪{u0 | i = 1}
vn+i � i +2 {vi,vn+i−1}∪{u1 | i = 1}
u0 3 0 {u0}
u1 � 1 {u1}

The gameW 4 is depicted in Figure 1. The familyW has the following characteristics.
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Figure 1: The gameW 4.

Proposition 2 The gameW n is of size linear inn; i.e., |W n|= O(n), it contains 2n+2 vertices, 4n+2
edges andn+2 different priorities. Moreover, the gameW n is a weak game.

Lemma 4 In the gameW n, vertices{u0,v1, . . . ,vn} are won by player3, whereas vertices{u1,vn+1, . . . ,v2n}
are won by player�.

Proof: Follows from the fact that, for 0≤ j < n−1, the strategyvn− j → vn− j−1, v1→ u0 andu0→ u0 is
winning for player3 for the set of vertices{u0,v11, . . . ,vn} and the strategyv2n− j → v2n− j−1, vn+1→ u1

andu1→ u1 is winning for player� from the set of vertices{u1,vn+1, . . . ,v2n}. 2
We next analyse the runtime of Zielonka’s algorithm on the family W . Let an be defined through the
following recurrence relation:

a0 = 1
an+1 = an+n+1

Observe that the function12n2 approximatesan from below. The proposition below states that solving the
family W of weak parity games requires a quadratic number of recursions.

Proposition 3 SolvingW n, for n> 0, requires at leastan calls toZIELONKA .

Proof: Follows from the observation that each gameW n+1 involves:

1. a first recursive call toZIELONKA for solving the gameW n.
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2. a second recursive call toZIELONKA for solving eitherW n\{v2n, . . . ,vn+1,u1} orW n\{vn, . . . ,v1,u0};
both requiren+1 recursive calls toZIELONKA .

2
Theorem 2 Solving weak games usingZIELONKA requiresΘ(d · (|V|+ |E|)).
Note that this complexity is a factord worse than that of the dedicated algorithm. For practical problems
such as when solving parity games that come from model checking problemsd is relatively small; we
expect that for such cases, the difference between the dedicated algorithm and Zielonka’s algorithm to
be small.

4.2 Dull and Nested Solitaire Games

We next prove that dull games and (nested) solitaire requireexponential time to solve usingZIELONKA .
Given that dull games can be converted to weak games in lineartime, and that Zielonka solves weak
games in polynomial time, this may be unexpected.

Our focus is on solitaire games first. We construct a family ofparity gamesG n=(Vn,En,Pn,(Vn3,Vn
�))

with verticesVn = {v0, . . . ,v2n−1,u1, . . .un}. All vertices belong to player3; that is,Vn3 =Vn andVn
� = /0.

The priorities and the edges are described by Table 2.

Table 2: The familyG of games; 1≤ i < 2n,1≤ j ≤ n.
Vertex Priority Successors

vi i +2 {vi−1}
v0 2 {v0}
u j 1 {u j ,v2 j−1}

Proposition 4 The gameG n is of size linear inn; i.e. |G n| = O(n), it has 3n vertices, 4n edges and
2n+1 different priorities. Moreover, the gameG n is a (nested) solitaire game.

The gameG 3 is depicted in Figure 2. Observe that in this game, vertexv5 has the maximal priority and
that this priority is odd. This means that Zielonka’s algorithm will compute the odd-attractor tov5 in line
8 of the algorithm,i.e. Attr�({v5}) = {v5}. We can generalise this observation for arbitrary gameG n: in
such a game,Attr�({v2n−1}) = {v2n−1}. Henceforth, we denote the subgameG n\{v2n−1} by G n,−.

Lemma 5 The gameG n is won by player3. In the gameG n,−, all vertices except for vertexun, are won
by player3.

Proof: The fact thatG n is won by player3 follows immediately from the strategyσ :Vn→Vn, defined
asσ(vi) = vi−1 for all 1≤ i < 2n, σ(ui) = v2i−1 for all i ≤ n andσ(v0) = v0, which is winning for player
3. For the gameG n,−, a strategyσ ′ can be used that is as strategyσ for all verticesv 6= un; for vertex
un, we are forced to chooseσ ′(un) = un, sinceun is the sole successor ofun in G n,−. Since the priority
of un is odd, the vertex is won by player�. 2
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Figure 2: The gameG 3.
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We now proceed to the runtime of Zielonka’s algorithm on the family G .

Proposition 5 SolvingG n, for n> 0, requires at least 2n calls toZIELONKA .

Proof: Solving the gameG 1 requires at least one call toZIELONKA .
Consider the gameG n, for n> 1. Observe thatZIELONKA is invoked recursively on the gameG n,−

in the first recursion on line 9. We focus on solving the lattergame.
The vertex with the highest priority inG n,− isv2(n−1). Observe thatA=Attr�({v2(n−1)}) = {v2(n−1)}.

Note thatG n,− \A containsG n−1 as a separate subgame. The first recursive call in solvingG n,− will
therefore also solve the subgameG n−1.

Next, observe thatun (andun alone) is won by player�, see Lemma 5. We therefore need to compute
B= Attr3({un}) = {un}. Now, note thatG n,− \B subsumes the subgameG n−1, which is a separate game
in G n,− \B. Therefore, also the second recursive call toZIELONKA involves solving the subgameG n−1.
2
The lower bound on the number of iterations forZIELONKA is thus exponential in the number of vertices.

Theorem 3 Solving (nested) solitaire games usingZIELONKA requiresΩ(2|V|/3).

We note that this improves on the bounds ofΩ(1.6|V |/5) established by Friedmann. Being structurally
more complex, however, his games are robust to typical (currently known) improvements to Zielonka’s
algorithm such as the one presented in the next section (although this is not mentioned or proved in [7]).
Still, we feel that the simplicity of our familyG fosters a better understanding of the algorithm.

Observe that the familyG is also a family of dull games. As a result, we immediately have the
following theorem.

Theorem 4 Solving dull games usingZIELONKA requiresΩ(2|V|/3).

5 Recursively Solving Special Games in Polynomial Time

The G family of games of the previous section are easily solved when preprocessing the games using
priority propagation and self-loop elimination. However,it is straightforward to make the family robust
to such heuristics by duplicating the vertices that have oddpriority, effectively creating odd loops that are
not detected by such preprocessing steps. In a similar vein,the commonly suggested optimisation to use
a strongly connected component decomposition as a preprocessing step can be shown to be insufficient
to solve (nested) solitaire games. The familyG can easily be made robust to this preprocessing step: by
adding edges fromv0 to all ui , each game inG becomes a single SCC.

In this section, we investigate the complexity of a tight integration of a strongly connected compo-
nent decomposition and Zielonka’s algorithm, as suggestedby e.g.[11, 8]. By decomposing the game
each time Zielonka is invoked, large SCCs are broken down in smaller SCCs, potentially increasing the
effectiveness of the optimisation. The resulting algorithm is listed as Algorithm 2.

We will need the following lemma:

Lemma 6 If algorithm 2 is invoked on a game that is either dull or (nested) solitaire, then in the entire
recursion tree all second recursive calls (line 16) are trivial (with empty set as an argument).

Proof: In case of dull games, since gameH is a connected component, each of its subgames is won by
player corresponding tom mod 2, namelyp. Hence after the line 11 is executed, we obtainW′p = H \A
andW′p̄ = /0. The second recursive call will therefore never be invoked.
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Algorithm 2 Optimised Zielonka’s Algorithm
1: function ZIELONKA SCC(G)
2: (WG3 ,WG

� )← ( /0, /0)
3: if V 6= /0 then
4: S := SCC GRAPH DECOMPOSITION(G)
5: for each final SCCC ∈S do
6: H←G∩C
7: m←max{P(v) | v∈C}
8: if m mod 2= 0 then p←3 elsep←� end if
9: U ←{v∈C |P(v) = m}

10: A← AttrH
p (U)

11: (W′3,W′�)← ZIELONKA SCC(H \A)
12: if W′p̄ = /0 then
13: (Wp,Wp̄)← (A∪W′p, /0)
14: else
15: B← AttrH

p̄ (W
′
p̄)

16: (W′3,W′�)← ZIELONKA SCC(H \B)
17: (Wp,Wp̄)← (W′p,W

′
p̄∪B)

18: end if
19: (WG3 ,WG

� )← (WG3 ∪AttrG3(W3),WG
� ∪AttrG�(W�))

20: S := SCC GRAPH DECOMPOSITION(G\ (WG3 ∪WG
� ))

21: end for
22: end if
23: return (WG3 ,WG

� )
24: end function

Now assume that the game is solitaire and owned by playerq. If p= q, thenAttrH
p (U) =H (the game

is p-owned, and strongly connected), and the second call is not invoked at all. Otherwise, the second
call is invoked only ifW′p̄ 6= /0. But thenB= AttrH

p̄ (W
′
p̄) = AttrH

q (W
′
p̄) = H (the game is owned by ¯p, and

strongly connected), andH \B= /0. 2
We will now prove that the optimisation suffices to solve special parity games in polynomial time.

Theorem 5 Algorithm 2 solves dull and (nested) solitaire games inO(|V | · (|V|+ |E|)) time.

Proof: Let #for(V) denote the total number of iterations of thefor loop in the entire recursion tree.
Observe that the total execution time of ZIELONKA SCC can be bounded from above as follows:

T(V,E) = O(#for(V) · (|V|+ |E|))

Indeed, every iteration of the loop (not counting the iterations in subroutines) contributes a maximal fac-
tor of O(|V |+ |E|) running time, which results from the attractor computationand SCC decomposition.

We will use subscripts for the values of the algorithm variables in iterationi ∈ {1, . . . ,k}, e.g. the
value of variableC in iterationi isCi . Furthermore, byVi we will denote the set of vertices in the subgame
considered in the first recursive call, i.e.Vi =Ci \Ai.

We will show that #for(V)≤ |V|. We have:

#for(V) ≤ 1 for |V| ≤ 1
#for(V) ≤ #for(V1)+ · · ·+#for(Vk)+k for |V|> 1

(*)
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In the second inequality,k is the total number of bottom SCCs considered in line 5. Each of these
SCCs may give rise to a recursive call (at most one, see Lemma 6). This recursive call contributes in turn
#for(Vi) iterations.

We proceed to show #for(V) ≤ |V| by induction on|V|. The base holds immediately from the first
inequality. Now assume that #for(V)≤ |V| for |V|< m.

Obviously|C1|+ · · ·+ |Ck| ≤ |V|. Observe that in every iterationi the setAi is nonempty, therefore
Vi <Ci . Therefore|V1|+ · · ·+ |Vk| ≤ |V|−k, or equivalently|V1|+ · · ·+ |Vk|+k≤ |V|.

Applying the induction hypothesis in the right-hand side of(*) yields #for(V)≤ |V1|+ · · ·+ |Vk|+k,
and due to the above observation we finally obtain #for(V)≤ |V|. 2

The above upper bound is slower by a factorV compared to the dedicated algorithms for solving
weak and dull games. For nested solitaire games, the optimised recursive algorithm has an above upper
bound comparable to that of standard dedicated algorithms for nested solitaire games when the number of
different priorities is ofO(V), and it is a factorV/ log(d) slower compared to the most efficient algorithm
for solving nested solitaire games.

6 A Tighter Exponential Bound for Zielonka’s Optimised Algorithm

In view of the findings of the previous section, it seems beneficial to always integrate Zielonka’s recursive
algorithm with SCC decomposition. Observe that the family of games we used to establish the lower
bound ofΩ(2|V |/3) in Section 4 does not permit us to prove the same lower bound for the optimised
algorithm. As a result, the current best known lower bound for the algorithm is stillΩ(1.6|V |/5). In this
section, we show that the complexity of the optimised algorithm is actually alsoΩ(2|V |/3). The family
of games we construct is, like Friedmann’s family, resilient to all optimisations we are aware of.

Let M n = (Vn,En,Pn,(Vn3,Vn
�)), for n≥ 1 be a family of parity games with set of verticesVn =

{vi ,ui ,wi | 1≤ i ≤ n}. The setsVn3 andVn
�, the priority functionPn and the set of edges are described

by Table 3. We depict the gameM 4 in Figure 3.

Table 3: The familyM of games; 1≤ i ≤ n.
Vertex Player Priority Successors

vi � iff i mod 2= 0 i +1 {ui}∪{vi+1 | i < n}
ui � iff i mod 2= 0 i mod 2 {wi}∪{vi+1 | i < n}
wi 3 iff i mod 2= 0 i mod 2 {ui}∪{wi−1 | 1< i}

5
v4

4

v3
3
v2

2

v1

0 u4 1 u3 0 u2 1 u1

0
w4

1
w3

0
w2

1
w1

Figure 3: The gameM 4.

Proposition 6 The gameM n is won entirely by player3 for evenn and entirely by player� for oddn.



Maciej Gazda and Tim A.C. Willemse 19

Theorem 6 SolvingM n using eitherZIELONKA or ZIELONKA SCC requiresΩ(2|V |/3) time.

Proof: The proof is similar to Prop. 5; we can show that the gameM n requires 2n calls to either
ZIELONKA or ZIELONKA SCC. The only significant difference in case of ZIELONKA SCC is that the
game may be potentially simplified in line 4 of Alg.2. However, each gameM n constitutes a strongly
connected subgame, and therefore will not be decomposed. 2

We compared the performance of the PGSolver tool, a publiclyavailable tool that contains an imple-
mentation of the optimised recursive algorithm, on the family M to that of Friedmann’s family of games
(denoted withF ), see Figure 4. The figure plots the number of vertices (horizontal axis) and the time
required to solve the games (vertical log scale axis), clearly illustrating thatM games are harder.
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Figure 4: Runtime of the optimised recursive algorithm (vertical log scale axis) in seconds versus number
of vertices of the games (horizontal axis).

7 Conclusions

We explored the complexity of solving special parity games using Zielonka’s recursive algorithm, prov-
ing that weak games are solved in polynomial time and dull andnested solitaire games require exponen-
tial time. The family of gamesG we used to prove the exponential lower bounds in addition tighten the
lower bound toΩ(2|V |/3) for the original algorithm by Zielonka.

We show that a standard optimisation of the algorithm permits solving all three classes of games
in polynomial time. The technique used in the optimisation (a tight integration of a strongly connected
component decomposition and Zielonka’s algorithm) has been previously implemented in [8] and was
observed to work well in practice. Our results provide theoretical explanations for these observations.

We furthermore studied the lower bounds of Zielonka’s algorithm with optimisation. In the last sec-
tion, we improve on Friedmann’s lower bound and arrive at a lower bound ofΩ(2|V |/3) for the optimised
algorithm. For this, we used a family of gamesM for which we drew inspiration from the familyG and
the games defined in [7]. We believe that an additional advantage of the families of gamesG andM we
defined in this paper over Friedmann’s games lies in their (structural) simplicity.
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Our complexity analysis for the special games offers additional insight into the complexity of Zielonka’s
algorithm and its optimisation and may inspire future optimisations of the algorithm. In a similar vein,
the same type of analysis can be performed on other parity game solving algorithms from the literature,
e.g.strategy improvement algorithms.
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In 2006, Varacca and Völzer proved that on finite graphs,ω-regular large sets coincide withω-
regular sets of probability 1, by using the existence of positional strategies in the related Banach-
Mazur games. Motivated by this result, we try to understand relations between sets of probability 1
and various notions of simple strategies (including those introduced in a recent paper of Grädel and
Leßenich). Then, we introduce a generalisation of the classical Banach-Mazur game and in particular,
a probabilistic version whose goal is to characterise sets of probability 1 (as classical Banach-Mazur
games characterise large sets). We obtain a determinacy result for these games, when the winning set
is a countable intersection of open sets.

1 Introduction

Systems (automatically) controlled by computer programs abound in our everyday life. Clearly enough,
it is of a capital importance to know whether the programs governing these systems arecorrect. Over the
last thirty years, formal methods for verifying computerised systems have been developed for validating
the adequation of the systems against their requirements. Model checking is one such approach: it
consists first in modelling the system under study (for instance by an automaton), and then in applying
algorithms for comparing the behaviours of that model against a specification (modelled for instance
by a logical formula). Model checking has now reached maturity, through the development of efficient
symbolic techniques, state-of-the-art tool support, and numerous successful applications to various areas.

As argued in [9]:‘Sometimes, a model of a concurrent or reactive system does not satisfy a desired
linear-time temporal specification but the runs violating the specification seem to be artificial and rare’.
As a naive example of this phenomenon, consider a coin flippedan infinite number of times. Classical
verification will assure that the property stating“one day, we will observe at least one head”is false,
since there exists a unique execution of the system violating the property. In some situations, for instance
when modeling non-critical systems, one could prefer to know whether the system isfairly correct.
Roughly speaking, a system is fairly correct against a property if the set of executions of the system
violating the property is“very small” ; or equivalently if the set of executions of the system satisfying the
property is“very big” . A first natural notion of fairly correct system is related toprobability: almost-sure
correctness. A system is almost-surely correct against a property if theset of executions of the system
satisfying the property has probability 1. Another interesting notion of fairly correct system is related to
topology: large correctness. A system is largely correct against a property if the set of executions of the

∗This work has been partly supported by a grant from the National Bank of Belgium, the ARC project (number AUWB-
2010-10/15-UMONS-3), and the FRFC project (number 2.4545.11).

†The second author is supported by a grant of FRIA.
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system satisfying the property islarge (in the topological sense). There exists a lovely characterisation
of large setsby means of theBanach-Mazur games. In [8], it has been shown that a setW is large if and
only if a player has a winning strategy in the related Banach-Mazur game.

Although, the two notions offairly correct systemsdo not coincide in general, in [9], the authors
proved (amongst other results) the following result: when consideringω-regular properties on finite
systems, thealmost-sure correctnessand thelarge correctnesscoincide, for bounded Borel measures.
Motivated by this very nice result, we intend to extend it to alarger class of specifications. The key
ingredient to prove the previously mentioned result of [9] is that when consideringω-regular properties,
positionalstrategies are sufficient in order to win the related Banach-Mazur game [1]. For this reason,
we investigatesimple strategiesin Banach-Mazur games, inspired by the recent work [4] whereinfinite
graphs are studied.

Our contributions. In this paper, we first compare various notions of simple strategies on finite
graphs (includingboundedandmove-countingstrategies), and their relations with the sets of probabil-
ity 1. Given a setW, the existence of a bounded (resp. move-counting) winning strategy in the related
Banach-Mazur game implies thatW is a set of probability 1. However there exist setsW of probabil-
ity 1 for which there is no bounded and no move-counting winning strategy in the related Banach-Mazur
game. Therefore, we introduce a generalisation of the classical Banach-Mazur game and in particular, a
probabilistic version whose goal is to characterise sets ofprobability 1 (as classical Banach-Mazur games
characterise large sets). We obtain the desired characterisation in the case of countable intersections of
open sets. This is the main contribution of the paper. As a byproduct of the latter, we get a determinacy
result for our probabilistic version of the Banach-Mazur game for countable intersections of open sets.

2 Banach-Mazur Games on finite graphs

Let (X,T ) be a topological space. A notion of topological “bigness” isgiven by large sets. A subset
W ⊂ X is said to benowhere denseif the closure ofW has empty interior. A subsetW ⊂ X is said to be
meagreif it can be expressed as the union of countably many nowhere dense sets and a subsetW ⊂ X is
said to be large ifWc is meagre. In particular, we remark that a countable intersection of large sets is still
large and that ifW ⊂ X is large, then any setY ⊃W is large.

If G = (V,E) is a finite directed graph andv0 ∈ V, then the space of infinite paths inG from v0,
denoted Paths(G,v0), can be endowed with the complete metric

d((σn)n≥0,(ρn)n≥0) = 2−k where k= min{n≥ 0 : σn 6= ρn} (2.1)

with the conventions that min /0= ∞ and 2−∞ = 0. In other words, the open sets in Paths(G,v0) en-
dowed with this metric are the countable unions of cylinders, where a cylinder is a set of the form
{ρ ∈ Paths(G,v0) | π is a prefix ofρ} for some finite pathπ in G from v0.

We can therefore study the large subsets of the metric space(Paths(G,v0),d). Banach-Mazur games
allow us to characterise large subsets of this metric space through the existence of winning strategies.

Definition 2.1. A Banach-Mazur gameG on a finite graph is a triplet(G,v0,W) whereG= (V,E) is a
finite directed graph where every vertex has a successor,v0 ∈V is the initial state,W is a subset of the
infinite paths inG starting inv0.

A Banach-Mazur gameG = (G,v0,W) on a finite graph is a two-player game where Pl. 0 and Pl. 1
alternate in choosing a finite path as follows: Pl. 1 begins with choosing a finite1 pathπ1 starting inv0;

1In this paper, we always assume that a finite path is non-empty.
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Pl. 0 then prolongsπ1 by choosing another finite pathπ2 and so on. A play ofG is thus an infinite path
in G and we say that Pl. 0 wins if this path belongs toW, while Pl. 1 wins if this path does not belong to
W. The setW is called the winning condition. It is important to remark that, in general, in the literature,
Pl. 0 moves first in Banach-Mazur games but in this paper, we always assume that Pl. 1 moves first in
order to bring out the notion of large set (rather than meagreset). The main result about Banach-Mazur
games can then be stated as follows:

Theorem 2.2([8]). LetG = (G,v0,W) be a Banach-Mazur game on a finite graph. Pl. 0 has a winning
strategy forG if and only if W is large.

3 Simple strategies in Banach-Mazur games

In a Banach-Mazur game(G,v0,W) on a finite graph, a strategy for Pl. 0 is given by a functionf defined
on FinPaths(G,v0), the set of finite paths ofG starting fromv0, such that for anyπ ∈ FinPaths(G,v0), we
have f (π) ∈ FinPaths(G, last(π)). However, we can imagine some restrictions on the strategies of Pl. 0:

1. A strategy f is said to bepositional if it only depends on the current vertex, i.ef is a function
defined onV such that for anyv∈V, f (v) ∈ FinPaths(G,v) and a playρ is consistent withf if ρ
is of the form(πi f (last(πi))i≥1.

2. A strategyf is said to befinite-memoryif it only depends on the current vertex and a finite memory
(see [3] for the precise definition of a finite-memory strategy).

3. A strategyf is said to beb-boundedif for any π ∈ FinPaths(G,v0), f (π) has length less thanb
and a strategy is said to beboundedif there isb≥ 1 such thatf is b-bounded.

4. A strategyf is said to bemove-countingif it only depends on the current vertex and the number
of moves already played, i.e.f is a function defined onV ×N such that for anyv∈V, anyn∈ N,
f (v,n) ∈ FinPaths(G,v) and a playρ is consistent withf if ρ is of the form(πi f (last(πi), i))i≥1.

5. A strategyf is said to belength-countingif it only depends on the current vertex and the length of
the prefix already played, i.e.f is a function defined onV ×N such that for anyv∈V, anyn∈N,
f (v,n) ∈ FinPaths(G,v) and a playρ is consistent withf if after a prefixπ, the move of Pl. 0 is
given by f (last(π), |π|).

The notions of positional and finite memory strategies are classical, bounded strategies are present
in [9], move-counting and length-counting strategies havebeen introduced in [4]. We first remark that,
by definition, the existence of a positional winning strategy implies the existence of finite-memory/move-
counting/length-counting winning strategies. Moreover,sinceG is a finite graph, a positional strategy is
always bounded. In [3], it is proved that the existence of a finite-memory winning strategy implies the
existence of a positional winning strategy.

Proposition 3.1([3]). LetG = (G,v0,W) be a Banach-Mazur game. Pl. 0 has a finite-memory winning
strategy if and only if Pl. 0 has a positional winning strategy.

Using the ideas of the proof of the above proposition, we can also show that the existence of a
winning strategy implies the existence of a length-counting winning strategy.

Proposition 3.2. Let G = (G,v0,W) be a Banach-Mazur game on a finite graph. Pl. 0 has a length-
counting winning strategy if and only if Pl. 0 has a winning strategy.
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Proof. Let f be a winning strategy for Pl. 0. SinceG is a finite graph, for anyn≥ 0 and anyv∈V, we can
consider an enumerationπ1, . . . ,πm of finite paths in FinPaths(G,v0) of lengthn such that last(πi) = v.
We then let

h(v,n) = f
(
π1
)

f
(
π2 f (π1)

)
f
(
π3 f (π1) f (π2 f (π1))

)
. . . f

(
πm f (π1) f (π2 f (π1)) · · ·

)
.

If ρ is a play consistent withh, thenρ is a play where the strategyf is applied infinitely often. Thus such
a playρ can be seen as a playσ1τ1σ2τ2 · · · where theτi ’s (resp. theσi ’s) are the moves of Pl. 0 (resp.
Pl. 1.) and wheref (σ1τ1 · · ·σi) = τi . Each play consistent withh can thus be seen as a play consistent
with f , and we deduce that the strategyh is a length-counting winning strategy.

On the other side, the notions of move-counting winning strategies and bounded winning strategies
are incomparable.

Example 3.3(Set with a move-counting winning strategy and without a bounded winning strategy).
We consider the complete graphG0,1 on{0,1}. LetW be the set of any sequences(σn)n≥1 in {0,1}ω with
σ1 = 0 such that(σn)n≥1 contains a finite sequence of 1 strictly longer than the initial finite sequence
of 0. In other words,(σn)n≥1 ∈ W if σ1 = 0 and if there existj ≥ 1 andk ≥ 1 such thatσ j = 1 and
σk+1 = · · · = σk+ j = 1. Let G = (G0,1,0,W). The strategyf (·,n) = 1n is a move-counting winning
strategy for Pl. 0 for the gameG . On the other hand, there does not exist a bounded winning strategy for
Pl. 0 for the gameG . Indeed, if f is ab-bounded strategy of Pl. 0, then Pl. 1 can start by playing 0b and
then, always play 0.

Example 3.4(Set with a bounded winning strategy and without a move-counting winning strategy).
We consider the complete graphG0,1 on {0,1}. Let (πn)n≥0 be an enumeration of FinPaths(G) with
π0 = 0. We letW be the set of any sequences in{0,1}ω starting by 0 except the sequenceρ = π0π1π2 . . . .
Let G = (G0,1,0,W). It is obvious that Pl. 0 has a 1-bounded winning strategy forG but we can also
prove that Pl. 0 has no move-counting winning strategy. Indeed, if h is a move-counting strategy of Pl. 0,
then Pl. 1 can start by playing a prefixπ of ρ so thatπh(last(π),1) is a prefix ofρ . Afterwards, Pl. 1 can
play π ′ such thatπh(last(π),1)π ′h(last(π ′),2) is a prefix ofρ and so on.

We remark that the setsW considered in these examples areopensets, i.e. sets on a low level of the
Borel hierarchy. Moreover, by Proposition 3.2, there also exist length-counting winning strategies for
these two examples. The relations between the simple strategies are thus completely characterised and
are summarised in Figure 1. This Figure also contains other simple strategies which will be discussed
later.

4 Link with the sets of probability 1

Let G = (V,E) be a finite directed graph. We can easily define a probability measureP, on the set
of infinite paths inG, by giving a weightwe > 0 at each edgee ∈ E and by considering that for
any v,v′ ∈ V, pw(v,v′) = 0 if (v,v′) 6∈ E and pw(v,v′) =

w(v,v′)
∑e′ enabled from vwe′

else, wherepw(v,v′) denotes

the probability of taking edge(v,v′) from statev. Given v1 · · ·vn ∈ FinPaths(G,v1), we recall that
we denote by Cyl(v1 · · ·vn) the cylinder generated byv1 · · ·vn and defined as Cyl(v1 · · ·vn) = {ρ ∈
Paths(G,v1) | v1 · · ·vn is a prefix ofρ}.

Definition 4.1. Let G= (V,E) be a finite directed graph andw= (we)e∈E a family of positive weights.
We define the probability measurePw by the relation

Pw(Cyl(v1 · · ·vn)) = pw(v1,v2) · · · · · pw(vn−1,vn) (4.1)
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and we say that such a probability measure isreasonable.

We are interested in characterising the setsW of probability 1 and their links with the different notions
of simple winning strategies. We remark that, in general, Banach-Mazur games do not characterise sets
of probability 1. In other words, the notions of large sets and sets of probability 1 do not coincide in
general on finite graphs. Indeed, there exist some large setsof probability 0. We present here an example
of such sets:

Example 4.2(Large set of probability 0). We consider the complete graphG0,1,2 on {0,1,2} and the
setW = {(wiwR

i )i≥0 ∈ Paths(G0,1,2,2) : wi ∈ {0,1,2}∗}, where for any finite wordσ ∈ {0,1,2}∗ given
by σ = σ(1) · · ·σ(n) with σ(i) ∈ {0,1,2}, we letσR = σ(n) · · ·σ(1). In other words,W is the set of
runsρ starting from 2 that we can divide into a consecutive sequence of finite words and their reverse. It
is obvious that Pl. 0 has a winning strategy for the Banach-Mazur game(G0,1,2,2,W) and thus thatW is
large. On the other hand, ifP is the reasonable probability measure given by the weightswe = 1 for any
e∈ E, then we can verify thatP(W) = 0. Indeed, we have

P(W)≤
∞

∑
n=1

P({w0wR
0(wiw

R
i )i≥1 ∈W : |w0|= n})

=
∞

∑
n=1

P({w0wR
0w∈ Paths(G0,1,2,2) : |w0|= n}) ·P(W)

≤
∞

∑
n=1

P(W)

3n =
1
2

P(W).

For certain families of sets, we can however have an equivalence between the notion of large set and
the notion of set of probability 1. It is the case for the family of setsW representingω-regular properties
on finite graphs (see [9]). In order to prove this equivalencefor ω-regular sets, Varacca and Völzer have
in fact used the fact that for these sets, the Banach-Mazur game is positionally determined ([1]) and that
the existence of a positional winning strategy for Pl. 0 implies P(W) = 1. This latter assertion follows
from the fact that every positional strategy is bounded and that, by the Borel-Cantelli lemma, the set of
plays consistent with a bounded strategy is a set of probability 1. Nevertheless, ifW does not represent
anω-regular properties, it is possible thatW is a large set of probability 1 and that there is no positional
winning strategy for Pl. 0 and even no bounded or move-counting winning strategy.

Example 4.3 (Large set of probability 1 without a positional/ bounded/ move-counting winning
strategy). We consider the complete graphG0,1 on {0,1} and the reasonable probability measureP
given bywe = 1 for anye∈ E. Let an = ∑n

k=1 k. We letW = {(σk)k≥1 ∈ {0,1}ω : σ1 = 0 andσan =
1 for somen> 1} andG = (G0,1,0,W). Since Pl. 0 has a winning strategy forG , we deduce thatW is a
large set. We can also compute thatP(W) = 1 because if we denote byAn, n> 1, the set

An := {(σk)k≥1 ∈ {0,1}ω : σan = 1 andσam = 0 for anym< n},

we have:

W =
⋃̇

n>1
An and P(An) =

1
2n−1 .

On the other hand, there does not exist any positional (resp.bounded) winning strategyf for Pl. 0.
Indeed, if f is a positional (resp. bounded) strategy for Pl. 0 such thatf (0) (resp. f (π) for any π) has
length less thann, then Pl. 1 has just to start by playingan zeros so that Pl. 1 does not reach the index
an+1 and afterwards to complete the sequence by a finite number of zeros to reach the next indexak, and
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so on. Moreover, there does not exist any move-counting winning strategyh for Pl. 0 because Pl. 1 can
start by playingan zeros so that|h(0,1)| ≤ n and because, at each stepk, Pl. 1 can complete the sequence
by a finite number of zeros to reach a new indexan such that|h(0,k)| ≤ n.

On the other hand, we can show that the existence of a move-counting winning strategy for Pl. 0
impliesP(W) = 1. The key idea is to realise that given a move-counting winning strategyh, the strategy
h(·,n) is positional.

Proposition 4.4. Let G = (G,v0,W) be a Banach-Mazur game on a finite graph and P a reasonable
probability measure. If Pl. 0 has a move-counting winning strategy forG , then P(W) = 1.

Proof. Let h be a move-counting winning strategy ofPl. 0. We denote byfn the strategyh(·,n). Each
set

Mn := {ρ ∈ Paths(G,v0) : ρ is a play consistent withfn}

has probability 1 sincefn is a positional winning strategy for the Banach-Mazur game(G,v0,Mn). More-
over, if ρ is a play consistent withfn for eachn≥ 1, thenρ is a play consistent withh. In other words,
sinceh is a winning strategy, we get

⋂
n Mn ⊂ W. Therefore, asP(Mn) = 1 for all n, we know that

P(
⋂

n Mn) = 1 and we conclude thatP(W) = 1.

Let us notice that the converse of Proposition 4.4 is false ingeneral. Indeed, Example 4.3 exhibit a
large setW of probability 1 such that Pl. 0 has no move-counting winningstrategy. However, ifW is
a countable intersection ofω-regular sets, then the existence of a winning strategy for Pl. 0 implies the
existence of a move-counting winning strategy for Pl. 0.

Proposition 4.5. LetG = (G,v0,W) be a Banach-Mazur game on a finite graph where W is a countable
intersection ofω-regular sets Wn. Pl. 0 has a winning strategy if and only if Pl. 0 has a move-counting
winning strategy.

Proof. Let W =
⋂

n≥1Wn whereWn is anω-regular set andf a winning strategy of Pl. 0 forG . For any
n ≥ 1, the strategyf is a winning strategy for the Banach-Mazur game(G,v0,Wn). Thanks to [1], we
therefore know that for anyn≥ 1, there exists a positional winning strategyf̃n of Pl. 0 for (G,v0,Wn).

Let φ : N→ N such that for anyk≥ 1, {n∈ N : φ(n) = k} is an infinite2 set. We consider the move-
counting strategyh(v,n) = f̃φ(n)(v). This strategy is winning because each playρ consistent withh is a
play consistent with̃fn for anyn and thus

{ρ ∈ Paths(G,v0) : ρ is a play consistent withh}
⊆

⋂

n

{ρ ∈ Paths(G,v0) : ρ is a play consistent with̃fn}

⊆
⋂

n

Wn =W.

Remark4.6. We cannot extend this result to countable unions ofω-regular sets because the set of count-
able unions ofω-regular sets contains the open sets and Example 3.4 exhibited a Banach-Mazur game
whereW is an open set and Pl. 0 has a winning strategy but no move-counting winning strategy.

2Such a mapφ exists because one could build a surjectionψ :N→N×N and then letφ =ψ1 whereψ(n) = (ψ1(n),ψ2(n)).
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Remark4.7. We also notice that ifW is a countable intersection ofω-regular sets, thenW is large if and
only if W is a set of probability 1. Indeed, the notions of large sets and sets of probability 1 are stable by
countable intersection and we know that aω-regular set is large if and only if it is of probability 1 [9].

As a consequence of Remark 4.7, we have that ifW is aωS-regular sets, as defined in [2], the setW
is large if and only ifW is a set of probability 1. Indeed, it is shown in [6, 7] thatωS-regular sets are
countable intersection ofω-regular sets. Nevertheless, the following example shows that, unlike the case
of ω-regular sets, positional strategies are not sufficient forωS-regular sets.
Example 4.8 (ωS-regular set with a move-counting winning strategy and without a positional/
bounded winning strategy). We consider the complete graphG0,1 on{0,1} and the setW correspond-
ing to theωS-regular expression((0∗1)∗0S1)ω , which corresponds to the language of words where the
number of consecutive 0 is unbounded. The move-counting strategy which consists in playingn consec-
utive 0’s at thenth step is winning for Pl. 0. However, clearly enough Pl. 0 does not have a positional
(nor bounded) winning strategy forW.

Example 4.2 shows that Remark 4.7 does not extend toω-context-free sets. Another notion of
simple strategies, natural inspired by Example 4.2, is the notion of last-move strategy. A strategyf
for Pl. 0 is said to belast-moveif it only depends on the last move of Pl. 1, i.e. for anyv ∈ V, for
any π ∈ FinPaths(G,v), f (π) ∈ FinPaths(G, last(π)) and a playρ is consistent withf if it is of the
form (πi f (πi))i≥1. It is obvious that there exists a last-move winning strategy for Pl. 0 in the game
described in Example 4.2. In particular, we deduce that the existence of a last-move winning strategy
for W does not imply thatW has probability 1. Example 4.2 allows also us to see that the existence of a
last-move winning strategy does not imply in general the existence of a move-counting winning strategy
or a bounded winning strategy. Indeed, letW be the set{(wiwR

i )i ∈ Paths(G0,1,2,2) : wi ∈ {0,1,2}∗}.
SinceP(W) = 0 (and thusP(W) 6= 1), we know that Pl. 0 has no move-counting winning strategy by
Proposition 4.4 and no bounded winning strategy.

The notion of last-move winning strategy is in fact incomparable with the notion of move-counting
winning strategy and the notion of bounded winning strategy. Indeed, on the complete graphG0,1 on
{0,1}, if we denote byW the set of runs inG0,1 such that for anyn≥ 1, the word 1n appears, then Pl. 0
has a move-counting winning strategy for the game(G0,1,0,W) but no last-move winning strategy. In
the same way, if we denote byW the set of aperiodic runs onG0,1 then Pl. 0 has a 1-bounded winning
strategy for the game(G0,1,0,W) but no last-move winning strategy (it suffices for Pl. 1 to play at each
time the same word).

5 Generalised Banach-Mazur games

Let G = (G,v0,W) be a Banach-Mazur game on a finite graph. We know that the existence of a bounded
winning strategy or a move-counting winning strategy of Pl.0 for G implies thatP(W) = 1 for every
reasonable probability measureP. Nevertheless, it is possible thatP(W) = 1 and Pl. 0 has no bounded
winning strategy and no move-counting winning strategy (Example 4.3). We therefore search a new
notion of strategy such that the existence of such a winning strategy impliesP(W) = 1 and the existence
of a bounded winning strategy or a move-counting winning strategy imply the existence of such a winning
strategy. To this end, we introduce a new type of Banach-Mazur games:
Definition 5.1. A generalised Banach-Mazur gameG on a finite graph is a tuple(G,v0,φ0,φ1,W) where
G = (V,E) is a finite directed graph where every vertex has a successor,v0 ∈ V is the initial state,
W ⊂ Paths(G,v0), andφi is a map on FinPaths(G,v0) such that for anyπ ∈ FinPaths(G,v0),

φi(π)⊂ P
(
FinPaths(G, last(π))

)
\{ /0} and φi(π) 6= /0.
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A generalised3 Banach-Mazur gameG = (G,v0,φ0,φ1,W) on a finite graph is a two-player game
where Pl. 0 and Pl. 1 alternate in choosingsets of finite pathsas follows: Pl. 1 begins with choosing
a set of finite pathsΠ1 ∈ φ1(v0); Pl. 0 selects a finite pathπ1 ∈ Π1 and chooses a set of finite paths
Π2 ∈ φ0(π1); Pl 1. then selectsπ2 ∈ Π2 and proposes a setΠ3 ∈ φ1(π1π2) and so on. A play ofG is thus
an infinite pathπ1π2π3 . . . in G and we say that Pl. 0 wins if this path belongs toW, while Pl. 1 wins if
this path does not belong toW.

We remark that if we letφball(π) := {{π ′} : π ′ ∈ FinPaths(G, last(π))} for anyπ ∈ FinPaths(G,v0),
then the generalised Banach-Mazur game given by(G,v0,φball,φball,W) coincides with the classical
Banach-Mazur game(G,v0,W). We also obtain a game similar to the classical Banach-Mazurgame
if we consider the functionφ(π) = P(FinPaths(G, last(π))). On the other hand, if we considerφ(π) :=
{{π ′} : π ′ ∈ FinPaths(G, last(π)), |π ′| = 1}, we obtain the classical games on graphs such as the ones
studied in [5].

We are interested in defining a mapφ0 such that Pl. 0 has a winning strategy for(G,v0,φ0,φball,W)
if and only if P(W) = 1. To this end, we notice that we can restrict actions of Pl. 0 by forcing each set
in φ0(π) to be “big” in some sense. The idea to characteriseP(W) = 1 is therefore to force Pl. 0 to play
with finite sets of finite paths of conditional probability bigger thanα for someα > 0.

Definition 5.2. LetG = (G,v0,W) be a Banach-Mazur game on a finite graph,P a reasonable probability
measure andα > 0. An α-strategyof Pl. 0 forG is a strategy of Pl. 0 for the generalised Banach-Mazur
gameGα = (G,v0,φα ,φball,W) where

φα(π) =
{

Π ⊂ FinPaths(G, last(π)) : P
( ⋃

π ′∈Π
Cyl(ππ ′)

∣∣∣Cyl(π)
)
≥ α andΠ is finite

}
.

We recall that, given two eventsA,B with P(B) > 0, the conditional probabilityP(A|B) is defined by
P(A|B) := P(A∩B)/P(B).

We notice that every bounded strategy can be seen as anα-strategy for someα > 0, since for any
N ≥ 1, there existsα > 0 such that for anyπ of length less thanN, we haveP({π}) ≥ α . We can also
show that the existence of a move-counting winning strategyfor Pl. 0 implies the existence of a winning
α-strategy for Pl. 0 for every 0< α < 1.

Proposition 5.3. Let G = (G,v0,W) be a Banach-Mazur game on a finite graph. If Pl. 0 has a move-
counting winning strategy, then Pl. 0 has a winningα-strategy for every0< α < 1.

Proof. Let P be a reasonable probability measure,h a move-counting winning strategy for Pl. 0 and
0< α < 1. We denote bygn the positional strategy defined by

gn(v) = h(v,1) h
(
last(h(v,1)),2

)
· · · h

(
last(h(v,1) h(last(h(v,1)),2) · · · ),n

)
.

Let us notice that the definition of thegn’s implies that for any increasing sequence(nk), a play of the
form

π1 gn1(last(π1)) π2 gn2(last(π2)) · · · πk gnk(last(πk)) · · · (5.1)

is consistent withh. Sincegn is a positional strategy, we know that each set

Mn := {ρ ∈ Paths(G,v0) : ρ is a play consistent withgn}
3We only present here a generalisation of Banach-Mazur gameson finite graphs but this generalisation could be extended

to Banach-Mazur games on topological spaces by asking that for any non-empty open setO, φi(O) is a collection of non-empty
open subsets ofO.
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has probability 1. In particular, for anyπ0 ∈ FinPaths(G,v0), we deduce thatP(Mn|Cyl(π0)) = 1. Since

Mn∩Cyl(π0)⊆
⋃

π∈FinPaths(G,last(π0))

Cyl
(
π0πgn(last(π))

)
,

we have
P
( ⋃

π∈FinPaths(G,last(π0))

Cyl
(
π0πgn(last(π))

)∣∣∣Cyl(π0)
)
= 1

and since FinPaths(G, last(π0)) is countable, we deduce that for anyn ≥ 1, anyπ0 ∈ FinPaths(G,v0),
there exists a finite subsetΠn(π0)⊂ FinPaths(G, last(π0)) such that

P
( ⋃

π∈Πn(π0)

Cyl
(
π0πgn(last(π))

)∣∣∣Cyl(π0)
)
≥ α .

We denote byΠ′
n(π0) the set{πgn(last(π)) : π ∈ Πn(π0)} and we let

f (π0) := Π′
|π0|(π0).

The above-defined strategyf is therefore a winningα-strategy for Pl. 0 since each play consistent with
f is of the form (5.1) for some sequence(nk) and thus consistent withh.

Moreover, the existence of a winningα-strategy for someα > 0 still impliesP(W) = 1.

Theorem 5.4. LetG = (G,v0,W) be a Banach-Mazur game on a finite graph and P a reasonable prob-
ability measure. If Pl. 0 has a winningα-strategy for someα > 0, then P(W) = 1.

Proof. Let f be a winningα-strategy. We consider an increasing sequence(an)n≥1 such that for any
n≥ 1, anyπ of lengthan, eachπ ′ ∈ f (π) has length less thanan+1−an; this is possible because for any
π, f (π) is a finite set by definition ofα-strategy. Without loss of generality4, we can even assume that
for anyn≥ 1, anyπ of lengthan, eachπ ′ ∈ f (π) has exactly lengthan+1−an. We therefore let

A := {(σk)k≥1 ∈ Paths(G,v0) : #{n : (σk)an+1≤k≤an+1 ∈ f ((σk)1≤k≤an)}= ∞}.

In other words,(σk)k≥1 ∈ A if (σk) can be seen as a play wheref has been played on an infinite number
of indicesan. Sincef is a winning strategy,A is included inW and it thus suffices to prove thatP(A) = 1.

We first notice that for anym≥ 1, anyn≥ m, if we let

Bm,n = {(σk)k≥1 ∈ Paths(G,v0) : (σk)aj+1≤k≤aj+1 /∈ f ((σk)1≤k≤aj ), ∀m≤ j ≤ n},

thenP(Bm,n)≤ (1−α)n+1−m as f is anα-strategy. We therefore deduce that for anym≥ 1,

P
( ∞⋂

n=m

Bm,n

)
= 0

and sinceAc =
⋃

m≥1
⋂∞

n=mBm,n, we conclude thatP(A) = 1.

4Let π be a finite path andnπ ≥ max{|τ| such thatτ ∈ f (π)}. One can definẽf (π) as the set of finite pathsσ of lengthnπ
such thatτ is a prefix ofσ , for someτ ∈ f (π). Given a playρ, one can show thatρ is consistent withf if and only if ρ is
consistent withf̃ .
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If W is a countable intersection of open sets, we can prove the converse of Theorem 5.4 and so obtain
a characterisation of sets of probability 1.

Theorem 5.5. Let G = (G,v0,W) be a Banach-Mazur game on a finite graph where W is a countable
intersection of open sets and P a reasonable probability measure. Then the following assertions are
equivalent:

1. P(W) = 1,

2. Pl. 0 has a winningα-strategy for someα > 0,

3. Pl. 0 has a winningα-strategy for all0< α < 1.

Proof. We have already proved 2.⇒ 1., and 3.⇒ 2. is obvious.
1. ⇒ 3. Let 0< α < 1. Let W =

⋂∞
n=1Wn whereWn’s are open sets. SinceP(W) = 1, we deduce

that for anyn ≥ 1, P(Wn) = 1. We can therefore define a winningα-strategy f of Pl. 0 as follows:
if Cyl (π) ⊂ ⋂n−1

k=1Wk and Cyl(π) 6⊂ Wn, we let f (π) be a finite setΠ ⊂ FinPaths(G, last(π)) such that

P
(⋃

π ′∈Π Cyl(ππ ′)|Cyl(π)
)
≥ α and for anyπ ′ ∈ Π, Cyl(ππ ′)⊂Wn. Such a finite setΠ exists because

Wn has probability 1 andWn is an open set, i.e. a countable union of cylinders. This concludes the
proof.

Remark5.6. We cannot hope to generalise the latter result to any setW. More precisely, there exist sets
of probability 1 for which no winningα-strategy exists. Indeed, given a setW, on the one hand, the
existence of a winningα-strategy forW implies the existence of a winning strategy forW, and thus in
particular such aW is large. On the other hand, we know that there exists some meagre (in particular not
large) set of probability 1 (see Example 4.2). However, one can ask whether the existence of a winning
α-strategy is equivalent to the fact thatW is a large set of probability 1.

WhenW is a countable intersection of open sets, we remark that the generalised Banach-Mazur game
Gα = (G,v0,φα ,φball,W) is in fact determined.

Theorem 5.7. LetGα be the generalised Banach-Mazur game given byGα = (G,v0,φα ,φball,W) where
G is a finite graph, W is a countable intersection of open sets and P a reasonable probability measure.
Then the following assertions are equivalent:

1. P(W)< 1,

2. Pl. 1 has a winning strategy forGα for someα > 0,

3. Pl. 1 has a winning strategy forGα for all 0< α < 1.

Proof. We deduce from Theorem 5.5 that 2.⇒ 1. becauseGα is a zero-sum game, and 3.⇒ 2. is obvious.
1. ⇒ 3. Let W = ∩∞

n=1Wn with P(W) < 1 andWn open. We know that there existsn ≥ 1 such that
P(Wn) < 1. It then suffices to prove that Pl. 1 has a winning strategy for the generalised Banach-Mazur
game(G,v0,φα ,φball,Wn) for all 0< α < 1. Without loss of generality, we can thus assume thatW is an
open set. We recall thatW is open if and only if it is a countable union of cylinders. Since any strategy
of Pl. 1 is winning ifW = /0, we also suppose thatW 6= /0.

Let 0< α < 1. We first show that there exists a finite pathπ1 ∈ FinPaths(G,v0) such that any set
Π2 ∈ φα(π1) contains a finite pathπ2 satisfying

P(W|Cyl(π1π2))≤ P(W)< 1. (5.2)

Let
IW := inf{P(W|Cyl(π)) : π ∈ FinPaths(G,v0)}. (5.3)
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SinceW is a non-empty union of cylinders, there existsσ ∈ FinPaths(G,v0) such thatP(W|Cyl(σ)) = 1.
We remark thatP(W) = ∑π:|π|=|σ | P(W|Cyl(π))P(Cyl(π)) and ∑π:|π|=|σ | P(Cyl(π)) = 1. Therefore,
sinceP(W|Cyl(σ)) > P(W), we deduce that there existsπ ∈ FinPaths(G,v0) with |π| = |σ | such that
P(W|Cyl(π))< P(W). We conclude thatIW < P(W) and thus, by definition ofIW, there existsπ1 ∈
FinPaths(G,v0) such that

IW +
1
α
(P(W|Cyl(π1))− IW)< P(W). (5.4)

Let Π2 ∈ φα(π1). We considerτ1, . . . ,τn ∈ Π2 andσ1, . . . ,σm∈ FinPaths(G, last(π1)) such that cylinders
Cyl(τi), Cyl(σ j) are pairwise disjoint,

⋃
π∈Π2

Cyl(π)⊂⋃n
i=1 Cyl(τi) and

Paths(G, last(π1)) =
n⋃

i=1

Cyl(τi)∪
m⋃

j=1

Cyl(σ j). (5.5)

Assume that for all 1≤ i ≤ n, we have

P(W|Cyl(π1τi))> P(W). (5.6)

Then, we get

P(W|Cyl(π1))

=
n

∑
i=1

P(W∩Cyl(π1τi)|Cyl(π1))+
m

∑
j=1

P(W∩Cyl(π1σ j)|Cyl(π1)) by disjointness and (5.5)

=
n

∑
i=1

P(W|Cyl(π1τi))P(Cyl(π1τi)|Cyl(π1))+
m

∑
j=1

P(W|Cyl(π1σ j))P(Cyl(π1σ j)|Cyl(π1))

≥ P(W)
n

∑
i=1

P(Cyl(π1τi)|Cyl(π1))+ IW
m

∑
j=1

P(Cyl(π1σ j)|Cyl(π1)) by (5.6) and (5.3)

≥ P(W)
n

∑
i=1

P(Cyl(π1τi)|Cyl(π1))+ IW
(
1−

n

∑
i=1

P(Cyl(π1τi)|Cyl(π1))
)

by (5.5)

≥ P(W)P
( ⋃

π∈Π2

Cyl(π1π)|Cyl(π1)
)
+ IW

(
1−P

( ⋃

π∈Π2

Cyl(π1π)|Cyl(π1)
))

by properties ofτi ’s

≥ P(W)α + IW(1−α) (becauseΠ2 ∈ φα(π1) andP(W)> IW)

and thusP(W) ≤ IW + 1
α (P(W|Cyl(π1))− IW) which is a contradiction with (5.4). We conclude that if

π1 is given by (5.4), then any setΠ2 ∈ φα(π1) contains a finite pathπ2 satisfying (5.2).
We can now exhibit a winning strategy for Pl. 1. We assume thatPl. 1 begins with playing a finite

pathπ1 satisfying (5.4). Letf be anα-strategy. We know that Pl. 1 can select a finite pathπ2 ∈ f (π1)
satisfying (5.2), i.e.P(W|Cyl(π1π2))≤P(W). By repeating the above method fromπ1π2, we also deduce
the existence of a finite pathπ3 such that any setΠ4 ∈ φα(π1π2π3) contains a finite pathπ4 satisfying
P(W|Cyl(π1π2π3π4))≤ P(W). We can thus assume that Pl. 1 plays such a finite pathπ3 and then selects
π4 ∈ f (π1π2π3) such thatP(W|Cyl(π1π2π3π4)) ≤ P(W). This strategy is a winning strategy for Pl. 1.
Indeed, asW is an open set and thus a countable union of cylinders, ifP(W|Cyl(π1 · · ·π2n))≤ P(W)< 1
for anyn, thenπ1π2π3 · · · /∈W.

Corollary 5.8. Let 0< α < 1. The generalised Banach-Mazur gameGα = (G,v0,φα ,φball,W) is deter-
mined when W is a countable intersection of open sets. More precisely, Pl. 0 has a winning strategy for
Gα if and only if P(W) = 1, and Pl. 1 has a winning strategy forGα if and only if P(W)< 1.
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Since the existence of a bounded winning strategy for Pl. 0 implies the existence of a winningα-
strategy for Pl. 0 and the existence of a move-counting winning strategy for Pl. 0 implies the existence
of a winningα-strategy for Pl. 0, we deduce from Example 3.3 and Example 3.4 that in general, the
existence of a winningα-strategy for Pl. 0 does not imply the existence of a move-counting winning
strategy Pl. 0 and the existence of a bounded winning strategy for Pl. 0. On the other hand, we know
that there exists a Banach-Mazur game for which Pl. 0 has a bounded winning strategy and no last-move
winning strategy. The existence of a winningα-strategy thus does not imply in general the existence of a
last-move winning strategy. Conversely, if we consider thegame(G0,1,0,W) described in Example 4.2,
Pl. 0 has a last-move winning strategy but no winningα-strategy (asP(W) = 0). The notion ofα-strategy
is thus incomparable with the notion of last-move strategy.

6 More on simple strategies

We finish this paper by considering the crossings between thedifferent notions of simple strategies and
the notion of bounded strategy i.e. the bounded length-counting strategies, the bounded move-counting
strategies and the bounded last-move strategies. Obviously, the existence of a bounded length-counting
winning strategy for Pl. 0 implies the existence of a length-counting winning strategy for Pl. 0, and we
have this implication for each notion of bounded strategiesand their no bounded counterpart. We start by
noticing that the existence of a bounded move-counting winning strategy is equivalent to the existence
of a positional winning strategy.

Proposition 6.1. Let G = (G,v0,W) be a Banach-Mazur game on a finite graph. Pl. 0 has a bounded
move-counting winning strategy if and only if Pl. 0 has a positional winning strategy.

Proof. Let h be a bounded move-counting winning strategy for Pl. 0. We denote byC1, . . . ,CN the bottom
strongly connected components (BSCC) ofG. Let 1≤ i ≤ N. Sinceh is a bounded strategy andG is
finite, there exist some finite pathsw(i)

1 , . . . ,w(i)
ki

⊂Ci such that for anyv∈Ci , for anyn≥ 1,

h(v,n) ∈ {w(i)
1 , . . . ,w(i)

ki
}.

Let v∈V. If v∈Ci, we let f (v) = σ0w(i)
1 σ1w(i)

2 σ2 . . .w
(i)
ki

whereσl are finite paths inCi such thatf (v) is
a finite path inCi starting fromv. If v /∈ ⋃

i Ci, we let f (v) = σv whereσv starts fromv and leads into a
BSCC ofG. The positional strategyf is therefore winning as each playρ consistent withf can be seen
as a play consistent withh.

The other notions of bounded strategies are not equivalent to any other notion of simple strategy.

Example 6.2(Set with a bounded length-counting winning strategy and without a positional win-
ning strategy). Let G0,1 be the complete graph on{0,1}, (ρn) an enumeration of finite words in{0,1}
andρtarget= 0ρ1ρ2 · · · . We consider the setW = {σ ∈ {0,1}ω : #{i ≥ 1 : σ(i) = ρtarget(i)} = ∞}. It is
evident that Pl. 0 has a bounded length-counting winning strategy for the game(G0,1,0,W). However,
Pl. 0 has no positional winning strategy. Indeed, iff is a positional strategy such thatf (0) = a(1) · · ·a(k),
then Pl. 1 can play according to the strategyh defined byh(σ(1) · · ·σ(n)) =σ(n+1) · · ·σ(N) 0 such that
for anyn+1≤ i ≤ N, σ(i) 6= ρtarget(i), ρtarget(N+1) 6= 0 and for any 1≤ i ≤ k, a(i) 6= ρtarget(N+ i+1).

Example 6.3 (Set with a bounded last-move winning strategy and without a positional winning
strategy). Let G0,1,2 be the complete graph on{0,1,2}. For anyφ : {0,1,2}∗ → {0,1}, if we consider
the setW := {(πiφ(πi))i≥1 : πi ∈ {0,1,2}∗}, then Pl. 0 has a 1-bounded last-move winning strategy given
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by φ for the game(G0,1,2,2,W). On the other hand, we can chooseφ such that Pl. 0 has no positional
winning strategy. Indeed, it suffices to chooseφ : {0,1,2}∗ →{0,1} such that for anyπ ∈ {0,1,2}∗, any
n≥ 1, anyσ(1), . . . ,σ(n)∈{0,1,2}, there existsk≥ 1 such thatφ(π2k) 6=σ(1) and for any 1≤ i ≤ n−1,
φ(π2kσ(1) · · ·σ(i)) 6= σ(i+1). Such a function exists because the set{0,1,2}∗ is countable. Therefore,
Pl. 0 has no positional winning strategy for the game(G0,1,2,2,W) because, iff is a positional strategy
and f (2) = σ(1) . . .σ(n), then Pl. 1 can play consistent with the strategyh defined byh(π) = 2k such
thatφ(π2k) 6= σ(1) and for any 1≤ i ≤ n−1, φ(π2kσ(1) · · ·σ(i)) 6= σ(i+1). Pl. 0 has thus a 1-bounded
last-move winning strategy and no positional winning strategy for the game(G0,1,2,2,W).

Example 6.4(Set with a bounded winning strategy and without a bounded length-counting win-
ning strategy). Let G0,1,2,3 be the complete graph on{0,1,2,3}. For anyφ : {0,1,2,3}∗ → {0,1},
if we denote byW the set of runsρ such that #{n≥ 1 : φ(ρ(1) . . .ρ(n)) = ρ(n+1)}= ∞, then Pl. 0
has a 1-bounded winning strategy given byφ for the game(G0,1,2,3,2,W). We now show how we
can defineφ so that Pl. 0 has no bounded length-counting winning strategy. Let nk = ∑k

i=1 3i. We
chooseφ : {0,1,2,3}∗ →{0,1} such that for anyk ≥ 1, any π ∈ {0,1,2,3}∗ of length nk and any
σ(1), . . . ,σ(k) ∈ {0,1,2,3}, there existsτ ∈ {2,3}∗ of length 2k such thatφ(πτ 2) 6= σ(1) and for any
1≤ i ≤ k−1, φ(πτ 2σ(1) · · ·σ(i)) 6= σ(i+1). Such a function exists because the cardinality of{2,3}2k

is equal to the cardinality of{0,1,2,3}k and the length ofπτ 2σ(1) · · ·σ(k)< nk+1. Therefore, Pl. 0 has
no bounded length-counting winning strategy because iff is ak-bounded length-counting strategy (for
somek∈ N) and f (2,nk +k+1) = σ , then Pl. 1 can start by playing 2nkτ 2, whereτ ∈ {2,3}∗ of length
2k such thatφ(πτ 2) 6= σ(1) and for any 1≤ i ≤ k−1, φ(πτ 2σ(1) · · ·σ(i)) 6= σ(i+1), and if Pl. 1 keep
playing with same philosophy, then Pl. 1 wins the play. Pl. 0 has thus a 1-bounded winning strategy and
no bounded length-counting winning strategy for the game(G0,1,2,2,W).

The relations between the different notions of simple strategies on a finite graph can be summarised as
depicted in Figure 1. We draw attention to the fact that the situation is very different in the case of infinite
graphs. For example, a positional strategy can be unbounded, the notion of length-counting winning
strategy is not equivalent to the notion of winning strategy(except if the graph is finitely branching),
and the notion of bounded move-counting winning strategy for Pl. 0 is not equivalent to the notion of
positional winning strategy.

Example 6.5(Set on an infinite graph with a bounded move-counting winningstrategy and without
a positional winning strategy). We consider the complete graphGN onN and the gameG = (GN,0,W)
whereW = {(σk) ∈Nω : ∀ n≥ 1, ∃ k≥ 1, (σk,σk+1) = (n,n+1)}. Pl. 0 has a bounded move-counting
winning strategy given byh(v,n) = n n+1 but no positional winning strategy.
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We study the descriptive complexity of parity games by taking into account the coloring of their
game graphs whilst ignoring their ownership structure. Colored game graphs are identified if they
determine the same winning regions and strategies, for all ownership structures of nodes. The Rabin
index of a parity game is the minimum of the maximal color taken over all equivalent coloring
functions. We show that deciding whether the Rabin index is at least k is in P for k = 1 but NP-hard
for all fixed k≥ 2. We present an EXPTIME algorithm that computes the Rabin index by simplifying
its input coloring function. When replacing simple cycle with cycle detection in that algorithm, its
output over-approximates the Rabin index in polynomial time. Experimental results show that this
approximation yields good values in practice.

1 Introduction

Parity games (see e.g. [11]) are infinite, 2-person, 0-sum, graph-based games that are hard to solve.
Their nodes are colored with natural numbers, controlled by different players, and the winning condition
of plays depends on the minimal color occurring in cycles. The condition for winning a node, therefore,
is an alternation of existential and universal quantification. In practice, this means that the maximal color
of its coloring function is the only exponential source for the worst-case complexity of most parity game
solvers, e.g. for those in [11, 8, 9].

One approach taken in analyzing the complexity of parity games, and in so hopefully improving the
complexity of their solution, is through the study of the descriptive complexity of their underlying game
graph. This method therefore ignores the ownership structure on parity games.

An example of this approach is the notion of DAG-width in [1]. Every directed graph has a DAG-
width, a natural number that specifies how well that graph can be decomposed into a directed acyclic
graph (DAG). The decision problem for DAG-width, whether the DAG-width of a directed graph is at
most k, is NP-complete in k [1]. But parity games whose DAG-width is below a given threshold have
polynomial-time solutions [1]. The latter is a non-trivial result since DAG-width also ignores the colors
of a parity game.

In this paper we want to develop a similar measure of the descriptive complexity of parity games,
their Rabin index, a natural number that ignores the ownership of nodes, but does take into account the
colors of a parity game. Intuitively, the Rabin index is the number of colors that are required to capture
the complexity of the game structure. By measuring and reducing the number of colors we hope to
improve the complexity of analyzing parity games. 1 The reductions we propose are related to priority
compression and propagation in [6] but, in contrast, exploit the cyclic structure of game graphs.

1 We note that if we also were to account for ownership, we could solve the parity game and assign color 0 to nodes won
by player 0 and color 1 to nodes won by player 1. Thus, this would reduce the index of all games to at most 2. However, this
would prevent a more fine-grained analysis of the structural complexity of the game and defeats the purpose of simplifying
parity games before solving them.
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The name for the measure developed here is inspired by related work on the Wagner hierarchy for
automata on infinite words [10]: Carton and Maceiras use similar ideas to compute and minimize the
Rabin index of deterministic parity automata on infinite words [2]. To the best of our knowledge, our
work is the first to study this notion in the realm of infinite, 2-person games.

The idea behind our Rabin index is that one may change the coloring function of a parity game to
another one if that change neither affects the winning regions nor the choices of winning strategies. This
yields an equivalence relation between coloring functions. For the coloring function of a parity game, we
then seek an equivalent coloring function with the smallest possible maximal color, and call that minimal
maximum the Rabin index of the respective parity game.

The results we report here about this Rabin index are similar in spirit to those developed for DAG-
width in [1] but there are important differences:
• We propose a measure of descriptive complexity that is closer to the structure of the parity game

as it only forgets ownership of nodes and not their colors.
• We prove that for every fixed k ≥ 2, deciding whether the Rabin index of a parity game is at least

k is NP-hard.
• We can characterize the above equivalence relation in terms of the parities of minimal colors on

simple cycles in the game graph.
• We use that characterization to design an algorithm that computes the Rabin index and a witnessing

coloring function in exponential time.
• We show how the same algorithm efficiently computes sound approximations of the Rabin index

when simple cycles are abstracted by cycles.
• We derive from that approximation an abstract Rabin index of parity games such that games with

bounded abstract Rabin index are efficiently solvable.
• We conduct detailed experimental studies that corroborate the utility of that approximation, also

as a preprocessor for solvers.

Outline of paper. Section 2 contains background for our technical develeopments. In Section 3, we
define the equivalence between coloring functions, characterize it in terms of simple cycles, and use that
characterization to define the Rabin index of parity games. In Section 4 we develop an algorithm that
runs in exponential time and computes a coloring function which witnesses the Rabin index of the input
coloring function. The complexity of the natural decision problems for the Rabin index is studied in
Section 5. An abstract version of our algorithm is shown to soundly approximate that coloring function
and Rabin index in Section 6. Section 7 contains our experimental results for this abstraction. And we
conclude the paper in Section 9. An appendix contains selected proofs.

2 Background

We write N for the set {0,1, . . .} of natural numbers. A parity game G is a tuple (V,V0,V1,E,c) where
V is a non-empty set of nodes partitioned into possibly empty node sets V0 and V1, with an edge relation
E ⊆V ×V (where for all v in V there is a w in V with (v,w) in E), and a coloring function c : V → N.

Throughout, we write s for one of 0 or 1. In a parity game, player s owns the nodes in Vs. A play
from some node v0 results in an infinite play P = v0v1 . . . in (V,E) where the player who owns vi chooses
the successor vi+1 such that (vi,vi+1) is in E. Let Inf(P) be the set of colors that occur in P infinitely
often: Inf(P) = {k ∈ N | ∀ j ∈ N : ∃i ∈ N : i > j and k = c(vi)}. Player 0 wins play P iff min Inf(P) is
even; otherwise player 1 wins play P.
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v0 3

v1 3

v2 2 v31

v42

Figure 1: A parity game with winning regions W0 = {v1,v2} and W1 = {v0,v3,v4}; winning strategies
for players 0 and 1 map v1 to v2, respectively v0 and v3 to v4

A strategy for player s is a total function τ : Vs→ V such that (v,τ(v)) is in E for all v ∈ Vs. A play
P is consistent with τ if each node vi in P owned by player s satisfies vi+1 = τ(vi). It is well known
that each parity game is determined: node set V is the disjoint union of two sets W0 and W1, the winning
regions of players 0 and 1 (respectively), where one of W0 and W1 may be empty. Moreover, strategies
σ : V0→V and π : V1→V can be computed such that
• all plays beginning in W0 and consistent with σ are won by player 0; and
• all plays beginning in W1 and consistent with π are won by player 1.
Solving a parity game means computing such data (W0,W1,σ ,π). We show a parity game and one of

its possible solutions in Figure 1.

3 Rabin Index

We now formalize the definition of equivalence for coloring functions, and then use that notion in order
to formally define the Rabin index of a parity game.

We want to reduce the complexity of a coloring function c in a parity game (V,V0,V1,E,c) by trans-
forming c to some coloring function c′. Since we do not want the transformation to be based on a solution
of the game we design the transformation to ignore ownership of nodes. That is, it needs to be sound for
every possible ownership structure V = V0 ∪V1. Therefore, for all such partitions V = V0 ∪V1, the two
parity games (V,V0,V1,E,c) and (V,V0,V1,E,c′) that differ only in colors need to be equivalent in that
they have the same winning regions and the same sets of winning strategies. We formalize this notion.

Definition 1 Let (V,E) be a directed graph and c,c′ : V →N two coloring functions. We say that c and c′

are equivalent, written c≡ c′, iff for all partitions V0∪V1 of V the resulting parity games (V,V0,V1,E,c)
and (V,V0,V1,E,c′) have the same winning regions and the same sets of winning strategies for both
players.

Intuitively, changing coloring function c to c′ with c ≡ c′ is sound: regardless of what the actual
partition of V is, we know that this change will neither affect the winning regions nor the choice of
their supporting winning strategies. But the definition of ≡ is not immediately amenable to algorithmic
simplification of c to some c′. This definition quantifies over exponentially many partitions, and for each
such partition it insists that certain sets of strategies be equal.

We need a more compact characterization of ≡ as the basis for designing a static analysis. To that
end, we require some concepts from graph theory first.

Definition 2 1. A path P in a directed graph (V,E) is a sequence v0,v1, . . . ,vn of nodes in V such
that (vi,vi+1) is in E for every i in {0,1, . . . ,n−1}.

2. A cycle C in a directed graph (V,E) is a path v0, . . . ,vn with (vn,v0) in E.
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3. A simple cycle C in a directed graph (V,E) is a cycle v0,v1, . . . ,vn such that for every i 6= j in
{0,1, . . .n} we have vi 6= v j.

4. For (V,E,c), the c-color of a cycle v0, . . . ,vn in (V,E) is min0≤i≤n c(vi).

Simple cycles are paths that loop so that no node has more than one outgoing edge on that path. A
cycle is defined similarly, except that it is allowed that vi equals v j for some i 6= j, so a node on that path
may have more than one outgoing edge. The color of a cycle is the minimal color that occurs on it.

For example, for the parity game in Figure 1, a simple cycle is v0,v4,v3,v2,v1 and its color is 1, a
cycle that is not simple is v0,v1,v2,v1 and its color is 2.

We can now characterize ≡ in terms of colors of simple cycles. Crucially, we make use of the fact
that parity games have pure, positional strategies [3].

Proposition 1 Let (V,E) be a directed graph and c,c′ : V → N two coloring functions. Then c ≡ c′ iff
for all simple cycles C in (V,E), the c-color of C has the same parity as the c′-color of C.

Proof Sketch: We write c∼ c′ iff for all simple cycles C in (V,E), the c-color of C has the same parity
as the c′-color of C. We have to show ∼ equals ≡.

To prove that ∼ is contained in ≡, let c∼ c′ be given. For each subset V0 of V we have parity games
Gc = (V,V0,V \V0,c) and Gc′ = (V,V0,V \V0,c′). We write Ws (resp. W ′s ) for the winning region of player
s in Gc (resp. Gc′).

Now let σ be a strategy for player 0 that is winning on W0 in Gc. We use that plays that begin in
W0 and are consistent with σ and any strategy π of player 1 are decided by their periodic suffix – which
forms a simple cycle as both strategies are memoryless. As c∼ c′, that decision is the same in both parity
games. So Wo is contained in W ′0 and σ is winning on W0 in game Gc′ as well.

A symmetric argument for the winning region W1 and a π for player 1 that is winning on W1 in Gc′

then proves the claim by the determinacy of parity games.
To show that ≡ is contained in ∼, let c ≡ c′ be given. We construct, for each simple cycle C, a

1-player parity game (so one of V0 and V1 is empty) which is controlled by the player that matches the
parity of the c-color of C. From c ∼ c′ is then follows that the c′-color of C also has that parity. (A full
proof is contained in the appendix.) �

Next, we define the relevant measure of descriptive complexity, which will also serve as a measure
of precision for the static analyses we will develop.

Definition 3 1. For colored arena (V,E,c), its index µ(c) is maxv∈V c(v).
2. The Rabin index RI(c) of colored arena (V,E,c) is min{µ(c′) | c≡ c′}.
3. The Rabin index of parity game (V,V0,V1,E,c) is RI(c) for (V,E,c).

The index µ(c) reflects the maximal color occurring in c. So for a coloring function c : V → N on
(V,E), its Rabin index is the minimal possible maximal color in a coloring function that is equivalent to
c. This definition applies to colored arenas and parity games alike.

As an aside, is µ(c) a good measure, given that µ(c+n) = n+ µ(c) for c+ n with (c+ n)(v) =
c(v)+n when n is even? And given that c may have large color gaps? Fortunately, this is not a concern
for the Rabin index of c. This is so as for all c′ ≡ c with µ(c′) = RI(c) we know that the minimal color
of c′ is at most 1 and that c′ has no color gaps – due to the minimality of the Rabin index.

Intuitively, in order to prove that RI(c)< k for some k > 0 one has to produce a coloring c′ and show
that all simple cycles in the graph have the same color under c and c′. As we will see below, deciding for
a given colored arena (V,E,c) whether RI(c) is at least k is NP-hard for fixed k ≥ 2.

Next, we present an algorithm that computes a coloring function which witnesses the Rabin index of
a given c.
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rabin(V,E,c) {
rank = ∑v∈ V c(v);
do {
cache = rank;

cycle(); pop();

rank = ∑v∈ V c(v);
} while (cache != rank)

return c;
}

cycle() {
sort V in ascending c-color ordering v1,v2,...,vn;

for (i=1..n) {
j = getAnchor(vi);

if ( j == −1) { c(vi) = c(vi)%2; }
else { c(vi) = j+1; }

}
}

getAnchor(vi) {
for (γ = c(vi)−1 down to (c(vi)−1)%2; step size 2) {

if (∃ simple cycle C with color γ through vi) { return γ; }
}
return −1;

}

pop() {
m = max{ c(v) | v ∈ V};
while (not ∃ simple cycle C with color m) {
for (v in { w ∈ V | c(w) = m}) { c(v) = m − 1; }
m = m − 1;

}
}

Figure 2: Algorithm rabin which relies on methods cycle, getAnchor, and pop.

4 Computing the Rabin Index

We now discuss our algorithm rabin, shown in Figure 2. It takes a coloring function as input and
outputs an equivalent one whose index is the Rabin index of the input. Formally, rabin computes a
coloring function c′ with c ≡ c′ and where there is no c ≡ c′′ with µ(c′′) < µ(c′). Then, RI(c) = µ(c′)
by definition.

Algorithm rabin uses a standard iteration pattern based on a rank function which sums up all colors
of all nodes. In each iteration, two methods are called:
• cycle analyzes the cyclic structure of (V,E) and so reduces colors of nodes
• pop repeatedly lowers all occurrences of maximal colors by 1 until there is a simple cycle whose

color is a maximal color.
These iterations proceed until neither cycle nor pop has an effect on the coloring function. Method

cycle first sorts all nodes of (V,E,c) in ascending color values for c. It then processes each node vi in
that ascending order. For each node vi it calls getAnchor to find (if possible) a maximal “anchor” for vi.

If getAnchor returns −1, then vi has no anchor as all simple cycles through vi have color c(vi).
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v0

4 36 5 2

3 31 2 2

0

0

1

1v6 v5 v4 v3 v2 v1

iteration cycle pop

1 nil c(v6) = 5
2 c(v6) = 1 c(v5) = 4
3 c(v5) = 2 c(v4) = 3

Figure 3: Colored arena (V,E,c) and table showing effects of iterations in rabin(V,E,c)

Therefore, it is sound to change c(vi) to its parity. Otherwise, getAnchor returns an index j to an
“anchor” node that is maximal in that
• there is a simple cycle C through vi whose color j is smaller and of different parity than that of vi,

and
• for all simple cycles C′ through vi, either they have a color that has the same parity as the color of

vi or they have a color that is less than or equal to j.
A node on this simple cycle C with color j is thus a maximal anchor for node vi. Method cycle therefore
resets c(vi) to j+1.

The idea behind pop is that one can safely lower maximal color m to m−1 if there is no simple cycle
whose color is m. For then all occurrences of m are dominated by smaller colors on simple cycles.

We now prove the soundness of our algorithm rabin.

Lemma 1 Let (V,E,c) be a given colored arena and let c′ be the coloring function that is returned by
the call rabin(V,E,c). Then c≡ c′ holds.

We show some example runs of rabin, starting with a detailed worked example, for the parity game
in Figure 1. Let the initial sort of cycle be v3v4v2v0v1. Then cycle changes no colors at v3 (as the
anchor of v3 is −1), at v4 (as the anchor of v4 is 1 due to simple cycle v4v3), at v2 (as the anchor of v2 is
1 due to simple cycle v2v1v0v4v3), but changes c(v0) to 1 (as the anchor of v0 is −1). Also, c(v1) won’t
change (as the anchor of v1 is 2 due to simple cycle v1v2).

Then pop changes c(v1) to 2 (as there is no simple cycle with color 3). Let the sort of the second
call to cycle be v0v3v1v2v4. Then the corresponding list of anchor values is−1,−1,1,1,1 and so cycle

changes no colors. Therefore, the second call to pop changes no colors either. Thus the overall effect of
rabin was to lower the index from 3 to 2 by lowering c(v1) to 2.

As a second example, in Figure 3, we see a colored arena with c(vi) = i (in red/bottom), the output
rabin(V,E,c) (in blue/top), and a table showing how the coloring function changes through repeated
calls to cycle and pop. Each iteration of rabin reduces the measure µ(c) by 1. This illustrates that the
number of iterations of rabin is unbounded in general.

We note that ≡ cannot be captured by just insisting that the winning regions of all abstracted parity
games be the same. In Figure 4(a), we see a colored arena with two coloring functions c (in red/bottom)
and c′ (in blue/top). The player who owns node v will win all nodes as she chooses between z or o the
node that has her parity. So c and c′ are equivalent in that they always give rise to the same winning
regions. But if v is owned by player 1, she has a winning strategy for c′ (move from v to w) that is not
winning for c.

In Figure 4(b), colored arena (V,E,c) has odd index n and Rabin index 2. Although there are cycles
from all nodes with color n, e.g., to the node with color n− 1, there are no simple such cycles. So all
colors reduce to their parity.
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Figure 4: Two coloring functions c (in red/bottom) and c′ (in blue/top) on the same game

Now we can prove that algorithm rabin is basically as precise as it could be. First, we state and
prove an auxilliary lemma which provides sufficient conditions for a coloring function c to have its index
µ(c) as its Rabin index RI(c). Then we show that the output of rabin meets these conditions.

Lemma 2 Let (V,E,c) be a colored arena where
1. there is a simple cycle in (V,E) whose color is the maximal one of c
2. for all v in V with c(v)> 1, node v is on a simple cycle C with color c(v)−1.

Then there is no c′ with c≡ c′ and µ(c′)< µ(c). And so µ(c) equals RI(c).

Proof : Let k be the maximal color of c and consider an arbitrary c′ with c≡ c′.
Proof by contradiction: Let the maximal color k′ of c′ satisfy k′ < k. By the first assumption, there

is a simple cycle C0 whose c-color is k. Since k′ < k and c≡ c′, we know that the c′-color of C0 can be at
most k−2. Let v0 be a node on C0 such that c′(v0) is the c′-color of C0. Then c′(v0)≤ k−2. As all nodes
on C0 have c-color k, we have also c(v0) ≥ k. For k < 2, then c′(v0) ≤ k− 2 gives us a contradiction
c′(v0)< 0. It thus remains to consider the case when k ≥ 2.

By the second assumption, there is some simple cycle C1 through v0 such that the color of C1 is k−1.
In particular, there is some node v′0 in C1 with color k−1. But k−1 cannot be the color of C1 with respect
to c′ since v0 is on C1 and c′(v0) ≤ k− 2. Since c ≡ c′, the c′-color of C1 is therefore at most k− 3. So
there is some v1 on C1 such that c′(v1)≤ k−3 < k−1≤ c(v1).

If c(v1)> 1, we repeat the above argument at node v1 to construct a simple cycle C2 through v1 with
color c(v1)− 1. Again, there then have to be nodes v′1 and v2 on C2 such that the color c′(v′1) is the
c′-color of C2, and such that c′(v2)≤ k−4 < k−2≤ c(v2) holds.

We can repeat the above argument to construct simple cycles C0,C1,C2, . . . and nodes v0,v′0,v1,v′1,v2,v′2, . . .
such that c′(v j)≤ k− j−2 < k− j≤ c(v j) until k− j≤ c(v j)≤ 1. But then c′(v j)≤ k− j−2≤ 1−2 =
−1, a contradiction. �

We now show that the output of rabin satisfies the assumptions of Lemma 2. Since rabin is sound
for ≡, we therefore infer that it computes a coloring function whose maximal color equals the Rabin
index of its input coloring function.

Theorem 1 Let (V,E,c) be a colored arena. And let c∗ be the output of the call rabin(V,E,c). Then
c≡ c∗ and µ(c∗) is the Rabin index of c.

Proof : By Lemma 1, we have c ≡ c∗. Since ≡ is clearly transitive, it suffices to show that there is no
c′ with c∗ ≡ c′ and µ(c′)< µ(c∗). By Lemma 2, it therefore suffices to establish the two assumptions of
that lemma for c∗. As c∗ is returned by rabin neither cycle nor pop have an effect on it.
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Figure 5: Construction for NP-hardness of deciding whether RI(c)≥ k for k ≥ 2

The first assumption of Lemma 2 is therefore true since pop has no effect on c∗ and so there must be
a simple cycle in (V,E) whose color is the maximal one in c. This also applies to the case when c∗ has
only one color, as (V,E) has to contain cycles since it is finite and all nodes have outgoing edges.

As for the second assumption, let by way of contradiction there be some node v with c∗(v) > 1 and
no simple cycle through v with color c∗(v)− 1. Then cycle would have an effect on c∗(v) and would
lower it, a contradiction. �

5 Complexity

We now discuss the complexity of algorithm rabin and of the decision problems associated with the
Rabin index. We turn to the complexity of rabin first.

Let us assume that we have an oracle that checks for the existence of simple cycles. Then the
computation of rabin is efficient modulo polynomially many calls (in the size of the game) to that oracle.
Since deciding whether a simple cycle exists between two nodes in a directed graph is NP-complete (see
e.g. [4, 5]), we infer that rabin can be implemented to run in exponential time.

Next, we study the complexity of deciding the value of the Rabin index. We can exploit the NP-
hardness of simple cycle detection to show that the natural decision problem for the Rabin index, whether
RI(c) is at least k, is NP-hard for fixed k ≥ 2. In contrast, for k = 1, we show that this problem is in P.

Theorem 2 Deciding whether the Rabin index of a colored arena (V,E,c) is at least k is NP-hard for
every fixed k ≥ 2, and is in P for k = 1.

Proof : First consider the case when k≥ 2. We use the fact that deciding whether there is a simple cycle
through nodes s 6= t in a directed graph (V,E) is NP-complete (see e.g. [5]). Without loss of generality,
for all v in V there is some w in V with (v,w) in E (we can add (v,v) to E otherwise). Our hardness
reduction uses a colored arena (V ′,E ′,c), depicted in Figure 5, which we now describe:

We color s with k− 1 and t with k, and color all remaining nodes of V with 0. Then we add k+ 1
many new nodes (shown in blue/top in the figure) to that graph that form a “spine” of descending colors
from k down to 0, connected by simple cycles. Crucially, we also add a simple cycle between t and that
new k node, and between s and the new k−2 node.

We claim that the Rabin index of (V ′,E ′,c) is at least k iff there is a simple cycle through s and t in
the original directed graph (V,E).

1. Let there be a simple cycle through s and t in (V,E). Since there is a simple cycle between s and
the new k− 2 node, cycle does not change the color at s. As there is a simple cycle through s and t,
method cycle also does not change the color at t. Clearly, no colors on the spine can be changed by
cycle. Since there is a simple cycle between t and the new k node, method pop also does not change
colors. But then the Rabin index of c is k and so at least k.
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Figure 6: Coloring functions c (blue/top) and c′ (red/bottom) with c≡ c′ but c 6≡α c′

2. Conversely, assume that there is no simple cycle through s and t in the original graph (V,E). It
follows that the anchor j of t has value 0 or, if k is even, has value −1. In this case, cycle changes the
color at t to the parity of k. Then, pop reduces the color of the remaining node colored k to k−1. Thus,
it cannot be the case that the Rabin index of c is at least k.

This therefore proves the claim. Second, consider the case when k = 1. Deciding whether RI(c) is at
least 1 amounts to checking whether c ≡~0 where~0(v) = 0 for all v in V . This is the case iff all simple
cycles in (V,E,c) have even c-parity. But that is the case iff all cycles in (V,E,c) have even c-parity.

To see this, note that the “if” part is true as simple cycles are cycles. As for the “only if” part, this is
true since if there were a cycle C with odd c-parity, then some node v on that cycle would have to have
that minimal c-color, but v would then be on some simple cycle whose edges all belong to C.

Finally, checking whether all cycles in (V,E,c) have even c-parity is in P. �

The decision problem of whether RI(c) = 1 cannot be in NP, unless NP equals coNP. Otherwise, the
decision problem of whether RI(c)≤ 1 would also be in NP, since we can decide in P whether RI(c) = 0
and since NP is closed under unions. But then the complement decision problem of whether RI(c) ≥ 2
would be in coNP, and we have shown it to be NP-hard already. Therefore, all problems in NP would
reduce to this problem and so be in coNP as well, a contradiction.

We now discuss an efficient version of rabin which replaces oracle calls for simple cycle detection
with calls for over-approximating cycle detection.

6 Abstract Rabin index

We now discuss an efficient version of rabin which replaces oracle calls for simple cycle detection with
over-approximating cycle detection. In fact, this static analysis computes an abstract Rabin index, whose
definition is based on an abstract version of the equivalence relation≡. We define these notions formally.

Definition 4 1. Let rabinα be rabin where all existential quantifications over simple cycles are
replaced with existential quantifications over cycles.

2. Let (V,E) be a directed graph and c,c′ : V → N two coloring functions. Then:
(a) c≡α c′ iff for all cycles C, the parities of their c- and c′-colors are equal.
(b) The abstract Rabin index RIα(c) of (V,E,c) is min{µ(c′) | c≡α c′}.

Thus rabinα uses the set of cycles in (V,E) to overapproximate the set of simple cycles in (V,E). In
particular, c≡α c′ implies c≡ c′ but not the other way around, as can be seen in the example in Figure 6.

In that example, we have c≡ c′ since all simple cycles have the same parity of color with respect to
c and c′. But there is a cycle that reaches all three nodes and which has odd color for c and even color
for c′. Thus, c 6≡α c′ follows.

We now show that the overapproximation rabinα of rabin is sound in that its output coloring
function is equivalent to its input coloring function. Below, in Theorem 3, we further show that this
output yields an abstract Rabin index.

Lemma 3 Let (V,E,c) be a colored arena and let rabinα(V,E,c) return c′. Then c≡α c′ and µ(c′)≥
RI(c).
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To prove this lemma, it suffices to show c ≡α c′, as c ≡ c′ follows from that, and then this in turn
implies µ(c′)≥ RI(c) by the definition of the Rabin index.

Note that the definition of ≡α is like the characterization of ≡ in Proposition 1, except that the
universal quantification over simple cycles is being replaced by a universal quantification over cycles for
≡α . In proving Lemma 3, we can thus reuse the proof for Lemma 1 where we replace≡ with≡α , rabin
with rabinα , and “simple cycle” with “cycle” throughout in that proof.

We can now adapt the results for rabin to this abstract setting.

Lemma 4 Let (V,E,c) be a colored arena where
1. there is a cycle in (V,E) whose color is the maximal one of c
2. for all v in V with c(v)> 1, node v is on a cycle C with color c(v)−1.

Then there is no c′ with c≡α c′ and µ(c′)< µ(c), and so µ(c) = RIα(c).

Similary to the case for algorithm rabin, we now show that the output of rabinα satisfies the
assumptions of Lemma 4. Since algorithm rabinα is sound for ≡α , we therefore infer that it computes
coloring functions whose maximal color equals the abstract Rabin index of their input coloring function.

Theorem 3 Let (V,E,c) be a colored arena. And let c∗ be the output of the call rabinα(V,E,c). Then
c≡α c∗ and µ(c∗) is the abstract Rabin index RIα(c).

We now study the sets of parity games whose abstract Rabin index is below a fixed bound. We define
these sets formally.

Definition 5 Let Pα
k be the set of parity games (V,V0,V1,E,c) with RIα(c)< k.

We can now show that parity games in these sets are efficiently solvable, also in the sense that
membership in such a set is efficiently decidable.

Theorem 4 Let k ≥ 1 be fixed. All parity games in Pα
k can be solved in polynomial time. Moreover,

membership in Pα
k can be decided in polynomial time.

Proof : For each parity game (V,V0,V1,E,c) in Pα
k , we first run rabinα on it, which runs in polynomial

time. By definition of Pα
k , the output coloring function c∗ has index < k. Then we solve the parity game

(V,V0,V1,E,c∗), which we can do in polynomial time as the index is bounded by k. But that solution is
also one for (V,V0,V1,E,c) since c≡α c∗ by Lemma 3, and so c≡ c∗ as well.

That the membership test is polynomial in the running time can be seen as follows: for coloring
function c, compute c′ = rabinα(V,E,c) and return true if µ(c′)< k and return false otherwise; this
is correct by Theorem 3. �

We note that algorithm rabinα is precise for colored arenas A = (V,E,c) with Rabin index 0. These
are colored arenas that have only simple cycles with even color. Since a colored arena has a cycle with
odd color iff it has a simple cycle with odd color, rabinα correctly reduces all colors to 0 for such arenas.

For Rabin index 1, the situation is more subtle. We cannot expect rabinα to always be precise, as
the decision problem for RI(c) ≥ 2 is NP-hard. Algorithm rabinα will correctly compute Rabin index
1 for all those arenas that do not have a simple cycle with even color. But for c from Figure 6, e.g.,
algorithm rabinα does not change c with index 3, although the Rabin index of c is 1.
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Game Type µ(c) µ(s(c)) RIα(c) S R #I Sol Sol.S Sol.R
Clique[100] 100 100 99 0.08 388.93 2 13.23 13.06 13.01
Ladder[100] 2 2 2 0.11 8.93 1 1.87 1.66 1.68
Jurdziński[5 10] 12 12 11 0.09 44.25 2 76.98 76.94 76.38
Recursive Ladder[15] 48 46 16 0.04 10.46 2 310.21 309.21 174.91
Strategy Impr[8] 237 181 9 0.10 54.01 2 194.96 45.46 8.99
Model Checker Ladder[100] 200 200 0 0.14 141.95 2 30.90 30.49 0.62
Tower of Hanoi[5] 2 2 1 0.46 261.10 2 29.43 29.61 45.41

Figure 7: Indices and average times (in ms) for 100 runs for game types named in first column. Next three
columns: original, statically compressed, and rabinα -compressed index. Next three columns: times of
static and rabinα -compression, and the number of iterations within rabinα . Last three columns: Times
of solving the original, statically compressed, and rabinα -compressed games with Zielonka’s solver

7 Experimental results

We now provide some experimental results. Our objective is to compare the effectiveness of color com-
pression of rabinα to a known color compression algorithm (called static compression), to observe the
performance improvement in solving compressed games using Zielonka’s parity game solver [11], and
to get a feel for how much the abstract Rabin index reduces the index of random and non-random games.

Our implementation is written in Scala and realizes all game elements as objects to simplify imple-
mentation. Our main interest is in descriptive complexity measures and relative computation time.

We programed algorithm rabin with simple cycle detection reduced to incremental SAT solving.
This did not scale to graphs with more than 40 nodes. But for those games for which we could compute
the Rabin index, rabinα(V,E,c) often computed the Rabin index RI(c) or did get very close to it.

Our implementation of rabinα reduced cycle detection to the decomposition of the graph into
strongly connected components, using Tarjan’s algorithm (which is linear in the number of edges). The
rank function is only needed for complexity and termination analysis, we replaced it with Booleans that
flag whether cycle or pop had an effect.

The standard static compression algorithm simply removes gaps between colors, e.g. a set of colors
{0,3,4,5,6,8} is being compressed to {0,1,2,3,4}. Below, we write s(c) for the statically compressed
version of coloring function c.

The experiments are conducted on non-random and random games separately. Each run of the ex-
periments generates a parity game G = (V,V0,V1,E,c) of a selected configuration. Static compression
and rabinα are performed on these games. We report the time taken to execute static compression and
rabinα , as well as the number of iterations that rabinα runs until cycle and pop have no effect, i.e. the
number of iterations needed for µ(c) to reach RIα(c). Finally, we record the wall-clock time required to
solve original, statically compressed, and rabinα -compressed games, using Zielonka’s solver [11].

We use PGSolver to generate non-random games, detailed descriptions on these games can be found
in [7]. Each row in Figure 7 shows the average statistics from 100 runs of the experiments on correspond-
ing non-random game. We see that rabinα has significantly reduced the indices of Recursive Ladder,
Strategy Impr, and Model Checker Ladder, where RIα(c) is 0% to 35% of the index µ(s(c)) of the
statically compressed coloring function.

Applying rabinα improves performance of solvers. For all three game types, we observe 44% to
98% in solver time reduction between solving statically compressed and rabinα -compressed games.

The time required to perform static compression is low compared to the time needed for rabinα -
compression, but rabinα -compression followed by solving the game is still faster than solving the orig-
inal game for Recursive Ladder.
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Game Configs µ(c) µ(s(c)) RIα(c) S R #I Sol Sol.S Sol.R
100/1/20/100 99.16 45.34 35.97 0.48 57.04 2.05 6.71 5.21 4.84
200/1/40/200 198.97 91.91 80.29 0.12 441.29 2.03 12.40 11.49 11.43
400/1/80/400 399.28 184.34 172.30 0.24 4337.04 2.10 42.78 40.62 40.58
800/1/160/800 799.08 369.76 355.67 0.47 47241.70 2.05 181.73 173.59 173.83
1000/1/200/1000 999.14 462.48 447.37 0.59 106332.96 2.05 296.53 281.60 281.70

Figure 8: Indices and average times (in ms) for 100 runs of random games of various configurations
listed in the first column. Next three columns: average original, statically compressed, and rabinα -
compressed indices. The remaining columns are as in Figure 7

Games Ladder and Tower of Hanoi have very low indices and their colors cannot be compressed
further. Method cycle has no effect on Clique games, but pop manages to reduce its index by 1.

We now discuss our experimental results on random games. The notation used to describe randomly
generated parity games is xx/yy/zz/cc, where xx is the number of nodes (node ownership is determined
by a fair coin flip for each node independently), with between yy to zz out-going edges for each node,
and with colors at nodes chosen at random from {0, . . . ,cc}. Also, the games used in the experiments
have 1 as the minimum number of out-going edges. This means that the nodes have no dead-ends. We
also disallow self-loops (no (v,v) in E).

Figure 8 shows the average statistics of 100 runs of experiments on five selected game configurations.
(Our experiments on larger games are consistent with the data reported here, and so not reported here.)
The results indicate that static compression is effective in reducing the colors for randomly generated
games, it achieves around 54% index reduction for all game types. The rabinα -compression achieves
further 3% to 21% reduction. Due to the relatively small index reduction by rabinα , we do not see
much improvement in solving rabinα -compressed games over solving statically-compressed ones. In
addition, rabinα reduces µ(c) to RIα(c) in one iteration for all of the randomly generated games G.

The results in Figure 8 show that these games take an average of more than 2 rabinα iterations. This
indicates that certain game structure, such as the one found in the game in Figure 3, is present in our
randomly generated games

The experimental results show that rabinα is able to reduce the indices of parity games significantly
and quickly, for certain structure such as Recursive Ladder. Hence it effectively improves the overall
solver performance for those games.

However, algorithm rabinα has a negative effect on the overall performance for other non-random
games and experimented random games, when we consider rabinα -compression time plus solver time.

8 Related work

Carton and Maceiras develop an algorithm (denoted here Rabina) that computes and minimizes the Ra-
bin index of deterministic parity word automata [2]. Deterministic parity word automata can be thought
of as 1-player parity games, where the player chooses input letters. An infinite word can be compared
to a strategy with memory for the player. The word is accepted if the strategy is winning, that is, if the
minimal color to be visited infinitely often is even. Minimization of the Rabin index should preserve the
language of the automaton or, put in our terms, every winning strategy should remain to be winning.

The pseudocode of Rabina is shown in Figure 9. Algorithm Rabina constructs the “coloring de-
pendencies” of all states in an automaton arena by decomposing the automaton into maximal strongly
connected components (SCCs). For each R being a maximal SCC, it removes the states with the maxi-
mal color (and pushes them onto a stack), then recursively SCC decomposes the remaining arena of R.
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Rabina(V ,E,c) {
define a new colouring function c′ for (V ,E,c);
reduce(V ,E,c,c′);
return c′;

}
reduce(V ,E,c,c′) {
i = 0; decompose (V ,E) into maximal SCCs;
for (R ∈ SCCs){
if (π(R) == 0) m = 0;

else {
R′ = {v ∈ R | c(v) 6= π(R)}; m = reduce(R′,E|R′ ,c|R′ ,c′|R′);
if (π(R) - m is odd) m = m + 1;

}
for (v ∈ {v ∈ R | c(v) = π(R)})

c′(v) = m;

i = max{i, m};
}
return i;

}
Figure 9: Algorithm to compute Rabin index [2] for a parity automaton A = (V , E, c), where R⊆V , π(R)
= max{c(v) | v ∈ R}, E|R is E with restriction to nodes in R, and similarly for c|R.

Eventually, the input arena is reduced to a set of states that exist in their own respective SCCs (hence do
not exist in the same cycle as each other). These states are assigned the minimal colors m (which is 0
or 1 depending on their original parities). The algorithm then propagates the new colour m to the states
in the “layer” above. Those states receive a new colour m or m + 1, depending on whether their original
parities equal the parities of the states in the “layer” below. In essence, SCC decomposition is used to
detect the cycle dependency of states and this techniques is also used in our implementation of rabinα .

Our notion of Rabin index is a natural generalization to 2-player games. We require that for every
pair of strategies (σ ,π), their outcome should not change. As mentioned, the weaker notion requiring
to preserve winning strategies of each player separately is not interesting. Such a Rabin index associates
rank 0 with the winning region of player 0 and 1 with the winning region of player 1. It can be computed
by solving the game.

The transition from 1-player setting to 2-player setting requires a more elaborate algorithm for com-
puting the Rabin index. Although presented differently, algorithm Rabina has the same effect of cycle
in rabinα , which approximates the Rabin index. In our context of 2-player games one has to replace
SCC decomposition (or cycle detection) by simple-cycle detection. Furthermore, in order to compute the
Rabin index of a 2-player game we have to add the procedure pop. These two additional components are
crucial for the computation of the Rabin index of games (as shown in this paper).

The differences become crucially important in terms of the computational complexity and degree of
possible color compression in the setting of parity games. Using the colored arena in Figure 3 as an
example, Rabina will make no change to the red coloring function, whereas rabinα reduces its index to
5 (using pop), and rabin reduces it even to 3.

9 Conclusions

We have provided a descriptive measure of complexity for parity games that (essentially) measures the
number of colors needed in a parity game if we forget the ownership structure of the game but if we do
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not compromise the winning regions or winning strategies by changing its colors.
We called this measure the Rabin index of a parity game. We then studied this concept in depth. By

analyzing the structure of simple cycles in parity games, we arrived at an algorithm that computes this
Rabin index in exponential time.

Then we studied the complexity of the decision problem of whether the Rabin index of a parity game
is at least k for some fixed k > 0. For k equal to 1, we saw that this problem is in P, but we showed
NP-hardness of this decision problem for all other values of k. These lower bounds therefore also apply
to games that capture these decision problems in game-theoretic terms.

Next, we asked what happens if our algorithm rabin abstractly interprets all detection checks for
simple cycles through detection checks for cycles. The resulting algorithm rabinα was then shown to
run in polynomial time, and to compute an abstract and sound approximation of the Rabin index.

Our experiments were performed on random and non-random games. We observed that rabinα -
compression plus Zielonka’s solver [11] in some cases speed up solving time. The combination achieved
29% and 85% time reduction for Jurdziński and Recursive Ladder games, respectively, over solv-
ing the original games. But for other game types and random games, no such reduction was observed.
We also saw that for some structured game types, the abstract Rabin index is dramatically smaller than
the index of the game.

In future work we mean to investigate properties of the measure RIα(c)−RI(c). Intuitively, it mea-
sures the difference of the Rabin index based on the structure of cycles with that based on the structure
of simple cycles. From Figure 4(b) we already know that this measure can be arbitrarily large.

It will also be of interest to study variants of RI(c) that are targeted for specific solvers. For example,
the SPM solver in [8] favors fewer occurrences of odd colors but also favors lower index. This suggests a
measure with a lexicographical order of the Rabin index followed by an occurrence count of odd colors.
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There have been several recent suggestions for tableau systems for deciding satisfiability in the practi-
cally important branching time temporal logic known as CTL*. In this paper we present a streamlined
and more traditional tableau approach built upon the author’s earlier theoretical work.

Soundness and completeness results are proved. A prototypeimplementation demonstrates the
significantly improved performance of the new approach on a range of test formulas. We also see
that it compares favourably to state of the art, game and automata based decision procedures.

1 Introduction

CTL* [5, 3] is an expressive branching-time temporal logic extending the standard linear PLTL [13].
The main uses of CTL* are for developing and checking the correctness of complex reactive systems [6]
and as a basis for languages (like ATL*) for reasoning about multi-agent systems [8].

Validity of formulas of CTL* is known to be decidable with an automata-based decision procedure of
deterministic double exponential time complexity [5, 4, 18]. There is also an axiomatization [14]. Long
term interest in developing a tableau approach as well has been because they are often more suitable
for automated reasoning, can quickly build models of satisfiable formulas and are more human-readable.
Tableau-style elements have indeed appeared earlier in some model-checking tools for CTL* but tableau-
based satisfiability decision procedures have only just started to be developed [17, 7].

Our CTL* tableau is of the tree, or top-down, form. To decide the validity of φ , we build a tree
labelled with finite sets of sets of formulas using ideas called hues and colours originally from [14]
and further developed in [16, 17]. The formulas in the labelscome from a closure set containing only
subformulas of the formula being decided, and their negations. Those earlier works proposed a tableau in
the form of a roughly tree-shaped Hintikka-structure, thatis, it utilised labels on nodes which were built
from maximally consistent subsets of the closure set. Each formula or its negation had to be in each hue.
In this paper we make the whole system much more efficient by showing how we only need to consider
subformulas which are relevant to the decision.

In the older papers we identified two sorts of looping: good looping allowed up-links in our tableau
tree while bad looping showed that a branch was just getting longer and longer in an indefinite way. In
this paper we tackle only the good looping aspect and leave bad looping for a follow-on paper.

A publicly available prototype implementation of the approach here is available and comparisons
with existing state of the art systems, and its Hintikka-style predecessor, show that we are achieving
orders of magnitude speed-ups across a range of examples. Aswith any other pure tableau system,
though, this one is better at deciding satisfiable formulas rather than unsatisfiable ones.

In section 2 we give a formal definition of CTL* before section3 defines some basic building block
concepts. Subsequent sections introduce the tableau shape, contain an example, look at a loop checking
rule and show soundness. Section 7 presents the tableau construction rules and then we show complete-
ness. Complexity, implementation and comparison issues are discussed briefly in section 10 before a
conclusion. There is a longer version of this paper available as [15].
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2 Syntax and Sematics

Fix a countable setL of atomic propositions. A (transition) structure is a triple M = (S,R,g) where:
S is the non-empty set ofstates
R is a total binary relation⊆ S×S i.e. for everys∈ S, there is somet ∈ Ssuch that(s, t) ∈ R.
g : S→ P(L ) is a labelling of the states with sets of atoms.

Formulas are defined alongω-long sequences of states. Afullpath in (S,R) is an infinite sequence
〈s0,s1,s2, ...〉 of states such that for eachi, (si ,si+1) ∈ R. For the fullpathσ = 〈s0,s1,s2, ...〉, and any
i ≥ 0, we writeσi for the statesi andσ≥i for the fullpath〈si ,si+1,si+2, ...〉.

The formulas of CTL* are built from the atomic propositions in L recursively using classical con-
nectives¬ and∧ as well as the temporal connectivesX, U andA. We use the standard abbreviations,
true, false, ∨, →, ↔, Fα ≡ true Uα , Gα ≡ ¬F¬α , andEα ≡ ¬A¬α .

Truth of formulas is evaluated at fullpaths in structures. We writeM,σ |= α iff the formulaα is true
of the fullpathσ in the structureM = (S,R,g). This is defined recursively by:
M,σ |= p iff p∈ g(σ0), anyp∈ L
M,σ |= ¬α iff M,σ 6|= α
M,σ |= α ∧β iff M,σ |= α andM,σ |= β
M,σ |= Xα iff M,σ≥1 |= α
M,σ |= α Uβ iff there is i ≥ 0 such thatM,σ≥i |= β and for eachj, if 0 ≤ j < i thenM,σ≥ j |= α
M,σ |= Aα iff for all fullpaths σ ′ such thatσ0 = σ ′

0 we haveM,σ ′ |= α
We say thatα is valid in CTL*, iff for all transition structuresM, for all fullpathsσ in M, we have

M,σ |= α . Sayα is satisfiablein CTL* iff for some transition structureM and for some fullpathσ in M,
we haveM,σ |= α . Clearlyα is satisfiable iff¬α is not valid.

3 Hues, Colours and Hintikka Structures

Fix the formulaφ whose satisfiability we are interested in. We writeψ ≤ φ if ψ is a subformula ofφ .
The length ofφ is |φ |. Theclosure setfor φ is cl φ = {ψ ,¬ψ | ψ ≤ φ}.

Definition. [MPC] Say thata⊆ cl φ is maximally propositionally consistent (MPC)for φ iff for all
α ,β ∈ cl φ , M1) if β = ¬α then (β ∈ a iff α 6∈ a); and M2) ifα ∧β ∈ cl φ then (α ∧β ∈ a iff both α ∈ a
andβ ∈ a).

The concepts of hues and colours were originally invented in[14] but we use particular formal
definitions as presented in [16, 17, 15]. A hue is supposed to capture (approximately) a set of formulas
which could all hold together of one fullpath. Definition. [hue] a⊆ cl φ is ahuefor φ , or φ -hue, iff all
these conditions hold:
H1) a is MPC;
H2) if α Uβ ∈ a andβ 6∈ a thenα ∈ a;
H3) if α Uβ ∈ (cl φ)\a thenβ 6∈ a;
H4) if Aα ∈ a thenα ∈ a.

Further, letHφ be the set of hues ofφ .

For example, if¬(AG(p→ EX p)→ (p→ EGp)), the example known as¬θ12 in [17], then here is
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a hue known ash38:

{¬(AG(p→ EX p)→ (p→ EGp)),(AG(p→ EX p)∧¬(p→ EGp)),
AG(p→ EX p),G(p→ EX p), true,¬¬(p→ EX p),
(p→ EX p), p,¬¬EX p,EX p,¬¬X p,X p,
¬(p→ EGp),(p∧¬EGp),¬EGp,A¬Gp,¬Gp,F¬p,¬¬p}

The usual temporal successor relation plays a role in determining allowed steps in the tableau. The
relation rX is put between huesa andb if a fullpath σ satisfyinga could have a one-step suffixσ≥1

satisfyingb: Definition. [rX ] For huesa andb, puta rX b iff the following four conditions all hold:
R1) if Xα ∈ a thenα ∈ b;
R2) if ¬Xα ∈ a then¬α ∈ b;
R3) if α Uβ ∈ a and¬β ∈ a thenα Uβ ∈ b; and
R4) if ¬(α Uβ ) ∈ a andα ∈ a then¬(α Uβ ) ∈ b.

We also introduced an equivalence relation aiming to tell whether two hues could correspond to
fullpaths starting at the same state. We just need the hues toagree on atoms and on universal path
quantified formulas: Definition. [rA] For huesa andb, put a rA b iff the following two conditions both
hold: A1) for all p∈ L , p∈ a iff p∈ b; and A2)Aα ∈ a iff Aα ∈ b.

Now we move up from the level of hues to the level of colours. Could a set of hues be exactly the
hues corresponding to all the fullpaths starting at a particular state? We would need each pair of hues to
satisfy rA but we would also need hues to be in the set to witness all the existential path quantifications:

Definition. [colour] Non-emptyc⊆ Hφ is acolourof φ , or φ -colour, iff the following two conditions
hold. For alla,b∈ c, C1)a rA b; and C2) ifa∈ c and¬Aα ∈ a then there isb∈ c such that¬α ∈ b. Let
Cφ be the set of colours ofφ .

The formulas¬X p,EX pare both inh37, another hue from the example in [17], so{h37} is not a
colour. However,X p∈ h38 witnesses the existential path quantification so{h37,h38} is a colour.

We define a successor relationRX between colours. It is defined in terms of the successor relation rX

between the component hues and it will be used to define the successor relation between tableau nodes,
themselves corresponding to states in transition structures, in terms of the colours which they exhibit.
Note that colours, and tableau nodes, will, in general, havea non-singleton range of successors and this
relationRX just tells us whether one node can be one of the successors of another node.

Definition. [RX] For all c,d ∈Cφ , putc RX d iff for all b∈ d there isa∈ c such thata rX b.
It is worth noting that colours and hues are induced by actualtransition structures. We will need

these concepts in our completeness proof.
Definition. [actualφ -hue] Suppose(S,R,g) is a transition structure. Ifσ is a fullpath through(S,R)

then we say thath= {α ∈ cl φ | (S,R,g),σ |= α} is theactual (φ -) hueof σ in (S,R,g).
It is straightforward to see that this is aφ -hue. It is also easy to show that along any fullpathσ , the

relationrX holds between the actual hue ofσ and the actual hue of its successor fullpathσ≥1.
Definition. [actualφ -colour] If s∈ S then the set of all actual hues of all fullpaths through(S,R)

starting ats is called theactual (φ -) colour of s in (S,R,g).
Again, it is straightforward to show that this is indeed aφ -colour and also thatRX holds between the

actual colour of any state and the actual colour of any of its successors.

4 Tableau

The tableaux we construct will be roughly tree-shaped: the traditional upside down tree with a root at
the top, predecessors and ancestors above, successors and descendants below. However, we will allow
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n0

{h37,h38}

n1

{h28,h30}

b n3

{h34,h35,h36}

b n6

{h35}

b

b

n2

{h37,h38}

n4

{h28,h30}

b n7

{h34,h35,h36}

b n10

{h35}

b

b

n5

{h37,h38}

n8

{}

n9

{}

Figure 1: A Partial Tableau for¬θ12
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Definition. A tableaufor φ ∈ L is a tuple(T,s,η ,π) such that:
H1) T is a non-empty set ofnodes; one distinguished element called theroot;

H2) η is the phue label enumerator, so that for eacht ∈ T, ηt : N→ 2cl φ is a partial map,
H2.1) the domain ofηt is {0,1, ...,n−1} for somen> 0 denoted|ηt |;
H2.2) ηt(i) is theith label phue oft (if defined);
H3) s is the successor enumerator, so that for eacht ∈ T, st : N→ T is a partial map,
H3.1) the domain ofst is a subset of{0,1, ..., |ηt |−1}; st(i) the ith successor oft;
H3.3) for eacht ∈ T, there is a unique finite sequencer0, r1, ..., rk from T called theancestorsof t

such that ther i are all distinct,r0 is the root,rk = t and for eachj, r j+1 is a successor ofr j ;
H4) φ ∈ ηroot(0);
H5) π is the predecessor map whereby ift,u∈ T then eitherπt

u is undefined
and we say thatt is not a predecessor ofu; or for all j < |u|, πt

u( j) = i < |t| and
we say that theith phue int is a predecessor of thej th hue inu.

H6) if st(i) = u thenπt
u(0) = i (i.e. theith phue int is a predecessor of the 0th phue inst(i));

Figure 2: Definition of Tableau

up-links from a node to one of its ancestors. Each node will belabelled with a finite sequence of sets of
formulas from the closure set. We will call such a sequence ofsets aproto-colouror pcolour. The sets,
or proto-hues (phues), in the pcolour are ordered and once completed the node will have one (ordered)
successor for each phue.

The ordering of the successors will match the ordering of thehues (H3.1 and H6) so that we know
there is a successor node containing a successor phue for each phue in the label. The respective orderings
are otherwise arbitrary.

A proto-hue (phue)is just a subset ofcl φ .
See Figure 2 for our definition of a tableau.
Definition. Say that the tableau(T,s,η ,π) hassupported labellingif each formula in each phue in

each label is supported, as follows. Consider a formulaα ∈ ηt(i). Determining whetherα is support for
not depends on the form ofα :

− p is supported inηt(0). Otherwise, i.e. fori > 0, it is only supported ifp∈ ηt(0).
− Same with¬p.
− ¬¬α supported iffα ∈ ηt(i).
− α ∧β supported iffα ∈ ηt(i) andβ ∈ ηt(i).
− ¬(α ∧β ) supported iff either¬α ∈ ηt(i) or¬β ∈ ηt(i).
− Xα ∈ ηt(i) supported iff 1) there isu∈ T with u= st(i) and 2) for allu∈ T, for all j with

πt
u( j) = i, α ∈ ηu( j).

− ¬Xα ∈ ηt(i) supported iff 1) there isu∈ T with u= st(i) and 2) for allu∈ T, for all j with
πt

u( j) = i, ¬α ∈ ηu( j).
− αUβ ∈ ηt(i) supported iff 1)β ∈ ηt(i); or 2) all 2.1)α ∈ ηt(i); 2.2) there isu∈ T with

u= st(i); and 2.3) for allu∈ T, for all j with πt
u( j) = i, αUβ ∈ ηu( j).

− ¬(αUβ ) ∈ ηt(i) supported iff 1)¬β ∈ ηt(i); and 2) either 2.1)¬α ∈ ηt(i); or 2.2) both 2.2.1)
there isu∈ T with u= st(i); and 2.2.2) for allu∈ T, for all j with πt

u( j) = i, ¬(αUβ ) ∈ ηu( j).
− Aα ∈ ηt(i) supported iff for all j < |ηt |, α ∈ ηt( j).
− ¬Aα ∈ ηt(i) supported iff there is somej < |ηt |, ¬α ∈ ηt( j).

A tableau issuccessfully finishediff it has no leaves, the predecessor relation is defined on all phues
and the tableau does not fail any of the three checks that we introduce below: LG, NTP and the non-
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Figure 3: Example tableau.

existence of direct contradictions (orfalse) in phues.
It is common, in proving properties of tableau-theoretic approaches to reasoning, to refer to labelled

structures asHintikka structuresif the labels are maximally complete (relative to a closure set). We say
that one of our tableaux(T,s,η ,π) is a Hintikka tableau iff the elements of eachηt are all hues (not just
any phues). The older tableau approach in [17] was based on Hintikka tableaux.

5 Tableau Examples

Figure 1 is an example (unfinished) tableau illustrating general shape. There are 11 nodes, each with
successors marked, and each labeled with a set of phues. Notethat some of the successor relations
involve up-links:n1 is a successor ofn3. We just name the phues rather than listing their contents.There
are more details about this example in [17] as, in fact, it is aHintikka-tableau, which is a special type of
the tableau we are introducing in this paper. We use Hintikka-tableaux later in the completeness proof
here.

Figure 3 shows a smaller tableau in more detail. He we show thephues, which make up the pcolour
labels of nodes and we show the predecessor or traceback map in some cases.

6 The LG test and Soundness

In this section we will briefly describe the LG rule which is a tableau construction rule that prevents bad
up-links being added. LG is used to test and possibly fail a tableau. The test is designed to be used
soon after any new up-link is added after being proposed by the LOOP rule. If the new tableau fails the
LG test then “undo” the up-link and continue with alternative choices. We then show that if a tableau
finishes, that is has no leaves, and passes the LG test then it guarantees satisfiability.

There was also a very similar LG test in the earlier work on theoriginal slower tableau method [17].
In that paper, we show how to carry out the LG check on a tableauand we prove some results about its
use. The check is very much like a model check on the tableau sofar. We make sure that every phue
in a labelmatches, or is a subset of an actual hue at that node in a transition structure defined using a
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Figure 5: These two loops fail LG.

valuation of atoms based on the labels. It has polynomial running time in the size of the tableau so it is
not a significant overhead on the overall tableau construction algorithm.

Due to space restrictions we do not go through the full details of the only very slightly different
LG rule used for the faster tableaux here. Instead we give some brief motivation examples. The first
example shows us that not all up-links are allowable: e.g., anode labelled withp,AF¬p which also has
an immediate loop. See left hand example in Figure 4. The up-link would not be allowed by the LG rule.

The right hand example in Figure 4, with an allowable up-linkand also separately an unsatisfiable
leaf, is allowed by LG.

The example in Figure 5 has two loops, each one individually acceptable but not both. The LG rule
fails the tableau when both up-links are added.

Now we show that ifφ has a successfully finished tableau thenφ is satisfiable. This is the soundness
Lemma.

Lemma. Ifφ has a successfully finished tableau thenφ is satisfiable.

Here we just outline the proof: details in [15]. Say that(T,s,η ,π) is a successfully finished tableau
for φ . Define a structureM = (T,R,g) by interpreting thes relation as a transition relationg, and using
η to define the valuationg on nodes.

By definition of matching, after a final check of LG there is some actual hueb of the root such that
ηroot(0)⊆ b. This means thatφ holds along some fullpath in the final structure.
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7 Building a tree

In this section we briefly describe how a tableau is built via some simple operations, or rules. We start
with an initial tree of one root node labelled with just one phue containing onlyφ . The rules allow
formulas to be added inside hues in labels, new hues to be added in labels and new nodes to be added as
successors of existing nodes. The rules are generally non-deterministic allowing a finite range of options,
or choices, at any application.

There are some properties to check such as LG, described above, and NTP described below. We also
check that there are no hues containing both a formula and itsnegation, and we check thatfalse is not
contained in a phue. If these checks fail then the tableau hasfailed and we will need to backtrack to
explore other possible options at choice points along the way.

The tableau succeeds if there are no leaves.

7.1 Basic Tableau Rules

Here are most of the basic rules, in an abbreviated notation:

2NEG: {{¬¬α}}
{{α}} CONJ: {{α∧β}}

{{α ,β}} DIS: {{¬(α∧β)}}
{{¬α}} | {{¬β}} NEX: {{Xα}}→{{}}

{{Xα}}→{{α}} NNX: {{¬Xα}}→{{}}
{{¬Xα}}→{{¬α}}

UNT: {{αUβ}}→{{}}
{{αUβ ,β}}→{} | {{αUβ ,α}}→{{αUβ}} NUN: {{¬(αUβ)}}→{{}}

{{¬(αUβ),¬β ,¬α}}→{} | {{¬(αUβ),¬β ,α}}→{{¬(αUβ)}}

ATM: {{p},{}}
{{p},{p}} NAT: {{¬p},{}}

{{¬p},{¬p}} POS: {{¬Aα}}
{{¬Aα ,¬α}} | {{¬Aα},{¬α}} NEC: {{Aα},{}}

{{Aα ,α},{α}}

The rules are described in detail in [15] but the notation gives the main ideas. Here are details of a
few of the rules above.

DIS: If ¬(α ∧ β ) ∈ ηt( j) then can extend(T,s,η ,π) to (T ′,s′,η ′,π ′) via either: DIS1 or DIS2 as
follows. DIS1 produces(T ′,s′,η ′,π ′) such thatT ′ = T, s′ = s, and for allt ′ 6= t, ηt ′ = ηt and for alli′ 6= i,
η ′

t (i
′) = ηt(i′). However,η ′

t (i) = ηt(i)∪{¬α}. DIS2 is similar but useβ instead ofα .
NEX: If Xα ∈ηt(i) and there isu∈T and j with πt

u( j)= i then can extend(T,s,η ,π) to (T ′,s′,η ′,π ′)
such thatT ′ =T, s′ = s, andη ′

u( j) =ηu( j)∪{α}. If t ∈T but there is nost( j)∈T then extend(T,s,η ,π)
to (T ′,s′,η ′,π ′) using new objectt+ such thatT ′ = T∪{t+}, s′t(i) = t+, η ′

t+(0) = {} andπ ′t
t+(0) = i. For

all other arguments,s′, η ′ andπ ′ inherit values froms,η andπ respectively.
ATM: If an atomp∈ ηt( j) andk< |ηt | then can extend(T,s,η ,π) to (T ′,s′,η ′,π ′) such thatT ′ = T,

s′ = s, and for allt ′ 6= t, ηt ′ = ηt and for alli′ 6= k, η ′
t (i

′) = ηt(i′). However,η ′
t (k) = ηt(k)∪{p}.

POS: If ¬Aα ∈ ηt( j) andn= |ηt | then can extend(T,s,η ,π) to (T ′,s′,η ′,π ′) via one of POSk for
somek= 0,1,2, ...,n as follows. Fork< n, POSk involves extending(T,s,η ,π) to (T ′,s′,η ′,π ′) where
T ′ =T, s′ = s, and for allt ′ 6= t, ηt ′ =ηt and for alli′ 6= k, η ′

t (i
′)=ηt(i′). However,η ′

t (k)=ηt(k)∪{¬α}.
However, POSn involves extending(T,s,η ,π) to (T ′,s′,η ′,π ′) whereT ′ = T, s′ = s, and for allt ′ 6= t,
ηt ′ = ηt and for alli′ 6= k, η ′

t (i
′) = ηt(i′). However,η ′

t (k) = ηt(k)∪{¬α}.
There are also a couple of rules not sketched above.
PRED: If t,u∈ T andu is a successor oft but π(tu( j)) is not defined then we can extend(T,s,η ,π)

to (T ′,s′,η ′,π ′) via one of PREDk for somek= 0,1,2, ..., |ηt |−1 as follows.
Fork< |ηt |, PREDk involves extending(T,s,η ,π) to (T ′,s′,η ′,π ′) whereT ′ =T, s′ = s, andη ′ =η .

However,π ′t
u ( j) = k.
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For k = |ηt |, PREDk involves extending(T,s,η ,π) to (T ′,s′,η ′,π ′) whereT ′ = T, but η ′ = η but
giving t an extra empty phueη ′

t (k) = {}; ands= s′.
Later we need to add akth successor fort and fill in formulas inη ′

t (k).
Note thatt now potentially becomes unsupported, untraceable and unfinished, again.
LOOP: Supposet is an ancestor of the parentu− of u, then we can choose either to replace theu−

to u edge by an up-link fromu− to t, or to not do that replacement (and continue the branch normally).
(It is worth remembering which choice you make and not try that again if it did not work.)
Note that, as in normal successors, we will also putsu−(i) = t andπu−

t (0) = i where previously we
hadsu−(i) = u. All the other phues inηt will also have to have predecessors chosen amongst the phues
in ηu− . We will use the PRED rule to do this for each one.

Note also that making such an up-link can possibly cause a subsequent consequential failure of the
tableau. A contradiction could be introduced into the hues of t, the NTP could fail and/or the LG property
could fail. It is possible to test for a few of these potentialproblems just before making use of this rule
and act accordingly.

7.2 The NTP check: nominated thread property

The LG property check that every looping path is noticed by the labels in nodes. The converse require-
ment is taken care of by the much simpler NTP check.

We put a special significance on the initial hue in each colourlabel. This, along with the next
condition, helps us ensure that each hue actually has a fullpath witnessing it. We are going to require the
following property, NTP, of the tableaux which we construct.

First some auxiliary definitions: Definition. [hue thread] Supposeσ is a path through(T,s,η ,π). A
hue threadthroughσ is a sequenceξ of hues such that|ξ |= |σ |, for each j < |ξ |, ξ j ∈ η(σ j) and for
each j < |ξ |−1, ξ j rXξ j+1.

Definition. [fulfilling hue thread] Supposeσ is a path through(T,s,η ,π) and ξ is a hue thread
throughσ . We say thatξ is fulfilling iff either |σ | < ω , or |σ | = ω and all the eventualities in eachξi

are witnessed by some laterξ j ; i.e. if α Uβ ∈ ξi then there isj ≥ i such thatβ ∈ ξ j .
Definition. [the nominated thread property] We say that the tableau(T,s,η ,π) has thenominated

thread property(NTP) iff the following holds. Suppose that for allt ∈ T such that 0< |st |, st(0) is an
ancestor oft and thatt0 = st(0), t1, ..., tk = t is a non-repeating sequence with eacht j+1 = st j (0). Let σ be
the fullpath〈t0, t1, ..., tk, t0, t1, ..., tk, t0, t1, ...〉 andξ be the sequence〈ηt0(0),ηt1(0), ...,ηtk(0),ηt0(0), ...〉 of
hues inσ . Thenξ is a fulfilling hue thread forσ .

It is straightforward to prove that this is equivalent to checking that each eventuality inηt0(0) (or
in all, or any,ηti (0)) is witnessed in at least one of theηt j (0). So it is neither hard to implement nor
computationally complex.

Using the rules described above, using any applicable one atany stage, allows construction of
tableaux. We know that the LG rule ensures that any successful ones which we build thus will guar-
antee thatφ is satisfiable. In the next section we consider whether we canbuild a successful tableau for
any satisfiable formula in the way.

8 Completeness Using the Hintikka Tableau

In [17], the completeness result for the tableau in that paper, shows that for any satisfiable CTL* formula
there is a finite model satisfying certain useful propertiesand from that we can find a successful tableau
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(as defined in that paper) for the formula. In fact the tableauconstructed in that paper is just a special
form of the tableaux that we are constructing in this paper: they are Hintikka structures.

Definition. A structure(T,s,η ,π) is a Standard Hintikka Tableaufor φ iff (T,s,η ,π) is a finite
finished successful tableau forφ and for eacht, for eachi, ηt(i) is an MPC subset ofcl (φ).

Thus, in a Hintikka tableau, the labels tell us exactly whichformulas hold there.
The completeness result in [17] shows the following, in terms of the concepts defined in this paper:
Lemma. Ifφ ∈ L is satisfiable then it has a Standard Hintikka Tableau.
The proof of this lemma is a straightforward translation of the definitions from [17] but we need to

specify how to define our current predecessor relationπ and we also need to check that the tableau is
finished.

The predecessor relationπ is not made explicit in the tableau structures of the earlierpaper. Instead
we require that the colour of a nodet is related by a successor relationRX between colours to the colour
of any successort ′. This means that for any hue in the colour oft ′ there is a hueh in the colour oft such
thath andh′ are related by a successor relation between hues. We can use such a hueh as the predecessor
of h′ and so defineπ.

To show that the tableau(T,s,η ,π) is finished, we just need to check all the rules of our tableau
construction and make sure none require the tableau to be changed in any way. This needs to be done
each rule at a time, and needs to be done carefully, although it is straightforward.

The proof in [17] uses a finite model theorem for CTL* to obtainabranch boundednessresult on the
Hintikka tableau. We can guarantee existence of a such a tableau with a certain function of the length of
the formula bounding the length of each branch (before an up-link). The bound is triple exponential in
the length of the formula, so rather large.

Thus we can conclude that each satisfiable formula has a tableau, but we can not yet claim that it is
a tableau which can be constructed by our rules.

In the rest of this section we describe how we can show that ifφ is satisfiable then there is a sequence
of applications of our tableau rules that allow the construction of a successful tableau forφ . Suppose
φ is satisfiable. From the lemma above we know that there is a successful, branch-bounded, supported
tableauT−∞ = (T ′,s′,η ′,π ′) for φ .

In [15], we show how to build a related, successful tableau for φ in a step by step manner only using
the construction rules from section 7.1. Thus we make a sequenceT0,T1, ... of tableaux each one using
a construction step to get to the next.

In order to useT−∞ to guide us, we also construct a sequence of mapsw0,w1,w2, ..., eachwi relating
the phues of the labels of the nodes ofT i to the hues of the labels of the nodes ofT−∞.

Thus eachwi maps ordered pairs which are nodes paired with indices to other such pairs. Suppose
thatT i = (T,s,η ,π) andT−∞ = (T ′,s′,η ′,π ′). Sayt ∈ T i and j < |ηt |. Thenwi(t, j) will be defined: say
thatwi(t, j) = (u,k) for u∈ T ′. Thenk< |η ′

u|. The idea in this example is thatwi is associating thejth
phue oft with thekth phue ofu.

All the while during the construction we ensure thatwi maps each node inT i to a node inT−∞ which
has a superset label.

We also show that the constructed tableau does not fail at anystage if one of the check rules such as
LG, NTP or the existence of direct contradictions in phues. This follows from the fact that the phues in
its labels are subsets of the hues in the labels of the Hintikka tableau.

If T is finished (leafless), supported and all predecessors existthen we are done. IfT is not supported
then choose any formulaα in any phue in the label of any node that is not supported. Depending on the
form of α we apply one of the tableau rules to add some successor, or some phue and/or some formula(s)
in a phue that will ensure thatα is then supported. See [15] for details.
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There are only a finite number of formulas that can be added in hues in labels in a finite structure
which is a subset ofT−∞. This guarantees that the process will eventually terminate.

Thus every satisfiable formula has a successful tableau which can be found via our set of rules.
In fact, we can go further and get an even better completenessresult. We can show that each formula

φ only has a finite number of tableaux which respect the branch bounds and a simple bound on branching
factor. Furthermore, if there is a successful tableau then there will be one obeying these bounds. There
are at most 2|φ | hues and so each node in a Hintikka tableau has at most 2|φ | successors: by the form of
completeness proof we can enforce the same bound on our more general tableaux. As we also have a
finite bound on the length of branches there are clearly only finitely many tableaux for any particularφ .

Lemma. Givenφ , there are only a finite number of tableaux which respect the branch length bound
and the branching degree bounds.

In this definition of tableau we have guaranteed terminationof any tableau construction algorithm by
putting a simple but excessive bound on the length of branches. This allows us to conclude failure in a
finite time and to also abbreviate the search for successful tableaux.

9 Stopping Repetition: coming up in follow-on paper

In this paper we have only briefly mentioned the limit on the length of branches as a way of guaranteeing
that there are only finitely many tableau, and so that a searchwill terminate one way or another. The
limit, based on a theoretical upper bound on the minimal CTL*model size, is very generous and hence
this is an inefficient way of cutting short tableau searches.Being so generous slows down both negative
and positive satisfiability reports.

In order to make some sort of working implementation to demonstrate the practicality of this tableau
it is necessary to have a better way of preventing the construction of wastefully long branches. For want
of better terminology we will call such a facility, a “repetition checker”.

The task of making a quick and more generally usable repetition checker will be left to be advanced
and presented at a later date. In fact, eventually we hope to provide a useful set of criteria for earlier
termination of construction of branches depending on the properties of the sequence of colours so far. A
simple example of the sort of criterion is the repeated appearance of the same sequence of colours and
hues along a non-branching path without being able to construct any up-links. Other more sophisticated
ideas are easily suggested but we want to develop a more systematic set of tests before presenting this in
future work.

In [17], we present some basic repetition checking tests forthe Hintikka style tableau. These can be
used in order to allow some faster automated tableau construction. The tests can be modified to work
with our sparser labels, and we will present full details in afuture paper. There are many opportunities
for more thorough repetition checks as well.

10 Complexity, Implementation and Comparisons

Say that|φ | = l . Thusφ has≤ l subformulas andcl φ contains at most 2l formulas. Since each hue
contains, for eachα ≤ φ at most one ofα or ¬α , there are at most≤ 2l hues. Thus there are less
than 22

l
colours. It is straightforward to see that there is a triple exponential upper bound if the tableau

search algorithm uses the double exponential bound on branch length [17] to curtail searches down long
branches.
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A prototype implementation written by the author shows thatfor many interesting, albeit relatively
small, formulas, the experimental performance of the system is relatively impressive. There are some
preliminary results detailed in [15] which show a comparison of running times with the older Hintikka-
style tableau technique of [17] and the state of the art game-based CTL* reasoner from [7]. In general the
new reasoner is more than an order of magnitude quicker at deciding formulas from a range of basic and
distinctive CTL* validities and their negations and a few other satisfiable formulas. The implementation
is available as Java code for public download [15]. Online reasoner coming soon.

The implementation for the new technique that is used in these experiments, uses some basic repeti-
tion checking derived from the checks given earlier in the Hintikka-style system [17]. The new, slightly
modified versions of these mechanisms are not described in the current paper. Instead they will be de-
scribed in a future paper.

In [7], four series of formulas are suggested to examine asymptotic behaviour. Timing results for our
system on these formulas are presented in Table 6. We comparethe performance of our new tableau with
the state of the art in game-based techniques for deciding CTL*. This is using published performance
of the reasoner from [7] as reported in experiments in [11]. Consider the following series of formulas:
α1 =AFGq, β1 =AFAGqand for eachi ≥ 1, αi+1 = AFGαi andβi+1 =AFAGβi. In table 6, we compare
the performance of the Hintikka-style tableau system from [17], the game-based reasoner from [7] and
the new tableau system of this paper (using basic repetitionchecking) on the growing series built from
these formulas. Although the running times, are on different computers, and so not directly comparable,
we can see the difference in asymptotic performance. Running times greater than an hour or two are
curtailed. From the results we see that we have achieved verynoticeable and significant improvements
in performance on the satisfiable examples.

Pure tableau-style reasoning on unsatisfiable formulas often involves exhaustive searches and the new
technique is not immune to such problems. See the 400 series of examples in the asymptotic experiments.
We will say more about these examples when proposing some newrepetition mechanisms in the future.

There are some, more theoretical descriptions of other game-based and automata-based techniques
for model-checking CTL* in older papers such as [10], [2] and[9]. However, these do not seem di-
rectly applicable to satisfiability decisions and/or theredo not seem to be any easily publicly available
implemented tools based on these approaches.

11 Conclusion

In this paper we have presented, albeit in a fairly high levelsketch, a traditional tableau approach to
reasoning with the important logic CTL*. Soundness and completeness results are proved and prototype
implementation demonstrates the significantly improved performance of the new approach on a range of
test formulas.

The next task in this direction is to build on the foundation here and present full details and proofs of
the repetition checking mechanisms that can be used with thetableau construction. There are some basic
repetition mechanisms available in the previous, Hintikkastyle tableau [17] but they need to be modified
slightly. There are opportunities for additional techniques. It is also important to improve and document
the rule-choice algorithms which have a bearing on running times.

In the future, it will be useful to develop reasoning tools which combine the latest in tableaux, au-
tomata and game-based approaches to CTL*. Having tools working in parallel should allow faster de-
cisions. It will also be useful to extend the work to logics ofmulti-agent systems such as ATL* and
strategy logic [12].
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# formula length sat? MRH FLL NEW
[17] [7] this paper

101 α1 → β1 20 Y 330 120 39
102 α2 → β2 35 Y > 105 130 43
103 α3 → β3 50 Y out of time 120 69
108 α8 → β8 125 Y out of time 380 664
113 α13 → β13 200 Y out of time > 105 2677
115 α15 → β15 230 Y out of time > 106 4228
119 α19 → β19 290 Y out of time out of time 9468

201 ¬(α1 → β1) 21 Y 350 120 172
202 ¬(α2 → β2) 36 Y > 105 170 117
203 ¬(α3 → β3) 51 Y out of time 2270 213
204 ¬(α4 → β4) 66 Y out of time > 106 377
205 ¬(α5 → β5) 81 Y out of time out of time 673
212 ¬(α12 → β12) 186 Y out of time out of time 7153

301 β1 → α1 20 Y 340 130 48
302 β2 → α2 35 Y > 105 140 50
303 β3 → α3 50 Y out of time 140 86
312 β12 → α12 185 Y out of time 30970 3333
314 β14 → α14 215 Y out of time > 106 5512
316 β16 → α16 245 Y out of time out of time 8627
319 β19 → α19 290 Y out of time out of time 15615

401 ¬(β1 → α1) 21 N 400 760 1801
402 ¬(β2 → α2) 36 N > 105 48670 > 105

403 ¬(β3 → α3) 51 N out of time > 106 out of time

Figure 6: Asymptotic Examples: Running Times (milliseconds)
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Deciding the Satisfiability of MITL Specifications�
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In this paper we present a satisfiability-preserving reduction from MITL interpreted over finitely-
variable continuous behaviors to Constraint LTL over clocks, a variant of CLTL that is decidable,
and for which an SMT-based bounded satisfiability checker is available. The result is a new complete
and effective decision procedure for MITL. Although decision procedures for MITL already exist,
the automata-based techniques they employ appear to be very difficult to realize in practice, and, to
the best of our knowledge, no implementation currently exists for them. A prototype tool for MITL
based on the encoding presented here has, instead, been implemented and is publicly available.

1 Introduction

Computer systems are inherently discrete-time objects, but their application to control and monitoring
of real-time systems often requires to deal with time-continuous external signals and variables, such as
position, speed and acceleration or temperature and pressure. Hence, many continuous-time models have
been developed for verification and validation of such systems, e.g., Timed Automata [3], or continuous-
time temporal logics, such as MITL (Metric Interval Temporal Logic) [4].

In general, the role of temporal logics in verification and validation is two-fold. First, temporal
logic allows abstract, concise and convenient expression of required properties of a system. Linear
Temporal Logic (LTL) is often used with this goal in the verification of finite-state models, e.g., in model
checking [5]. Second, temporal logic allows a descriptive approach to specification and modeling (see,
e.g., [19, 14]). A descriptive model is based on axioms, written in some (temporal) logic, defining a
system by means of its general properties, rather than by an operational model based on some kind of
machine (e.g., a Timed Automaton) behaving in the desired way. In this case, verification typically
consists of satisfiability checking of the conjunction of the model and of the (negation of) its desired
properties. An example of the latter approach is Bounded Satisfiability Checking (BSC) [20], where
Metric Temporal Logic (MTL) specifications on discrete time and properties are translated into Boolean
logic, in an approach similar to Bounded Model Checking of LTL properties of finite-state machines.

In general, verification of continuous-time temporal logics is not as well sopported as for discrete-
time models. Uppaal [6] is the de-facto standard tool for verification of Timed Automata. However,
Uppaal does not support continuous-time temporal logics: not only satisfiability checking is not avail-
able in Uppaal, but even the formalization of system properties in temporal logic is not allowed, aside
from rather simple invariants and reachability properties. Rather, non-trivial properties to be verified on
an operational model must be expressed as other Timed Automata, i.e., at a lower level of abstraction. In-
deed, there have been a few proposals for verifying continuous-time logics [17], but they do not appear to
be actually implementable, and, to the best of our knowledge, in fact they have never been implemented.

This paper proposes a new technique, based on generalizing BSC to MITL, by reducing satisfiability
of MITL to satisfiability of Constraint LTL over clocks (CLTL-oc), a new decidable variant of CLTL [12].

�This research was supported by the Programme IDEAS-ERC, Project 227977-SMScom.
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M, t |ù pô p PMptq p P AP

M, t |ù  φ ôM, t �|ù φ
M, t |ù φ ^ψ ôM, t |ù φ and M, t |ù ψ
M, t |ù φUIψ ôDt 1 P t� I : M, t 1 |ù ψ and M, t2 |ù φ @t2 P pt, t 1q

Table 1: Semantics of MITL.

In particular, a MITL formula may be encoded into an equisatisfiable CLTL-oc formula, which can then
be solved through the same techniques of [7, 9, 8]. The latter approach generalizes BSC to CLTL,
generating an encoding suitable for verification with standard Satisfiability Modulo Theories (SMT)
solvers such as Z3 [18]. This new technique has been implemented in an open-source prototype tool [1].

Although MITL is known to be decidable over unrestricted behaviors [16], we focus on so-called
finitely-variable models, i.e. such that in every bounded time interval there can only be a finite number
of changes. This is a very common requirement for continuous-time models, which only rules out patho-
logical behaviors (e.g., Zeno [14]) which do not have much practical interest. To define the encoding, we
start by focusing on models in which intervals are closed on the left end and open on the right end. This
restriction is later lifted to consider general, finitely-variable, signals.

The paper is organized as follows: Sect. 2 defines MITL and CLTL-oc, Sect. 3 defines a reduction
from MITL to CLTL-oc, based on the restriction that intervals are closed to the left and open to the right;
Sect. 4 generalizes the translation to intervals of any kind, also discussing the extension to include past
operators. Sect. 5 concludes, discussing applications to other logics and presenting a prototype tool.

2 Languages

Let AP be a finite set of atomic propositions. The syntax of (well formed) formulae of MITL is defined
as follows, with p P AP and I an interval of the form xa,by or xa,�8y, with a,b P N constants, a  b:

φ :� p | φ ^φ |  φ | φUIφ

The semantics of MITL is defined in Table 1 with respect to signals. A signal is a function M :R�Ñ 2AP,
with R� the set of nonnegative reals. A MITL formula φ is satisfiable if there exists a signal M such that
M,0 |ù φ (in this case, M is called a model of φ ). The globally GI and eventually FI operators can be
defined by the usual abbreviations: FIφ �JUIφ and GIφ � FIp φq.

Constraint LTL (CLTL [12, 9]) is used in Sect. 3 to solve the satisfiability problem of MITL. CLTL
formulae are defined with respect to a finite set V of variables and a constraint system D , which is a pair
pD,Rq with D being a specific domain of interpretation for variables and constants and R being a family
of relations on D, such that the set AP of atomic propositions coincides with set R0 of 0-ary relations.
An atomic constraint is a term of the form Rpx1, . . . ,xnq, where R is an n-ary relation of R on domain D
and x1, . . . ,xn are variables. A valuation is a mapping v : V Ñ D, i.e., an assignment of a value in D to
each variable. A constraint is satisfied by v, written v |ùD Rpx1, . . . ,xnq, if pvpx1q, . . . ,vpxnqq P R. Given
a variable x P V over domain D, temporal terms are defined by the syntax: α :� c | x | Xα , where c is
a constant in D and x denotes a variable over D. Operator X is very similar to X, but it only applies
to temporal terms, with the meaning that Xα is the value of temporal term α in the next time instant.
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pπ,σq, i |ù pô p P πpiq for p P AP

pπ,σq, i |ù Rpα1, . . . ,αnq ô pσpi�|α1|,xα1q, . . . ,σpi�|αn|,xαnqq P R

pπ,σq, i |ù  φ ô pπ,σq, i �|ù φ
pπ,σq, i |ù φ ^ψ ô pπ,σq, i |ù φ andpπ,σq, i |ù ψ
pπ,σq, i |ù Xpφq ô pπ,σq, i�1 |ù φ
pπ,σq, i |ù Ypφq ô pπ,σq, i�1 |ù φ ^ i¡ 0

pπ,σq, i |ù φUψ ôD j ¥ i : pπ,σq, j |ù ψ ^pπ,σq,n |ù φ @ i¤ n  j

pπ,σq, i |ù φSψ ôD0¤ j ¤ i : pπ,σq, j |ù ψ ^pπ,σq,n |ù φ @ j   n¤ i

Table 2: Semantics of CLTL.

Well-formed CLTL formulae are defined as follows:

φ :� Rpα1, . . . ,αnq | φ ^φ |  φ | Xpφq | Ypφq | φUφ | φSφ

where αi’s are temporal terms, R P R, X, Y, U and S are the usual “next”, “previous”, “until” and
“since” operators of LTL, with the same meaning. The dual operators “release” R, and “trigger” T may
be defined as usual, i.e., φRψ is  p φU ψq and φTψ is  p φS ψq.

The semantics of CLTL formulae is defined with respect to a strict linear order representing time
pN, q. Truth values of propositions in AP, and values of variables belonging to V are defined by a pair
pπ,σq where σ : N�V Ñ D is a function which defines the value of variables at each position in N and
π : NÑ℘pAPq is a function associating a subset of the set of propositions with each element of N. The
value of terms is defined with respect to σ as follows:

σpi,αq � σpi�|α|,xαq

where xα is the variable in V occurring in term α and |α| is the depth of a temporal term, namely the
total amount of temporal shift needed in evaluating α: |x| � 0 when x is a variable, and |Xα| � |α|�1.
The semantics of a CLTL formula φ at instant i ¥ 0 over a linear structure pπ,σq is recursively defined
as in Table 2, where R PRzR0. A formula φ P CLTL is satisfiable if there exists a pair pπ,σq such that
pπ,σq,0 |ù φ .

In this paper, we consider a variant of CLTL, where arithmetic variables are evaluated as clocks and
set R is t ,�u. A clock “measures” the time elapsed since the last time the clock was “reset” (i.e., the
variable was equal to 0). By definition, in CLTL-oc each i P N is associated with a “time delay” δ piq,
where δ piq ¡ 0 for all i, which corresponds to the “time elapsed” between i and the next state i�1. More
precisely, for all clocks x PV , σpi�1,xq � σpi,xq�δ piq, unless it is “reset” (i.e., σpi�1,xq � 0).

3 Reduction of MITL to CLTL-over-clocks

This section devises a reduction from MITL to CLTL-oc. The inherent bounded variability of metric
operators in MITL allows a translation of a MITL formula φ into a CLTL-oc formula with a bounded
number of variables, depending on the subformulae of φ .

As in [17, 13], it is actually convenient to introduce the operators Up0,�8q and FI as primitive, and
instead derive the metric until UI , as shown by the following result.
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Lemma 1. Let M be a signal. Then, for any t ¥ 0,

p1q M, t |ù φUra,byψ ôM, t |ùGr0,aqpφUp0,�8qψq^Fra,byψ
p2q M, t |ù φUpa,byψ ôM, t |ùGr0,aspφUp0,�8qψq^Fpa,byψ
p3q M, t |ù φUx0,byψ ôM, t |ù φUx0,�8qψ^Fx0,byψ

When b is�8, equivalences p1q,p2q can be simplified, respectively, in φUra,�8qψ �Gr0,aqpφUp0,�8qψq
and φUpa,�8qψ �Gr0,aspφUp0,�8qψq.

The above equivalences make it possible to base the CLTL-oc translation on the Up0,�8q and FI

operators, instead of UI , therefore confining metric issues only to the translation of FI , which is much
simpler than the translation of UI .

Reducing MITL to CLTL-oc requires a way to represent models of MITL formulae, i.e., continuous
signals over a finite set of atomic propositions, by means of CLTL-oc models where time is discrete.

Discrete positions in CLTL-oc models represent, for each subformula θ of φ , the occurrence of an
“event” at that point for the subformula. An “event” is a change of truth value (“become true” or “become
false”) of θ . Hence, the signal is “stable” (i.e., there is no change) in the interval between two events:
a continuous-time signal is hence partitioned by the above events into intervals. Time progress between
two discrete points is measured by CLTL variables behaving as clocks: for each subformula θ of φ , there
are two clocks z0

θ ,z
1
θ measuring the time elapsed since the last “become true” and “become false” events,

respectively (i.e., they are reset when the corresponding event occurs). In case of subformulae of the form
θ � Fxa,byφ , also a finite set of auxiliary clocks is introduced, whose cardinality depends on the values

of a,b, namely d � 2
Q

b
b�a

U
auxiliary clocks x j

θ (0 ¤ j ¤ d� 1). Therefore, a CLTL-oc model embeds,
in every (discrete) position both the information defining the truth value of all the subformulae occurring
in φ and also the time progress between two consecutive events. Then, every position in the CLTL-oc
model captures the configuration of one of the intervals in which the MITL signals are partitioned by
the events. Therefore, our reduction defines, by means of CLTL-oc formulae, the semantics of every
subformula of φ .

We start by restricting the set of signals defining models of MITL formulae to signals where intervals
are left-closed and right-open (l.c.r.o.), e.g.: . We will lift this restriction later in the
paper. Hence, singularities (i.e., events being true in a single instant) cannot occur and may be ignored.
However, the semantics given here does not exclude a priori Zeno behaviors [14]: it admits signals
corresponding to an infinite sequence of events accumulating to the left of a time instant, i.e., where
events do not advance beyond that instant. However, since these signals correspond to behaviors that are
of little interest in practice, we restrict the set of models to non-Zeno signals, i.e., to models of CLTL-oc
formulae where time diverges:

°
iPN δ piq � 8, by enforcing a suitable CLTL-oc constraint.

Let M be a signal, φ a MITL formula over AP and subpφq the set of all subformulae occurring in φ .
We write Òθ for the occurrence of an event making θ P subpφq become true. With abuse of notation we
extend |ù as follows:

M, t |ùÒθô M, t |ù θ and

�
Dε ¡ 0 @t 1 P pt, t� εq M, t 1 |ù θ and

t ¡ 0ñDε ¡ 0 @t 1 P pt� ε, tq M, t 1 |ù  θ

�

We define Óθ as an abbreviation for Ò θ . These definitions impose that signals are defined over an infinite
sequence of intervals of the form rt1, t2q where t2 ¡ t1.

Not all temporal operators preserve l.c.r.o. intervals. For example, let θ �Fxa,bqφ be a MITL formula
and let φ hold on a l.c.r.o. signal; then, the corresponding signal for θ (i.e., the signal including also the
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values for Òθ ), is not l.c.r.o.. In fact, let t ¡ b be the first position such that M, t |ùÒφ . If the signal for
θ were l.c.r.o., then it should be M, t�b |ùÒθ , which is impossible because M, t�b |ù Fxa,bqφ ô Dt2 P
t� b�xa,bq M, t2 |ù φ and t2   t, but by hypothesis φ is false before t. Nevertheless, the next result
shows that that Boolean connectives  ,^ and temporal operators Up0,�8q, Fxa,bs, Fxa,�8q and Fx0,bs, do
indeed preserve l.c.r.o. intervals.

We extend MITL models to any subformulae occurring in MITL formulae by defining a mapping
Mθ : R�Ñ tH,θu such that:

θ PMθ ptq ôM, t |ù θ .

Lemma 2. Let M be a l.c.r.o. signal, let φ ,ψ be two formulae occurring in M and let θ be a formula
 φ , φ ^ψ , Up0,�8qpφ ,ψq,Fxa,bspφq,Fxa,�8qpφq,Fx0,bspφq. Then, Mθ is a l.c.r.o. signal.

In what follows, Fxa,�8q is defined as primitive, instead of applying the known equivalence Fra,�8qφ �
JUra,�8qφ �Gr0,aqpφUp0,�8qψq, as formula Gr0,aqφ � Fr0,aq φ violates the l.c.r.o. assumption.

We now show how to build a CLTL-oc model pπ,σq of φ from a signal M. For each subformula

θ P subpφq we introduce two clock variables z0
θ ,z

1
θ and one atomic proposition

r
θ . We will ensure

that
r
θ is true at a position whenever θ is true in the interval corresponding to the position. To ease

understanding, in the rest we use θr�  
r
θ . We also introduce two abbreviations,  θ ,!θ that play the

role of event markers (referred to as just “events” when the context is clear); more precisely, they denote,
respectively, events Òθ and Óθ , and are defined as follows:

 ξ � Yp
r
ξ q^

r
ξ !ξ � Ypξrq^ ξr

Note that, as  Yp
q is true in the origin, no matter the argument, either  θ or !θ holds at 0.
For each θ � Fxa,bsψ P subpφq we introduce d � 2

Q
b

b�a

U
auxiliary clocks x0

θ , . . .x
d
θ . The idea behind

the above definitions is that at each occurrence of an event marker ( θ or !θ ), exactly one of the clocks
z0

θ ,z
1
θ is equal to 0; the clock, then, measures the time elapsed from the last opposite event. Instead, the

auxiliary clocks associated with formulae Fxa,bsψ are used to store the time elapsed since the occurrence
of events involving ψ between the current time instant t and t�b. In fact, [17] shows that formulae of the
form Fxa,byψ have inherent bounded variability (the result holds for signals with no l.c.r.o. restriction).

Lemma 3 ([17]). Let θ � Fxa,byψ , M be a signal and let 0  t1   t2 be two instants such that M, t1 |ùÒθ ,
M, t2 |ùÓθ and @t P pt 1, t2q M, t |ù θ . Then, t2� t1 ¥ b�a.

By Lemma 3, two consecutive events Òθ and Óθ for formulae θ � Fxa,byψ cannot occur at a distance
less than b� a. However, this does not hold when Òθ occurs at t � 0 and ψ is true at 0, but it becomes
false before b. For instance, let M,a |ù p and M,a� ε |ùÓp, where ε ¡ 0 is such that a� ε   b; assume
for simplicity that p remains false, i.e., for all t P ra� ε,�8q, M, t �|ù ψ . Then, we have that M,0 |ùÒθ
and M,ε |ùÓθ . This property will be exploited in Sect. 3.2 to define the translation of the F operator.

Corollary 1. Let θ � Fxa,bsφ be a MITL formula, with a ¡ 0, b �� 8, and let t be an instant of time.

Then, in rt, t�bs there are at most d � 2
Q

b
b�a

U
events Òθ ,Óθ .

The result of Corollary 1 can be significantly simplified for formulae of the form θ � Fx0,bsφ or of the
form θ � Fxa,�8qφ . In fact, in the former case, let t2 ¡ t1 ¥ 0 be two time instants such that M, t1 |ùÒφ ,
M, t2 |ùÓφ and @t 1 P rt2, t2� bs M, t 1 �|ù φ . Then, by definition, we have M, t1� b |ùÒθ , M, t2 |ùÓθ and
@t 1 P rt1�b, t2q |ù θ . Therefore, no event for θ occurs over the interval rt1�b, t2q. If θ � Fxa,�8qφ , by
definition, M, t |ù θ ô Dt 1 P xt�a,�8q M, t 1 |ù φ ; hence, M, t |ù θ ñM,0 |ù θ , i.e., M,0 |ùÒθ . Event
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Òθ occurs in 0 if, and only if: Dt ¥ a M, t |ùÒφ or Dt ¡ a M, t |ùÓφ or Dt   a M, t |ùÒφ ^@t 1 ¡ t M, t 1 |ù φ .
Moreover, M, t �|ù θ ñ @t 1 P xt � a,�8q M, t 1 �|ù φ , i.e., M, t |ùÓθô M, t � a |ùÓφ ^Gp φq. By the
previous properties, the translation of formulae involving Fx0,bs and Fxa,�8q is simpler than the case
a ¡ 0 and b ��8, because auxiliary clocks are not needed to represent the formula. For this reason, we
provide a direct translation for these subformulae.

Since signals are finitely variable, all the events in M can be enumerated as follows. A position i¥ 0
uniquely identifies a time instant along M. Let T �R� be an infinite, but enumerable, set of time instants
that includes 0 and every instant when at least one event occurs. Let I : T ÑN be a one-to-one mapping,
consistent with the ordering of time, i.e, Ip0q � 0 and Iptq   Ipt 1qô t   t 1, and such that for all t1   t2 P T
Ipt2q � Ipt1q�1ô Dt pt1   t   t2^ t P T q. By definition, for each subformula θ an event (either θ or
!θ ) always occurs at Ip0q � 0.

Now, given a MITL formula φ and a signal M such that M,0 |ù φ , we define how to build CLTL-oc
interpretations from M. We will prove afterwards that this interpretation is a model for the CLTL-oc
formula translating φ . We say that a clock v is reset at position i when σpi,vq � 0.

Let pπ,σq be a CLTL-oc interpretation. If an event for θ P subpφq occurs at t ¥ 0, the corresponding
event marker ( θ or !θ ) labels πpIptqq and a reset for one of z0

θ ,z
1
θ occurs at Iptq:

• �iPt0,1uσpIptq,zi
θ q � 0 and pπ,σq, Iptq |ù θ if M, t |ùÒθ

• �iPt0,1uσpIptq,zi
θ q � 0 and pπ,σq, Iptq |ù!θ if M, t |ùÓθ .

• σp0,z0
θ q � 0 for all θ .

• σp0,x0
θ q � 0 for all θ of the form Fxa,byψ .

Note that, by definition, for all time instants t P T where no events for θ occur, neither  θ nor !θ
hold in πpIptqq (i.e., pπ,σq, Iptq |ù   θ ^ !θ ).

Now we define how CLTL-oc models represent time progress. Let t, t 1 P T be two time instants such
that Ipt 1q � Iptq�1. For all clocks zi

θ that are not reset in Ipt 1q we impose

σpIpt 1q,zi
θ q � σpIptq,zi

θ q� t 1� t.

In addition, Di P t0,1u s.t. σpIptq,zi
θ q � 0 if and only if pπ,σq, Iptq |ù θ or pπ,σq, Iptq |ù!θ . Clocks

z0
θ ,z

1
θ cannot be reset at the same time, but alternate, and z0

θ is reset in the origin. Clocks x j
θ are dealt with

analogously. As mentioned, there exist d � 2
Q

b
b�a

U
clocks x j

θ for a formula Fxa,byψ P subpφq. First, for

all positions i¥ 0, σpi,z0
θ q � 0 or σpi,z1

θ q � 0 if, and only if,
�d�1

j�0 σpi,x j
θ q � 0, i.e, whenever an event

for θ occurs, (at least) one auxiliary clock is reset. To avoid simultaneous resets of different clocks, if x j
θ

is reset then no x j1
θ is reset, for j1 �� j. Auxiliary clocks are circularly reset modulo d; i.e., if x j

θ is reset
at position i, then the next reset of x j

θ , if it exists, occurs in a position i1 ¡ i such that all other clocks x j1
θ

( j1 � j) are reset, in order, exactly once in pi, i1q. Note that, if a clock x j
θ is reset at position i� Iptq, the

next position i1� Ipt 1qwhen the clock is reset must be such that t 1¡ t�b, i.e., given a formula θ � Fxa,bs,
every clock x j

θ is reset only once over intervals of length b. The sequence of resets starts with x0
θ � 0.

Finally, if φ is satisfiable and M is a signal such that M,0 |ù φ i.e., M,0 |ùÒφ , then pπ,σq,0 |ù φ .
Let rφ pMq denote the (infinite) set of pairs pπ,σq obtained from M by means of the previous rules

for a MITL formula φ . The inverse mapping r�1
φ is also definable, but not all pairs pπ,σq represent legal

signals. Hence, we restrict them to the set of CLTL-oc models that are images of a signal M under rφ ,
i.e., pπ,σq is such that there exists a signal M such that pπ,σq P rφ pMq. Sect. 3.1 provides a set of
CLTL-oc formulae whose models are exactly the set of pairs pπ,σq such that pπ,σq P rφ pMq. For these
models the inverse map r�1 is well-defined.
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3.1 Clocks and Events

The following formulae define how events  θ ,!θ occur, for θ P subpφq, and when clocks z0
θ ,z

1
θ are

reset. However, they do not capture the semantics of subformulae θ , which is the object of Sect. 3.2, but
only the relations between events  θ and !θ and clock resets.

Formula (1) enforces that the occurrence of an event  θ ,!θ entails the reset of one of z0
θ ,z

1
θ . In

addition, Formula z0
θ � 0 evaluated in the origin states that clock z0

θ is reset in the origin.

 θ _!θ ô z0
θ � 0_ z1

θ � 0 (1)

Let a P N and value ak be pa mod kq. The clocks associated with a subformula θ are alternatively
reset, as shown on an example in Figure 1. Hence, between any two resets of clock z0

θ there must be a
reset of clock z1

θ , and vice-versa:

p
©

iPt0,1u

pzi
θ � 0qq ñ X

�
pzpi�1q2

θ � 0qRpzi
θ � 0q



. (2)

For a position i ¡ 0 it may happen that neither  θ nor !θ occur for any formula (i.e, no events
occur). The assumption that intervals are l.c.r.o. entails that intervals have non-null durations, and events
Òθ ,Óθ cannot occur at the same time. Define eventsφ �

�
θPsubpφqpz

0
θ � 0q^Gp(1)^ (2)q.

Lemma 4. Let θ be a symbol of a MITL formula. For any non-Zeno signal M : R�Ñ tH,θu for θ and
for all pπ,σq P rθ pMq, then pπ,σq,0 |ù eventsθ . Conversely, given pπ,σq in which time is divergent
and s.t. pπ,σq,0 |ù eventsθ , there is exactly one non-Zeno signal M s.t. M � r�1

θ ppπ,σqq.

Let θ be Fxa,bsψ . We introduce d � 2
Q

b
b�a

U
clocks x j

θ , which behave in a similar way as z0
θ ,z

1
θ . Each

x j
θ is needed to store the time elapsed since the occurrence of the last event of θ (Òθ or Óθ ). When one of
Òθ ,Óθ occurs, then a x j

θ is reset, i.e., x j
θ � 0. Each reset event marked by xi

θ � 0 entails either  θ or !θ
and all Òθ , Óθ events are marked by a single reset xi

θ � 0 (Formula (3)).�
 θ _!θ ô

d�1ª
j�0

x j
θ � 0

�
^

�
�d�1©

i�0

d�1©
j�0,i�� j

 pxi
θ � 0^ x j

θ � 0q

�

 (3)

The occurrence of resets for clocks xi
θ is circularly ordered and the sequence of resets starts from the

origin by x0
θ (see an example in Figure 1). If xi

θ � 0, then, from the next position, all the other clocks are

strictly greater than 0 until the next xi�1d
θ � 0 occurs.

d�1©
i�0

�
�xi

θ � 0ñ X

�
�pxi�1d

θ � 0qR
©

jPr0,d�1s, j ��i

px j�1d
θ ¡ 0q

�


�

 (4)

Formula x0
θ � 0, evaluated at position 0, sets the first reset of the sequence, constrained by formulae

(3)-(4). Moreover, we force all clock values to be strictly ordered in the origin by x0
θ   xd�1

θ   �� �   x1
θ ,

guaranteeing that resets are correctly associated with events occurring after the origin.
The following lemma (whose proof is similar to the one for Lemma 4) shows that auxclocksθ ,

defined as px0
θ � 0q^Gpp3q^p4qq captures map r for Fxa,bs formulae. .

Lemma 5. Let θ � Fxa,bsψ . For any signal M : R� Ñ tH,θu for θ and for all pπ,σq P rθ pMq, it is
pπ,σq,0 |ù auxclocksθ . Conversely, if pπ,σq,0 |ù auxclocksθ , there exists one, and only one, signal
M s.t. M � r�1

θ ppπ,σqq.
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z0
θ � 0

x0
θ � 0

z1
θ � 0

x1
θ � 0

z0
θ � 0

x2
θ � 0

z1
θ � 0

x3
θ � 0

z0
θ � 0

x0
θ � 0

θ

Figure 1: Sequence of circular resets for formula θ � Fx2,1sψ

3.2 Semantics of MITL Temporal Modalities

We now define a mapping m associating a MITL formula with an equisatisfiable CLTL-oc formula, thus
capturing the semantics of MITL in CLTL-oc.

The cases for Boolean connectives and the non-metric U operator are straightforward. In the follow-
ing we write O instead of  YpJq to represent the first position of CLTL-oc models.

 θ � p P AP: it follows from the definition of  p and !p, representing events Òp,Óp over

discrete time.

 θ � ψ: in this case it is mpθq �

r
θôψr.


 θ � γ^ψ: we have: mpθq �
r
θô

r
γ ^

r
ψ .


 θ � γUp0,�8qψ: similarly: mpθq �
r
θô

r
γ ^

r
γ U

r
ψ .


 θ � Fxa,bsψ: When an event Òθ occurs, a clock x j
θ is reset, then event Òψ will eventually occur

after b time units and it has to occur after b�a instants from the last occurrence of Óψ (otherwise Òθ has
already occurred in the past). The case for t � 0 is treated separately: Òθ occurs at 0 when there is an
interval in which ψ holds that either starts in ra,bs or it spans a. Clock x0

θ is used to measure the time
elapsing from the origin. In fact, by Corollary 1, x0

θ , which is reset at 0, can only be reset again after b.

 θ ô
 O^

d�1ª
j�0

px j
θ � 0q^X

�
�x j

θ ¡ 0U

�
� ψ ^ x j

θ � b^
ª

iPt0,1u

zi
ψ ¡ pb�aq

�


�

 _

O^pO_ x0
θ ¡ 0qU

�r
ψ ^

�
a¤ x0

θ ¤ b _ x0
θ   a^X

�
x0

θ ¡ a
��	 (5)

ba

ψ

θ � Fxa,bsψ

xi
θ � 0 xi

θ � b

zi
θ � 0 zi

θ ¡ b�a

Figure 2: Rising edge

Formula (6) defines the condition to make  θ true exactly b instants before an event  ψ , provided
that clock zi

ψ is greater than pb�aq when ψ occurs (i.e., the last time ψ became false was at least b�a
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time units before). An illustration of Formulae (5) and (6) is in Figure 2.

 ψ ^
ª

iPt0,1u

zi
ψ ¡ pb�aq ñ

d�1ª
j�0

x j
θ � b (6)

When an event Óθ occurs, a clock x j
θ is reset, then the event Óψ will eventually occur after exactly

a time units and the next Òψ cannot occur before another b� a instants after that (otherwise Óθ cannot
occur). In the origin, however, Óθ occurs also in the case that Òθ does not occur.

!θ ô

d�1ª
j�0

px j
θ � 0q^X

�
px j

θ ¡ 0qU
�
!ψ ^ x j

θ � a ^ ψR 
�
 ψ ^ x j

θ ¤ b
			

_ pO^  θ q (7)

Formula (8) is the dual of (6) for a falling edge (Figure 3); it defines a sufficient condition forcing
!θ when an event !ψ occurs and  ψ does not happen before pb�aq time units have passed since !ψ .

!ψ ^ ψR 

�
� ψ ^

©
iPt0,1u

zi
ψ ¤ pb�aq

�

ñ d�1ª

j�0

x j
θ � a (8)

ba

ψ

θ � Fxa,bsψ

xi
θ � 0 xi

θ � a xi
θ ¡ b

Figure 3: Falling edge

Formula mpθq in this case is (5)^ (6)^ (7)^ (8).

As already anticipated, we may study separately the case of formulae Fxa,bsψ where a� 0 or b��8.
The translation in the two cases is simpler than the general one because auxiliary clocks are no longer
required to measure the time elapsing between events involving signal for the formula.

 θ � Fx0,bsψ: the translation for event Òθ is analogous to the one of the general case where time

elapsing is measured with respect to the clock z j
θ that is reset when θ holds (recall that, by Corollary 1,

z j
θ can be reset again only after the occurrence of  ψ ). The semantics of Óθ in this case is simpler than

for Formula (7) because events Óψ and Óθ always occur simultaneously, provided that the next Òψ does
not occur within b time instants from Óψ .

 θ ô

�
����
 O^ ψr ^

�
� 1ª

j�0

pz j
θ � 0q^X

�
�z j

θ ¡ 0U

�
� ψ ^ z j

θ � b^
ª

iPt0,1u

zi
ψ ¡ b

�


�


�

 _

O^pO_ z0
θ ¡ 0qUp

r
ψ ^z0

θ ¤ bq

�
���
 (9)

 ψ ^
ª

iPt0,1u

zi
ψ ¡ bñ

ª
jPt0,1u

z j
θ � b (10)
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!θ ô!ψ ^ ψR 

�
� ψ ^

©
iPt0,1u

zi
ψ ¤ b

�

 (11)


 θ � Fxa,�8qψ: From the semantics of Fa,�8pψq it is easy to see that event Òθ may only occur
at 0, if ψ eventually holds in the future after a instants from the origin. Similarly, event Óθ may only
occur once, but not necessarily in the origin; more precisely, it holds at 0 if and only if Òθ does not hold at
0, while for every instant t ¡ 0 it occurs when event Óψ occurs in t�a and ψ is always false afterwards.
As a consequence, z1

θ is reset at most once, if !θ occurs in an instant other than the origin.

 θ ô O^pO_ z0
θ ¡ 0qU

�r
ψ ^

�
a¤ z0

θ _ z0
θ   a^X

�
z0

θ ¡ a
��	

(12)

!θ ô z1
θ � 0^X

�
z1

θ ¡ 0 U
�
!ψ ^ z1

θ � a ^G
�
  ψ

���
_ pO^  θ q (13)

!ψ ^G
�
  ψ

�
ñ z1

θ � a (14)

3.3 Correctness

Let F be a set of formulae. We extend map r to subpφq, written rsubpφqpMq, to represent the set of CLTL-
oc models where atomic propositions are symbols associated with each subformula in φ and variables
includes all clocks z0

θ ,z
1
θ and the auxiliary clocks for the case Fxa,bs.

Lemma 6. Let M be a signal, and φ a MITL formula. For any pπ,σq P rsubpφqpMq it is:

pπ,σq,0 |ù
©

θPsubpφq

Gpmpθqq ^eventsθ ^
©

θPsubpφq
θ�Fxa,bs

auxclocksθ

and for all k P N,θ P subpφq it is pπ,σq,k |ù mpθq.

Lemma 7. Let M be a signal and let φ be a MITL formula. If

pπ,σq,0 |ù
©

θPsubpφq

Gpmpθqq^eventsθ ^
©

θPsubpφq
θ�Fxa,bs

auxclocksθ

and M � r�1
subpφqppπ,σqq, then for all t P T it is pπ,σq, Iptq |ù φ iff M, t |ùÒφ (similarly for !φ ).

The main result, the equisatisfiability of MITL and of its CLTL-oc translation, follows.

Theorem 1. A MITL formula φ is satisfiable if, and only if the following formula is satisfiable:

 φ ^
©

θPsubpφq

Gpmpθqq^eventsφ ^
©

θPsubpφq
θ�Fxa,bs

auxclocksθ . (15)
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3.4 Complexity

The reduction of MITL to CLTL-oc of Sect. 3.2 induces an EXPSPACE decision procedure for the
satisfiability of MITL (the problem is actually EXPSPACE-complete). In fact, consider a MITL formula
ϕ , and its CLTL-oc translation (15) obtained following the reduction of Sect. 3.2. In Formula (15) we
introduce two clocks for each subformula of ϕ , unless the subformula is of the form Fxa,bsψ , in which
case we introduce at most b clocks, since a,b P N. Then, the size of (15) is Op|ϕ|Kq, where K is the
maximum constant appearing in ϕ . It can be shown that satisfiability for a CLTL-oc formula φCLTL is
PSPACE in the number of subformulae of φCLTL (which is Op|ϕ|Kq for Formula (15)) and in the size
of the string encoding the maximum constant occurring in it (K for Formula (15)). Hence, the decision
procedure induced by our encoding is in EXPSPACE when using a binary encoding of K. As remarked
in [4], if the MITL formula ϕ does not contain subformulae of type Fxa,bsψ (with a¡ 0 and b ��8), the
reduction of Sect. 3.2 only introduces one clock variable for each subformula. As a consequence, the
size of Formula (15) is Op|ϕ|q and the algorithm is in PSPACE.

4 Generalized translation

Our translation from MITL to CLTL-oc can be extended to represent general signals where no assumption
is made on their shape, other than their finite variability, i.e., the l.c.r.o. assumption of Sect. 3 can be
relaxed. In this more general case, the truth of a formula φ can change in a singular manner, that is, there
can be instants where the value of φ is different than in a neighborhood thereof.

More precisely, we say that in a time instant t of a signal M formula φ has an “up-singularity” su
φ if

it holds in t, but not before and after it; more precisely, we say that M, t |ù su
φ if and only if M, t |ù φ and

Dε ¡ 0 s.t. @t 1 � t P pt�ε, t�εq it is M, t 1 �|ù φ . We say that φ has a “down-singularity” sd
φ when  φ has

an up-singularity (i.e., φ does not hold in t, but it does before and after it). Note that, by their definition,
singularities (either up or down), cannot occur in t � 0.

To represent general signals in CLTL-oc we “split” the representation of the value of subformulae θ
in intervals rt, t 1q in two parts: qθ captures the value of θ in t, whereas

�
θ corresponds to its value in pt, t 1q.

With the new predicates, we can restrict represented signals to only include l.c.r.o. intervals by imposing

the constraint qθô�θ for all θ . In addition,
r
θ and θr become:

r
θ�qθ ^ �θ θr� qθ ^ �θ .

Then, the encoding of Sect. 3 can be used also with the new atomic predicates, provided constraint

qθô�θ is added for all subformulae. If, instead, general signals are to be allowed, the encoding must
be extended to include also the cases in which the values of (sub)formulae change in singular manners.

To this end, we slightly modify the definition of  ξ as  Yp
�
ξ q^

�
ξ and !ξ as  Yp 

�
ξ q^ 

�
ξ and

we introduce the following abbreviations, which capture, respectively, up- and down-singularities (note
that neither"ξ , nor#ξ hold at 0, as Yp
q is false there):

"ξ � Yp 
�
ξ q^ qξ ^ �ξ #ξ � Yp

�
ξ q^ qξ ^ �ξ

We also define the following:
ξè

� ξ _"ξ _pO^ qξ q ξ
ë�!ξ _"ξ .

More precisely,
ξè

corresponds to a situation where ξ does not hold the interval before the current one (if
such interval exists), and it is true sometimes in the current one (either in its first instant, in which case ξ



M. M. Bersani, M. Rossi, & P. San Pietro 75

can have a up-singularity, or in the rest of the interval). Dually,
ξ
ë holds if ξ is true in the first instant of

the current interval, or in the interval before it, and from that moment on it is false.
When general signals are allowed, there is no need to restrict the temporal operators only to Fxa,bspψq.

For simplicity, we focus on the encoding of case θ � Fpa,bqpψq, all other cases being similar.

 θ � Fpa,bqψ: We have the following result.

Lemma 8. If θ � Fpa,bqψ is a MITL formula and M, t |ù θ then s Dε PR¡0 such that, for all t 1 P rt, t�εs
it is M, t 1 |ù θ and, when t ¡ 0, there is also ε PR¡0 such that ε   t and for all t 1 P rt�ε, ts it is M, t 1 |ù θ .

Because of Lemma 8, an up-singularity"θ can never occur for θ � Fpa,bqψ . In addition, if θ holds
at the beginning of an interval (i.e., qθ holds), then it must hold also in the rest of the interval and, if
t ¡ 0, it must also hold in the interval before. Then, the following constraint holds in every instant:

qθñ�θ ^pYp�θ q_Oq (16)

Formula (17) is similar to (5), but it specifies that, when θ becomes true outside of the origin, it must
do so in a left-open manner (i.e., qθ does not hold with  θ ); also, there is one additional condition that
makes θ become true in 0 when ψ becomes true exactly at b, in which case θ does not hold in 0.

 θ ô

 O^ qθ ^ d�1ª
j�0

px j
θ � 0q^X

�
x j

θ ¡ 0U

�
ψè

^x j
θ � b^

1ª
i�0

zi
ψ ¡ pb�aq

��
_

O^ qθ ^X

�
x0

θ ¡ 0U

�
ψè

^x0
θ � b^

1ª
i�0

zi
ψ ¥ pb�aq

��
_

O^ qθ ^pO_ x0
θ ¡ 0qU

�
pqψ _ �ψq^a  x0

θ   b _
�
ψ ^x0

θ   a^X
�
x0

θ ¡ a
�	

(17)

Formulae (18), (19) and (20) generalize, respectively, (6), (7) and (8) to include also the case in which ψ
changes its value in a singular manner (i.e., with"ψ instead of  ψ or !ψ ).

ψè

^
ª

iPt0,1u

zi
ψ ¥ pb�aq ñ

d�1ª
j�0

x j
θ � b (18)

!θ ô
d�1ª
j�0

px j
θ � 0q^X

�
px j

θ ¡ 0qU
�

ψ
ë^x j

θ � a ^X
�

ψè R 
�

ψè

^x j
θ ¤ b






_ pO^  θ q (19)

ψ
ë^X

�
ψè R 

�
ψè

^
1©

i�0

zi
ψ ¤ pb�aq

��
ñ

d�1ª
j�0

x j
θ � a (20)

Finally, we need to consider an additional shape in which θ can change value. More precisely, there
is also the case in which θ becomes false with a down-singularity#θ . This occurs in an instant t (which
must be ¡ 0, as singularities cannot occur in the origin by definition) such that ψ becomes false at t�a,
but it becomes true again at t�b (and it stays false in interval pt�a, t�bq). This condition is captured
by Formula (21), which is similar to Formula (19), except that it specifies that when ψ becomes true
again, the clock x j

θ that is reset when φ has the singularity has value b.

#θ ô O^
d�1ª
j�0

px j
θ � 0q^X

�
px j

θ ¡ 0qU
�

ψ
ë^x j

θ � a ^X
�ψ
�

è U
�

ψè

^x j
θ � b






(21)
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Then, mpθq is (16)^ (17)^ (18)^ (19)^ (20)^ (21).

To allow for signals of general shape, the encoding for subformulae of the form γUp0,�8qψ must
also be revisited. As this is rather straightforward, we skip the details for reasons of brevity. Instead, we
point out that it is possible to define a CLTL-oc encoding also for MITL past operators S and Pxa,by. It is
known that past operators increase the expressiveness of MITL [11], but do not impact on decidability.
Hence, a decision procedure that also includes the possibility to handle past operators is more powerful
than one dealing with the future-only fragment. To conclude this section, we show the encoding mpθq for
the S operator (whose semantics is symmetric to the one of U shown in Table 1). The case for operator
Pxa,by is omitted for brevity.

 θ � γSp0,�8qψ: In this case it can be shown that, if M is a finitely variable signal and θ holds

in an instant t, then it must also hold in pt� ε, tq, for some ε ¡ 0, and vice-versa. Then, in t � 0 θ is
false, and there S formulae cannot have singularity points. In addition, when a S formula changes its
value after the origin, it must do so in a left-open manner (i.e., the value at the changing point is the same
as the one before the changing point). Then, we have

mpθq � pqθô Yp
�
θ qq^p

�
θô

r
γ Sppqψ _ �ψq^ �γ qq. (22)

5 Conclusions

This paper investigates a bounded approach to satisfiability checking of the continuous-time temporal
logic MITL. We showed an encoding of MITL into a decidable logic (CLTL-oc), which allows, both in
principle and in practice, the use of SMT solvers to check satisfiability of MITL.

A decision procedure for CLTL-oc [10] is implemented in a plugin, called ae2zot, of our Zot
toolkit [2], whereas the reduction outlined in Sect. 3 and 4 is implemented in the qtlsolver tool, avail-
able from [1]. The tool translates MITL (or the expressively equivalent QTL logic [16]) into CLTL-oc,
which can be checked for satisfiability by ae2zot. The resulting toolkit has a 3-layered structure, where
CLTL-oc is the intermediate layer between SMT-solvers and various temporal formalisms that can be
reduced to CLTL-oc. This not only supports (bounded) satisfiability verification of different languages,
but it also allows the expression of different degrees of abstraction. For instance, MITL abstracts away
the notion of clocks, inherently encompassed within temporal modalities, which are instead explicit in
CLTL-oc and actually available to a user, e.g., to express or verify properties where clocks are conve-
nient. In fact, preliminary experimental results point out that the time required to solve CLTL-oc may be
significantly smaller than the one needed for more abstract languages, such as MITL. This is caused by
the “effort” required to capture the semantics of temporal modalities, which, on the other hand, allow for
more concise and manageable high-level specifications. This layered structure also allows the resolution
of a formula to be compliant with constraints imposed at lower layers, for instance by adding at the
CLTL-oc layer some extra formula limiting the set of valid models (e.g., by discarding certain edges of
some events or by adding particular timing requirements). Also the third layer (the SMT solver) may be
used to add further constraints, e.g., to force the occurrence of a proposition or of a certain clock value
at a specific discrete position of the finite model.

The current implementation of qtlsolver supports the MITL-to-CLTL-oc translation, both with or
without the l.c.r.o. restriction. In fact, the following encodings are currently available:

MITL providing a direct definition of MITL operators, assuming l.c.r.o. intervals;

QTL providing the definition of generalized QTL operators (e.g., Fp0,bq, Pp0,bq) with unrestricted signals
(other than they be finitely variable), and MITL operators through abbreviations.
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We used the above two encodings to carry out some experiments (available from the qtlsolver

website [1], or described in [10]). Let us illustrate one of them. MITL Formula (23) specifies that
predicate p occurs in isolated points with a period of 100 (i.e., it occurs exactly at 0, 100, 200, etc.).

Gr0,8q
��

Gp0,100qp pq ñGp100,200qp pq
�
^ppñ Fp0,200qppqq

�
^ p^Gp0,100qp pq (23)

qtlsolver was able to find a model for Formula (23) in around 10 seconds, using a bound of 10.1

Note that, even if the constants appearing in Formula (23) are in the order of the hundreds, events in the
corresponding models occur only sparsely, hence a bound of 10 is enough for qtlsolver to satisfy (23).
If we add to the specification Formula (24), which states that q must hold within 1 time unit in the past
or in the future of each p, the solver finds a model (again, with bound 10) in about 40 seconds.

Gp0,8q
�

pñ Fp0,1qpqq_Pp0,1qpqq
�

(24)

Formula (24) does not impose that q be false in between occurrences of p. A more restricted behavior is
obtained by adding also constraint (25), which imposes that q occurs only in isolated instants, and that
there must be at least 100 time units between consecutive occurrences of q.

Gp0,8q
�
qñGp0,100qp qq

�
(25)

qtlsolver was able to find a model (with bound 20, in this case) for formula (23)^ (24)^ (25) in
around 10 minutes. As mentioned above, one can add constraints at different levels of abstraction. For
example, we can add SMT constraints imposing that the values of the clocks (instead of the clock regions)
associated with propositions p and q be periodic; this allows us to check that formula (23)^ (24)^ (25)
admits periodic models (qtlsolver takes around 15 minutes to produce one with bound 20). Finally, if
in Formula (25) we replace Gp0,100q with Gp0,100s, the behavior becomes strictly aperiodic. In this case
the solver takes around 80 minutes to find a model with bound 30, and in excess of 12 hours to show
that, with that bound, no model exists in which p and q are periodic (i.e., that the specification, with the
added constraint that the values of the clocks associated with p and q be periodic, is unsatisfiable).

While the results presented above are promising, further research will focus on optimizing the im-
plementation of the solver and on extending the encoding to deal with richer constraints.

The techniques presented in this paper for MITL can be tailored also to other logics. We consider
an example here. A syntactic fragment of MITL was proposed in [15], namely MTL0,8, where temporal
modalities are restricted only to intervals of the form x0,by or xa,8q (e.g., the MITL formula Fp2,3qφ is
not acceptable). MTL0,8 is complete in the sense that every MITL formula can be transformed into an
equisatisfiable MTL0,8 formula. However, the transformation may lead to an exponential blow-up, since
satisfiability is EXPSPACE-complete for MITL and PSPACE-complete for MTL0,8. In [15], MTL0,8
was shown to be equivalent to a new temporal logic, called Event-Clock Logic (ECL), which is also in
PSPACE. Although our work only concerns MITL (and actually MTL0,8, which is considered by our
translation provided that operator Fxa,bs is not primitive for the language), our results can directly be
applied for solving the satisfiability of (MTL0,8 and) ECL as well, by means of the above equivalence of
the languages. However, an explicit encoding of ECL into CLTL-oc may be devised, since only a finite
number of explicit clocks are enough to capture ECL semantics; this may allow solving satisfiability of
both logics (MTL0,8 and ECL) in PSPACE.

1All tests have been carried out on a desktop computer with a 2.8GHz AMD PhenomTMII processor and 8MB RAM; the
solver was Microsoft Z3 3.2. The encoding used was the one for QTL, with unrestricted signals.
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The problem of model-checking hybrid systems is a long-time challenge in the scientific community.
Most of the existing approaches and tools are either limited on the properties that they can verify,
or restricted to simplified classes of systems. To overcome those limitations, a temporal logic called
HyLTL has been recently proposed. The model checking problem for this logic has been solved by
translating the formula into an equivalent hybrid automaton, that can be analized using existing tools.
The original construction employs a declarative procedure that generates exponentially many states
upfront, and can be very inefficient when complex formulas are involved. In this paper we solve
a technical issue in the construction that was not considered in previous works, and propose a new
algorithm to translate HyLTL into hybrid automata, that exploits optimized techniques coming from
the discrete LTL community to build smaller automata.

1 Introduction

Hybrid systems are heterogeneous systems characterized by a tight interaction between discrete and
continuous components. Typical examples include discrete controllers that operate in a continuous envi-
ronment, as in the case of manufacturing plants, robotic systems, and cyberphysical embedded systems.
Because of their heterogeneous nature, hybrid systems cannot be faithfully modeled by discrete only nor
by continuous only formalisms. In order to model and specify them in a formal way, the notion of hy-
brid automata has been introduced [1, 14]. Intuitively, a hybrid automaton is a “finite-state automaton”
with continuous variables that evolve according to dynamics characterizing each discrete state (called a
location or mode). Of particular importance in the analysis of hybrid automata is the model checking
problem, that is, the problem of verifying whether a given hybrid automaton respects some property of
interest. Unfortunately, the model checking problem is computationally very difficult. Indeed, even for
simple properties and systems, this problem is not decidable [11].

For very simple classes of hybrid systems, like timed automata, the model checking problem can
be solved exactly [2]. Tools like Kronos [20] and UPPAAL [13] can be used to verify properties of
timed automata. For more complex classes of systems, the problem became undecidable, and many
different approximation techniques may be used to obtain an answer, at least in some cases. Tools like
PhaVer [8] and SpaceEx [9] can compute approximations of the reachable set of hybrid automata with
linear dynamics, and thus can be used to verify safety properties. Other tools, like HSOLVER [17], and
Ariadne [4], can manage systems with nonlinear dynamics, but are still limited to safety properties.

We are aware of only very few approaches that can specify and verify complex properties of hybrid
systems in a systematic way. A first attempt was made in [12], where an extension of the Temporal Logic
of Actions called TLA+ is used to specify and implement the well-known gas burner example. Later on,
Signal Temporal Logic (STL), an extension of the well-known Metric Interval Logic to hybrid traces,
has been introduced to monitor hybrid and continuous systems [15]. More recent approaches include the
tool KeYmaera [16], that uses automated theorem proving techniques to verify nonlinear hybrid systems
symbolically, and the logic HRELTL [6], that is supported by an extension of the discrete model checker
NuSMV, but it is limited to systems with linear dynamics.
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To overcome the limitations of the current technologies, an automata-theoretic approach for model
checking hybrid systems has been recently proposed [5]. The work is based on an extension of the well-
known temporal logic LTL to hybrid traces called HyLTL. The model checking problem for this logic has
been solved by translating the formula into an equivalent hybrid automaton, reducing the model checking
problem to a reachability problem that can be solved by existing tools. The original construction employs
a declarative procedure that generates exponentially many states upfront, and can be very inefficient when
complex formulas are involved.

In this paper we solve a technical issue in the construction that was not considered in previous works
by identifying the precise fragment of HyLTL that can be translated into hybrid automata, and we propose
a new algorithm to translate formulas into hybrid automata, that exploits optimized techniques coming
from the discrete LTL community to be more efficient than the original declarative approach.

2 Preliminaries

Before formally defining hybrid automata and the syntax and semantics of HyLTL we need to introduce
some basic terminology. Throughout the paper we fix the time axis to be the set of non-negative real
numbers R+. An interval I is any convex subset of R+, usually denoted as [t1, t2] = {t ∈R+ : t1 ≤ t ≤ t2}.
We also fix a countable universal set V of variables, ranging over the reals. Given a finite set of variables
X ⊆ V, a valuation over X is a function x : X 7→Rn that associates a value to every variable in X . The set
Val(X) is the set of all valuations over X .

A notion that will play an important role in the paper is the one of trajectory. A trajectory over a set
of variables X is a function τ : I 7→ Val(X), where I is a left-closed interval with left endpoint equal to
0. We assume trajectories to be differentiable almost everywhere on the domain, and we denote with τ̇
the corresponding (partial) function giving the value of the derivative of τ for every point in the interior
of I where τ is differentiable (note that τ̇ might not be differentiable neither continuous). With dom(τ)
we denote the domain of τ , while with τ.ltime (the limit time of τ) we define the supremum of dom(τ).
The first state of a trajectory is τ.fstate = τ(0), while, when dom(τ) is right-closed, the last state of a
trajectory is defined as τ.lstate = τ(τ.ltime). We denote with Trajs(X) the set of all trajectories over X .
If [t, t ′] is a subinterval of dom(τ), we denote whith τ↓[t,t ′] the trajectory τ ′ such that dom(τ ′) = [0, t ′− t]
and τ ′(t ′′) = τ(t ′′+ t) for every t ′′ ∈ dom(τ ′). Given two trajectories τ1 and τ2 such that τ1.ltime <+∞,
their concatenation τ1 · τ2 is the trajectory with domain [0,τ1.ltime+ τ2.ltime] such that τ1 · τ2(t) = τ1(t)
if t ∈ dom(τ1), τ1 · τ2(t) = τ2(t− τ1.ltime) otherwise.

Variables will be used in the paper to build constraints: conditions on the value of variables and on
their derivative that can define sets of valuations, sets of trajectories, and jump relations. Formally, given
a set of variables X , and a set of mathematical operators OP (e.g. +, −, ·, exponentiation, sin, cos, . . . ),
we define the corresponded set of dotted variables Ẋ as {ẋ|x ∈ X} and the set of tilde variables X̃ as
{x̃|x ∈ X}. We use OP, X , Ẋ and X̃ to define the following two classes of constraints.

• Jump constraints: expressions built up from variables in X ∪ X̃ , constants from R, mathematical
operators from OP and the usual equality and inequality relations (≤, =, >, . . . ). Examples of
jump constraints are x = 4ỹ+ z̃, x2 ≤ ỹ, ỹ > cos(y).

• Flow constraints: expressions built up from variables in X ∪ Ẋ , constants from R, mathematical
operators from OP and the usual equality and inequality relations (≤, =, >, . . . ). Examples of
flow constraints are ẋ = 4y+ z, ẋ+ y≥ 0, sin(x)> cos(ẏ).
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We use jump constraints to give conditions on pairs of valuations (x̃,x). Given a jump constraint c, we
say that (x̃,x) respects c, and we denote it with (x̃,x) ` c, when, by replacing every variable x with its
value in x and every tilde variable x̃ with the value of the corresponding normal variable in x̃ we obtain
a solution for c. Flow constraints will be used to give conditions on trajectories. Given a flow constraint
c, we say that a trajectory τ respects c, and we denote it with τ ` c, if and only if for every time instant
t ∈ dom(τ), both the value of the trajectory τ(t) and the value of its derivative τ̇(t) respect c (we assume
that τ̇(t) respects c when τ̇ is not defined on t).

3 HyLTL: syntax and semantics

The logic HyLTL is an extension of the well-known temporal logic LTL to hybrid systems. Given a
finite set of actions A and a finite set of variables X , the language of HyLTL is defined from a set of flow
constraints FC over X by the following grammar:

ϕ ::= f ∈ FC | a ∈ A | ¬ϕ | ϕ ∧ϕ | ϕ ∨ϕ | Xϕ | ϕ U ϕ | ϕ R ϕ (1)

In HyLTL constraints from FC and actions from A take the role of propositional letters in standard
temporal logics, ¬, ∧ and ∨ are the usual boolean connectives, X, U and R are hybrid counterpart of the
standard next, until and release temporal operators.

The semantics of HyLTL is given in terms of hybrid traces mixing continuous trajectories with dis-
crete events. Formally, given a set of actions A and a set of variables X , an hybrid trace over A and X is
any infinite sequence α = τ1a1τ2a2τ3a3 . . . such that τi is a trajectory over X and ai is an action in A for
every i ≥ 1. For every i > 0, the truth value of a HyLTL formula ϕ over α at position i is given by the
truth relation 
, formally defined as follows:

• for every f ∈ FC, α, i 
 f if and only if τi ` f ;

• for every a ∈ A, α, i 
 a iff i > 1 and ai−1 = a;

• α, i 
 ¬ϕ if and only if α, i 6
 ϕ;

• α, i 
 ϕ ∧ψ if and only if α, i 
 ϕ and α, i 
 ψ;

• α, i 
 ϕ ∨ψ if and only if α, i 
 ϕ or α, i 
 ψ;

• α, i 
 Xϕ if and only if α, i+1 
 ϕ;

• α, i 
 ϕ U ψ if and only if there exists j ≥ i such that α, j 
 ψ , and for every i≤ k < j, α,k 
 ϕ;

• α, i 
 ϕ R ψ if and only if for all j ≥ i, if for every i≤ k < j, α,k 6
 ϕ then α, j 
 ψ .

Other temporal operators, such as the “always” operator G and the “eventually” operator F can be
defined as usual:

Fϕ =>U ϕ Gϕ = ¬F¬ϕ

3.1 HyLTL with positive constraints

In this paper we will pay a special attention on formulas of HyLTL where flow constraints from FC
appears only in positive form, because it will turn out that they constitue the class of formulas that can be
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when a ∈ A : π(a) = a π(¬a) = ¬a
when f ∈ FC : π( f ) = f ∧X((T ∧ f )U¬T ) π(¬ f ) = f̄ ∨X(T U (T ∧ f̄ ))

π(ϕ ∧ψ) = π(ϕ)∧π(ψ) π(ϕ ∨ψ) = π(ϕ)∨π(ψ)

π(ϕ U ψ) = (T ∨π(ϕ))U (¬T ∧π(ψ)) π(ϕ R ψ) = (¬T ∧π(ϕ))R (T ∨π(ψ))

π(Xϕ) = X(T U (¬T ∧π(ϕ)))

Table 1: The translation function π from HyLTL to HyLTL+

translated into hybrid automata. This particular fragment is called HyLTL with positive flow constraints,
denoted by HyLTL+, and formally defined by the following grammar:

ψ ::= f ∈ FC | a ∈ A | ¬a ∈ A | ψ ∧ψ | ψ ∨ψ | Xψ | ψ U ψ | ψ R ψ (2)

Despite being a syntactical fragment, HyLTL+ turns out to be equally expressive as the full language,
at the price of adding an auxiliary action symbol. In the following, given a constraint c we denote with
c̄ the corresponding “dual” constraint obtained by replacing < with ≥, > with ≤, = with 6=, and so on.
Notice that a trajectory τ that satisfies the negation of a flow constraint ¬c does not necessarily satisfy c̄.
Indeed, by the semantics of HyLTL we have that τ ` ¬c if there exists a time instant t such that τ(t) 6` c,
while τ ` c̄ if for all time instants t we have that τ(t) 6` c.

Hence, given a trajectory τ with domain dom(τ) = [0, tmax] such that τ ` ¬c, it is possible to find
a point t ∈ [0, tmax] such that τ(t) 6` c and we can split τ into three sub-trajectories τb, τc̄, τe such that
τb = τ↓[0,t], τc̄ = τ↓[t,t] and τe = τ↓[t,tmax]: it is easy to see that τc̄ ` c̄. In the following, the auxiliary
action symbol T will be used to represent the splitting points of trajectories when translating formulas
with negated flow constraints to formulas with positive flow constraints only.

Given a formula of HyLTL in in negated normal form ϕ , consider the translation function π defined
in Table 1. To compare hybrid traces satisfying the original formula ϕ with the ones satisfying π(ϕ) we
have to remove the occurrences of T from the latter. To this end, we define a suitable restriction operator
over hybrid traces.

Definition 1. Let A a set of action, and B ⊂ A. Given a hybrid trace α = τ1a2τ2a2 . . . over A we define
its restriction to B as the hybrid trace α↓B obtained from α by first removing the actions not in B and
then concatenating adjacent trajectories.

The following lemma states that π(ϕ) is a formula of HyLTL+ equivalent to ϕ .

Lemma 1. For every hybrid trace α over A and X and every HyLTL-formula ϕ we have that α,1
 ϕ if
and only if there exists a hybrid trace β over A∪{T} and X such that β↓A = α and β ,1 
 π(ϕ).

Proof. Let α = τ1a1τ2a2 . . . be an hybrid trace over A such that α,1 
 ϕ , and let FC be the set of flow
constraints that appears in ϕ . We will build a sequence of hybrid traces β0,β1,β2, . . . over A∪{T} as
follows.

1. β0 is the empty sequence.
2. For every i ≥ 1, consider the i-th trajectory τi in α , and let Ci = { f ∈ FC | τi 6` f}. Given an

enumeration f1, . . . , fn of Ci, we have that it is possible to find a set of time instants t1, . . . , tn such
that τi(t j) ` f̄ for every 1≤ j ≤ n. W.l.o.g., we can assume that τi.ftime = t0 ≤ t1 ≤ t2 ≤ . . .≤ tn ≤
tn+1 = τi.ltime and we can define the sequence of trajectories µ1,µ2, . . . ,µ2n+1 such that

µ1 = τi↓[t0,t1], µ2 j = τi↓[t j,t j], µ2 j+1 = τi↓[t j,t j+1] for every 1≤ j ≤ n (3)

We define βi = βi−1µ1T µ2T . . .T µ2n+1ai.
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The hybrid trajectory we are looking for is the limit trajectory β = limi→∞ βi.
Given an index i, we will denote by α i and β i the suffix of α and of β starting at position i. We show

that β respects the following property: “for every subformula ψ of ϕ and i≥ 1, α, i
 ψ iff β , j 
 π(ψ),
where j is the unique index such that β j↓A = α i”. The proof is by induction on ψ .
• If ψ = a or ψ = ¬a for some a ∈ A the property holds trivially.
• Suppose ψ = f for some f ∈ FC. By the semantics, we have that τi ` f . Consider now the

sequence µ1T µ2T . . .T µ2n+1ai built in the construction of βi, and let j be the index of µ1 in β .
By (3) we have that µh ` f for every 1≤ h≤ 2n+1. This implies that β , j 
 f ∧X((T ∧ f )U¬T ).
• If ψ = ¬ f for some f ∈ FC then we have that τi 6` f . Let µ1T µ2T . . .T µ2n+1ai be the sequence

built in the construction of βi. Since f ∈ Ci, we have that there exists t0 ≤ tk ≤ tn+1 such that
τi(tk) ` f̄ . By (3), this implies that µk ` f̄ . Let j be the index of µ1 in β . Two case may arise:
either µk = µ1 and thus β , j 
 f̄ , or µk 6= µ1 and then β , j 
 X(T U (T ∧ f̄ )). In both cases the
property is satisfied.
• The cases of the boolean operators ∨ and ∧ are trivial and can be skipped.
• Suppose ψ = ψ1 U ψ2, and let i be such that α, i 
 ψ1 U ψ2. By the semantics, we have that

there exists k ≥ i such that α,k 
 ψ2 and, for every i ≤ h < k, α,h 
 ψ1. Now, let j and l be
the two indexes such that β j↓A = α i and β l↓A = αk. By inductive hypothesis we can assume
that β , l 
 π(ψ2), while by the definition of the ↓A operator we have that β , l 
 ai 6= T . Hence,
β , l 
 ¬T ∧π(ψ2). Consider now any index m such that j ≤ m < l. Two cases may arise: either
β ,m 
 T , or not. In the latter case, we have that it is possible to find an index i≤ h < k such that
β m↓A = αh. Since α,h 
 ψ1, by inductive hypothesis we have that β ,m 
 π(ψ1). Hence, in both
cases β ,m 
 T ∨π(ψ1). This proves that β , j 
 (T ∨π(ψ1))U (¬T ∧π(ψ2)) = π(ψ).
To prove the converse implication, suppose that β , j 
 (T ∨π(ψ1))U (¬T ∧π(ψ2)). By the se-
mantics, we have that there exists l ≥ j such that β , l 
 ¬T ∧ π(ψ2) and, for every j ≤ m < l,
β ,m 
 T ∨π(ψ1). Since β , l 
 ¬T it is possible to find an index k such that β l↓A = αk. Hence,
by inductive hypothesis we have that α,k 
 ψ2. Now, let h be such that i ≤ h < k, and consider
the index m such that β m↓A = αh. By the semantics we have that β ,m 
 T ∨π(ψ1). Since, by
definition of the restriction operator, β ,m 6
 T , we have that β ,m 
 π(ψ1) and thus, by inductive
hypothesis, that α,h 
 ψ1. This proves that α, i 
 ψ1 U ψ2.
• The cases of the temporal operators X and R can be proved by a similar argument.

By the property it is immediate to conclude that, since α,1 
 ϕ then β ,1 
 π(ϕ).
To conclude the proof, suppose that there exists a hybrid trace β such that β ,1 
 π(ϕ), and let

α = β↓A. By an induction on the structure of ϕ similar to the one above, we can prove that α,1
 ϕ .

4 Hybrid Automata

An hybrid automaton is a finite state machine enriched with continuous dynamics labelling each discrete
state (or location), that alternates continuous and discrete evolution. In continuous evolution, the discrete
state does not change, while time passes and the evolution of the continuous state variables follows the
dynamic law associated to the current location. A discrete evolution step consists of the activation of
a discrete transition that can change both the current location and the value of the state variables, in
accordance with the reset function associated to the transition.

In this section we recap the definition of Hybrid Automata introduced in [5] to solve the model
checking problem for HyLTL.

Definition 2. A hybrid automaton is a tuple H = 〈Loc,X , A,Edg,Dyn,Res, Init〉 such that:
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1. Loc is a finite set of locations;
2. X is a finite set of variables;
3. A is a finite set of actions;
4. Edg⊆ Loc×A×Loc is a set of discrete transitions;
5. Dyn is a mapping that associates to every location ` ∈ Loc a set of flow constraints Dyn(`) over

X ∪ Ẋ describing the dynamics of `;
6. Res is a mapping that associates every discrete transition (`,e, `′) ∈ Edg with a set of jump con-

straints Res(`,e, `′) over X̃ ∪X describing the guard and reset function of the transition;
7. Init⊆ Loc is a set of initial locations.

The state of a hybrid automaton H is a pair (`,x), where ` ∈ Loc is a location and x ∈ Val(X) is a
valuation for the continuous variables. A state (`,x) is said to be admissible if (`,x) ` Dyn(`). Tran-
sitions can be either continuous, capturing the continuous evolution of the state, or discrete, capturing
instantaneous changes of the state.

Definition 3. Let H be a hybrid automaton. The continuous transition relation τ−→ between admissible
states, where τ is a bounded trajectory over X, is defined as follows:

(`,x) τ−→ (`,x′) ⇐⇒ τ.fstate = x∧ τ.lstate = x′∧ τ ` Dyn(`). (4)

The discrete transition relation a−→ between admissible states, where a ∈ A, is defined as follows:

(`,x) a−→ (`′,x′) ⇐⇒ x ` Dyn(`)∧x′ ` Dyn(`′)∧ (x,x′) ` Res(`,a, `′). (5)

The above definitions allows an infinite sequence of discrete events to occur in a finite amount of time
(Zeno behaviors). Such behaviors are physically meaningless, but very difficult to exclude completely
from the semantics. In this paper we assume that all hybrid automata under consideration do not generate
Zeno runs. This can be achieved, for instance, by adding an extra clock variable that guarantees that the
delay between any two discrete actions is bounded from below by some constant. Moreover, we assume
that all hybrid automata are progressive, that is, that all runs can be extended to an infinite one: it is not
possible to stay forever in a location and never activate a new discrete action.

We can view progressive, non-Zeno hybrid automata as generators of hybrid traces, as formally
expressed by the following definition.

Definition 4. Let H be a progressive, non-Zeno hybrid automaton, and let α = τ1a1τ2a2 . . . be a in-
finite hybrid trace over X and A. We say that α is generated by H if there exists a corresponding
sequence of locations `1`2 . . . such that `1 ∈ Init and, for every i ≥ 1: (i) (`i,τi.fstate) τi−→ (`i,τi.lstate),
and (ii) (`i,τi.lstate) ai−→ (`i+1,τi+1.fstate).

Our definition of hybrid automata admits composition, under the assumpion that all variables and
actions are shared between the different automata. The formal definition of the parallel composition
operator ‖ can be found in [5]. In this paper it is sufficient to recall that it respects the usual “composi-
tionality property”, that is, that the set of hybrid traces generated by a composition of hybrid automata
corresponds to the intersection of the hybrid traces generated by the components (up to projection to the
correct set of actions and variables).

5 Model checking HyLTL

In analogy with the classical automata-theoretic approach, in [5] the model checking problem for HyLTL
has been solved by translating the HyLTL formula into an equivalent hybrid automaton, enriched with
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a suitable Büchi acceptance condition to identify the traces generated by the automaton that fulfills the
semantics of HyLTL.

Definition 5. A Hybrid Automaton with Büchi condition (BHA) is a tuple H = 〈Loc,X ,A,Edg,Dyn,
Res, Init,F〉 such that 〈Loc,X ,A,Edg,Dyn,Res, Init〉 is a Hybrid Automaton, and F ⊆ Loc is a finite set
final locations.

We say that a hybrid trace α = τ1a1τ2a2 . . . is accepted by a BHA H if there exists an infinite
sequence of locations `1`2 . . . such that:

(i) `1 ∈ Init;
(ii) for every i≥ 1, (`i,τi.fstate) τi−→ (`i,τi.lstate);

(iii) for every i≥ 1, (`i,τi.lstate) ai−→ (`i+1,τi+1.fstate);
(iv) there exists ` f ∈ F that occurs infinitely often in the sequence.

By the above definition, not all sequences generated by the automaton are accepting: only those that
respect the additional accepting condition are considered.

By the definition of the dynamics, hybrid automata can enforce only positive constraints on the
continuous flow of the system. Hence, they can only recognize formulas of the positive flow fragment of
HyLTL, as summarized by the following theorem.

Theorem 1 ([5]). Given a HyLTL+ formula ϕ , it is possible to build a BHA Hϕ that accepts all and only
those hybrid traces that satisfies ϕ .

Theorem 1 and Lemma 1 can be exploited to solve the model checking problem for full HyLTL as
follows. Let HS be a hybrid automaton representing the system under verification, and let ϕ be the
HyLTL formula representing a property that the system should respect. Consider the formula ¬ϕ and
its translation ϕ = π(¬ϕ). By Lemma 1 we have that ϕ is a formula of HyLTL+ that is equivalent to
¬ϕ , and thus we can build a BHA Hϕ that is equivalent to the negation of the property: it accepts all
the hybrid traces that violates the property we want to verify. Now, if we compose the automaton for the
system with the automaton for ϕ we obtain a BHA HS‖Hϕ that accepts only those hybrid traces that are
generated by the system and violates the property. This means that HS respects the property ϕ if and
only HS‖Hϕ does not accept any hybrid trace.

It is worth pointing out that the reachability problem of hybrid automata is undecidable. This means
that the model checking of HyLTL is an undecidable problem as well (reachability can be expressed by
an eventuality formula). However, this does not mean that out logic is completely intractable. A number
of different approximation techniques have been developed in the past years to obtain an answer to the
reachability problem (at least in some cases), and they can be exploited to solve the model checking
problem of HyLTL as well. Indeed, HS‖Hϕ accepts an hybrid trace if and only if there exists a loop that
includes a final location and that is reachable from the initial states. As shown in [5], this property can be
reduced to a reachability property that can be tested by existing tools for the analysis of hybrid automata.
The only thing that one needs to do is to write a procedure implementing the construction of Hϕ , and
then send the results to the reachability analysis tool.

6 An improved construction algorithm

The algorithm presented in [5] to build a BHA equivalent to a HyLTL+-formula ϕ is based on a declar-
ative construction. While being simple to understand, it suffers of a major drawback from the efficiency
point of view: it generates exponentially many locations upfront, even though many of them may be in-
consistent, redundant or unreachable. This implies that the resulting BHA can be very big, even for very
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γ(ϕ) =
∧n−1

i=0 ¬bi∧ γ0(ϕ)
γ0(a) = b(a) γ0( f ) = f when a ∈ A or f ∈ FC

γ0(¬ϕ) = ¬γ0(ϕ) γ0(ϕ ∧ψ) = γ0(ϕ)∧ γ0(ψ) γ0(ϕ ∨ψ) = γ0(ϕ)∨ γ0(ψ)

γ0(Xϕ) = X(γ0(ϕ)) γ0(ϕ U ψ) = γ0(ϕ)U γ0(ψ) γ0(ϕ R ψ) = γ0(ϕ)R γ0(ψ)

Table 2: The translation function γ from HyLTL to LTL

simple formulas. In this section we describe an improved construction algorithm, based on the following
steps:

A. the HyLTL+-formula ϕ is first translated into a suitable formula of discrete LTL γ(ϕ);

B. a discrete Büchi automaton Aγ(ϕ), equivalent to γ(ϕ), is built using one of the many optimized tools
available in the literature;

C. a BHA Hϕ , equivalent to ϕ , is built from Aγ(ϕ).

The new algorithm improves the original one by building a smaller BHA, thanks to the use of opti-
mized tools for LTL in step B.

6.1 From HyLTL to discrete LTL

Let FC and A be respectively the set of all flow constraints and discrete actions appearing in ϕ . For
the sake of simplicity, we will assume that ‖A∪{T}‖ = 2n− 1 for some n ∈ N (if this is not the case,
we can always add some fresh action symbols to A that will not appear in the formula). Under this
assumption we can represent action symbols from A∪{T} by means of a set of n propositional letters
B = {b0, . . . ,bn−1}, where every possible combination of the truth values, but the one where all letters
are false, uniquely identify one action symbol. For every a ∈ A∪ {T} let b(a) be the corresponding
encoding. By definition, we put b(T ) =

∧n−1
i=0 bi.

If we consider AP = FC∪{b0, . . . ,bn−1} as a set of propositional letters for discrete LTL, we have
that we can transform any hybrid trace α = τ1a1τ2a2 . . . into a discrete sequence Σ(α) = σ1σ2σ3 . . .
where every element is a subset of AP defined as follows: σ1 = { f ∈ FC | τ1 ` f}; for every i > 1,
σi = { f ∈ FC | τi ` f}∪{b j ∈ B | b j holds true in b(ai−1)}.

Now, let γ(ϕ) be the discrete LTL formula obtained from ϕ by means of the translation function γ
defined in Table 2. It is easy to see that Σ(α) is a model for γ(ϕ), as proved by the following lemma.

Lemma 2. For every hybrid trace α , α,1 
 ϕ if and only if Σ(α),1 
 γ(ϕ).

Proof. Let ϕ be a HyLTL formula, and α a hybrid trace. We prove the lemma by showing that the
following stronger claim holds:

for every i≥ 1, α, i 
 ϕ if and only if Σ(α), i 
 γ0(ϕ).

We reason by induction on the structure of ϕ:
• if ϕ = a, with a ∈ A, then γ0(a) = b(a) and the claim follows easily by the definition of Σ(α);
• if ϕ = f , with f ∈ FC, then γ0( f ) = f and the claim follows easily by the definition of Σ(α);
• the boolean cases are trivial and thus skipped;
• when ϕ = Xψ , we have that α, i 
 Xψ iff α, i+ 1 
 ψ . By inductive hypothesis we have that

Σ(α), i+1 
 γ0(ψ), from which we can conclude that Σ(α), i 
 Xγ0(ψ);



D. Bresolin 87

• suppose ϕ = ψ1 U ψ2. By the semantic of HyLTL, we have that α, i
 ψ1 U ψ2 iff there exists j ≥ i
such that α, j 
 ψ2, and for every i ≤ k < j, α,k 
 ψ1. By inductive hypothesis we have that
Σ(α), j 
 γ0(ψ2) and that Σ(α),k 
 γ0(ψ1) for every i≤ k < j. Hence, Σ(α), i 
 γ0(ψ1)U γ0(ψ2)
and the claim is proved.
• the case when ϕ = ψ1 R ψ2 is analogous.

To conclude the proof it is sufficient to consider that, by definition, Σ(α),1
∧n−1
i=0 ¬bi. Hence, from the

claim it is immediate to conclude that Σ(α),1 
∧n−1
i=0 ¬bi∧ γ0(ϕ) if and only if α,1 
 ϕ .

When ϕ is a formula of HyLTL+ we have that also γ(ϕ) is a formula where flow constraints appear
only in positive form. Hence, γ(ϕ) cannot force the negation of a flow constraint to hold in any of the
elements σi of a discrete sequence, as formally stated by the following lemma.

Lemma 3. Let Σ= σ1σ2 . . . and P= ρ1ρ2 . . . be two discrete sequences such that for every i≥ 1, σi∩B=
ρi∩B (the sequences agrees on the propositional letters in B) and σi ⊆ ρi (every flow constraint that is
true in Σ is true also in P). Then, for every LTL formula γ where flow constraints appear only in positive
form and index j ≥ 1, if Σ, j 
 γ then P, j 
 γ .

Proof. Suppose Σ, j 
 γ . We prove the claim by induction on the structure of γ .
• If γ = bk or γ = ¬bk, for some bk ∈ B, we have that the claim follows immediately by the fact that

σ j ∩B = ρ j ∩B;
• If γ = f for some f ∈ FC, by the semantics of LTL we have that f ∈ σ j. By hypothesis σ j ⊆ ρ j

and this implies that P, j 
 f ;
• The remaining cases can be easily proved from the inductive hypothesis and the semantics of

LTL.

6.2 Building the Büchi automaton Aγ(ϕ)

Since the seminal work of Vardi and Wolper [19], translation of LTL formulas into equivalent Büchi
automata plays an important role in many model checking and satisfiability checking algorithms. This
led to the development of many translation algorithms exploiting several heuristics and optimization
techniques. According to the experiments in [18], two leading tools are LTL2BA [10] and SPOT [7]. A
new version of the former, called LTL3BA, has been recently introduced [3]. According to the authors,
it is faster and it produces smaller automata than LTL2BA, while it produces automata of similar quality
with respect to SPOT, being usually faster.

We choose to use LTL3BA as the tool for translating the formula γ(ϕ) into the Büchi automaton
Aγ(ϕ), since it is a state-of-the-art tool that is freely available under an open source license. Nevertheless,
the high level HyLTL+ translation algorithm is independent from the specific tool used to build Aγ(ϕ),
and can be easily adapted to use other tools.

The output of LTL3BA is a Büchi automaton Aγ(ϕ) of the form 〈Q,q0,δ ,F〉, where Q is the set of
states, q0 is the unique initial state, δ is the transition relation and F is the set of final states. To merge
many transitions into a single one, the transitions are labelled with conjunctions of atomic propositions
from AP: the automaton can fire a transition (q,β ,q′) whenever it reads a symbol σ j of the discrete
sequence that satisfies the boolean formula β . Since γ(ϕ) is a formula where flow constraints appear
only positively, Lemma 3 guarantees that we can assume, without loss of generality, that in the boolean
formulas labeling the transitions of Aγ(ϕ) flow constraints appear only positively. The following lemma
connects the language of Aγ(ϕ) with the set of hybrid traces satisfying ϕ .
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Algorithm 1: how to build the BHA equivalent to ϕ
Input: Aγ(ϕ) = 〈Q,q0,δ ,F〉
Output: Hϕ = 〈Loc,X ,A∪{T},Edg,Dyn,Res, Init,F〉
Loc = /0, Edg = /0;1

L= /0;2

foreach transition (q0,β ,q) ∈ δ do3

if β →∧n−1
i=0 ¬bi then4

C = { f ∈ FC | β → f};5

add (q,C) to Loc;6

add (q,C) to Init;7

set Dyn(q,C) =C;8

add (q,C) to L;9

end10

end11

while the queue L is not empty do12

extract an element (q,C) from L;13

foreach transition (q,β ,q′) ∈ δ do14

C′ = { f ∈ FC | β → f};15

if (q′,C′) 6∈ Loc then16

add (q′,C′) to Loc;17

set Dyn(q′,C′) =C′;18

add (q′,C′) to L;19

end20

foreach a ∈ A∪{T} do21

if β → b(a) then22

add transition (q,C,a,q′,C′) to Edg;23

set Res(q,C,a,q′,C′) =>;24

end25

end26

end27

end28

F = {(q,C) ∈ Loc | q ∈ F};29

Lemma 4. Let ϕ be a HyLTL+ formula, and α a hybrid trace. Then α,1 
 ϕ if and only if Σ(α) is
accepted by Aγ(ϕ).

6.3 From Aγ(ϕ) to Hϕ

By Lemma 4, we have that the language of Aγ(ϕ) contains all the discrete sequences Σ(α) such that
α satisfies ϕ . However, Aγ(ϕ) may accepts also “spurious” discrete sequences that do not represent a
hybrid trace (for instance, sequences where flow constraints are contradictory). Algorithm 1 accepts as
input the discrete automaton Aγ(ϕ) and build a BHA Hϕ that accepts only the hybrid traces satisfying ϕ .

The following theorem proves that the algorithm is correct.
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Theorem 2. Let ϕ be a formula of HyLTL+, and let Hϕ be the BHA built by Algorithm 1. For every
hybrid trace α , we have that Hϕ accepts α if and only if α,1 
 ϕ .

Proof. Let α = τ1a1τ2a2 . . . be a hybrid trace such that α,1 
 ϕ . By Lemma 4, we have that Aγ(ϕ)

accepts the discrete sequence Σ(α). Let q0
β1−→ q1

β2−→ q2
β2−→ . . . be an accepting run of Aγ(ϕ) over Σ(α).

For every i≥ 1, let Ci = { f ∈ FC | βi→ f}, and consider the sequence (q1,C1),(q2,C2),(q3,C3) . . .. By
Algorithm 1 we have that:

1. every pair (qi,Ci) of the sequence is a location of Hϕ ;
2. (q1,C1) ∈ Init;
3. every set of flow constraints Ci is such that Dyn(qi,Ci) =Ci;
4. the transition (qi,Ci,ai,qi+1,Ci+1) ∈ Edg with reset condition >.

By definition of Σ(α) we have that τi ` Ci, and thus we can conclude that for every i ≥ 1, both
(qi,Ci,τi.fstate) τi−→ (qi,Ci,τi.lstate) and (qi,Ci,τi.lstate) ai−→ (qi+1,Ci+1,τi+1.fstate) are valid transitions
of Hϕ . This means that α is generated by Hϕ . Since Σ(α) is accepted by the discrete automaton Aγ(ϕ)
is possible to find a location (q f ,C f ) ∈ F that occurs infinitely often in the sequence. This proves that α
is accepted by Hϕ .

To conclude the proof, consider a hybrid trace α = τ1a1τ2a2 . . . that is accepted by Hϕ , and let
Σ(α) = σ1σ2 . . . be the corresponding discrete sequence. By the semantics of BHA, it is possible
to find an accepting sequence of locations (q1,C1),(q2,C2),(q3,C3) . . . such that (qi,Ci,τi.fstate) τi−→
(qi,Ci,τi.lstate) and (qi,Ci,τi.lstate) ai−→ (qi+1,Ci+1,τi+1.fstate) for every i≥ 1. By Algorithm 1 we have
that there exists an accepting run q0

ρ1−→ q1
ρ2−→ q2

ρ3−→ . . . of the discrete automaton Aγ(ϕ) over the discrete
sequence P = ρ1ρ2 . . . where ρi = Ci ∪{b j ∈ B | b j holds true in b(ai−1)} for every i ≥ 1. Since every
location (qi,Ci) is such that Dyn(qi,Ci) =Ci we have that for every f ∈Ci, τi ` f and thus that ρi ⊆ σi.
From Lemma 3 we can conclude that, since Aγ(ϕ) accepts P then Aγ(ϕ) accepts also Σ(α). By Lemma 4
we can conclude that α,1 
 ϕ .

7 The improved algorithm at work

In [5] feasibility of the automaton-based model checking approach has been tested by verifying the well-
known Thermostat example against the HyLTL formula ϕhyb = ¬F (x≥ 21∧Xon) corresponding to the
property that “it is not possible that the heater turns on when the temperature is above 21 degrees”.

To verify the example it is necessary to build the automaton for ¬ϕhyb = F(x≥ 21∧Xon) = >U
(x≥ 21∧Xon). The original declarative construction builds a BHA with 18 locations. In this section we
will apply the new algorithm to the formula and we will show that the resulting BHA is much smaller
that the previous one. Notice that the formula ¬ϕhyb is a formula where flow constraints appears only
in positive form. Hence, it is not necessary to apply the translation π of Table 1 to obtain a formula
of HyLTL+. The first step of the translation algorithm is thus the application of function γ (Table 2) to
obtain the following formula of discrete LTL:

γ(¬ϕhyb) = ¬b0∧¬b1∧>U (x≥ 21∧X(b0∧¬b1)) ,

where we assume that b(on) = b0 ∧¬b1. By using the tool LTL3BA we obtain the Büchi automa-
ton Aγ(¬ϕhyb) depicted in Figure 1a. Then, by applying Algorithm 1 we can build the BHA depicted
in Figure 1b. In both pictures initial states/locations are identified by a bullet-arrow while the final
states/locations have a double border. The final BHA obtained by the new construction algorithm is
made of only 3 location, with a great improvement over the original declarative construction.



90 Improving HyLTL model checking of hybrid systems

q1 >

q2

q3 >

q0

x≥ 21

b0∧¬b1

¬b0∧¬b1∧ x≥ 21

¬b0∧¬b1

(a) Büchi automaton Aγ(¬ϕhyb).

q1
> on

off

q2
x≥ 21

q3
> on

off

on

offon

(b) Hybrid automaton H¬ϕhyb .

Figure 1: The discrete and hybrid automata for ¬ϕhyb.

As a second example, consider the globally-eventually formula ϕliv = G(¬x≥ 18→ X F on) ex-
pressing the liveness property to “eventually switch the heater on if the temperature falls below 18
degrees”. In this case the negation of the property is the formula ¬ϕliv = F(¬x≥ 18∧X G¬on) =
>U (¬x≥ 18∧X(⊥R¬on)), that do not belongs to the language of HyLTL+. Hence, it is necessary to
apply the translation function π to obtain the following equivalent formula:

ϕ liv = π
(
>U

(
¬x≥ 18∧X(⊥R¬on)

))
= (T ∨>)U

(
¬T ∧π

(
¬x≥ 18∧X(⊥R¬on)

))

=>U
(
¬T ∧π(¬x≥ 18)∧π

(
X (⊥R¬on)

))

=>U
(
¬T ∧

(
x < 18∨X

(
T U (T ∧ x < 18)

))
∧X
(

T U
(
¬T ∧π(⊥R¬on)

)))

=>U
(
¬T ∧

(
x < 18∨X

(
T U (T ∧ x < 18)

))
∧X
(

T U
(
¬T ∧⊥R (T ∨¬on)

)))

The input formula for LTL3BA is thus

γ(ϕsa f e) = ¬b0∧¬b1∧>U

(
¬(b0∧b1)∧

(
x < 18∨X

(
(b0∧b1)U (b0∧b1∧ x < 18)

))

∧X
(
(b0∧b1)U

(
¬(b0∧b1)∧⊥R

(
(b0∧b1)∨¬(b0∧¬b1)

)))
)

while the resulting discrete Büchi automaton is depicted in Figure 2a. Algorithm 1 transforms it into the
BHA with 5 locations shown in Figure 2b. Notice that, despite the increased complexity of the formula
due to the translation into HyLTL+ the final result is still of very small size.

We have verified that the thermostat example given in [5] respects the two example properties ϕhyb
and ϕliv using the software package PhaVer [8]. Since the system and the automata for the properties are
very simple, the computation time was almost instantaneous: less than 0.1s for both formulas on an Intel
Core 2 Duo 2.4 GHz iMac with 4 Gb of RAM.
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q0

q1> q2 b0∧b1

q3b0∧b1

q4
¬b0,

b0∧b1

¬b0∧¬b1∧ x < 18

b0∧b1∧ x < 18

¬b0∧¬b1

¬b0∧ x < 18,
b0∧¬b1∧ x < 18

¬b0

¬b0∧¬b1

¬b0,
b0∧¬b1

(a) Büchi automaton Aγ(ϕ liv)
.

q1
>T,on,off

q2
> T

q1
3

x < 18
q2

3
> T

q4
> T,off

Ton,off

on,off

T

off

(b) Hybrid automaton Hϕ liv
.

Figure 2: The discrete and hybrid automata for ¬ϕliv.

8 Conclusion

In this paper we extended the current research on HyLTL, a logic that is able to express properties of
hybrid traces, and that can be used to verify hybrid systems. We identified the fragment of HyLTL that
can be transformed into hybrid automata, that is, the positive flow constraints fragment HyLTL+. Then,
we have shown that every property definable in the full language is also definable by HyLTL+. Finally,
we developed a new algorithm to translate formulas into hybrid automata, that turned out to be much
more efficient than the original declarative algorithm.

This work can be extended in many directions. The expressivity of the logic can be extended by
adding jump predicates to the language, to express properties on the reset functions of the system. A
comprehensive tool support for the logic is currently missing: an implementation of the complete model
checking algorithm into the software package Ariadne [4] is under development.
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We prove that adding upwards closed first-order dependency atoms to first-order logic with team se-
mantics does not increase its expressive power (with respect to sentences), and that the same remains
true if we also add constancy atoms. As a consequence, the negations of functional dependence,
conditional independence, inclusion and exclusion atoms can all be added to first-order logic without
increasing its expressive power.

Furthermore, we define a class of bounded upwards closed dependencies and we prove that
unbounded dependencies cannot be defined in terms of boundedones.

1 Introduction

Team semantics is a generalization of Tarski’s semantics inwhich formulas are satisfied or not satisfied
by sets of assignments, calledteams, rather than by single assignments. It was originally developed by
Hodges, in [14], as a compositional alternative to the imperfect-informationgame theoretic semantics
for independence friendly logic [13, 18].

Over the past few years team semantics has been used to specify and study many other extensions
of first-order logic. In particular, since a team describes arelation between the elements of its model
team semantics offers a natural way to add to first-order logic atoms corresponding to database-theoretic
dependency notions.

This line of thought led first to the development ofdependence logic[19], and later to that ofin-
dependence logic[12] and inclusion and exclusion logics[8].1 By now there are many results in the
literature concerning the properties of these logics, and in Section 2 we recall some of the principal ones.

One common characteristic of all these logics is that they are much stronger than first-order logic
proper, even though they merely addfirst-order definabledependency conditions to its language. Indeed,
the rules of team semantics straddle the line between first and second order, since they evaluate first-order
connectives by means of second-order machinery: and, whilein the case of first-order logic formulas
team semantics can be reduced to Tarski’s semantics, if we add to our language atoms corresponding to
further conditions the second-order nature of team semantics can take over.

The purpose of the present paper is to investigate the boundary between first and second order “from
below”, so to say, taking first-order logic with team semantics and trying to find out how much we can
add to it while preserving first-orderness. In Section 3 we define a fairly general family of classes of
first-order definable dependency conditions and prove they can be safely added to first-order logic; then
in Section 4 we expand this family, and in Section 5 we show that, as a consequence, the negations of
all the main dependency atoms studied in team semantics do not “blow up” first-order logic into a higher

∗Research supported by Grant 264917 of the Academy of Finland.
1The literature contains many other extensions of first-order logic with team semantics, but we do not examine them in this

work.
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order one. Finally, in Section 6 we introduce a notion ofboundednessfor dependencies and use it to
demonstrate somenon-definability results.

2 Preliminaries

In this section we will recall some fundamental definitions and results concerning team semantics.

Definition 1 (Team) Let M be a first-order model and letDom(M) be the set of its elements.2 Further-
more, let V be a finite set of variables. Then ateamX over M withdomainDom(X) = V is a set of
assignments s from V toDom(M).

Given a team X and a tuple of variables~v contained in the domain of X, we write X↾~v for the team
obtained by restricting all assignments of X to the variables of~v and X(~v) for the relation{s(~v) : s∈
X} ⊆ Dom(M)|~v|.

As it is common when working with team semantics, we will assume that all our expressions are in
negation normal form.

Definition 2 (Team Semantics for First-Order Logic) Let φ(~x) be a first-order formula in negation
normal form with free variables in~x. Furthermore, let M be a first-order model whose signature contains
the signature ofφ and let X be a team over it whose domain contains~x. Then we say that Xsatisfiesφ
in M, and we write M|=X φ , if and only if this follows from these rules:3

TS-lit: For all first-order literalsα , M |=X α if and only if for all s∈ X, M |=s α according to the usual
Tarski semantics;

TS-∨: For all ψ and θ , M |=X ψ ∨ θ if and only if X= Y ∪Z for two subteams Y and Z such that
M |=Y ψ and M |=Z θ ;

TS-∧: For all ψ andθ , M |=X ψ ∧θ if and only if M |=X ψ and M |=X θ ;

TS-∃: For all ψ and all variables v, M|=X ∃vψ if and only if there exists a function

H : X → P(Dom(M))\{ /0}

such that M|=X[H/v] ψ , where X[H/v] = {s[m/v] : s∈ X,m∈ H(s)} andP(Dom(M)) is the pow-
erset ofDom(M);

TS-∀: For all ψ and all variables v, M|=X ∀vψ if and only if M |=X[M/v] ψ , where X[M/v] = {s[m/v] :
s∈ X,m∈ M}.

Given a sentence (that is, a formula with no free variables)φ and a model M over its signature, we
say thatφ is true in M and we write M|= φ if and only if M |={ /0} φ .4

The following is a useful and easily derived rule:

Lemma 3 Let~v= v1 . . .vn be a tuple of n variables and let∃~vψ be a shorthand for∃v1 . . .∃vnψ . Then
M |=X ∃~vψ if and only if there exists a function H: X → P(Dom(M)n)\{ /0} such that M|=X[H/~v] ψ ,
where X[H/~v] = {s[~m/~v] : s∈ X,~m∈ H(s)}.

2We always assume that models have at least two elements in their domain.
3What we give here is the so-calledlax version of team semantics. There also exists astrict version, with slightly different

rules for disjunction and existential quantification; but as pointed out in [8],locality – in the sense of Theorem 8 here – fails
in strict team semantics for some of the logics we are interested in. Therefore, in this work we will only deal with lax team
semantics.

4Of course, one should not confuse the team{ /0}, which contains only the empty assignment, with theempty team/0, which
contains no assignments at all.



P. Galliani 95

With respect to first-order formulas, team semantics can be reduced to Tarski’s semantics. Indeed,

Proposition 4 ([14, 19]) Let φ(~x) be a first-order formula in negation normal form with free variables
in~x. Furthermore, let M be a first-order model whose signature contains that ofφ , and let X be a team
over M whose domain contains~x. Then M|=X φ if and only if, for all s∈ X, M |=s φ with respect to
Tarski’s semantics.

In particular, a first-order sentenceφ is true in a model M with respect to team semantics if and only
if it is true in M with respect to Tarski’s semantics.

Therefore, not all first-order definable properties of relations correspond to the satisfaction conditions of
first-order formulas: for example, the non-emptiness of a relation R is definable by∃~xR~x, but there is no
first orderφ such thatM |=X φ if and only if X 6= /0. More in general, letφ∗(R) be a first-order sentence
specifying a property of thek-ary relationR and let~x= x1 . . .xk be a tuple of new variables: then, as it
follows easily from the above proposition, there exists a first-order formulaφ(~x) such that

M |=X φ(~x)⇔ M,X(~x) |= φ∗(R)

if and only if φ∗(R) can be put in the form∀~x(R~x→ θ(~x)) for someθ in which Rdoes not occur.5

It is hence possible to extend first-order logic (with team semantics) by introducing new atoms corre-
sponding to further properties of relations. Database theory is a most natural choice as a source for such
properties; and, in the rest of this section, we will recall the fundamental database-theoretic extensions
of first-order logic with team semantics and some of their properties.

Dependence logicFO(=(·, ·)), from [19], adds to first-order logicfunctional dependence atoms
=(~x,~y) based on database-theoreticfunctional dependencies([2]). Their rule in team semantics is

TS-fdep: M |=X=(~x,~y) if and only if for all s,s′ ∈ X, s(~x) = s′(~x)⇒ s(~y) = s′(~y).

This atom, and dependence logic as a whole, isdownwards closed: for all dependence logic formulas
φ , modelsM and teamsX, if M |=X φ thenM |=Y φ for all Y ⊆ X. It is not howeverunion closed: if
M |=X φ andM |=Y φ then we cannot in general conclude thatM |=X∪Y φ .

Dependence logic is equivalent to existential second-order logic over sentences:

Theorem 5 ([19]) Every dependence logic sentenceφ is logically equivalent to some ESO sentenceφ∗,
and vice versa.

Constancy logicFO(=(·)) is the fragment of dependence logic which only allows functional dependence
atoms of the form=( /0,~x), which we will abbreviate as=(~x) and callconstancy atoms. Clearly we have
that

TS-const: M |=X=(~x) if and only if for all s,s′ ∈ X, s(~x) = s′(~x).

As proved in [8], every constancy logic sentence is equivalent to some first-order sentence: therefore,
constancy logic is strictly weaker than dependence logic. Nonetheless, constancy logic is more ex-
pressive than first-order logic with respect to the second-order relations generated by the satisfaction
conditions of formulas: indeed, it is an easy consequence ofProposition 4 that no first-order formula is
logically equivalent to the constancy atom=(x).

Exclusion logic FO(|), from [8], adds to first-order logicexclusion atoms~x | ~y, where~x and~y are
tuples of variables of the same length. Just as functional dependence atoms correspond to functional
database-theoretic dependencies, exclusion atoms correspond toexclusion dependencies[3]; and their
satisfaction rule is

5That is, according to the terminology of [19], if and only ifφ∗(R) is flat.
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TS-excl: M |=X ~x |~y if and only if X(~x)∩X(~y) = /0.

As proved in [8], exclusion logic is entirely equivalent to dependence logic: every exclusion logic for-
mula is logically equivalent to some dependence logic formula, and vice versa.

Inclusion logic FO(⊆), also from [8], adds instead to first-order logicinclusion atoms~x⊆~y based
on database-theoreticinclusion dependencies[6]. The corresponding rule is

TS-inc: M |=X ~x⊆~y if and only if X(~x)⊆ X(~y).

Inclusion logic is stronger than first-order logic, but weaker than existential second-order logic: indeed,
as shown in [9], sentence-wise it is equivalent to positive greatest fixed point logic GFP+. Formula-wise,
it is incomparable with constancy, dependence or exclusionlogic, since its formulas are union closed but
not downwards closed.

Independence logicFO(⊥), from [12], adds to first-order logicindependence atoms~x ⊥~y with the
intended meaning of “the values of~x and~y are informationally independent”. More formally,

TS-ind: M |=X ~x ⊥~y if and only if X(~x~y) = X(~x)×X(~y).

This notion of informational independence has a long history: see for example [11] for an analysis of
this concept from a probabilistic perspective.

Theconditional independence atoms~x ⊥~z~y, also from [12], relativize the independence of~x and~y
to all fixedvalue of~z. Their semantics is

TS-c-ind: M |=X ~x ⊥~z~y if and only if for all tuples~m∈ Dom(M)|~z| and forX~z=~m = {s∈ X : s(~z) = ~m} it
holds thatX~z=~m(~x~y) = X~z=~m(~x)×X~z=~m(~y).

As pointed out in [4], the rule for~x ⊥~z ~y corresponds precisely to the database-theoreticembedded
multivalued dependency[5] (~z։~x|~y).

In [12] it was shown that every dependence logic formula is equivalent to someFO(⊥c) (conditional
independence logic) formula, but not vice versa; and sentence-wise, both of these logics are equivalent
to each other (and to ESO). Furthermore, in [8] it was proved that FO(⊥c) is equivalent toinclu-
sion/exclusion logic6 FO(⊆, |), even with respect to open formulas, and that this is, roughly speaking,
the most general logic obtainable by adding first-order (or even existential second-order) definable de-
pendency conditions to first-order logic.7 More recently, in [10], it was shown that FO(⊥) and FO(⊥c)
are also equivalent.

We conclude this section with Figure 1, which depicts the relations between the logics we discussed
so far.

3 Upwards Closed Dependencies

In this work we will study the properties of the logics obtained by adding families ofdependency con-
ditions to the language of first-order logic. But what is a dependencycondition, in a general sense? The
following definition is based on thegeneralized atomsof [17]:

Definition 6 Let n∈ N. A dependencyof arity n is a classD, closed under isomorphisms, of models
over the signature{R} where R is a n-ary relation symbol. If~x is a tuple of n variables (possibly with
repetitions), M is a first-order model and X is a team over it whose domain contains all variables of~x
then

6That is, to first-order logic plus inclusionandexclusion atoms.
7To be more precise, for every ESO formulaφ∗(R) there exists a FO(⊥c) formulaφ(~x) such that, for all suitable modelsM

and nonempty teamsX, M |=X φ(~x) if and only if M,X(~x) |= φ∗(R).
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Figure 1: Relations between logics wrt formulas (a) and sentences (b).

TS-D: M |=X D~x if and only if(Dom(M),X(~x)) ∈ D.

Definition 7 Let D = {D1,D2, . . .} be a family of dependencies. Then we write FO(D) for the logic
obtained by adding to the language of first-order logic alldependency atomsD~x, whereD ∈ D and~x is
a tuple of variables of the arity ofD.

It is not difficult to represent the logics of Section 2 in thisnotation. For example, dependence logic is
FO(=(·, ·)) for =(·, ·) = {=(n,m) : n,m∈ N}, where(Dom(M),R) ∈ =(n,m) if and only if

~a~b,~a~c∈ R⇒~b=~c

for all tuples of elements~a= a1 . . .an,~b= b1 . . .bm,~c= c1 . . .cm ∈ Dom(M).
The following property can be easily verified, by induction on the formulasφ :8

Theorem 8 (Locality) LetD be a family of dependencies and letφ(~x) be a formula of FO(D) with free
variables in~x. Then for all models M and all teams X over it whose domain contains~x, M |=X φ(~x) if
and only if M|=X↾~x φ(~x).

In this work, we will be mainly interested in dependencies which correspond to first-order definable
properties of relations:

Definition 9 A dependency notionD is first-order definableif there exists a first-order sentenceD∗(R)
over the signature{R}, where R is a new relation symbol, such that

M ∈ D ⇔ M |= D∗(R)

for all models M= (Dom(M),R).

8For the sake of reference, we mention Theorem 4.22 of [8] in which the same result is proved in detail for (conditional)
independence logic. The only new case here is the one in whichφ(~x) = D~y for someD ∈ D and~y is contained in~x; and for it
the result follows at once from conditionTS-D and from the fact thatX(~y) = (X ↾~x)(~y).
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It is not necessarily the case that ifD is first-order definable then FO(D) and FO are equivalent with
respect to sentences. For example=(n,m)∗(R) is ∀~x~y~z(R~x~y∧R~x~z→~y=~z), where~x has lengthn and~y,~z
have lengthm; but as we said in Section 2, dependence logic is stronger than first-order logic.

When is then the case that dependency conditions can be addedsafely to first-order logic, without
increasing the expressive power? The following definition will provide us a partial answer:

Definition 10 A dependency notionD is upwards closedif

(Dom(M),R) ∈ D,R⊆ S⇒ (Dom(M),S) ∈ D

for all models(Dom(M),R) and all relations S overDom(M) of the same arity of R.

It is easy to see that upwards closed dependencies induce upwards closed satisfaction rules: ifD is
upwards closed,M |=X D~x andX ⊆ Y then it is always the case thatM |=Y D~x. However, differently
from the case of downwards or union closure, upwards closureis not preserved by team semantics: ifD
is upwards closed,φ ∈ FO(D) andM |=X φ then it is not in general true thatM |=Y φ for all Y ⊇ X (for
example, letφ be a nontrivial first-order literal and recall RuleTS-lit ).

Some examples of upwards closed dependencies follow:

Non-emptiness: M |=X NE if and only if X 6= /0;

Intersection: M |=X ♦(~x=~y) if and only if there exists as∈ X with s(~x) = s(~y);

Inconstancy: M |=X 6=(~x) if and only if |X(~x)|> 1;

n-bigness: For all n∈N, M |=X |~x| ≥ n if and only if |X(~x)| ≥ n;

Totality: M |=X All(~x) if and only if X(~x) = Dom(M)|~x|;

Non-dependence:M |=X 6=(~x,~y) if and only if there exists,s′ ∈ X with s(~x) = s′(~x) but s(~y) 6= s′(~y);9

Non-exclusion: M |=X ~x ∤~y if and only if there exists,s′ ∈ X with s(~x) = s′(~y);

Infinity: M |=X |~x| ≥ ω if and only if X(~x) is infinite;

κ-bigness: For all cardinalsκ , M |=X |~x| ≥ κ if and only if |X(~x)| ≥ κ .

All the above examples except infinity andκ-bigness are first-order definable. TheNE atom is the adap-
tation to first-order team semantics of the non-emptiness atom introduced in [20] for the propositional
version of dependence logic, and the totality atomAll is due to Abramsky and Väänänen ([1]).

The main result of this section is the following:

Theorem 11 LetD be a collection of upwards closed first-order definable dependency conditions. Then
for every formulaφ(~x) of FO(D) with free variables in~x there exists a first-order sentenceφ∗(R), where
R is a new|~x|-ary relation symbol, such that

M |=X φ(~x)⇔ M,X(~x) |= φ∗(R)

for all models M over the signature ofφ and all teams X.
In particular, every sentence of FO(D) is equivalent to some first-order sentence.

Let us begin by adapting the notion offlatteningof [19] to the case of an arbitrary logic FO(D):

9The same symbol6=(~x,~y) has been used in [7] to describe a different non-dependence notion, stating that forevery s∈ X
there exists as′ ∈ X with s(~x) = s′(~x),s(~y) 6= s′(~y). In that thesis it was proved that the resulting “non-dependence logic” is
equivalent to inclusion logic. As we will see, this is not thecase for the non-dependence notion of this paper.
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Definition 12 Let D be any set of dependency conditions and letφ be a FO(D) formula. Then its
flatteningφ f is the first-order formula obtained by replacing any non-first-order atom with⊤, where⊤
is the trivially true atom.

It is trivial to see, by induction onφ , that

Lemma 13 For all D , all φ ∈ FO(D), all models M and all teams X over M, if M|=X φ then M|=X φ f .

As we said, even ifD contains only upwards closed dependency conditions it is not true that all formulas
of FO(D) are upwards closed. However, the following restricted variant of upwards closure is preserved:

Theorem 14 Let φ be a FO(D) formula, whereD contains only upwards closed dependencies. Let M
be a first-order model, and let X, Y be teams such that X⊆Y, M |=X φ , and M|=Y φ f . Then M|=Y φ .

Proof:
The proof is by structural induction onφ .

1. If φ is a first-order literal,φ f = φ and there is nothing to prove;

2. If φ is of the formD~x for someD ∈ D , M |=X φ andX ⊆Y, then by upwards closureM |=Y φ ;

3. Suppose thatM |=X φ1∨φ2 andM |=Y φ f
1 ∨φ f

2 . NowX =X1∪X2 for two X1, X2 such thatM |=X1 φ1

andM |=X2 φ2, and therefore by Lemma 13M |=X1 φ f
1 andM |=X2 φ f

2 . Furthermore,Y =Y1∪Y2 for
two Y1, Y2 such thatM |=Y1 φ f andM |=Y2 φ f

2 . Let Z1 = X1∪Y1 andZ2 = X2∪Y2; thenZ1∪Z2 =

X ∪Y = Y, and by Proposition 4M |=Z1 φ f
1 andM |=Z2 φ f

2 . But M |=X1 φ1 andX1 ⊆ Z1, so by
induction hypothesisM |=Z1 φ1; and similarly,M |=X2 φ2 andX2 ⊆ Z2, soM |=Z2 φ2. Therefore
M |=Y φ1∨φ2, as required.

4. If M |=X φ1∧φ2 thenM |=X φ1 andM |=X φ2. Then by induction hypothesis, sinceM |=Y φ f
1 and

X ⊆Y, M |=Y φ1; and similarly, sinceM |=Y φ f
2 andX ⊆Y, M |=Y φ2, and thereforeM |=Y φ1∧φ2.

5. If M |=X ∃vφ then there is a functionH : X → P(Dom(M))\{ /0} such thatM |=X[H/v] φ , and
therefore (by Lemma 13) such thatM |=X[H/v] φ f . Similarly, if M |=Y ∃vφ f then for someK we
have thatM |=Y[K/v] φ f . Now letW : Y → P(Dom(M))\{ /0} be such that

W(s) =

{
H(s)∪K(s) if s∈ X;
K(s) if s∈Y\X.

ThenY[W/v] =X[H/v]∪Y[K/v], and therefore by Proposition 4M |=Y[W/v] φ f . Then by induction
hypothesisM |=Y[W/v] φ , sinceX[H/v] satisfiesφ and is contained inY[W/v]; and thereforeM |=Y

∃vφ , as required.

6. If M |=X ∀vφ thenM |=X[M/v] φ , and if M |=Y ∀vφ f thenM |=Y[M/v] φ f . Now X[M/v] ⊆Y[M/v],
so by induction hypothesisM |=Y[M/v] φ , and thereforeM |=Y ∀vφ .

�

Definition 15 If θ is a first-order formula andφ is a FO(D) formula we define(φ ↾ θ) as(¬θ)∨(θ ∧φ),
where¬θ is a shorthand for the first-order formula in negation normalform which is equivalent to the
negation ofθ .

The following lemma is obvious:
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Lemma 16 For all first order θ andφ ∈ FO(D), M |=X (φ ↾ θ) if and only if M |=Y φ for Y = {s∈ X :
M |=s θ}.

One can observe that(φ ↾ θ) is logically equivalent toθ →֒ φ , where→֒ is themaximal implicationof
[16]:

TS-maximp: M |=X θ →֒ φ if and only if for all maximalY ⊆ X s.t. M |=Y θ , M |=Y φ .

We use the notation(φ ↾ θ), instead ofθ →֒ φ , to make it explicit thatθ is first order and that Lemma 16
holds.

The next step of our proof of Theorem 11 is to identify a fragment of our language whose satisfaction
conditions do not involve quantification over second-orderobjects such as teams or functions. We do so
by limiting the availability of disjunction and existential quantification:

Definition 17 A FO(D) formulaφ is cleanif

1. All its disjunctive subformulasψ1∨ψ2 are first order or of the formψ ↾ θ for some suitable choice
of ψ andθ (whereθ is first order);

2. All its existential subformulas∃vψ are first order.

As the next proposition shows, clean formulas correspond tofirst-order definable properties of relations.

Proposition 18 LetD be a class of first-order definable dependencies and letφ(~x) ∈ FO(D) be a clean
formula with free variables in~x. Then there exists some first-order sentenceφ∗(R), where R is a new
|~x|-ary relation, such that

M |=X φ(~x)⇔ M,X(~x) |= φ∗(R). (1)

Proof:
By induction overφ .

1. If φ(~x) is a first-order formula (not necessarily just a literal) then let φ∗(R) = ∀~x(R~x→ φ(~x)). By
Proposition 4, (1) holds.

2. If φ(~x) is a dependency atomD~y, whereD ∈ D and~y is a tuple (possibly with repetitions) of
variables occurring in~x, let φ∗(R) be obtained fromD∗(S) by replacing every instanceS~zof S in it
with ∃~x(~z=~y∧R~x). Indeed,M |=X D~y if and only if M,X(~y) |= D∗(S), and~m∈ X(~y) if and only
if M,X(~x) |= ∃~x(~m=~y∧R~x).

3. If φ(~x) is of the form(ψ(~x) ↾ θ(~x)), let φ∗(R) be obtained fromψ∗(R) by replacing every instance
R~z of R with R~z∧θ(~z). Indeed, by Lemma 16M |=X (ψ(~x) ↾ θ(~x)) if and only if M |=Y ψ(~x) for
Y = {s∈ X : M |=s θ}, and~m∈Y(~x)⇔ ~m∈ X(~x) andM |= θ(~m).

4. If φ(~x) is of the formψ(~x)∧θ(~x) simply letφ∗(R) = ψ∗(R)∧θ∗(R).

5. If φ(~x) is of the form∀vψ(~x,v), where we assume without loss of generality thatv is distinct from
all x ∈~x, andψ∗(S) corresponds toψ(~x,v) then letφ∗(R) be obtained fromψ∗(S) by replacing
everyS~zwwith R~z. Indeed,M |=X ∀vψ if and only if M |=X[M/v] ψ(~x,v) and~mm′ ∈ X[M/v](~xv) if
and only if~m∈ X(~x).

�
All that is now left to prove is the following:

Proposition 19 Let D be a family of upwards closed dependencies. Then every FO(D) formula is
equivalent to some clean FO(D) formula.
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Proof:
It suffices to observe the following facts:

• If φ1(~x) andφ2(~x) are in FO(D) thenφ1(~x)∨φ2(~x) is logically equivalent to

(φ f
1 ∨φ f

2 )∧ (φ1 ↾ φ f
1 )∧ (φ2 ↾ φ f

2 ).

Indeed, suppose thatM |=X φ1∨φ2: then, by Lemma 13,M |=X φ f
1 ∨φ f

2 . Furthermore,X =Y∪Z

for twoY andZ such thatM |=Y φ1 andM |=Z φ2. Now letY′ = {s∈ X : M |=s φ f
1 } andZ′ = {s∈

X : M |=s φ f
2 }: by Lemma 13 and Proposition 4 we have thatY ⊆Y′ and thatZ ⊆ Z′, and therefore

by Theorem 14M |=Y′ φ1 andM |=Z′ φ2. Thus by Lemma 16M |=X (φ1 ↾ φ f
1 ) andM |=X (φ2 ↾ φ f

2 ),
as required.

Conversely, suppose thatM |=X (φ f
1 ∨φ f

2 )∧ (φ1 ↾ φ f
1 )∧ (φ2 ↾ φ f

2 ). Then letY = {s∈ X : M |=s φ f
1 }

andZ= {s∈X : M |=s φ f
2 }. By Proposition 4 and sinceM |=X φ f

1 ∨φ f
2 , X =Y∪Z; and by Lemma

16,M |=Y φ1 andM |=Z φ2. SoM |=X φ1∨φ2, as required.

• If φ(~x,v) ∈ FO(D) then∃vφ(~x,v) is logically equivalent to

(∃vφ f (~x,v))∧∀v(φ(~x,v) ↾ φ f (~x,v)).

Indeed, suppose thatM |=X ∃vφ(~x,v). Then by Lemma 13M |=X ∃vφ f (~x,v). Furthermore, for
someH : X → P(Dom(M))\{ /0} and forY = X[H/v] it holds thatM |=Y φ(~x,v). Now let Z =
{h∈ X[M/v] : M |=h φ f (~x,v)}. By Proposition 4,M |=Z φ f (~x,v); and sinceY ⊆ Z, by Theorem
14M |=Z φ(~x,v), and therefore by Lemma 16M |=X[M/v] (φ(~x,v) ↾ φ f (~x,v)), as required.

Conversely, suppose thatM |=X (∃vφ f (~x,v))∧∀v(φ(~x,v) ↾ φ f (~x,v)). Then, for alls∈X, letK(s)=
{m∈ Dom(M) : M |=s[m/v] φ f (~x,v)}. SinceM |=X ∃vφ f (~x,v), K(s) is nonempty for alls∈ X, and
by constructionX[K/v] = {s∈ X[M/v] : M |=s φ f (~x,v)}. Now M |=X[M/v] (φ(~x,v) ↾ φ f (~x,v)), so
by Lemma 16M |=X[K/v] φ(~x,v) and in conclusionM |=X ∃vφ(~x,v).

Applying inductively these two results to all subformulas of someφ ∈ FO(D) we can obtain some clean
φ ′ to whichφ is equivalent, and this concludes the proof.
�
Finally, the proof of Theorem 11 follows at once from Propositions 18 and 19.

Since, as we saw, the negations of functional and exclusion dependencies are upwards closed, we
obtain at once the following corollary:

Corollary 20 Any sentence of FO(6=(·, ·), ∤) (that is, of first-order logic plus negated functional and
exclusion dependencies) is equivalent to some first-order sentence.

4 Adding Constancy Atoms

As we saw in the previous section, upwards closed dependencies can be added to first-order logic without
increasing its expressive power (with respect to sentences); and as mentioned in Section 2, this is also
true for the (non upwards-closed) constancy dependencies=(~x).

But what if our logic contains both upwards closedand constancy dependencies? As we will now
see, the conclusion of Theorem 11 remains valid:
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Theorem 21 LetD be a collection of upwards closed first-order definable dependency conditions. Then
for every formulaφ(~x) of10 FO(=(·),D) with free variables in~x there exists a first-order sentenceφ∗(R),
where R is a new|~x|-ary relation symbol, such that

M |=X φ(~x)⇔ M,X(~x) |= φ∗(R).

In particular, every sentence of FO(D) is equivalent to some first-order sentence.

The main ingredient of our proof will be the following lemma.

Lemma 22 Let D be any family of dependencies and letφ(~x) be a FO(=(·),D) formula. Thenφ(~x) is
equivalent to some formula of the form∃~v(=(~v)∧ψ(~x,~v)), whereψ ∈ FO(D) contains exactly the same
instances ofD-atoms (for allD ∈ D) that φ does, and in the same number.

The proof of this lemma is by induction onφ , and it is entirely analogous to the corresponding proof
from [8].

Now we can prove Theorem 21.
Proof:
Let φ(~x) be a FO(=(·),D)-formula. Then by Lemma 22φ(~x) is equivalent to some sentence of the
form ∃~v(=(~v)∧ψ(~x,~v)), whereψ(~x,~v) ∈ FO(D). But then by Theorem 11 there exists a first-order
formula ψ∗(S) such thatM |=X ψ(~x,~v) if and only if M,X(~x~v) |= ψ∗(S). Now let θ(R,~v) be obtained
from ψ∗(S) by replacing anyS~y~z with R~y∧~z=~v. SinceX[~m/~v](~x~v) = {~a~m :~a∈ X(~x)} it is easy to see
thatM |=X ∃~v(=(~v)∧ψ(~x,~v)) if and only if M,X(~x) |= ∃vθ(R,~v), and this concludes the proof.
�

5 Possibility, Negated Inclusion and Negated Conditional Independence

By Corollary 20, the negations of exclusion and functional dependence atoms can be added to first-
order logic without increasing its power. But what about thenegations of inclusion and (conditional)
independence? These are of course first-order definable, butthey are not upwards closed: indeed, their
semantic rules can be given as

TS-6⊆: M |=X ~x 6⊆~y if and only if there is as∈ X such that for alls′ ∈ X, s(~x) 6= s′(~y);

TS-6⊥c: M |=X ~x 6⊥~z ~y if and only if there ares,s′ ∈ X with s(~z) = s′(~z) and such that for alls′′ ∈ X,
s′′(~x~z) 6= s(~x~z) or s′′(~y~z) 6= s(~y~z).

However, we will now prove that, nonetheless, FO(6=(·, ·), 6⊆, ∤, 6⊥c) is equivalent to FO on the level of
sentences. In order to do so, let us first define the followingpossibility operatorand prove that it is
uniformly definable in FO(=(·), 6=(·)):
Definition 23 Let φ be any FO(D) formula, for any choice ofD . Then

TS-♦: M |=X ♦φ if there exists a Y⊆ X, Y 6= /0, such that M|=Y φ .

Lemma 24 Let φ be any FO(D) formula, for anyD . Then♦φ is logically equivalent to

∃u0u1∃v(=(u0)∧=(u1)∧ (v= u0∨v= u1)∧ (φ ↾ v= u1)∧ 6=(v)). (2)

10Here=(·) represents the class of all constancy dependencies of all arities. But it is easy to see that the one of arity 1 would
suffice: indeed, if~x is x1 . . .xn then=(~x) is logically equivalent to=(x1)∧ . . .∧=(xn).
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Proof:
Suppose that there is aY ⊆ X, Y 6= /0, such thatM |=Y φ . Then let 0,1∈ Dom(M) be such that 06= 1, let
H : X[01/u0u1]→ P(Dom(M))\{ /0} be such that

H(s[01/u0u1]) =

{
{0,1} if s∈Y;
{0} if s∈ X\Y

and letZ = X[01/u0u1][H/v]. Clearly M |=Z=(u0)∧ =(u1)∧ (v = u0 ∨ v = u1)∧ (φ ↾ v = u1), and it
remains to show thatM |=Z 6=(v). But by hypothesisY is nonempty, and therefore there exists as∈Y ⊆X
such that{s[010/u0u1v],s[011/u0u1v]} ⊆ Z. Sov is not constant inZ, as required, andX satisfies (2).

Conversely, suppose thatX satisfies (2), let 0 and 1 be our choices foru0 andu1, and letH be the
choice function forv. Then letY = {s∈ X : 1∈ H(s[01/u0u1])}. By locality, Lemma 16 and the fact that
M |=X[01H/u1u2v] (φ ↾ v= u1) we have thatM |=Y φ ; andY is nonempty, since
M |=Z (v= u0∨v= u1)∧ 6=(v).
�
It is now easy to see that the negations of inclusion and conditional independence are in FO(=(·), 6=(·)):

Proposition 25 For all ~x,~y with |~x|= |~y|,~x 6⊆~y is logically equivalent to

∃~z(=(~z)∧♦(~z=~x)∧~z 6=~y).

Proposition 26 For all ~x,~y and~z,~x 6⊥~z~y is logically equivalent to

∃~p~q~r(=(~p~q~r)∧♦(~p~r =~x~z)∧♦(~q~r =~y~z)∧~p~q~r 6=~x~y~z).

Corollary 27 Every sentence of FO(6=(·, ·), 6⊆, ∤, 6⊥c) is equivalent to some sentence of
FO(=(·), 6=(·, ·), ∤), and hence to some first-order sentence.

6 Bounded Dependencies and Totality

Now that we know something about upwards closed dependencies, it would be useful to classify them in
different categories and provenon-definabilityresults between the corresponding extensions of first-order
logic. As a first such classification, we introduce the following property:

Definition 28 (Boundedness)Let κ be a (finite or infinite) cardinal. A dependency conditionD is κ-
boundedif whenever M|=X D~x there exists a Y⊆ X with |Y| ≤ κ such that M|=Y D~x.

We say thatD is boundedif it is κ-bounded for someκ .11

For example, non-emptiness and intersection are 1-bounded; inconstancy and the negations of functional
dependence and exclusion are 2-bounded; and for all finite orinfinite κ , κ-bigness isκ-bounded. How-
ever, totality is not bounded at all. Indeed, for anyκ consider a modelM of cardinality greater thanκ and
take the teamX = { /0}[M/x]. ThenM |=X All(x), but if Y ⊆ X has cardinality≤ κ thenY(x)( Dom(M)
andM 6|=Y All(x).

As we will now see, the property of boundedness is preserved by the connectives of our language.

Definition 29 (Height of a formula) Let D be any family of bounded dependencies. Then for all for-
mulasφ ∈ FO(D), theheightht(φ) of φ is defined as follows:

11After a fashion, this notion of boundedness may be thought ofas a dual of the notion ofcoherenceof [15].
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1. If φ is a first-order literal thenht(φ) = 0;

2. If φ is a functional dependence atomD~x thenht(φ) is the least cardinalκ such thatD is κ-
bounded;

3. If φ is of the formψ1∨ψ2 or ψ1∧ψ2 thenht(φ) = ht(ψ1)+ht(ψ2);

4. If φ is of the form∃vψ or ∀vψ . thenht(φ) = ht(ψ).

In other words, the height of a formula is the sum of the heights of all instances of dependency atoms
occurring in it.

Theorem 30 Let D be a family of bounded upwards closed dependencies. Then forall formulasφ ∈
FO(D)

M |=X φ ⇒∃Y ⊆ X with |Y| ≤ ht(φ) s.t. M |=Y φ .

Proof:
The proof is by induction onφ .

1. If φ is a first-order literal thenht(φ) = 0 and it is always the case thatM |= /0 φ , as required.

2. If φ is an atomD~x then the statement follows at once from the definitions of boundedness and
height.

3. If φ is a disjunctionψ1∨ψ2 thenht(φ) = ht(ψ1)+ ht(ψ2). Suppose now thatM |=X ψ1∨ψ2:
thenX = X1∪X2 for two X1 andX2 such thatM |=X1 ψ1 andM |=X2 ψ2. This implies that there
existY1 ⊆ X1, Y2 ⊆ X2 such thatM |=Y1 ψ1 andM |=Y2 ψ2, |Y1| ≤ ht(ψ1) and|Y2| ≤ ht(ψ2). But
thenY =Y1∪Y2 satisfiesψ1∨ψ2 and has at mostht(ψ1)+ht(ψ2) elements.

4. If φ is a conjunctionψ1∧ψ2 then, again,ht(φ) = ht(ψ1)+ht(ψ2). Suppose thatM |=X ψ1∧ψ2:
then M |=X ψ1 and M |=X ψ2, and therefore by Lemma 13M |=X ψ f

1 and M |=X ψ f
2 ; and, by

induction hypothesis, there existY1,Y2 ⊆ X with |Y1| ≤ ht(ψ1), |Y2| ≤ ht(ψ2), M |=Y1 ψ1 and
M |=Y2 ψ2. Now let Y = Y1 ∪Y2: sinceY ⊆ X, by Proposition 4M |=Y ψ f

1 andM |=Y ψ f
2 . But

Y1,Y2 ⊆Y, and therefore by Theorem 14M |=Y ψ1 andM |=Y ψ2, and in conclusionM |=Y ψ1∧ψ2.

5. If φ is of the form∃vψ thenht(φ) = ht(ψ). Suppose thatM |=X ∃vψ : then for someH we
have thatM |=X[H/v] ψ , and therefore by induction hypothesis there exists aZ ⊆ X[H/v] with
|Z| ≤ ht(ψ) such thatM |=Z ψ . For anyh∈ Z, let f(h) be as∈ X such thath∈ s[H/v] = {s[m/v] :
m∈ H(s)},12 and letY = {f(h) : h∈ Z}. Now Z ⊆Y[H/v] ⊆ X[H/v]. SinceM |=X[H/v] ψ f and
Y[H/v]⊆ X[H/v], we have thatM |=Y[H/v] ψ f ; and sinceM |=Z ψ , this implies thatM |=Y[H/v] ψ
and thatM |=Y ∃vψ . Furthermore|Y|= |Z| ≤ ht(ψ), as required.

6. If φ is of the form∀vψ then, again,ht(φ) = ht(ψ). Suppose thatM |=X[M/v] ψ : again, by
induction hypothesis there is aZ⊆X[M/v] with |Z| ≤ ht(ψ) and such thatM |=Z ψ . For anyh∈Y,
let g(h) pick somes∈ X which agrees withh on all variables exceptv, and letY = {g(h) : h∈ Z}.
Similarly to the previous case,Z⊆Y[M/v]⊆ X[M/v]: therefore, sinceM |=X[M/v] ψ f we have that
M |=Y[M/v] ψ f , and sinceM |=Z ψ we have thatM |=Y[M/v] ψ . So in conclusionM |=Y ∀vψ , as
required, and|Y|= |Z| ≤ n.

�
Even though constancy atoms are not upwards closed, it is possible to extend this result to FO(=(·),D).
Indeed, constancy atoms are trivially 0-bounded, since theempty team always satisfies them, and

12SinceZ ⊆ X[H/v], such asalways exists. Of course, there may be multiple ones; in thatcase, we pick one arbitrarily.
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Corollary 31 LetD be a family of upwards closed bounded dependencies. Then forall φ ∈FO(=(·),D)

M |=X φ ⇒∃Y ⊆ X with |Y| ≤ ht(φ) s.t. M |=Y φ .

Proof:
Let φ ∈ FO(=(·),D): then by Lemma 22φ is equivalent to some formula of the form∃~v(=(~v)∧ψ),
whereψ does not contain constancy atoms andht(ψ) = ht(φ). Now suppose thatM |=X φ : then, for
some choice of elements~m∈ Dom(M)|~v|, M |=X[~m/~v] ψ . Now by Theorem 30 there exists aZ ⊆ X[~m/~v],
with |Z| ≤ ht(ψ), such thatM |=Z ψ ; andZ is necessarily of the formY[~m/~v] for someY ⊆ X with
|Y|= |Z| ≤ ht(ψ). But thenM |=Y ∃~v(=(~v)∧ψ), as required.
�
This result allows us to prove at once a number of nondefinability results concerning upwards closed
dependencies. For example, it is now easy to see that
Corollary 32 LetD be a family of upwards closed bounded dependencies. Then thetotality dependency
All is not definable in FO(=(·),D). In particular, totality atoms cannot be defined by means of the
negations of inclusion, exclusion, functional dependenceand independence atoms.

Corollary 33 Let D be a family ofκ-bounded upwards closed dependencies and letκ ′ > κ be infinite.
Thenκ ′-bigness is not definable in FO(=(·),D).

Corollary 34 Let D be a k-bounded upwards closed dependency, and let n> k. If φ(~x) of FO(=(·),D)
characterizes n-bigness, in the sense that for all M and X

M |=X φ(~x)⇔ |X(~x)| ≥ n,

thenφ(~x) contains at least⌈n
k⌉ instances ofD.

7 Conclusions and Further Work

In this work we discovered a surprising asymmetry between downwards closed and upwards closed first-
order definable dependency conditions: whereas, as it was known since [19], the former can bring the
expressive power of a logic with team semantics beyond the first order, the latter cannot do so by their
own or even together with constancy atoms. As a consequence,the negations of the principal depen-
dency notions studied so far in team semantics can all be added to first-order logic without increasing its
expressive power.

Our original question was: how much can we get away with adding to the team semantics of first-
order logic before ending up in a higher order logic? The answer, it is now apparent, isquite a lot. This
demonstrates that team semantics is useful not only (as it has been employed so far) as a formalism for
the study of very expressive extensions of first-order logic, but also as one for that of more treatable ones.

Much of course remains to be done. The notion of boundedness of Section 6 allowed us to find some
non-definability results between our extensions; but the classification of these extensions is far from
complete. In particular, it would be interesting to find necessary and sufficient conditions for FO(D) to
be equivalent to FO over sentences. The complexity-theoretic properties of these logics, or of fragments
thereof, also deserve further investigation.

Another open issue concerns the development of sound and complete proof systems for our logics.
Of course, one can check whether a theoryT implies a formulaφ simply by using Theorems 11 and 21
to translate everything in first-order logic and then use oneof the many well-understood proof systems
for it; but nonetheless, it could be very informative to find out directly which logical laws our formalisms
obey.
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The determinization of Büchi automata is a celebrated problem, with applications in synthesis, prob-
abilistic verification, and multi-agent systems. Since the1960s, there has been a steady progress of
constructions: by McNaughton, Safra, Piterman, Schewe, and others. Despite the proliferation of so-
lutions, they are all essentially ad-hoc constructions, with little theory behind them other than proofs
of correctness. Since Safra, all optimal constructions employ trees as states of the deterministic au-
tomaton, and transitions between states are defined operationally over these trees. The operational
nature of these constructions complicates understanding,implementing, and reasoning about them,
and should be contrasted with complementation, where a solid theory in terms of automata runDAGs
underlies modern constructions.

In 2010, we described aprofile-based approach to Büchi complementation, where a profile is
simply the history of visits to accepting states. We developed a structural theory of profiles and used
it to describe a complementation construction that is deterministic in the limit. Here we extend the
theory of profiles to prove that every runDAG contains aprofile treewith at most a finite number
of infinite branches. We then show that this property provides a theoretical grounding for a new
determinization construction where macrostates are doubly preordered sets of states. In contrast to
extant determinization constructions, transitions in thenew construction are described declaratively
rather than operationally.

1 Introduction

Büchi automata were introduced in the context of decision problems for second-order arithmetic [3].
These automata constitute a natural generalization of automata over finite words to languages of infinite
words. Whereas a run of an automaton on finite words is accepting if the run ends in an accepting state,
a run of a Büchi automaton is accepting if it visits an accepting state infinitely often.

Determinization of nondeterministic automata is a fundamental problem in automata theory, going
back to [19]. Determinization of Büchi automata is employed in many applications, including synthesis
of reactive systems [18], verification of probabilistic systems [4, 25], and reasoning about multi-agent
systems [2]. Nondeterministic automata over finite words can be determinized with a simple, although
exponential,subset construction[19], where a state in the determinized automaton is a set of states
of the input automaton. Nondeterministic Büchi automata,on the other hand, are not closed under
determinization, as deterministic Büchi automata are strictly less expressive than their nondeterministic

∗Work supported in part by NSF grants CNS 1049862 and CCF-1139011, by NSF Expeditions in Computing
project “ExCAPE: Expeditions in Computer Augmented Program Engineering”, by a gift from Intel, by BSF grant
9800096, and by a stipend from Trinity University. A full version, with appendices and missing proofs, is available at
http://www.cs.trinity.edu/~sfogarty/papers/gandalf13rj.pdf



108 Profile Trees for Büchi Word Automata, with Application to Determinization

counterparts [13]. Thus, a determinization construction for Büchi automata must result in automata with
a more powerful acceptance condition, such as Muller [15], Rabin [20], or parity conditions [9, 17].

The first determinization construction for Büchi automatawas presented by McNaughton, with a
doubly-exponential blowup [15]. In 1988, Safra introduceda singly exponential construction [20],
matching the lower bound ofnO(n) [14]. Safra’s construction encodes a state of the determinized au-
tomaton as a labeled tree, now called aSafra tree, of sets of states of the input Büchi automaton. Subse-
quently, Safra’s construction was improved by Piterman, who simplified the use of tree-node labels [17],
and by Schewe, who moved the acceptance conditions from states to edges [22]. In a separate line of
work, Muller and Schupp proposed in 1995 a different singly exponential determinization construction,
based onMuller-Schupp trees[16], which was subsequently simplified by Kähler and Wilke[9].

Despite the proliferation of Büchi determinization constructions, even in their improved and simpli-
fied forms all constructions are essentially ad-hoc, with little theory behind them other than correctness
proofs. These constructions rely on the encoding of determinized-automaton states as finite trees. They
are operational in nature, with transitions between determinized-automaton states defined “horticultur-
ally,” as a sequence of operations that grow trees and then prune them in various ways. The opera-
tional nature of these constructions complicates understanding, implementing, and reasoning about them
[1, 23], and should be contrasted with complementation, where an elegant theory in terms of automata
run DAGs underlies modern constructions [8, 11, 21]. In fact, the difficulty of determinization has mo-
tivated attempts to find determinization-free decision procedures [12] and works on determinization of
fragments of LTL [10].

In a recent work [6], we introduced the notion ofprofiles for nodes in the runDAG. We began by
labeling accepting nodes of theDAG by 1 and non-accepting nodes by 0, essentially recording visits to
accepting states. The profile of a node is the lexicographically maximalsequence of labels along paths of
the runDAG that lead to that node. Once profiles and a lexicographic order over profiles were defined, we
removed from the runDAG edges that do not contribute to profiles. In the pruned runDAG, we focused on
lexicographically maximal runs. This enabled us to define a novel, profile-based Büchi complementation
construction that yieldsdeterministic-in-the-limitautomata: one in which every accepting run of the
complementing automaton is eventually deterministic [6] Astate in the complementary automaton is a
set of states of the input nondeterministic automaton, augmented with the preorder induced by profiles.
Thus, this construction can be viewed as an augmented subsetconstruction.

In this paper, we develop the theory of profiles further, and consider the equivalence classes of nodes
induced by profiles, in which two nodes are in the same class ifthey have the same profile. We show
that profiles turn the runDAG into a profile tree: a binary tree of bounded width over the equivalence
classes. The profile tree affords us a novel singly exponential Büchi determinization construction. In
this profile-based determinization construction, a state of the determinized automaton is a set of states of
the input automaton, augmented withtwo preorders induced by profiles. Note that while a Safra tree is
finite and encodes a single level of the runDAG, our profile tree is infinite and encodes the entire runDAG,
capturing the accepting or rejecting nature of all paths. Thus, while a state in a traditional determinization
construction corresponds to a Safra tree, a state in our deterministic automaton corresponds to a single
level in the profile tree.

Unlike previous Büchi determinization constructions, transitions between states of the determinized
automaton are defined declaratively rather than operationally. We believe that the declarative character
of the new construction will open new lines of research on Büchi determinization. For Büchi comple-
mentation, the theory of runDAGs [11] led not only to tighter constructions [8, 21], but alsoto a rich
body of work on heuristics and optimizations [5, 7]. We foresee analogous developments in research on
Büchi determinization.



S. Fogarty, O. Kupferman, M.Y. Vardi, & Th. Wilke 109

2 Preliminaries

This section introduces the notations and definitions employed in our analysis.

2.1 Relations on Sets

Given a setR, a binary relation≤ overR is apreorder if ≤ is reflexive and transitive. Alinear preorder
relates every two elements: for everyr1, r2 ∈ R eitherr1 ≤ r2, or r2 ≤ r1, or both. A relation isantisym-
metric if r1 ≤ r2 andr2 ≤ r1 impliesr1 = r2. A preorder that is antisymmetric is apartial order. A linear
partial order is atotal order. Consider a partial order≤. If for every r ∈ R, the set{r ′ | r ′ ≤ r} of smaller
elements is totally ordered by≤, then we say that≤ is atree order. The equivalence class ofr ∈ Runder
≤, written [r], is {r ′ | r ′ ≤ r andr ≤ r ′}. The equivalence classes under a linear preorder form a totally
ordered partition ofR. Given a setR and linear preorder≤ overR, define the minimal elements ofR as
min≤(R) = {r1 ∈ R | r1 ≤ r2 for all r2 ∈ R}. Note thatmin≤(R) is either empty or an equivalence class
under≤. Given a non-empty setR and a total order≤, we instead definemin≤(R) as the the unique
minimal element ofR.

Given two finite setsR andR′ where|R| ≤ |R′|, a linear preorder≤ overR, and a total order<′ over
R′, define the〈≤,<′〉-minjectionfrom R to R′ to be the functionmj that maps all the elements in thek-th
equivalence class ofR to thek-th element ofR′. The number of equivalence classes is at most|R|, and
thus at most|R′|. If ≤ is also a total order, than the〈≤,<′〉-minjection is also an injection.

Example2.1. Let R=Q andR′ = Z be the sets of rational numbers and integers, respectively.Define the
linear preorder≤1 overQ by x≤1 x′ iff ⌊x⌋ ≤ ⌊x′⌋, and the total order<2 overZ by x<2 x′ if x < x′.
Then, the〈≤1,<2〉-minjection fromQ toZ maps a rational numberx to ⌊x⌋.

2.2 ω-Automata

A nondeterministicω-automatonis a tupleA= 〈Σ,Q,Qin,ρ ,α〉, whereΣ is a finite alphabet,Q is a finite
set of states,Qin ⊆ Q is a set of initial states,ρ : Q×Σ → 2Q is a nondeterministic transition relation,
and α is an acceptance condition defined below. An automaton isdeterministicif |Qin| = 1 and, for
everyq ∈ Q andσ ∈ Σ, we have|ρ(q,σ)| = 1. For a functionδ : Q×Σ → 2Q, we lift δ to setsR of
states in the usual fashion:δ (R,σ) =

⋃
r∈Rδ (r,σ). Further, we define the inverse ofδ , written δ−1, to

beδ−1(r,σ) = {q | r ∈ δ (q,σ)}.
A run of anω-automatonA on a wordw= σ0σ1 · · · ∈ Σω is an infinite sequence of statesq0,q1, . . . ∈

Qω such thatq0 ∈ Qin and, for everyi ≥ 0, we have thatqi+1 ∈ ρ(qi ,σi). Correspondingly, afinite run
of A to q on w= σ0 · · ·σn−1 ∈ Σ∗ is a finite sequence of statesp0, . . . , pn such thatp0 ∈ Qin, pn = q, and
for every 0≤ i < n we havepi+1 ∈ ρ(pi,σi).

The acceptance conditionα determines if a run isaccepting. If a run is not accepting, we say it
is rejecting. A word w ∈ Σω is accepted byA if there exists an accepting run ofA on w. The words
accepted byA form the languageof A, denoted byL(A). For a Büchi automaton, the acceptance
condition is a set of statesF ⊆ Q, and a runq0,q1, . . . is accepting iffqi ∈ F for infinitely manyi’s. For
convenience, we assumeQin ∩F = /0. For aRabin automaton, the acceptance condition is a sequence
〈G0,B0〉, . . . ,〈Gk,Bk〉 of pairs of sets of states. Intuitively, the setsG are “good” conditions, and the sets
B are “bad” conditions. A runqo,q1, . . . is accepting iff there exists 0≤ j ≤ k so thatqi ∈G j for infinitely
many i’s, while qi ∈ B j for only finitely manyi’s. Our focus in this paper is on nondeterministic Büchi
automata on words (NBW) and deterministic Rabin automata onwords (DRW).
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2.3 Safra’s Determinization Construction

This section presents Safra’s determinization construction, using the exposition in [17]. Safra’s construc-
tion takes an NBW and constructs an equivalent DRW. Intuitively, a state in this construction is a tree of
subsets. Every node in the tree is labeled by the states it follows. The label of a node is a strict superset
of the union of labels of its descendants, and the labels of siblings are disjoint. Children of a node are
ordered by “age”. LetA= 〈Σ,Q,Qin,ρ ,F〉 be an NBW,n= |Q|, andV = {0, . . . ,n−1}.

Definition 2.2. [17] A Safra treeoverA is a tuplet = 〈N, r, p,ψ , l ,G,B〉 where:
• N ⊆V is a set of nodes.
• r ∈ N is the root node.
• p : (N\{r})→ N is the parent function overN\{r}.
• ψ is a partial order defining ’older than’ over siblings.
• l : N → 2Q is a labeling function from nodes to non-empty sets of states. The label of every node

is a proper superset of the union of the labels of its sons. Thelabels of two siblings are disjoint.
• G,B⊆V are two disjoint subsets ofV.

The only way to move from one Safra tree to the next is through asequence of “horticultural”
operations, growing the tree and then pruning it to ensure that the above invariants hold.

Definition 2.3. Define the DRWDS(A) = 〈Σ,QS,ρS, t0,α〉 where:
• QS is the set of Safra trees overA.
• t0 = 〈{0},0, /0, /0, l0, /0,{1, . . . ,n−1}〉 wherel0(0) = Qin

• For t = 〈N, r, p,ψ , l ,G,B〉 ∈ QS and σ ∈ Σ, the treet ′ = ρS(t,σ) is the result of the following
sequence of operations. We temporarily use a setV ′ of names disjoint fromV. Initially, let
t ′ = 〈N′, r ′, p′,ψ ′, l ′,G′,B′〉 whereN′ = N, r ′ = r, p′ = p, ψ ′ = ψ , l ′ is undefined, andG′ = B′ = /0.
(1) For everyv∈ N′, let l ′(v) = ρ(l(v),σ).
(2) For everyv∈ N′ such thatl ′(v)∩F 6= /0, create a new nodev′ ∈V ′ where:p(v′) = v; l ′(v′) =

l ′(v)∩F; and for everyw′ ∈V ′ wherep(w′) = v add(w′,v′) to ψ .
(3) For everyv∈ N′ andq∈ l ′(v), if there is aw∈ N′ such that(w,v) ∈ ψ andq∈ l ′(w), then

removeq from l ′(v) and, for every descendantv′ of v, removeq from l ′(v′).
(4) Remove all nodes with empty labels.
(5) For everyv∈ N′, if l ′(v) =

⋃{l ′(v′) | p′(v′) = v} remove all children ofv, addv to G.
(6) Add all nodes inV \N′ to B.
(7) Change the nodes inV ′ to unused nodes inV.

• α = {〈G0,B0〉, . . . ,〈Gn−1,Bn−1〉}, where:
– Gi = {〈N, r, p,ψ , l ,G,B〉 ∈ QS | i ∈ G}
– Bi = {〈N, r, p,ψ , l ,G,B〉 ∈ QS | i ∈ B}

Theorem 2.4. [20] For an NBWA with n states, L(DS(A))=L(A) and DS(A) has nO(n) states.

3 From Run DAGs to Profile Trees

In this section, we present a framework for simultaneously reasoning about all runs of a Büchi automaton
on a word. We use aDAG to encode all possible runs, and give each node in thisDAG a profile based
on its history. The lexicographic order over profiles induces a preorder�i over the nodes on leveli of
the runDAG. Using�i, we prune the edges of the runDAG, and derive a binary tree of bounded width.
Throughout this paper we fix an NBWA= 〈Σ,Q,Qin,ρ ,F〉 and an infinite wordw= σ0σ1 · · · .
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3.1 Run DAGs and Profiles

The runs ofA onw can be arranged in an infiniteDAG G= 〈V,E〉, where

• V ⊆ Q×N is such that〈q, i〉 ∈V iff there is a finite run ofA to q on σ0 · · ·σi−1.

• E ⊆⋃
i≥0(Q×{i})×(Q×{i+1}) is such thatE(〈q, i〉,〈q′, i+1〉) iff 〈q, i〉 ∈V andq′ ∈ ρ(q,σi).

The DAG G, called therun DAG of A on w, embodies all possible runs ofA on w. We are primarily
concerned withinitial paths in G: paths that start inQin ×{0}. A node〈q, i〉 is anF-node ifq∈ F, and
a path inG is acceptingif it is both initial and contains infinitely manyF-nodes. An accepting path inG
corresponds to an accepting run ofA on w. If G contains an accepting path, we say thatG is accepting;
otherwise it isrejecting. Let G′ be a sub-DAG of G. For i ≥ 0, we refer to the nodes inQ×{i} aslevel i
of G′. Note that a node on leveli +1 has edges only from nodes on leveli. We say thatG′ hasbounded
width of degree cif every level inG′ has at mostc nodes. By construction,G has bounded width of
degree|Q|.

Consider the runDAG G= 〈V,E〉 of A on w. Let f : V → {0,1} be such thatf (〈q, i〉) = 1 if q∈ F
and f (〈q, i〉) = 0 otherwise. Thus,f labelsF-nodes by 1 and all other nodes by 0. Theprofile of a
path in G is the sequence of labels of nodes in the path. We define the profile of a node to be the
lexicographically maximal profile of all initial paths to that node. Formally, the profile of a finite path
b= v0,v1, . . . ,vn in G, writtenhb, is f (v0) f (v1) · · · f (vn), and the profile of an infinite pathb= v0,v1, . . .
is hb = f (v0) f (v1) · · · . Finally, the profile of a nodev, written hv, is the lexicographically maximal
element of{hb | b is an initial path tov}.

The lexicographic order of profiles induces a linear preorder over nodes on every level ofG. We
define a sequence of linear preorders�i over the nodes on leveli of G as follows. For nodesu andv
on level i, let u ≺i v if hu < hv, andu ≈i v if hu = hv. We group nodes by their equivalence classes
under�i. Since the final element of a node’s profile is 1 if and only if the node is anF-node, all
nodes in an equivalence class agree on membership inF. Call an equivalence class anF-class when
all members areF-nodes, and a non-F -class when none of its members areF-nodes. When a state can
be reached by two finite runs, a node will have multiple incoming edges inG. We now remove from
G all edges that do not contribute to profiles. Formally, definethe pruned runDAG G′ = 〈V,E′〉 where
E′ = {〈u,v〉 ∈ E | for everyu′ ∈V, if 〈u′,v〉 ∈ E thenu′ �|u| u}. Note that the set of nodes inG andG′

are the same, and that an edge is removed fromE′ only when there is another edge to its destination.
Lemma 3.1 states that, as we have removed only edges that do not contribute to profiles, nodes derive

their profiles from their parents inG′.

Lemma 3.1. [6] For two nodes u and u′ in V , if 〈u,u′〉 ∈ E′, then hu′ = hu0 or hu′ = hu1.

While nodes with different profiles can share a child inG, Lemma 3.2 precludes this inG′.

Lemma 3.2. Consider nodes u and v on level i of G′ and nodes u′ and v′ on level i+1 of G′. If 〈u,u′〉 ∈E′,
〈v,v′〉 ∈ E′, and u′ ≈i+1 v′, then u≈i v.

Proof: Sinceu′ ≈i+1 v′, we havehu′ = hv′ . If u′ is anF-node, thenv′ is anF-node and the last letter in
bothhu′ andhv′ is 1. By Lemma 3.1 we havehu1= hu′ = hv′ = hv1. If u′ andv′ are non-F -nodes, then
we havehu0= hu′ = hv′ = hv0. In either case,hu = hv andu≈i v.

Finally, we have thatG′ captures the accepting or rejecting nature ofG. This result was employed to
provide deterministic-in-the-limit complementation in [6]

Theorem 3.3. [6] The pruned runDAG G′ of an NBWA on a word w is accepting iffA accepts w.
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3.2 The Profile Tree

Using profiles, we define theprofile tree T, which we show to be a binary tree of bounded width that
captures the accepting or rejecting nature of the pruned runDAG G′. The nodes ofT are the equivalence
classes{[u] | u∈V} of G′ = 〈V,E′〉. To remove confusion, we refer to the nodes ofT asclassesand use
andU andW for classes inT, while reservingu andv for nodes inG or G′. The edges inT are induced
by those inG′ as expected: for an edge〈u,v〉 ∈ E′, the class[v] is the child of[u] in T. A classW is a
descendantof a classU if there is a, possibly empty, path fromU to W.

Theorem 3.4. The profile tree T of an n-state NBWA on an infinite word w is a binary tree whose width
is bounded by n.

Proof: ThatT has bounded width follows from the fact that a class on leveli contains at least one node
on level i of G, andG is of bounded width of degree|Q|. To prove that every class has one parent, for
a classW let U = {u | there isv∈W such that〈u,v〉 ∈ E′}. Lemma 3.2 implies thatU is an equivalence
class, and is the sole parent ofW. To show thatT has a root, note that asQin ∩F = /0, all nodes on the
first level ofG have profile 0, and every class descends from this class of nodes with profile 0. Finally,
as noted Lemma 3.1 entails that a classU can have at most two children: the class with profilehU1, and
the class with profilehU0. ThusT is binary.

A branchof T is a finite or infinite initial path inT. SinceT is a tree, two branches share a prefix
until they split. An infinite branch isacceptingif it contains infinitely manyF-classes, andrejecting
otherwise. An infinite rejecting branch must reach a suffix consisting only of non-F-classes. A class
U is calledfinite if it has finitely many descendants, and a finite classU dies outon levelk if it has a
descendant on levelk−1, but none on levelk. SayT is acceptingif it contains an accepting branch, and
rejectingif all branches are rejecting.

As all members of a class share a profile, we define the profilehU of a classU to behu for some node
u∈U . We extend the functionf to classes, so thatf (U) = 1 if U is anF-class, andf (U) = 0 otherwise.
We can then define the profile of an infinite branchb= U0,U1, . . . to behb = f (U0) f (U1) · · · . For two
classesU andW on leveli, we say thatU ≺i W if hU < hW. For two infinite branchesb andb′, we say
thatb≺ b′ if hb < hb′ . Note that≺i is a total order over the classes on leveli, and that≺ is a total order
over the set of infinite branches.

As proven above, a classU has at most two children: the class ofF-nodes with profilehU1, and the
class of non-F -nodes with profilehU 0. We call the first class theF-child of U , and the second class the
non-F -child ofU . While theDAG G′ can have infinitely many infinite branches, bounding the width of a
tree also bounds the number of infinite branches it may have.

Corollary 3.5. The profile tree T of an NBWA on an infinite word w has a finite number of infinite
branches.

Example3.6. Consider, for example, the NBW in Figure 1.(a) and the first four levels of a tree of equiv-
alence classes in Figure 1.(b). This tree corresponds to allruns of the NBW on the wordabω . There
is only one infinite branch,{〈q,0〉},{〈p,1〉},{〈p,2〉}, . . ., which is accepting. The set of labels and the
global labelinggl are explained below, in Section 4.1.

We conclude this section with Theorem 3.7, which enables us to reduce the search for an accepting
path inG′ to a search for an accepting branch inT.
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a

a
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a,b

(a) An automaton

〈q,0〉
h= 0
labels= {}
gl = 0

〈q,1〉
h= 00

labels= {0}
gl = 0

〈p,1〉
h= 01
labels= {}
gl = 1

〈q,2〉
h= 010

labels= {0,1}
gl = 0

〈p,2〉
h= 011
labels= {}
gl = 2

〈q,3〉
h= 0110

labels= {0,1,2}
gl = 0

〈p,3〉

h= 0111
labels= {}
gl = 3

(b) T for automaton (a) onabω .

Figure 1: An automaton and tree of classes. Each class is a singleton set, brackets are omitted for brevity.
F-classes are circled twice. Each class is labeled with its profile h, as well as the setlabels and the
global labelgl as defined in Section 4.1.

Theorem 3.7. The profile tree T of an NBWA on an infinite word w is accepting iffA accepts w.

Proof: If w∈ L(A), then by Theorem 3.3 we have thatG′ contains an accepting pathu0,u1, . . .. This
path gives rise to an accepting branch[u0], [u1], . . . in T. In the other direction, ifT has an accepting
branchU0,U1, . . ., consider the infinite subgraph ofG′ consisting only of the nodes inUi , for i > 0. For
every i > 0 there existsui ∈ Ui andui+1 ∈ Ui+1 so thatE′(ui ,ui+1). Because no node is orphaned in
G′, Lemma 3.2 implies that every node inUi+1 has a parent inUi, thus this subgraph is connected. As
each node has degree of as mostn, König’s Lemma implies that there is an infinite initial path u0,u1, . . .
through this subgraph. Further, at every leveli whereUi is anF-class, we have thatui ∈ F , and thus this
path is accepting andw∈ L(A).

4 Labeling

In this section we present a method of deterministically labeling the classes inT with integers, so we
can determine ifT is accepting by examining the labels. Each labelm represents the proposition that the
lexicographically minimal infinite branch through the firstclass labeled withm is accepting. On each
level we give the labelm to the lexicographically minimal descendant, on any branch, of this first class
labeled withm. We initially allow the use of global information aboutT and an unbounded number of
labels. We then show how to determine the labeling using bounded information about each level ofT,
and how to use a fixed set of labels.
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4.1 LabelingT

We first present a labeling that uses an unbounded number of labels and global information aboutT. We
call this labeling theglobal labeling, and denote it withgl. For a classU on leveli of T, and a classW
on level j, we say thatW is before U if j < i or j = i andW ≺i U . For each labelm, we refer to the first
class labeledm asfirst(m). Formally,U = first(m) if U is labeledm and, for all classesW before
U , the label ofW is notm. We define the labeling functiongl inductively over the nodes ofT. For the
initial classU0 = {〈q,0〉 | q∈ Qin} with profile 0, letgl(U0) = 0.

Each labelm follows the lexicographically minimal child offirst(m) on every level. When a class
with label m has two children, we are not certain which, if either, is partof an infinite branch. We are
thus conservative, and follow the non-F-child. If the non-F -child dies out, we revise our guess and move
to a descendant of theF-child. For a labelmand leveli, let thelexicographically minimal descendantof
mon leveli, writtenlmd(m, i), bemin�({W |W is a descendant offirst(m) on leveli}): the class with
the minimal profile among all the descendants offirst(m) on level i. For a classU on level i, define
labels(U) = {m |U = lmd(m, i)} as the set of valid labels forU . When labellingU , if U has more than
one valid label, we give it the smallest label, which corresponds to the earliest ancestor. Iflabels(U)

is empty,U is given an unused label one greater than the maximum label occurring earlier inT.

Definition 4.1. gl(U) =

{
min(labels(U)) if labels(U) 6= /0,

max({gl(W) |W is beforeU})+1 if labels(U) = /0.

Lemma 4.2 demonstrates that every class on a level gets a unique label, and that despite moving
between nephews the labeling adheres to branches in the tree.

Lemma 4.2. For classes U and W on level i of T , it holds that:
(1) If U 6=W then gl(U) 6= gl(W).
(2) U is a descendant offirst(gl(U)).
(3) If U is a descendant offirst(gl(W)), then W�i U. Consequently, if U≺i W, then U is not a

descendant offirst(gl(W)).
(4) first(gl(U)) is the root or an F-class with a sibling.
(5) If U 6= first(gl(U)), then there is a class on level i−1 that has label gl(U).
(6) If gl(U)< gl(W) thenfirst(gl(U)) is beforefirst(gl(W)).

As stated above, the labelm represents the proposition that the lexicographically minimal infinite
branch going throughfirst(m) is accepting. Every time we pass through anF-child, this is evidence
towards this proposition. Recall that when a class with label m has two children, we initially follow the
non-F -child. If the non-F -child dies out, we revise our guess and move to a descendant of the F-child.
Thus revising our guess indicates that at an earlier point the branch did visit anF-child, and also provides
evidence towards this proposition. Formally, we say that a labelm is successful on level iif there is a
classU on leveli−1 and a classU ′ on leveli such thatgl(U) = gl(U ′) = m, and eitherU ′ is theF-child
of U , orU ′ is not a child ofU at all.

Example4.3. In Figure 1.(b), the only infinite branch{〈q,0〉},{〈p,1〉}, . . . is accepting. At level 0 this
branch is labeled with 0. At each leveli > 0, we conservatively assume that the infinite branch beginning
with 〈q,0〉 goes through{〈q, i〉}, and thus label{〈q, i〉} by 0. As{〈q, i〉} is proven finite on leveli +1,
we revise our assumption and continue to follow the path through{〈p, i〉}. Since{〈p, i〉} is anF-class,
the label 0 is successful on every leveli +1. Although the infinite branch is not labeled 0 after the first
level, the label 0 asymptotically approaches the infinite branch, checking along the way that the branch
is lexicographically minimal among the infinite branches through the root.
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Theorem 4.4 demonstrates that the global labeling capturesthe accepting or rejecting nature ofT.
Intuitively, at each level the classU with label m is on the lexicographically minimal branch from
first(m). If U is on the lexicographically minimalinfinite branch fromfirst(m), the labelm is
waiting for the branch to next reach anF-class. IfU is not on the lexicographically minimal infinite
branch fromfirst(m), thenU is finite andm is waiting forU to die out.

Theorem 4.4. A profile tree T is accepting iff there is a label m that is successful infinitely often.

Proof: In one direction, assume there is a labelm that is successful infinitely often. The labelm can
be successful only when it occurs, and thusm occurs infinitely often,first(m) has infinitely many
descendants, and there is at least one infinite branch through first(m). Let b=U0,U1, . . . be the lexi-
cographically minimal infinite branch that goes throughfirst(m). We demonstrate thatb cannot have a
suffix consisting solely of non-F -classes, and therefore is an accepting branch. By way of contradiction,
assume there is an indexj so that for everyk > j, the classUk is a non-F -class. By Lemma 4.2.(4),
first(m) is anF-class or the root and thus occurs before levelj.

Let U = {W |W ≺ j U j , W is a descendant offirst(m)} be the set of descendants offirst(m),
on level j, that are lexicographically smaller thanU j . Sinceb is the lexicographically minimal infinite
branch throughfirst(m), every class inU must be finite. Letj ′ ≥ j be the level at which the last class in
U dies out. At this point,U j ′ is the lexicographically minimal descendant offirst(m). If gl(U j ′) 6= m,
then there is no class on levelj ′ with labelm, and, by Lemma 4.2.(5),m would not occur after levelj ′.
Sincem occurs infinitely often, it must be thatgl(U j ′) = m. On every levelk> j ′, the classUk is a non-
F-child, and thusUk is the lexicographically minimal descendant ofU j ′ on levelk and sogl(Uk) = m.
This entailsm cannot be not successful after levelj ′, and we have reached a contradiction. Therefore,
there is no such rejecting suffix ofb, andb must be an accepting branch.

In the other direction, if there is an infinite accepting branch, then letb = U0,U1, . . . be the lexi-
cographically minimal infinite accepting branch. LetB′ be the set of infinite branches that are lexico-
graphically smaller thanb. Every branch inB′ must be rejecting, orb would not be the minimal infinite
accepting branch. Letj be the first index after which the last branch inB′ splits fromb. Note that either
j = 0, orU j−1 is part of an infinite rejecting branchU0, . . . ,U j−1,Wj ,Wj+1, . . . smaller thanb. In both
cases, we show thatU j is the first class for a new labelm that occurs on every levelk> j of T.

If j = 0, then letm= 0. As m is the smallest label, and there is a descendant ofU j on every level
of T, it holds thatm will occur on every level. In the second case, wherej > 0, thenWj must be the
non-F -child of U j−1, and soU j is theF-child. Thus,U j is given a new labelm whereU j = first(m).
For every labelm′ < m and levelk > j, since for every descendantU ′ of U j it holds thatWk �k U ′, it
cannot be thatlmd(m′,k) is a descendant ofU j . Thus, on every levelk> j, the lexicographically minimal
descendant ofU j will be labeledm, andm occurs on every level ofT.

We show thatm is successful infinitely often by defining an infinite sequence of levels, j0, j1, j2, . . .
so thatm is successful onj i for all i > 0. As a base case, letj0 = j. Inductively, at levelj i, letU ′ be the
class on levelj i labeled withm. We have two cases. IfU ′ 6=U ji , then as all infinite branches smaller than
b have already split fromb, U ′ must be finite inT. Let j i+1 be the level at whichU ′ dies out. At level
j i+1, m will return to a descendant ofU j0, andm will be successful. In the second case,U ′ =U ji . Take
the firstk> j i so thatUk is anF-class. Asb is an accepting branch, such ak must exist. As every class
betweenU j andUk is a non-F -class,gl(Uk−1) = m. If Uk is the only child ofUk−1 then let j i+1 = k: since
gl(Uk) = m andUk is not the non-F -child of Uk−1, it holds thatm is successful on levelk. Otherwise let
U ′

k be the non-F -child of Uk−1, so thatgl(U ′
k) = m. Again,U ′

k is finite. Let j i+1 be the level at whichU ′
k

dies out. At levelj i+1, the labelmwill return to a descendant ofUk, andmwill be successful.
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4.2 Determining Lexicographically Minimal Descendants

Recall that the definition of the labelinggl involves the computation oflmd(m, i), the class with the
minimal profile among all the descendants offirst(m) on leveli. Findinglmd(m, i) requires knowing
the descendants offirst(m) on level i. We show how to store this information with a partial order,
denotedti , over classes that tracks which classes are minimal cousinsof other classes. Using this partial
order, we can determine the classlmd(m, i + 1) for every labelm that occurs on leveli, using only
information about levelsi andi +1 of T. Lemma 4.2.(5) implies that we can safely restrict ourselves to
labels that occur on leveli.
Definition 4.5. For two classesU andW on level i of T, say thatU is aminimal cousinof W, written
U ti W, iff W is a descendant offirst(gl(U)). SayU ⋖i W whenU ti W andU 6=W.

For a labelm and leveli, we can determinelmd(m, i +1) given only the classes on levelsi andi +1
and the partial order⋖i . Let U be a classU on leveli. Because labels can move between branches, the
minimal descendant offirst(gl(U)) on leveli +1 may be a nephew ofU , not necessarily a direct de-
scendant. Define theti -nephew ofU asnephi(U) = min�i+1({W′ |W is the parent ofW′ andU ti W}).
Lemma 4.6. For a class U on level i of T , it holds thatlmd(gl(U), i +1) = nephi(U).

Proof: We prove that{W′ |W is the parent ofW′ andU ti W} contains every descendant offirst(gl(U))
on leveli+1, and thus that its minimal element islmd(gl(U), i+1). LetW′ be a class on leveli+1, with
parentW on leveli. If U ti W, thenW is a descendant offirst(gl(U)) andW′ is likewise a descendant
of first(gl(U)). Conversely, asgl(U) exists on leveli, if W′ is a descendant offirst(gl(U)), then its
parentW must also be a descendant offirst(gl(U)) andU ti W.

By usingnephi , we can in turn define the set of valid labels for a classU ′ on level i +1. Formally,
define theti -uncles ofU ′ as unci(U ′) = {U |U ′ = nephi(U)}. Lemma 4.7 demonstrates howunci

corresponds tolabels.
Lemma 4.7. Consider a class U′ on level i+1. The following hold:

(1) labels(U ′)∩{gl(W) |W on level i}= {gl(U) |U ∈ unci(U ′)}.
(2) labels(U ′) = /0 iff unci(U ′) = /0.

Proof:
(1) Let U be a class on leveli. By definition, gl(U) ∈ labels(U ′) iff U ′ = lmd(gl(U), i + 1). By

Lemma 4.6, it holds thatlmd(gl(U), i + 1) = nephi(U). By the definition ofunci, we have that
U ′ = nephi(U) iff U ∈ unci(U ′). Thus every label inlabels(U ′) that occurs on leveli labels
some node inunci(U ′).

(2) If unci(U ′) 6= /0, then part (1) implieslabels(U ′) 6= /0. In other direction, letm= min(labels(U ′)).
By Lemma 4.2.(5), there is aU on leveli so thatgl(U) = m, and by part (1)U ∈ unci(U ′).

Finally, we demonstrate how to computeti+1 only using information about the leveli of T and
the labeling for leveli + 1. As the labeling depends only onti , this removes the final piece of global
information used in defininggl.
Lemma 4.8. Let U′ and W′ be two classes on level i+1 of T , where U′ 6=W′. Let W be the parent of
W′. We have that U′ti+1W′ iff there exists a class U on level i so that gl(U) = gl(U ′) and Uti W.

Proof: If there is no classU on level i so thatgl(U) = gl(U ′), thenU ′ = first(gl(U ′)). SinceW′

is not a descendant ofU ′, it cannot be thatU ′ti+1W′. If such a classU exists, thenU ti W iff W is a
descendant offirst(gl(U)), which is true iffW′ is a descendant offirst(gl(U ′)): the definition of
U ′ti+1W′.
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4.3 Reusing Labels

As defined, the labeling functiongl uses an unbounded number of labels. However, as there are at most
|Q| classes on a level, there are at most|Q| labels in use on a level. We can thus use a fixed set of labels by
reusing dead labels. For convenience, we use 2|Q| labels, so that we never need reuse a label that was in
use on the previous level. The full version demonstrates howto use|Q|−1 labels. There are two barriers
to reusing labelings. First, we can no longer take the numerically minimal element oflabels(U) as the
label ofU . Instead, we calculate which label is the oldest through�. Second, we must ensure that a label
that is good infinitely often is not reused infinitely often. To do this, we introduce a Rabin condition to
reset each label before we reuse it.

We inductively define a sequence of labelings,l i , each from theith level of T to {0, . . . ,2|Q|}. As
a base case, there is only one equivalence classU on level 0 ofT, and definel0(U) = 0. Inductively,
given the set of classesUi on level i, the functionl i , and the set of classesUi+1 on level i + 1, we
definel i+1 as follows. Define the set of unused labels FL(l i) to be{m | m is not in the range ofl i}. As
T has bounded width|Q|, we have that|Q| ≤ |FL(l i)|. Let mji+1 be the〈�i+1,<〉-minjection from
{U ′ on level i+1| unci(U ′) = /0} to FL(l i). Finally, define the labelingl i+1 as

l i+1(U
′) =

{
l i(min�i (unci(U ′))) if unci(U ′) 6= /0,

mji+1(U
′) if unci(U ′) = /0.

Because we are reusing labels, we need to ensure that a label that is good infinitely often is not reused
infinitely often. Say that a labelm is bad in li if m 6∈ FL(l i−1), but m∈ FL(l i). We say that a labelm is
good in li if there is a classU on leveli −1 and a classU ′ on leveli such thatl i−1(U) = l i(U ′) = m and
U ′ is either theF-child ofU or is not a child ofU at all.

Theorem 4.9 demonstrates that the Rabin condition of a labelbeing good infinitely often, but bad
only finitely often, is a necessary and sufficient condition to T being accepting. The proof, ommitted for
brevity, associates each labelm in gl with the labell i(first(m)).

Theorem 4.9. A profile tree T is accepting iff there is a label m where{i | m is bad in li} is finite, and
{i | m is good in li} is infinite.

5 A New Determinization Construction for Büchi Automata

In this section we present a determinization construction for A based on the profile treeT. For clarity,
we call the states of our deterministic automatonmacrostates.

Definition 5.1. Macrostates overA are six-tuples〈S,�, l ,t,G,B〉 where:
• S⊆ Q is a set of states.
• � is a linear preorder overS.
• l : S→ {0, . . . ,2|Q|} is a labeling.
• t⊆� is another preorder overS.
• G,B are sets of good and bad labels used for the Rabin condition.

For two statesq andr in Q, we say thatq≈ r if q� r andr � q. We constrain the labelingl so that
it characterizes the equivalence classes ofS under�, and the preordert to be a partial order over the
equivalence classes of�. Let Q be the set of macrostates.
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a,b

(a) An automatonB

〈{q}0〉, /0, G= /0, B= /0q0 =

〈{q}0 ≺ {p}1〉, q⋖ p, G= /0, B= /0q1 =

〈{q}0 ≺ {p}2〉, q⋖ p, G= {0}, B= {1}q2 =

〈{q}0 ≺ {p}1〉, q⋖ p, G= {0}, B= {2}q3 =

(b) The first four macrostates in the run ofDR(B) onabω .

Figure 2: An automaton and four macrostates. For each macrostate〈S,�, l ,t,G,B〉, we first display the
equivalence classes ofSunder� in angle brackets, superscripted with the labels ofl . We then display
thet relation, and finally the setsG andB.

Before defining transitions between macrostates, we reproduce the pruning of edges fromG′ by re-
stricting the transition functionρ with respect toSand�. For a stateq∈ Sandσ ∈ Σ, let ρS,�(q,σ) =
{q′ ∈ ρ(q,σ) | for everyr ∈ ρ−1(q′,σ)∩S, r � q}. Thus, when a state has multiple incomingσ -transitions
from S, the functionρS,� keeps only the transitions from states maximal under the� relation. For ev-
ery stateq′ ∈ ρ(S,σ), the setρ−1

S,� (q
′,σ)∩S is an equivalence class under�. We note thatρ(S,σ) =

ρS,�(S,σ).

Example5.2. Figure 2 displays the first four macrostates in a run of this determinization construction.
Consider the stateq1 = 〈{q, p},�, l ,t, /0, /0〉 where q ≺ p, qt p, l(q) = 0, and l(p) = 1. We have
ρ(q,a) = {p,q}. However,p ∈ ρ(p,a) andq ≺ p. Thus we discard the transition fromq to p, and
ρS,�(q,a) = {q}. In contrast,ρS,�(p,a) = ρ(p,a) = {p}, because whilep∈ ρ(q,a), it holds thatq≺ p.

For σ ∈ Σ, we define theσ -successor of〈S,�, l ,t,G,B〉 to be〈S′,�′, l ′,t′,G′,B′〉 as follows. First,
S′ = ρ(S,σ). Second, define�′ as follows. For statesq′, r ′ ∈ S′, let q∈ ρ−1

S,� (q
′,σ) andr ∈ ρ−1

S,� (r
′,σ).

As the parents ofq′ andr ′ underρS,� are equivalence classes the choice ofq andr is arbitrary.
• If q≺ r, thenq′ ≺′ r ′.
• If q≈ r andq′ ∈ F iff r ′ ∈ F, thenq′ ≈′ r ′.
• If q≈ r, q′ 6∈ F, andr ′ ∈ F , thenq′ ≺′ r ′.

Example5.3. As a running example we detail the transition fromq1 = 〈{q, p},�, l ,t, /0, /0〉 to
q2 = 〈S′,�′, l ′,t′,G′,B′〉 on b. We haveS′ = ρ({q, p},b) = {q, p}. To determine�′, we note thatp∈ S
is the parent of bothq∈ S′ andp∈ S′. Sinceq 6∈ F, andp∈ F, we haveq≺′ p.

Third, we define the labelingl ′ as follows. As in the profile treeT, on each level we give the label
m to the minimal descendants, under the� relation, of the first equivalence class to be labeledm. For a
stateq∈ S, define thenephews of qto beneph(q,σ) = min�′(ρS,�({r ∈ S| qt r},σ)). Conversely, for a
stater ′ ∈ S′ we define theuncles of r′ to be beunc(r ′,σ) = {q | r ′ ∈ neph(q,σ)}.

Each stater ′ ∈ S′ inherits the oldest label from its uncles. Ifr ′ has no uncles, it gets a fresh label. Let
FL(l) = {m | mnot in the range ofl} be the free labels inl , and letmj be the〈�′,<〉-minjection from
{r ′ ∈ S′ | unc(r ′,σ) = /0} to FL(l), where< is the standard order on{0, . . . ,2|Q|}. Let

l ′(r ′) =

{
l(q), for someq∈ min�(unc(r ′,σ)) if unc(r ′,σ) 6= /0,

mj(r ′) if unc(r ′,σ) = /0.
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Example5.4. The nephews ofq ∈ S is the�′-minimal subset of the setρS,�({r ∈ S| qt r},σ). Since
qtq andqt p, we have thatneph(q,b) = min�′({q, p}) = {q}. Similarly, for p∈ Swe havept p and
neph(p,b) = min�′({p,q}) = {q}. Thus forq∈S′, we havemin�(unc(q,b)) = min�({p,q}) = {q} and
we setl ′(q) = l(q) = 0. Forp∈ S′, we haveunc(p,b) = /0 andl ′(p) is the first unused label:l ′(p) = 2.

Fourth, define the preordert′ as follows. For statesq′, r ′ ∈ S′, defineq′t′ r ′ iff q′ ≈′ r ′ or there exist
q, r ∈Sso that:r ′ ∈ ρS,�(r,σ); q∈ unc(q′,σ); andqt r. The labelingl ′ depends on recalling which states
descend from the first equivalence class with a given label, andt′ tracks these descendants.

Finally, for a labelm let Sm = {r ∈ S| l(r) = m} andS′m = {r ′ ∈ S′ | l ′(r ′) = m} be the states inS,
respS′, labeled withm. Recall that a labelm is good either when the branch it is following visitsF-states,
or the branch dies and it moves to another branch. Thus saym is goodwhen:Sm 6= /0; S′m 6= /0; and either
S′m ⊆ F or ρS,�(Sm,σ)∩S′m = /0. G′ is then{m | m is good}. Conversely, a label is bad when it occurs in
S, but not inS′. Thus the set ofbad labels isB′ = {m | Sm 6= /0, S′m = /0}.

Example5.5. As p∈ ρS,�(p,b); q∈ unc(q,b); andq⋖ p, we haveq⋖′ p. Sincel(q) = 0 andl ′(q) = 0, but
q 6∈ ρS,�(q,b), we have 0∈ G′, and as nothing is labeled 1 inl ′, we have 1∈ B′.

Lemma 5.6, proven in the full version, states that〈S′,�′, l ′,t′,G′,B′〉 is a valid macrostate.

Lemma 5.6. For a macrostateq ∈ Q andσ ∈ Σ, theσ -successor ofq is a macrostate.

Definition 5.7. Define the DRW automatonDR(A) to be〈Σ,Q,Qin,ρQ,α〉, where:
• Qin = {〈Qin,�0, l0, t0 , /0, /0〉}, where:

– �0 = t0 = Qin ×Qin

– l0(q) = 0 for all q∈ Qin

• Forq ∈ Q andσ ∈ Σ, let ρQ(q,σ) = {q′}, whereq′ is theσ -successor ofq
• α = 〈G0,B0〉, . . . ,〈G2|Q|,B2|Q|〉, where for a labelm∈ {0, . . . ,2|Q|}:

– Gm= {〈S,�, l ,t,G,B〉 | m∈ G}
– Bm= {〈S,�, l ,t,G,B〉 | m∈ B}

Theorem 5.8, proven in the full version, asserts the correctness of the construction and says that its
blowup is comparable with known determinization constructions.

Theorem 5.8. For an NBWA with n states, L(DR(A)) = L(A) and DR(A) has nO(n) states.

There are two simple improvements to the new construction, detailed in the full version. First, we
do not need 2|Q| labels: it is sufficient to use|Q|−1 labels. Second, Piterman’s technique of dynamic
renaming can reduce the Rabin condition to a parity condition.

6 Discussion

In this paper we extended the notion of profiles from [6] and developed a theory of profile trees. This
theory affords a novel determinization construction, where determinized-automaton states are sets of
input-automaton states augmented with two preorders. In the future, a more thorough analysis could
likely improve the upper bound on the size of our construction. We hope to see heuristic optimization
techniques developed for this construction, just as heuristic optimization techniques were developed for
Safra’s construction [24].

More significantly, profile trees afford us the first theoretical underpinnings for determinization.
Decades of research on Büchi determinization have resulted in a plethora of constructions, but a paucity
of mathematical structures underlying their correctness.This is the first new major line of research in
Büchi determinization since [16], and we expect it to lead to further research in this important area.
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One important question is to understand better the connection between profile trees and Safra’s con-
struction. A key step in the transition between Safra trees is to remove states if they appear in more than
one node. This seems analogous to the pruning of edges fromG′. The second preorder in our construc-
tion, namely the relationti , seems to encodes the order information embedded in Safra trees. Perhaps
our approach could lead to declarative definition of constructions based on Safra and Muller-Schupp
trees. In any case, it is our hope that profile trees will encourage the development of new methods to
analyze and optimize determinization constructions.
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Let S be a commutative semiring. M. Droste and P. Gastin have introduced in 2005 weighted
monadic second order logicWMSOL with weights inS . They use a syntactic fragmentRMSOL
of WMSOL to characterize word functions (power series) recognizable by weighted automata, where
the semantics of quantifiers is used both as arithmetical operations and, in the boolean case, as quan-
tification.

Already in 2001, B. Courcelle, J.Makowsky and U. Rotics haveintroduced a formalism for graph
parameters definable in Monadic Second order Logic, here calledMSOLEVAL with values in a ring
R. Their framework can be easily adapted to semiringsS . This formalism clearly separates the
logical part from the arithmetical part and also applies to word functions.

In this paper we give two proofs thatRMSOL andMSOLEVAL with values inS have the same
expressive power over words. One proof shows directly thatMSOLEVAL captures the functions
recognizable by weighted automata. The other proof shows how to translate the formalisms from
one into the other.

1 Introduction

Let f be a function from relational structures of a fixed relational vocabularyτ into some field, ring, or
a commutative semiringS which is invariant underτ-isomorphisms.S is called aweight structure.
In the case where the structures are graphs, such a function is called a graph parameter, or, ifS is a
polynomial ring, a graph polynomial. In the case where the structures are words, it is called a word
function.

The study of definability of graph parameters and graph polynomials in Monadic Second Order Logic
MSOL was initiated in [6] and further developed in [22, 20]. For a weight structureS we denote the
set of functions ofτ-structures definable inMSOL by MSOLEVAL (τ)S , or if the context is clear, just
by MSOLEVAL S . The original purpose for studying functions inMSOLEVAL S was to prove an
analogue to Courcelle’s celebrated theorem for polynomialrings as weight structures, which states that
graph parametersf ∈ MSOLEVAL S are computable in linear time for graphs of fixed tree-width,[6],
and various generalizations thereof.MSOLEVAL can be seen as an analogue of theSkolem elementary
functionsakalower elementary functions, [25, 26], adapted to the framework ofmeta-finite model theory
as defined in [15].

In [8] a different formalism to defineS -valued word functions was introduced, which the authors
calledweighted monadic second order logic WMSOL, and used a fragment,RMSOL , of it to prove that
a word function is recognized by a weighted automaton iff it is definable inRMSOL . This can be seen
as an analogue of the Büchi-Elgot-Trakhtenbrot Theorem characterizing regular languages for the case
of weighted (aka multiplicity) automata.
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Main results

Our main results explore various features of the two formalismsMSOLEVAL andRMSOL for word
functions with values in a semiringS . In the study ofMSOLEVAL we show howmodel theoretic tools
can be used to characterize the word functions inMSOLEVAL as the fuctions recognizable by weigthed
automata. This complements the automata theoretic approach used in the study of weighted automata,
[9, 11]. In particular, we give two proofs thatRMSOL andMSOLEVAL with values in a semiringS
have the same expressive power over words. To see this we showthe following for a word functionf
with values inS :

(i) If f is definable inMSOLEVAL , it is contained in a finitely generated stable semimodule ofword
functions, Theorem 11.

(ii) If f is recognizable by some weighted automaton, it is definable in MSOLEVAL , the “if” direction
of Theorem 8.

(iii) If f is definable inRMSOL , we can translate it, using Lemma 15, into an expression inMSOLEVAL ,
Theorem 16.

(iv) If f is definable inMSOLEVAL , we can, again using Lemma 15, translate it into an expression in
RMSOL , Theorem 17.

Items (i) and (ii) together with a classical characterization of recognizable word functions in terms
of finitely generated stable semimodules, Theorem 10, cf. [1, 17, 13], give us a direct proof that
MSOLEVAL captures the functions recognizable by weighted automata.To prove item (i) we rely
on and extend results aboutMSOLEVAL from [22, 14, 18].

Items (iii) and (iv) together show how to translate the formalisms RMSOL andMSOLEVAL into
each other. Lemma 15 also shows how the fragmentRMSOL of the weighted logicWMSOL comes
into play.

The point of separating (i) and (ii) from (ii) and (iv) and giving two proofs of Theorem 8 is to
show that the model theoretic methods developed in the 1950ties and further developed in [22] suffice to
characterize the functions recognized by weighted automata.

Background and outline of the paper

We assume the reader is familiar with Monadic Second Order Logic and Automata Theory as described in
[12, 1] or similar references. In Section 2 we introduceMSOLEVAL by example, which suffices for our
purposes. A full definition is given in Appendix 2.2. In Section 3 we show that the word functions which
are recognizable by a weighted automaton are exactly the word functions definable inMSOLEVAL .
In Section 4 we give the exact definitions ofWMSOL andRMSOL , and present translations between
MSOLEVAL andRMSOL in both directions. In Section 5 we draw our conclusions.

2 Definable word functions

Let S be a commutative semiring. We denote structures over a finiterelational signature (aka vocab-
ulary) τ by A and their underlying universe byA. The class of functions inMSOLEVAL S consists
of the functions which map relational structures intoS , and which are definable in Monadic Second
Order LogicMSOL . The functions inMSOLEVAL S are represented as terms associating with eachτ-
structureA a polynomialp(A , X̄) ∈ S [X̄]. The class of such polynomials is defined inductively where
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monomials are products of constants inS and indeterminates in̄X and the product ranges over elements
a of A which satisfy anMSOL -formulaφ(a). The polynomials are then defined as sums of monomials
where the sum ranges overunary relationsU ⊆ A satisfying anMSOL -formulaψ(U). The word func-
tions are obtained by substituting elements ofS for the indeterminates. The details of the definition
of MSOLEVAL S are given at the end of this section. We first explain the idea of MSOLEVAL S by
examples for the case where structures represent words overa fixed alphabetΣ.

2.1 Guiding examples

Let f : Σ⋆ →S be anS -valued function on words over the alphabetΣ and letw be a word inΣ⋆. We call
such functionsword functions, following [3, 4]. They are also calledformal power seriesin [1], where
the indeterminates are indexed by words and the coefficient of Xw is f (w).

We denote byw[i] the letter at positioni in w, and byw[U ] the word induced byU , for U a set of
positions inw. We denote the length of a wordw by ℓ(w) and the concatenation of two wordsu,v∈ Σ⋆

by u◦v. We denote by[n] the set{1,2, . . . ,n}.
We will freely pass between words and structures representing words. For the sequel, letΣ = {0,1}

andw∈ {0,1}⋆ be represented by the structure

Aw = 〈{0}∪ [ℓ(w)],<w,Pw
0 ,P

w
1 〉.

Pw
0 ,P

w
1 ⊆ [ℓ(w)] andPw

0 ∩Pw
1 = /0 andPw

0 ∪Pw
1 = [ℓ].

As structures are always non-empty, the universe of a wordw is represented by a structure containing
the zero position[n]∪{0}= {0,1, . . . ,n}. So strictly speaking the size of the structure of the empty word
is one, and of a word of lengthn it is n+1. The zero position, represented by 0, has no letter attached to
it, and the elements of the structure different from 0 represent positions in the word which carry letters.
The positions inPw

0 carry the letter 0 and the positions inPw
1 carry the letter 1.

Examples 1. In the following examples the functions are word functions with values in the ringZ or the
polynomial ringZ[X].

(i) The function♯1(w) counts the number of occurrences of1 in a word w and can be written as

♯1(w) = ∑
i∈[n]:P1(i)

1.

(ii) The polynomial X♯1(w) can be written as

X♯1(w) = ∏
i∈[n]:P1(i)

X.

(iii) Let L be a regular language defined by theMSOL-formula φL. The generating function of the
number of (contiguous) occurrences of words u∈ L in a word w, can be written as

♯L(w) = ∑
U⊆[n]:w[U ]|=ψL

∏
i∈U

X,

whereψL(U) says that U is an interval andφU
L , the relativization ofφL to U, holds.

(iv) The functionssq(w) = 2ℓ(w)
2

anddexp(w) = 22ℓ(w) are not representable inMSOLEVAL F .
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The tropical semiringTmin is the semiring with universeR∪{∞}, consisting of the real numbers
augmented by an additional element∞, andmin as addition with∞ as neutral element and real addi-
tion + as multiplication with 0 as neutral element. The tropical semiring Tmax, also sometimes called
arctic semiring, is defined analogously, where∞ is replaced by−∞ andmin by max. The choice of the
commutative semiringS makes quite a difference as illustrated by the following:

Examples 2. In the next examples the word functions take values in the ring Z with addition and mul-
tiplication, or in the subsemiring ofTmax generated byZ. A block of 1’s in a wordw ∈ {0,1}⋆ is a
maximal set of consecutive positions i∈ [ℓ(w)] in the word w with P1(i).

(i) The function b1(w) counts the number of blocks of1’s in w. b1(w) can be written as

b1(w) = ∑
B⊆[ℓ(w)]:B is a block of 1’s

1

which is inMSOLEVAL Z. Alternatively, it can be written as

b1(w) = ∑
v∈[ℓ(w)]:First−in−Block(v)

1, (1)

where First− in−Block(v) is the formula inMSOL which says that v is a first position in a block
of 1’s. Equation (1) can be expressed inMSOLEVAL Z and also in bothMSOLEVAL Tmin and
MSOLEVAL Tmax.

(ii) Let mbmax
1 (w) be the function which assigns to the word w the maximum of the sizes of blocks of

1’s, and mbmin
1 (w) be the function which assigns to the word w the minimum of the sizes of blocks

of 1’s. One can show, see Remark 3, that mbmax
1 and mbmin

1 are not definable over the ringZ.
However, they are definable overTmax, respectively overTmin, by writing

mbmax
1 = max

B:B is a block of 1’s
∑

v:v∈B
1

and
mbmin

1 = min
B:B is a block of 1’s

∑
v:v∈B

1

(iii) The function b1(w)2 is definable inMSOLEVAL Z becauseMSOLEVAL Z is closed under the
usual product, cf. Proposition 7. However, it is not definable over either of the two tropical
semirings. To see this one notes that polynomials in a tropical semiring are piecewise linear.

Remark 3. Let f be a word function which takes values in a fieldF . The Hankel matrixH ( f ) is the
infinite matrix where rows and columns are labeled by words u,v and the entryH ( f )u,v = f (u◦v). It is
shown in [14] that for word functions f inMSOLEVAL F the Hankel matrixH ( f ) has finite rank. To
show non-definability of f it suffices to show thatH ( f ) has infinite rank over a fieldF extendingZ.

2.2 Formal definition of MSOLEVAL

Let S be a commutative semiring, which contains the semiring of natural numbersN. We first define
MSOL -polynomials, which are multivariate polynomials. The functions inMSOLEVAL are obtained
from MSOL-polynomials by substituting values fromS for the indeterminates.

MSOL -polynomials have a fixed finite set of variables (indeterminates, if we distinguish them from
the variables ofSOL), X. We denote bycardM,v(ϕ(v)) the number of elementsv in the universe that
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satisfyϕ . We assumeτ contains a relation symbolR≤ which is always interpreted as a linear ordering
of the universe.

LetM be aτ-structure. We first define theMSOL(τ)-monomialsinductively.

Definition 4 (MSOL -monomials).

(i) Let φ(v) be a formula inMSOL(τ), where v is a first order variable. Let r∈ X ∪ (S −{0}) be
either an indeterminate or an integer. Then

rcardM,v(φ(v))

is a standardMSOL(τ)-monomial (whose value depends on cardM,v(φ(v)).
(ii) Finite products ofMSOL(τ)-monomials areMSOL(τ)-monomials.

Even if r is an integer, and rcardM,v(φ(v)) does not depend onM, the monomial stands as it is, and is not
evaluated.

Note the degree of a monomial is polynomially bounded by the cardinality ofM.

Definition 5 (MSOL -polynomials). The polynomials definable inMSOL(τ) are defined inductively:

(i) MSOL(τ)-monomials areMSOL(τ)-polynomials.

(ii) Let φ be aτ∪{R̄}-formula inMSOL whereR̄= (R1, . . . ,Rm) is a finite sequence ofunaryrelation
symbols not inτ . Let t be aMSOL(τ ∪{R̄})-polynomial. Then

∑
R̄:〈M,R̄〉|=φ(R̄)

t

is aMSOL(τ)-polynomial.

For simplicity we refer toMSOL(τ)-polynomials asMSOL -polynomials whenτ is clear from the
context.

We shall use the following properties ofMSOL -polynomials. The proofs can be found in [21].

Lemma 6.

(i) Every indeterminate x∈ X can be written as anMSOL -monomial.

(ii) Every integer c can be written as anMSOL -monomial.

Proposition 7. The pointwise product of twoMSOL -polynomials is again anMSOL -polynomial.

3 MSOLEVAL S and Weighted Automata

Let S be a commutative semiring andΣ a finite alphabet. A weighted automatonA of sizer overS is
given by:

(i) Two vectorsα ,γ ∈ S r , and

(ii) for eachσ ∈ Σ a matrixµσ ∈ S r×r .

For a matrix or vectorM we denote byMT the transpose ofM.
For a wordw= σ1σ2 . . .σℓ(w) the automatonA defines the function

fA(w) = α ·µσ1 · . . . ·µσℓ(w)
· γT .

A word function f : Σ⋆ → S is recognized by an automatonA if f = fA. f is recognizable if there exists
a weighted automatonA which recognizes it.
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Theorem 8. Let f be a word function with values in a commutative semiringS . Then f∈MSOLEVAL S

iff f is recognized by some weigthed automaton A overS .

In this section we prove Theorem 8 using model theoretic tools, without going through weighted
logic. We need a few definitions.

Thequantifier rank qr( f ) of a word functionf in MSOLEVAL S is defined as the maximal quantifier
rank of the formulas which appear in the definition off . It somehow measures the complexity off , but
we do not need the technical details in this paper. Quantifierranks of formulas inMSOL are defines as
usual, cf. [12].

We denote byS Σ⋆
the set of word functionsΣ⋆ → S . A semimoduleM is a subset ofS Σ⋆

closed
under point-wise addition of word functions inM , and point-wise multiplication with elements ofS .
Note thatS Σ⋆

itself is a semimodule.
M ⊆ S Σ⋆

is finitely generatedif there is a finite setF ⊆ S Σ⋆
such that eachf ∈ M can be written

as a (semiring) linear combination of elements inF. Let w be a word andf a word function. Then we
denote byw−1 f the word functiong defined by

g(u) = (w−1 f )(u) = f (w◦u)

M is stableif for all words w∈ Σ⋆ and for all f ∈ M the word functionw−1 f is also inM.

3.1 Word functions in MSOLEVAL S are recognizable

To prove the “only if” direction of Theorem 8 we use the following two theorems.
For a commutative semiringS and a sequence of indeterminatesX̄ = (X1, . . . ,Xt) we denote by

S [X̄] the commutative semiring of polynomials with indeterminatesX̄ and coefficients inS . The first
theorem is from [22].

Theorem 9(Bilinear Decomposition Theorem for Word Functions).
Let S be a commutative semiring. Let f∈ MSOLEVAL S be a word functionΣ+ → S of quantifier
rank qr( f ). There are:

(i) a functionβ : N→ N,

(ii) a finite vector F=(g1, . . . ,gβ(qr( f ))) of functions inMSOLEVAL S of lengthβ (qr( f )), with f = gi

for some i≤ β (qr( f )),

(iii) and for each gi ∈ F, a matrix M(i) ∈ S β(qr( f ))×β(qr( f ))

such that
gi(u◦v) = F(u) ·M(i)F(v)T .

The other theorem was first proved by G. Jacob, [17, 1].

Theorem 10 (G. Jacob 1975). Let f be a word function f: Σ⋆ → S . Then f is recognizable by a
weighted automaton overS iff there exists a finitely generated stable semimoduleM ⊆ S Σ⋆

which
contains f .

In order to prove the “only if” direction of Theorem 8 we reformulate it.

Theorem 11(Stable Semimodule Theorem). LetS be a commutative semiring and let f∈MSOLEVAL S

be a word function of quantifier rank qr( f ).
There are:

(i) a functionβ : N→ N,
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(ii) a finite vector F=(g1, . . . ,gβ(qr( f ))) of functions inMSOLEVAL S of lengthβ (qr( f )), with f = gi

for some i≤ β (qr( f )),

such that the semimoduleM [F ] generated by F is stable.

Proof. We takeF and the matricesM(i) from Theorem 9 stated in the introduction.
We have to show that for every fixed wordw and f ∈M [F ] the functionw−1 f ∈M [F ]. As f ∈M [F ]

there is a vectorA= (a1, . . . ,aβ(qr( f ))) ∈ S β(qr( f )) such that

f (w) = A ·FT(w)

for every fixed wordw. HereF(w) is shorthand for(g1(w), . . . ,gβ(qr( f ))(w)).
Let u be a word. We compute(w−1 f )(u).

(w−1 f )(u) = f (w◦u) = A ·FT(w◦u) =

β(qr( f ))

∑
i=1

aigi(w◦u) =
β(qr( f ))

∑
i=1

aiF(w)M
(i)FT(u)

We put Bi = aiF(w)M(i) and observe thatBi ∈ S β(qr( f )). If we take B = ∑β(qr( f ))
i Bi we get that

(w−1 f )(u) = B ·FT(u), hencew−1 f ∈ M [F ].

3.2 Recognizable word functions are definable in MSOLEVALS

For the “if” direction we proceed as follows:

Proof. Let A be a weighted automaton of sizer overS for words inΣ⋆. For a wordw with ℓ(w) = n,
given as a functionw : [n]→ Σ, the automatonA defines the function

fA(w) = α ·µw(1) · . . . ·µw(n) · γT . (2)

We have to show thatfA ∈ MSOLEVAL S .
To unify notation we define

Ma
i, j = (µa)i, j .

Equation (2) is a product ofn matrices and two vectors.
Let P be the product of these matrices,

P=
n

∏
k=1

µw(k).

Using matrix algebra we get for the entryPa,b of P:

Pa,b =
r

∑
in−1=1

(
r

∑
in−2=1

(
. . .

(
r

∑
i1=1

Mw(1)
a,i1 ·Mw(2)

i1,i2

)
Mw(3)

i2,i3

)
. . .

)
Mw(n)

in−1,b

= ∑
i1,...in−1≤r

(
Mw(1)

a,i1
·Mw(2)

i1,i2
· . . . ·Mw(n)

in−1,b

)
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Let π : [n−1]→ [r] be the function withπ(k) = ik. We rewritePa,b as:

Pa,b = ∑
π:[n−1]→[r ]

(
Mw(1)

a,π(1) ·M
w(2)
π(1),π(2) · . . .M

w(n)
π(n−1),b

)
(3)

Next we compute theb coordinate of the vectorα ·P:

(α ·P)b =
r

∑
i=1

αi ·Pi,b

Therefore

fA(w) = α ·P· γ =
r

∑
b=1

(α ·P)b · γb

=
r

∑
b=1

(
r

∑
a=1

αa ·Pa,b

)
· γb = ∑

a,b≤r

αa ·Pa,b · γb

and by using Equation (3) forPa,b we get:

∑
a,b≤r

αa ·
(

∑
π:[n−1]→[r ]

(
Mw(1)

a,π(1) ·M
w(2)
π(1),π(2) · . . .M

w(n)
π(n−1),b

))
· γb

Now let π ′ : [n]∪{0} → [r] be the function for whichπ ′(0) = a,π ′(n) = b andπ ′(k) = π(k) = ik for
1≤ k≤ n−1. Then we get

fA(w) =

∑
π ′:[n]∪{0}→[r ]

απ ′(0) ·
[
Mw(1)

π ′(0),π ′(1) · . . . ·M
w(n)
π ′(n−1),π ′(n)

]
· γπ ′(n) =

∑
π ′:[n]∪{0}→[r ]

απ ′(0) ·
(

∏
k∈[n]

Mw(k)
π ′(k−1),π ′(k)

)
· γπ ′(n) (4)

To convert Equation (4) into an expression inMSOLEVAL S we use a few lemmas:
First, letSbe any set andπ : S→ [r] be any function.π induces a partition ofS into setsUπ

1 , . . . ,U
π
r

byUπ
i = {s∈ S: π(s) = i}. Conversely, every partitionU = (U1, . . . ,Ur) of S induces a functionπU by

settingπU (s) = i for s∈Ui. To pass between functionsπ with finite range[r] and partitions intor-sets
we use the following lemma:

Lemma 12. Let E(π) be any expression depending onπ.

∑
π:S→[r ]

E(π) = ∑
U

E(πU ) = ∑
U1,...Ur :Partition(U1,...,Ur )

E(πU )

whereU ranges over all partitions of S into r sets Ui : i ∈ [r]. Clearly, Partition(U1, . . . ,Ur) can be
written inMSOL .

Second, to convert the factorsαπ ′(0) andγπ ′(n) we proceed as follows:
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Lemma 13. Let αi be the unique value of the coordinate ofα such that0∈Ui. Similarly, letγi be the
unique value of the coordinate ofγ such that n∈Ui .

απ ′(0) =
r

∏
i=1

∏
0∈Ui

αi

γπ ′(n) =
r

∏
i=1

∏
n∈Ui

γi

Proof. First we note that, asU is the partition induced byπ ′, the restriction ofπ ′ to Ui is constant for
all i ∈ [r]. Next we note that the product ranging over the empty set gives the value 1.

Similarly, to convert the factor∏k∈[n] M
w(k)
π ′(k−1),π ′(k) use the following lemma:

Lemma 14. Let mi, j,w(v) be the unique value of the(i, j)-entry of the matrixµw(v) such that v∈Ui and
v+1∈U j .

∏
k∈[n]

Mw(k)
π ′(k−1),π ′(k) =

r

∏
i, j=1

(
∏

v−1∈Ui ,v∈U j

mi, j,w(v)

)

Using the fact that every element which is the interpretation of a term inS can be written as an
expression inMSOLEVAL S , Lemma 6 in Section 2.2, we can writeUi(v) instead ofv ∈ Ui, and see
that the monomials of Lemmas 12, 13 and 14 are indeed inMSOLEVAL S . Now we apply the fact that
the pointwise product of two word functions inMSOLEVAL S is again a function inMSOLEVAL S ,
Proposition 7 in Section 2.2,

to Lemmas 12, 13 and 14 and complete the proof of Theorem 8.

4 Weighted MSOL and MSOLEVAL

In this section we compare the formalism of weightedMSOL , WMSOL , with our MSOLEVAL S for
arbitrary commutative semirings. In [7, 8] and [2] two fragments of weightedMSOL are discussed.
One is based onunambiguousformulas (a semantic concept), the other onstep formulasbased on the
Boolean fragment of weightedMSOL (a syntactic definition). The two fragments have equal expressive
power, as stated in [2], and characterize the functions recognizable by weighted automata. We denote
both versions byRMSOL .

4.1 Syntax of WMSOL, the weighted version of MSOL

The definitions and properties ofWMSOL and its fragments are taken literally from [2]. The syntax of
formulasφ of weightedMSOL , denoted byWMSOL , is given inductively in Backus–Naur form by

φ ::= k | Pa(x) | ¬Pa(x) | x≤ y | ¬x≤ y | x∈ X | x 6∈ X

| φ ∨ψ | φ ∧ψ | ∃x.φ | ∃X.φ | ∀x.φ | ∀X.φ

wherek ∈ S , a ∈ Σ. The set of weightedMSOL-formulas over the fieldS and the alphabetΣ is
denoted byMSOL(S ,Σ). bMSOL formulasandbMSOL-step formulasare defined below.bMSOL is
the Boolean fragment ofWMSOL , and its name is justified by Lemma 15.RMSOL is the fragment of
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WMSOL where universal second order quantification is restricted to bMSOL and first order universal
quantification is restricted tobMSOL-step formulas.

The syntax of weightedbMSOL is given by

φ ::= 0 | 1 | Pa(x) | x≤ y | x∈ X | ¬φ | φ ∧ψ | ∀x.φ | ∀X.φ

wherea∈ Σ.
The set of weightedMSOL -formulas over the commutative semiringS and the alphabetΣ is de-

noted byWMSOL (S ,Σ).
Instead of defining step-formulas as in [2] we use Lemma 3 from[2] as our definition.
A bMSOL-step formulaψ is a formula of the form

ψ =
∨

i∈I

(φi ∧ki) (5)

whereI is a finite set,φi ∈ bMSOL andki ∈ S .

4.2 Semantics of WMSOL, and translation of RMSOL into MSOLEVAL S

Next we define the semantics ofWMSOL and, where it is straightforward, simultaneously also its trans-
lations intoMSOLEVAL S .

The evaluations of weighted formulasφ ∈WMSOL (S ,Σ) on a wordw are denoted byWE(φ ,w,σ),
whereσ is an assignment of the variables ofφ to positions, respectively sets of positions, inw.

We denote the evaluation of termt of MSOLEVAL S for a wordw and an assignment for the free
variablesσ by E(t,w,σ). tv(φ) stands for the truth value ofφ (subject to an assignment for the free
variables), i.e.,E(tv(φ),w,σ) = 0∈ S for false andE(tv(φ),w,σ) = 1∈ S for true. The term tv(φ) is
used as an abbreviation for

tv(φ) = ∑
U :U=A∧φ

1

whereU = A stands for∀x(U(x)↔ x= x) andU does not occur freely inφ . Indeed, we have

E(tv(φ),w,σ) =

{
1 (w,σ) |= φ
0 else

We denote byTRUE(x) the formulax = x with free first order variablex. Similarly, TRUE(X)
denotes the formula∃y∈ X∨¬∃y∈ X with free set variableX.

The evaluations of formulasφ ∈ WMSOL and their translations are now defined inductively.

(i) For k∈ S we havetr(k) = k andWE(k,w,σ)) = E(tr(k),w,σ)) = k.

(ii) For atomic formulasθ we havetr(θ) = tv(θ) and

WE(θ ,w,σ) = E(tr(θ),w,σ) = E(tv(θ),w,σ)

(iii) For negated atomic formulas we have

tr(¬θ) = 1− tr(θ) = 1− tv(θ)

and
WE(¬θ ,w,σ) = 1−E(tv(θ),w,σ).
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(iv) tr(φ1∨φ2) = tr(φ1)+ tr(φ2) and

WE(φ1∨φ2,w,σ) = E(tr(φ1)+ tr(φ2),w,σ) = E(tr(φ1),w,σ)+E(tr(φ2),w,σ).

(v) tr(∃x.φ) = ∑x:T RUE(x) tr(φ) and

WE(∃x.φ ,w,σ) = E( ∑
x:TRUE(x)

tr(φ ,w,σ)) = ∑
x:T RUE(x)

E(tr(φ ,w,σ)).

(vi) tr(∃X.φ) = ∑X:TRUE(X) tr(φ) and

WE(∃X.φ ,w,σ) = E( ∑
X:TRUE(X)

tr(φ ,w,σ)) = ∑
X:TRUE(X)

E(tr(φ ,w,σ)).

(vii) tr(φ1∧φ2) = tr(φ1) · tr(φ2) and

WE(φ1∧φ2,w,σ) = E(tr(φ1) · tr(φ2),w,σ) = E(tr(φ1),w,σ) ·E(tr(φ2),wσ).

So far the definition ofWE was given using the evaluation functionE and the translation was straight-
forward. Problems arise with the universal quantifiers.

The unrestricted definition ofWE for WMSOL given below gives us functions which are not rec-
ognizable by weighted automata, and the straightforward translation defined below gives us expressions
which are not inMSOLEVAL S :

(viii) tr(∀x.φ) = ∏x:T RUE(x) tr(φ) and

WE(∀x.φ ,w,σ) = E( ∏
x:TRUE(x)

tr(φ ,w,σ)) = ∏
x:T RUE(x)

E(tr(φ ,w,σ)).

The formulaφsq = ∀x.∀y.2 gives the function 2ℓ(w)
2

and is not abMSOL -step formula. The
straightforward translationtr gives the term

∏
x:T RUE(x)

(
∏

y:TRUE(y)

2

)
= ∏

(x,y):T RUE(x,y)

2,

which is a product over the tuples of a binary relation, hencenot inMSOLEVAL S .

(ix) tr(∀X.φ) = ∏X:TRUE(X) tr(φ) and

WE(∀X.φ ,w,σ) = E( ∏
X:TRUE(X)

tr(φ ,w,σ)) = ∏
X:TRUE(X)

E(tr(φ ,w,σ)).

Here the translation gives a product∏X:TRUE(X) ranging over subsets, which is not an expression
in MSOLEVAL S .

In RMSOL , universal second order quantification is restricted to formulas ofbMSOL , and first order
universal quantification is restricted tobMSOL-step formulas.

In [2, page 590], after Figure 1, the following is stated:

Lemma 15. The evaluation WE of abMSOL -formula φ assumes values in{0,1} and coincides with
the standard semantics ofφ as an unweightedMSOL-formula.
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Because the translation of universal quantifiers usingtr leads outside ofMSOLEVAL S , we define
a proper translationtr ′ : RMSOL → MSOLEVAL S .

Using Lemma 15 we settr ′(φ) = tv(φ), for φ abMSOL -formula.
For universal first order quantification ofbMSOL -step formulas

ψ =
∨

i∈I

(φi ∧ki) (6)

we computeWE(∀x.ψ ,w,σ) andE(tr(∀x.ψ),w,σ) as follows, leaving the steps for the translation of
tr(∀x.ψ) to the reader.

WE((∀x.ψ),w,σ) = E(tr(∀x.ψ),w,σ) =

E(tr(∀x.
∨

i∈I

(φi ∧ki)),w,σ) =

∏
x:TRUE(x)

E(tr(
∨

i∈I

(φi ∧ki))),w,σ) =

∏
x:TRUE(x)

(∑
i∈I

(E(tr ′(φi)) ·ki),w,σ)) =

∏
x:T RUE(x)

(∑
i∈I

(E(tv(φi),w,σ) ·ki)))

Clearly, the formula of the last line,∏x:TRUE(x)(∑i∈I (tv(φi)) ·ki)) is an expression inMSOLEVAL S .
For universal second order quantification ofbMSOL -formulasψ we use Lemma 15 and get

WE(∀X.ψ ,w,σ) = E(tr ′(∀Xψ),w,σ) = E(tv(∀Xψ),w,σ)

Clearly, the expression tv(∀Xψ) is an expression inMSOLEVAL S . Thus we have proved:

Theorem 16. LetS be a commutative semiring. For every expressionφ ∈ RMSOL there is an expres-
sion tr′(φ) ∈ MSOLEVAL S such that WE(φ ,w,σ) = E(tr ′(φ),w,σ), i.e.,φ and tr′(φ) define the same
word function.

4.3 Translation from MSOLEVAL S to RMSOL

It follows from our Theorem 8 and the characterization in [8]of recognizable word functions as the
functions definable inRMSOL , that the converse is also true. We now give a direct proof of the converse
without using weighted automata.

Theorem 17. Let S be a commutative semiring. For every expression t∈ MSOLEVAL S there is a
formulaφt ∈ RMSOL such that WE(φt ,w,σ) = E(t,w,σ), i.e.,φt and t define the same word function.

Proof. (i) Let t = ∏x:φ(x) α be aMSOLEVAL S - monomial. We note that

α · tv(φ)+ tv(¬φ) =

{
α if φ is true

1 else

Furthermore, by Lemma 15φ ∈ bMSOL . So we put

φt = ∀x.((φ(x)∧α)∨¬φ(x))
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(ii) Let t1 = ∑U :φ(U) t and letφt be the translation oft. Then

φt1 = ∃U.(φt ∧φ(U))

5 Conclusions

We have given two proofs thatRMSOL andMSOLEVAL with values inS have the same expressive
power over words. One proof uses model theoretic tools to show directly thatMSOLEVAL captures the
functions recognizable by weighted automata. The other proof shows how to translate the formalisms
from one into the other. Adapting the translation proof, it should be possible to extend the result to tree
functions as well, cf. [10].

Although in this paper we dealt only with word functions, ourformalismMSOLEVAL , introduced
first fifteen years ago, was originally designed to deal with definability of graph parameters and graph
polynomials, [6, 22, 24, 21]. It has been useful, since, in many applications in algorithmic and struc-
tural graph theory and descriptive complexity. Its use in characterizing word functions recognizable by
weighted automata is new.MSOLEVAL can be seen as an analogue of theSkolem elementary func-
tionsakalower elementary functions, [25, 26], adapted to the framework ofmeta-finite model theoryas
defined in [15].

The formalismWMSOL of weighted logic was first invented in 2005 in [7] and since then used to
characterize word and tree functions recognizable by weighted automata, [10]. These characterizations
need some syntactic restrictions which lead to the formalisms ofRMSOL . No such syntactic restrictions
are need for the characterization of recognizable word functions usingMSOLEVAL . The weighted
logic WMSOL can also be defined for general relational structures. However, it is not immediate which
syntactic restrictions are needed, if at all, to obtain algorithmic applications similar to the ones obtained
usingMSOLEVAL , cf. [6, 5, 23].
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We consider directed graphs where each edge is labeled with an integer weight and study the fun-
damental algorithmic question of computing the value of a cycle with minimum mean weight. Our
contributions are twofold: (1) First we show that the algorithmic question is reducible inO(n2) time
to the problem of a logarithmic number ofmin-plusmatrix multiplications ofn×n-matrices, where
n is the number of vertices of the graph. (2) Second, when the weights are nonnegative, we present
the first(1+ ε)-approximation algorithm for the problem and the running time of our algorithm is
Õ(nω log3 (nW/ε)/ε)1, whereO(nω) is the time required for theclassic n×n-matrix multiplication
andW is the maximum value of the weights.

1 Introduction

Minimum cycle mean problem. We consider a fundamental graph algorithmic problem of computing
the value of a minimum mean-weight cycle in a finite directed graph. The input to the problem is a
directed graphG= (V,E,w) with a finite setV of n vertices,E of m edges, and a weight functionw that
assigns an integer weight to every edge. Given a cycleC, the mean weightµ(C) of the cycle is the ratio
of the sum of the weights of the cycle and the number of edges inthe cycle. The algorithmic question
asks to computeµ = min{µ(C) | C is a cycle}: the minimum cycle mean. The minimum cycle mean
problem is an important problem in combinatorial optimization and has a long history of algorithmic
study. AnO(nm)-time algorithm for the problem was given by Karp [17]; and the current best known
algorithm for the problem, which is over two decades old, by Orlin and Ahuja requireO(m

√
nlog(nW))

time [22], whereW is the maximum absolute value of the weights.

Applications. The minimum cycle mean problem is a basic combinatorial optimization problem that has
numerous applications in network flows [2]. In the context offormal analysis of reactive systems, the per-
formance of systems as well as the average resource consumption of systems is modeled as the minimum
cycle mean problem. A reactive system is modeled as a directed graph, where vertices represent states of
the system, edges represent transitions, and every edge is assigned anonnegativeinteger representing the
resource consumption (or delay) associated with the transition. The computation of a minimum average

∗Supported by the Austrian Science Fund (FWF): P23499-N23 and S11407-N23 (RiSE), an ERC Start Grant (279307:
Graph Games), and a Microsoft Faculty Fellows Award.

†Supported by the Austrian Science Fund (FWF): P23499-N23, the Vienna Science and Technology Fund (WWTF) grant
ICT10-002, and the University of Vienna (IK I049-N).

‡Supported by the Austrian Science Fund (FWF): P23499-N23 and the University of Vienna (IK I049-N).
§Supported by the Vienna Science and Technology Fund (WWTF) grant ICT10-002.
1TheÕ-notation hides a polylogarithmic factor.
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resource consumption behavior (or minimum average response time) corresponds to the computation of
the minimum cycle mean. Several recent works model other quantitative aspects of system analysis (such
as robustness) also as the mean-weight problem (also known asmean-payoff objectives) [4, 9].

Results.This work contains the following results.

1. Reduction to min-plus matrix multiplication.We show that the minimum cycle mean problem is
reducible inO(n2) time to the problem of a logarithmic number of min-plus matrix multiplications
of n×n-matrices, wheren is the number of vertices of the graph. Our result implies that algorith-
mic improvements for min-plus matrix multiplication will carry over to the minimum cycle mean
problem with a logarithmic multiplicative factor andO(n2) additive factor in the running time.

2. Faster approximation algorithm.When the weights are nonnegative, we present the first(1+ ε)-
approximation algorithm for the problem that outputsµ̂ such thatµ ≤ µ̂ ≤ (1+ ε)µ and the run-
ning time of our algorithm is̃O(nω log3 (nW/ε)/ε). As usual, theÕ-notation is used to “hide” a
polylogarithmic factor, i.e.,̃O(T(n,m,W)) = O(T(n,m,W) · polylog(n)), andO(nω) is the time
required for theclassic n× n-matrix multiplication. The current best known bound forω is
ω < 2.3727. The worst case complexity of the current best known algorithm for the minimum
cycle mean problem isO(m

√
nlog(nW)) [22], which could be as bad asO(n2.5 log(nW)). Thus

for (1+ε)-approximation our algorithm provides better dependence in n. Note that in applications
related to systems analysis the weights are always nonnegative (they represent resource consump-
tion, delays, etc); and the weights are typically small, whereas the state space of the system is large.
Moreover, due to imprecision in modeling, approximations in weights are already introduced dur-
ing the modeling phase. Hence(1+ ε)-approximation of the minimum cycle mean problem with
small weights and large graphs is a very relevant algorithmic problem for reactive system analysis,
and we improve the long-standing complexity of the problem.

The key technique that we use to obtain the approximation algorithm is a combination of the value
iteration algorithm for the minimum cycle mean problem, anda technique used for an approx-
imation algorithm for all-pair shortest path problem for directed graphs. Table 1 compares our
algorithm with the asymptotically fastest existing algorithms.

Reference Running time Approximation Range
Karp [17] O(mn) exact [−W,W]

Orlin and Ahuja [22] O(m
√

nlog(nW)) exact [−W,W]∩Z
Sankowski [24] (implicit) Õ(Wnω log(nW)) exact [−W,W]∩Z

Butkovic and Cuninghame-Green [6] O(n2) exact {0,1}
This paper Õ(nω log3(nW/ε)/ε) 1+ ε [0,W]∩Z

Table 1: Current fastest asymptotic running times for computing the minimum cycle mean

1.1 Related work

The minimum cycle mean problem is basically equivalent to solving a deterministic Markov decision
process (MDP) [31]. The latter can also be seen as a single-player mean-payoff game [10, 13, 31]. We
distinguish two types of algorithms: algorithms that are independent of the weights of the graph and
algorithms that depend on the weights in some way. ByW we denote the maximum absolute edge
weight of the graph.
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Algorithms independent of weights.The classic algorithm of Karp [17] uses a dynamic programming
approach to find the minimum cycle mean and runs in timeO(mn). The main drawback of Karp’s
algorithm is that its best-case and worst-case running times are the same. The algorithms of Hartmann
and Orlin [15] and of Dasdan and Gupta [8] address this issue,but also have a worst-case complexity of
O(mn). By solving the more general parametric shortest path problem, Karp and Orlin [18] can compute
the minimum cycle mean in timeO(mnlogn). Young, Tarjan, and Orlin [27] improve this running time
to O(mn+n2 logn).

A well known algorithm for solving MDPs is the value iteration algorithm. In each iteration this
algorithm spends timeO(m) and in total it performsO(nW) iterations. Madani [20] showed that, for
deterministicMDPs (i.e., weighted graphs for which we want to find the minimum cycle mean), a certain
variant of the value iteration algorithm “converges” to theoptimal cycle afterO(n2) iterations which gives
a running time ofO(mn2) for computing the minimum cycle mean. Using similar ideas healso obtains
a running time ofO(mn). Howard’s policy iteration algorithm is another well-known algorithm for
solving MDPs [16]. The complexity of this algorithm for deterministic MDPs is unresolved. Recently,
Hansen and Zwick [14] provided a class of weighted graphs on which Howard’s algorithm performs
Ω(n2) iterations where each iteration takes timeO(m).

Algorithms depending on weights.If a graph is complete and has only two different edge weights, then
the minimum cycle mean problem problem can be solved in timeO(n2) because the matrix of its weights
is bivalent [6].

Another approach is to use the connection to the problem of detecting a negative cycle. Lawler [19]
gave a reduction for finding the minimum cycle mean that performs O(log(nW)) calls to a negative
cycle detection algorithm. The main idea is to perform binary search on the minimum cycle mean. In
each search step the negative cycle detection algorithm is run on a graph with modified edge weights.
Orlin and Ahuja [22] extend this idea by the approximate binary search technique [29]. By combining
approximate binary search with their scaling algorithm forthe assignment problem they can compute the
minimum cycle mean in timeO(m

√
nlognW).

Note that in its full generality the single-source shortestpaths problem (SSSP) also demands the
detection of a negative cycle reachable from the source vertex.2 Therefore it is also possible to reduce
the minimum cycle mean problem to SSSP. The best time bounds on SSSP are as follows. Goldberg’s
scaling algorithm [12] solves the SSSP problem (and therefore also the negative cycle detection problem)
in time O(m

√
nlogW). McCormick [21] combines approximate binary search with Goldberg’s scaling

algorithm to find the minimum cycle mean in timeO(m
√

nlognW), which matches the result of Orlin
and Ahuja [22]. Sankowski’s matrix multiplication based algorithm [24] solves the SSSP problem in time
Õ(Wnω). By combining binary search with Sankowski’s algorithm, the minimum cycle mean problem
can be solved in timẽO(Wnω lognW)

Approximation of minimum cycle mean. To the best of our knowledge, our algorithm is the first
approximation algorithm specifically for the minimum cyclemean problem. There are both additive
and multiplicative fully polynomial-time approximation schemes for solving mean-payoff games [23, 5],
which is a more general problem. Note that in contrast to finding the minimum cycle mean it is not
known whether the exact solution to a mean-payoff game can becomputed in polynomial time. The
results of [23] and [5] are obtained by reductions to a pseudo-polynomial algorithm for solving mean-
payoff games. In the case of the minimum cycle mean problem, these reductions do not provide an
improvement over the current fastest exact algorithms mentioned above.

2Remember that, for example, Dijkstra’s algorithm for computing single-source shortest paths requires non-negative edge
weights which excludes the possibility of negative cycles.
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Min-plus matrix multiplication. Our approach reduces the problem of finding the minimum cycle
mean to computing the (approximate) min-plus product of matrices. The naive algorithm for computing
the min-plus product of two matrices runs in timeO(n3). To date, no algorithm is known that runs
in time O(n3−α) for someα > 0, so-calledtruly subcubictime. This is in contrast to classic matrix
multiplication that can be done in timeO(nω) where the current best bound onω is ω < 2.3727 [25].
Moreover, Williams and Williams [26] showed that computingthe min-plus product is computationally
equivalent to a series of problems including all-pairs shortest paths and negative triangle detection. This
provides evidence for the hardness of these problems. Still, the running time ofO(n3) for the min-plus
product can be improved by logarithmic factors and by assuming small integer entries.

Fredman [11] gave an algorithm for computing the min-plus product with a slightly subcubic running
time of O(n3(log logn)1/3/(logn)1/3). This algorithm is “purely combinatorial”, i.e., it does not rely on
fast algorithms for classic matrix multiplication. After along line of improvements, the current fastest
such algorithm by Chan [7] runs in timeO(n3(log logn)3/(logn)2).

A different approach for computing the min-plus product of two integer matrix is to reduce the
problem to classic matrix multiplication [28]. In this way,the min-plus product can be computed in time
O(Mnω logM) which is pseudo-polynomial sinceM is the maximum absolute integer entry [3]. This
observation was used by Alon, Galil, and Margalit [3] and Zwick [30] to obtain faster all-pairs shortest
paths algorithms in directed graphs for the case of small integer edge weights. Zwick also combines
this min-plus matrix multiplication algorithm with an adaptive scaling technique that allows to compute
(1+ ε)-approximate all-pairs shortest paths in graphs with non-negative edge weights. Our approach of
finding the minimum cycle mean extensively uses this technique.

2 Definitions

Throughout this paper we letG= (V,E,w) be a weighted directed graph with a finite set of verticesV
and a set of edgesE such that every vertex has at least one outgoing edge. The weight functionw assigns
a nonnegative integer weight to every edge. We denote byn the number of vertices ofG and bym the
number of edges ofG. Note thatm≥ n because every vertex has at least one outgoing edge.

A path is a finite sequence of edgesP= (e1, . . . ,ek) such that for all consecutive edgesei = (xi ,yi)
andei+1 = (xi+1,yi+1) of P we haveyi = xi+1. Note that edges may be repeated on a path, wedo notonly
consider simple paths. Acycle is a path in which the start vertex and the end vertex are the same. The
length of a path Pis the number of edges ofP. Theweight of a path P= (e1, . . . ,ek), denoted byw(P) is
the sum of its edge weights, i.e.w(P) = ∑1≤i≤k w(ei).

Theminimum cycle meanof G is the minimum mean weight of any cycle inG. For every vertexx
we denote byµ(x) the value of the minimum mean-weight cycle reachable fromx. The minimum cycle
mean ofG is simply the minimumµ(x) over all verticesx. For every vertexx and every integert ≥ 1 we
denote byδt(x) the minimum weight of all paths starting atx that have lengtht, i.e., consist of exactlyt
edges. For all pairs of verticesx andy and every integert ≥ 1 we denote bydt(x,y) the minimum weight
of all paths of lengtht from x to y. If no such path exists we setdt(x,y) = ∞.

For every matrixA we denote byA[i, j] the entry at thei-th row and thej-th column ofA. We only
considern×n matrices with integer entries, wheren is the size of the graph. We assume that the vertices
of G are numbered consecutively from 1 ton, which allows us to useA[x,y] to refer to the entry ofA
belonging to verticesx andy. Theweight matrix D of Gis the matrix containing the weights ofG. For
all pairs of verticesx andy we setD[x,y] = w(x,y) if the graph contains the edge(x,y) andD[x,y] = ∞
otherwise.
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We denote themin-plus productof two matricesA andB by A⊗B. The min-plus product is defined
as follows. IfC= A⊗B, then for all indices 1≤ i, j ≤ n we haveC[i, j] = min1≤k≤n(A[i,k]+B[k, j]). We
denote byAt the t-th power of the matrixA. Formally, we setA1 = A andAt+1 = A⊗At for t ≥ 1. We
denote byω the exponent of classic matrix multiplication, i.e., the product of twon×n matrices can be
computed in timeO(nω). The current best bound onω is ω < 2.3727 [25].

3 Reduction of minimum cycle mean to min-plus matrix multiplication

In the following we explain the main idea of our approach which is to use min-plus matrix multiplication
to find the minimum cycle mean. The well-known value iteration algorithm uses a dynamic programming
approach to compute in each iteration a value for every vertex x from the values of the previous iteration.
After t iterations, the value computed by the value iteration algorithm for vertexx is equal toδt(x), the
minimum weight of all paths with lengtht starting atx. We are actually interested inµ(x), the value
of the minimum mean-weight cycle reachable fromx. It is well known that limt→∞ δt(x)/t = µ(x) and
that the value ofµ(x) can be computed fromδt(x) if t is large enough(t = O(n3W)) [31].3 Thus, one
possibility to determineµ(x) is the following: first, computeδt(x) for t large enough with the value
iteration algorithm and then computeµ(x) from δt(x). However, using the value iteration algorithm for
computingδt(x) is expensive because its running time is linear int and thus pseudo-polynomial.

Our idea is to computeδt(x) for a large value oft by using fast matrix multiplication instead of the
value iteration algorithm. We will compute the matrixDt , the t-th power of the weight matrix (using
min-plus matrix multiplication). The matrixDt contains the value of the minimum-weight path of length
exactlyt for all pairs of vertices. GivenDt , we can determine the valueδt(x) for every vertexx by finding
the minimum entry in the row ofDt corresponding tox.

Proposition 1. For every t≥ 1 and all vertices x and y we have (i) dt(x,y) = Dt [x,y] and (ii) δt(x) =
miny∈V Dt [x,y].

Proof. We give the proof for the sake of completeness. The claimdt(x,y) = Dt [x,y] follows from a
simple induction ont. If t = 1, then clearly the minimal-weight path of length 1 fromx to y is the edge
from x to y if it exists, otherwisedt(x,y) = ∞. If t ≥ 1, then a minimal-weight path of lengtht from x to y
(if it exists) consists of some outgoing edge ofe= (x,z) as its first edge and then a minimal-weight path
of lengtht−1 from z to y. We therefore havedt(x,y) = min(x,z)∈E w(x,z)+dt−1(z,y). By the definition
of the weight matrix and the induction hypothesis we getdt(x,y) = minz∈V D[x,z]+Dt−1[z,y]. Therefore
the matrixD⊗Dt−1 = Dt contains the value ofdt(x,y) for every pair of verticesx andy.

For the second claim,δt(x) = miny∈V Dt [x,y], observe that by the definition ofδt(x) we obviously
haveδt(x) = miny∈V dt(x,y) because the minimal-weight path of lengtht starting atx hassomenodey as
its end point.

Using this approach, the main question is how fast the matrixDt can be computed. The most im-
portant observation is thatDt (and therefore alsoδt(x)) can be computed by repeated squaring with only
O(logt) min-plus matrix multiplications. This is different from the value iteration algorithm, wheret
iterations are necessary to computeδt(x).

Proposition 2. For every t≥ 1 we have D2t = Dt ⊗Dt . Therefore the matrix Dt can be computed with
O(logt) many min-plus matrix multiplications.

3Specifically, fort = 4n3W the unique number in(δt(x)/t−1/[2n(n−1)],δt (x)/t +1/[2n(n−1)])∩Q that has a denomi-
nator of at mostn is equal toµ(x) [31].
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Proof. We give the proof for the sake of completeness. It can easily be verified that the min-plus matrix
product is associative [1] and thereforeD2t = Dt⊗Dt . Therefore, ift is a power of two, we can compute
Dt with logt min-plus matrix multiplications. Ift is not a power of two, we can decomposeDt into Dt =
Dt1⊗ . . .⊗Dtk where eachti ≤ t (for 1≤ i ≤ k) is a power of two andk≤ ⌈logt⌉. By storing intermediate
results, we can computeD2i

for every 0≤ i ≤ ⌈logt⌉ with ⌈logt⌉min-plus matrix multiplications. Using
the decomposition above, we have to multiply at most⌈logt⌉ such matrices to obtainDt . Therefore the
total number of min-plus matrix multiplications needed forcomputingDt is O(logt).

The running time of this algorithm depends on the time neededfor computing the min-plus product
of two integer matrices. This running time will usually depend on the two parametersn andM where
n is the size of then× n matrices to be multiplied (in our case this is equal to the number of vertices
of the graph) and the parameterM denotes the maximum absolute integer entry in the matrices to be
multiplied. When we multiply the matrixD by itself to obtainD2, we haveM = W, whereW is the
maximum absolute edge weight. However,M increases with every multiplication and in general, we can
bound the maximum absolute integer entry of the matrixDt only byM = tW. Note thatO(n2) operations
are necessary to extract the minimum cycle meanµ(x) for all verticesx from the matrixDt .

Theorem 3. If the min-plus product of two n×n matrices with entries in{−M, . . . ,−1,0,1, . . . ,M,∞}
can be computed in time T(n,M), then the minimum cycle mean problem can be solved in time T(n, tW) logt
where t= O(n3W).4

Unfortunately, the approach outlined above does not immediately improve the running time for the
minimum cycle mean problem because min-plus matrix multiplication currently cannot be done fast
enough. However, our approach is still useful for solving the minimum cycle mean problemapproxi-
matelybecause approximate min-plus matrix multiplication can bedone faster than its exact counterpart.

4 Approximation algorithm

In this section we design an algorithm that computes an approximation of the minimum cycle mean in
graphs with nonnegative integer edge weights. It follows the approach of reducing the minimum cycle
mean problem to min-plus matrix multiplication outlined inSection 3. The key to our algorithm is a fast
procedure for computing the min-plus product of two integermatrices approximately. We will proceed as
follows. First, we explain how to compute an approximationF of Dt , thet-th power of the weight matrix
D. From this we easily get, for every vertexx, an approximation̂δt(x) of δt(x), the minimum-weight of
all paths of lengtht starting atx. We then argue that fort large enough (in particulart = O(n2W/ε)),
the valueδt(x)/t is an approximation ofµ(x), the minimum cycle mean of cycles reachable fromx. By
combining both approximations we can show thatδ̂t(x)/t is an approximation ofµ(x). Thus, the main
idea of our algorithm is to compute an approximation ofDt for a large enought.

4.1 Computing an approximation ofDt

Our first goal is to compute an approximation of the matrixDt , the t-th power of the weight matrixD,
givent ≥ 1. Zwick provides the following algorithm for approximate min-plus matrix multiplication.

Theorem 4 (Zwick [30]). Let A and B be two n× n matrices with integer entries in[0,M] and let
C := A⊗B. Let R≥ logn be a power of two. The algorithmapprox-min-plus(A,B,M,R) computes the

4Note that necessarilyT(n,M) = Ω(n2) because the result matrix hasn2 entries that have to be written.
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approximate min-plus productC of A and B in time5 O(nωRlog(M) log2(R) log(n)) such that for every
1≤ i, j ≤ n it holds that C[i, j]≤C[i, j]≤ (1+4/R)C[i, j].

We now give a modification (see Algorithm 1) of Zwick’s algorithm for approximate shortest paths [30]
such that the algorithm computes a(1+ ε)-approximationF of Dt whent is a power of two such that
for 1≤ i, j ≤ n we haveDt [i, j] ≤ F[i, j] ≤ (1+ ε)Dt [i, j]. Just as we can computeDt exactly with logt
min-plus matrix multiplications, the algorithm computes the (1+ ε)-approximation ofDt in logt iter-
ations. However, in each iteration only an approximate min-plus product is computed. LetFs be the
approximation ofDs := D2s

. In thes-th iteration we use approx-min-plus(Fs−1,Fs−1, tW,R) to calculate
Fs with Rchosen beforehand such that the desired error bound is reached forF = Flogt .

Algorithm 1: Approximation ofDt

input :weight matrixD, error boundε , t (a power of 2)
output :(1+ ε)-approximation ofDt

F ← D
r ← 4logt/ ln(1+ ε)
R← 2⌈logr⌉

for logt timesdo
F ← approx-min-plus(F,F,2tW,R)

end
return F

Lemma 5. Given an0< ε ≤ 1 and a power of two t≥ 1, Algorithm 1 computes a(1+ε)-approximation
F of Dt in time

O

(
nω · log2(t)

ε
· log(tW) log2

(
log(t)

ε

)
log(n)

)
= Õ

(
nω · log2(t)

ε
· log(tW)

)

such that Dt [i, j]≤ F[i, j]≤ (1+ ε)Dt [i, j] for all 1≤ i, j ≤ n.

Proof. The basic idea is as follows. The running time of approx-min-plus depends linearly onR and
logarithmically onM, the maximum entry of the input matrices. Algorithm 1 calls approx-min-plus logt
times. Each call increases the error by a factor of(1+4/R). However, as only logt approximate matrix
multiplications are used, settingR to the smallest power of 2 that is larger than 4log(t)/ ln(1+ε) suffices
to bound the approximation error by(1+ ε). We will show that 2tW is an upper bound on the entries
in the input matrices for approx-min-plus. The stated running time follows directly from these two facts
and Theorem 4.

Let Fs be the approximation ofDs := D2s
computed by the algorithm after iterations. Recall that

2sW is an upper bound on the maximum entry inDs. As we will show, all entries inFs are at most
(1+ ε)-times the entries inDs. Since we assumeε ≤ 1, we have 1+ ε ≤ 2. Thus 2s+1W is an upper
bound on the entries inFs. Hence 2tW is an upper bound on the entries ofFs with 1≤ s< logt, i.e., for
all input matrices of approx-min-plus in our algorithm.

5The running time of approx-min-plus is given byO(nω logM) times the time needed to multiply twoO(Rlogn)-bit
integers. With the Schönhage-Strassen algorithm for largeinteger multiplication, twok-bit integers can be multiplied in
O(k logk loglogk) time, which gives a running time ofO(nω Rlog(M) log(n) log(Rlogn) log log(Rlogn)). This can be bounded
by the running time given in Theorem 4 ifR≥ logn, which will always be the case in the following.
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This results in an overall running time of

O(nωRlog(tW) log(R) log log(R) log(n) · log(t))

= O

(
nω · log2(t)

log(1+ ε)
· log(tW) log2

(
log(t)

log(1+ ε)

)
log(n)

)

= O

(
nω · log2(t)

ε
· log(tW) log2

(
log(t)

ε

)
log(n)

)
.

The last equation follows from the inequality 1/ ln(1+ ε)≤ (1+ ε)/ε for ε > 0. Sinceε ≤ 1 it follows
that 1/ log(1+ ε) = O(1/ε).

To show the claimed approximation guarantee, we will prove that the inequality

Ds[i, j]≤ Fs[i, j]≤
(

1+
4
R

)s

Ds[i, j] .

holds after thes-th iteration of Algorithm 1 by induction ons. Note that the(1+ ε)-approximation
follows from this inequality because the parameterR is chosen such that after the(logt)-th iteration of
the algorithm it holds that

(
1+

4
R

)logt

≤
(

1+
ln(1+ ε)

logt

)logt

≤ eln(1+ε) = 1+ ε .

For s= 0 we haveFs = Ds and the inequality holds trivially. Assume the inequality holds fors. We
will show that it also holds fors+1.

First we prove the lower bound onFs+1[i, j]. LetCs+1 be the exact min-plus product ofFs with itself,
i.e.,Cs+1 = Fs⊗Fs. Let kc be the minimizing index such thatCs+1[i, j] = min1≤k≤n(Fs[i,k]+Fs[k, j]) =
Fs[i,kc]+Fs[kc, j]. By the definition of the min-plus product

Ds+1[i, j] = min
1≤k≤n

(Ds[i,k]+Ds[k, j])≤ Ds[i,kc]+Ds[kc, j] . (1)

By the induction hypothesis and the definition ofkc we have

Ds[i,kc]+Ds[kc, j]≤ Fs[i,kc]+Fs[kc, j] =Cs+1[i, j] . (2)

By Theorem 4 the values ofFs+1 can only be larger than the values inCs+1, i.e.,

Cs+1[i, j] ≤ Fs+1[i, j] . (3)

Combining Equations (1), (2), and (3) yields the claimed lower bound,

Ds+1[i, j] ≤ Fs+1[i, j] .

Next we prove the upper bound onFs+1[i, j]. Let kd be the minimizing index such thatDs+1[i, j] =
Ds[i,kd] +Ds[kd, j]. Theorem 4 gives the error from one call of approx-min-plus,i.e., the error in the
entries ofFs+1 compared to the entries ofCs+1. We have

Fs+1[i, j]≤
(

1+
4
R

)
Cs+1[i, j] . (4)
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By the definition of the min-plus product we know that

Cs+1[i, j]≤ Fs[i,kd]+Fs[kd, j] . (5)

By the induction hypothesis and the definition ofkd we can reformulate the error obtained in the firsts
iterations of Algorithm 1 as follows:

Fs[i,kd]+Fs[kd, j]≤
(

1+
4
R

)s

Ds[i,kd]+

(
1+

4
R

)s

Ds[kd, j] ,

=

(
1+

4
R

)s

(Ds[i,kd]+Ds[kd, j]) ,

=

(
1+

4
R

)s

Ds+1[i, j] . (6)

Combining Equations (4), (5), and (6) yields the upper bound

Fs+1[i, j] ≤
(

1+
4
R

)s+1

Ds+1[i, j] .

Once we have computed an approximation of the matrixDt , we extract from it the minimal entry
of each row to obtain an approximation ofδt(x). Here we use the equivalence between the minimum
entry of rowx of Dt andδt(x) established in Proposition 1. Remember thatδt(x)/t approachesµ(x) for
t large enough and later on we want to use the approximation ofδt(x) to obtain an approximation of the
minimum cycle meanµ(x).
Lemma 6. The valueδ̂t(x) := miny∈V F[x,y] approximatesδt(x) with δt(x) ≤ δ̂t(x)≤ (1+ ε)δt(x) .

Proof. Let yf andyd be the indices where thex-th rows ofF andDt obtain their minimal values, respec-
tively, i.e.,

yf := argmin
y∈V

F[x,y] and yd := argmin
y∈V

Dt [x,y] .

By these definitions and Lemma 5 we have

δt(x) = Dt [x,yd]≤ Dt [x,yf ]≤ F[x,yf ] = δ̂t(x)

and
δ̂t(x) = F[x,yf ]≤ F [x,yd]≤ (1+ ε)Dt [x,yd] .

4.2 Approximating the minimum cycle mean

We now add the next building block to our algorithm. So far, wecan obtain an approximation̂δt(x)
of δt(x) for any t that is a power of two. We now show thatδt(x)/t is itself an approximation of the
minimum cycle meanµ(x) for t large enough. Then we argue thatδ̂t(x)/t approximates the minimum
cycle meanµ(x) for t large enough. This value oft bounds the number of iterations of our algorithm. A
similar technique was also used in [31] to bound the number ofiterations of the value iteration algorithm
for the two-player mean-payoff game.

We start by showing thatδt(x)/t differs fromµ(x) by at mostnW/t for any t. Then we will turn this
additive error into a multiplicative error by choosing a large enough value oft. A multiplicative error
implies that we have to compute the solution exactly forµ(x) = 0. We will use a separate procedure
to identify all verticesx with µ(x) = 0 and compute the approximation only for the remaining vertices.
Note thatµ(x)> 0 impliesµ(x)≥ 1/n because all edge weights are integers.
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Lemma 7. For every x∈V and every integer t≥ 1 it holds that

t ·µ(x)−nW≤ δt(x)≤ t ·µ(x)+nW.

Proof. We first show the lower bound onδt(x). Let P be a path of lengtht starting atx with weightδt(x).
Consider the cycles inP and letE′ be the multiset of the edges inP that are in a cycle ofP. There can
be at mostn edges that are not in a cycle ofP, thus there are at least max(t− n,0) edges inE′. Since
µ(x) is the minimum mean weight of any cycle reachable fromx, the sum of the weight of the edges in
E′ can be bounded below byµ(x) times the number of edges inE′. Furthermore, the value ofµ(x) can
be at mostW. As we only allow nonnegative edge weights, the sum of the weights of the edges inE′ is
a lower bound onδt(x). Thus we have

δt(x)≥ ∑
e∈E′

w(e)≥ (t−n)µ(x)≥ t ·µ(x)−n·µ(x) ≥ t ·µ(x)−nW.

Next we prove the upper bound onδt(x). Let l be the length of the shortest path fromx to a vertexy
in a minimum mean-weight cycleC reachable fromx (such that onlyy is both in the shortest path and in
C). Let c be the length ofC. Let the pathQ be a path of lengtht that consists of the shortest path from
x to y, ⌊(t− l)/c⌋ rounds onC, andt− l −c⌊(t− l)/c⌋ additional edges inC. By the definition ofδt(x),
we haveδt(x) ≤ w(Q). The sum of the length of the shortest path fromx to y and the number of the
remaining edges ofQ not in a complete round onC can be at mostn because in a graph with nonnegative
weights no shortest path has a cycle and no vertices inC excepty are contained in the shortest path from
x to y. Each of these edges has a weight of at mostW. The mean weight ofC is µ(x), thus the sum of the
weight of the edges in all complete rounds onC is µ(x) ·c⌊(t− l)/c⌋ ≤ µ(x) · t. Hence we have

δt(x) ≤w(Q)≤ t ·µ(x)+nW.

In the next step we show that we can use the fact thatδt(x)/t is an approximation ofµ(x) to obtain a
(1+ ε)-approximationµ̂(x) of µ(x) even if we only have an approximation̂δt(x) of δt(x) with (1+ ε)-
error. We exclude the caseµ(x) = 0 for the moment.

Lemma 8. Assume we have an approximationδ̂t(x) of δt(x) such thatδt(x) ≤ δ̂t(x) ≤ (1+ ε)δt(x) for
0< ε ≤ 1/2. If

t ≥ n2W
ε

, µ(x) ≥ 1
n
, and µ̂(x) :=

δ̂t(x)
(1− ε)t

,

then
µ(x)≤ µ̂(x) ≤ (1+7ε)µ(x) .

Proof. We first show that̂µ(x) is at least as large asµ(x). From Lemma 7 we haveδt(x)≥ t ·µ(x)−nW.
As t is chosen large enough,

δt(x)
t
≥ µ(x)− nW

t
≥ µ(x)− ε

n
≥ µ(x)− εµ(x)≥ (1− ε)µ(x) .

Thus, by the assumptionδt(x) ≤ δ̂t(x) we have

µ(x)≤ δ̂t(x)
(1− ε)t

= µ̂(x) .
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For the upper bound on̂µ(x) we use the inequalityδt(x) ≤ t · µ(x)+ nW from Lemma 7. Ast is
chosen large enough,

δt(x)
t
≤ µ(x)+

nW
t
≤ µ(x)+

ε
n
≤ (1+ ε)µ(x) .

With δ̂t(x) ≤ (1+ ε)δt(x) this gives

µ̂(x) =
δ̂t(x)

(1− ε)t
≤ (1+ ε)2

(1− ε)
µ(x) .

It can be verified by simple arithmetic that forε > 0 the inequalityε ≤ 1/2 is equivalent to

(1+ ε)2

(1− ε)
≤ (1+7ε) .

As a last ingredient to our approximation algorithm, we design a procedure that deals with the special
case that the minimum cycle mean is 0. Since our goal is an algorithm with multiplicative error, we have
to be able to compute the solution exactly in that case. This can be done in linear time because the
edge-weights are nonnegative.

Proposition 9. Given a graph with nonnegative integer edge weights, we can find out all vertices x such
that µ(x) = 0 in time O(m).

Proof. Note that in the case of nonnegative edge weights we haveµ(x) ≥ 0. Furthermore, a cycle can
only have mean weight 0 if all edges on this cycle have weight 0. Thus, it will be sufficient to detect
cycles in the graph that only contain edges that have weight 0.

We proceed as follows. First, we compute the strongly connected components ofG, the original
graph. Each strongly connected componentGi (where 1≤ i ≤ k) is a subgraph ofG with a set of vertices
Vi and a set of edgesEi. For every 1≤ i ≤ k we let G0

i = (E0
i ,Vi) denote the subgraph ofGi that only

contains edges of weight 0, i.e.,E0
i = {e∈Ei|w(e) = 0}. As argued above,Gi contains a zero-mean cycle

if and only if G0
i contains a cycle. We can check whetherG0

i contains a cycle by computing the strongly
connected components ofG0

i : G0
i contains a cycle if and only if it has a strongly connected component

of size at least 2 (we can assume w.l.o.g. that there are no self-loops). LetZ be the set of all vertices in
strongly connected components ofG that contain a zero-mean cycle. The vertices inZ are not the only
vertices that can reach a zero-mean cycle. We can identify all vertices that can reach a zero-mean cycle
by performing a linear-time graph traversal to identify allvertices that can reachZ.

Since all steps take linear time, the total running time of this algorithm isO(m).

Finally, we wrap up all arguments to obtain our algorithm forapproximating the minimum cycle
mean. This algorithms performs logt approximate min-plus matrix multiplications to compute anap-
proximation ofDt andδt(x). Lemma 8 tells us thatt = n2W/ε is just the right number to guarantee that
our approximation ofδt(x) can be used to obtain an approximation ofµ(x). The value oft is relatively
large but the running time of our algorithm depends ont only in a logarithmic way.

Theorem 10. Given a graph with nonnegative integer edge weights, we can compute an approximation
µ̂(x) of the minimum cycle mean for every vertex x such thatµ(x) ≤ µ̂(x) ≤ (1+ ε)µ(x) for 0< ε ≤ 1
in time

O

(
nω

ε
log3

(
nW
ε

)
log2

(
log
(

nW
ε
)

ε

)
log(n)

)
= Õ

(
nω

ε
log3

(
nW
ε

))
.
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Proof. First we find all verticesx with µ(x) = 0. By Proposition 9 this takes timeO(n2) for m= O(n2).
For the remaining verticesx we approximateµ(x) as follows.

Let ε ′ := ε/7. If we execute Algorithm 1 with weight matrixD, error boundε ′ andt such thatt is
the smallest power of two witht ≥ n2W/ε ′, we obtain a(1+ ε ′)-approximationF[x,y] of Dt [x,y] for all
verticesx andy (Lemma 5). By calculating for everyx the minimum entry ofF [x,y] over ally we have a
(1+ ε ′)-approximation ofδt(x) (Lemma 6). By Lemma 8̂µ(x) := δ̂t(x)/((1− ε ′)t) is for this choice of
t an approximation ofµ(x) such thatµ(x) ≤ µ̂(x) ≤ (1+7ε ′)µ(x). By substitutingε ′ with ε/7 we get
µ(x) ≤ µ̂(x)≤ (1+ ε)µ(x) i.e., a(1+ ε)-approximation ofµ(x).

By Lemma 5 the running time of Algorithm 1 fort = 2⌈log(n2W/ε ′)⌉ = O(n2W/ε) is

O


nω

ε
log2

(
n2W

ε

)
log

(
n2W2

ε

)
log2




log
(

n2W
ε

)

ε


 log(n)


 .

With log(n2W)≤ log((nW)2) = O(log(nW)) we get that Algorithm 1 runs in time

O

(
nω

ε
log3

(
nW
ε

)
log2

(
log
(

nW
ε
)

ε

)
log(n)

)
. (7)

5 Open problems

We hope that this work draws attention to the problem of approximating the minimum cycle mean. It
would be interesting to study whether there is a faster approximation algorithm for the minimum cycle
mean problem, maybe at the cost of a worse approximation. Therunning time of our algorithm imme-
diately improves if faster algorithms for classic matrix multiplication, min-plus matrix multiplication
or approximate min-plus multiplication are found. However, a different approach might lead to better
results and might shed new light on how well the problem can beapproximated. Therefore it would be
interesting to remove the dependence on fast matrix multiplication and develop a so-called combinatorial
algorithm.

Another obvious extension is to allow negative edge weightsin the input graph. Furthermore, we
only consider the minimum cycle mean problem, while it mightbe interesting to actually output a cycle
with approximately optimal mean weight.
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Speculative optimisation relies on the estimation of the probabilities that certain properties of the
control flow are fulfilled. Concrete or estimated branch probabilities can be used for searching and
constructing advantageous speculative and bookkeeping transformations. We present a probabilistic
extension of the classical equational approach to data-flowanalysis that can be used to this purpose.
More precisely, we show how the probabilistic information introduced in a control flow graph by
branch prediction can be used to extract a system of linear equations from a program and present a
method for calculating correct (numerical) solutions.

1 Introduction

In the last two decades probabilistic aspects of software have become a particularly popular subject of
research. The reason for this is arguably ineconomicaland resource consciousquestions involving
modern computer systems. While program verification and analysis originally focused on qualitative
issues, e.g. whether code is correct or if compiler optimisations are valid, the focus is now more often
also on the costs of operations.

Speculative optimisation is part of this trend; it plays an important role in the design of modern
compiler and run time architectures. A speculative approach has been adopted in various models where
cost optimisation claims for a more optimistic interpretation of the results of a program analysis. It is in
fact often the case that possible optimisations are discarded because the analysis cannot guarantee their
correctness. The alternative to this sometimes overly pessimistic analysis is to speculatively assume in
those cases that optimisations are correct and then eventually backtrack and redo the computation if at a
later check the assumption turns out to be incorrect.

Speculative optimisation relies on the optimal estimationof the probabilities that certain properties
of the control flow are fulfilled. This is different from the classical (pessimistic) thinking where one aims
in providing bounds for what can happen during execution [8].

A number of frameworks and tools to analyse systems’s probabilistic aspects have been developed,
which can be seen as probabilistic versions of classical techniques such as model checking and abstract
interpretation. To provide a basis for such analysis various semantical model involving discrete and con-
tinuous time and also non-deterministic aspects have been developed (e.g. DTMCs, CTMCs, MDPs,
process algebraic approaches etc.). There also exist some powerful tools which implement these meth-
ods, e.g. PRISM [14], just to name one.

Our own contribution in this area has been a probabilistic version of the abstract interpretation frame-
work [6], called Probabilistic Abstract Interpretation (PAI) [12, 9]. This analysis framework, in its basic
form, is concerned with purely probabilistic, discrete time models. Its purpose is to give optimal esti-
mates of the probability that a certain property holds rather than providing probabilities bounds. As such,
we think it is well suited as a base for speculative optimisation.
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S ::= skip

| x := e(x1, . . . ,xn)
| x ?= ρ
| S1; S2

| if b then S1 else S2 fi

| while b do Sod

S ::= [skip]ℓ

| [x := e(x1, . . . ,xn)]
ℓ

| [x ?= ρ ]ℓ
| S1; S2

| if [b]ℓ then S1 else S2 fi

| while [b]ℓ do Sod

Table 1: The syntax

The aim of this paper is to provide a framework for a probabilistic analysis of programs in the
style of a classical data flow approach [18, 1]. In particular, we are interested in a formal basis for
(non-static) branch prediction. The analysis technique wepresent consists of three phases: (i) abstract
branch prediction, (ii) specification of the actual data-flow equations based on the estimates of the branch
probabilities, and (iii) finding solutions. We will use vector space structures to specify the properties and
analysis of a program. This allows for the construction of solutions via numerical (linear algebraic)
methods as opposed to the lattice-theoretic fixed-point construction of the classical analysis.

2 A Probabilistic Language

2.1 Syntax and Operational Semantics

We use as a reference language a simple imperative language whose syntax is given in Table 1. Following
the approach in [18] we extend this syntax with unique program labelsℓ ∈ Lab in order to be able to
refer to certain program points during the analysis.

The dummy statementskip has no computational effect. For the arithmeticexpressions e(x1, . . . ,xn)
on the right hand side (RHS) of the assignment as well as for the testsb= b(x1, . . . ,xn) in if andwhile
statements, we leave the details of the syntax open as they are irrelevant for our treatment. The RHS of a
random assignmentx ?= ρ is a distributionρ over some set of values with the meaning thatx is assigned
one of the possible constant valuesc with probabilityρ(c).

An operational semantics in the SOS style is given in Table 2.2. This defines a probabilistic transition
relation on configurations inConf = Stmt×Statewith Stmt the set of all statements in our language
together withstop which indicates termination andState= Var → Value. The details of the semantics
of arithmetic and boolean expressions[[a]] = E (a) and[[b]] = E (b) respectively are again left open in our
treatment here and can be found in [10].

2.2 Computational States

In any concrete computation or execution – even when it is involving probabilistic elements – the com-
putational situation is uniquely defined by a mappings : Var → Value to which we refer to as aclassical
state. Every variable inVar has a unique value inValue possibly including⊥∈ Value to indicate unde-
finedness. We denote byStatethe set of all classical states.

In order to keep the mathematical treatment simple we will assume here that every variable can take
values in a finite setValue. These sets can be nevertheless quite large and cover, for example, all finitely
representable integers on a given machine.
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R0 〈stop,s〉⇒1〈stop,s〉
R1 〈skip,s〉⇒1〈stop,s〉
R2 〈v := e,s〉⇒1〈stop,s[v 7→ E (e)s]〉
R3 〈v ?= ρ ,s〉⇒ρ(r)〈stop,s[v 7→ r]〉

R41
〈S1,s〉⇒p〈S′1,s′〉

〈S1;S2,s〉⇒p〈S′1;S2,s
′〉

R42
〈S1,s〉⇒p〈stop,s′〉
〈S1;S2,s〉⇒p〈S2,s

′〉
R51 〈if b then S1 else S2 fi,s〉⇒1〈S1,s〉 if E (b)s= true
R52 〈if b then S1 else S2 fi,s〉⇒1〈S2,s〉 if E (b)s= false
R61 〈while b do Sod,s〉⇒1〈S; while b do Sod,s〉 if E (b)s= true
R62 〈while b do Sod,s〉⇒1〈stop,s〉 if E (b)s= false

Table 2: The rules of the SOS semantics

For a finite setX we denote byP(X) the power-set ofX and byV (X) the free vector space over
X, i.e. the set of formal linear combinations of elements inX. We represent vectors via their coor-
dinates(x1, . . . ,xn) as rows, i.e. elements inR|X| with |X| denoting the cardinality ofX and use post-
multiplication with matrices representing linear maps, i.e. A(x) = x·A. The setDist(X) of distributions
on X – i.e. ρ : X → [0,1] and∑i ρ(xi) = 1 – clearly correspond to a sub-set ofV (X). We will also use a
tuple notation for distributions:ρ = {

〈
a, 1

2

〉
,
〈
b, 1

4

〉
,
〈
c, 1

4

〉
} will denote a distribution wherea has prob-

ability ρ(a) = 1
2 andb andc both have probability14. For uniform distributions we will simply specify

the underlying set, e.g.{a,b,c} instead of
〈
a, 1

3

〉
,
〈
b, 1

3

〉
,
〈
c, 1

3

〉
}.

The tensor product is an essential element of the description of probabilistic states. The tensor
product1 of two vectors(x1, . . . ,xn) and(y1, . . . ,ym) is given by(x1y1, . . . ,x1ym, . . . ,xny1, . . . ,xnym) annm
dimensional vector. Similarily for matrices. The tensor product of two vector spacesV ⊗W can be
defined as the formal linear combinations of the tensor productsvi ⊗w j with vi andw j base vectors inV
andW , respectively. For further details we refer e.g to [19, Chap. 14].

Importantly, the isomorphismV (X×Y) = V (X)⊗V (Y) allows us to identify set of all distributions
on the cartesian product of two sets with the tensor product of the spaces of distributions onX andY.

We define aprobabilistic stateσ as any probability distribution over classical states, i.e. σ ∈
Dist(State). This can also be seen asσ ∈V (State)=V (Var →Value)=V (Value|Var |)=V (Value)⊗v

thev-vold tensor product ofV (Value) with v= |Var |.
In our setting we represent (semantical) functions and predicates or tests as linear operators on the

probabilistic state space, i.e. as matrices. For any function f : X 7→Y we define a linear representation
|X|× |Y| matrix by:

(F f )i j = (F( f ))i j = (F)i j =

{
1 if f (xi) = y j

0 otherwise.

where we assume some fixed enumeration on bothX andY. For an equivalence relation onX we can
also represent the function which maps every element inX to its equivalence classc : x 7→ [x] in this way.
Such aclassification matrixcontains in every row exactly one non-zero entry 1. Classification matrices
(modulo reordering of indices) are in a one-to-one correspondence with the equivalence relations on a set
X and we will use them to define probabilistic abstractions forour analysis (cf. Section 4.2). A predicate
p : X → {true, false} is represented by a diagonal|X|× |X| matrix:

(Pp)i j = (P(p))i j = (P)i j =

{
1 if i = j andp(xi) = true
0 otherwise.

1More precisely, the Kronecker product – the coordinate based version of the abstract concept of a tensor product.
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2.3 Probabilistic Abstraction

The analysis technique we present in this paper will make useof a particular notion of abstraction of the
state space (given as a vector space) which is formalised in terms of Moore-Penrose pseudo-inverse [19].

Definition 1 LetC andD be two finite dimensional vector spaces, and letA : C → D be a linear map
between them. The linear mapA† = G : D → C is theMoore-Penrose pseudo-inverseof A iff

A ◦G = PA and G◦A = PG

wherePA andPG denote orthogonal projections onto the ranges ofA andG.

An operator or matrix is anorthogonal projectionif P∗ = P2 = P where.∗ denotes theadjoint which for
real matrices correspond simply to the transpose matrixP∗ = Pt [19, Ch 10].

For invertible matrices the Moore-Penrose pseudo-inverseis the same as the inverse. A special
example is theforgetful abstractionA f which corresponds to a mapf : X →{∗} which maps all elements
of X onto a single abstract one. It is represented by a|X|×1 matrix containing only 1, and its Moore-
Penrose pseudo-inverse is given by 1×|X| matrix with all entries 1

|X| .
The Moore-Penrose pseudo-inverse allows us to construct the closest, in a least square sense (see

for example [5, 3]), approximationF# : D → D of a concrete linear operatorF : C → C for a given
abstractionA : C → D as

F# = A† ·F ·A = G ·F ·A = A ◦F◦G.

This notion of probabilistic abstraction is central in the Probabilistic Abstract Interpretation (PAI) frame-
work. For further details we refer to e.g. [10]. As we will usethis notion later for abstracting branching
probabilities, it is important here to point out the guarantees that such abstractions are able to provide. In
fact, these are not related to any correctness notion in the classical sense. The theory of the least-square
approximation [7, 3] tells us that ifC andD be two finite dimensional vector spaces,A : C 7→ D a linear
map between them, andA† = G : D 7→ C its Moore-Penrose pseudo-inverse, then the vectorx0 = y ·G
is the one minimising the distance betweenx·A, for any vectorx in C , andy, i.e.

inf
x∈C

‖x·A −y‖= ‖x0 ·A −y‖.

This guarantees that our probabilistic abstractions correspond to theclosestapproximations in a
metric sense of the concrete situations, as they are constructed using the Moore-Penrose pseudo-inverse.

3 Data-Flow Analysis

Data-flow analysis is based on a statically determined flow relation. This is defined in terms of two
auxiliary operations, namelyinit : Stmt → Lab andfinal : Stmt → P(Lab), defined as follows:

init([skip]ℓ) = ℓ
init([v := e]ℓ) = ℓ
init([v ?= e]ℓ) = ℓ
init(S1;S2) = init(S1)
init(if [b]ℓ then S1 else S2 fi) = ℓ
init(while [b]ℓ do Sod) = ℓ

final([skip]ℓ) = {ℓ}
final([v := e]ℓ) = {ℓ}
final([v ?= e]ℓ) = {ℓ}
final(S1;S2) = final(S2)
final(if [b]ℓ then S1 else S2 fi) = final(S1)∪final(S2)
final(while [b]ℓ do Sod) = {ℓ}.
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The control flowF (S) in S∈ Stmt is defined via the functionflow : Stmt → P(Lab ×Lab):

flow([skip]ℓ) = flow([v := e]ℓ) = flow([v ?= e]ℓ) = /0
flow(S1;S2) = flow(S1)∪flow(S2)∪{(ℓ, init(S2)) | ℓ ∈ final(S1)}

flow(if [b]ℓ then S1 else S2 fi) = flow(S1)∪flow(S2)∪{(ℓ, init(S1)),(ℓ, init(S2))}
flow(while [b]ℓ do Sod) = flow(S)∪{(ℓ, init(S))}∪{(ℓ′, ℓ) | ℓ′ ∈ final(S)}

The definition of flow only records that a certain control flow step is possible. For testsb in condition-
als and loops we indicate the branch corresponding to the case when the test is successful by underlining
it. We identify a statementSwith the block[S]ℓ that contains it and with the (unique) labelℓ associated
to the block. We will denote byBlock = Block(P) the set of all the blocks occurring inP, and use
indistinctly Block andLab to refer to blocks.

3.1 Monotone Framework

The classical data-flow analysis is made up of two components: a “local” part which describes how the
information representing the analysis changes when execution passes through a given block/label, and
a “global” collection part which describes how informationis accumulated when a number of different
control flow paths (executions) come together.

This is formalised in a general scheme, called Monotone Framework in [18, Section 2.3], where a
data-flow analysis is defined via a number of equations over the latticeL modelling the property to be
analysed. For every program labelℓ we have two equations: one describing the generalised ‘entry’ in
terms of the generalised ‘exit’ of the block in question, andthe other describing ‘exit’ in terms of ‘entry’
– for forward analysis we have◦=entry and•=exit, for a backward analysis the situation is reversed.

Analysis•(ℓ) = fℓ(Analysis◦(ℓ))

Analysis◦(ℓ) =

{
ι , if ℓ ∈ E⊔{Analysis•(ℓ

′) | (ℓ′, ℓ) ∈ F},otherwise

For the typical classical analyses, such as Live VariableLV and Reaching DefinitionRD, the property
latticeL is often the power-set of some underlying set (likeVar as in the case of the LV analysis). For a
may-analysis the collecting operation⊔ of L is represented by set union∪ and for must-analysis it is the
intersection operation∩. The flow relationF can be the forward or backward flow.ι specifies the initial
or final analysis information on “extreme” labels inE, whereE is {init(S⋆)} or final(S⋆), and fℓ is the
transfer function associated withBℓ ∈ Block(S) [18, Section 2.3].

3.2 Live Variable Analysis

We will illustrate the basic principles of the equational approach to data flow analysis by considering
Live Variable analysis (LV ) following the presentation in [18, Section 2.1]. The problem is to identify at
any program point those variables which arelive, i.e. which may later be used in an assignment or test.

There are two phases of classicalLV analysis: (i) formulation of data-flow equations as set equations
(or more generally over a property latticeL), (ii) finding or constructing solutions to these equations, for
example, via a fixed-point construction. In the classical analysis we associate to every program point or
labelℓ – to be precise the entry and the exit of each label – the information which describes (a super-set
of) those variables which are alive at this program point.

Based on the auxiliary functionsgenLV : Block →P(Var) andkill LV : Block→P(Var) which only
depend on the syntax of the local block[B]ℓ and are defined as
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kill LV([x := a]ℓ) = {x}
kill LV([x ?= ρ ]ℓ) = {x}
kill LV([skip]ℓ) = /0

kill LV([b]
ℓ) = /0

genLV([x := a]ℓ) = FV(a)
genLV([x ?= ρ ]ℓ) = /0
genLV([skip]

ℓ) = /0
genLV([b]

ℓ) = FV(b)

we can define the transfer functions for theLV analysisf LV
ℓ : P(Var ⋆)→ P(Var⋆) by

f LV
ℓ (X) = X \kill LV([B]

ℓ)∪genLV([B]
ℓ)

This allows us to define equations over the property spaceL = P(Var), i.e. set equations, which
associate to every label entry and exit the analysis information LVentry : Lab → P(Var ) andLVexit :
Lab → P(Var ). These set equations are of the general form for a backward may analysis:

LVentry(ℓ) = f LV
ℓ (LVexit(ℓ))

LVexit(ℓ) =
⋃

(ℓ,ℓ′)∈flow
LVentry(ℓ

′)

At the beginning of the analysis (i.e. for final labels, as this is a backward analysis) we setLVexit(ℓ) = /0.

Example 1 Consider the following program:

[x ?= {0,1}]1; [y ?= {0,1,2,3}]2; [x := x+y mod 4]3;
if [x> 2]4 then [z:= x]5 else [z:= y]6 fi

Although the program is probabilistic we still can perform aclassical analysis by considering non-zero
probabilities simply as possibilities. The flow is given by{(1,2),(2,3),(3,4),(4,5),(4,6)}.

With the auxiliary functionskill LV andgenLV we can now specify the data-flow equations:

genLV(ℓ) kill LV(ℓ)
1 /0 {x}
2 /0 {y}
3 {x,y} {x}
4 {x} /0
5 {x} {z}
6 {y} {z}

LVentry(1) = LVexit(1)\{x}
LVentry(2) = LVexit(2)\{y}
LVentry(3) = LVexit(3)\{x}∪{x,y}
LVentry(4) = LVexit(4)∪{x}
LVentry(5) = LVexit(5)\{z}∪{x}
LVentry(6) = LVexit(6)\{z}∪{y}

LVexit(1) = LVentry(2)

LVexit(2) = LVentry(3)

LVexit(3) = LVentry(4)

LVexit(4) = LVentry(5)∪LVentry(6)

LVexit(5) = /0

LVexit(6) = /0

Then the classicalLV analysis of our program gives the solutions:

LVentry(1) = /0

LVentry(2) = {x}
LVentry(3) = {x,y}
LVentry(4) = {x,y}
LVentry(5) = {x}
LVentry(6) = {y}

LVexit(1) = {x}
LVexit(2) = {x,y}
LVexit(3) = {x,y}
LVexit(4) = {x,y}
LVexit(5) = /0

LVexit(6) = /0.
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4 The Probabilistic Setting

In order to specify a probabilistic data flow analysis using the analogue of the classical equational ap-
proach (as presented in the previous sections), we have to define the main ingredients of the analysis
in a probabilistic setting namely a vector space as propertyspace (replacing the property latticeL), a
linear operator representing the transfer functionsfℓ, and a method for the information collection (in
place of the

⊔
operation of the classical monotone framework). Moreover,as we will work with proba-

bilistic states, the second point implies that the control-flow graph will be labelled by some probability
information.

As aproperty spacewe consider distributionsDist(L)⊆ V (L) over a setL, e.g. the corresponding
classical property space. For a relational analysis, wherethe classical property lattice corresponds to
L = L1× L2 (cf [11]), the probabilistic property space will be the tensor productV (L1)⊗V (L2); this
allows us to represent properties via joint probabilities which are able to express the dependency or
correlation between states.

We can define probabilistictransfer functions by using the linear representation of the classical
fℓ, i.e. a matrixFℓ = F fℓ as introduced above in Section 2.2. In general, we will definea probabilistic
transfer function by means of an appropriate abstraction ofthe concrete semantics[[[B]ℓ]] of a given block
[B]ℓ according to PAI, i.e.Fℓ = A†[[[B]ℓ]]A for the relevant abstraction matrixA.

In the classical analysis we treat testsb non-deterministically, to avoid problems with the potential
undecidability of predicates. Moreover, we take everything which is possible i.e. the collection of
what can happen along the different execution paths, e.g. the two branches of anif statement. In the
probabilistic setting wecollect information by means of weighted sums, where the ‘weights’ are the
probabilities associated to each branch. These probabilities come from an estimation of the (concrete
or abstract) branch probabilities and are propagated alongthe control flow graph representing theflow
relation.

4.1 Control Flow Probabilities

If we execute a program in classical statess which have been chosen randomly according to some prob-
ability distributionρ then this also induces a probability distribution on the possible control flow steps.

Definition 2 Given a program Sℓ with init(Sℓ) = ℓ and a probability distributionρ on State, the proba-
bility pℓ,ℓ′(ρ) that the control is flowing fromℓ to ℓ′ is defined as:

pℓ,ℓ′(ρ) = ∑
s

{
p·ρ(s) | ∃s′ s.t. 〈Sℓ,s〉 ⇒p

〈
Sℓ′ ,s

′〉} .

In other words, if we provide with a certain probabilityρ(s) a concrete execution environment or
classical states for a programSℓ, then the control flow probabilitypℓ,ℓ′(ρ) is the probability that we end
up with a configuration〈Sℓ′ , . . .〉 for whatever state in the successor configuration.

Example 2 Consider the program:[x ?= {0,1}]1; if [x> 0]2 then [skip]3 else [x := 0]4 fi. We can
have two possible states at label2, namely s0 = [x 7→ 0] and s1 = [x 7→ 1]. After the first statement has
been executed in one of two possible ways (with any intial state s):

〈
[x ?= {0,1}]1; if [x> 0]2 then [skip]3 else [x := 0]4 fi,s

〉
⇒ 1

2

⇒ 1
2

〈
if [x> 0]2 then [skip]3 else [x := 0]4 fi,s0

〉

or
〈
[x ?= {0,1}]1; if [x> 0]2 then [skip]3 else [x := 0]4 fi,s

〉
⇒ 1

2

⇒ 1
2

〈
if [x> 0]2 then [skip]3 else [x := 0]4 fi,s1

〉
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the distribution over states is obviouslyρ = {
〈
s0,

1
2

〉〈
s1,

1
2

〉
}. However, in each execution path we have

at any moment a definite value for x (the distributionρ describes a property of the set of all executions,
not of one execution alone).

The branch probability in this case (independently of the state s and of any distributionρ) is simply
p1,2(ρ) = 1 because, although there are two possible execution steps, the successor configurations are
‘coincidently’ equipped with the same programif [x> 0]2 then [skip]3 else [x := 0]4 fi.

The successive control steps from label2 to 3 and4, respectively, both occur with probability1 as in
each state s0 and s1 the value of x is a definite one.

〈
if [x> 0]2 then [skip]3 else [x := 0]4 fi,s0

〉
⇒1

〈
[x := 0]4,s0

〉

and
〈
if [x> 0]2 then [skip]3 else [x := 0]4 fi,s1

〉
⇒1

〈
[skip]3,s1

〉

Thus the branch probabilities withρ = {
〈
s0,

1
2

〉
,
〈
s1,

1
2

〉
} are p2,3(ρ)= 1

2 and p2,4(ρ)= 1
2. In general

for anyρ = {〈s0, p0〉 ,〈s1, p1〉} we have p2,3(ρ)= p1 and p2,4(ρ)= p0 despite the fact that the transitions
are deterministic. It is the randomness in the probabilistic state that determines in this case the branch
probabilities.

For all blocks in a control flow graph – except for the testsb – there is always only one next statement
Sℓ′ so that the branch probabilitypℓ,ℓ′(ρ) is always 1 for allρ . For testsb in if andwhile statements
we have only two different successor statements, one corresponding to the case where[b]ℓ evaluates to
true and one forfalse. As the corresponding probabilities must sum up to 1 we only need to specify the
first case which we denote bypℓ(ρ).

The probability distributions over states at every execution point are thus critical for the analysis as
they determine the branch probabilities for tests, and we need to provide them. The problem is, of course
that analysing these probabilities is nearly as expensive as analysing the concrete computation or program
executions. It is therefore reasonable to investigate abstract branch probabilities, based on classes of
states, or abstract states. It is always possible to lift concrete distributions to ones over (equivalence)
classes.

Definition 3 Given a probability distributionρ on Stateand an equivalence relation∼ on states then
we denote byρ# = ρ#

∼ the probability distribution on the set of equivalence classesState# = State/∼
defined by

ρ#([s]∼) = ∑
s′∈[s]∼

ρ(s′)

where[s]∼ denotes the equivalence classes of s wrt∼.

4.2 Estimating Abstract Branch Probabilities

In order to determine concrete or abstract branch probabilities we need to investigate – as we have seen
in Example 2 – the interplay between distribution over states and the test[b]ℓ we are interested in. We
need for this the linear representationPb of the test predicateb as defined in Section 2.2, which for a
given distribution over states determines a sub-distribution of those states that lead into one of the two
branches by filtering out those states where this happens.

Example 3 Consider the simple programif [x>= 1]1 then [x := x−1]2 else [skip]3 fi and assume
that x has values in{0,1,2} (enumerated in the obvious way). Then the test b= (x>= 1) is represented
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by the projection matrix:

P(x>= 1) =




0 0 0
0 1 0
0 0 1


 and P(x>= 1)⊥ =




1 0 0
0 0 0
0 0 0


= P(x= 0)

For any given concrete probability distribution over states ρ = {〈0, p0〉 ,〈1, p1〉 ,〈2, p2〉} = (p0, p1, p2)
we can easily compute the probabilities to go from label1 to label 2 as ρP(x>= 1) = (0, p1, p2) and
thus

p1,2(ρ) = ‖ρ ·P(x>= 1)‖1 = p1+ p2,

where‖.‖1 is the 1-norm of vectors, i.e.‖(xi)i‖ = ∑i |xi |, which we use here to aggregate the total
probabilities. Similarly, for the else branch, withP⊥ = I −P:

p1,3(ρ) = ‖ρ ·P⊥(x>= 1)‖1 = p0.

In general, the branching behaviour at a testb is described by the projection operatorP(b) and its
complementP⊥(b) = P(¬b). For a branching point[b]ℓ with (ℓ,ℓ′),(ℓ,ℓ′′) ∈ flow, we denoteP(b) by
P(ℓ,ℓ′) andP(¬b) = P(b)⊥ by P(ℓ,ℓ′′). Each branch probability can be computed for any given input
distribution aspℓ,ℓ′(ρ) = ‖ρP(ℓ,ℓ′)‖1 andpℓ,ℓ′′(ρ) = ‖ρP(ℓ,ℓ′′)‖1, respectively.

Sometimes it could be useful or practically more appropriate to consider abstract branch probabilities.
These can be obtained by means of abstractions on the state space corresponding to classificationsc :
State→ State# that, as explained in Section 2.2, can be lifted toclassification matrices. Given an
equivalence relation∼ on the states and its matrix representationA∼, we can compute the individual
chance of abstract states (i.e. equivalence classes of states) to take thetrue or falsebranch of a test by
multiplying the abstract distributionρ# by an abstract versionP(b)# of P(b) that we can use to select
those classes of states satisfyingb. In doing so we must guarantee that:

ρP(b)A = ρ#P#(b)

ρP(b)A = ρAP#(b)

P(b)A = AP#(b)

In order to give an explicit description ofP# we only would need to multiply the last equation from the
left with A−1. However,A is in general not a square matrix and thus not invertible. So we use instead
the Moore-Penrose pseudo-inverse to have the closest, least-square approximation possible.

A†P(b)A = A†AP#(b)

A†P(b)A = P#(b)

The abstract test matrixP#(b) contains all the information we need in order to estimate theabstract
branch probabilities. Again, we denote byP(ℓ,ℓ′)# = P#(b) and P(ℓ,ℓ′′)# = P#(¬b) = P#(b)⊥ for a
branching point[b]ℓ with (ℓ,ℓ′),(ℓ,ℓ′′) ∈ flow.

Branch prediction/predictors in hardware design has long history [16, 20]. It is used at test points[b]ℓ

to allow pre-fetching of instructions of the expected branch before the test is actually evaluated. If the
prediction is wrong the prefetched instructions need to be discarded and the correct ones to be fetched.
Ultimately, wrong predictions “just” lead to longer running times, the correctness of the program is not
concerned. It can be seen as a form of speculative optimisation. Typical applications or cases where
branch prediction is relevant is for nested tests (loops or ifs). Here we get exactly the interplay between
different tests and/or abstractions. We illustrate this inthe following example.
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Example 4 Consider the following program that counts the prime numbers.

[i := 2]1; while [i < 100]2 do if [prime(i)]3 then [p := p+1]4 else [skip]5 fi; [i := i +1]6 od

Within our framework we can simulate to a certain degree a history dependent branch prediction. If
the variable p has been updated in the previous iteration it is highly unlikely it will so again in the next –
in fact that only happens in the first two iterations. One can also interpret this as follows: For i even the
branch probability p3,4(ρe) at label3 is practically zero for any reasonable distribution, e.g. auniform
distribution ρe, on evens. To see this, we need to investigate only the form of

P(prime(i))# = A†
eP(prime(i))Ae,

where Ae is the abstraction corresponding to the classification in even and odd.

In order to understand how an abstract property interacts with the branching in the program, as in the
previous example we look atA†P(b)A in order to evaluate how good a branch prediction is for a certain
predicate/testb if it is based on a certain abstraction/propertyA. This is explained in the following
example where we consider two properties/abstractions andcorresponding tests.

Example 5 Let us consider two tests for numbers in the range i= 0,1,2,3, . . . ,n):

Pe = (P(even(n)))ii =

{
1 if i = 2k
0 otherwise

Pp = (P(prime(n)))ii =

{
1 if prime(i)
0 otherwise

Likewise we can consider two corresponding abstractions ( j∈ {1= true,2= false}):

(Ae)i j =





1 if i = 2k+1 ∧ j = 2
1 if i = 2k ∧ j = 1
0 otherwise

(Ap)i j =





1 if prime(i) ∧ j = 2
1 if ¬prime(i) ∧ j = 1
0 otherwise

Then we can useP# and its orthogonal complement,(P#)⊥ = I −P# to determine information about
the quality of a certain property or its corresponding abstraction via the number of false positives. In
fact, this will tell us how precise the abstraction is with respect to tests (such as those controlling a loop
or conditional). With rounding the values to 2 significant digits we get, for example the following results
for different concrete ranges of the concrete values0, . . . ,n.

A†
ePpAe A†

eP⊥
p Ae A†

pPeAp A†
pP⊥

e Ap

n= 10

(
0.20 0.00
0.00 0.60

) (
0.80 0.00
0.00 0.40

) (
0.25 0.00
0.00 0.67

) (
0.75 0.00
0.00 0.33

)

n= 100

(
0.02 0.00
0.00 0.48

) (
0.98 0.00
0.00 0.52

) (
0.04 0.00
0.00 0.65

) (
0.96 0.00
0.00 0.35

)

n= 1000

(
0.00 0.00
0.00 0.33

) (
1.00 0.00
0.00 0.67

) (
0.01 0.00
0.00 0.60

) (
0.99 0.00
0.00 0.40

)

n= 10000

(
0.00 0.00
0.00 0.25

) (
1.00 0.00
0.00 0.75

) (
0.00 0.00
0.00 0.57

) (
1.00 0.00
0.00 0.43

)

Note that the positive and negative versions of these matrices always add up to the identity matrixI .
Also, the entries in the upper left corner ofA†

ePpAe give us information about the chances that an even
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number is also a prime number: For small n the percentage is a fifth (indeed2 is a prime and it is
one out of5 even numbers under10); the larger n gets the less relevant is this single even prime. With
A†

pPeAp we get the opposite information: Among the prime numbers{2,3,5,7} smaller than10 there is
one which is even, i.e. 25%; again this effect diminishes forlarger n. Finally, the lower right entry in
these matrices gives us the percentage that a non-prime number is odd and/or that an odd number is not
prime, respectively.

4.3 Linear Equations Framework

A general framework for our probabilistic data-flow analysis can be defined in analogy with the classical
monotone framework by defining the following linear equations:

Analysis•(ℓ) = Analysis◦(ℓ) ·Fℓ

Analysis◦(ℓ) =

{
ι , if ℓ ∈ E
∑{Analysis•(ℓ

′) ·P(ℓ′, ℓ)# | (ℓ′, ℓ) ∈ F},otherwise

The first equation is a straight forward generalisation of the classical case, while the second one is
defined by means of the linear sums over vectors. A simpler version is obtained by considering static
branch prediction:

Analysis◦(ℓ) = ∑{pℓ′,ℓ ·Analysis•(ℓ
′) | (ℓ′, ℓ) ∈ F}

with pℓ′,ℓ is a numerical value representing astaticbranch probability.
We have as many variables in this systems of equations as there are individual equations. As a result

we get unique solutions rather than least fix-points as in theclassical setting.
This general scheme must be extended to include a preliminary phase of probability estimation if one

wants to improve the quality of the branch prediction. In this case, the abstract state should carry two
kinds of information: One,Prob, to provide estimates for probabilities, the other,Analysis, to analyse the
actual property in question. The same abstract branch probabilities P(ℓ′, ℓ)# – which we obtain viaProb
– can then be used in both cases, but we have different information or properties and different transfer
functions forProb andAnalysis.

4.4 Probabilistic Live Variable Analysis

We can use the previously defined probabilistic setting for adata flow analysis, to define a probabilis-
tic version of the Live Variable analysis extending the one in [18] in order to also cover for random
assignments and to provide estimates for ‘live’ probabilities.

The transfer functions, which describe how the program analysis information changes when we pass
through a block[B]ℓ, is for the classical analysis given via the two auxiliary functionsgenLV andkill LV
(cf. Example 1). Probabilistic versions of these operations can be defined as follows. Consider two
propertiesd for ‘dead’, andl for ‘live’ and the spaceV ({0,1}) = V ({d, l}) = R2 as the property space
corresponding to a single variable. On this space define the operators:

L =

(
0 1
0 1

)
and K =

(
1 0
1 0

)
.

The matrixL changes the “liveliness” of a variable from whatever it is (dead or alive) into alive, while
K does the opposite. The local transfer operators

Fℓ = FLV
ℓ : V ({0,1})⊗|Var | → V ({0,1})⊗|Var |
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for the block[x := a]ℓ can thus be defined as (withI the identity matrix)

Fℓ =
⊗

xi∈Var
X i with X i =





L if xi ∈ FV(a)
K if xi = x ∧ xi 6∈ FV(a)
I otherwise.

and similarly for tests[b]ℓ

Fℓ =
⊗

xi∈Var
X i with X i =

{
L if xi ∈ FV(b)
I otherwise.

For [skip]ℓ and random assignments[x ?= ρ ]ℓ we simply haveFℓ =
⊗

xi∈Var I .
In the following example we demonstrate the use of our general framework for probabilistic data-flow

analysis by defining a probabilisticLV analysis for the program in Example 1.

Example 6 For the program in Example 1 we present aLV analysis based on concrete branch proba-
bilities. That means that in the first phase of the analysis (which determines the branch probabilities) we
will not abstract the values of x and y (and ignore z all together). If the concrete state of each variable
is a value in{0,1,2,3}, then the probabilistic state is an element inV ({0,1,2,3})⊗3 = R43

= R64. The
abstraction we use when we compute the concrete branch probabilities is I ⊗ I ⊗A f , i.e. z is ignored.
This allows us to reduce the dimensions of the probabilisticstate space from64 down to just16. The
abstract transfer functions for the first3 statements are given in the Appendix.

We can now compute the probability distribution at label4 for any given input distribution. The
abstract transfer functionsF#

5 andF#
6 are the identity as we have restricted ourselves only to the variables

x and y.
We can now set the linear equations for the joint distributions over x and y at the entry and exit to

each of the labels:

Probentry(1) = ρ
Probentry(2) = Probexit(1)

Probentry(3) = Probexit(2)

Probentry(4) = Probexit(3)

Probentry(5) = Probexit(4) ·P#
4

Probentry(6) = Probexit(4) · (I −P#
4)

Probexit(1) = Probentry(1) ·F#
1

Probexit(2) = Probentry(1) ·F#
2

Probexit(3) = Probentry(1) ·F#
3

Probexit(4) = Probentry(4)

Probexit(5) = Probentry(5)

Probexit(6) = Probentry(6)

These equations are easy to solve. In particular we can explicitly determine

Probentry(5) = ρ ·F#
1 ·F#

2 ·F#
3 ·P#

4

Probentry(6) = ρ ·F#
1 ·F#

2 ·F#
3 ·P#

4,

that give us the static branch probabilities p4,5(ρ)= ‖Probentry(5)‖1 =
1
4 and p4,6(ρ)= ‖Probentry(6)‖1 =

3
4. These distributions can explicitly be computed and do not depend on the initial distributionρ .

We then perform a probabilisticLV analysis using these probabilities as required. Using the abstract
property space and the auxiliary operators we get:
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LVentry(1) = LVexit(1) · (K ⊗ I ⊗ I)

LVentry(2) = LVexit(2) · (I ⊗K ⊗ I)

LVentry(3) = LVexit(3) · (L ⊗L ⊗ I)

LVentry(4) = LVexit(4) · (L ⊗ I ⊗ I)

LVentry(5) = LVexit(5) · (L ⊗ I ⊗K)

LVentry(6) = LVexit(6) · (I ⊗L ⊗K)

LVexit(1) = LVentry(2)

LVexit(2) = LVentry(3)

LVexit(3) = LVentry(4)

LVexit(4) = p4,5LVentry(5)+ p4,6LVentry(6)

LVexit(5) = (1,0)⊗ (1,0)⊗ (1,0)

LVexit(6) = (1,0)⊗ (1,0)⊗ (1,0)

And thus the solutions for the probabilisticLV analysis are given by:

LVentry(1) = (1,0)⊗ (1,0)⊗ (1,0)

LVentry(2) = (0,1)⊗ (1,0)⊗ (1,0)

LVentry(3) = 0.25· (0,1)⊗ (0,1)⊗ (1,0)+

+ 0.75· (0,1)⊗ (0,1)⊗ (1,0)

= (0,1)⊗ (0,1)⊗ (1,0)

LVentry(4) = 0.25· (0,1)⊗ (1,0)⊗ (1,0)+

+ 0.75· (0,1)⊗ (0,1)⊗ (1,0)

LVentry(5) = (0,1)⊗ (1,0)⊗ (1,0)

LVentry(6) = (1,0)⊗ (0,1)⊗ (1,0)

LVexit(1) = (0,1)⊗ (1,0)⊗ (1,0)

LVexit(2) = (0,1)⊗ (0,1)⊗ (1,0)

LVexit(3) = 0.25· (0,1)⊗ (1,0)⊗ (1,0)+

+ 0.75· (0,1)⊗ (0,1)⊗ (1,0)

LVexit(4) = 0.25· (0,1)⊗ (1,0)⊗ (1,0)+

+ 0.75· (1,0)⊗ (0,1)⊗ (1,0)

LVexit(5) = (1,0)⊗ (1,0)⊗ (1,0)

LVexit(6) = (1,0)⊗ (1,0)⊗ (1,0)

This means that, for example, at the beginning label4, i.e. the test x> 2 there are two situations: It
can be with probability1

4 that only the variable x is alive, or with probability34 both variables x and y
are alive. One could say that x for sure is alive and y only witha 75% chance. At the exit of label4 the
probabilistic LV analysis tells us that with 25% chanceonly x is alive and with 75% that y is theonly
live variable. To say that x is alive with probability0.25 and y with0.75 probability would be wrong: It
is either x or y which is alive and this is reflected in the jointdistributions represented as tensors, which
we obtain as solution. This illustrates that the probabilistic property space cannot be justV ({x,y,z})
but that we need indeedV ({d, l})⊗3.

5 Conclusions and Related Work

This paper highlights two important aspects of probabilistic program analysis in a data-flow style: (i) the
use of tensor products in order to represent the correlationbetween a number of variables, and (ii) the
use of Probabilistic Abstract Interpretation to estimate branch probabilities and to construct probabilistic
transfer functions. In particular, we argue that static program analysis does not mean necessarily con-
sideringstatic branch prediction. Instead – by extending single numberspℓ,ℓ′ as branch probabilities to
matrices as abstract branch probabilitiesP(ℓ,ℓ)# – the PAI framework allows us to express dynamic or
conditional aspects.

The framework presented here aims in providing a formal basis for speculative optimisation. Specu-
lative optimisation [15, 2] has been an element of hardware design for some time, in particular to branch
prediction [16] or for cache optimisation [17]. More recently, related ideas have also been discussed in
the context of speculative multi-threading [4] or probabilistic pointer analysis [9, 13].
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The work we have presented in this paper concentrates on the conceptual aspects of probabilis-
tic analysis and not on optimal realisation of, for example,concrete branch predictors. Further work
should however include practical implementations of the presented framework in order to compare its
performance with the large number of predictors in existence. Another research direction concerns the
automatic construction of abstractions so that the inducedP(ℓ,ℓ)# are optimal and maximally predictive.
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Appendix

For completeness, we present here the abstract transfer functions in the probabilistic analysis of Exam-
ple 6.

F#
1 =




1
2 0 0 0 1

2 0 0 0 0 0 0 0 0 0 0 0
0 1

2 0 0 0 1
2 0 0 0 0 0 0 0 0 0 0

0 0 1
2 0 0 0 1

2 0 0 0 0 0 0 0 0 0
0 0 0 1

2 0 0 0 1
2 0 0 0 0 0 0 0 0

1
2 0 0 0 1

2 0 0 0 0 0 0 0 0 0 0 0
0 1

2 0 0 0 1
2 0 0 0 0 0 0 0 0 0 0

0 0 1
2 0 0 0 1

2 0 0 0 0 0 0 0 0 0
0 0 0 1

2 0 0 0 1
2 0 0 0 0 0 0 0 0

1
2 0 0 0 1

2 0 0 0 0 0 0 0 0 0 0 0
0 1

2 0 0 0 1
2 0 0 0 0 0 0 0 0 0 0

0 0 1
2 0 0 0 1

2 0 0 0 0 0 0 0 0 0
0 0 0 1

2 0 0 0 1
2 0 0 0 0 0 0 0 0

1
2 0 0 0 1

2 0 0 0 0 0 0 0 0 0 0 0
0 1

2 0 0 0 1
2 0 0 0 0 0 0 0 0 0 0

0 0 1
2 0 0 0 1

2 0 0 0 0 0 0 0 0 0
0 0 0 1

2 0 0 0 1
2 0 0 0 0 0 0 0 0




F#
2 =




1
4

1
4

1
4

1
4 0 0 0 0 0 0 0 0 0 0 0 0

1
4

1
4

1
4

1
4 0 0 0 0 0 0 0 0 0 0 0 0

1
4

1
4

1
4

1
4 0 0 0 0 0 0 0 0 0 0 0 0

1
4

1
4

1
4

1
4 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1
4

1
4

1
4

1
4 0 0 0 0 0 0 0 0

0 0 0 0 1
4

1
4

1
4

1
4 0 0 0 0 0 0 0 0

0 0 0 0 1
4

1
4

1
4

1
4 0 0 0 0 0 0 0 0

0 0 0 0 1
4

1
4

1
4

1
4 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1
4

1
4

1
4

1
4 0 0 0 0

0 0 0 0 0 0 0 0 1
4

1
4

1
4

1
4 0 0 0 0

0 0 0 0 0 0 0 0 1
4

1
4

1
4

1
4 0 0 0 0

0 0 0 0 0 0 0 0 1
4

1
4

1
4

1
4 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1
4

1
4

1
4

1
4

0 0 0 0 0 0 0 0 0 0 0 0 1
4

1
4

1
4

1
4

0 0 0 0 0 0 0 0 0 0 0 0 1
4

1
4

1
4

1
4

0 0 0 0 0 0 0 0 0 0 0 0 1
4

1
4

1
4

1
4



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F#
3 =




1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0




P#
4 =




1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



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In this paper we describe a method for verifying secure information flow of programs, where apart
from direct and indirect flows a secret information can be leaked through covert timing channels. That
is, no two computations of a program that differ only on high-security inputs can be distinguished by
low-security outputs and timing differences. We attack this problem by using slot-game semantics
for a quantitative analysis of programs. We show how slot-games model can be used for performing
a precise security analysis of programs, that takes into account both extensional and intensional
properties of programs. The practicality of this approach for automated verification is also shown.

1 Introduction

Secure information flow analysis is a technique which performs a static analysis of a program with the
goal of proving that it will not leak any sensitive (secret) information improperly. If the program passes
the test, then we say that it is secure and can be run safely. There are several ways in which secret
information can be leaked to an external observer. The most common are direct and indirect leakages,
which are described by the so-called non-interference property [13, 18]. We say that a program satisfies
the non-interference property if its high-security (secret) inputs do not affect its low-security (public)
outputs, which can be seen by external observers.

However, a program can also leak information through its timing behaviour, where an external ob-
server can measure its total running time. Such timing leaksare difficult to detect and prevent, because
they can exploit low-level implementation details. To detect timing leaks, we need to ensure that the total
running time of a program do not depend on its high-security inputs.

In this paper we describe a game semantics based approach forperforming a precise security analy-
sis. We have already shown in [8] how game semantics can be applied for verifying the non-interference
property. Now we use slot-game semantics to check for timingleaks of closed and open programs. We
focus here only on detecting covert timing channels, since the non-interference property can be verified
similarly as in [8]. Slot-game semantics was developed in [11] for a quantitative analysis of Algol-
like programs. It is suitable for verifying the above security properties, since it takes into account both
extensional (whatthe program computes) and intensional (howthe program computes) properties of pro-
grams. It represents a kind of denotational semantics induced by the theory of operational improvement
of Sands [19]. Improvement is a refinement of the standard theory of operational approximation, where
we say that one program is an improvement of another if its execution is more efficient in any program
context. We will measure efficiency of a program as the sum of costs associated with basic operations
it can perform. It has been shown that slot-game semantics isfully abstract (sound and complete) with
respect to operational improvement, so we can use it as a denotational theory of improvement to analyse
programming languages.

The advantages of game semantics (denotational) based approach for verifying security are several.
We can reason about open programs, i.e. programs with non-locally defined identifiers. Moreover, game
semantics is compositional, which enables analysis about program fragments to be combined into an
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analysis of a larger program. Also the model hides the details of local-state manipulation of a program,
which results in small models with maximum level of abstraction where are represented only visible
input-output behaviours enriched with costs that measure their efficiency. All other behaviour is ab-
stracted away, which makes this model very suitable for security analysis. Finally, the game model for
some language fragments admits finitary representation by using regular languages or CSP processes
[10, 6], and has already been applied to automatic program verification. Here we present another appli-
cation of algorithmic game semantics for automatically verifying security properties of programs.

Related work. The most common approach to ensure security properties of programs is by using
security-type systems [14]. Here for every program component are defined security types, which contain
information about their types and security levels. Programs that are well-typed under these type systems
satisfy certain security properties. Type systems for enforcing non-interference of programs have been
proposed by Volpano and Smith in [20], and subsequently theyhave been extended to detect also covert
timing channels in [21, 2]. A drawback of this approach is itsimprecision, since many secure programs
are not typable and so are rejected. A more precise analysis of programs can be achieved by using
semantics-based approaches [15].

2 Syntax and Operational Semantics

We will define a secure information flow analysis for Idealized Algol (IA), a small Algol-like language
introduced by Reynolds [16] which has been used as a metalanguage in the denotational semantics com-
munity. It is a call-by-nameλ -calculus extended with imperative features and locally-scoped variables.
In order to be able to perform an automata-theoretic analysis of the language, we consider here its second-
order recursion-free fragment (IA2 for short). It contains finitary data typesD: intn = {0, . . . ,n−1} and
bool = {tt, ff}, and first-order function types:T ::= B | B→ T, whereB ranges over base types: expres-
sions (expD), commands (com), and variables (varD).

Syntax of the language is given by the following grammar:

M ::=x|v|skip |diverge | M opM | M;M | ifM thenM elseM |whileM doM
| M := M |!M | newD x:=v inM |mkvarDMM |λ x.M | MM

wherev ranges over constants of typeD.
Typing judgements are of the formΓ ⊢ M : T, whereΓ is a typecontextconsisting of a finite number

of typed free identifiers. Typing rules of the language are standard [1], but the general application rule is
broken up into the linear application and the contraction rule 1.

Γ ⊢ M : B→ T ∆ ⊢ N : B
Γ,∆ ⊢ MN : T

Γ,x1 : T,x2 : T ⊢ M : T′

Γ,x : T ⊢ M[x/x1,x/x2] : T′

We use these two rules to have control over multiple occurrences of free identifiers in terms during
typing.

Any input/output operation in a term is done through global variables, i.e. free identifiers of type
varD. So an input is read by de-referencing a global variable, while an output is written by an assignment
to a global variable.

1 M[N/x] denotes the capture-free substitution ofN for x in M.
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Γ ⊢ n1opn2,s−→kop n,s, wheren= n1opn2

Γ ⊢ skip; skip,s−→kseq skip,s′

Γ ⊢ if tt thenM1elseM2,s−→kif M1,s
Γ ⊢ if ff thenM1elseM2,s−→kif M2,s
Γ ⊢ x:=v′,s⊗ (x 7→ v)−→kasg skip,s⊗ (x 7→ v′)
Γ ⊢!x,s⊗ (x 7→ v)−→kder v,s⊗ (x 7→ v)
Γ ⊢ (λ x.M)M′,s−→kapp M[M′/x],s
Γ ⊢ newD x:=vinskip,s−→knew skip,s

Table 1: Basic Reduction Rules

The operational semantics is defined in terms of a small-stepevaluation relation using a notion of an
evaluation context [9]. A small-step evaluation (reduction) relation is of the form:

Γ ⊢ M,s−→ M′,s′

whereΓ is a so-calledvar-context which contains only identifiers of typevarD; s, s′ areΓ-states which
assign data values to the variables inΓ; andM, M′ are terms. The set of allΓ-states will be denoted by
St(Γ).

Evaluation contexts are contexts2 containing a single hole which is used to identify the next sub-term
to be evaluated (reduced). They are defined inductively by the following grammar:

E ::= [−] | EM | E; M | skip; E | EopM | vopE | ifEthenM elseM | M := E | E := v |!E

The operational semantics is defined in two stages. First, a set of basic reduction rules are defined
in Table 1. We assign different (non-negative) costs to eachreduction rule, in order to denote how much
computational time is needed for a reduction to complete. They are only descriptions of time and we can
give them different interpretations describing how much real time they denote. Such an interpretation
can be arbitrarily complex. So the semantics is parameterized on the interpretation of costs. Notice that
we write s⊗ (x 7→ v) to denote a{Γ,x}-state which properly extends s by mappingx to the valuev.

We also have reduction rules for iteration, local variables, andmkvarD construct, which do not incur
additional costs.

Γ ⊢ whilebdoM,s−→ if bthen (M; whilebdoM)elseskip,s
Γ,y⊢ M[y/x],s⊗ (y 7→ v)−→ M′,s′⊗ (y 7→ v′)

Γ ⊢ newD x:=vinM,s−→ newD x:=v′ inM′[x/y],s′

Γ ⊢ (mkvarD M1M2) :=v,s−→ M1v,s Γ ⊢!(mkvarD M1M2),s−→ M2,s

Next, the in-context reduction rules for arbitrary terms are defined as:

Γ ⊢ M,s−→n M′,s′

Γ ⊢ E[M],s−→n E[M′],s′

The small-step evaluation relation is deterministic, since arbitrary term can be uniquely partitioned into
an evaluation context and a sub-term, which is next to be reduced.

We define the reflexive and transitive closure of the small-step reduction relation as follows:

2A contextC[−] is a term with (several occurrences of) a hole in it, such thatif Γ ⊢ M : T is a term of the same type as the
hole thenC[M] is a well-typed closed term of typecom, i.e.⊢ C[M] : com.
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Γ ⊢ M,s−→n M′,s′

Γ ⊢ M,s n M′,s′
Γ ⊢ M,s n M′,s′ Γ ⊢ M′,s′ n′ M′′,s′′

Γ ⊢ M,s n+n′ M′′,s′′

Now a theory of operational improvement is defined [19]. LetΓ ⊢ M : com be a term, whereΓ is a
var-context. We say thatM terminates in n stepsat state s, writtenM,s⇓n, if Γ ⊢ M,s n skip,s′ for
some state s′. If M is a closed term andM, /0 ⇓n, then we writeM ⇓n. If M ⇓n andn ≤ n′, we write
M ⇓≤n′. We say that a termΓ ⊢ M : T may beimprovedby Γ ⊢ N : T, denoted byΓ ⊢ M &N, if and only
if for all contextsC[−], if C[M] ⇓n thenC[N] ⇓≤n. If two terms improve each other they are considered
improvment-equivalent, denoted byΓ ⊢ M ≈ N.

Let Γ,∆ ⊢ M : T be a term whereΓ is a var-context and∆ is an arbitrary context. Such terms are
calledsplit terms, and we denote them asΓ | ∆ ⊢ M : T. If ∆ is empty, then these terms are calledsemi-
closed. The semi-closed terms have only some global variables, andthe operational semantics is defined
only for them. We say that a semi-closed termh : varD | − ⊢ M : com does not havetiming leaksif the
initial value of the high-security variableh does not influence the number of reduction steps ofM. More
formally, we have:

Definition 1. A semi-closed term h: varD | − ⊢ M : com has notiming leaksif

∀s1,s2 ∈ St({h}). s1(h) 6= s2(h) ∧
h : varD ⊢ M,s1 n1 skip,s1

′ ∧ h : varD ⊢ M,s2 n2 skip,s2
′

⇒ n1 = n2

(1)

Definition 2. We say that asplit termh : varD | ∆ ⊢ M : com does not have timing leaks, where∆ =
x1 : T1, . . . ,xk : Tk, if for all closed terms⊢ N1 : T1, . . . ,⊢ Nk : Tk, we have that the term h: varD | − ⊢
M[N1/x1, . . . ,Nk/xk] : com does not have timing leaks.

The formula (1) can be replaced by an equivalent formula, where instead of two evaluations of the
same term we can consider only one evaluation of the sequential composition of the given term with
another its copy [3]. So sequential composition enables us to place these two evaluations one after the
other. Leth : varD ⊢M : com be a term, we defineM′ to beα-equivalent toM[h′/h] where all bound vari-
ables are suitable renamed. The following can be shown:h⊢ M,s1 n skip,s1

′ ∧ h′ ⊢ M′,s2 n′ skip,s2
′

iff h,h′ ⊢ M; M′,s1 ⊗ s2 n+n′ skip; skip,s1
′⊗ s2

′. In this way, we provide an alternative definition to
formula (1) as follows. We say that a semi-closed termh | − ⊢ M : T has notiming leaksif

∀s1 ∈ St({h}),s2 ∈ St({h′}). s1(h) 6= s2(h′) ∧
h,h′ ⊢ M; M′,s1⊗s2 n1 skip; M′,s1

′⊗s2 n2 skip; skip,s1
′⊗s2

′

⇒ n1 = n2
(2)

3 Algorithmic Slot-Game Semantics

We now show how slot-game semantics for IA2 can be represented algorithmically by regular-languages.
In this approach, types are interpreted as games, which havetwo participants: the Player representing
the term, and the Opponent representing its context. A game (arena) is defined by means of a set of
moves, each being either a question move or an answer move. Each move represents an observable
action that a term of a given type can perform. Apart from moves, another kind of action, calledtoken
(slot), is used to take account of quantitative aspects of terms. It represents a payment that a participant
needs to pay in order to use a resource such as time. A computation is interpreted as a play-with-
costs, which is given as a sequence of moves and token-actions played by two participants in turns.
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We will work here with complete plays-with-costs which represent the observable effects along with
incurred costs of a completed computation. Then a term is modelled by a strategy-with-costs, which
is a set of complete plays-with-costs. In the regular-language representation of game semantics [10],
types (arenas) are expressed asalphabets of moves, computations (plays-with-costs) aswords, and terms
(strategies-with-costs) asregular-languagesover alphabets.

Each typeT is interpreted by an alphabet of movesA[[T]], which can be partitioned into two subsets
of questions Q[[T]] andanswers A[[T]]. For expressions, we have:Q[[expD]] = {q} andA[[expD]] = D, i.e. there
are a question moveq to ask for the value of the expression and values fromD are possible answers.
For commands, we have:Q[[com]] = {run} and A[[com]] = {done}, i.e. there are a question moverun
to initiate a command and an answer movedoneto signal successful termination of a command. For
variables, we have:Q[[varD]] = {read,write(a) | a ∈ D} and A[[varD]] = D∪ {ok}, i.e. there are moves
for writing to the variable,write(a), acknowledged by the moveok, and for reading from the variable,
we have a question moveread, and an answer to it can be any value fromD. For function types, we
haveA[[B1

1→...→Bk
k→B]] = ∑1≤i≤kA i

[[Bi ]]
+A[[B]], where+ means a disjoint union of alphabets. We will use

superscript tags to keep record from which type of the disjoint union each move comes from. We denote
the token-action by$©. A sequence ofn token-actions$© will be written as n©.

For any (β -normal) term we define a regular language specified by anextended regular expression R.
Apart from the standard operations for generating regular expressions, we will use some more specific
operations. We define composition of regular expressionsRdefined over alphabetA 1+B2+{ $©} and
SoverB2+C 3+{ $©} as follows:

Ro
9B2 S= {w

[
s/a2 ·b2

]
| w∈ S,a2 ·s·b2 ∈ R}

whereR is a set of words of the forma2 ·s·b2, such thata2, b2 ∈ B2 andscontains only letters fromA 1

and{ $©}. Notice that the composition is defined overA 1+C 3+{ $©}, and all letters ofB2 are hidden.
The shuffle operationR⊲⊳ S generates the set of all possible interleavings from words of R andS, and
the restriction operationR |A ′ (Rdefined overA andA ′ ⊆A ) removes from words ofRall letters from
A ′.

If w, w′ are words,m is a move, andR is a regular expression, definem·wa w′ = m·w′ ·w, and
Raw′ = {waw′ | w∈ R}. Given a word with costsw defined overA +{ $©}, we define the underlying
word ofw asw† = w |{ $©}, and the cost ofw asw |A = n©, which we denote as| w |= n.

The regular expression forΓ ⊢M : T is denoted[[Γ ⊢M : T]] and is defined over the alphabetA[[Γ⊢T]] =(
∑x:T′∈Γ A x

[[T′]]

)
+A[[T]]+{ $©}. Every word in[[Γ ⊢ M : T]] corresponds to a complete play-with-costs in

the strategy-with-costs forΓ ⊢ M : T.
Free identifiersx∈ Γ are interpreted by the copy-cat regular expressions, whichcontain all possible

computations that terms of that type can have. Thus they provide the most general closure of an open
term.

[[Γ,x : Bx,1
1 → . . .Bx,k

k → Bx ⊢ x : B1
1 → . . .Bk

k → B]] =

∑
q∈Q[[B]]

q·qx ·
(

∑
1≤i≤k

( ∑
q1∈Q[[Bi ]]

qx,i
1 ·qi

1 · ∑
a1∈A[[Bi ]]

ai
1 ·ax,i

1 )
)∗ · ∑

a∈A[[B]]

ax ·a

When a first-order non-local function is called, it may evaluate any of its arguments, zero or more times,
and then it can return any value from its result type as an answer. For example, the term[[Γ,x : expDx ⊢
x : expD]] is modelled by the regular expression:q·qx ·∑n∈D nx ·n.

The linear application is defined as:

[[Γ,∆ ⊢ M N : T]] = [[∆ ⊢ N : B1]] o
9A 1

[[B]]
[[Γ ⊢ M : B1 → T]]
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Since we work with terms inβ -normal form, function application can occur only when the function term
is a free identifier. In this case, the interpretation is the same as above except that we add the costkapp

corresponding to function application. Notice thatkapp denotes certain number of$© units that are needed
for a function application to take place. The contraction[[Γ,x : Tx ⊢ M[x/x1,x/x2] : T′]] is obtained from
[[Γ,x1 : Tx1,x2 : Tx2 ⊢ M : T′]], such that the moves associated withx1 andx2 are de-tagged so that they
represent actions associated withx.

To represent local variables, we first need to define a (storage) ‘cell’ regular expressioncellv which
imposes the good variable behaviour on the local variable. So cellv responds to eachwrite(n) with ok,
and plays the most recently written value in response toread, or if no value has been written yet then
answers thereadwith the initial valuev. Then we have:

cellv = (read·v)∗ ·
(
∑
n∈D

write(n) ·ok· (read·n)∗
)∗

[[Γ,x : varD ⊢ M]]◦ cellxv =
(
[[Γ,x : varD ⊢ M]]∩ (cellxv ⊲⊳ (A[[Γ⊢B]]+ $©)∗)

)
|A x

[[varD]]

[[Γ ⊢ newD x:=vinM]] = [[Γ,x : varD ⊢ M]]◦ cellxva kvar

Note that all actions associated withx are hidden away in the model ofnew, sincex is a local variable
and so not visible outside of the term.

Language constants and constructs are interpreted as follows:

[[v : expD]] = {q·v} [[skip : com]] = {run ·done} [[diverge : com]]= /0
[[op : expD1× expD2 → expD′]] = q·kop ·q1 ·∑m∈D m1 ·q2·∑n∈D n2·(mopn)
[[; : com1 → com2 → com]] = run · run1 ·done1 ·kseq· run2 ·done2 ·done
[[if : expbool1 → com2 → com3 → com]] = run ·kif ·q1 · tt1 · run2 ·done2 ·done+

run ·kif ·q1 · ff 1 · run3 ·done3 ·done
[[while : expbool1 → com2 → com]] = run · (kif ·q1 · tt1 · run2 ·done2)∗ ·kif ·q1 · ff 1 ·done
[[:=: varD1 → expD2 → com]] = ∑n∈D run ·kasg·q2 ·n2 ·write(n)1 ·ok1 ·done
[[! : varD1 → expD]] = ∑n∈D q·kder · read1 ·n1 ·n

Although it is not important at what position in a word costs are placed, for simplicity we decide to attach
them just after the initial move. The only exception is the rule for sequential composition (; ), where the
cost is placed between two arguments. The reason will be explained later on.

We now show how slot-games model relates to the operational semantics. First, we need to show
how to represent the state explicitly in the model. AΓ-state s is interpreted as follows:

[[s :varDx1
1 × . . .× varDxk

k ]] = cellx1
s(x1)

⊲⊳ . . . ⊲⊳ cellxk
s(xk)

The regular expression[[s]] is defined over the alphabetA x1
[[varD1]]

+ . . .+A xk
[[varDk]]

, and words in[[s]] are
such that projections ontoxi-component are the same as those of suitable initializedcells(xi) strategies.
Note that[[s]] is a regular expression without costs. The interpretation of Γ ⊢ M : com at state s is:

[[Γ ⊢ M]]◦ [[s]] =
(
[[Γ ⊢ M]]∩ ([[s]] ⊲⊳ (A[[com]]+ $©)∗)

)
|A[[Γ]]

which is defined over the alphabetA[[com]] + { $©}. The interpretation[[Γ ⊢ M]] ◦ [[s]] can be studied
more closely by considering words in which moves fromA[[Γ]] are not hidden. Such words are called
interaction sequences. For any interaction sequencerun · t · done⊲⊳ n© from [[Γ ⊢ M]] ◦ [[s]], where t
is an even-length word overA[[Γ]], we say that it leaves the state s′ if the last write moves in eachxi-
component are such thatxi is set to the value s′(xi). For example, let s= (x 7→ 1,y 7→ 2), then the
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following interaction:run·write(5)y ·oky · readx ·1x ·doneleaves the state s′ = (x 7→ 1,y 7→ 5). Any two-
move word of the form:runxi ·nxi or write(n)xi ·okxi will be referred to asatomic state operationof A[[Γ]].
The following results are proved in [11] for the full ICA (IA plus parallel composition and semaphores),
but they also hold for the restricted fragment of it.

Proposition 1. If Γ ⊢ M : {com,expD} andΓ ⊢ M,s−→n M′,s′, then for each interaction sequence i· t
from [[Γ ⊢ M′]] ◦ [[s′]] (i is an initial move) there exists an interaction i· ta · t a n© ∈ [[Γ ⊢ M]] ◦ [[s]] such
that ta is an empty word or an atomic state operation ofA[[Γ]] which leaves the state s′.

Proposition 2. If Γ ⊢ M,s n M′,s′ then[[Γ ⊢ M′]]◦ [[s′]] ⊲⊳ n©⊆ [[Γ ⊢ M]]◦ [[s]].
Theorem 1(Consistency). If M ,s⇓n then∃w∈ [[Γ ⊢ M]]◦ [[s]] such that| w |= n and w† = run ·done .

Theorem 2 (Computational Adequacy). If ∃w∈ [[Γ ⊢ M]] ◦ [[s]] such that| w |= n and w† = run ·done,
then M,s⇓n.

We say that a regular expressionR is improved byS, denoted asR& S, if ∀w∈ R,∃ t ∈ S, such that
w† = t† and| w |≥| t |.
Theorem 3(Full Abstraction). Γ ⊢ M &N iff [[Γ ⊢ M]]& [[Γ ⊢ N]].

This shows that the two theories of improvement based on operational and game semantics are iden-
tical.

4 Detecting Timing Leaks

In this section slot-game semantics is used to detect whether a term with a secret global variableh can
leak information about the initial value ofh through its timing behaviour.

For this purpose, we define a special commandskip# which similarly asskip does nothing, but its
slot-game semantics is:[[skip#]] = {run · # · done}, where # is a new special action, calleddelimiter.
Since we verify security of a term by running two copies of thesame term one after the other, we will
use the commandskip# to specify the boundary between these two copies. In this way, we will be able
to calculate running times of the two terms separately.

Theorem 4. Let h: varD | − ⊢ M : com be a semi-closed term, and3

R= [[k : expD ⊢ newD h:=k inM; skip#; newD h′ :=k inM′ : com]] (3)

Any word of R is of the form w= w1 ·#·w2 such that| w1 |=| w2 | iff M has no timing leaks, i.e. the fact
(2) holds.

Proof. Suppose that any wordw∈ R is of the formw= w1 ·#·w2 such that| w1 |=| w2 |. Let us analyse
the regular expressionRdefined in (3). We have:

R= {run ·kvar ·qk ·vk ·w1 ·kseq·#·kseq·kvar ·qk ·v′k ·w2 ·done|
run ·w1 ·done∈ [[h⊢ M]]◦ cellhv, run ·w2 ·done∈ [[h′ ⊢ M′]]◦ cellh′v′}

for arbitrary valuesv,v′ ∈ D. In order to ensure that onekseq unit of cost occurs before and after the
delimiter action,kseq is played between two arguments of the sequential composition as was described
in Section 3. Given thatrun ·w1 ·done∈ [[h ⊢ M]] ◦ cellhv andrun ·w2 ·done∈ [[h′ ⊢ M′]] ◦ cellh′v′ for any

3The free identifierk in (3) is used to initialize the variablesh andh′ to arbitrary values fromD.
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v,v′ ∈ D, by Computational Adequacy we have thatM,(h 7→ v) ⇓|w1| and M′,(h′ 7→ v′) ⇓|w2|. Since
| w1 |=| w2 |, it follows that the fact (2) holds.

Let us consider the opposite direction. Suppose that the fact (2) holds. The term in (3) isα-equivalent
to k⊢ newD h:=k innewD h′ :=k inM; skip#; M′. Consider[[h,h′ ⊢M; skip#; M′]]◦ [[(h 7→ v)⊗(h′ 7→ v′)]],
wherev,v′ ∈ D. By Consistency, we have that∃w1 ∈ [[h,h′ ⊢ M]] ◦ [[(h 7→ v)⊗ (h′ 7→ v′)]] such that
| w1 |= n andw1 leaves the state(h 7→ v1)⊗ (h′ 7→ v′), and∃w2 ∈ [[h,h′ ⊢ M′]]◦ [[(h 7→ v1)⊗ (h′ 7→ v′)]]
such that| w2 |= n andw2 leaves the state(h 7→ v1)⊗ (h′ 7→ v′1). Any word w∈ R is obtained fromw1

andw2 as above (| w1 |=| w2 |), and so satisfies the requirements of the theorem.

We can detect timing leaks from a semi-closed term by verifying that all words in the model in (3)
are in the required form. To do this, we restrict our attention only to the costs of words inR.

Example 1. Consider the term:

h : var int2 ⊢ if (!h> 0)thenh:= !h+1; elseskip : com

The slot-game semantics of this term extended as in (3) is:

run ·kvar ·qk ·
(
0k ·kseq·#·kseq·kvar ·qk · (0k ·done+1k ·kder ·k+ ·done)
+1k ·kseq·kder ·k+ ·#·kseq·kvar ·qk · (0k ·done+1k ·kder ·k+ ·done)

)

This model includes all possible observable interactions of the term with its environment, which contains
only the identifierk, along with the costs measuring its running time. Note that the first value fork read
from the environment is used to initializeh, while the second value fork is used to initializeh′.

By inspecting we can see that the model contains the word:

run ·kvar ·qk ·0k ·kseq·#·kseq·kvar ·qk ·1k ·kder ·k+ ·done

which is not of the required form. This word (play) corresponds to two computations of the given term
where initial values ofh are 0 and 1 respectively, such that the cost of the second computation has
additionalkder+k+ units more than the first one.

We now show how to detect timing leaks of a split (open) termh : varD | ∆ ⊢ M : com, where∆ =
x1 : T1, . . . ,xk : Tk. To do this, we need to check timing efficiency of the following model:

[[h,h′ : varD ⊢ M[N1/x1, . . . ,Nk/xk]; skip
#; M′[N1/x1, . . . ,Nk/xk]]] (4)

at state(h 7→ v,h′ 7→ v′), for any closed terms⊢ N1 : T1, . . . ,⊢ Nk : Tk, and for any valuesv,v′ ∈ D. As
we have shown slot-game semantics respects theory of operational improvement, so we will need to
examine whether all its complete plays-with-costssare of the forms1 ·#·s2 where| s1 |=| s2 |. However,
the model in (4) can not be represented as a regular language,so it can not be used directly for detecting
timing leaks.

Let us consider more closely the slot-game model in (4). TermsM andM′ are run in the same context
∆, which means that each occurrence of a free identifierxi from ∆ behaves uniformly in bothM andM′.
So any complete play-with-costs of the model in (4) will be a concatenation of complete plays-with-costs
from models forM andM′ with additional constraints that behaviours of free identifiers from∆ are the
same inM andM′. If these additional constraints are removed from the abovemodel, then we generate
a model which is an over-approximation of it and where free identifiers from∆ can behave freely inM
andM′. Thus we obtain:

[[h,h′ : varD ⊢ M[N1/x1, . . . ,Nk/xk]; skip
#; M′[N1/x1, . . . ,Nk/xk]]]⊆

[[h,h′ : varD ⊢ M; skip#; M′[N1/x1, . . . ,Nk/xk]]]
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If ⊢ N1 : T1, . . . ,⊢ Nk : Tk are arbitrary closed terms, then they are interpreted by identity (copy-cat)
strategies corresponding to their types, and so we have:

[[h,h′ : varD ⊢ M; skip#; M′[N1/x1, . . . ,Nk/xk]]] = [[h,h′ : varD,∆ ⊢ M; skip#; M′]]

This model is a regular language and we can use it to detect timing leaks.

Theorem 5. Let h: varD | ∆ ⊢ M : com be a split (open) term, where∆ = x1 : T1, . . . ,xk : Tk, and

S= [[k : expD,∆ ⊢ newD h:=k inM; skip#; newD h′ :=k inM′ : com]] (5)

If any word of S is of the form w= w1 ·#·w2 such that| w1 |=| w2 |, Then h: varD | ∆ ⊢ M has no timing
leaks.

Note that the opposite direction in the above result does nothold. That is, if there exists a word from
Swhich is not of the required form then it does not follow thatM has timing leaks, since the found word
(play) may be spurious introduced due to over-approximation in the model in (5), and so it may be not
present in the model in (4).

Example 2. Consider the term:

h : varint2, f : expint2
f ,1 → comf ⊢ f (!h) : com

wheref is a non-local call-by-name function.
The slot-game model for this term is as follows:

run ·kapp· runf · (qf ,1 ·kder · readh · (0h ·0f ,1+1h ·1f ,1))∗ ·donef ·done

Oncef is called, it may evaluate its argument, zero or more times, and then it terminates successfully.
Notice that moves tagged withf represent the actions of calling and returning from the function f , while
moves tagged withf ,1 indicate actions of the first argument off .

If we generate the slot-game model of this term extended as in(5), we obtain a word which is not in
the required form:

run ·kvar ·qk ·0k ·kapp· runf ·qf ,1 ·kder ·0f ,1 ·donef ·kseq·#·kseq·kvar ·qk ·1k ·kapp· runf ·donef ·done

This word corresponds to two computations of the term, wherethe first one callsf which evaluates its
argument once, and the second callsf which does not evaluate its argument at all. The first computation
will have the cost ofkder units more that the second one. However, this is a spurious counter-example,
sincef does not behave uniformly in the two computations, i.e. it calls its argument in the first but not in
the second computation.

To handle this problem, we can generate an under-approximation of the model given in (4) which can
be represented as a regular language. Leth : varD | ∆ ⊢M be a term derived without using the contraction
rule for any identifier from∆. Consider the following model:

[[h,h′ : varD | ∆ ⊢ M; skip#; M′]]m = [[h,h′ : varD | ∆ ⊢ M; skip#; M′]] ∩
(deltax1

T1,m
⊲⊳ . . . ⊲⊳ deltaxk

Tk,m
⊲⊳ (A[[h,h′ :varD⊢com]]+ $©)∗)

(6)

wherem≥ 0 denotes the number of times that free identifiers of function types may evaluate its argu-
ments at most. The regular expressionsdeltaT,m are used to repeat zero or once an arbitrary behaviour
for terms of typeT, and are defined as follows.

deltaexpD,0 = q ·∑n∈D n· (ε +q·n) deltacom,0 = run ·done· (ε + run·done)
deltavarD,0 = (read·∑n∈D n· (ε + read·n)) + (∑n∈D write(n) ·ok· (ε +write(n) ·ok))
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If T is a first-order function type, thendeltaT,m will be a regular language only when the number of times
its arguments can be evaluated is limited. For example, we have that:

deltacom1→com,m = run ·
m

∑
r=0

(run1 ·done1)r ·done· (ε + run· (run1 ·done1)r ·done)

If T is a function type withk arguments, then we have to remember not only how many times arguments
are evaluated in the first call, but also the exact order in which arguments are evaluated.

Notice that we allow an arbitrary behavior of typeT to be repeated zero or once indeltaT,m, since it
is possible that depending on the current value ofh an occurrence of a free identifier from∆ to be run in
M but not inM′, or vice versa. For example, consider the term:

h : var int2 | x,y : exp int2 ⊢ newint2 z:=0in if (!h> 0)then z:=xelse z:=y+1

This term has timing leaks, and the corresponding counter-example contains only one interaction withx
occurred in a computation, and one interaction withy occurred in the other computation. This counter-
example will be included in the model in (6), only ifdeltaT,m is defined as above.

Let h : varD | ∆ ⊢ M be an arbitrary term where identifiers from∆ may occur more than once in
M. Let h : varD | ∆1 ⊢ M1 be derived without using the contraction for∆1, such thath : varD | ∆ ⊢ M
is obtained from it by applying one or more times the contraction rule for identifiers from∆. Then
[[h,h′ : varD | ∆ ⊢ M; skip#; M′]]m is obtained by first computing[[h,h′ : varD | ∆1 ⊢ M1; skip#; M′

1]]
m as

defined in (6), and then by suitable tagging all moves associated with several occurrences of the same
identifier from∆ as described in the interpretation of contraction. We have that:

[[h,h′ : varD,∆ ⊢ M; skip#; M′]]m ⊆ [[h,h′ : varD ⊢ M[N1/x1, . . . ,Nk/xk]; skip
#; M′[N1/x1, . . . ,Nk/xk]]]

for anym≥ 0 and arbitrary closed terms⊢ N1 : T1, . . . ,⊢ Nk : Tk.
In the case that∆ contains only identifiers of base typesB which do not occur in anywhile-subterm of

M, then in the above formula the subset relation becomes the equality for m= 0. If a free identifier occurs
in awhile-subterm ofM, then it can be called arbitrary many times inM, and so we cannot reproduce its
behaviour inM′.

Theorem 6. Let h: varD |∆ ⊢ M be a split (open) term, where∆ = x1 :T1, . . . ,xk :Tk, and

T = [[k : expD,∆ ⊢ newD h:=k inM; skip#; newD h′ :=k inM′ : com]]m (7)

(i) Let ∆ contains only identifiers of base types B, which do not occur in anywhile-subterm of M. Any
word of T (where m= 0) is of the form w1 ·#·w2 such that| w1 |=| w2 | iff M has no timing leaks.

(ii) Let ∆ be an arbitrary context. If there exists a word w= w1 ·#·w2 ∈ T such that| w1 |6=| w2 |, Then
M does have timing leaks.

Note that if a counter-example witnessing a timing leakage is found, then it provides a specific context
∆, i.e. a concrete definition of identifiers from∆, for which the given open term have timing leaks.

5 Detecting Timing-Aware Non-interference

The slot-game semantics model contains enough informationto check the non-interference property of
terms along with timing leaks. The method for verifying the non-interference property is analogous to
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the one described in [8], where we use the standard game semantics model. As slot-game semantics
can be considered as the standard game semantics augmented with the information about quantitative
assessment of time usage, we can use it as underlying model for detection of both non-interference
property and timing leaks, which we calltiming-aware non-interference.

In what follows, we show how to verify timing-aware non-interference property for closed terms. In
the case of open terms, the method can be extended straightforwardly by following the same ideas for
handling open terms described in Section 4.

Let l : varD,h : varD′ ⊢ M : com be a term wherel andh represent low- and high-security global
variables respectively. We defineΓ1 = l : varD,h : varD′, Γ′

1 = l′ : varD,h′ : varD′, andM′ is α-equivalent
to M[l′/l,h′/h] where all bound variables are suitable renamed. We say thatΓ1 | − ⊢ M : com satisfies
timing-aware non-interferenceif

∀s1 ∈ St(Γ1),s2 ∈ St(Γ′
1). s1(l) = s2(l′) ∧ s1(h) 6= s2(h′) ∧

Γ1 ⊢ M; M′,s1⊗s2 n1 skip; M′,s1
′⊗s2 n2 skip; skip,s1

′⊗s2
′

⇒ s′1(l) = s′2(l
′) ∧ n1 = n2

Suppose thatabort is a special free identifier of typecomabort in Γ. We say that a termΓ ⊢ M is safe
iff Γ ⊢ M[skip/abort]⊏∼ M[diverge/abort] 4; otherwise we say that a term isunsafe. It has been shown in
[5] that a termΓ ⊢ M is safe iff [[Γ ⊢ M]] does not contain any play with moves fromA abort

[[com]], which we

call unsafe plays. For example,[[abort : comabort ⊢ skip ; abort : com]] = run · runabort · doneabort · done,
so this term is unsafe.

By using Theorem 4 from Section 4 and the corresponding result for closed terms from [8], it is easy
to show the following result.

L = [[k : expD,k′ : expD′,abort : com ⊢ newD l :=k innewD′ h:=k′ in
newD l′ := !l innewD′ h′ :=k′ in
skip#; M; skip#; M′; skip#; if (!l 6=!l′)thenabort : com]]

(8)

The regular expressionL contains no unsafe word (plays) and all its words are of the form w= w1 ·# ·
w2 ·#·w3 ·#·w4 such that| w2 |=| w3 | iff M satisfies the timing-aware non-interference property.

Notice that the free identifierk in (8) is used to initialize the variablesl and l′ to any value fromD
which is the same for bothl andl′, while k′ is used to initializeh andh′ to any values fromD′. The last
if command is used to check values ofl and l′ in the final state after evaluating the term in (8). If their
values are different, thenabort is run.

6 Application

We can also represent slot-game semantics model of IA2 by using the CSP process algebra. This can be
done by extending the CSP representation of standard game semantics given in [6], by attaching the costs
corresponding to each translation rule. In the same way, we have adapted the verification tool in [6] to
automatically convert an IA2 term into a CSP process [17] that represents its slot-game semantics. The
CSP process outputted by our tool is defined by a script in machine readable CSP which can be analyzed
by the FDR tool. It represents a model checker for the CSP process algebra, and in this way a range of
properties of terms can be verified by calls to it.

4⊏∼ denotes observational approximation of terms (see [1])
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done

run readh 1h

0h

readx[0]

readx[0]

1
x[0]

0 x[0]

0x[0]

1
x[0]

readx[1]

readx[1]
0,1x[1]

0,1
x[1]

$

$

$

Figure 1: Slot-game semantics for the linear search withk=2

In the input syntax of terms, we use simple type annotations to indicate what finite sets of integers will
be used to model free identifiers and local variables of type integer. An operation between values of types
intn1 andintn2 produces a value of typeintmax{n1,n2}. The operation is performed modulomax{n1,n2}.

In order to use this tool to check for timing leaks in terms, weneed to encode the required property
as a CSP process (i.e. regular-language). This can be done only if we know the cost of the worst plays
(paths) in the model of a given term. We can calculate the worst-case cost of a term by generating its
model, and then by counting the number of tokens in its plays.The property we want to check will be:
∑n

i=0 i©·#· i©, wheren denotes the worst-case cost of a term.
To demonstrate practicality of this approach for automatedverification, we consider the following

implementation of the linear-search algorithm.

h : varint2,x[k] : varint2 ⊢
newint2 a[k] :=0in
newintk+1 i :=0in
while(i < k)do{a[i] :=!x[i]; i :=!i +1; }
newint2 y:= !hin
newboolpresent:= ff in
while(i < k&& ¬present)do{

if (compare(!a[i], !y))thenpresent:= tt;
i :=!i +1;

} : com

The meta variablek> 0 represents the array size. The term copies the input arrayx into a local arraya,
and the input value ofh into a local variabley. The linear-search algorithm is then used to find whether
the value stored iny is in the local array. At the moment when the value is found in the array, the term
terminates successfully. Note that arrays are introduced in the model as syntactic sugar by using existing
term formers. So an arrayx[k] is represented as a set ofk distinct variablesx[0], . . . ,x[k−1] (see [6, 10]
for details).

Suppose that we are only interested in measuring the efficiency of the term relative to the number of
compareoperations. It is defined as followscompare: expint2 → expint2 → expbool, and its semantics
compares for equality the values of two arguments with cost$©:

[[compare: expint12 → expint22 → expbool]] = q· $©·q1 · (∑m6=nm1 ·q2 ·n2 · ff )+ (∑m=nm1 ·q2 ·n2 · tt)

wherem,n ∈ {0,1}. We assume that the costs of all other operations are relatively negligible (e.g.
kvar = kder = . . .= 0).
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We show the model for this term withk = 2 in Fig. 1. The worst-case cost of this term is equal to
the array’s sizek, which occurs when the search fails or the value ofh is compared with all elements of
the array. We can perform a security analysis for this term byconsidering the model extended as in (7),
wherem= 0. We obtain that this term has timing leaks, with a counter-example corresponding to two
computations, such that initial values ofh are different, and the search succeeds in the one after only one
iteration ofwhile and fails in the other. For example, this will happen when allvalues in the arrayx are
0’s, and the value ofh is 0 in the first computation and 1 in the second one.

We can also automatically analyse in an analogous way terms where the array sizek is much larger.
Also the set of data that can be stored into the global variable h and arrayx can be larger than{0,1}. In
these cases we will obtain models with much bigger number of states, but they still can be automatically
analysed by calls to the FDR tool.

7 Conclusion

In this paper we have described how game semantics can be usedfor verifying security properties of
open sequential programs, such as timing leaks and non-interference. This approach can be extended to
terms with infinite data types, such as integers, by using some of the existing methods and tools based
on game semantics for verifying such terms. Counter-example guided abstraction refinement procedure
(ARP) [5] and symbolic representation of game semantics model [7] are two methods which can be used
for this aim. The technical apparatus introduced here applies not only to time as a resource but to any
other observable resource, such as power or heating of the processor. They can all be modeled in the
framework of slot games and checked for information leaks.

We have focussed here on analysing the IA language, but we caneasily extend this approach to any
other language for which game semantics exists. Since fullyabstract game semantics was also defined
for probabilistic [4], concurrent [12], and programs with exceptions [1], it will be interesting to extend
this approach to such programs.
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Recently, we introduced in [1] a model for product adoption in social networks with multiple prod-
ucts, where the agents, influenced by their neighbours, can adopt one out of several alternatives
(products). To analyze these networks we introduce social network games in which product adoption
is obligatory.

We show that when the underlying graph is a simple cycle, there is a polynomial time algorithm
allowing us to determine whether the game has a Nash equilibrium. In contrast, in the arbitrary case
this problem is NP-complete. We also show that the problem ofdetermining whether the game is
weakly acyclic is co-NP hard.

Using these games we analyze various types of paradoxes thatcan arise in the considered net-
works. One of them corresponds to the well-known Braess paradox in congestion games. In partic-
ular, we show that social networks exist with the property that by adding an additional product to
a specific node, the choices of the nodes will unavoidably evolve in such a way that everybody is
strictly worse off.

1 Introduction

Social networks became a huge interdisciplinary research area with important links to sociology, eco-
nomics, epidemiology, computer science, and mathematics.A flurry of numerous articles, notably the
influential [11], and books, e.g., [7, 3], helped to delineate better this area. It deals with many diverse
topics such as epidemics, spread of certain patterns of social behaviour, effects of advertising, and emer-
gence of ‘bubbles’ in financial markets.

Recently, we introduced in [1]social networks with multiple products, in which the agents (players),
influenced by their neighbours, can adopt one out of several alternatives (products). To study the situa-
tion when the product adoption is obligatory we introduce here social network games in which product
adoption is obligatory. An example of a studied situation iswhen a group of people chooses an obliga-
tory ‘product’, for instance, an operating system or a mobile phone provider, by taking into account the
choice of their friends. The resulting games exhibit the following join the crowdproperty:

the payoff of each player weakly increases when more playerschoose his strategy.

that we define more precisely in Subsection 2.3.
The considered games are a modification of the strategic games that we recently introduced in [14]

and more fully in [15], in which the product adoption was optional. The insistence on product selection
leads to a different analysis and different results than theones reported there. In particular, Nash equilib-
ria need not exist already in the case when the underlying graph is a simple cycle. We show that one can
determine in polynomial time whether for such social networks a Nash equilibrium exists. We prove that
for arbitrary networks, determining whether a Nash equilibrium exists is NP-complete. We also show
that for arbitrary networks and for networks whose underlying graph has no source nodes, determining
whether the game is weakly acyclic is co-NP hard.
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The considered social networks allow us to analyze various paradoxes that were identified in the
literature. One example is theparadox of choicefirst formulated in [13]. It has been summarised in [6,
page 38] as follows:

The more options one has, the more possibilities for experiencing conflict arise, and the
more difficult it becomes to compare the options. There is a point where more options,
products, and choices hurt both seller and consumer.

The point is that consumers choices depend on their friends’and acquaintances’ preferences.
Another example is a ‘bubble’ in a financial market, where a decision of a trader to switch to some

new financial product triggers a sequence of transactions, as a result of which all traders involved become
worse off.

Such paradoxes are similar to the renowned Braess paradox which states that in some road networks
the travel time can actually increase when new roads are added, see, e.g., [12, pages 464-465] and a
‘dual’ version of Braess paradox that concerns the removal of road segments, studied in [4, 5]. Both
paradoxes were studied by means of congestion games. However, in contrast to congestion games, Nash
equilibria do not need to exist in the games we consider here.Consequently, one needs to rely on different
arguments. Moreover, there are now two new types of paradoxes that correspond to the situations when
an addition, respectively, removal, of a product can lead toa game with no Nash equilibrium.

For each of these four cases we present a social network that exhibits the corresponding paradox.
These paradoxes were identified first in [2] in the case when the adoption of a product was not obligatory.
In contrast to the case here considered the existence of a strongest paradox within the framework of [2]
remains an open problem.

2 Preliminaries

2.1 Strategic games

A strategic gamefor n> 1 players, written as(S1, . . . ,Sn, p1, . . . , pn), consists of a non-empty setSi of
strategiesand apayoff function pi : S1×·· ·×Sn→R, for each playeri.

Fix a strategic gameG :=(S1, . . . ,Sn, p1, . . . , pn). We denoteS1×·· ·×Sn by S, call each elements∈S
a joint strategy, denote theith element ofsby si , and abbreviate the sequence(sj) j 6=i to s−i. Occasionally
we write(si ,s−i) instead ofs.

We call a strategysi of player i a best responseto a joint strategys−i of his opponents if∀s′i ∈
Si pi(si ,s−i)≥ pi(s′i ,s−i). We call a joint strategysaNash equilibriumif eachsi is a best response tos−i .
Further, we call a strategys′i of playeri abetter responsegiven a joint strategys if pi(s′i ,s−i)> pi(si ,s−i).

By a profitable deviationwe mean a pair(s,s′) of joint strategies such thats′ = (s′i ,s−i) for somes′i
andpi(s′)> pi(s). Following [10], animprovement pathis a maximal sequence of profitable deviations.
Clearly, if an improvement path is finite, then its last element is a Nash equilibrium. A game is called
weakly acyclic(see [16, 9]) if for every joint strategy there exists a finiteimprovement path that starts at
it. In other words, in weakly acyclic games a Nash equilibrium can be reached from every initial joint
strategy by a sequence of unilateral deviations. Given two joint strategiessands′ we write

• s> s′ if for all i, pi(s)> pi(s′).

Whens> s′ holds we say thats′ is strictly worsethans.
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2.2 Social networks

We are interested in strategic games defined over a specific type of social networks introduced in [1] that
we recall first.

Let V = {1, . . . ,n} be a finite set ofagentsandG= (V,E,w) a weighted directed graph withwi j ∈
[0,1] being the weight of the edge(i, j). Given a nodei of G, we denote byN(i) the set of nodes from
which there is an incoming edge toi. We call eachj ∈ N(i) a neighbour of i in G. We assume that
for each nodei such thatN(i) 6= /0, ∑ j∈N(i) w ji ≤ 1. An agenti ∈V is said to be asource nodein G if
N(i) = /0. Given a (to be defined) networkS we denote bysource(S ) the set of source nodes in the
underlying graphG.

By asocial network(from now on, justnetwork) we mean a tupleS = (G,P,P,θ), where

• G is a weighted directed graph,

• P is a finite set of alternatives orproducts,

• P is function that assigns to each agenti a non-empty set of productsP(i) from which it can make
a choice,

• θ is a threshold functionthat for eachi ∈V andt ∈ P(i) yields a valueθ(i, t) ∈ (0,1].
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Figure 1: A social network

Example 1. Figure 1 shows an example of a network. Let the threshold be 0.3 for all nodes. The set of
productsP is {t1, t2, t3, t4}, the product set of each agent is marked next to the node denoting it and the
weights are labels on the edges. Each source node is represented by the unique product in its product set.
2

Given two social networksS andS ′ we say thatS ′ is anexpansionof S if it results from adding
a product to the product set of a node inS . We say then also thatS is acontractionof S ′.

2.3 Social network games

Next, introduce the strategic games over the social networks. They form a modification of the games
studied in [14, 15] in that we do not admit a strategy representing the fact that a player abstains from
choosing a product.

Fix a networkS = (G,P,P,θ). With each networkS we associate a strategic gameG (S ). The
idea is that the agents simultaneously choose a product. Subsequently each node assesses his choice by
comparing it with the choices made by his neighbours. Formally, we define the game as follows:

• the players are the agents (i.e., the nodes),

• the set of strategies for playeri is Si := P(i),
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• For i ∈V, t ∈ P(i) and a joint strategys, let N t
i (s) := { j ∈ N(i) | sj = t}, i.e.,N t

i (s) is the set of
neighbours ofi who adopted ins the productt.

The payoff function is defined as follows, wherec0 is some given in advance positive constant:

– for i ∈ source(S ),
pi(s) := c0,

– for i 6∈ source(S ),
pi(s) := ∑

j∈N t
i (s)

w ji −θ(i, t) , wheresi = t andt ∈ P(i).

In the first case we assume that the payoff function for the source nodes is constant only for simplicity.
The second case of the payoff definition is motivated by the following considerations. When agenti is
not a source node, his ‘satisfaction’ from a joint strategy depends positively from the accumulated weight
(read: ‘influence’) of his neighbours who made the same choice as him, and negatively from his threshold
level (read: ‘resistance’) to adopt this product. The assumption thatθ(i, t)> 0 reflects the view that there
is always some resistance to adopt a product.

We call these gamessocial network games with obligatory product selection, in short,social net-
work games.

Example 2. Consider the network given in Example 1 and the joint strategy s where each source node
chooses the unique product in its product set and nodes 1, 2 and 3 chooset2, t3 andt2 respectively. The
payoffs are then given as follows:

• for the source nodes, the payoff is the fixed constantc0,

• p1(s) = 0.5−0.3= 0.2,

• p2(s) = 0.4−0.3= 0.1,

• p3(s) = 0.4−0.3= 0.1.

Let s′ be the joint strategy in which player 3 choosest3 and the remaining players make the same
choice as given ins. Then(s,s′) is a profitable deviation sincep3(s′) > p3(s). In what follows, we
represent each profitable deviation by a node and a strategy it switches to, e.g., 3 :t3. Starting ats, the
sequence of profitable deviations 3 :t3,1 : t4 is an improvement path which results in the joint strategy
in which nodes 1, 2 and 3 chooset4, t3 andt3 respectively and, as before, each source node chooses the
unique product in its product set. 2

By definition, the payoff of each player depends only on the strategies chosen by his neighbours, so
the social network games are related to graphical games of [8]. However, the underlying dependence
structure of a social network game is a directed graph. Further, note that these games satisfy thejoin the
crowdproperty that we define as follows:

Each payoff functionpi depends only on the strategy chosen by playeri and the set of players
who also chose his strategy. Moreover, the dependence on this set is monotonic.

The last qualification is exactly opposite to the definition of congestion games with player-specific
payoff functions of [9] in which the dependence on the above set is antimonotonic. That is, when more
players choose the strategy of playeri, then his payoff weakly decreases.

3 Nash equilibria

The first natural question we address is whether the social network games have a Nash equilibrium.



184 Social Network Games with Obligatory Product Selection

3.1 Simple cycles

In contrast to the case of games studied in [14] the answer is negative already for the case when the
underlying graph is a simple cycle.

Example 3. Consider the network given in Figure 2, where the product setof each agent is marked next
to the node denoting it and the weights are all equal and put aslabels on the edges.
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Figure 2: A simple cycle no Nash equilibrium

Let the thresholds be defined as follows:θ(1, t1) = θ(2, t2) = θ(3, t3) = r1 andθ(1, t2) = θ(2, t3) =
θ(3, t1) = r2 wherer1 > r2. We also assume thatw> r1− r2. Hence for alls2 ands3

p1(t1,s2, t1)> p1(t2,s2,s3)> p1(t1,s2, t3)

and similarly for the payoff functionsp2 andp3. So it is more profitable for playeri to adopt strategyti
provided its neighbour also adoptsti .

It is easy to check that the game associated with this networkhas no Nash equilibrium. Indeed, here
is the list of all the joint strategies, where we underline the strategy that is not a best response to the
choice of other players:(t1, t2, t1), (t1, t2, t3), (t1, t3, t1), (t1, t3, t3), (t2, t2, t1), (t2, t2, t3), (t2, t3, t1), (t2, t3, t3).
2

This example can be easily generalized to the case of an arbitrary simple cycle. Below,i⊕1 andi⊖1
stand for addition and subtraction defined cyclically over the set{1, . . . ,n}. Son⊕1= 1 and 1⊖1= n.
Indeed, consider a social network withn nodes that form a simple cycle and assume that each playeri
has strategiesti andti⊕1. Choose for each playeri the weightswi⊖1 i and the threshold functionθ(i, t) so
that

wi⊖1 i −θ(i, ti)>−θ(i, ti⊕1)>−θ(i, ti),

so that (we put on first two positions, respectively, the strategies of playersi ⊖ 1 andi, while the last
argument is a joint strategy of the remainingn−2 players)

pi(ti , ti ,s)> pi(t
′, ti⊕1,s

′)> pi(ti⊖1, ti ,s
′′),

wheret ′,s,s′ ands′′ are arbitrary. It is easy to check then that the resulting social network game has no
Nash equilibrium.

A natural question is what is the complexity of determining whether a Nash equilibrium exists. First
we consider this question for the special case when the underlying graph is a simple cycle.

Theorem 4. Consider a networkS whose underlying graph is a simple cycle. It takes O(n· |P|4) time
to decide whether the gameG (S ) has a Nash equilibrium.

Proof. SupposeS = (G,P,P,θ). When the underlying graph ofS is a simple cycle, the concept of a
best response of playeri ⊕1 to a strategy of playeri is well-defined. Let

Ri := {(ti , ti⊕1) | ti ∈ P(i), ti⊕1 ∈ P(i ⊕1), ti⊕1 is a best response toti},
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I := {(t, t) | t ∈ P},
and let◦ stand for the composition of binary relations.

The question whetherG (S ) has a Nash equilibrium is then equivalent to the problem whether there
exists a sequencea1, ...,an such that(a1,a2) ∈ R1, ...,(an−1,an) ∈ Rn−1,(an,a1) ∈ Rn. In other words, is
(R1◦ · · · ◦Rn)∩ I non-empty?

To answer this question we first construct successivelyn−1 compositionsR1◦R2, (R1◦R2)◦R3, . . . ,
(. . . (R1◦R2) · · · ◦Rn−1)◦Rn.

Each composition construction can be carried out in|P|4 steps. Indeed, given two relationsA,B⊆P×
P, to compute their compositionA◦B requires for each pair(a,b) ∈ A to find all pairs(c,d) ∈ B such
thatb= c. Finally, to check whether the intersection ofR1◦ · · · ◦Rn with I is non-empty requires at most
|P| steps.

So to answer the original question takesO(n· |P|4) time.

Note that this proof applies to any strategic game in which there is a reordering of playersπ(1), . . . ,π(n)
such that the payoff of playerπ(i) depends only on his strategy and the strategy chosen by player π(i⊖ i).

It is worthwhile to note that for the case of simple cycles, the existence of Nash equilibrium in the
associated social network game does not imply that the game is weakly acyclic.
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Figure 3: A simple cycle and an infinite improvement path

Example 5. Consider the network in Figure 3(a) which is a modification ofthe network in Figure 2.
We add a new productt4 to the product set of all the nodesi with θ(i, t4) > r1. We also assume that
w−θ(i, t4)>−r2. Then the joint strategy(t4, t4, t4) is a Nash equilibrium. However, Figure 3(b) shows
the unique improvement path starting in(t1, t3, t1) which is infinite. For each joint strategy in the figure,
we underline the strategy that is not a best response. This shows that the game is not weakly acyclic.2

In Section 4 we shall study the complexity of checking whether a social network game is weakly
acyclic.

3.2 Arbitrary social networks

In this section we establish two results which show that deciding whether a social network has a Nash
equilibrium is computationally hard.

Theorem 6. Deciding whether for a social networkS the gameG (S ) has a Nash equilibrium is NP-
complete.

To prove the result we first construct another example of a social network game with no Nash equi-
librium and then use it to determine the complexity of the existence of Nash equilibria.

Example 7. Consider the network given in Figure 4, where the product setof each agent is marked next
to the node denoting it and the weights are labels on the edges. Nodes with a unique product in the
product set is simply represented by the product.
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Figure 4: A network with no Nash equilibrium

We assume that each threshold is a constantθ , whereθ < w1 < w2. So it is more profitable to a
player residing on a triangle to adopt the product adopted byhis neighbour residing on a triangle than by
the other neighbour.

The game associated with this network has no Nash equilibrium. It suffices to analyze the joint
strategies involving nodes 1, 2 and 3 since the other nodes have exactly one product in their product
sets. Here we provide a listing of all such joint strategies,where we underline the strategy that is not a
best response to the choice of other players:(t1, t1, t2), (t1, t1, t3), (t1, t3, t2), (t1, t3, t3), (t2, t1, t2), (t2, t1, t3),
(t2, t3, t2), (t2, t3, t3). In contrast, what will be of relevance in a moment, if we replace{t1} by {t ′1}, then
the corresponding game has a Nash equilibrium, namely the joint strategy corresponding to the triple
(t2, t3, t3). 2

Proof of Theorem 6:As in [1], to show NP-hardness, we use a reduction from the NP-complete PAR-
TITION problem, which is: givenn positive rational numbers(a1, . . . ,an), is there a setS such that
∑i∈Sai = ∑i 6∈Sai? Consider an instanceI of PARTITION. Without loss of generality, suppose we have
normalised the numbers so that∑n

i=1 ai = 1. Then the problem instance sounds: is there a setSsuch that
∑i∈Sai = ∑i 6∈Sai =

1
2?

To construct the appropriate network we employ the networksgiven in Figure 4 and in Figure 5,
where for each nodei ∈ {1, . . . ,n} we setwia = wib = ai , and assume that the thresholds of the nodesa
andb are constant and equal1

2.
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Figure 5: A network related to the PARTITION problem

To finalize the construction we use two copies of the network given in Figure 4, one unchanged and
the other in which the productt1 is replaced everywhere byt ′1, and construct the desired networkS by
identifying with the node marked by{t1} in the network from Figure 4, the nodea of the network from
Figure 5 and with the node marked by{t ′1} in the modified version of the network from Figure 4 the node
b.

Suppose that a solution to the considered instance of the PARTITION problem exists, i.e., for some
set S⊆ {1, . . . ,n} we have∑i∈Sai = ∑i 6∈Sai =

1
2. Consider the gameG (S ) and the joint strategys

formed by the following strategies:

• t1 assigned to each nodei ∈ S in the network from Figure 5,

• t ′1 assigned to each nodei ∈ {1, . . . ,n}\S in the network from Figure 5,
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• t ′1 assigned to the nodesa andt1 to the nodeb,

• t2 assigned to node 1 andt3 assigned to the nodes 2, 3 in both versions of the networks from
Figure 4,

• t2 andt3 assigned respectively to the nodes marked by{t2} and{t3}.

We claim thats is a Nash equilibrium. Consider first the player (i.e., node)a. The accumulated
weight of its neighbours who chose strategyt ′1 is 1

2. Therefore, the payoff fora in the joint strategys is
0. The accumulated weight of its neighbours who chose strategy t1 is 1

2, as well. Thereforet ′1 is indeed
a best response for playera as both strategies yield the same payoff. For the same reason, t1 is a best
response for playerb. The analysis for the other nodes is straightforward.

Conversely, suppose that a strategy profiles is a Nash equilibrium inG (S ). From Example 7 it
follows thatsa = t ′1 andsb = t1. This implies thatt ′1 is a best response of nodea to s−a and therefore
∑i∈{1,...,n}|si=t ′1

wia ≥ ∑i∈{1,...,n}|si=t1 wia. By a similar reasoning, for nodeb we have∑i∈{1,...,n}|si=t1 wib ≥
∑i∈{1,...,n}|si=t ′1

wib. Since∑n
i=1 ai = 1 and fori ∈ {1, . . . ,n}, wia = wib = ai , andsi ∈ {t1, t ′1} we have for

S:= {i ∈ {1, . . . ,n} | si = t1}, ∑i∈Sai = ∑i 6∈Sai . In other words, there exists a solution to the considered
instance of the partition problem. 2

Theorem 8. For a networkS whose underlying graph has no source nodes, deciding whether the game
G (S ) has a Nash equilibrium is NP-complete.

Proof. The proof extends the proof of the above theorem. Given an instance of the PARTITION problem
we use the following modification of the network. We ‘twin’ each nodei ∈ {1, . . . ,n} in Figure 5 with a
new nodei′ with the product set{t1, t ′1}, by adding the edges(i, i′) and(i′, i). We also ‘twin’ nodes marked
{t2} and{t3} in Figure 4 with new nodes with the product set{t2} and{t3} respectively. Additionally,
we choose the weights on the new edgeswii ′ , wi′i and the corresponding thresholds so that wheni and
i′ adopt a common product, their payoff is positive. Then the underlying graph of the resulting network
does not have any source nodes and the above proof remains valid for this new network.

4 Weakly acyclic games

In this section we study the complexity of checking whether asocial network game is weakly acyclic.
We establish two results that are analogous to the ones established in [15] for the case of social networks
in which the nodes may decide not to choose any product. The proofs are based on similar arguments
though the details are different.

Theorem 9. For an arbitrary networkS , deciding whether the gameG (S ) is weakly acyclic is co-NP
hard.

Proof. We again use an instance of the PARTITION problem in the form of n positive rational numbers
(a1, . . .,an) such that∑n

i=1ai = 1. Consider the network given in Figure 6. For each nodei ∈ {1, . . .,n}
we setP(i) = {t1, t2}. The product set for the other nodes are marked in the figure. As before, we set
wia = wib = ai .

Since for alli ∈ {1, . . . ,n}, ai is rational, it has the formai =
li
r i

. Let τ = 1
2·r1·...·rn

. The following
property holds.

Property 1. Given an instance(a1, . . . ,an) of the PARTITION problem andτ defined as above, for all
S⊆ {1, . . . ,n}
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Figure 6: A network related to weakly acyclic games

(i) if ∑i∈Sai <
1
2, then∑i∈Sai ≤ 1

2 − τ ,

(ii) if ∑i∈Sai >
1
2, then∑i∈Sai ≥ 1

2 + τ .

Proof. By definition, eachai and 1
2 is a multiple ofτ . Thus∑i∈Sai = x·τ and 1

2 = y·τ wherex andy are
integers.
(i) If x· τ < y· τ , thenx· τ ≤ (y−1) · τ . Therefore∑i∈Sai ≤ 1

2 − τ .
The proof of(ii) is analogous.

Note that given(a1, . . . ,an), τ can be defined in polynomial time. Let the thresholds be defined as
follows: θ(a, t1) = θ(b, t2) = 1

2 and 0< θ(a, t4) = θ(b, t5) < τ . The threshold for nodesc,d ande is a
constantθ1 such thatθ1 <w1 < w2. Thus, like in the network in Figure 4, it is more profitable toa player
residing on a triangle to adopt the product adopted by his neighbour residing on a triangle than by the
other neighbour.

Suppose that a solution to the considered instance of the PARTITION problem exists. That is, for
some setS⊆{1, . . .,n} we have∑i∈Sai = ∑i 6∈Sai =

1
2. In the gameG (S ), take the joint strategys formed

by the following strategies:

• t1 assigned to each nodei ∈ Sand the nodesa andc,

• t2 assigned to each nodei ∈ {1, . . .,n}\Sand the nodesb andd,

• t3 assigned to the nodese andg.

Any improvement path that starts in this joint strategy willnot change the strategies assigned to the
nodesa,b andg. So if such an improvement path terminates, it produces a Nash equilibrium in the game
associated with the network given in Figure 4 of Example 7. But we argued that this game does not have
a Nash equilibrium. Consequently, there is no finite improvement path in the gameG (S ) that starts in
the above joint strategy and thereforeG (S ) is not weakly acyclic.

Now suppose that the considered instance of the PARTITION problem does not have a solution.
Then we show that the gameG (S ) is weakly acyclic. To this end, we order the nodes ofS as follows
(note the positions of the nodesc,d ande): 1,2, . . .,n,g,a,b,c,e,d. Given a joint strategy, consider an
improvement path in which at each step the first node in the above list that did not select a best response
switches to a best response. After at mostn steps the nodes 1,2, . . .,n all selected a productt1 or t2. Let
sbe the resulting joint strategy.
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First suppose that∑i∈{1,. . .,n}|si=t1 wia > 1
2. This implies that∑i∈{1,. . .,n}|si=t2 wib < 1

2. By Property 1,

∑i∈{1,. . .,n}|si=t2 wib ≤ 1
2 − τ . The payoff of the nodeb depends only on the choices made by the source

nodes 1,2, . . . ,n, so we havepb(t2,s−b) ≤ −τ . Sinceθ(b, t5) < τ , we also havepb(t5,s−b) > −τ and
thereforet5 is a best response for nodeb. Let sb be the resulting strategy in which nodeb selectst5.
Consider the prefix ofξ starting atsb (call it ξ b). We argue that inξ b, t2 is never a better response for
noded. Suppose thatsb

d = t3. We have the following two cases:
• sb

e = t3: thenpd(sb) = w2−θ1 and sot3 is the best response for noded.

• sb
e = t1: then pd(sb) = −θ1 and if noded switches tot2 then pd(t2,sb

−b) = −θ1 (sincesb
b = t5).

Thust2 is not a better response.
Using the above observation, we conclude that there exists asuffix of ξ b (call it ξ d) such that noded
never choosest2. This means that inξ d the unique best response for nodec is t1 and for nodee is t1. This
shows thatξ d is finite and henceξ is finite, as well.

The case when∑i∈{1,. . .,n}|si=t2 wib >
1
2 is analogous with all improvement paths terminating in a joint

strategy where nodea choosest4 and nodec choosest2.

Theorem 10. For a networkS whose underlying graph has no source nodes, deciding whether the
gameG (S ) is weakly acyclic is co-NP hard.

Proof. The proof extends the proof of the above theorem. Given an instance of the PARTITION problem
we use the following modification of the network given in Figure 6. We ‘twin’ each nodei ∈ {1, . . .,n}
with a new nodei′, also with the product set{t1, t2}, by adding the edges(i, i′) and(i′, i). We also ‘twin’
the nodeg with a new nodeg′, also with the product set{t3}, by adding the edges(g,g′) and (g′,g).
Additionally, we choose the weightswii ′ andwi′i and the corresponding thresholds so that wheni andi′

adopt a common product, their payoff is positive.
Suppose that a solution to the considered instance of the PARTITION problem exists. Then we

extend the joint strategy considered in the proof of Theorem9 by additionally assigningt1 to each node
i′ such thati ∈ S, t2 to each nodei′ such thati ∈ {1, . . .,n}\Sandt3 to the nodeg′. Then, as before, there
is no finite improvement path starting in this joint strategy, soG (S ) is not weakly acyclic.

Suppose now that no solution to the considered instance of the PARTITION problem exists. Take the
following order of the nodes ofS :

1,1′,2,2′, . . .,n,n′,g,g′,a,b,c,e,d,

and as in the previous proof, given a joint strategy, we consider an improvement pathξ in which at each
step the first node in the above list that did not select a best response switches to a best response.

Note that each node from the list 1,1′,2,2′, . . .,n,n′,g,g′ is scheduled at most once. So there exists a
suffix of ξ in which only the nodesa,b,c,e,d are scheduled. Using now the argument given in the proof
of Theorem 9 we conclude that there exists a suffix ofξ that is finite. This proves thatG (S ) is weakly
acyclic.

5 Paradoxes

In [2] we identified various paradoxes in social networks with multiple products and studied them using
the social network games introduced in [14]. Here we carry out an analogous analysis for the case when
the product selection is obligatory. This qualification, just like in the case of social network games,
substantially changes the analysis. We focus on the main four paradoxes that we successively introduce
and analyze.
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5.1 Vulnerable networks

The first one is the following. We say that a social networkS is vulnerableif for some Nash equilibrium
s in G (S ), an expansionS ′ of S exists such that each improvement path inG (S ′) leads froms to
a joint strategys′ which is a Nash equilibrium both inG (S ′) and G (S ) such thats> s′. So the
newly added product triggers a sequence of changes that unavoidably move the players from one Nash
equilibrium to another one that is strictly worse for everybody.

The following example shows that vulnerable networks exist. Here and elsewhere the relevant ex-
pansion is depicted by means of a product and the dotted arrowpointing to the relevant node.

Example 11. Consider the directed graph given in Figure 7, in which the product set of each node is
marked next to it.

1{t1,t3,t4}

��

**
2jj {t1,t4}

t2oo

3
{t2,t3} **

4jj
{t2,t3}

OO

Figure 7: A directed graph

We complete it to the desired social network below. Let ‘_’ stand for an arbitrary strategy of the
relevant player. We stipulate that

p2(_, t2,_, t2)> p2(t1, t1,_,_),
p1(t3, t2,_,_)> p1(t1, t2,_,_)> p1(t4, t2,_,_),
p3(t3,_, t3,_)> p3(_,_, t2, t2),
p4(_,_, t3, t3)> p4(_,_, t3, t2),
p2(_, t4,_,_)> p2(_, t2,_, t3),
p1(t4, t4,_,_)> p1(t3,_,_,_)> p1(t1, t4,_,_),

so that 2 :t2,1 : t3,3 : t3,4 : t3,2 : t4,1 : t4 is a unique improvement path that starts in(t1, t1, t2, t2) and ends
in (t4, t4, t3, t3).

Additionally we stipulate that

p1(t1, t1,_,_)> p1(t4, t4,_,_),
p2(t1, t1,_,_)> p2(t4, t4,_,_),
p3(_,_, t2, t2)> p3(_,_, t3, t3),
p4(_,_, t2, t2)> p4(_,_, t3, t3),

so that(t1, t1, t2, t2)>s (t4, t4, t3, t3).
These requirements entail constraints on the weights and thresholds that are for instance realized by
w12 = 0, w21 = 0.2, w42 = 0.3, w13 = 0.2, w34 = 0.2, w43 = 0,

and
θ(1, t1) = 0.2, θ(1, t3) = 0.1, θ(1, t4) = 0.3, θ(2, t1) = 0.1, θ(2, t2) = 0.3,
θ(2, t4) = 0.2, θ(3, t2) = 0.1, θ(3, t3) = 0.2, θ(4, t2) = 0.1, θ(4, t3) = 0.2. 2

It is useful to note that in the setup of [2], in which for each player the ‘abstain’ strategy is allowed, it
remains an open problem whether vulnerable networks (called there because of various other alternatives
∀s-vulnerable networks) exist.
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5.2 Fragile networks

Next, we consider the following notion. We say that a social networkS is fragile if G (S ) has a Nash
equilibrium while for some expansionS ′ of S , G (S ′) does not. The following example shows that
fragile networks exist.

Example 12. Consider the networkS given in Figure 8, where the product set of each node is marked
next to it.
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Figure 8: A fragile network

Let the thresholds be defined as follows:θ(2, t2)= θ(3, t3)= r1 andθ(1, t2) = θ(2, t3)= θ(3, t1)= r2

wherer1 > r2. We also assume thatw> r1− r2.
Consider the joint strategys, in which nodes 1, 2 and 3 chooset2, t2 andt1 respectively. It can be

verified thats is a Nash equilibrium inG (S ). Now consider the expansionS ′ of S in which productt1
is added to the product set of node 1 and letθ(1, t1) = r1. ThenS ′ is the network in Example 3 which,
as we saw, does not have a Nash equilibrium. 2

5.3 Inefficient networks

We say that a social networkS is inefficient if for some Nash equilibriums in G (S ), a contractionS ′

of S exists such that each improvement path inG (S ′) starting ins leads to a joint strategys′ which is
a Nash equilibrium both inG (S ′) andG (S ) such thats′ > s. We note here that if the contraction was
created by removing a product from the product set of nodei, we impose that any improvement path in
G (S ′), given a starting joint strategy fromG (S ), begins by having nodei making a choice (we allow
any choice from his remaining set of products as an improvement move). Otherwise the initial payoff of
nodei in G (S ′) is not well-defined.

Example 13. We exhibit in Figure 9 an example of an inefficient network. The weight of each edge is
assumed to bew, and we also have the same product-independent threshold,θ , for all nodes, withw> θ .
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Figure 9: An example of an inefficient network

Consider as the initial Nash equilibrium the joint strategys= (t2, t2, t1, t1). It is easy to check that this
is indeed a Nash equilibrium, with the payoff equal tow−θ for all nodes. Suppose now that we remove
productt1 from the product set of node 3. We claim that the unique improvement path then leads to the
Nash equilibrium in which all nodes adoptt2.
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To see this, note that node 3 moves first in any improvement path and it has a unique choice,t2. Then
node 4 moves and necessarily switches tot2. This yields a Nash equilibrium in which each node selected
t2 with the payoff of 2w−θ , which is strictly better than the payoff ins. 2

5.4 Unsafe networks

Finally, we analyze the following notion. We call a social network S unsafe if G (S ) has a Nash
equilibrium, while for some contractionS ′ of S , G (S ′) does not. The following example shows that
unsafe networks exist.

Example 14. Let S1 be the modification of the networkS given in Figure 2 where node 1 has the
product set{t1, t2, t4}, whereθ(1, t4) < r2. Then the joint strategy(t4, t3, t3) is a Nash equilibrium in
G (S1). Now consider the contractionS ′

1 of S1 where productt4 is removed from node 1. ThenS ′
1 is

the networkS , which as we saw in Example 3 has no Nash equilibrium. 2

6 Conclusions

In this paper we studied dynamic aspects of social networks with multiple products using the basic
concepts of game theory. We used the model of social networks, originally introduced in [1] that we
subsequently studied using game theory in [14], [15] and [2].

However, in contrast to these three references the product adoption in this paper is obligatory. This
led to some differences. For example, in contrast to the caseof [14], a Nash equilibrium does not need
to exist when the underlying graph is a simple cycle. Further, in contrast to the setup of [2], we were
able to construct a social network that exhibits the strongest form of the paradox of choice. On the other
hand, some complexity results, namely the ones concerning weakly acyclic games, remain the same as
in [14], though the proofs had to be appropriately modified.
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Model-checking the alternating-time temporal logicsATL andATL∗ with incomplete information
is undecidable for perfect recall semantics. However, whenrestricting to memoryless strategies the
model-checking problem becomes decidable. In this paper weconsider two other types of semantics
based on finite-memory strategies. One where the memory sizeallowed is bounded and one where
the memory size is unbounded (but must be finite). This is motivated by the high complexity of
model-checking with perfect recall semantics and the severe limitations of memoryless strategies.
We show that both types of semantics introduced are different from perfect recall and memoryless
semantics and next focus on the decidability and complexityof model-checking in both complete
and incomplete information games forATL/ATL∗. In particular, we show that the complexity of
model-checking with bounded-memory semantics is∆p

2-complete forATL andPSPACE-complete
for ATL∗ in incomplete information games just as in the memoryless case. We also present a proof
thatATL andATL∗ model-checking is undecidable forn≥ 3 players with finite-memory semantics
in incomplete information games.

1 Introduction

The alternating-time temporal logicsATL and ATL∗ have been studied with perfect recall semantics
and memoryless semantics in both complete and incomplete information concurrent game structures
[2, 3, 12]. The model-checking problems for these logics have applications in verification and synthesis
of computing systems in which different entities interact.The complexity of model-checking with perfect
recall semantics, where players are allowed to use an infinite amount of memory, is very high in some
cases and even undecidable in the case ofATL [3, 8] with incomplete information. On the other hand,
model-checking with memoryless semantics, where players are not allowed to use any memory about
the history of a game, is decidable and has a much lower complexity [12]. The drawback is that there
are many games where winning strategies exist for some coalition, but where no memoryless winning
strategies exist. In this paper, we focus on the tradeoff between complexity and strategic ability with
respect to the memory available to the players. Instead of considering the extreme cases of memoryless
strategies and infinite memory strategies we look at finite-memory strategies as an intermediate case of
the two. The motivation is the possibility to solve more games than with memoryless strategies, but
without the cost that comes with infinite memory.

We introduce two new types of semantics called bounded-memory semantics and finite-memory se-
mantics respectively. For bounded-memory semantics thereis a bound on the amount of memory avail-
able to the players, whereas for finite-memory semantics players can use any finite amount of memory.
We will study the expressiveness of these new types of semantics compared to memoryless and perfect
recall semantics inATLandATL∗ with both complete and incomplete information. Afterwardswe focus
on the complexity and decidability of the model-checking problem for the different cases.
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Our approach have similarities with the work done in [12], [5] and [1]. It is a natural extension of the
framework used in [12] where memoryless semantics and perfect recall semantics are considered. In [5]
ATL/ATL∗ with bounded-memory semantics and strategy context is introduced for complete information
games, where bounded-memory strategies are defined essentially in the same way as here. However,
their use of strategy context makes the problems and algorithms considered different from ours. In [1] a
version with bounded-recall is considered where agents canonly remember the lastm states of the play.
This contrasts our approach where the players can decide what to store in the memory about the past.

2 Concurrent game structures

A concurrent game is played on a finite graph by a finite number of players, where the players interact
by moving a token between different states along the edges ofthe graph. The game is played an infinite
number of rounds where each round is played by letting every player independently and concurrently
choose an action. The combination of actions chosen by the players along with the current state uniquely
determines the successor state of the game. More formally,

Definition 1. A concurrent game structure (CGS) with n players

G = (States,Agt,Act,Mov,Tab)

consists of

• States- A finite non-empty set of states

• Agt = {1, ...,n} - A finite non-empty set of players

• Act - A finite non-empty set of actions

• Mov : States×Agt → 2Act \{ /0} - A function specifying the legal actions at a given state of agiven
player

• Tab : States×Actn → States- A transition function defined for each(a1, ...,an) ∈ Actn and state s
such that aj ∈ Mov(s, j) for 1≤ j ≤ n

Unless otherwise noted, we implicitly assume from now on that the players in a game are named
1, ...,n wheren = |Agt|. Note that every player must have at least one legal action ineach state. The
transition function Tab is defined for each state and all legal tuples of actions in that state. We also refer
to such legal tuples of actions as moves. To add meaning to concurrent game structures we introduce the
concept of a concurrent game model which consists of a concurrent game structure as well as a label-
ing of the states in the structure with propositions from some fixed, finite set Prop of proposition symbols.

Definition 2. A concurrent game model (CGM) is a pair(G ,π) whereG is a concurrent game structure
andπ : States→ P(Prop) is a labeling function.

An example of a CGM can be seen in Figure 1, where the states aredrawn as nodes. Transitions are
drawn as edges between nodes such that there is an edge froms to s′ labeled with the move(a1, ...,an) if
Tab(s,(a1, ...,an)) = s′. The states are labelled with propositions from the set Prop= {p,q} in the figure.

We define an incomplete information concurrent game structure as a CGS where each playerj has
an equivalence relation∼ j on the set of states. The intuitive meaning is thats∼ j s′ if player j cannot
distinguish between the statessands′.
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Figure 1: CGMM

Definition 3. A concurrent game structure with incomplete information (iCGS) with n players is a tuple

G = (States,Agt,Act,Mov,Tab,(∼ j)1≤ j≤n)

where

• (States,Agt,Act,Mov,Tab) is a CGS

• ∼ j⊆ States×Statesis an equivalence relation for all1≤ j ≤ n

• If s∼ j s′ thenMov(s, j) = Mov(s′, j) for all s,s′ ∈ Statesand all j∈ Agt

Note that we require the set of actions available to a player in two indistinguishable states to be the
same. We extend the notion to concurrent game models with incomplete information in the natural way.

Definition 4. A concurrent game model with incomplete information (iCGM)is a pair (G ,π) whereG
is an iCGS andπ : States→ 2Prop is a labeling function.

For each playerj, the relation∼ j induces a set[·] j of equivalence classes of states. We denote by[s] j

the class that statesbelongs to for playerj. These classes are refered to as the observation sets of player
j. Since the set of legal actions of playerj is required to be the same in states from the same observation
set, we can define Mov([s] j , j) = Mov(s, j) for all statess. Note that the concepts of iCGS and iCGM
generalize CGS and CGM respectively, since they are the special cases where∼ j is the identity relation
for all players j.

3 Outcomes, histories and strategies

Let G = (States,Agt,Act,Mov,Tab) be a CGS withn players. An outcome (or play) of a concurrent
game is an infinite sequence of states in the game structure that corresponds to an infinite sequence of
legal moves. Formally, the set of outcomes OutG (s) of G from s∈ States is defined as

OutG (s) = {ρ0ρ1... ∈ Statesω | ρ0 = s∧∀ j ≥ 0.∃m∈ Actn.Tab(ρ j ,m) = ρ j+1}
OutG =

⋃
s∈StatesOutG (s) is the set of all outcomes ofG . A history of a concurrent game is a non-

empty, finite prefix of an outcome. The set HistG (s) of histories ofG from s∈ States is defined as

HistG (s) = {ρ0ρ1...ρk ∈ States+ | ρ0 = s∧∃ρ ′ ∈ OutG (s).∀0≤ j ≤ k.ρ j = ρ ′
j}

HistG =
⋃

s∈StatesHistG (s) is the set of all histories ofG . For a (finite or infinite) sequenceρ of states
we write ρ0 for the first state,ρ j for the ( j +1)th state.ρ≤ j is the prefixρ0ρ1...ρ j of ρ andρ≥ j is the
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suffix ρ jρ j+1... of ρ . Whenρ = ρ0...ρk is a finite sequence we denote the length ofρ by |ρ | = k and
write last(ρ) = ρk.

For a given CGSG = (States,Agt,Act,Mov,Tab) we define a strategy for playerj as a mapping
σ j : HistG → Act such that for allh∈ HistG we haveσ j(h) ∈ Mov(last(h), j). Thus, a strategy for player
j maps any given history to an action that is legal for playerj in the final state of the history. We will
also refer to these strategies as perfect recall strategiesor infinite-memory strategies, since a player using
such a strategy can use the entire history of a play up to the decision point to choose his next action.
A memoryless (positional, no recall) strategy for playerj is a strategyσ j such that for allh,h′ ∈ HistG
with last(h) = last(h′) we haveσ j(h) = σ j(h′). It is called a memoryless strategy since the player is only
using the last state of the history to decide on his action. Wedenote by StratR

j the set of perfect recall
strategies for playerj and by Stratrj the set of memoryless strategies for playerj. We write OutG (s,σ)
for a strategyσ = (σa)a∈Agt for coalitionA and a states to denote the set of possible outcomes from state
swhen players in coalitionA play according toσ .

Next, we define finite-memory strategies in which a player is only allowed to store a finite amount of
memory of the history of the game. He can then combine his memory with the current state of the game
to choose an action. To model a strategy with finite memory we use a deterministic finite-state transducer
(DFST). A DFST is a 6-tuple(M,m0,Σ,Γ,T,G) whereM is a finite, non-empty set of states,m0 is the
initial state,Σ is the input alphabet,Γ is the output alphabet,T : M ×Σ → M is the transition function
andG : M×Σ → Γ is the output function. The set of states of the DFST are the possible values of the
internal memory of the strategy. We will also call these memory states. The initial state corresponds to
the initial memory value. The input symbols are the states ofthe game and the set of output symbols is
the set of actions of the game. In each round of the game the DFST reads a state of the game. Then it
updates its memory based on the current memory value and the input state and performs an action based
on the current memory value and the input state. More formally, we say that a strategyσ j for player j is
a finite-memory strategy if there exists a DFSTA= (M,m0,States,Act,T,G) such that for allh∈ HistG
we have

σ j(h) = G(T (m0,h≤|h|−1), last(h))

whereT is defined recursively byT (m,ρ) = T(m,ρ0) for any memory statem and any historyρ
with |ρ |= 0 andT (m,ρ) = T(T (m,ρ≤|ρ |−1), last(ρ)) for any memory statem and any historyρ with
|ρ | ≥ 1. Intuitively T is the function that repeatedly applies the transition function T on a sequence of
inputs to calculate the memory state after a given history. We callT the repeated transition function. We
say thatσ j is ak-memory strategy if the number of states of the DFST isk. We also say that the strategy
σ j is represented by the DFSTA. We denote the set of finite-memory strategies for playerj by StratFj
and the set ofk-memory strategies for playerj by StratFk

j . Thus, StratFj =
⋃

k≥1StratFk
j . In addition, we

have that the memoryless strategies are exactly the finite-memory strategies with one memory state, i.e.
StratF1

j = Stratrj .
Next, we generalize the notions of strategies to incompleteinformation games by defining them on

observation histories rather than on histories, since players observe sequences of observation sets during
the play rather than sequences of states. We define the set Hist j

G of observation histories for playerj in
iCGSG as

Hist j
G = {[s0] j [s1] j ...[sk] j | s0s1...sk ∈ HistG }

For each player, a given history induces a particular observation history which is observed by the
player. Then, strategies are defined as mappings from observation histories to actions, memoryless
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strategies are strategies where the same action is chosen for any observation history ending with the
same observation set and finite-memory strategies are represented by DFSTs where the input symbols
are observation sets rather than states of the game. Note that the definitions coincide for complete infor-
mation games.

4 ATL/ATL∗ with finite-memory and bounded-memory semantics

The alternating-time temporal logicsATL andATL∗ generalize the computation tree logicsCTL and
CTL∗ with the strategic operator〈〈A〉〉ϕ which expresses that coalitionA has a strategy to ensure the
propertyϕ . For a fixed, finite set Agt of agents and finite set Prop of proposition symbols theATL∗

formulas are constructed from the following grammar

ϕ ::= p | ¬ϕ1 | ϕ1∨ϕ2 | Xϕ1 | ϕ1Uϕ2 | 〈〈A〉〉ϕ1

wherep∈ Prop,ϕ1,ϕ2 areATL∗ formulas andA⊆ Agt is a coalition of agents. The connectives∧, →,
⇔, G andF are defined in the usual way. The universal path quantifierA of computation tree logic can
be defined as〈〈 /0〉〉. ATL is the subset ofATL∗ defined by the following grammar

ϕ ::= p | ¬ϕ1 | ϕ1∨ϕ2 | 〈〈A〉〉Xϕ1 | 〈〈A〉〉Gϕ1 | 〈〈A〉〉(ϕ1Uϕ2)

wherep∈ Prop,ϕ1,ϕ2 areATL formulas andA⊆ Agt is a coalition of agents.
We distinguish between state formulas and path formulas, which are evaluated on states and paths of

a game respectively. The state formulas are defined as follows

• p is a state formula ifp∈ Prop

• If ϕ1 andϕ2 are state formulas, then¬ϕ1 andϕ1∨ϕ2 are state formulas

• If ϕ1 is anATL∗ formula andA⊆ Agt, then〈〈A〉〉ϕ1 is a state formula

All ATL∗ formulas are path formulas. Note that allATL formulas are state formulas.
In [12] ATL andATL∗ are defined with different semantics based on (1) whether thegame is with

complete or incomplete information (2) whether perfect recall strategies or only memoryless strategies
are allowed. Herei andI are used to denote incomplete and complete information respectively. r andR
are used to denote memoryless and perfect recall strategiesrespectively. We extend this framework by
considering finite-memory semantics where only finite-memory strategies are allowed and denote this
by F . In addition we extend it with an infinite hierarchy of bounded-memory semantics, whereFk for
k≥ 1 denotes that onlyk-memory strategies are allowed. We denote the satisfactionrelations|=XY where
X ∈ {i, I} andY ∈ {r,F1,F2, ...,F,R}. We will also writeATLXY andATL∗XY to denote the logics obtained
with the different types of semantics.

The semantics of formulas in alternating-time temporal logic is given with respect to a fixed CGM
M = (G ,π) where the players that appear in the formulas must appear inG and the propositions present
in the formulas are in Prop. For state formulas we define for all CGMs M = (G ,π), all statess, all
propositionsp∈ Prop, all state formulasϕ1 andϕ2, all path formulasϕ3, all coalitionsA∈ Agt and all
Y ∈ {r,F1,F2, ...,F,R}
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M ,s |=IY p if p∈ π(s)
M ,s |=IY ¬ϕ1 if M ,s 6|=IY ϕ1

M ,s |=IY ϕ1∨ϕ2 if M ,s |=IY ϕ1 or M ,s |=IY ϕ2

M ,s |=IY 〈〈A〉〉ϕ3 if there exist strategies(σA)a∈A ∈ ∏a∈AStratYa such that
∀ρ ∈ OutG (s,σA).M ,ρ |=IY ϕ3

For path formulas we define for all CGMsM = (G ,π), all pathsρ , all propositionsp ∈ Prop, all
state formulasϕ1, all path formulasϕ2 andϕ3, all coalitionsA∈ Agt and allY ∈ {r,F1,F2, ...,F,R}

M ,ρ |=IY ϕ1 if M ,ρ0 |=IY ϕ1

M ,ρ |=IY ¬ϕ2 if M ,ρ 6|=IY ϕ2

M ,ρ |=IY ϕ2∨ϕ3 if M ,ρ |=IY ϕ2 or M ,ρ |=IY ϕ3

M ,ρ |=IY Xϕ2 if M ,ρ≥1 |=IY ϕ2

M ,ρ |=IY ϕ2Uϕ3 if ∃k.M ,ρ≥k |=IY ϕ3 and∀ j < k.M ,ρ≥ j |=IY ϕ2

For iCGMs the semantics are defined similarly, but for〈〈A〉〉ϕ to be true in states the coalitionA must
have a strategy to make sureϕ is satisfied in all plays starting in states that are indistinguishable froms
to one of the players inA. Now, for state formulas we define for all iCGMsM = (G ,π), all statess, all
propositionsp∈ Prop, all state formulasϕ1 andϕ2, all path formulasϕ3, all coalitionsA∈ Agt and all
Y ∈ {r,F1,F2, ...,F,R}

M ,s |=iY p if p∈ π(s)
M ,s |=iY ¬ϕ1 if M ,s 6|=iY ϕ1

M ,s |=iY ϕ1∨ϕ2 if M ,s |=iY ϕ1 or M ,s |=iY ϕ2

M ,s |=iY 〈〈A〉〉ϕ3 if there exist strategies(σA)a∈A ∈ ∏a∈AStratYa such that
for everya∈ A, everys′ ∼a sand everyρ ∈ OutG (s′,σA)
we haveM ,ρ |=iY ϕ3

For path formulas we define for all iCGMsM = (G ,π), all pathsρ , all propositionsp∈ Prop, all
state formulasϕ1, all path formulasϕ2 andϕ3, all coalitionsA∈ Agt and allY ∈ {r,F1,F2, ...,F,R}

M ,ρ |=iY ϕ1 if M ,ρ0 |=iY ϕ1

M ,ρ |=iY ¬ϕ2 if M ,ρ 6|=iY ϕ2

M ,ρ |=iY ϕ2∨ϕ3 if M ,ρ |=iY ϕ2 or M ,ρ |=iY ϕ3

M ,ρ |=iY Xϕ2 if M ,ρ≥1 |=iY ϕ2

M ,ρ |=iY ϕ2Uϕ3 if ∃k.M ,ρ≥k |=iY ϕ3 and∀ j < k.M ,ρ≥ j |=iY ϕ2

We will occasionally write|=L
XY to emphasize that the semantics is for the logicL, but omit it when

the logic is clear from the context as above.

5 Expressiveness

With the new types of semantics introduced we are interestedin when the new types of semantics are
different and when they are equivalent. For instance, in [12] it was noted that|=Ir and|=IR are equivalent
for ATL, but notATL∗. We do a similar comparison for the different kinds of semantics in order to
understand the capabilities of different amounts of memoryin different games. In addition, since there
is equivalence in some cases this gives us fewer different cases to solve when considering the model-
checking problem. We start by looking only at formulas of theform 〈〈A〉〉ϕ whereA⊆ Agt andϕ is an
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LTL formula. Denote the fragments ofATL andATL∗ restricted to this kind of formulas byATL0 and
ATL∗0 respectively. A nice property of these fragments is the following proposition, which tells us that to
have equivalence of semantics for two types of memory for eitherATLor ATL∗ it is sufficient to consider
the fragmentsATL0 andATL∗0 respectively.

Proposition 5. For X ∈ {i, I} and Y,Z ∈ {r,F1,F2, ...,F,R} we have

1. |=ATL
XY = |=ATL

XZ if and only if |=ATL0
XY = |=ATL0

XZ

2. |=ATL∗
XY = |=ATL∗

XZ if and only if |=ATL∗0
XY = |=ATL∗0

XZ

Proof. We treat both cases simultaneously and letL ∈ {ATL,ATL∗}. (⇒) The first direction is trivial,
since the set ofL0 formulas is included in the set ofL formulas.(⇐) For the second direction suppose
|=L0

XY = |=L0
XZ. Let M = (G ,π) be an (i)CGM over the set Prop of proposition symbols. Letϕ be an

arbitrary formula fromL that containsk strategy quantifiers. Letϕ =ϕ0 andπ = π0. We transformϕ0 and
π0 in k rounds, in each round 1≤ j ≤ k the innermost subformulaϕ ′ of ϕ j−1 with a strategy quantifier
as main connective is replaced by a new proposionp j 6∈ Prop to obtainϕ j . The labeling function is
extended such that for all statesswe have

π j(s) =

{
π j−1(s)∪{p j} if (G ,π j−1),s |=L0

XY ϕ ′

π j−1(s) otherwise

Note that because of our initial assumption we have(G ,π j−1),s|=XY ϕ ′ if and only if (G ,π j−1),s|=XZ

ϕ ′ sinceϕ ′ is anL0 formula. Therefore, for eachj and all pathsρ we also have

(G ,π j−1),ρ |=XY ϕ j−1 if and only if (G ,π j),ρ |=XY ϕ j and

(G ,π j−1),ρ |=XZ ϕ j−1 if and only if (G ,π j),ρ |=XZ ϕ j

In particular,ϕk is anLTL formula and therefore for allρ we have(G ,πk),ρ |=XY ϕk if and only if
(G ,πk),ρ |=XZ ϕk. Together with the above we get for allρ that

(G ,π0),ρ |=XY ϕ0 iff (G ,π1),ρ |=XY ϕ1 iff ... iff (G ,πk),ρ |=XY ϕk iff

(G ,πk),ρ |=XZ ϕk iff ... iff (G ,π1),ρ |=XZ ϕ1 iff (G ,π0),ρ |=XZ ϕ0

Thus,|=L
XY = |=L

XZ sinceϕ andM was chosen arbitrarily.

The relations between different types of semantics presented in Figure 2 provide insights about the
need of memory for winning strategies in games with various amounts of information and types ofLTL
objectives that can be specified inATL0/ATL∗0. In addition, according to Proposition 5 the cases of
equivalence in Figure 2 are exactly the cases of equivalencefor the full ATL/ATL∗. We will use the rest
of this section to prove the results of this table.



Steen Vester 201

Logic Expressiveness

ATL0 w. complete info |=ATL0
Ir = |=ATL0

IF2
= |=ATL0

IF3
= ... = |=ATL0

IF = |=ATL0
IR

ATL0 w. incomplete info |=ATL0
ir ⊂ |=ATL0

iF2
⊂ |=ATL0

iF3
⊂ ... ⊂ |=ATL0

iF ⊂ |=ATL0
iR

ATL∗0 w. complete info |=ATL∗0
Ir ⊂ |=ATL∗0

IF2
⊂ |=ATL∗0

IF3
⊂ ... ⊂ |=ATL∗0

IF = |=ATL∗0
IR

ATL∗0 w. incomplete info |=ATL∗0
ir ⊂ |=ATL∗0

iF2
⊂ |=ATL∗0

iF3
⊂ ... ⊂ |=ATL∗0

iF ⊂ |=ATL∗0
iR

Figure 2: Relations between the different types of semantics

5.1 Complete information games

For complete information games, the question of whether a (memoryless/finite-memory/perfect recall)
winning strategy exists for a coalitionA can be reduced to the question of whether a (memoryless/finite-
memory/perfect recall) winning strategy exists for player1 in a two-player turn-based game. The idea is
to let player 1 control coalitionA and let player 2 control coalition Agt\A and give player 2 information
about the action of player 1 before he has to choose in each round of the game in order to make it turn-
based. SinceATL0 can only be used to express reachability (〈〈A〉〉ϕ1Uϕ2), safety (〈〈A〉〉Gϕ1) and 1-step
reachability (〈〈A〉〉Xϕ1) objectives where no memory is needed for winning strategies [9], it follows that
all types of semantics considered are equal inATL with complete information as noted in [12]. Since
ATL∗0 can only be used to expressLTL objectives, it follows that|=ATL∗

IF = |=ATL∗
IR since only finite

memory is needed for winning strategies in such games [11].

5.2 The bounded-memory hierarchy

The bounded-memory hierarchy is increasing forATL0/ATL∗0 because when a coalition has ak-memory
winning strategy, then it also has ak+1-memory winning strategy which can be obtained by adding a
disconnected memory-state to the DFST representing the strategy. ForATL∗0 with complete information
the hierarchy is strict. This can be seen since the familyϕk = 〈〈{1}〉〉Xkp of formulas fork ≥ 1 has the
property thatM ,s0 |=IFk ϕk andM ,s0 6|=IFk−1 ϕk for k ≥ 2 for the one-player CGMM illustrated in
Figure 3. Here player 1 wins if he choosesw (wait) the firstk−1 rounds and then choosesg (go) in the
kth round.

s0

p

s1 s2

g w,g
w g,w

Figure 3: CGMM

The reason that the propertyXkp cannot be forced by player 1 using a(k−1)-memory strategy is that
the DFST representing the strategy would have to output the action w in the firstk−1 rounds followed
by an output of the actiong when reading the same inputs0 in every round. This is not possible, because
after k− 1 rounds there must have been at least one repeated memory-state and from such a repeated
state, the DFST would keep repeating its behavior. Therefore, it will either outputw forever or output
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g before thekth round, making it unable to enforceXkp. ForATL0/ATL∗0 with incomplete information,
we can show the same result for the formulaψ = 〈〈{1}〉〉Fp for the familyMk of iCGMs illustrated in
Figure 4 wherek≥ 1. In this game all states excepts0 are in the same observation set for player 1. Here
we haveMk,s0 |=iFk ψ andMk,s0 6|=iFk−1 ψ .

s0 s1

...

sk−1 sk

slose pswin

...

w w w w

g g g
w g

g,w g,w

Figure 4: iCGMMk

Player 1 wins exactly if he choosesw for the firstk rounds and theng, which is not possible for a
(k−1)-memory strategy when it receives the same input symbol in every round after the initial round as
in the previous example.

The reason why the bounded-memory hierarchies are not increasing forATL/ATL∗ in general is the
possibility of using negation of strategically quantified formulas. For instance, given anATL0 formula
ϕ , an iCGMM and a states such thatM ,s |=iFk ϕ andM ,s 6|=iFk−1 ϕ for somek, then for theATL
formula¬ϕ we haveM ,s 6|=iFk ¬ϕ andM ,s |=iFk−1 ¬ϕ .

5.3 Infinite memory is needed

Finally, infinite memory is actually needed in some cases forATL0/ATL∗0 with incomplete information.
This is shown in a slightly different framework in [4] where an example of a game is given with initial
states0 such thatM ,s0 |=iR 〈〈{1,2}〉〉G¬p andM ,s0 6|=iF 〈〈{1,2}〉〉G¬p for a propositionp. We will
not repeat the example here, but in the undecidability proofin Section 6.3 an example of such a game
is given. This means that|=L

iF 6= |=L
iR for L ∈ {ATL0,ATL∗0}. We have|=L

iF ⊆ |=L
iR since all finite-

memory strategies are perfect recall strategies and therefore |=L
iF ⊂ |=L

iR which concludes the last result
of Figure 2.

6 Model-checking

In this section we look at the decidability and complexity ofmodel-checkingATL/ATL∗ with the new
semantics introduced and compare with the results for memoryless and perfect recall semantics. We
adopt the same way of measuring input size as in [2, 3, 12, 10] where the input is measured as the size of
the game structure and the size of the formula to be checked. In the case of bounded-memory semantics,
we also include in the input size the size of the memory-boundk encoded in unary. Our results can be
seen in Figure 5 along with known results for memoryless and perfect recall semantics.

As can be seen in the figure, we obtain the same complexity for bounded-memory semantics as for
memoryless semantics in all the cases which is positive, since we can solve many more games while
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ATL ATL∗

|=Ir PTIME [3] PSPACE[12]
|=IFk PTIME PSPACE
|=IF PTIME 2EXPTIME
|=IR PTIME [3] 2EXPTIME [3]

ATL ATL∗

|=ir ∆p
2 [12, 10] PSPACE[12]

|=iFk ∆p
2 PSPACE

|=iF Undecidable Undecidable
|=iR Undecidable [3, 8] Undecidable [3, 8]

Figure 5: Model-checking complexity forATL,ATL∗. All complexity results are completeness results.

staying in the same complexity class. We also obtain the samecomplexity for finite-memory semantics
as perfect recall semantics, including undecidability forincomplete information games, which is disap-
pointing. We will use the rest of the section to prove these results. In many cases this is done by using
known results and techniques and modifying them slightly aswell as using the results from Section 5.

6.1 Using expressiveness results

In section 5 it was shown that|=ATL
Ir = |=ATL

IF2
= |=ATL

IF3
= ... = |=ATL

IF which means that the model-
checking problem is the same for these cases. Since|=ATL

Ir is known to bePTIME-complete [3] the
result is the same for finite-memory semantics and bounded-memory semantics. It was also shown
that |=ATL∗

IF = |=ATL∗
IR . Since model-checkingATL∗IR is 2EXPTIME-complete [3] so is model-checking

ATL∗IF since it is the same problem.

6.2 Bounded-memory semantics

For model-checkingATLiFk,ATL∗IFk
andATL∗iFk

we employ some of the same ideas as in [12] for mem-
oryless semantics, but extend them to deal with bounded-memory strategies. We first consider model-
checkingATL∗0 formulas with iFk semantics. Model-checking anATL∗0 formula 〈〈A〉〉ϕ in an iCGM
M = (G ,π) with G = (States,Agt,Act,Mov,Tab,(∼ j)1≤ j≤n) and initial states0 can be done using non-
determinism as follows. First, assume without loss of generality that A = {1, ..., r} with r ≤ n. Use
non-determinism to guess ak-memory strategyσ = (σ j)1≤ j≤r for each of the players inA represented
by DFSTsA j = (M j ,mj0, [] j ,Act,Tj ,G j) for j ∈ A. Check that this strategy enforcesϕ by creating a
labelled and initialized transition systemT(s′0,σ) = (Q,R,L,q0) for all s′0 ∼ j s0 for some 1≤ j ≤ r in
which the set of paths corresponds to theσ -outcomes froms′0 in G . The setQ of states, the transition
relationR⊆ Q×Q, the labeling functionL : Q∈ 2Prop and the initial stateq0 are constructed as follows.

• Q= States×∏r
j=1M j

• ([s,(m1, ...,mr)], [s′,(m′
1, ...,m

′
r )]) ∈ R if and only if there existsar+1, ...,an ∈ Act so

– Tab(s,(G1(m1, [s]1), ...,Gr (mr , [s]r ),ar+1, ...,an)) = s′ and
– Tj(mj , [s] j) = m′

j for 1≤ j ≤ r

• L(s,(m1, ...,mr)) = π(s) for all (s,(m1, ...,mr)) ∈ Q
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• q0 = (s′0,(m10, ...,mr0))

Intuitively, each state in the transition system corresponds to a state of the game as well as pos-
sible combinations of memory values for players inA. It can then be shown thatρ = ρ0ρ1... is a
σ -outcome inG from ρ0 = s′0 if and only if there exists(m1 j , ...,mr j ) ∈ ∏r

j=1Mr for j ≥ 0 such that
ρ ′ = (ρ0,(m10, ...,mr0))(ρ1,(m11, ...,mr1))... is a path inT(s′0,σ). This means thatσ is a witness that
M ,s0 |=iFk 〈〈A〉〉ϕ if and only if T(s′0,σ),q0 |=CTL∗ Aϕ for all s′0 ∼ j s0 for some 1≤ j ≤ r. Note that
the size of the transition systems are polynomial in the sizeof the input because|Q|= kr , the numbern
of agents is fixed andr ≤ n. In addition, the transition systemsT(s1,σ) andT(s2,σ) are equal for any
s1,s2 ∈ States except for the initial state of the transition systems. Thus, we can use the same transition
system to do the check for the different initial states. We can perform this check of a strategyσ in
PSPACEsinceCTL∗ model-checking can be done inPSPACE[7]. Moreover, when〈〈A〉〉ϕ is anATL0

formula, the check can be done inPTIME sinceCTLmodel-checking can be done inPTIME [6]. Thus,
we can do model-checking ofATL0 andATL∗0 with iFk semantics inNPandPSPACErespectively.

We extend the above algorithm to fullATL andATL∗ by evaluating the strategically quantified sub-
formulas in a bottom up fashion, starting with the innermostformula and moving outwards resembling
the technique typically used inCTL∗ model-checking [7]. In both cases we need to make a linear amount
of calls to theATL0/ATL∗0 algorithm in the size of the formula to be checked. This givesus a∆p

2 = PNP

algorithm and aPSPACEalgorithm inATL andATL∗ respectively. SinceATL∗ with IFk semantics is
a special case, thePSPACEalgorithm also works here. ThePSPACE-hardness forATL∗iFk

andATL∗IFk

follows from PSPACE-hardness ofATL∗Ir [12] since this is a special case of the two. In the same way
∆p

2-hardness ofATLiFk follows from ∆p
2 hardness ofATLir [10].

6.3 Undecidability of finite-memory semantics

In [8] it was proven that model-checkingATL andATL∗ with iR semantics is undecidable, even for as
simple a formula as〈〈A〉〉G¬p for n ≥ 3 players. We provide a proof sketch for the same result foriF
semantics inspired by a technique from [4] which also illustrates that infinite memory is needed in some
games. The idea is to reduce the problem of whether a deterministic Turing machine with a semi-infinite
tape that never writes the blank symbol repeats some configuration twice when started with an empty
input tape, with the convention that the Turing machine willkeep looping in a halting configuration
forever if a halting state is reached. This problem is undecidable since the halting problem can be
reduced to it. From a given Turing machineT = (Q,q0,Σ,δ ,B,F) of this type whereQ is the set of
states,q0 is the initial state,Σ is the tape alphabet,δ : Q× (Σ∪{B}) → Q×Σ×{L,R} is the transition
function,B is the blank symbol andF is the set of accepting states, we generate a three-player concurrent
game modelMT = (GT ,πT) with a states0 such thatMT ,s0 |=iF 〈〈{1,2}〉〉G¬p if and only if T repeats
some configuration twice.

Consider the three-player gameMT in Figure 6. To make the figure more simple, we only write
the actions of player 1 and 2 along edges and let player 3 choose a successor state, given the choices of
player 1 and 2. If player 1 and 2 choose an action tuple that is not present on an edge from the current
state of the game, the play goes to a sink state wherep is true. In all other statesp is false. Both player
1 and 2 have three observation sets, which are denoted 0,· and I (though, they are not equal for the two
players). In the figure we writex | y in a state if the state is in observation setx for player 1 andy for
player 2. The play starts ins0 which is the only state in observation set 0 for both player 1 and 2. The
rules of the game are such that player 3 can choose when to let player 1 receive observation I. He can
also choose to either let player 2 receive observation I at the same time as player 1 or let him receive it



Steen Vester 205

in the immediately following state of the game. Both player 1and 2 can observe I at most once during
the game. It can be seen from the game graph that both player 1 and 2 must play actiona until they
receive observation I in order not to lose. We design the gameso they must play thevth configuration of
the Turing machineT when receiving observation I afterv rounds in a winning strategy for allv≥ 1. To
do this we let the tape alphabet and the set of control states of T be legal actions for player 1 and 2. By
playing a configuration, we mean playing the contents of the non-blank part of the tape ofT one symbol
at a time from left to right and playing the control state immediately before the content of the cell that
the tape head points to.

0 | 0

s0

I | I · | ·

· | ·

· | ·

I | I

I | · · | I
Player 1 and 2 must play configs
C1 andC2 such thatC1 ⊢T C2

M1

M2

M3

(a,a)

(a,a)

(q0,q0)
(∗,∗)

(∗,∗)(a,a)

(a,a)

(a,a)

(∗,∗)

(a,a)

Figure 6: iCGMMT

We designMT with three modulesM1,M2 andM3 as shown in Figure 6. They are designed with
the following properties

• M1 is designed such that when player 1 and 2 both observe I after the first round, then in a winning
strategy they must both play the initial configuration (i.e.q0) in order to maintain¬p. If they don’t,
then player 3 has a counter-strategy that takes the play toM1.

• M2 is designed such that when player 1 and 2 both observe I at the same time, then in a winning
strategy they must both play the same sequence of symbols after observing I (∗ stands for any
action and(∗,∗) means any action pair where the two actions are equal). If there is a numberr > 1
so they don’t comply with this when observing I after roundr, then player 3 has a counter-strategy
that takes the play toM2 after roundr.

• M3 is designed such that if player 1 observes I in the round before player 2 does, then in a winning
strategy they must player configurationsC1 andC2 respectively such thatC1 ⊢T C2 where⊢T is
the successor relation for configurations ofT. Due to space limitations, the specific design of this
module is omitted here.

Now, supposeT has a repeated configuration. Then player 1 and 2 have a winning strategyσ that
consists in both players playing thejth configuration of the run ofT when observing I after thejth
round. This strategy is winning because no matter if player 3chooses to go to moduleM1,M2,M3 or
none of them, then¬p will always hold given how they are designed when player 1 and2 play according
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to σ . Next, the sequence of configurations in the run ofT is of the formπ · τω whereπ andτ are finite
sequences of configurations sinceT has a repeated configuration. Then, player 1 and 2 only need finite
memory to play according toσ since they only need to remember a finite number of configurations and
how far on the periodic pathπ · τω the play is. Thus, they have a finite-memory winning strategy.

Suppose on the other hand thatT does not have a repeated configuration and assume for contradiction
that player 1 and 2 have ak-memory winning strategyσ for somek. Since player 1 and 2 cannot
see whether the play is inM1,M2 or M3 player 1 must, when playing according toσ , play the first
configurationD1 of the run ofT when observing I after the first round. Otherwise, player 3 has a counter-
strategy taking the play toM1 after the first round. Then, player 2 must play the second configuration
D2 of the run ofT when observing I after the second round. Otherwise, player 3has a counter-strategy
taking the play toM3 after the first round since player 1 must playD1 when observing I after the first
round and player 2 must play a successor configuration of whatplayer 1 plays. Next, when usingσ ,
player 1 must playD2 when observing I after the second round. Otherwise, player 3has a counter-
strategy that takes the play toM2 after the second round since player 2 playsD2 when observing I after
the second round. Repeating this argument, it can be seen that σ must consist of player 1 and 2 playing
the jth configuration of the run ofT when observing I after thejth round for all j ≥ 1. However, this is
not possible for ak-memory strategy when the run ofT does not have a repeated configuration. This is
because the current memory value of the DFST representing the strategy at the point when I is observed
determines which sequence of symbols the strategy will play(since it will receive the same input symbol
for the rest of the game). Thus, it is not capable of playing more thank different configurations. And
since for anyk a winning strategy must be able to play more thank different configurations there is a
contradiction and a finite-memory winning strategy therefore cannot exist.

In conclusionMT ,s0 |=iF 〈〈{1,2}〉〉G¬p if and only if T repeats some configuration twice, which
means that the model-checking problem is undecidable forATLandATL∗ with iF semantics. This game
also illustrates that infinite memory is needed in some games, since player 1 and 2 can win the game with
perfect recall strategies whenT does not have a repeated configuration. This is simply done byplaying
the sequence of configurations of the run ofT.

7 Concluding Remarks

We have motivated the extension of the alternating-time temporal logicsATL/ATL∗ with bounded-
memory and finite-memory semantics and have explored the expressiveness for both complete and
incomplete information games. Both finite-memory semantics and the infinite hierarchy of bounded-
memory semantics were shown to be different from memorylessand perfect recall semantics. We
have also obtained complexity and decidability results forthe model-checking problems that emerged
from the newly introduced semantics. In particular, the model-checking results for bounded-memory
semantics were positive with as low a complexity as for memoryless semantics forATL/ATL∗ and com-
plete/incomplete information games. Unfortunately model-checking with finite-memory semantics was
shown to be as hard as with perfect recall semantics in the cases considered, even though it was shown
to be a different problem.
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Various extensions of the temporal logicATL have recently been introduced to express rich properties
of multi-agent systems. Among these,ATLsc extendsATL with strategy contexts, while Strategy
Logic hasfirst-order quantificationover strategies. There is a price to pay for the rich expressiveness
of these logics: model-checking is non-elementary, and satisfiability is undecidable.

We prove in this paper that satisfiability is decidable in several special cases. The most important
one is when restricting toturn-basedgames. We prove that decidability also holds for concurrent
games if the number of moves available to the agents is bounded. Finally, we prove that restricting
strategy quantification to memoryless strategies brings back undecidability.

1 Introduction

Temporal logics are a convenient tool to reason about computerised systems, in particular in the setting
of verification [Pnu77, CE82, QS82]. When systems are interactive, the models usually involveseveral
agents (or players), and relevant properties to be checked often question the existence ofstrategiesfor
these agents to achieve their goals. To handle these,alternating-time temporal logicwas introduced, and
its algorithmic properties were studied: model checking isPTIME-complete [AHK02], while satisfiabil-
ity was settledEXPTIME-complete [WLWW06].

While model checking is tractable,ATL still suffers from a lack of expressiveness. Over the last
five years, several extensions or variants ofATL have been developed, among whichATL with strategy
contexts[BDLM09] and Strategy Logic[CHP07, MMV10]. The model-checking problem for these
logics has been proved non-elementary [DLM10, DLM12], while satisfiability is undecidable, both when
looking for finite-state or infinite-state models [MMV10, TW12]. Several fragments of these logics have
been defined and studied, with the aim of preserving a rich expressiveness and at the same time lowering
the complexity of the decision problems [WHY11, MMPV12, HSW13].

In this paper we prove that satisfiability is decidable (though with non-elementary complexity) for
the full logicATLsc (andSL) in two important cases: first, when satisfiability is restricted to turn-based
games (this solves a problem left open in [MMV10] for SL), and second, when the number of moves
available to the players is bounded. We also consider a thirdvariation, where quantification is restricted
to memorylessstrategies; in that setting, the satisfiability problem is proven undecidable, even for turn-
based games.

Our results heavily rely on a tight connection betweenATLsc andQCTL [DLM12], the extension
of CTL with quantification over atomic propositions. For instance, theQCTL formula∃p. ϕ states that
it is possible to label the unwinding of the model under consideration with propositionp in such a way
thatϕ holds. This labeling with additional proposition allows usto mark the strategies of the agents and
the model-checking problem forATLsc can then be reduced to the model-checking problem forQCTL.

This work was partly supported by ERC Starting grant EQualIS(308087) and by European project Cassting (FP7-ICT-
601148).



François Laroussinie, Nicolas Markey 209

However, in this transformation, the resultingQCTL formula depends both on theATLsc formula to be
checked and on the game where the formula is being checked. This way, the procedure does not extend
to satisfiability, which is actually undecidable. We prove here that this difficulty can be overcome when
considering turn-based games, or when the number of available moves is fixed. The satisfiability prob-
lem forATLsc is then reduced to the satisfiability problem forQCTL, which we proved decidable (with
non-elementary complexity) in [LM13]. When restricting to memoryless strategies, a similar reduction to
QCTL exists, but in a setting where the quantified atomic propositions directly label the model, instead of
its unwinding. The satisfiability problem forQCTL under that semantics is undecidable [Fre01, LM13],
and we adapt the proof of that result to show that satisfiability of ATL0

sc (in which quantification is
restricted to memoryless strategies) is also undecidable.

2 Definitions

2.1 ATL with strategy contexts

In this section, we define the framework of concurrent game structures, and define the logicATL with
strategy contexts. We fix once and for all a setAP of atomic propositions.

Definition 1. A Kripke structureS is a 3-tuple〈Q,R, ℓ〉 where Q is a countable set of states, R⊆ Q2 is
a total relation (i.e., for all q∈ Q, there is q′ ∈ Q s.t.(q,q′) ∈ R) andℓ : Q→ 2AP is a labelling function.

A path in a Kripke structureS is a mappingρ : N→ Q such that(ρ(i),ρ(i + 1)) ∈ R for all i.
We write first(ρ) = ρ(0). Given a pathρ and an integeri, the i-th suffix of ρ , is the pathρ≥i : n 7→
ρ(i+n); thei-th prefix ofρ , denotedρ≤i, is the finite sequence made of thei+1 first state ofρ . We write
Execf(q) for the set of finite prefixes of paths (orhistories) with first stateq. We writelast(π) for the last
state of a historyπ. Given a historyρ≤i and a pathπ such thatlast(ρ≤i) = first(π), the concatenation
λ = ρ≤i ·π is defined byλ ( j) = ρ( j) when j ≤ i andλ ( j) = π( j − i) when j > i.

Definition 2 ([AHK02]). AConcurrent Game Structure(CGS) C is a7-tuple〈Q,R, ℓ,Agt,M ,Mov,Edge〉
where:〈Q,R, ℓ〉 is a (possibly infinite-state) Kripke structure,Agt= {a1, . . . ,ap} is a finite set ofagents,
M is a non-empty set of moves,Mov : Q×Agt→ P(M )r {∅} defines the set of available moves of
each agent in each state, andEdge : Q×MAgt → R is a transition table associating, with each state q
and each set of moves of the agents, the resulting transitiondeparting from q.

The size of a CGSC is |Q|+ |Edge|. For a stateq ∈ Q, we writeNext(q) for the set of all states
reachable by the possible moves fromq, andNext(q,a j ,mj), with mj ∈ Mov(q,a j ), for the restriction
of Next(q) to possible transitions fromq when playera j plays movemj . We extendMov andNext to
coalitions (i.e., sets of agents) in the natural way. We say that a CGS isturn-basedwhen each stateq is
controlled by a given agent, called the owner ofq (and denotedOwn(q)). In other terms, for everyq∈ Q,
for any two move vectorsm and m′ in which Own(q) plays the same move, it holdsEdge(q,m) =
Edge(q,m′) (which can be achieved by letting the setsMov(q,a) be singletons for everya 6= Own(q)).

A strategyfor some playerai ∈ Agt in a CGSC is a function fi that maps any history to a possi-
ble move forai , i.e., satisfying fi(π) ∈ Mov(last(π),ai). A strategy fi is memorylessif fi(π) = fi(π ′)
wheneverlast(π) = last(π ′). A strategy for a coalitionA is a mapping assigning a strategy to each
agent inA. The set of strategies forA is denotedStrat(A). Thedomaindom(FA) of FA ∈ Strat(A) is A.
Given a coalitionB, the strategy(FA)|B (resp.(FA)rB) denotes the restriction ofFA to the coalitionA∩B
(resp.ArB). Given two strategiesF ∈ Strat(A) andF ′ ∈ Strat(B), we defineF ◦F ′ ∈ Strat(A

⋃
B) as

(F ◦F ′)|aj
(ρ) = F|aj

(ρ) (resp.F ′
|aj
(ρ)) if a j ∈ A (resp.a j ∈ BrA).
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Let ρ be a history. A strategyFA = ( f j)aj∈A for some coalitionA induces a set of paths fromρ , called
theoutcomesof FA afterρ , and denotedOut(ρ ,FA): an infinite pathπ = ρ ·q1q2 . . . is in Out(ρ ,FA) if,
and only if, writingq0 = last(ρ), for all i ≥ 0 there is a set of moves(mi

k)ak∈Agt such thatmi
k ∈Mov(qi ,ak)

for all ak ∈ Agt, mi
k = fk(π|ρ |+i) if ak ∈ A, andqi+1 is the unique element ofNext(qi ,Agt,(mi

k)ak∈Agt).
Also, given a historyρ and a strategyFA= ( f j)aj∈A, the strategyFρ

A is the sequence of strategies( f ρ
j )aj∈A

such thatf ρ
j (π) = f j(ρ ·π), assuminglast(ρ) = first(π).

We now introduce the extension ofATL with strategy contexts [BDLM09, DLM10]:

Definition 3. Given a set of atomic propositionsAP and a set of agentsAgt, the syntax ofATL∗sc is
defined as follows (where p ranges over AP and A over2Agt):

ATL∗sc∋ ϕstate,ψstate ::=p | ¬ϕstate | ϕstate∨ψstate | ·〉A〈·ϕstate | 〈·A·〉ϕpath

ϕpath,ψpath ::=ϕstate | ¬ϕpath | ϕpath∨ψpath | X ϕpath | ϕpath Uψpath.

That a (state or path) formulaϕ is satisfied at a positioni of a pathρ of a CGSC under a strategy
contextF ∈ Strat(B) (for some coalitionB), denotedC ,ρ , i |=F ϕ , is defined as follows (omitting atomic
propositions and Boolean operators):

C ,ρ , i |=F ·〉A〈·ϕstate iff C ,ρ , i |=FrA ϕstate

C ,ρ , i |=F 〈·A·〉ϕpath iff ∃FA ∈ Strat(A). ∀ρ ′ ∈ Out(ρ≤i ,FA◦F). C ,ρ ′, i |=FA◦F ϕpath

C ,ρ , i |=F X ϕpath iff C ,ρ , i +1 |=F ϕpath

C ,ρ , i |=F ϕpath Uψpath iff ∃ j ≥ 0. C ,ρ , i + j |=F ψpath and∀0≤ k< j. C ,ρ , i +k |=F ϕpath

Notice how the (existential) strategy quantifier contains an implicit universal quantification over the set of
outcomes of the selected strategies. Also notice that stateformulas do not really depend on the selected
path: indeed one can easily show that

C ,ρ , i |=F ϕstate iff C ,ρ ′, j |=F ′ ϕstate

where we assumeρ(i) = ρ ′( j) and whereF andF ′ verifies:F(ρ≤i ·ρ ′′) = F ′(ρ ′
≤ j ·ρ ′′) for any finiteρ ′′

starting inρ(i). In particular this is the case when theρ≤i = ρ ′
≤ j andF = F ′.

In the sequel we equivalently writeC ,π(0) |=F ϕstate in place ofC ,π,0 |=F ϕstate when dealing with
state formulas.

For convenience, in the following we allow the construct〈·A·〉ϕstate, defining it as a shorthand for
〈·A·〉⊥Uϕstate. We also use the classical modalitiesF and G , which can be defined usingU . Also,
[·A·]ϕpath = ¬ 〈·A·〉 ¬ϕpath expresses that anyA-strategy has at least one outcome whereϕpath holds.

The fragmentATLsc of ATL∗sc is defined as usual, by restricting the set of path formulas to

ϕpath,ψpath ::= ¬ϕpath | X ϕstate | ϕstate Uψstate.

It was proved in [BDLM09] that ATLsc is actually as expressive asATL∗sc. Moreover, for any given
set of players, anyATLsc formula can be written without using negation in path formulas, replacing for
instance〈·A·〉Gϕ with 〈·A·〉 ¬ 〈·Agt\ (A∪B)·〉F ¬ϕ , whereB is the domain of the context in which the
formula is being evaluated. While this is not a generic equivalence (it depends on the context and on the
set of agents), it provides a way of removing negation from any givenATLsc formula.
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2.2 QuantifiedCTL

In this section, we introduceQCTL, and define itstree semantics.

Definition 4. Let Σ be a finite alphabet, and S be a (possibly infinite) set of directions. AΣ-labelled
S-tree is a pair T = 〈T, l〉, where T⊆ S∗ is a non-empty set of finite words on S s.t. for any non-empty
word n= m·s in T with m∈ S∗ and s∈ S, the word m is also in T ; and l: T → Σ is a labelling function.

Theunwinding(or execution tree) of a Kripke structureS = 〈Q,R, ℓ〉 from a stateq∈ Q is the 2AP-
labelledQ-treeTS (q) = 〈Execf(q), ℓT 〉 with ℓT (q0 · · ·qi) = ℓ(qi). Note thatTS (q) = 〈Execf(q), ℓT 〉
can be seen as an (infinite-state) Kripke structure where theset of states isExecf(q), labelled according
to ℓT , and with transitions(m,m·s) for all m∈ Execf(q) ands∈ Q s.t. m·s∈ Execf(q).

Definition 5. For P⊆AP, two2AP-labelled treesT = 〈T, ℓ〉 andT ′ = 〈T ′, ℓ′〉 are P-equivalent(denoted
byT ≡P T ′) whenever T= T ′, andℓ(n)∩P= ℓ′(n)∩P for any n∈ T.

In other terms,T ≡P T ′ if T ′ can be obtained fromT by modifying the labelling function ofT
for propositions not inP. We now define the syntax and semantics ofQCTL∗:

Definition 6. The syntax ofQCTL∗ is defined by the following grammar:

QCTL∗ ∋ ϕstate,ψstate ::=p | ¬ϕstate | ϕstate∨ψstate | Eϕpath | Aϕpath | ∃p. ϕstate

ϕpath,ψpath ::=ϕstate | ¬ϕpath | ϕpath∨ψpath | X ϕpath | ϕpath Uψpath.

QCTL∗ is interpreted here over Kripke structures through their unwindings1: given a Kripke struc-
tureS , a stateq and a formulaϕ ∈ QCTL∗, thatϕ holds atq in S , denoted withS ,q |=t ϕ , is defined
by the truth value ofTS (q) |= ϕ that uses the standard inductive semantics ofCTL∗ over trees extended
with the following case:

T |= ∃p.ϕstate iff ∃T ′ ≡AP\{p} T s.t.T ′ |= ϕstate.

Universal quantification over atomic propositions, denoted with the construct∀p. ϕ , is obtained by du-
alising this definition. We refer to [LM13] for a detailed study ofQCTL∗ andQCTL. Here we just
recall the following important properties of these logics.First note thatQCTL is actually as expressive
asQCTL∗ (with an effective translation) [Fre01, DLM12]. Secondly model checking and satisfiability
are decidable but non elementary. More precisely given aQCTL formulaϕ and a (finite) set of degrees
D ⊆ N, one can build a tree automatonAϕ ,D recognizing theD-trees satisfyingϕ . This provides a
decision procedure for model checking as the Kripke structureS fixes the setD , and it remains to check
whether the unwinding ofS is accepted byAϕ ,D . For satisfiability the decision procedure is obtained
by building a formulaϕ2 from ϕ such thatϕ2 is satisfied by some{1,2}-tree iff ϕ is satisfied by some
finitely-branching tree. Finally it remains to notice that aQCTL formula is satisfiable iff it is satisfiable
in a finitely-branching tree (asQCTL is as expressive asMSO) to get the decision procedure forQCTL
satisfiability. By consequence we also have that aQCTL formula is satisfiable iff it is satisfied by a
regular tree (corresponding to the unwinding of some finite Kripke structure).

3 From ATLsc to QCTL

The main results of this paper concern the satisfiability problem forATLsc: given a formula inATLsc,
does there exists a CGSC and a stateq such thatC ,q |=∅ ϕ (with empty initial context)? Before we

1Note that several semantics are possible forQCTL∗ and the one we use here is usually called thetree semantics.
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present these results in the next sections, we briefly explain how we reduce the model-checking problem
for ATLsc (which consists in deciding whether a given stateq of a given CGSC satisfies a givenATLsc

formula ϕ) to the model-checking problem forQCTL. This reduction will serve as a basis for proving
our main result.

3.1 Model checking

LetC = 〈Q,R, ℓ,Agt,M ,Mov,Edge〉 be a finite-state CGS, with a finite set of movesM = {m1, . . . ,mk}.
We consider the following sets of fresh atomic propositions: PQ = {pq | q ∈ Q}, P j

M = {m j
1, . . . ,m

j
k}

for every a j ∈ Agt, and writePM =
⋃

aj∈AgtP
j
M . Let SC be the Kripke structure〈Q,R, ℓ+〉 where

for any stateq, we have:ℓ+(q) = ℓ(q)∪ {pq}. A strategy for an agenta j can be seen as a function
f j : Exec

f(q)→ P j
M labeling the execution tree ofSC with propositions inP j

M .
Let F ∈ Strat(C) be a strategy context andΦ ∈ ATLsc. We reduce the question whetherC ,q |=F Φ

to a model-checking instance forQCTL∗ overSC . For this, we define aQCTL∗ formulaΦC
inductively:

for non-temporal formulas,

·〉A〈·ϕC
= ϕCrA ϕ ∧ψC = ϕC∧ψC ¬ψC = ¬ϕC pC = p

For a formula of the form〈·A·〉X ϕ with A= {a j1, . . . ,a jl }, we let:

〈·A·〉X ϕC
= ∃m j1

1 ...m j1
k ...m jl

1 ...m
jl
k .
∧

aj∈A

AG
(

Φstrat(a j)
)
∧ A

(
Φ[C∪A]

out ⇒X ϕC∪A
)

where:

Φstrat(a j) =
∨

q∈Q

(
pq∧

∨

mi∈Mov(q,aj )

(m j
i ∧
∧

l 6=i

¬m j
l )
)

Φ[A]
out = G

[ ∧

q∈Q
m∈Mov(q,A)

(
(pq∧m)⇒X

Ä ∨

q′∈Next(q,A,m)

pq′
ä)]

wherem is a move(mj)aj∈A ∈Mov(q,A) for A andPm is the propositional formula
∧

aj∈Amj character-

izing m. FormulaΦstrat(a j) ensures that the labelling of propositionsm j
i describes a feasible strategy

for a j . FormulaΦ[A]
out characterizes the outcomes of the strategy forA that is described by the atomic

propositions in the model. Note thatΦ[A]
out is based on the transition tableEdge of C (via Next(q,A,m)).

For a formula of the form〈·A·〉(ϕ Uψ) with A= {a j1, . . . ,a jl }, we let:

〈·A·〉(ϕ Uψ)
C
= ∃m j1

1 ...m
j1
k ...m jl

1 ...m
jl
k .
∧

aj∈A

AG
(

Φstrat(a j)
)
∧ A

(
Φ[C∪A]

out ⇒(ϕC∪AUψC∪A)
)

Then:
Theorem 7. [DLM12] Let q be a state in a CGSC . Let Φ be anATLsc formula and F be a strategy
context for some coalition C. LetT ′ be the execution treeTSC

(q) with a labelling functionℓ′ s.t. for
everyπ ∈ Execf(q) of length i and any aj ∈ C, ℓ′(π)∩P j

M = m j
i if, and only if, F(π)|aj

= mi. Then

C ,q |=F Φ if, and only if,T ′,q |=t ΦC
.

Combined with the (non-elementary) decision procedure forQCTL∗ model checking, we get a model-
checking algorithm for model checkingATLsc. Notice that our reduction above is intoQCTL∗, but as
explained before everyQCTL∗ formula can be translated intoQCTL. Finally note that model checking
is non elementary (k-EXPTIME-hard for anyk) both forQCTL andATLsc [DLM12].
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3.2 Satisfiability

We now turn to satisfiability. The reduction toQCTL we just developed for model checking does not
extend to satisfiability, because theQCTL formula we built depends both on the formula and on the
structure. Actually, satisfiability is undecidable forATLsc, both for infinite CGS and when restricting
to finite CGS [TW12]. It is worth noticing that both problems are relevant, asATLsc does not have the
finite-model property (nor does it have the finite-branchingproperty). This can be derived from the fact
that the modal logicS5n does not have the finite-model property [Kur02], and from the elegant reduction
of satisfiability ofS5n to satisfiability ofATLsc given in [TW12] 2.

In what follows, we prove decidability of satisfiability in two different settings: first in the setting
of turn-based games, and then in the setting of a bounded number of actions allowed to the players.
A consequence of our decidability proofs is that in both cases (based on automata constructions),ATLsc

does have the finite-model property (thanks to Rabin’s regularity theorem). We also consider the setting
where quantification is restricted to memoryless strategies, but prove that then satisfiability is undecidable
(even on turn-based games and with a fixed number of actions).

Before we proceed to the algorithms for satisfiability, we prove a generic result3 about the number
of agents needed in a CGS to satisfy a formula involving a given set of agents. This result has already
been proved forATL (e.g. in [WLWW06]). Given a formulaΦ ∈ ATLsc, we useAgt(Φ) to denote the
set of agents involved in the strategy quantifiers inΦ.

Proposition 8. AnATLsc formulaΦ is satisfiable iff, it is satisfiable in a CGS with|Agt(Φ)|+1 agents.

Proof. AssumeΦ is satisfied in a CGSC = 〈Q,R, ℓ,Agt,M ,Mov,Edge〉. If |Agt| ≤ Agt(Φ), one can
easily add extra players inC in such a way that they play no role in the behavior of the game structure.
Otherwise, if|Agt| > Agt(Φ)+1, we can replace the agents inAgt that do not belong toAgt(Φ) by a
unique agent mimicking the action of the removed players. For example, a coalitionA= {a1, . . . ,ak} can
be replaced by a playera whose moves arek-tuples inM k.

4 Turn-based case

Let Φ be anATLsc formula, and assumeAgt(Φ) is the set{a1, . . . ,an}. Following Prop.8, let Agt be
the set of agentsAgt(Φ)∪{a0}, wherea0 is an additional player. In the following, we use an atomic
propositions(turn j)aj∈Agt to specify the owner of the states. A strategy for an agenta j can be encoded
by an atomic propositionmov j : indeed it is sufficient to mark onesuccessorof everya j -state (notice
that this is a crucial difference with CGS). The outcomes of such a strategy are the runs in which every
a j -state is followed by a state labelled withmov j ; this is the main idea of the reduction below.

Given a coalitionC (which we intend to represent the agents that have a strategyin the current
context), we define aQCTL∗ formula“ΦC inductively:

• for non-temporal formulas we let:

·̂〉A〈·ϕ
C
= ϕ̂CrA ϕ̂ ∧ψC

= ϕ̂C∧“ψC ‘¬ψC
= ¬ ϕ̂C P̂C = P

• for path formulas, we define:

X̂ ϕ
C
= X ϕ̂C ϕ̂ Uψ

C
= ϕ̂C U“ψC

2Indeed the finite-branching property forATLsc would imply the finite-model property forS5n.
3Note that it still holds true when restricting to turn-basedgames.
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• for formulas of the form〈·A·〉ϕ with A= {a j1, . . . ,a jl }, we let:

〈̂·A·〉ϕ
C
= ∃mov j1...mov jl .ñ

AG
∧

aj∈A

(turn j ⇒ EX1mov j)∧ A
[
G
( ∧

aj∈A∪C

(turn j ⇒Xmov j)
)
⇒ ϕ̂C∪A

]ô

whereEX1α is a shorthand forEX α ∧∀p.
(

EX (α ∧ p)⇒ AX (α ⇒ p)
)
, specifying the existence

of a unique successor satisfyingα .

Now we have the following proposition, whose proof is done bystructural induction over the formula:

Proposition 9. Let Φ ∈ ATLsc, andAgt= Agt(Φ)∪{a0} as above. LetC be a turn-based CGS, q be a
state ofC , and F be a strategy context. LetTC (q) = 〈T, ℓ〉 be the execution tree of the underlying Kripke
structure ofC (including a labelling with propositions(turn j)aj∈Agt). LetℓF be the labelling extendingℓ
such that for every nodeρ of T belonging to some aj ∈ dom(F) (i.e., such thatlast(ρ) ∈ Own(a j)), its
successorρ ·q according to F (i.e., such that Fj(ρ) = q) is labelled withmov j . Then we have:

C ,q |=F Φ iff 〈T, ℓF〉 |= “Φdom(F)

Proof.The proof is by structural induction overΦ. The cases of atomic propositions and Boolean opera-
tors are straightforward.

• Φ= 〈·A·〉(ϕ Uψ): assumeC ,q |=F Φ. Then there existsFA∈ Strat(A) s.t. for anyρ ∈Out(q,FA◦F),
there existsi ≥ 0 s.t.C ,ρ(i) |=(FA◦F)ρ≤i ψ and∀0≤ j < i, we haveC ,ρ( j) |=(FA◦F)ρ≤ j ϕ . LetℓFA◦F

be the extension ofℓ labelling T with propositions(mov j)aj∈Agt according to the strategy con-
textFA◦F. By induction hypothesis, the following two statements hold true:

– 〈T, ℓFA◦F〉ρ≤i |= “ψdom(F)∪A, and

– 〈T, ℓFA◦F〉ρ≤ j |= ϕ̂dom(F)∪A for any 0≤ j < i.

(where〈U, l〉π is the subtree of〈U, l〉 rooted at nodeπ ∈ U ). As this is true for everyρ in the
outcomes induced byFA◦F, it holds for every path in the execution tree satisfying theconstraint
over the labelling of(turn j)aj∈Agt and(mov j)aj∈Agt. It follows that

〈T, ℓFA◦F〉 |= A
[
G
( ∧

aj∈A∪C

(turn j ⇒Xmov j)
)
⇒ ϕ̂dom(F)∪A

]

Moreover we also know thatAG
∧

aj∈A(turn j ⇒ EX 1mov j) holds true in〈T, ℓFA◦F〉 since the la-

bellingℓFA◦F includes the strategyFA. Hence〈T, ℓF〉 |= “Φdom(F), with the labelling for(mov j)aj∈A

being obtained fromFA.

Now assume〈T, ℓF〉 |= “Φdom(F). Write A= {a j1, . . . ,a jl}. Then we have:

〈T, ℓF〉 |= ∃mov j1...mov jl .
[
AG

∧

aj∈A

(turn j ⇒ EX 1mov j)∧

A
[
G
( ∧

aj∈A∪C

(turn j ⇒Xmov j)
)
⇒(ϕ̂dom(F)∪AU“ψdom(F)∪A)

]]
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The first part of the formula, namelyAG
∧

aj∈A(turn j ⇒ EX 1mov j), ensures that the labeling
with (mov j)aj∈A defines a strategy for the coalitionA. The second part states that every run belong-
ing to the outcomes ofFA◦F (remember thatℓF already contains the strategy contextF) satisfies
(ϕ̂dom(F)∪AU“ψdom(F)∪A). Finally it remains to use the induction hypothesis over states along the
execution to deduceC ,q |=F 〈·A·〉(ϕ Uψ).

• Φ = ·〉A〈·ψ : assumeC ,q |=F Φ. ThenC ,q |=Fdom(F)\A
ψ . Applying the induction hypothesis,

we get〈T, ℓFdom(F)\A
〉 |= “ψdom(F)\A. And it follows that〈T, ℓF〉 |= “ψdom(F)\A because the labeling of

strategies for coalitionA in F is not used for evaluating“ψdom(F)\A. Conversely, assume〈T, ℓF〉 |=
“ψdom(F)\A. Then we have〈T, ℓFdom(F)\A

〉 |= “ψdom(F)\A (again the labeling ofA strategies inF is not
used for evaluating the formula). Applying induction hypothesis, we getC ,q |=Fdom(F)\A

ψ and then
C ,q |=F Φ.

• Φ = 〈·A·〉X ϕ andΦ = ·〉A〈·X ϕ : the proofs are similar to the previous ones.

Finally, letΦtb be the following formula, used to make the game turn-based:

Φtb = AG
[ ∨

aj∈Agt

(
turn j ∧

∧

al 6=aj

¬turnl

)]

and let‹Φ be the formulaΦtb∧“Φ∅. Then we have:

Theorem 10. LetΦ be anATLsc formula and‹Φ be theQCTL∗ formula defined as above.Φ is satisfiable
in a turn-based CGS if, and only if,‹Φ is satisfiable (in the tree semantics).

Proof. If Φ is satisfiable in a turn-based structure, then there exists such a structureC with |Agt(Φ)|+1
agents. AssumeC ,q |= Φ. Now consider the execution treeTC (q) with the additional labelling to mark
states with the correct propositions(turn j)aj∈Agt, indicating the owner of each state. From Proposition9,

we haveTC (q) |= “Φ∅. Thus clearlyTC (q) |= ‹Φ.
Conversely assumeT |= ‹Φ. As explained in Section2, we can assume thatT is regular. Thus

T |= Φtb∧“Φ∅: the first part of the formula ensures that every state of the underlying Kripke structure
can be assigned to a unique agent, hence defining a turn-basedCGS. The second part ensures thatΦ holds
for the corresponding game, thanks to Proposition9.

The above translation fromATLsc into QCTL∗ transforms a formula withk strategy quantifiers into
a formula with at mostk+1 nested blocks of quantifiers; satisfiability of aQCTL∗ formula withk+1
blocks of quantifiers is in(k+3)-EXPTIME [LM13]. Hence the algorithm has non-elementary complex-
ity. We now prove that this high complexity cannot be avoided:

Theorem 11.Satisfiability ofATLsc formulas in turn-based CGS is non-elementary (i.e., it isk-EXPTIME-
hard, for all k).

Proof (sketch). Model checkingATLsc over turn-based games is non-elementary [DLM12], and it can
easily be encoded as a satisfiability problem. LetC = 〈Q,R, ℓ,Agt,M ,Mov,Edge〉 be a turn-based CGS,
andΦ be anATLsc formula. LetPq be a fresh atomic proposition for everyq∈ Q. Now we define an
ATLsc formulaΨC to describe the gameC as follows:

ΨC = AG
(∨

q∈Q

(Pq∧
∧

q′ 6=q

¬Pq′ ∧
∧

P∈ℓ(q)
P∧

∧

P′ 6∈ℓ(q)
¬P′)

)
∧

AG
[∨

q∈Q

(
Pq⇒(

∧

q→q′
〈〈Own(q)〉〉XPq′ ∧

∧

q′. q6→q′
¬ 〈〈Own(q)〉〉XPq′)

)]
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whereq→ q′ denotes the existence of a transition fromq to q′ in C . Any turn-based CGS satisfyingΨC

corresponds to some unfolding ofC , and then has the same execution tree. Finally we clearly have that
C ,q |= Φ if, and only if, ΨC ∧Pq∧Φ is satisfiable in a turn-based structure.

5 Bounded action alphabet

We consider here another setting where the reduction toQCTL∗ can be used to solve the satisfiability of
ATLsc: we assume that each player has a bounded number of availableactions. Formally, it corresponds
to the following satisfiability problem:

Problem: (Agt,M )-satisfiability
Input: a finite set of movesM , a set of agentsAgt, and anATLsc formulaΦ involving

the agents inAgt;
Question: does there exist a CGSC = 〈Q,R, ℓ,Agt,M ,Mov,Edge〉 and a stateq ∈ Q

such thatC ,q |= Φ.

AssumeM = {1, . . . ,α} andAgt= {a1, . . . ,an}. With this restriction, we know that we are looking
for a CGS whose execution tree has nodes with degrees in the set D = {1,2, . . . ,αn}. We consider such
D-trees where the transition table is encoded as follows: forevery agentai and movem in M , we use the
atomic propositionmovm

i to specify that agentai has played movem in thepreviousnode. Any execution
tree of such a CGS satisfies formula

ΦEdge = AG
[( ∧

m̄∈M n

EX 1movm̄
)
∧ AX

( ∨

m̄∈M n

movm̄
)]

wheremovm̄ stands for
∧

aj∈Agtmov
m̄j
j . Notice that the second part of the formula is needed becauseof

the way we handle theimplicit universal quantification associated with the strategy quantifiers ofATLsc.
Given a coalitionC, we define aQCTL∗ formulaÁΦC inductively as follows:

• for non-temporal formulas we let

Ì·〉A〈·ϕC
= ÊϕCrA Ìϕ ∧ψC

= ÊϕC∧ÁψC Î¬ψC
= ¬ ÊϕC ÊPC = P

• for temporal modalities, we define

ÍX ϕ
C
= X ÊϕC Ìϕ Uψ

C
= ÊϕC UÁψC.

• finally, for formulas of the form〈·A·〉ϕ with A= {a j1, . . . ,a jl }, we let:

Ì〈·A·〉ϕ
C
= ∃choose1

j1 . . .choose
α
j1 . . .choose

1
jl . . .choose

α
jl .[

AG
( ∧

aj∈A

∨

m=1...α
(choosem

j ∧
∧

n6=m

¬choosen
j )
)
∧

A
[
G
( ∧

aj∈A∪C

∧

m=1...α
(choosem

j ⇒Xmovm
j )
)
⇒ ÊϕC∪A

]]
.

The first part of this formula requires that the atomic propositions choosem
j describe a strategy,

while the second part expresses that every execution following the labelled strategies (including
those forC) satisfies the path formulaÊϕC∪A.
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Now, lettingÙΦ be the formulaΦEdge∧ÁΦ∅, we have the following theorem (similar to Theorem10):

Theorem 12. Let Φ be anATLsc formula,Agt= {a1, . . . ,an} be a finite set of agents,M = {1, . . . ,α}
be a finite set of moves, andÙΦ be the formula defined above. ThenΦ is (Agt,M )-satisfiable in a CGS if,
and only if, theQCTL∗ formulaÙΦ is satisfiable (in the tree semantics).

We end up with a non-elementary algorithm (in(k+2)-EXPTIME for a formula involvingk strategy
quantifiers) for solving satisfiability of anATLsc formula for a bounded number of moves, both for a
fixed or for an unspecified set of agents (we can infer the set ofagents using Prop.8). SinceATLsc

model checking is non-elementary even for a fixed number of moves (the crucial point is the alternation
of strategy quantifiers), we deduce:

Corollary 13. (Agt,M )-satisfiability forATLsc formulas is non-elementary (i.e.,k-EXPTIME-hard, for
all k).

6 Memoryless strategies

Memoryless strategies are strategies that only depend on the present state (as opposed to general strate-
gies, whose values can depend on the whole history). Restricting strategy quantifiers to memoryless
strategies in the logic makes model checking much easier: ina finite game, there are only finitely many
memoryless strategies to test, and applying a memoryless strategy just amounts to removing some tran-
sitions in the graph. Still, quantification over memorylessstrategies is not possible in plainATLsc, and
this additional expressive power turns out to make satifiability undecidable, even when restricting to turn-
based games. One should notice that the undecidability proof of [TW12] for satisfiability in concurrent
games uses one-step games (i.e., they only involve oneX modality), and hence also holds for memoryless
strategies.

Theorem 14.Satisfiability ofATL0
sc (with memoryless-strategy quantification) is undecidable, even when

restricting to turn-based games.

Proof. We prove the result for infinite-state turn-based games, by adapting the corresponding proof
for QCTL under the structure semantics [Fre01], which consists in encoding the problem of tiling a quad-
rant. The result for finite-state turn-based games can be obtained using similar (but more involved) ideas,
by encoding the problem of tiling all finite grids (see [LM13] for the corresponding proof forQCTL).

We consider a finite setT of tiles, and two binary relationsH andV indicating which tile(s) may
appear on the right and above (respectively) a given tile. Our proof consists in writing a formula that is
satisfiable only on a grid-shaped (turn-based) game structure representing a tiling of the quadrant (i.e.,
of N×N). The reduction involves two players: Player 1 controls square states (which are labelled
with ), while Player 2 controls circle states (labelled with). Each state of the grid is intended to
represent one cell of the quadrant to be tiled. For technicalreasons, the reduction is not that simple, and
our game structure will have three kinds of states (see Fig.1):

• the “main” states (controlled by Player 2), which form the grid. Each state in this main part has a
right neighbour and atop neighbour, which we assume we can identify: more precisely,we make
use of two atomic propositionsv1 andv2 which alternate along the horizontal lines of the grid. The
right successor of av1-state is labelled withv2, while its top successor is labelled withv1;

• the “tile” states, labelled with one item ofT (seen as atomic propositions). Each tile state only has
outgoing transition(s) to a tile state labelled with the same tile;
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• the “choice” states, which appear between “main” states and“tile” states: there is one choice state
associated with each main state, and each choice state has a transition to each tile state. Choice
states are controlled by Player 1.

m
m

m

m
m

m

m
m

m

m

c

m

c

m

c
m

c

m

c

m

c
m

c

m

c

m

c

Fig. 1: The turn-based game encoding the tiling problem

Assuming that we have such a structure, a tiling of the grid corresponds to amemorylessstrategy of
Player 1 (who only plays in the “choice” states). Once such a memoryless strategy for Player 1 has
been selected, that it corresponds to a valid tiling can be expressed easily: for instance, in any cell
of the grid (assumed to be labelled withv1), there must exist a pair of tiles(t1, t2) ∈ H such that
v1∧ 〈·2·〉0XX t1∧ 〈·2·〉0 X (v2∧XX t2). This would be written as follows:

〈·1·〉0G




v1⇒
∨

(t1,t2)∈H

〈·2·〉0 XX t1∧ 〈·2·〉0 X (v2∧XX t2)

∧
v2⇒

∨

(t1,t2)∈H

〈·2·〉0 XX t1∧ 〈·2·〉0 X (v1∧XX t2)



.

The same can be imposed for vertical constraints, and for imposing a fairness constraint on the base line
(under the same memoryless strategy for Player 1).

α

β

to c-state

Fig. 2: The cell gadget

v1 α

β

v1 α

β

v2 α

β

v2 α

β

v1 α

β

v1 α

β

Fig. 3: Several cells forming (part of) a grid

It remains to build a formula characterising an infinite grid. This requires a slight departure from
the above description of the grid: each main state will in fact be a gadget composed of four states, as
depicted on Fig.2. The first state of each gadget will give the opportunity to Player 1 tocolor the state
with either α or β . This will be used to enforce “confluence” of several transitions to the same state
(which we need to express that the two successors of any cell of the grid share a common successor).
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We now start writing our formula, which we present as a conjunction of several subformulas. We re-
quire that the main states be labelled withm, the choice states be labelled withc, and the tile states be
labelled with the names of the tiles. We letAP′ = {m,c}∪T andAP = AP′∪{v1,v2,α ,β , , }. The
first part of the formula reads a follows (where universal path quantification can be encoded, as long as
the context is empty, using〈·∅·〉0 ):

AG


 ∨

p∈AP′
p∧

∧

p′∈AP′\{p}
¬ p′


∧ A(mW c)∧ AG

[
c⇒

(
∧
∧

t∈T

〈·1·〉0 X t∧ AX

(∨

t∈T

AG t

))]
∧

AG


( ⇔¬ )∧

Ñ
⇒

∧

p∈AP
(EX p⇔ 〈·1·〉0 X p)

é
∧
Ñ

⇒
∧

p∈AP
(EX p⇔ 〈·2·〉0 X p)

é
 (1)

This formula enforces that each state is labelled with exactly one proposition fromAP′. It also enforces
that any path will wander through the main part until it possibly goes to a choice state (this is expressed
as A(mW c), wheremW c meansGm∨mUc, and can be expressed a negated-until formula). Finally,
the second part of the formula enforces the witnessing structures to be turn-based.

Now we have to impose that them-part has the shape of a grid: intuitively, each cell has three
successors: one “to the right” and one “to the top” in the mainpart of the grid, and onec-state which we
will use for associating a tile with this cell. For technicalreasons, the situation is not that simple, and
each cell is actually represented by the gadget depicted on Fig. 2. Each state of the gadget is labelled
with m. We constrain the form of the cells as follows:

AG
[
m⇒((�∧¬α ∧¬β )∨( ∧¬(α ∧β )))

]
∧ AG

[Ä
(m∧ )⇒(v1⇔¬v2)

ä
∧
Ä
(v1∨v2)⇒(m∧ )

ä]
∧

AG
[
(m∧ )⇒

î
AX
Ä
m∧ ∧(α ∨β )∧ AX (m∧ ∧¬α ∧¬β )

ä
∧ 〈·1·〉0 X α ∧ 〈·1·〉0 X β

ó]
(2)

This says that there are four types of states in each cell, andspecifies the possible transitions within such
cells. We now express constraints on the transitions leaving a cell:

AG
[
(EX c∨ EX v1∨ EX v2)⇒(m∧ ∧¬α ∧¬β )

]
∧

AG
[
(m∧ ∧¬α ∧¬β )⇒(EX c∧ EX v1∧ EX v2∧ AX (c∨v1∨v2)

]
(3)

It remains to enforce that the successor of theα andβ states are the same. This is obtained by the
following formula:

AG
î
(m∧ )⇒ [·2·]0

Ä
〈·∅·〉0X 3(c∨v1)∨ 〈·∅·〉0 X 3(c∨v2)

äó
(4)

Indeed, assume that some cell has two different “final” states; then there would exist a strategy for
Player 2 (consisting in playing differently in those two final states) that would violate Formula (4). Hence
each cell as a single final state.

We now impose that each cell in the main part has exactly twom-successors, and these twom-
successors have anm-successor in common. For the former property, Formula (3) already imposes that
each cell has at least twom-successors (one labelled withv1 and one withv2). We enforce that there
cannot be more that two:

AG
[
(m∧ )⇒ [·1·]0 [(〈·2·〉0 X 3(v1∧X α)∧ 〈·2·〉0X 3(v2∧X α))⇒ [·2·]0 〈·∅·〉0 X 3X α ]

]
. (5)
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Notice that [·2·]0 〈·∅·〉0 ϕ means thatϕ has to hold along any outcome of anymemorylessstrategy of
Player 2. Assume that a cell has three (or more) successor cells. Then at least one is labelled withv1 and
at least one is labelled withv2. There is a strategy for Player 1 to color onev1-successor cell and one
v2-successor cell withα , and a third successor cell withβ , thus violating Formula (5) (as Player 2 has a
strategy to reach a successor cell colored withβ )

For the latter property (the two successors have a common successor), we add the following formula
(as well as itsv2-counterpart):

[·1·]0 〈·∅·〉0 G
[
(m∧ ∧v1)⇒

(
[〈·2·〉0X 3(v1∧ [·2·]0X 3X α)]⇒[〈·2·〉0 X 3(¬v1∧X 3(¬v1∧X α))]

)]
(6)

In this formula, the initial (universal) quantification over strategies of Player 1 fixes a color for each cell.
The formula claims that whatever this choice, if we are in some v1-cell and can move to anotherv1-cell
whose two successors have colorα , then also we can move to av2-cell having oneα successor (which
we require to be av2-cell). As this must hold for any coloring, both successors of the originalv1-cell
share a common successor. Notice that this does not prevent the grid to be collapsed: this would just
indicate that there is aregular infinite tiling.

We conclude by requiring that the initial state be in a squarestate of a cell in the main part.

7 Results for Strategy Logic

In this section, we extend the previous results to Strategy Logic (SL). This logic has been initially
introduced in [CHP07] for two-player turn-based games. It has then been extendedto n-players concur-
rent games in [MMV10]. As explained in the introduction, satisfiability has beenshown undecidable
when considering infinite structures [MMV10], and the proof in [TW12] for finite satisfiability ofATLsc

straightforwardly extends toSL. Here we show that satisfiability is decidable when considering turn-
based games and when fixing a finite alphabet, and that it remains undecidable when only considering
memoryless strategies.

Strategy Logic in a nutshell. We start by briefly recalling the main ingredients ofSL. The syntax is
given by the following grammar:

ϕ ,ψ ::= p | ϕ ∧ψ | ¬ϕ | X ϕ | ϕ Uψ | 〈〈x〉〉ϕ | (a,x)ϕ
wherea∈ Agt is an agent andx is a (strategy) variable (we use Var to denote the set of thesevariables).
Formula〈〈x〉〉ϕ expresses the existence of a strategy, which is stored in variablex, under which formulaϕ
holds. Inϕ , theagent bindingoperator(a,x) can be used to bind agenta to follow strategyx. An assign-
mentχ is a partial function fromAgt∪Var toStrat. SL formulas are interpreted over pairs(χ ,q) where
q is a state of some CGS andχ is an assignment such that every free strategy variable/agent4 occurring in
the formula belongs todom(χ). Note that we haveAgt⊆ dom(χ) when temporal modalitiesX and U
are interpreted: this implies that the set of outcomes is restricted to a unique execution generated by all
the strategies assigned to players inAgt, and the temporal modalities are therefore interpreted over this
execution. Here we just give the semantics of the main two constructs (see [MMV10] for a complete
definition ofSL):

C ,χ ,q |= 〈〈x〉〉ϕ iff ∃F ∈ Strat s.t.C ,χ [x 7→ F],q |= ϕ
C ,χ ,q |= (a,x)ϕ iff C ,χ [a 7→ χ(x)],q |= ϕ

4We use the standard notion of freedom for the strategy variables with the hypothesis that〈〈x〉〉 bindsx, and for the agents
with the hypothesis that(a,x) bindsa and that every agent inAgt is free in temporal subformula (i.e., with U or X as root).



François Laroussinie, Nicolas Markey 221

In the following we assume w.l.o.g. that every quantifier〈〈x〉〉 introduces a fresh strategy variablex: this
allows us to permanently use variablex to denote the selected strategy fora.

Turn-based case. The approach we used forATLsccan be adapted forSL. Given anSL formulaΦ and a
mappingV : Agt→ Var, we define aQCTL∗ formula“ΦV inductively as follows (Boolean cases omitted):

〈̂〈x〉〉ϕ
V
= ∃movx.

[
AG

(
EX 1movx

)
∧ ϕ̂V

]
(̂a,x)ϕ

V
= ϕ̂V[a→x]

Note that in this case we require thateveryreachable state has a (unique) successor labeled withmovx:
indeed when one quantifies over a strategyx, the agent(s) who will use this strategy are not known yet.
However, in the turn-based case, a given strategy should be dedicated to a single agent: there is no
natural way to share a strategy for two different agents (or the other way around, any two strategies for
two different agents can be seen as a single strategy), as they are not playing in the same states. When
the strategyx is assigned to some agenta, only the choices made in thea-states are considered.

The temporal modalities are treated as follows:

ϕ̂ Uψ
V
= A

[
G
( ∧

aj∈Agt
(turn j ⇒XmovV(aj ))

)
⇒ ϕ̂V U“ψV

]

X̂ ϕ
V
= A

[
G
( ∧

aj∈Agt
(turn j ⇒XmovV(aj ))

)
⇒X ϕ̂V

]

Now let‹Φ be the formulaΦtb∧“ΦV∅. Then we have the following theorem:

Theorem 15. Let Φ be anSL formula and‹Φ be theQCTL∗ formula defined as above. ThenΦ is
satisfiable in a turn-based CGS if, and only if,‹Φ is satisfiable (in the tree semantics).

Bounded action alphabet Let M be {1, . . . ,α}. The reduction carried out forATLsc can also be
adapted forSL in this case. Given anSL formulaΦ and a partial functionV : Agt→ Var, we define the
QCTL∗ formulaÁΦV inductively as follows:

Ì〈〈x〉〉ϕ
V
= ∃choose1

x . . .∃chooseα
x .AG

( ∨

1≤m≤α
choosem

x ∧
∧

n6=m

¬choosen
x

)
∧ ÊϕV Ó�(a,x)ϕV

= ÊϕV[a7→x]

The temporal modalities are handled as follows:

Ìϕ Uψ
V
= A

[(
G

∧

aj∈Agt

∧

1≤m≤α

Ä
choosem

V(aj )
⇒Xmovm

j

ä)
⇒
(
ÊϕV UÁψV

)]

ÍX ϕ
C
= A

[(
G

∧

aj∈Agt

∧

1≤m≤α

Ä
choosem

V(aj )
⇒Xmovm

j

ä)
⇒
(
X ÊϕV

)]

Remember that in this case,movm
j labels the possible successors of a state where agenta j playsm.

Finally, letÙΦ be the formulaΦmove∧ÁΦV
∅. We have:

Theorem 16. LetΦ be anSL formula based on the setAgt= {a1, . . . ,an}, letM = {1, . . . ,α} be a finite
set of moves, andÙΦ be theQCTL∗ formula defined as above. ThenΦ is (Agt,M )-satisfiable if, and only
if, ÙΦ is satisfiable (in the tree semantics).
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7.1 Memoryless strategies

We now extend the undecidability result ofATL0
sc to SL with memoryless-strategy quantification. Notice

that there is an important difference betweenATL0
sc andSL0 (the logic obtained fromSL by quantifying

only on memoryless strategies): theATLsc-quantifier 〈·A·〉0 still has an implicit quantification overall
the strategies of the other players (unless their strategy is fixed by the context), while inSL0 all strategies
must be explicitly quantified. HenceSL0 andATL0

sc have uncomparable expressiveness. Still:

Theorem 17. SL0 satisfiability is undecidable, even when restricting to turn-based game structures.

Proof (sketch).The proof uses a similar reduction as for the proof forATL0
sc. The difference is that the

implicitly-quantified strategies inATL0
sc are now explicitly quantified, hence memoryless. However, most

of the properties that our formulas impose are “local” conditions (involving at most four nested “next”
modalities) imposed in all the reachable states. Such properties can be enforced even when considering
only the ultimately periodic paths that are outcomes of memoryless strategies. The only subformula not
of this shape is formulaAmW c, but imposing this property along the outcomes of memoryless strategies
is sufficient to have the formula hold true along any path.

8 Conclusion

While satisfiability forATLsc andSL is undecidable, we proved in this paper that it becomes decidable
when restricting the search to turn-based games. We also considered the case where strategy quantifi-
cation in those logics is restricted to memoryless strategies: while this makes model checking easier,
it makes satisfiability undecidable, even for turn-based structures. These results have been obtained by
following the tight and natural link between those temporallogics for games and the logicQCTL, which
extendsCTL with quantification over atomic propositions. This witnesses the power and usefulness of
QCTL, which we will keep on studying to derive more results about temporal logics for games.

Acknowledgement. We thank the anonymous reviewers for their numerous suggestions, which helped
us improve the presentation of the paper.
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We revisit the formalism of modular interpreted systems (MIS) which encourages modular and open
modeling of synchronous multi-agent systems. The original formulation of MIS did not live entirely
up to its promise. In this paper, we propose how to improve modularity and openness of MIS by
changing the structure of interference functions. These relatively small changes allow for surprisingly
high flexibility when modeling actual multi-agent systems. We demonstrate this on two well-known
examples, namely the trains, tunnel and controller, and the dining cryptographers.

Perhaps more importantly, we propose how the notions of multi-agency and openness, crucial
for multi-agent systems, can be precisely defined based on their MIS representations.

1 Introduction

The paradigm of multi-agent systems (MAS) focuses on systems consisting of autonomous entities acting
in a common environment. Regardless of whether we deem the entities to be intelligent or not, proactive
or reactive, etc., there are two design-level properties that a multi-agent system should satisfy. First, it
should be modular in the sense that it is inhabited by loosely coupled components. That is, interaction
between agents is crucial for the system, but it should be relatively scarce compared to the intensity
of local computation within agents (otherwise the system is in fact a single-agent system in disguise).
Secondly, it should be open in the sense that an agent should be able join or leave the system without
changing the design of the other components.

Models and representations of MAS can be roughly divided into two classes. On one hand, there
are models of various agent logics, most notably modal logics of knowledge, action, time, and strategic
ability [7, 8, 2]. These models are well suited for theoretical analysis of general properties of agent
systems. However, they are too abstract in the sense that: (a) they are based on abstract notions of global
state and global transition so the structure of a model does not reflect the structure of a MAS at all, and (b)
they come with neither explicit nor implicit methodology for design and analysis of actual agent systems.
At the other extreme there are practical-purpose high-level representation languages like Promela [11],
Estelle [6], and Reactive Modules (RM) [1]. They are application-oriented, and usually include too many
features to be convenient for theoretical analysis. The middle ground consists of formalisms that originate
from abstract logical models but try to encapsulate a particular modeling methodology. For instance,
interpreted systems [8] support local design of the state space; however, transitions are still global, i.e.,
they are defined between global rather than local states. Synchronous automata networks [10] and ISPL
specifications [17, 19] push the idea further: they are based on local states and semi-local transitions,
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i.e., the outcome of a transition is local, but its domain global. This makes agents hard to separate from
one another in a model, which hampers its modularity. On the other hand, concurrent programs [16] and
asynchronous automata networks [10] are fairly modular but they support only systems whose execution
can be appropriately modeled by interleaving of local actions and/or events.

Modular Interpreted Systems (MIS) are a class of models proposed in [13] to achieve separation of
the interference between agents from the local processing within agents. The main idea behind MIS was
to encapsulate the way agents’ actions interfere by so called interaction tokens from a given alphabet In,
together with functions outi, ini that define the interface of agent i. That is, outi specifies how i’s actions
influence the evolution of the other agents, whereas ini specifies how what rest of the world influences
the local transition of i. Modular interpreted systems received relatively little attention, though some
work was done on studying computational properties of the related verification problem [12], facilitating
verification by abstraction [14], and using MIS to analyze homogeneous multi-agent systems [4]. This
possibly stems from the fact that, in their original incarnation, MIS are not as modular and open as one
would expect. More precisely, the types of functions used to define interference fix the number of agents
in the MIS. Moreover, the assumption that all the functions used in a model are deterministic limit the
practical applicability, as modeling of many natural scenarios becomes cumbersome.

In this paper, we try to revive MIS as an interesting formalism for modeling multi-agent systems.
We propose how to improve modularity and openness of the original class by changing the structure of
interference functions out, in. The idea is to use multisets of interference tokens instead of k-tuples. This
way, we do not need to “hardwire” information about other modules inside a module. Additionally, we
assume that the “manifestation” function out can be nondeterministic. These relatively small changes
allow for surprisingly high flexibility when modeling MAS. We demonstrate that on two well-known
benchmark examples: trains, tunnel and controller, and the dining cryptographers.

Perhaps more importantly, we propose how two important features of multi-agent systems can be
formally defined, based on MIS representations. First, we show how to decide if a system is designed
in a proper multi-agent way by looking at the relation between the complexity of its interference layer
to the complexity of its global unfolding. Moreover, we define the degree of openness of a MIS as the
complexity of the minimal transformation that the model must undergo in order to add a new agent to
the system, or remove an existing one. We apply the definitions to our benchmark models, and show that
different variants of cryptographers grossly differ in the amount of openness that they offer.

The paper has the following structure. In Section 2, the new variant of MIS is defined, along with
its execution semantics. Section 3 presents MIS representations for two benchmarks: Tunnel, Trains and
Controller (TTC) and Dining Cryptographers (DC). A graphical notation is provided to make the exam-
ples easier to read. In Sections 4 and 5, we propose formal definitions of multi-agency and openness,
respectively, and apply them to several variants of the benchmarks. Section 6 concludes the paper.

1.1 Related Work

The modeling structures discussed in this paper share many similarities with existing modeling frame-
works, in particular with Reactive Modules [1]. Still, MIS and RMs have different perspectives: Reactive
Modules is an application-oriented language, while the focus of modular interpreted systems is more the-
oretic. This results in a higher abstraction level of MIS which are based on abstract states and interaction
tokens. MIS aim at separating internal activities of modules and interactions between modules, what is
not (explicitly) featured in RM.

Modularity in models and model checking has been the focus of many papers. Most notably, Hi-
erarchical State Machines of Alur et al. [3, 20] and the approach of hierarchical module checking by
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Murano et al. [18] feature both “horizontal” and “vertical” modularity, i.e., a system can be constructed
by means of parallel composition as well as nesting of modules. Similarly, dynamic modifications and
“true openness” of models has been advocated in [9]. In that paper, Dynamic Reactive Modules (DRM)
were proposed, which allow for dynamic reconfiguration of the structure of the system (including adding
and removing modules). Our approach differs from the ones cited above in two ways. On one hand, we
focus on an abstract formulation of the separation of concerns between modules (and agents), rather than
providing concrete mechanisms that implement the separation. On the other, we define indicators that
show how good the resulting models is. That is, our measures of agentivity and openness are meant to
assess the model “from the outside”. In particular, the focus of the DRM is on providing a mechanism for
adding and removing agents in the RM representation. We implement these operations on the meta-level,
as a basis of the mathematical measure of openness. Our work could in principle be applied to DRMs
and other formalisms, but it would require defining the appropriate multi-agent mechanisms which are
already present in Interpreted Systems.

2 Modular Interpreted Systems Revisited

Modular interpreted systems were proposed in [13] to encourage modular and open design of syn-
chronous agent systems. Below, we present an update on the formalism. The new version of MIS differs
from the original one [13] as follows. First, a single agent can be now modeled by more than one module
to allow for compact design of agents’ local state spaces and transition functions. Secondly, the type of
function ini is now independent from the structure and cardinality of the set of agents, thus removing the
main obstacle to modularity and openness of representation in the previous version. Thirdly, the interac-
tion functions ini,outi are nondeterministic in order to enable nondeterministic choice and randomization
(needed, e.g., to obtain fair scheduling or secure exchange of information). Fourthly, we separate agents
from their names. This way, agents that are not present in the “current” MIS can be referenced in order
to facilitate possible future expansion of the MIS.

2.1 New Definition of MIS

Let a bag (multiset) over set X be any function X → N. The set of all bags over X will be denoted by
B(X), and the union of bags by ].

Definition 1 (Modular interpreted system) We define a modular interpreted system (MIS) as a tuple

S = (Agtnames,Act,In,Agt),

where Agtnames is a finite set of agent names, Act is a finite set of action names, In is a finite interaction
alphabet, and Agt = {a1, . . . ,ak} is a finite set of agents (whose structure is defined in the following
paragraph). A set of directed tokens, used to specify the recipients of interactions, is defined as Tok =
In× (Agtnames∪{ε}), where ε denotes that the interaction needs to be broadcasted to all the agents
in the system.

Each agent a j = (id,{m1, . . . ,mn}) consists of a unique name id ∈ Agtnames (also denoted with
name(a j)), and one or more modules m j = (St j, Init j,d j,out j, in j,o j,Π j,π j), where:

• St j is a set of local states,
• Init j ⊆ St j is the set of initial states,
• d j : St j →P(Act) defines local availability of actions; for convenience of the notation, we addi-

tionally define the set of situated actions as D j = {(q j,α) | q j ∈ St j,α ∈ d j(q j)},
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• out j, in j are interaction (or interference) functions:
– out j : D j→P(P(Tok)) refers to the set of influences (chosen nondeterministically) that a

given situated action (of module m j) may possibly have on the recipients of the embedded
interaction symbols, and

– in j : St j×B(In)→P(In) translates external manifestations from the other modules into
the (nondeterministically chosen) “impression” that they make on module m j depending on
the local state of m j; we assume in j(·) 6= /0;

• o j : D j×In→P(St j) is a local transition function (possibly nondeterministic),
• Π j is a set of local propositions of module m j (we require that Π j and Πm are disjoint when j 6=m),
• π j : Π j→P(St j) is a valuation of these propositions.

Additionally, we define the cardinality of S (denoted card(S)) as the number of agents in S.
Typically, each agent in a MIS consists of exactly one module, and we will use the terms interchange-

ably. Also, we will omit Init j from the description of a module whenever Init j = St j.
Note that function in j is in general infinite. For practical purposes, finite representation of in j is

needed. We use decision lists similarly to [15, 19]. Thus, ini will be described as an ordered list of pairs
of the form condition 7→ value. The first pair on the list with a matching condition decides on the value
of the function. The conditions are boolean combinations of membership and cardinality tests, and are
defined over the variable s for the conditions defined on states, and over H for the conditions on multisets
of received interferences. We require that the last condition on the list is >, so that the function is total.
Several examples of MIS’s are presented in Sections 3 and 5.

2.2 Execution Semantics for MIS

Definition 2 (Explicit models) A nondeterministic concurrent epistemic game structure (NCEGS) is a
tuple C = (A ,St,St0,PV ,V ,Act,d, t,∼1, . . . ,∼k), where: A = {1, . . . ,k} is a nonempty set of agents,
St is a nonempty set of states, St0 ⊆St is the set of initial states, PV is a set of atomic propositions,
V : PV →P(St) is a valuation function, d : A ×St →P(Act) assigns nonempty sets of actions
available at each state, and t is a (nondeterministic) transition function that assigns a nonempty set
Q= t(q,α1, . . . ,αk) of outcome states to a state q, and a tuple of actions (α1, . . . ,αk) that can be executed
in q.

We define the semantics of MIS through an unfolding to NCEGS.
Definition 3 (Unfolding of MIS) Unfolding of the modular interpreted system S from Definition 1 to a
nondeterministic concurrent epistemic game structure NCEGS(S) = (A ′,St ′,St ′0,PV ′,V ′,Act ′,d′, t ′)
is defined as follows:
• A ′ = {1, . . . ,k}, and Act ′ = Act,
• St ′ = ∏k

i=1 Sti,
• St ′0 = {(q1, . . . ,qk) | (∀i ∈ {1, . . . ,k}) qi ∈ Initi},
• PV ′ =

⋃k
i=1 Πi, and V ′(p) = πi(p) when p ∈Πi,

• d′(i,q) = di(qi) for global state q = (q1, . . . ,qk), and i ∈A ′,
• The transition function t ′ is constructed as follows. Let q = (q1, . . . ,qk) be a state, and α =

(α1, . . . ,αk) be a joint action. We define an auxiliary function oii(qi,αi) of all the possible interfer-
ences of agent i, for qi, and αi: γ ′ ∈ oii(qi,αi) iff there exist T1, . . . , Tk such that Tj ∈ out j((q j,α j)),
and γ ′ ∈ ini(qi,I1] . . .]Ik), where I j = {γ j | (∃r ∈ {name(a j),ε}) (γ j,r) ∈ Tj} for all j ∈A ′.
Then (q′1, . . . ,q

′
k) ∈ t(q,α1, . . . ,αk) iff q′i ∈ oi((qi,αi),γ), where γ ∈ oii(qi,αi);
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• q∼i q′ iff q and q′ agree on the local states of all the modules in agent ai.

Definition 3 immediately provides some important logics (such as CTL, LTL, ATL, epistemic logic,
and their combinations) with semantics over modular interpreted systems. By the same token, the model
checking and satisfiability problems for those logics are well defined in MIS.

3 Modeling with MIS

We argue that the revised definition of MIS achieves a high level of separation between components
in a model. The interaction between an agent and the rest of the world is encapsulated in the agent’s
interference functions outi, ini. Of course, the design of the agent must take into account the tokens
that can be sent from modules with which the agent is supposed to interact. For instance, the out, in
functions of two communicating agents must be prepared to receive communication tokens from the
other party. However, the interference functions can be oblivious to the modules with which the agent
does not interact. In this section, we demonstrate the advantages on two benchmark scenarios: Trains,
Tunnel, and Controller (TTC), and Dining Cryptographers (DC).

3.1 Tunnel, Trains, and Controller (TTC)

TTC is a variant of classical mutual exclusion, and models n trains moving over cyclic tracks sharing a
single tunnel. Because only one train can be in the tunnel at a time, trains need to get a permission from
the controller before entering the tunnel. We model the scenario by MIS T TCn = (Agt,Act, In), where:
• Agtnames = {tr1, . . . , trn,ctrl},
• Act = {nop,approach,request,enter, leave},
• In = {idle,appr, try1, . . . , tryn, retry,granted, left,enter,aw reqs,grant,grant1, . . . ,grantn,

no reqs, infd,ack release,aw leave}.
• Agt = {tr1, . . . , trn,ctrl},

The system includes n trains tri =
(
tri,{(Sti, Initi,di,outi, ini,oi,Πi,πi)}

)
for i ∈ {0, . . . ,n} such that:

Sti = {out, tun needed,granted, in}, and Initi = {out}. di
is defined as:

• out 7→ {nop,approach},
• tun needed 7→ {request},
• granted 7→ {enter},
• in 7→ {nop, leave}

oi is defined as:

• ((out,nop), idle) 7→ {out}
• ((out,approach),appr) 7→ {tun needed},
• ((tun needed,request), retry) 7→ {tun needed},
• ((tun needed,request),granted) 7→ {granted},
• ((granted,enter),enter) 7→ {in},
• ((in,nop), idle) 7→ {in},
• ((in, leave), leave) 7→ {out}

Πi = {in tunnel}

outi is defined as:

• (out,nop) 7→ {{(idle, tri)}},
• (out,approach) 7→ {{(appr, tri)}},
• (tun needed,request) 7→ {{(tryi,ctrl)}},
• (granted,enter) 7→ {{(enter, tri)}},
• (in,nop) 7→ {{(idle, tri)}},
• (in, leave) 7→ {{(left,ctrl),(left, tri)}}

ini is defined as:

• s = out ∧appr ∈ H 7→ {appr},
• s = tun needed∧grant ∈ H 7→ {granted},
• s = tun needed 7→ {retry},
• s = granted∧ enter ∈ H 7→ {granted},
• s = in∧ left ∈ H 7→ {left},
• > 7→ {idle}

πi = {in 7→ in tunnel}
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Moreover, the agent ctrl =
(
ctrl,{(Stc, Initc,dc,outc, inc,oc,Πc,πc)}

)
modeling the controller is defined

as follows:
Stc = {tun f ree, in f d, tr1granted, . . . , trngranted}, and
Initc = {tun f ree}.
dc is defined as:

• tun f ree 7→ {accepting},
• in f d 7→ {waiting},
• tr1granted 7→ {in f orm},
• . . .
• trngranted 7→ {in f orm}

oc is defined as:

• ((tun f ree,accepting),no reqs) 7→ {tun f ree},
• ((in f d,waiting),aw leave) 7→ {in f d},
• ((in f d,waiting),ack release) 7→ {tun f ree},
• ((tun f ree,accepting),grant1) 7→ {tr1granted},
• . . .
• ((tun f ree,accepting),grantn) 7→ {trngranted},
• ((tr1granted, in f orm), infd) 7→ {in f d},
• . . .
• ((trngranted, in f orm), infd) 7→ {in f d}

outc is defined as:

• (tun f ree,accepting) 7→ {{(aw reqs,ε)}},
• (in f d,waiting) 7→ {{(aw leave,ctrl)}},
• (tr1granted, in f orm) 7→ {{(grant, tr1)}},
• . . .
• (trngranted, in f orm) 7→ {{(grant, trn)}},

inc is defined as:

• s = tun f ree∧ try1 ∈ H 7→ {grant1},
• . . .
• s = tun f ree∧ tryn ∈ H 7→ {grantn},
• s = tun f ree 7→ {no reqs},
• s = tr1granted∨ ...∨ s = trngranted 7→ {infd},
• s = in f d∧ left ∈ H 7→ {ack release},
• s = in f d 7→ {aw leave},
• > 7→ {idle}

Πc = {tunnel busy}
πc = {in f d 7→ tunnel busy}

The model is illustrated in Figure 1 using the notation introduced in Section 3.2. The protocol focuses
on the procedure of gaining a permission to access the tunnel. Before requesting the permission, a train
approaches the tunnel, and its state changes to tun needed. In this state it requests the permission from
the controller. When the controller grants the permission to one of the nondeterministically chosen trains
(trigranted) it informs the train that got access to the tunnel about this fact, and moves to the state
in f d. The train enters the tunnel in the next step of the protocol, and changes its state to in, whereas the
remaining trains may continue requesting the access (they remain in tun needed). When the train leaves
the tunnel, it changes its state to tun f ree.

3.2 Graphical Representation

As the definitions of MIS tend to be verbose, we introduce a simple graphical notation, based on networks
of communicating automata. Let us explain it, based on Figure 1, which is a graphical representation of
the tunnel, trains, and controller model from Section 3.1:

• Modules defining different agents and belonging to the same agent are separated by solid and
dashed lines, respectively,
• Circles correspond to local states. An arrow with loose end pointing into a circle denotes an initial

state,
• Boxes define local actions associated with a state,
• For a local action, dashed lines going out of it define emitted influences, specified with the receiver

and the influence at the left and right side of an harpoon arrow pointed left, respectively. When no
receiver is specified, the influence is broadcasted,
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Figure 1: Tunnel, trains and controller (TTC) in the graphical representation

• Solid lines with arrows, connecting an action with a local state, correspond to a local transition
function,

• For a local state, guarded commands (possibly in a box) define the translation of external manifes-
tations received by an agent into local impressions. A harpoon arrow pointed right corresponds to
a sender at the left side and the message at the right side, and if the sender is not specified it means
receiving from anyone. For a transition, dotted arrows pointing at it correspond to application of
those impressions.

The number of interactions x received by an agent is denoted with n(x). The notation ∗ labeling a
transition means that it is executed when none of the remaining transitions are enabled. For example, it
could be used instead of directly specifying the generation and application of aw leave manifestation in
the controller.

Some parts can be skipped or abstracted away if it does not lead to confusion. For example, if
no influence is emitted and only one transition is associated with an action, this action needs not be
directly specified. In Figure 1, the self-loop from the in state is not accompanied by the associated
local impression nor the impression. Similarly, a single influence addressed to the very module that
issued it can be omitted. For example, we do not show the manifestation idle in the graph. Valuations of
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Figure 2: MIS for dining cryptographers (DC1)

propositions can be depicted in a similar way as for networks of automata. We omit them in our examples
throughout, as they do not play a role in this paper.

3.3 Dining Cryptographers: Standard Version (DC1)

Dining Cryptographers is a well-known benchmark proposed by Chaum [5]. n cryptographers are having
dinner, and the bill is to be paid anonymously, either by one of them or by their employer. In order to
learn which option is the case without disclosing which cryptographer is paying (if any), they run a two-
stage protocol. First, every cryptographer is paired with precisely one other participant (they sit around
the table), thus forming a cycle. Every pair shares a one-bit secret, say by tossing a coin behind a menu.
In the second stage, each cryptographer publicly announces whether he sees an odd or an even number
of coin heads, saying the opposite if being the payer.

In the simplest case (DC1) the number of cryptographers is fixed, and each cryptographer is directly
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bound with its neighbours. Cryptographers announce their utterances by broadcasting them. A modular
interpreted system modeling this setting is presented in Figure 2. For n cryptographers, the ith cryptogra-
pher is modeled by agent Ci (0≤ i≤ n). We introduce notation i+ and i− to refer to the right and the left
neighbour of cryptographer i, respectively. The system includes also two additional agents. Who pays
initializes the system by determining who is the payer, and communicating it to the cryptographers. Ac-
cording to the protocol definition, either one of the cryptographers is chosen, or none of the participants
pays. Agent Counter counts the utterances of the cryptographers, computes the XOR operation (denoted
by ∨ and assuming that utterances different and equal correspond to true and false values, respectively,
thus the result is true iff the number of different utterances is odd), and determines the outcome of the
protocol. Figure 2 shows the modular interpreted system for DC1.

4 How to Measure Multi-Agency

In this section, we present our preliminary attempt at defining what it means for a design to be multi-
agent. Intuitively, separate agents should have only limited coordination and/or communication capabil-
ities. Otherwise, the whole system can be seen as a single agent in disguise. The idea is to measure the
complexity of interference between different agents, and relate it to the complexity of the system. The
former factor will be captured by the number of directed interaction tokens that a given agent can gener-
ate; the latter by the number of global transitions that can occur. We say that the agent is well designed
if its interference complexity is reasonably smaller than overall complexity of the system.

Definition 4 (Interaction complexity) The interaction complexity of agent i in modular interpreted sys-
tem M, denoted IC(i), is defined as follows. Let #outi(qi) be the the maximal number of directed to-
kens generated by function outi to modules of other agents in state qi. Furthermore, let #ini(qi) be
the maximal number of tokens admitted by function ini from modules of other agents in state qi. Now,
IC(i) = ∑qi∈Sti(#outi(qi)+#ini(qi)).

The interaction complexity of M is defined as IC(M) = ∑i∈Agt IC(i).

Definition 5 (Global complexity) The global complexity of MIS M, denoted GC(M), is the number of
transitions in the NCEGS unfolding of M.

How can we express that IC(M) is “reasonably smaller” than GC(M)? Such a requirement is rela-
tively easy to specify for classes of models, parameterized with values of some parameter (for instance,
the number of identical trains in the tunnel-controller scenario).

Definition 6 (C -sparse interaction, multi-agent design) Let M be a class of MIS and C a class of
complexity functions f : N→R+∪{0}. We say that M is characterized by C -sparse interaction iff there
is a function f ∈ C such that IC(M)≤ f (GC(M)) for every M ∈M .

Furthermore, we say that M has multi-agent design iff M has LOGTIME-sparse interaction, and
card(M)≥ 2 for every M ∈M .

Proposition 1 Classes TTC and DC1 have multi-agent design.

The proof is straightforward. It is easy to see that the other variants of Dining Cryptographers, discussed
in Section 5, also have multi-agent design.
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5 How Open is an Open System?

The idea of open systems is important for several communities: not only MAS, but also verification,
software engineering, etc. It is becoming even more important now, with modern technologies enabling
dynamic networks of devices, users and services whose nodes can be created and removed according to
current needs. Traditionally, the term open system is understood as a process coupled with the environ-
ment, which is rather disappointing given the highly distributed nature of MAS nowadays. One would
rather like “openness” to mean that components (agents in our case) can freely join and leave the system
without the need to redesign the rest of it.

Perfectly open systems are seldom in practice; usually, adding/removing components requires some
transformation of the remaining part (for instance, if a server is to send personalized information to an
arbitrary number of clients then it must add the name of each new client to the appropriate distribution
lists). So, it is rather the degree of openness that should be captured. We try to answer the question How
open is the system? (or, to be more precise, its model) in the next subsection.

5.1 A Measure of Openness

We base the measure on the following intuition: openness of a system is simplicity of adding and remov-
ing agents to and from the model. That is, we consider two natural transformations of models: expansion
(adding agents) and reduction (removing agents). We note that the simplicity of a transformation is best
measured by its algorithmic complexity, i.e., the number of steps needed to complete the transformation.
A perfectly open system requires no transformation at all (0 steps) to accommodate new components,
whereas at the other extreme we have systems that require redesigning of the model from scratch when-
ever a new agent arrives.

Note that the openness of a model depends on which agents want to join or leave. For instance,
the system with trains and controllers should be able to easily accommodate additional trains, but not
necessarily additional controllers. Likewise, departure of a train should be straightforward, but not nec-
essarily that of the controller. No less importantly, the context matters. We are usually not interested in
an arbitrary expansion or reduction (which are obviously trivial). We want to add or remove agents while
keeping the “essence” of the system’s behavior intact. The following definitions formalize the idea.

Definition 7 (Expansion and reduction of a MIS) Let M = (Agtnames,Act,In,Agt) be a MIS, and aaa
an agent (in the sense of Definition 1). By agt(aaa) (resp. act(aaa), in(aaa)) we denote the set of agent names
(resp. action symbols, interaction symbols) occurring in aaa. Moreover, ns(aaa,M) will denote the set of aaa’s
namesakes in M.1 Note that ns(aaa,M) can contain at most 1 agent.

The expansion of M by aaa is defined as the modular interpreted system M⊕aaa=(Agtnames′,Act′,In′,Agt′)
where: Agtnames′=Agtnames∪agt(aaa), Act′=Act∪act(aaa), In′=In∪in(aaa), and Agt′=Agt\ns(aaa,M)∪
{aaa}. The reduction of M by aaa is defined as M	aaa = (Agtnames,Act,In,Agt′) where Agt′ = Agt\{aaa}.

Thus, expansion corresponds to “dumb” pasting an agent into a MIS, and reduction corresponds to
simple removal of the agent. The operations are well defined in the following sense.

Proposition 2 Expansion/reduction of a MIS is always a MIS.2

It is easy to see that removing an agent and pasting it in again does not change the MIS. The reverse
sequence of operations does change the MIS. However, both structures have the same unfoldings:

1 That is, agents in M that have the same id as aaa.
2 The proofs of results in Section 5 are straightforward from the construction of MIS, and we leave them to the reader.
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Proposition 3 Let aaa be an agent in M. Then, (M	aaa)⊕aaa = M. Moreover, let aaa be an agent with no
namesake in M. Then, NCEGS((M⊕aaa)	aaa) = NCEGS(M).

Now we can make our first attempt at a measure of openness.

Definition 8 (Degree of openness) Let θ be a property of models,3 M a modular interpreted system,
and aaa an agent. The degree of openness of M wrt expansion by aaa under constraint θ is defined as the
minimal number of steps that transform M⊕aaa into a MIS M′ such that card(M′) = card(M⊕aaa) and M′

satisfies θ .
Likewise, the degree of openness of modular interpreted system M wrt reduction by agent aaa under

constraint θ is the minimal number of steps that transform M	aaa into an M′ such that card(M′) =
card(M	aaa) and M′ satisfies θ .

The constraint θ can for example refer to liveness of the system or some of its components, fairness
in access to some resources, and/or safety of critical sections. Note that the cardinality check is essential
in the definition – otherwise, a possible transformation would be to simply delete the newly added agent
from M⊕aaa (respectively, to restore aaa in M	aaa).

Definition 9 (Openness of a class of models) Let M be a class of MIS, aaa an agent, and θ a property
of models. Moreover, let C be a class of complexity functions f : N→ R+ ∪{0}. M is C -open wrt
expansion (resp. reduction) by aaa under constraint θ iff there is a complexity function f ∈ C such that for
every M ∈M the degree of openness of M wrt expansion (resp. reduction) by aaa under θ is no greater
than f (|M|).

The most cumbersome part of the above definitions is the constraint θ . How can one capture the
“essence” of acceptable expansions and reductions? Note that, semantically, θ can be seen as a subclass
of models. We postulate that in most scenarios the class that defines acceptable expansions/reductions
is the very class whose openness we want to measure. This leads to the following refinement of the
previous definitions.

Definition 10 (Openness in a class) The degree of openness of M wrt expansion (resp. reduction) by aaa
in class M is the minimal number of steps that transform M⊕aaa (resp. M	aaa) into a MIS M′ ∈M such
that card(M′) = card(M⊕aaa).

Moreover, M is C -open wrt expansion (resp. reduction) by aaa iff there is a complexity function f ∈C
such that for every M ∈M the degree of openness of M wrt expansion (resp. reduction) by aaa in M is no
greater than f (|M|).

We explain the measure in greater detail in the remainder of Section 5. It is important to note that
(in contrast to the measure of multi-agentivity proposed in Section 4) our measure of openness is not
specific to MIS, and can be applied to other modeling frameworks.

Remark 4 Alternatively, we could define the openness of M wrt aaa and θ by the Kolmogorov complexity
of an appropriate expansion/reduction, i.e., by the size of the shortest algorithm that transforms M in
an appropriate way. We chose time complexity instead, for two reasons. First, Kolmogorov complexity
often obscures the level of difficulty of a process (e.g., a two-line algorithm with an infinite while loop
can implement infinitely many changes, which gives the same complexity as changing the names of
two communication channels for a controller). Secondly, computing Kolmogorov complexity can be
cumbersome as it is Turing-equivalent to answering the halting problem.

3 We do not restrict the language in which θ is specified. It can be propositional logic, first-order temporal logic, or even
the general language of mathematics. The only requirement is that, for every MIS M, the truth of θ in M is well defined.
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Figure 3: Dining cryptographers version DC2: direct channels instead of broadcast

We observe, however, that a Kolmogorov-style measure of openness can be a good alternative for
infinite models, especially ones that require infinitely many steps to accommodate changes in the config-
uration of components.

5.2 How to Open Up Cryptographers

In Section 3.3 we modeled the standard version of the Dining Cryptographers protocol as a modular
interpreted system (class DC1). In this section, we will determine the openness of DC1, plus two other
classes of MIS modeling other versions of the protocol. To comply with classical rules of composition,
we begin with the least open variant.
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5.2.1 DC-Net, Direct Channels, No Broadcasting (DC2)

Let us assume that no broadcast channel is available, or it is too faulty (or insecure) to be of use in multi-
party computation. In such case, every pair of cryptographers must use a direct secured channel for
communicating the final utterance. The result of the computation is calculated independently by every
cryptographer. We denote this class of models by DC2, and construct it as follows. Each cryptographer i
is modeled by agent Ci, similar to the cryptographer agents in DC1. Instead of a single global counter of
utterances, there is one counter per every cryptographer (Counteri). The final utterance is sent by direct
point-to-point channels to the counters of all other participants. The resulting MIS is shown in Figure 3.

Adding a new cryptographer Ci to DC1n requires the following changes. First, modifying links
among the new neighbours of Ci yields 10 changes. Secondly, every agent C j in DC1n must be modified
in order to establish a communication channel with Ci. This requires 2 · 5 changes per cryptographer,
thus 10n changes are needed. Thirdly, for the agent Who pays, we add the state payi′ with corresponding
transitions: a single non-deterministic transition from start to payi′ (17 steps: 2 for di + 4 for outi + 8 for
ini + 3 for oi), and the loop sending payment information (19 steps: 4 for di + 4 for outi + 4 for ini + 3 for
oi). Finally, Counter needs to be updated to take into account the new participant. A XOR argument is
added with receiving a manifestation, yielding 2 ·4 = 8 changes. Thus, the overall openness complexity
for DC2n is 10n+54.

Proposition 5 Class DC2 is O(n)-open wrt expansion by a cryptographer.

5.2.2 Dining Cryptographers: Standard Version with Broadcast (DC1)

Let us now go back to the standard version of the protocol, presented in Section 3.3 Adding a new
cryptographer Ci requires the following changes. First, modifying links for the new neighbors of Ci

requires 10 changes. Secondly, changes in Who pays and Counter are the same as for DC2n, yielding
44 steps. Thus, 54 changes are needed to accommodate the new cryptographer, regardless of the number
of agents already present in the system.

Proposition 6 Class DC1 is O(1)-open wrt expansion by a cryptographer.

5.2.3 Fully Open System, Cryptographers without Identifiers (DC0)

In our most radical variant, cryptographers are not arbitrarily assigned as neighbors. Instead, they es-
tablish their neighborhood relation on their own before starting the protocol. Every cryptographer is
modeled by two modules Ci and Payi, and there are two additional agents Oracle and Counter, cf. Fig-
ure 4. The system proceeds as follows:
Setting up the payer. Every cryptographer sends the oracle his declaration whether he is going to pay

or not (chosen nondeterministically). This is performed by module Payi. If Oracle receives at most
one statement want pay, it confirms to all cryptographers. If more than one statements want pay
is sent, the round is repeated until the payment issue becomes resolved.

Establishing the neighbourhood relation and tossing coins. Each cryptographer either nondetermin-
istically tosses a coin and announces the outcome, or listens to such announcements from the other
agents. If there is exactly one cryptographer announcing and one listening, they become paired.
They register the value of the announcement, and proceed further. A cryptographer who started
with announcing will now listen, and vice versa. This takes several rounds, and completes when
every cryptographer has been paired with two neighbors (one to whom he listened, and one to
whom he announced).
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Computation. A broadcast channel is used for sending around the utterances (say equal or¬say equal).
Counter counts the utterances and computes their XOR on the spot, in the way described before.

DC0 is fully open, as adding a new cryptographer requires no adaptation of DC0n.

Proposition 7 Class DC0 is O(0)-open wrt expansion by a cryptographer.

By comparing their classes of openness, it is clear that DC1 is significantly more open wrt expansion
than DC2 (constant vs. linear openness). On the other hand, it seems that the gap between DC1 and DC0
is rather slight (O(1) vs. O(0)). Is that really the case? We believe that the difference between O(1)-
openness and O(0)-openness is larger than one is used to in complexity of algorithms. First, constant
openness means that, when expanding the MIS by a set of new agents, the required transformation can
be linear in the size of the set. More importantly, non-zero openness signifies the need to come up with
a correct procedure of expansion. In contrast, zero openness means zero hassle: the new agents can join
the system as they come. There is no need for “maintenance” of the system so that it stays compliant
with its (usually implicit) specification.

6 Conclusions

In this paper, we propose a new version of modular interpreted systems. The aim is to let modeling
and analysis of multi-agent systems benefit from true separation of interference between agents and the
“internals” of their processes that go on in a system. Thanks to that, one can strive for a more modular
and open design. Even more importantly, one can use the MIS representation of a system to assess its
agentivity and openness through application of simple mathematical measures.

We emphasize that it was not our aim to create yet another agent programming language or represen-
tations that will be used as input to cutting-edge model checkers. Instead, we propose a class of models
which enables to expose the internal structure of a multi-agent system, and to define the concepts of
openness and multi-agentivity in a precise mathematical sense. While our definition of multi-agentivity
is specific to MIS, the measure of openness is in fact generic, and can be applied to models defined in
other formalisms (such as Reactive Modules). We plan to look closer at the degree of openness provided
by different representation frameworks in the future.

We would also like to stress that the focus of this paper regarding the measures of agentivity and
openness is on formalizing the concepts and showing how they work on benchmarks. An formal study
of the measures and their properties is a matter of future work.
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Verification of multi-agents systems (MAS) has been recently studied taking into account the need
of expressing resource bounds. Several logics for specifying properties of MAS have been presented
in quite a variety of scenarios with bounded resources. In this paper, we study a different formalism,
calledPriced Resource-Bounded Alternating-time Temporal Logic(PRB-ATL), whose main novelty
consists in moving the notion of resources from a syntactic level (part of the formula) to a semantic
one (part of the model). This allows us to track the evolutionof the resource availability along the
computations and provides us with a formalisms capable to model a number of real-world scenar-
ios. Two relevant aspects are the notion of global availability of the resources on the market, that
are shared by the agents, and the notion of price of resources, depending on their availability. In
a previous work of ours, an initial step towards this new formalism was introduced, along with an
EXPTIME algorithm for the model checking problem. In this paper we better analyze the features of
the proposed formalism, also in comparison with previous approaches. The main technical contribu-
tion is the proof of the EXPTIME-hardness of the the model checking problem forPRB-ATL, based
on a reduction from the acceptance problem forLinearly-Bounded Alternating Turing Machines. In
particular, since the problem has multiple parameters, we show twofixed-parameterreductions.

1 Introduction

Verification of multi-agents systems (MAS) is a topic under investigation by several research groups
in computer science in the last ten years ([8]). Most of the research is based on logical formalisms,
maybe the most famous being theAlternating-time Temporal Logics(ATL) [3] and theCoalition Logic
(CL) [15, 16], both oriented towards the description of collective behaviors and used as specification
languages for open systems. These scenarios are hence naturally modeled as games. In [10] it has been
shown thatCL can be embedded intoATL. Recently, these two logics have been used for the verification
of multi-agent systems (MAS), enhanced with resource constraints [1, 2, 5, 6, 9]. The intuitive idea is
that agent actions consume and/or produce resources, thus the choice of a given action of an agent is
subject to the availability of the resources. In [1], Alechina et al. introduce the logicResource-Bounded
Coalition Logic(RBCL), whose language extends the one ofCL with explicit representation of resource
bounds. In [2], the same authors propose an analogous extension for ATL, calledResource-Bounded
Alternating-time Temporal Logics(RB-ATL), and give a model checking procedure that runs in time
O(|ϕ |2·r+1× |G|), where|ϕ | is the length of the formulaϕ to be checked,|G| is the size of the model
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nr. 100048021) of the Icelandic Research Fund and the project Decidability and Expressiveness for Interval Temporal Log-
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gramme (People) under “Marie Curie Actions”. The work of Margherita Napoli has been partially supported by the Italian
PRIN 2010 projectLogical Methods of Information Management. The work of Margherita Napoli and Mimmo Parente has
been partially supported by the Italian FARB projects 2010-2012.
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G, andr is the number of resources. However, the problem of determining a lower bound to the model
checking problem is left open. In [6], Bulling and Farwer introduce twoResource-Bounded Agent Logics,
calledRAL andRAL∗. The former represents a generalization of Alechina et al.’sRB-ATL, the latter is an
analogous extension ofATL∗ (analogous extensions for, respectively,CTL andCTL∗ were presented by
the same authors in [5]). The authors study several syntactic and semantic variants ofRAL andRAL∗ with
respect to the (un)decidability of the model checking problem. In particular, while previous approaches
only conceive actionsconsumingresources, they introduce the notion of actionsproducingresources.
It turned out that such a new notion makes the model checking problem undecidable. Formulae of the
formalisms proposed in [1, 2, 5, 6] allow one to assign an endowment of resources to the agents by
means of the so-calledteam operators(borrowed fromATL). The problem is then to determine whether
the agents in theproponentteam have a strategy for the game to carry out the assigned goals with that
bounded amount of resources, whatever the agents in theopponentteam do.

In this paper we study a different formalism, calledPriced Resource-Bounded Alternating-time Tem-
poral Logic (PRB-ATL), introduced in [9], but in a much less mature version. The key features of this
new approach toward the formalization of such complex systems can be summarized as follows.
• Boundedness of the resources.This is a crucial point in our formalization. In order to model

boundedness of the resources, a notion ofglobal availability of resources on the market (or in
nature), which evolves depending on both proponent and opponent behaviors, is introduced. Such a
global availability is a semantic component (it is part of the structure where the logic is interpreted)
and its evolution is tracked during the executions of the system. Agents’ moves are affected by the
current global availability (e.g., agents cannot consume an unbounded amount of resources).

• Resources are shared.Resources are global, that is, they are shared by all the agents. Thus,
the agents either consume or produce resources out of a shared pool of bounded capability, and
acquisition (resp., release) of a resource by an agent (independently if the agent belongs to the
proponent or opponent team) implies that the resource will be available in smaller (resp., greater)
quantity. In this way, we can model several scenarios where shared resources are acquired at a cost
that depends on that resource current availability (for example in concurrent systems where there
is a competition on resources).

• Money as a meta-resource.In addition to public shared resources, our setting also allows one
to modelprivate resources, that is, resources that are possessed by agents (public resources are
present in the market and will be acquired by the agents in case they need). The idea is to provide
the agents with the unique private resource,money, that can be used to acquire (public) resources
needed to perform the tasks. In this sense, money represent several resource combinations and can
be considered as a meta-resource. Unlike the other resources, it is a syntactic component (money
endowment is part of the formula), and is the only (meta-)resource which is private for an agent.
At this stage, our formalization only features the possibility of assigning to agents one private
resource. Nevertheless, in principle, it is possible to extend the idea to admit a vector of private
resources. Furthermore, one could think of including the same resource in both the pool of public
resources and in the pool of private ones. For instance, in a car race one of the players (the cars)
possesses some gasoline in the tank (private resource) but he needs to acquire more gasoline at the
gas station (public resource) to complete the race.

• Resource production.Production of resources is allowed in a quantity that is not greater than a
fixed amount. Thus, we extend the model still preserving the decidability of the model checking
problem. Observe that the constraint we impose still allowsus to describe many interesting real-
world scenarios, such as acquiring memory by a program, or leasing a car during a travel, or, in
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general, any release of resources previously acquired. A similar setting has been already observed
also in [6].

• Opponent power.First observe that we use the standard terminology which separates the role of
the agents in a proponent team and those in the opponent team.This distinction is not within the
game structure, but it is due to the formula under consideration. Agents of the opponent team are
subject to resource availability in choosing the action to perform, in the same way as the agent of
the proponent team, thus the opponent team cannot interferewith a proponent strategy performing
actions which either consume or produce too much (see Example 3 in Section 3). However, it
is common practice to consider opponent having maximum power, to look for robust strategy.
We give unlimited economic power to the agents in the opponent team, in the sense that at each
moment they have money enough to acquire the resources they need for a move, provided that the
resources are available.

Actually in [9] an EXPTIME algorithm for the model checking problem was given, along with a
PSPACE lower bound. The main technical contribution here isto provide an EXPTIME lower bound
for the model checking problem forPRB-ATL. This result shows that the model checking problem
for this logic is EXPTIME-complete. The hardness proof is obtained by means of a reduction from
the acceptance problem forLinearly-Bounded Alternating Turing Machines(LB-ATM), known to be
EXPTIME-complete [7], to the model checking problem forPRB-ATL. More precisely, letn be the
number of agents,r the number of resources, andM the maximum component occurring in the initial
resource availability vector, the algorithm given in [9] runs in exponential time inn, r, and the size of the
representation ofM (assuming thatM is represented in binary). To prove here the inherent difficulty with
respect to multiple input parameters, we show two reductions: one parametric in the representation ofM
(the digit size), that assumes constant bothn andr, and another parametric inr, and assuming constant
bothn and the value ofM.

2 Comparison with related works

In this section we compare our approach with the existing literature underlining differences and similar-
ities respect to [2] and [6].

In the work by Alechina et al. [2], resource bounds only appear in the formulae and are applied solely
to the proponent team, but they are not represented inside the model. Indeed, agents of the proponent
team are endowed with new resources at the different steps ofthe system execution. This means that
it is possible to ask whether a team can reach a goal with a given amount of resources, but it is not
possible to keep trace of the evolution of the global availability of resources. Moreover, resources are
private to agents of the proponent team (not shared, as in ourapproach) and resource consumption due
to the actions of the opponent is not controlled. Here instead, we keep trace of resource global avail-
ability, whose evolution depends on both proponent and opponent moves. In this way, it is possible to
avoid undesired/unrealistic computations of the system such as, for instance, computations consuming

unboundedly. Let us see a very simple example. Consider the formulaψ = 〈〈A~$〉〉�p. Its semantics is
that agents in teamA have together a strategy which can guarantee thatp always holds, whatever agents
of the opponent team do (without consuming too many resources) and provided the expense of the agents
in A does not exceed~$. A loop in the structure where the joint actions of agents consume resources with-
out producing them, cannot be a model forψ . On the contrary, consider the formulaψ ′ = 〈〈Ab〉〉�p,
belonging to the formalism proposed in [2], expressing a similar property, with the only difference that
the agents ofA use an amount of resources bounded byb. A model forψ ′ must contain a loop where
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the actions of agents inA do not consume resources, but the actions of agents in the opponent team may
possibly consume resources, leading to an unlimited consumption of resources.

As a further difference, recall that in [2] actions can only consume resources. Without resource
productions, the model for many formulae (for example thosecontaining theglobal operator�) must
have a loop whose actions do not consume resources (do-nothingactions), and a run satisfying these
formulae is eventually formed by only such actions. On the contrary, by allowing resource production,
we can model more complex situations when dealing with infinite games.

Finally, observe that a similarity with the cited paper is inthe role of money, that could be seen as a
private resource, endowed to the agents of the proponent team.

Bulling and Farwer [6] adopted an “horizontal” approach, inthe sense that they explored a large
number of variants of a formalism to model these complex systems. In particular, they explored the
border between decidability and undecidability of the model checking problem for all such variants, and
they showed how the status of a formalisms (wrt decidabilityof its model checking problem) is affected
by (even small) changes in language, model, and semantics. Our work takes advantage of this analysis
in order to propose a logic that captures several desirable properties (especially concerning the variety
of natural real world scenario that is possible to express),still preserving decidability. However, our
approach presents conceptual novelties that make it difficult to accomplish a direct comparisons between
the formalisms presented here and the ones proposed in [6]. We are referring here to both the above
mentioned idea of dealing with resources as global entitiesfor which agents compete, and the notion of
cost of resource acquisition (price of the resources) that dynamically changes depending on the global
availability of that resource (thus allowing one to model the classic market law that says that getting
a resource is more expensive in shortage scenario). In [6], there is no such a notion as resources are
assigned to (team of) agents and proponent and opponent do not compete for their acquisition.

As regards the complexity issue, in [6], no complexity analysis (for the model checking problem)
is performed, while, in [2], an upper bound is given forRB-ATL, that matches the one given in [9]
for PRB-ATL. The algorithm forPRB-ATL runs in exponential time in the numbern of agents, the
numberr of resources, and the digit size of the maximum componentM occurring in the initial resource
availability vector (assuming a binary reppresentation).Analogously, the model checking algorithm
for RB-ATL runs in exponential time inr, in the digit size of the maximum component of resource
endowment vectorsb occuring in team operators〈〈Ab〉〉 of ϕ and in the numbern of the agents (this is
implicit in set of states of|G|). Actually, bothn andr are often treated as constant [2, 3] (without this
assumption, the complexity ofATL model-checking is shown to be exponential in the number of agents
[11]). However, no complexity lower bound has been exhibit so far. Aim of this paper is to fill this gap,
by providing an EXPTIME lower bound forPRB-ATL.

3 A logical formalization: PRB-ATL

Syntax. We start with the introduction of some notations we will use in the rest of the paper. The
set ofagentsis A G = {a1,a2, . . . ,an} and ateamis any subset ofA G . The integersn and r will be
used throughout the paper to denote the number of agents andresource types(or simply resources),
respectively. LetM = (N∪{∞})r denote the set ofglobal availabilities of resources on the market (or
in nature)and letN = (N∪{∞})n denote the set ofmoney availabilities for the agents, whereN is the
set of natural numbers (zero included). Given a money availability ~$∈N , its i-th component~$[i] is the
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money availability of agentai
1. Finally, the setΠ is a finite set ofatomic propositions.

The formulae ofPRB-ATL are given by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ϕ | 〈〈A~$〉〉©ϕ | 〈〈A~$〉〉ϕU ϕ | 〈〈A~$〉〉�ϕ | ∼ ~m

wherep∈ Π, A⊆ A G , ∼∈ {<,≤,=,≥,>}, ~m∈M and~$ ∈N . Formulae of the kind∼ ~m test the
current availability of resources on the market. As usual, other standard operators can be considered as

abbreviation, e.g., the operator〈〈A~$〉〉♦ψ can be defined as〈〈A~$〉〉⊤U ψ , for every formulaψ .

Priced game structure. Priced game structuresare defined by extending the definitions of concurrent
game structure and resource-bounded concurrent game structure given in, respectively, [3] and [2].

Definition 1 A priced game structureG is a tuple〈Q,π,d,D,qty,δ ,ρ , ~m0〉, where:
• Q is the finite set oflocations; q0 ∈Q is calledinitial location.
• π : Q→ 2Π is theevaluation function, which determines the atomic propositions holding true in

each location.
• d : Q×A G → N is theaction functiongiving the number d(q,a) ≥ 1 of actionsavailable to an

agent a∈A G at a location q∈Q. The actions available to a at q are identified with the numbers2

1, . . . ,d(q,a) and a generic action is usually denoted byα . We assume that each agent has at least
one available action at each location, that could be thoughtof as the actiondo-nothingand we
assume that it is always the first.

• D : Q→ 2N
n

is a function that maps each location q to the set of vectors{1, . . . ,d(q,a1)}× . . .×
{1, . . . ,d(q,an)}. Each vector, calledaction profileand denoted by~α , identifies a choice among
the actions available for each agent in the location q. (The action of the agent a in~α is~α(a).)

• qty : Q×A G ×N→ Zr is a partial function, where qty(q,a,α), with 1≤ α ≤ d(q,a), defines at
location q the amount of resources required by the a’s actionα . We define qty(q,a,1) =~0, that is
the vector whose components are all equal to0, for every q∈ Q, a∈A G (doing nothing neither
consumes nor produces resources).

• δ : Q×Nn→ Q is the transition function. For q ∈ Q and~α ∈ D(q), δ (q,~α) defines the next
location reached from q if the agents perform the actions in the action profile~α .

• ρ : M ×Q×A G →Nr is theprice function. It returns theprice vectorof the resources (a price for
each resource), based on the current resource availabilityand location, and on the acting agent.

• ~m0∈M is the initial global availability of resources. It represents the resource availability on the
market at the initial state of the system.

Note that a negative value inqty(q,a,~α) represents a resource consumption, while a positive one
represents a resource production. We also consider the extension of the functionqty, called again with
the same name, to get the amount of resources required by a given team. Thus, for a locationq, a
teamA and an action profile~α , qty(q,A,~α) = ∑a∈Aqty(q,a,~α (a)). Moreover, we will use the function
consd: Q×A G ×N → Nr that for the tuple(q,a,α) returns the vector of the resources which are
consumed by an agenta, being in stateq, for an actionα . This vector is obtained fromqty(q,a,α)
by replacing the positive components, representing a resource production, with zeros, and the negative
components, representing a resource consumption, with their absolute values.

Example 1 A priced game structure with two agents a1 and a2 and one resource R1 is depicted in
Figure 1. The only atomic proposition is p, labeling the locations q0, q1, q2. The action profiles, labeling

1Throughout all the paper, symbols identifying vectors are denoted with an arrow on the top (e.g.,~$,~m).
2No ambiguity will arise from the fact that actions of different agents are identified with the same numbers.
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A G = {a1,a2}, R= {R1}, Q= {q0,q1,q2,q3,q4}, ~m0 = 〈1〉
π(q0) = π(q1) = π(q2) = {p}, π(q3) = π(q4) = {}
d(q0,a1) = 2, d(q0,a2) = 1, d(q1,a1) = 1, d(q1,a2) = 2
d(q2,a1) = d(q2,a2) = d(q3,a1) = d(q3,a2) = 1
d(q4,a1) = d(q4,a2) = 1
D(q0) = {[1,1], [2,1]}, D(q1) = {[1,1], [1,2]}
D(q2) = D(q3) = D(q4) = {[1,1]}
qty(q0,a1,1) = 〈0〉, qty(q0,a1,2) = 〈−1〉, qty(q0,a2,1) = 〈0〉
qty(q1,a1,1) = 〈0〉, qty(q1,a2,1) = 〈0〉, qty(q1,a2,2) = 〈−1〉
qty(q,a,1) = 〈0〉, ∀q∈ {q2,q3,q4},a∈A G

Figure 1: Example of priced game structureG= 〈Q,π,d,D,qty,δ ,ρ , ~m0〉.

the transitions in the graph and depicted with square brackets, are as follows. D(q0) = {[1,1], [2,1]}
is due to the existence of two actions of a1 and one action of a2 at location q0, D(q1) = {[1,1], [1,2]}
corresponds to a single action of a1 and two actions of a2 at location q1. In all the other locations
the only action profile is[1,1] corresponding to the existence of a single action of both theagents. The
function qty is represented by parentheses. The price vector is not depicted.

Semantics.In the following, given a resource availability~m, byM≤~m we denote the set{~m′ ∈M | ~m′ ≤
~m}. In order to give the formal semantics let us first define the following notions.

Definition 2 A configurationc of a priced game graph G is a pair〈q,~m〉 ∈ Q×M≤ ~m0. Given two
configurations c= 〈q,~m〉 and c′ = 〈q′, ~m′〉, and an action profile~α ∈ D(q), we say that c→~α c′ if
q′ = δ (q,~α) and ~m′ = ~m+qty(q,A G ,~α). A computationover G is an infinite sequence C= c1c2 . . . of
configurations of G, such that for each i there is an action profile~αi such that ci →~αi

ci+1.

LetC= c1c2 . . . be a computation. We denote byC[i] thei-th configurationci in C and byC[i, j], with
1≤ i ≤ j, the finite sequence of configurationscici+1 . . .c j in C. Given a configurationc = 〈q,~m〉 and
a teamA, a function~αA : A→ N is calledA-feasible in cif there exists an action profile~α ∈ D(q) with
~αA(a) =~α(a) for all a∈ A and~0≤ qty(q,A,~α)+~m≤ ~m0. In this case we say that~α extends~αA.

Definition 3 A strategyFA of a team A is a function which associates to each finite sequence of configu-
rations c1c2 . . .cs, a function~αA : A→ N which is A-feasible in cs.

In other words, a strategyFA returns a choice of the actions of the agents in the teamA, considering
only those actions whose resource consumption does not exceed the available amount and whose resource
production does not exceed the amount consumed so far. Clearly, this constraint will limit both proponent
and opponent team.

For each strategyFA of a teamA and for each sequence of configurationsc1c2 . . .cs, there are several
possibilities for the next configurationcs+1, depending on the different choices of the opponent team
A = A G \A. Anyway, fixed a strategyFA of the opponent team, there is at most one action profile
obtained according to both the strategies, that is the action profile~α extending both~αA, given by the
strategyFA, and~αA, given by the strategyFA (i.e.~α is such that~α(a) = ~αX(a), for X ∈ {A,A} anda∈X).
A computationC = c1,c2 . . ., is theoutcome of the strategies FA and FA from the configuration c1 if, for
eachi ≥ 1, there is an action profile~αi obtained according to bothFA andFA, such thatci→~αi

ci+1. Given
a strategyFA and a configurationc, out(c,FA) denotes the set of the outcomes ofFA andFA from c, for all
the strategiesFA of the teamA. Observe that, given a finite sequence of configurationsC= c1c2 . . .cs, if
the action profile~α according to the two strategies is not such that~0≤ qty(qs,A G ,~α)+ ~ms≤ ~m0, then
there is no next configuration. Thus outcome of the strategies FA andFA from a given configuration may
be undefined (recall that we consider only infinite computations).
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Example 2 Consider the priced game structure in Figure 1, with teams A= {a1} and B= {a2}, one
resource type and initial global availability~m0 = 〈1〉. Let c= 〈q0,〈1〉〉 be a sequence of configurations
(of length1). Team A has two possible strategies in c, one for each possible action of agent a1, and
team B has one strategy for the single available action of agent a2. Suppose that, according to the
strategy FA, agent a1 chooses to perform the action2 (FA(c)(a1) = 2), then the action profile[2,1] is
performed and one unit of the unique resource is consumed. Inthe obtained configuration〈q1,〈0〉〉 the
agent a1 has one available action while the agent a2 has two actions. Anyway FB cannot return the
action2 for the agent a2, since this action would require an amount of the resource greater than0, which
is the current availability. Thus only the configuration〈q2,〈0〉〉 can be reached and the computation
C = 〈q0,〈1〉〉〈q1,〈0〉〉〈q2,〈0〉〉〈q2,〈0〉〉 . . . is the only one that belongs to out(c,FA).

Now we introduce the concept of consistent strategy. Two properties have to be satisfied: first, the
outcomes starting fromc are always defined and also the agents of the proponent team have enough
money to realize the chosen actions.

Definition 4 Let~$∈N , c be a configuration, A⊆A G be the proponent team, andA= A G \A be the
opponent team. A strategy FA of A is said to beconsistent with respect to~$ andc ((~$,c)-strategy), if

1. for any strategy FA of A, the outcome of FA and FA from the configuration c is defined,
2. for every C= c1c2 . . .∈ out(c,FA), with ci = 〈qi , ~mi〉, for every i≥ 1and ak∈A: ∑i

j=1ρ(~mj ,q j ,ak) ·
consd(q j ,ak,FA(C[1, j])(ak))≤~$[k].

In the above condition the dot operator denotes the usual scalar product of vectors. Observe that only
the money availability of the teamA is tested. Actually, we suppose that the opponent teamA always
has money enough to make its choice. Notice also that the actionsproducingresources do not cause a
reimbursement of money to the agents. As it is usual when dealing with temporal logics, we guarantee
that priced game structures are non-blocking, in the sense that at least a(~$,c)-strategy exists for a given
teamA. Indeed, agents ofA can always jointly choose thedo-nothingaction.

A formula ofPRB-ATL is evaluated with respect to a priced game structureG and a configuration
c= 〈q,~m〉. The definition of the semantics is completed by the definition of the satisfaction relation|=:
• (G,c) |= p iff p∈ π(q)
• (G,c) |= ¬ψ iff (G,c) 6|= ψ
• (G,c) |= ψ1∧ψ2 iff (G,c) |= ψ1 and(G,c) |= ψ2

• (G,c) |= 〈〈A~$〉〉©ψ iff there exists a(~$,c)-strategyFA such that, for allC ∈ out(c,FA), it holds
that(G,C[2]) |= ψ

• (G,c) |= 〈〈A~$〉〉ψ1U ψ2 iff there exists a(~$,c)-strategyFA such that, for allC ∈ out(c,FA), there
existsi ≥ 0 such that(G,C[i]) |= ψ2 and, for all 1≤ j < i, it holds that(G,C[ j]) |= ψ1

• (G,c) |= 〈〈A~$〉〉�ψ iff there exists a(~$,c)-strategyFA such that, for allC∈ out(c,FA), it holds that
(G,C[i]) |= ψ for all i ≥ 1

• (G,c) |=∼ ~m′ iff ~m∼ ~m′ where∼∈ {<,≤,=,≥,>}.
Given aPRB-ATL formula and a priced game srtuctureG, we say thatG satisfiesϕ , G |= ϕ , if

(G,c0) |= ϕ wherec0 = 〈q0, ~m0〉. The model checkingproblem forPRB-ATL consists in verifying
whetherG |= ϕ .

Example 3 Consider the priced game structure in Figure 1, with teams A= {a1} and B= {a2}. A

formulaψ = 〈〈A G
~$〉〉©〈〈A~$′〉〉�p holds true in the configuration〈q0,〈1〉〉, provided that~$ and~$′ are

enough to make the move. Indeed, a1 and a2 together are able to force the computation to reach the
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〈q1,〈0〉〉 (one unit of resource is consumed). From such a configuration, the opponent team B cannot
force the computation into q3, as the action2 is not allowed for a2 (no resources are available to per-
form the action), and thusψ holds. Instead,ψ is false in the configuration〈q0,〈2〉〉 (actually in each
configuration〈q0,〈x〉〉, with x> 1), because〈q1,〈1〉〉 is reached after the execution of the first transition,
and in that configuration action2 for a2 in B is allowed, leading to q3. Finally, notice that the formula is
false also when evaluated in〈q0,〈0〉〉, as the only possible transition is the one leading from q0 to q4 (no
resources are available to perform action1 for agent a1).

4 Complexity lower bounds for the model checking problem

In [9], the authors presented an algorithm for model checking PRB-ATL, providing an exponential upper
bound for the problem. In particular, letn be the number of agents,r the number of resources, andM the
maximum component occurring in the initial resource availability vector, the proposed algorithm runs
in exponential time inn, r, and the size of the representation ofM (assuming thatM is represented in
binary). In this section we prove that an algorithm that behaves asymptotically better cannot exist, thus
proving that the problem is EXPTIME-complete. To prove the inherent difficulty with respect to the
multiple input parameters, we show two reductions: one parametric in the representation ofM (the digit
size), which assumes bothn andr constant, and the other parametric inr, this time assuming constant
bothn and the value ofM. We conjecture the existence of a third EXPTIME reduction, in which r and
M are constant and the parameter isn. In fact, if it was not the case, it would be possible to improve the
proposed model checking algorithm in a way that its complexity would not be exponential inn.

We first recall the formalism oflinearly-bounded alternating Turing machines(LB-ATM) and the
notion ofhierarchical representation, a succinct way of representing priced game structures inspired to
the work done in [4] for classical Kripke structures. Finally, we present the two reductions from the
acceptance problem forLB-ATM, known to be EXPTIME-complete [7], to the model checking problem
for PRB-ATL.

4.1 Linearly-bounded alternating Turing Machines

A linearly-bounded alternating Turing machines(LB-ATM) is a tuple〈Q,Γ,I ,q0,〉, whereQ is the
set ofstates, partitioned inQ∀ (universal states) andQ∃ (existential states); Γ is the set oftape sym-
bols, including the ‘blank’ symbolB, and two special symbolsx andy, denoting the left and righttape
delimiters; I ⊆Q×Γ×Q×Γ×{←,→} is theinstruction set; q0 ∈Q is theinitial state.

Symbols fromΓ are stored in thetape cells, and the first and the last cell of the tape store, respectively,
the symbolsx andy. A tape configurations is a sequence of the symbols stored in the tape cells, and
keeps trace of anhead cell. A configuration cis a pair(q,s) of a stateq and a tape configurations, and
C is the set of the configurations. The initial configuration isc= (q0,s0), wheres0 contains the input,
possibly followed by a sequence of blanks, and its head cell stores the first input symbol.

An instruction i= (q,λ , r,ν ,∼) ∈I is also denoted〈q,λ 〉 → 〈r,ν ,∼〉, where〈q,λ 〉 is called afull
state. Its intuitive meaning is as follows: “whenever the machineis in the stateq and the symbol in the
head cell isλ , then the machine switches to stater, the symbol in the head cell is replaced withν , and
the head position is moved to the left or to the right (according to∼)”. An execution stepof the machine

is denotedc
i−→ c′, wherec,c′ ∈ C , i ∈I andc′ is the configuration reached fromc after the execution

of the instructioni. Let Cnext(c) = {c′ ∈ C | c i−→ c′ is an execution step, for somei ∈ I }. All the tape
configurations are linear in the length of the input and we follow the common practice to only consider
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machines whose tape length does not vary during the computation. We can also assume thatLB-ATM
have no infinite computations since anyLB-ATM can be transformed into another, accepting the same
language and haltingin a finite number of steps. Such aLB-ATM counts the number of execution steps
and rejects any computation whose number of steps exceeds the number of possible configurations.

Theacceptance conditionis defined recursively. A configurationc= (q,s) is said to beacceptingif
either one of the following conditions is verified:(i) q∈Q∀ andc′ is accepting for allc′ ∈ Cnext(c) or
(ii) q∈Q∃ and there existsc′ ∈ Cnext(c) such thatc′ is accepting. Notice that an universal (existential)
state always accepts (rejects) ifCnext(c) = /0. A LB-ATM accepts on an initial input tapes0, if the initial
configuration(q0,s0) is accepting.
Hierarchical representation. In order to exhibit our encoding proposal, we make use of a hierarchical
representation analogous to the one described in [4, 12, 13]for model checking, and in [14] for module
checking procedures. Given a finite state machine, the idea of hierarchical representation is to replace
two or more substructures of the machine that are structurally equivalent, by another (structurally equiv-
alent) module, that is a finite state machine itself. The use of hierarchical representation results in an
exponentially more succinct representation of the system,that amounts (in most cases) to more effi-
cient model checking procedures (in the other cases, this does not yield a more efficient behavior, as the
analysis requires a flattening of the machine itself, thus incurring in an exponential blow up in its size).

In our context, this idea can be suitably adapted to deal withthe presence of resources, as follows.
Modules do not represent structurally equivalent substructures, but substructures that have the same
impact on the values of resource variables. In principle, whenever the analysis is focused on the evolution
of resource variables, it makes sense to consider as equivalent two substructures that can possibly differ in
their structure but whose effect on the set of resource variables is exactly the same. This approach could
be thought of as a hierarchical representation based onfunctionalequivalence between substructures, as
opposed to the classical notion of hierarchical representation based onstructuralequivalence.

4.2 A reduction from the acceptance problem forLB-ATM

Given anLB-ATM A and an input tape configurations0, we provide a priced game structureGA ,s0, with
two agentsag1 andag2, and a formulaφA ,s0 such thatGA ,s0 |= φA ,s0 if and only if A accepts ons0.

In the following, we exhibit the game structure by using a graphical (hierarchical) representation
(Figures 2-7 in Appendix). Notice that only significant information is explicitly shown in the pictures.
In particular, labels on transitions (arcs) represent consumptions/productions of resources due to the
execution of the joint move (proponent and opponent moves) associated to that transition. For example,
the label “−1i,+1i,+10µL,−10µL” on the loop transition of Figure 4b means that the actions associated
to the transition will consume 1 unit of the (type) resourcei and 10 unit ofµL, and will produce 1
unit of the resourcei and 10 unit ofµL. Availability of other resources is unchanged, then the relative
information is omitted.

The reduction uses the three resource variablesµL, µ , andµR to encode the tape configuration, plus
three auxiliary resource variablesi, r, and t, that will be useful during the construction. Moreover,
we associate to the above set of variables the set ofcounterbalanced variables{µL,µ ,µR, i, r , t}. The
idea behind the use of counterbalanced variables, that is also the key idea of the reduction, consists
of designing the game structure in a way that to every consumption (resp., production) of a resource,
say for instanceµ , a corresponding production (resp., consumption) of its counterbalancedµ exists. In
particular, this is true inside each module of the hierarchical structure, thus the sum of the availability of
a resource variable and its counterbalanced variable is kept constant along all the computation at every
module’s entry and exit points, equal to a valueMax, which depends on the input of theLB-ATM. This
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will allow us to force the execution of specific transitions at specific availabilities of resource variables.
Consider, for example, the node of Figure 4b with 2 outgoing transitions, one of which is a loop transition.
The presence of 2 outgoing transitions means that either theproponent or the opponent can choose
between 2 moves. But such a freedom is only potential, as in any moment of the computation the
choice of the next move by the proponent/opponent is constrained by the resource availability: if the
loop transition is enabled, then the availability of the resourcei is greater than 0, and thus the availability
of its counterbalanced variablei is less thanMax, that means that the other transition, which consumes
Max units of the resourcei, is disabled. On the contrary, if the non-loop transition isenabled, there are
Max units of the resourcei available, and thus the availability of the resourcei is 0, that means that the
loop transition is disabled. Thus, by taking advantage of the features of counterbalanced variables, we
are able to force the executions to have a somehow deterministic behavior.

Encoding of the tape.Without loss of generality, we considerLB-ATM on input alphabetΣ = {1,2,B},
thusΓ is the set{1,2,B,x,y}. Recall that the symbolsB, x, andy denote the ‘blank’ symbol, the left
delimiter, and the right delimiter, respectively. Tape symbols are encoded by the digits 0,1,2,3 and
4, in a pretty natural way: 0 encodes the ‘blank’ symbol, 1 and2 encode the input symbols1 and2,
and 3 and 4 encode the left and right delimiters. The tape configuration is encoded by means of the
three resource variablesµL, µ , andµR. The value ofµ ranges over the set{0,1,2,3,4} and encodes
the value stored in the cell currently read by the head (according to the above encoding of tape symbols
into digits). The value ofµL encodes the tape configuration at the left of the current headposition in a
forward fashion. The value ofµR encodes the tape configuration at the right of the current head position
in a reverse fashion, that is,µR encodes the reverse of the string corresponding to the tape configuration at
the right of current head position. As an example, consider the tape configurations= xB11211B2BBy,
the symbol read by the head is the underlined one. Such a configuration is encoded by means of the
three resource variables as follows:µL = 30112,µL = 1, andµR = 400201. It can be noticed that the
length of the representation of the three variablesµL, µ , andµR is proportional to the length of the tape
configuration which is at most linear in the size of the input,namelyO(|s0|). Using such an encoding, the
machine operation “shift the head to the left” can be represented by means of the following operations
on resource variables:
• the new value ofµR is µR∗10+µ
• the new value ofµ is µL mod 10,
• the new value ofµL is µL/10 (/ is the integer division),

The operation “shift the head to the right” can be encoded analogously.
Notice that in order to encode in polynomial time the operations of shifting the head to left and right,

we encode the string to the right of the current head positionin a reverse order. Indeed, in this way the
symbol stored on the cell immediately to the right of the headcorresponds to the least significant digit of
µR, and thus can be accessed by using the module operation (µR mod 10).

Encoding of the instructions. The encoding of the instructions is depicted in Figure 2. Transitions
starting from a node labeled〈q,λ 〉 represent all the possible instructions matching the full state〈q,λ 〉 of
theLB-ATM, that is, all the instructions that can be possibly performed at the full state〈q,λ 〉.

More in detail, given a full state〈q,λ 〉 of the machine, withq ∈ Q∃, the encoding of the
set{〈q,λ 〉 → 〈r1,ν1,∼1〉,〈q,λ 〉 → 〈r2,ν2,∼2〉, . . . ,〈q,λ 〉 → 〈rm,νm,∼m〉} of matching instructions is
shown in Figure 2a, (recall that∼i∈ {←,→}). Analogously, the encoding of the set of instructions
matching the full state〈q,λ 〉, with q ∈Q∀, is shown in Figure 2b. Let us underline that the action pro-
files 〈α1,β 〉, . . . ,〈αm,β 〉 labeling transitions corresponding to an existential state are such that the first
agentag1 has the capability to force a specific transition (instruction) to be executed, depending on the
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(b) Full state〈q,λ 〉, with q ∈Q∀.

Figure 2: Encoding of the set of instructions matching a fullstate〈q,λ 〉 of aLB-ATM.

choice of theαi for the next action, independently from the choiceβ of the other agentag2. On the other
hand, the action profiles〈α ,β1〉, . . . ,〈α ,βm〉 labeling transitions corresponding to an universal state are
such that the roles of the agents are exchanged.

TheLB-ATM representation of Figure 2 is hierarchical and involves themoduleswrite andmove.
The former encodes the rewriting of the head cell performed by A and, to this aim, makes use of one of
the following modules (Figure 3), depending on the symbolλ read by the head, and on the symbolν to
be written:
• inc, depicted in Figure 3a, is used when the rewriting corresponds to an increment, for example,

when the symbol2 has to be written in place of the symbol1;
• doubleinc, depicted in Figure 3b, is used when the rewriting corresponds to a double increment,

for example, when the symbol2 (encoded as 2) has to be written in place of the symbolB (encoded
as 0);

• dec, depicted in Figure 3c, is used when the rewriting corresponds to a decrement, for example,
when the symbol1 has to be written in place of the symbol2;

• doubledec, depicted in Figure 3d, is used when the rewriting corresponds to a double decrement,
for example, when the symbolB has to be written in place of the symbol2.

Obviously, the module does nothing when the symbol to be written corresponds to the symbol currently
stored in the head cell.

The modulemoveencodes the shift (to right or to left) of the head. It is designed in a way that the
only next location that can be reached by the game is consistent with the value stored on the new head
cell (after the shift operation). In Figure 4 and 5 the sub-modules encoding the operation “shift to right”
are depicted. The encoding of the operation “shift to left” can be realized analogously.

As an example, we describe the first two modules of Figure 4. The moduleshi f t right, depicted in
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Figure 4a, is performed through the following steps:
• multiply by 10 the value ofµL (moduletimes10(µL)),
• increment the value ofµL by the value ofµ (moduleadd(µL,µ)),
• divide by 10 the value ofµR (modulediv 10(µR) — the remainder of the division is stored in the

resource variabler),
• assign to the resource variableµ the value ofr (moduleassign(µ , r)),
• suitably lead the computation to the location corresponding to the next state of theLB-ATM,

depending on the value read by the head, that is, the value stored on the resource variableµ
(modulechoosenext state(µ)).

The moduletimes10(µL), that multiplies by 10 the value ofµL (Figure 4b), is performed by storing the
value ofµL in the resource variablei, by setting the value ofµL to 0, and then by executing a transition
(the loop transition), which consumes 1 unit ofi and produces 10 units ofµL (the suitable quantity of
the counterbalanced variables is produced or consumed as well, to keep the sum constant) as long as
items of the resourcei are available. When the availability ofi goes down to 0, the other transition
is executed (the last transition is needed to keep constant the sum betweeni and its counterbalanced
variable i). It is easy to convince oneself that the value ofµL in the exit node is equal to its value in
the entry node times 10, and that the sum of each variable and its counterbalanced one is constant. As
a last remark, we point out that the names of some of the modules are parametric, in the sense that the
arguments between parenthesis are not actual resource variables, but parameters (e.g.,x, x1, x2) to be
instantiated. We adopted this notation for modules that areused more than once, and that are instantiated
with actual resource variables when they are used (e.g., themoduleassigndepicted in Figure 4c is called
assign(x1,x2) and it is used, for instance, inside the moduletimes10(µL) (Figure 4b), wherex1 (resp.,
x2) is instantiated withi (resp.,µL), and inside the moduleadd(µL,µ) (Figure 5a), wherex1 (resp.,x2)
is instantiated witht (resp.,µ).

Now, as resource productions are involved in the reduction,we need to guarantee that the avail-
ability of each resource never exceeds the initial one. To this end the values of the components of the
vector ~m0 of initial resource availability are set to the valueMax= 322. . .224, that is the largest num-
ber corresponding to an encoding of any tape configuration (precisely, it encodes the tape configuration
x22 . . .22y). Before starting the simulation of theLB-ATM, a preliminary step, depicted in Figure 6,
modifies the value of the resource variables in such a way thatthey correctly encode the input tapes0 and
the sum of the availability of each resource variable and itscounterbalanced is equal toMax. Thus, the
value of the resource variables never exceedMax.

At this point, given aLB-ATM A and an input tape configurations0, the game structureGA ,s0

presents, among others, the following features (the other features ofGA ,s0 are either irrelevant or repre-
sented in the graphical representation of the encoding — seeFigures 2-6):
• 2 agents,ag1 andag2;
• 5 locations, namely〈q,B〉, 〈q,1〉, 〈q,2〉, 〈q,x〉, 〈q,y〉, for each internal stateq of A (plus other

locations — the circles in the pictures — that do not correspond to particular states of theLB-ATM,
but are needed to perform the encoding);

• only one atomic propositionp, that holds true over all and only the locations having no matching

+1µ ,−1µ

(a) Moduleinc.

inc inc

(b) Moduledouble inc.

−1µ ,+1µ

(c) Moduledec.

dec dec

(d) Moduledoubledec.

Figure 3: Encoding of the modulewrite.
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times10(µL) add(µL,µ)

div 10(µR) assign(µ ,r)

choosenext state(µ)

(a) Moduleshift right.

assign(i,µL) to zero(µL)

−1i,+1i
+10µL,−10µL

−Max i

+Max i

(b) Moduletimes10(µL).

to zero(x1) to zero(t)

−1x2,+1x2
+1x1,−1x1
+1t,−1t

−Max x2

+Max x2

+1x2,−1x2
−1t,+1t

−Maxt +Maxt

(c) Moduleassign(x1, x2).

−1x,+1x

−Max x +Max x

(d) Moduleto zero(x).

Figure 4: Encoding of the moduleshift right - part I.

instructions;
• initial global availability ~m0 is such that all resources are available in quantityMax, as already

mentioned above; notice thatMax also represents the maximum value occurring in the initial
resource availability vector, that is,M = Max;

• initial location〈q0,λ 〉, whereq0 is the initial state of theLB-ATM andλ is the first input symbol.

The formulaφA ,s0 = 〈〈A
~$〉〉♦p, with A= {ag1} and the value of~$ being irrelevant for our purposes, is

such thatGA ,s0 |= φA ,s0 if and only if A accepts on inputs0.
Notice that, for the sake of readability, the game structureused in the reduction does not respect the

requirement that, in every location, the first action of every agent is thedo-nothingaction, which does
not consume or produce resources. Nevertheless, this omission does not affect the correctness of our
reduction, that can be easily adapted using a game structurefulfilling the above requirement.

Theorem 1 Model checkingPRB-ATL is EXPTIME-hard even assuming n and r constant.

Let us stress that the above reduction makes use of a constantnumber of agents and resources, while
the digit size ofM (the maximum value occurring in~m0) is linear in the size of the tape configuration.
This is consistent with the complexity of the algorithm in [9], which remains exponential even if we
consider a constant number of agents and resources as input.

Corollary 1 The model checking problem forPRB-ATL is EXPTIME-complete.

4.3 Another reduction.

As noted at the beginning of Section 4, it is possible to exhibit two more reductions according to which
two parameters, out of three, are assumed constant. In the following, we briefly outline how to obtain a
reduction from the acceptance problem forLB-ATM, whenn andM are constant.

This reduction is simpler than the previous. Here the encoding of the tape is obtained using a number
of resources which is linear in the length of the tape. Let|s| be the length of the tape, we use 2 sets of
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assign(t,µ)

−1t,+1t
+1µL,−1µL

−Maxt +Maxt

(a) Moduleadd(µL, µ).

to zero(r) assign(i,µR) to zero(µR)

−10i,+10i
+1µR,−1µR

−(Max−9) i

+(Max−9) i

+1r,−1r
−1i,+1i

−Max i +Max i

(b) Modulediv 10(µR).

−Max µ

−1µ ,+1µ −Max µ

+Max µ

+Max µ

−1µ ,+1µ

−1µ ,+1µ

−Max µ +Max µ

−1µ ,+1µ

−Max µ +Max µ

(c) Modulechoosenext state(µ).

Figure 5: Encoding of the moduleshift right - part II.

|s| resource variables, namely,µ1
L ,µ2

L , . . . ,µ
|s|
L and µ1

R,µ2
R, . . . ,µ

|s|
R , plus the resource variableµ . Each

variable encodes the content of a tape cell: variableµ encodes the content of the head cell, while, for
eachi, the variableµ i

L (resp.,µ i
R) encodes the content of thei-th cell on the left (resp., right) of the tape

cell. Notice that, since there are finitely many possible values for a tape cell, the value ofM is upper
bounded. Now, the encoding of the set of instructions matching a full state〈q,λ 〉 of a LB-ATM is the
same used for the previous reduction and depicted in Figure 2. Nevertheless, the encoding of the module
move, which encodes the shift (to right or to left) of the head, is slightly different. In Figure 7, the
sub-modules encoding the operation “shift to right” are depicted. Essentially, the value of the variable
representing a cell is transmitted to the variable representing the cell on the right, and the next location
reached on the game structure is set according to the value stored on the current head cell (after the shift
operation). The encoding of the operation “shift to left” ismade analogously.

Theorem 2 Model checkingPRB-ATL is EXPTIME-hard even assuming n and M constant.

5 Discussion

In this paper we have presented a formalism which is very suitable to model properties of multi-agent
systems when the agents share resources and the need of avoiding an unbounded consumption of such
resources is crucial. Within our framework it is possible tokeep trace of a real global availability of the

−Max µ −Max i
−Max µL −Max r
−Max µR −Maxt

assign(µL, lv) assign(µ ,hv) assign(µR, rv)

Figure 6: Preliminary step of the reduction (lv, hv, andrv encode the input tape configuration).
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assign(µ |s|L , µ |s|−1
L ) assign(µ |s|−1

L , µ |s|−2
L )

. . .
assign(µ2

L , µ1
L ) assign(µ1

L , µ)

assign(µ , µ1
R) assign(µ1

R, µ2
R)

. . .
assign(µ |s|−1

L , µ |s|L ) choosenext state(µ)

Figure 7: Encoding of the moduleshift right.

resources, used by both the proponent and opponent players,avoiding thus unrealistic situations in which
an unbounded quantity of resources is used in a game.

The technical focus of the paper has been on the complexity ofthe model checking problem, and we
proved that it is EXPTIME complete (recall that also for simpler formalism this problem is in EXPTIME,
though the lower bound is not known). Other problems of interest exist in the context of multi-agents
system verification. The most important one is thereachability problem, that is the problem of determin-
ing whether a team, with a given amount of money and a given initial global resource availability, has a
strategy to force the execution of the system to reach a givenlocation. More precisely, the reachability
problem for a teamA on a priced game structureG is a particular instance of the model checking prob-
lem, namely, the problem of verifying the truth at the initial configuration ofG of aPRB-ATL formula of

the kind〈〈A~$〉〉♦p, for a teamA, a money endowment~$ andp∈Π. An upper bound on the complexity
of this problem is clearly given by the algorithm for solvingthe model checking problem forPRB-ATL.
Let us observe that the reductions given in section 4 apply also to the reachability problem, since the

formula used there wasφA ,s0 = 〈〈A
~$〉〉♦p, thus we have the following corollary.

Corollary 2 The reachability problem forPRB-ATL is EXPTIME-complete.

One of the novelties of our logic is thatthe resource productionis allowed in the actions, though
with some limitations. Model checking and reachability problems seem both to be simpler in the case
one restricts our formalism by considering agent actions that cannot produce resources. The reachability
problem is indeed NP-hard in this case: it immediately follows from a result in [11], when the number
of agents is not constant. Anyway, we can prove the NP-hardness for just two agents using a reduction
from 3-SAT (due to lack of space we omit here the proof). The model checking problem, instead, turns
out to be PSPACE-hard, since the reduction from QBF problem given in [9] works also in this case,
when actions cannot produce resources. Observe thatPRB-ATL with this restriction is again different
from other formalisms in literature, mainly for the possibility of tracking resources avalability and for
considering shared resources.

Finally, we want to note that also the more general problem, called optimal coalition problem, is
EXPTIME-complete (the upper bound was shown in [9]). It is the problem of finding optimal (with
respect to a suitable cost function) coalitions that are capable to satisfy a givenparametricPRB-ATL

formula, that is, aPRB-ATL formula in whichparametric team operators〈〈X~$〉〉 may occur in place of

the classical team operators〈〈A~$〉〉. One could also investigate other optimization problems. The most
interesting is, perhaps, to consider the money availability not as an input of the problem, but rather as
a parameter to minimize, that is to establish how much money each agent should be provided with, to
perform a given task.

Further research directions concern the study of variants of the logic. First, one can consider exten-
sions based on the full alternating-time temporal languageATL∗, as already done in [6], and its fragment
ATL+.
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