
Automata vs. Logics on Data Words

Michael Benedikt, Clemens Ley, and Gabriele Puppis

Oxford University Computing Laboratory - Parks Road, Oxford OX13QD UK

Abstract. The relationship between automata and logics has been in-
vestigated since the 1960s. In particular, it was shown how to determine,
given an automaton, whether or not it is definable in first-order logic
with label tests and the order relation, and for first-order logic with the
successor relation. In recent years, there has been much interest in lan-
guages over an infinite alphabet. Kaminski and Francez introduced a
class of automata called finite memory automata (FMA), that represent
a natural analog of finite state machines. A FMA can use, in addition to
its control state, a (bounded) number of registers to store and compare
values from the input word. The class of data languages recognized by
FMA is incomparable with the class of data languages defined by first-
order formulas with the order relation and an additional binary relation
for data equality.
We first compare the expressive power of several variants of FMA with
several data word logics. Then we consider the corresponding decision
problem: given an automaton A and a logic, can the language recognized
by A be defined in the logic? We show that it is undecidable for several
variants of FMA, and then investigate the issue in detail for deterministic
FMA. We show the problem is decidable for first-order logic with local
data comparisons – an analog of first-order logic with successor. We also
show instances of the problem for richer classes of first-order logic that
are decidable.

Logics are natural ways of specifying decision problems on discrete struc-
tures, while automata represent natural processing models. On finite words from
a fixed (finite) alphabet, Büchi [1] showed that monadic second-order logic has
the same expressiveness as deterministic finite state automata, while results of
Schützenberger and McNaughton and Papert showed that first-order logic with
the label and order predicates has the same expressiveness as counter-free au-
tomata [2, 3]. The latter theorem gives a decidable characterization of which
automata correspond to first-order sentences. Decidable characterizations have
also been given for first-order logic with the label and successor predicates [4].
These characterizations have been extended to many other contexts; for example
there are characterizations of the tree automata that correspond to sentences in
logics on trees [5].

Automata processing finite words over infinite alphabets (so called data
words) are attracting significant interest from the database and verification com-
munities, since they can be often used as low-level formalisms for representing
and reasoning about data streams, program traces, and serializations of struc-
tured documents. Moreover, properties specified using high-level formalisms (for



x ∼ r1 =⇒ store x in r1

true =⇒ store x in r1

x � r1 =⇒ store x in r1

x � r1 =⇒ store x in r1

x ∼ r1 =⇒ store x in r1

x = r1 ⇒ store x in r1 x = r1 ⇒ store x in r1

x �= r1 ⇒ store x in r1

x �= r1 ⇒ store x in r1

true ⇒ store x in r1

Tuesday, 6 April 2010

Fig. 1. A finite-memory automaton.

instance, within suitable fragments of first-order logic) can be often translated
into equivalent automaton-based specifications, easing, in this way, the various
reasoning tasks.

Different models of automata which process words over infinite alphabets
have been proposed and studied in the literature (see, for instance, the surveys [6,
7]). Pebble automata [8] use special markers to annotate locations in a data word.
The data automata of [9] parse data words in two phases, with one phase applying
a finite-state transducer to the input data word and another deciding acceptance
on the grounds of a classification of the maximal sub-sequences consisting of the
same data values. Of primary interest to us here will be a third category, the
finite memory automata [10], also called register automata, which make use of a
finite number of registers in order to store and eventually compare values in the
precessed data word.

It is known that the languages accepted by finite memory automata are
strictly contained in the languages definable in monadic second-order logic with
the successor relation and a binary relation to test data equality [8]. The first
order variant of this logic is incomparable in expressive power with deterministic
finite memory automata: The set of words of even length can be recognized by
a finite memory automaton but can not be defined in first-order logic; on the
other hand the set of words that have two positions with the same value can be
expressed in first-order logic, but it can not be recognized by any deterministic
finite memory automaton.

We will compare the expressive power of several restrictions of deterministic
finite memory automata with restrictions of MSO. We consider the class of finite
memory automata with a bounded number of registers as well as the class that
can only perform “local” data comparisons (within a fixed distance). We will
also look at several variants of first-order logic – we will look at logic where we
can use equality between any two symbols in the word, as well as logics where
one can only compare symbols “locally”. We will look at logics where the word
ordering relation is present, as well as logics where only the successor relation
is available. We will also consider “non-uniform first-order definability” where a
different formula is used depending on the alphabet.

Our main goal is to find effective characterisations for these logics with re-
spect to the automata models described above. That is, we present algorithms
that can decide questions of the form: Given an automaton and a logic, can the
language of the automaton be defined in the logic?



x � r1, x � r2 ⇒ store x in r1, delete r2

x � r1 ⇒ store x in r1

true ⇒ store x in r1
x ∼ r1

⇒ stor
e x in r1

x ∼ r1 ⇒ store x in r1

x � r1 ⇒ store x in r2

x ∼ r1 ⇒ store r2 in r1, store x in r2

x ∼ r2 ⇒ store x in r1, delete r2

true ⇒ store x in r1

x = r1 ⇒ store x in r1

x = r1
⇒ stor

e x in r1

x �= r1, x �= r2 ⇒ store x in r1, delete r2

x �= r1 ⇒ store x in r2

x �= r1 ⇒ store x in r1

x = r2 ⇒ store x in r1, delete r2

x = r1 ⇒ move r2 to r1, store x in r2

Tuesday, 6 April 2010

Fig. 2. A finite-memory automaton recognizing a first-order definable language.

Example 1. Consider the automaton from Figure 1. We have had used an in-
tuitive notation in the figure – a more precise syntax is given in Section 1. An
edge is labeled with g ⇒ a where, g is a guard (precondition) and a an action
(postcondition); both g and a refer to the current symbol as x, and the ith reg-
ister as ri. This automaton accepts exactly the data words w such that there
are an even number of places n ≤ ∣w∣ with w(n) ≠ w(n − 1). Our algorithms
can check that this language is not definable in first-order logic with order and
data equality, even in the non-uniform model. The automaton from Figure 2
accepts words such that for every n with w(n) = w(n−1) there is y > x such that
w(y) ≠ w(y + 1) ≠ w(y + 2) and w(y) ≠ w(y + 2). Our techniques can determine
that this language is first-order definable: in fact, definable using only local data
comparisons.

We first show that one can not hope to characterize logical classes for many
powerful classes of automata on infinite alphabets – for example, we show this
for non-deterministic memory automata, and for two-way deterministic memory
automata.

We thus focus on Deterministic Memory Automata (DMAs). We give a
method for deciding non-uniform FO definability for two special classes of DMAs
– 1-memory DMA and window automata (automata that can only make data
comparisons locally). We then provide a decidable criterion for a DMA being ex-
pressible within the local variants of first-order logic. We then turn to non-local
FO definability. The general question of decidability of non-local definability
is open; however, we provide effective necessary and sufficient conditions for a
subclass of DMA, the window automata, to be non-locally FO definable.

Organization: Section 1 explains the automata and logic formalisms that
are the core topic of this paper, and their relationships. Section 2 gives undecid-
ability results for several powerful models. Section 3 gives decidable criteria for
non-uniform first order definability within certain classes of memory automata.
Section 4 gives a decision procedure for first-order definability with only local
data comparisons. Section 5 investigates the broader question of deciding first-
order definability with unrestricted data comparisons. We do not resolve this
question, but provide effective necessary conditions and effective sufficient crite-
ria. Section 6 gives conclusions. All proofs can be found in [11].



1 Preliminaries

We fix an infinite alphabet D of (data) values. A (data) word is a finite sequence
of values from the infinite alphabet D. Two words u and v are said to be iso-
morphic, and we denote it by u ≃ v, if ∣u∣ = ∣v∣ and u(i) = u(j) iff v(i) = v(j)
for all pairs of positions i, j in u. The ≃-equivalence class of a word u, denoted
by [u]≃ or simply by [u], is called the ≃-type of u. A (data) language is a set of
data words. Given two words u and v, we write u =L v if either both u and v are
in L, or both are not. From now on, we tacitly assume that any data language
L is closed under ≃-preserving morphisms, namely, ≃ refines =L.

1.1 Finite-memory automata

In this section, we introduce a variant of Kaminski’s finite-memory automata
[10] that recognize data languages over an infinite alphabet D. These automata
process data words by storing a bounded number values into their memory and
by comparing them with the incoming input values.

Definition 1. A k-memory automaton (k-MA) is a tuple A = (Q0, . . . ,Qk, qI , F, T ),
where Q0, . . . ,Qk are pairwise disjoint finite sets of states, qI ∈ Q0 is an initial
state, and F ⊆ Q0 ∪ . . .∪Qk is a set of final states. T is a finite set of transitions
of the form (p,α,E, q), where p ∈ Qi for some i ≤ k, α is the ≃-type of a word of
length i + 1, E ⊆ {1, . . . , i + 1}, and q ∈ Qj with j = i + 1 − ∣E∣.

A configuration of a k-MA A is a pair (p, ā) consisting of a state p ∈ Qi,
with 0 ≤ i ≤ k, and a memory content ā ∈Di. The initial configuration is (qI , ε),
where ε denotes the empty memory content. The automaton can move from a
configuration (p, ā) to a configuration (q, b̄) by consuming an input symbol a iff
there is a transition (p,α,E, q) ∈ T such that the word ā ⋅ a has ≃-type α and b̄
is obtained from ā ⋅ a by removing all positions in E.

We enforce the following sanity conditions to every transition (p,α,E, q) of
a k-MA. First, we assume that E is non-empty whenever q ∈ Qk (this is in order
to guarantee that the length of the target memory content b̄ never exceeds k).
Then, we assume that if the ≃-type α is of the form [ā ⋅a], with ā(j) = a for some
1 ≤ j ≤ ∣ā∣, then E contains at least the index j (this is in order to guarantee
that the target memory content b̄ contains pairwise distinct elements).

A run of A is defined in the usual way. If u is a data word and A has a run
on u from a configuration (p, ā) to a configuration (q, b̄), then we denote this

by writing either uA(p, ā) = (q, b̄) or (p, ā) uÐÐÐÐ→
A

(q, b̄), depending on which is

more convenient. The language recognized by A, denoted L(A), is the set of all
words u such that uA(qI , ε) = (p, ā), for some p ∈ F and some ā ∈D∗.

A finite-memory automaton A = (Q0, . . . ,Qk, T, I, F ) is deterministic if for
each pair of transitions (p,α,E, q), (p′, α′,E′, q′) ∈ T , if p = p′ and α = α′, then
E = E′ and q = q′. Similarly, A is complete if for every state q ∈ Qi and every ≃-
type α with i+1 variables, T contains a transition rule of the form (p,α,E, q). We
abbreviate any deterministic and complete k-memory automaton by (k-)DMA.



Minimal deterministic finite-memory automata. Bouyer et. al. have given an
algebraic characterization of the languages that are accepted by a generalization
of DMA [12]. A Myhill-Neorde style characterization of the languages that are
accepted by DMA was given by Francez and Kaminski in [13]. They state as an
open question whether one can compute, given a DMA, a minimal DMA that
accepts the same language. In [14] we gave a positive answer to this question.
Precisely, we show that given a DMA that accepts a language L, one can com-
pute a DMA AL that has the minimum number of states and that stores the
minimum number of data values for every consumed input word. A semantics-
based definition of the set of values that need to be stored by any DMA A in
order to recognize a given language L is as follows:

Definition 2. Let L be a language. A value a is L-memorable in a word u if a
occurs in u and there is a word v and a value b ∉ u ⋅v such that u ⋅v ≠L u ⋅v[a/b].

We denote by memL(u) the sequence consisting of the L-memorable values of u
in the order of their last appearance in u.

In [14], we showed that a language is DMA-recognizable iff the following
equivalence relation has finite index:

Definition 3. Given a language L, we define the equivalence ≡L ⊆ D∗ × D∗

such that u ≡L v iff memL(u) ≃ memL(v) and for all words u′, v′ ∈ D∗, if
memL(u) ⋅ u′ ≃ memL(v) ⋅ v′ then u ⋅ u′ =L v ⋅ v′.

Let L be a language with equivalence ≡L of finite index. We can define the
canonical automaton for L as the k-memory automatonAL = (Q0, . . . ,Qk, qI , F, T ),
where k is the maximum length of memL(u) over all words u ∈D∗; Qi, with 0 ≤
i ≤ k, contains all ≡L-equivalence classes [u]≡L

, with u ∈ D∗ and ∣memL(u)∣ = i;
qI is the ≡L-equivalence class of the empty word; F = {[u]≡L

∣ u ∈ L}; T contains
all transitions of the form ([u]≡L

, α,E, [u ⋅ a]≡L
), where u ∈ D∗, a ∈ D, α is the

≃-type of memL(u) ⋅ a, and E is the set of positions in memL(u) ⋅ a that have to
be removed from memL(u) ⋅ a to obtain memL(u ⋅ a).

Theorem 1 ([14]). Given a DMA A that recognizes L, the canonical automaton
for L can be effectively computed from A.

We will extensively exploit the following property of a canonical automaton
AL: after parsing an input word u, the automaton AL stores exactly the sequence
memL(u) of L-memorable values of u. It is also worth remarking that if two
words lead to distinct states in the canonical automaton AL, then they belong
to distinct ≡L-equivalence classes.

Local finite-memory automata. A DMA A is l-local if for all configurations (p, ā)
and all words u of length l, if uA(p, ā) = (q, b̄), then b̄ contains only values that
occur in u. We call local any DMA that is l-local for some l ∈ N. The proof of
the following Proposition can be found in [11].

Proposition 1. The following problem is decidable: Given a DMA A, is A local?
If A is local then we can compute the minimum number l for which A is l-local.



[a] [ab]
[aba]

[aba]

[aba]

[aba]

[aaa]

[aaa]

Friday, 2 April 2010

Fig. 3. A DWA that recognizes the language L = {aba . . . ba ∈D∗ ∣ a ≠ b}.

1.2 Window automata

The class of languages recognized by local DMA can be equivalently defined
using another model of automaton, which makes no use of memory:

Definition 4. An l-window automaton (l-WA) is a tuple A = (Q, qI , F, T ),
where Q is a finite set of states, qI ∈ Q is an initial state, F ⊆ Q is a set
of final states, and T is a finite set of transitions of the form (p,α, q), where
p, q ∈ Q and α is the ≃-type of a word of length at most l.

An l-WA A = (Q, qI , F, T ) processes an input word u = a1 . . . an from left to right,
starting form its initial state qI , as follows. At each step of the computation, if A
has consumed the first i symbols of the input word and has moved to state p, and
if T contains a transition of the form (p,α, q), with q ∈ Q and α = [ai+2−l . . . ai+1],
then A consumes the next symbol ai+1 of u and it moves to the target state q.
The notions of successful run and recognized language are as usual.

An l-WA is deterministic (denoted l-DWA) if for every pair of transitions
(p,α, q), (p′, α′, q′) ∈ T , if p = p′ and α = α′, then q = q′. Figure 3 shows an
example of a 3-DWA.

A path is a sequence of consecutive transitions in an automaton. A path ρ in
a DWA is realizable if there is a word u that induces a run along ρ. For example,
the path

p0
[abc]
ÐÐÐ→ p1

[aaa]
ÐÐÐ→ p2

is not realizable: Assume that a window automaton uses the first transition to
move from position i to i + 1 in the input word. This is only possible if the
positions i − 1, i, i + 1 have pairwise different values. Then the next transition
can not be used, as it requires that positions i, i + 1, i + 2 have the same value.
A DWA A is realizable if all paths in A is realizable. Observe that an l-DWA is
realizable iff for all transitions (p, [a1 . . . an], q), (q, [b1 . . . bm], r),

1. if n ≥m − 1, then an−m+2 . . . an ≃ b1 . . . bm−1

2. if n <m − 1, then a1 . . . an ≃ bm−n . . . bm−1.

Hence, it is decidable whether a DWA is realizable. In addition, for every DWA,
there is an equivalent realizable DWA. Note that the DWA shown in Figure 3 is
realizable.

Proposition 2. For every l-local DMA, there is an equivalent l-DWA and, vice
versa, for every l-DWA, there is an equivalent l-local (l-)DMA.



1-DMA 2-DMA DMA1-DWA2-DWADWA

Thursday, 1 April 2010

Fig. 4. The inclusions between DMA and DWA.

In contrast to the above result, there is a non-local 1-DMA that recognizes the
language L = {a1 . . . an ∈D∗ ∣ a1 = an}, which is clearly not WA-recognizable.

Figure 4 shows the inclusions that hold between DMA and DWA.

1.3 Logics for Data Words

MSO(∼,<) denotes monadic second-order logic with predicates ∼ and <, inter-
preted respectively by the data-equality relation and by the total order re-
lation over the positions of a given data word. FO(∼,<) is the restriction of
MSO(∼,<) that only uses quantification over first-order variables. An example
of an FO(∼,<) formula is ∀x, y (x ∼ y → x = y), which requires all values in a
data word to be distinct (observe that = can be defined in terms of <). Note that
the language defined by the above formula is not DMA-recognizable.

We also consider fragments of FO(∼,<) where the predicates are replaced
by local variants. For instance, +1 denotes the successor relation, which holds
between two positions x and y (denoted y = x+1) iff y is the immediate successor
of x. We denote by FO(∼,+1) the first-order logic where the total order < has
been replaced by the successor relation +1.

There is also a local variant of the data-equality relation: given l ∈ N, x ∼l y
can be viewed as a shorthand for the formula y = x + l ∧ x ∼ y. We accordingly
denote by FO(∼≤l,<) the logic with the predicates < and ∼i, for all i ≤ l. For
example, the formula ∀x, y ∃z (x ∼5 y → y ≁ z) requires that if position y has
the same value as its fifth neighbor x to the left, then there is a position z that
has a different value than x and y.

It is easy to see that, for each number l, the language Ll = {a1 . . . an ∈ D∗ ∣
n ≥ l, a1 = al} can be defined in FO(∼≤l,<), but not in FO(∼≤l−1,<). Hence
the family of logics FO(∼≤l,<), where l ranges over N, forms an infinite (strictly
increasing) hierarchy. Note also that FO(∼,+1) can express properties like “the
first letter is equal to the last letter”, which can not be expressed in FO(∼≤l,<)
for any l ∈ N.

For each n ∈ N, let Dn be a subset of D consisting of exactly n elements. We
say that a language L ⊆ D∗ is definable in non-uniform FO(∼,<), abbreviated
NUFO(∼,<), if for each n ∈ N, the language LN = L∩D∗

n can be defined in FO(∼
,<) (under the assumption that input words are over the finite alphabet Dn).
Non-uniform variants of the other logics considered above are defined similarly.

Example 2. Consider the language L2× of all words u whose length is two times
the number of distinct values that occur in u. L2× can not be defined in FO(∼,<),
but it is definable in NUFO(∼,<) since L2× ∩D∗

n is finite for every n ∈ N.



FO(∼1,+1) FO(∼1, <)

FO(∼,+1) FO(∼, <)

non-uniform FO(∼, <)

FO(∼≤k,+1) FO(∼≤k, <)

Thursday, 1 April 2010

Fig. 5. An overview over some logics for data words.

The above example shows that the non-uniform definability is much weaker than
uniform definability (indeed, it can easily be shown that there are continuumly
many non-uniformly definable languages for any of our signatures). Nonetheless,
the following proposition shows that definability in the “local logic” FO(∼≤k,<)
is equivalent to definability in NUFO(∼≤k,<), provided that we restrict to DMA-
recognizable languages.

Proposition 3. Let L be a language recognized by a DMA and let l ∈ N. L
can be defined in NUFO(∼≤l,<) iff it can be defined in FO(∼≤l,<). An analogous
result holds when < is replaced by +1.

We do not know whether Proposition 3 holds also for the unrestricted logics
FO(∼,<) and FO(∼,+1).

Figure 5 gives an overview over the logics considered so far.

1.4 DMA vs Logics

Recall that the class of languages recognized by (deterministic) finite-state au-
tomata strictly includes the class of languages over finite alphabets defined with
first-order logic. This result does not extend to languages over infinite alpha-
bets: the language of all words with pairwise distinct symbols can be defined in
first-order logic with the (unrestricted) data-equality relation, but it can not be
recognized by any DMA. As with languages over finite alphabets, the set of all
(data) words of even length is clearly recognized by a 0-DMA, but it can not
be defined in first-order logic. Hence, first-order logics and DMA are, in general,
expressively incomparable.

For the restricted logics the situation is different. It follows from the next
proposition that any language that is definable in MSO(∼≤l,+1) is recognized by
an l-DMA. This also shows that local DMA are closed under the usual boolean
operations, projection, concatenation, and Kleene star.

Proposition 4. A language L can be defined in MSO(∼≤l,+1) iff it can be rec-
ognized by an l-local DMA.

Figure 6 gives an overview over the relationships between logics and DMA.



1-DMAMSO(∼1,+1) = 1-local DMAFO(∼1,+1)

k-DMAFO(∼≤k,+1) MSO(∼≤k,+1) = k-local DMA

�
k k-DMA = DMA

�
k MSO(∼≤k,+1) =

�
k k-local DMA

�
k FO(∼≤k,+1)

MSO(∼,+1)FO(∼,+1)

Saturday, 3 April 2010

Fig. 6. Comparing the expressive power of automata with that of logics.

Given that logics and automata are incomparable, we will focus on the prob-
lem of deciding when an automaton-recognizable language is definable within a
given logic. The dual problem of determining when a logical sentence corre-
sponds to a logic is not explored here – but it is easily shown to be undecidable
for our most powerful logics, since the satisfiability problem for these logics is
undecidable [8].

2 Undecidability Results

In this section we show that there is no hope for achieving effective characteri-
zations of fragments of FO(∼,<) within several classes of languages recognized
by automaton-based models stronger than DMA. We first consider the class of
languages recognized by non-deterministic finite-memory automata (NMA):

Theorem 2. Let L be a logic that is at most as expressive as FO(∼,<) and
that can define the universal language D∗. The following problem is undecidable:
Given an 3-NMA A, can L(A) be defined in L?

The proof (see [11]) is by reduction from the the Post Correspondence Prob-
lem (PCP) and it is along the same lines as the proof of Neven et al. that
universality is undecidable for NMA [8].

Below, we show that similar negative results hold for two-way deterministic
finite-memory automata DMA (2-way DMA) and for the weakest variant of
pebble automata, namely, weak one-way pebble automata (weak 1-way DPA).
We briefly sketch the distinctive features of these two models of automaton (see
[8] for formal definitions). A 2-way DMA can revisit the same positions in a
given input word several times, by moving its head in either direction. A pebble
automaton, on the other hand, has the ability to mark a finite number of word
positions by placing pebbles on them. The guards of the transitions of a 1-way
DPA allow it to compare the current input value with the values of the positions
marked by pebbles, but only the most recently placed pebble can be moved and



only to the right. Moreover, in the weak variant of DPA, new pebbles are placed
at the first position of the word. The proof of the following result is similar to
that of Theorem 2 (and it can be found in [11]).

Theorem 3. Let L be a logic that is at most as expressive as FO(∼,<) and
that can define the universal language D∗. The following problem is undecidable:
Given a 2-way 3-DMA A or a weak 1-way DPA A with 3 pebbles, can L(A) be
defined in L?

3 Characterizations of Non-Uniform FO

In this section we will look for effective characterizations of NUFO(∼,<). Pre-
cisely, we will show that definability in NUFO(∼,<) is decidable for languages
recognized by local DMA and 1-memory DMA (these two models are incompa-
rable in expressive power).

Theorem 4. The following problem is decidable: Given a local DMA A, is L(A)
definable in NUFO(∼,<)?

The idea of the proof is to show that L = L(A) is definable in NUFO(∼,<) iff
LN = L ∩ DN is definable in FO(DN ,<), where N is a suitable number that
depends only on A. The latter statement is decidable because LN is a regular
language over a finite alphabet and an effective characterization of regular lan-
guage definable in FO(DN ,<) is known from [15]. One direction of this claim
is straightforward: if L is definable in NUFO(∼,<), then LN is clearly definable
in FO(DN ,<). For the opposite direction, we assume that L is not definable in
NUFO(∼,<). In this case, one can prove that there is a (potentially very big)
number n such that Ln = L ∩Dn can not be defined in FO(Dn,<). It follows
from [15] that the minimal DFA An recognizing Ln has a counter. We then prove
that there is a (potentially) much smaller alphabet DN for which the minimal
DFA AN recognizing LN = L ∩DN has a counter. Thus LN can not be defined
in FO(DN ,<). The full proof is in [11].

Below, we show that the analogous problem is decidable for 1-memory DMA.
Observe that 1-DMA are incomparable with local DMA: On the one hand, the
language of all words where the first value is equal to the last one is recognizable
by 1-DMA, but not by local DMA. On the other hand, the language of all words
where the third value is equal to either the first value or the second value is
recognizable by local DMA, but not by 1-DMA.

Theorem 5. The following problem is decidable: Given a 1-DMA A, is L(A)
definable in NUFO(∼,<)?

The proof (see [11]) exploits, first, the fact that it is decidable whether a
given DMA A is local. If A is local, then Theorem 4 can be applied and we
are done. If A is not local, then A must contain certain ‘non-local cycles’. By
distinguishing several cases, depending on the way these cycles occur in A, it
can be decided whether A is definable in NUFO(∼,<).



4 Characterizations of Local FO

In this section we give effective characterizations for first-order logics with local
predicates, namely, FO(∼l,<) and FO(∼l,+1). There are actually two variants of
the definability problem for each of these logics. The first variant takes as input a
DMA A and a number l and asks whether L(A) is definable in FO(∼l,<) (resp.,
FO(∼l,+1)). The second variant takes as input a DMA A and asks whether
there is a number l such that A is definable in FO(∼l,<) (resp., FO(∼l,+1)).
The following theorem shows that both variants of the definability problems for
FO(∼l,<) and FO(∼l,+1) are decidable.

Theorem 6. The following problem is decidable: Given a DMA A, is there an
l such that L(A) is definable in FO(∼≤l,<)? If such an l exists, then we can
compute the minimal l0 such that L(A) is definable in FO(∼≤l0 ,<). Analogous
results hold when < is replaced by +1.

The proof exploits the fact that it is decidable whether a given (canonical) DMA
A is local and, in such a case, one can compute the smallest l0 such that A is
l0-local. We first show that if A is not local, then L(A) is not definable in
FO(∼≤l,<) (nor in FO(∼≤l,+1)). Otherwise, if A is l-local, then we can reduce
the FO(∼≤l,<) definability problem for L to a classical first-order definability
problem for a regular language abs(L) over a finite alphabet, whose symbols are
≃-types of words of length at most l. The argument for FO(∼≤l,+1) is similar.
The full proof is in [11].

As an example, consider the 3-local DMA A equivalent to the 3-DWA de-
picted in Figure 3: if thought of as a DFA, such an automaton contains a counter
over the ≃-type [aba], where a ≠ b. It can then be proved that the data language
L(A) can not be defined in FO(∼l,<), for any l ∈ N.

The next corollary follows from Theorem 6 and Proposition 3.

Corollary 1. The following problem is decidable: Given a DMA A, is there an
l such that L(A) is definable in NUFO(∼≤l,<)? If such an l exists, then we can
compute the minimal l0 such that L(A) is definable in NUFO(∼≤l0 ,<). Analogous
results hold when < is replaced by +1.

5 Necessary and sufficient conditions for FO(∼,<)

The ultimate goal would be to decide, given a DMA, whether or not its language
can be defined in the unrestricted first-order logic FO(∼,<). We present a partial
decision procedure that classifies DWA (or, equivalently, local DMA) according
to the FO(∼,<) definability of their recognized languages. For certain DWA, the
algorithm answers correctly whether the recognized languages are definable in
FO(∼,<) or not; for other DWA, the algorithm can only output “don’t know”.

Given a k-DWA A, we denote by L≥k(A) the set of words in L(A) that have
length at least k. In the rest of this Section, we will only prove results about
languages of the form L≥k(A). This simplifies the presentation (for instance, we



[ab, aba]

(q0, [ab, ab])

[ab, bab]

Gπ(A1) :

(q1, [ab, ba])

[aba]

[aba]

A1 :

q0 q1

[aaa]

[aaa]A2 :

p1p0

(p0, [aa, aa]) (p1, [aa, aa])

[aa, aaa]

[aa, aaa]

Gπ(A2)

Sunday, 4 April 2010

Fig. 7. Two DWA. While L(A1) can be defined in FO(∼,<), L(A2) can not.

can assume that all ≃-types in the transitions of a k-DWA have length exactly k)
and or results easily generalize to arbitrary languages. As an example, the left
DWA A1 in Figure 7 recognizes language {u = aba . . . ba ∣ ∣u∣ ≥ 3, a ≠ b}, which
is L≥3(A) where A is the DWA shown in Figure 3. Similarly, the right DWA A2

recognizes the language of all constant words of odd length at least 3. Note that
neither L≥3(A1) nor L≥3(A2) are definable in FO(∼≤l,<) for any l. On the other
hand, L≥3(A1) can be defined in FO(∼,<), while L≥3(A2) can not. For the sake
of simplicity, we will often write L(A) instead of L≥k(A)

To be able to effectively separate DWA recognizing languages in FO(∼,<)
from DWA recognizing languages not in FO(∼,<), we extend DWA with some
additional information. Precisely, we label the transitions with “parametrized
types”, which specify data-equalities between the local neighborhood of the cur-
rent position and the local neighborhood of some other fixed position in the
string (i.e., the parameter).

For u ∈ Dk and v ∈ Dl, the k-parametrized l-type of (u, v) is the ≃-type of
u ⋅ v, that is the set of words that are isomorphic to u ⋅ v. We shortly denote this
set by [u; v]. The set of all k-parametrized l-types is by Tk,l. To avoid confusion,
we will refer to standard ≃-types [v] as unparametrized types through the rest
of this section.

Definition 5. A parametrized k-window automaton (k-PWA) is a tuple A =
(Q, qI , F, T ), where Q is a finite set of states, qI ∈ Q is an initial state, F ⊆ Q is
a set of final states, and T ⊆ Q × Tk−1,k ×Q is a finite set of transitions.

The input to a k-PWA A is a pair of words (u,w) ∈ Dk−1 × D∗, called a
parametrized word. A configuration of A is a pair (p, i), where p is a state of
A and i (≥ k) is a position in w. The automaton A processes a parametrized
word (u,w) in a single run, from left to right, starting from the initial configura-
tion (qI , k). At each step of the computation, A can move from a configuration
(p, i) to a configuration (q, i + 1) iff there is a transition of the form (p,α, q),
with u ⋅ w[i − k + 2, i + 1] ∈ α. The notions of successful run and recognized
(parametrized) language L(A) are as usual. A k-PWA A = (Q, qI , f, T ) is de-
terministic (k-DPWA) if for every pair of transitions (p,α, q) and (p,α′, q′) in
T , α = α′ implies q = q′. Note that a parametrized k-window automaton can be
thought of as an window automaton that has k predicates for the first k symbols
in the input string which it can evaluate when transitioning to a new state.

A path ρ in a PWA A is realizable if there is a parametrized word (u,w) that
induces a run of A along it. A PWA A is realizable if all paths in it are realizable.



[ab, aba]

(q0, [ab, ab])

[ab, bab]

(q1, [ab, ba])

[aba]

[aba]

A1 :

q0 q1

[aaa]

[aaa]A2 :

p1p0

(p0, [aa, aa]) (p1, [aa, aa])

[aa, aaa]

[aa, aaa]

Pab(A1) : Paa(A2) :

Monday, 5 April 2010

Fig. 8. The parametrized versions of the DWA of Figure 7

It is easy to see that for any given k-PWA A, there is an equivalent realizable
k-PWA A′, which can be computed from A. Moreover, it can be decided whether
a given PWA A is realizable or not (this test is similar to that for WA described
in Section 1).

Definition 6. Given a k-DWA A = (Q, qI , F, T ) and a word u of length k − 1,
the u-parametrized version of A is the k-DPWA Pu(A) = (Q̃, q̃I , F̃ , T̃ ), where
Q̃ = Q × Tk−1,k−1, q̃I = (qI , [u;u]), F̃ = {(p, [v;w]) ∈ Q̃ ∣ p ∈ F}, and T̃ contains

(p, [u;a1 . . . ak−1]) [u;a1 . . . ak]ÐÐÐÐÐÐÐ→ (q, [u;a2 . . . ak]) iff (p, [a1 . . . ak], q) ∈ T .

Figure 8 shows the ab-parametrized version of A1 and the aa-parametrized ver-
sion of A2. Note that both are realizable.

We call counter of a DPWA B any cycle of transitions of the form

p1
ᾱÐÐÐ→ . . . ᾱÐÐÐ→ pm

ᾱÐÐÐ→ p1

where m > 1, p1, . . . , pm are pairwise distinct states of B and ᾱ is a non-empty
sequence of (k − 1)-parametrized k-types.

The following result gives a sufficient condition for a language recognized by
a DWA to be definable in FO(∼,<).

Proposition 5. Let A be a DWA. If Pu(A) is counter-free for all u ∈ Dk−1,
then L(A) is definable in FO(∼,<).

The converse of the above proposition does not hold. Consider, for instance,
the DWA A3 in Figure 9: although Pab(A3) has a counter (because [ab, cdc] =
[ab, dcd]), L(A3) is still definable in FO(∼,<). We will thus distinguish between
two kinds of counters, which we call “good” and “bad”. We will show that if a
DPWA contains a bad counter, then it recognizes a language that is not definable
in FO(∼,<). In order to define bad counters, we need to consider a slightly
modified (and more general) version of the automaton given in Definition 6.

Definition 7. Let A = (Q, qI , F, T ) be k-DWA and let u, v ∈ Dk−1. The (u, v)-
parametrized version of A is the k-DPWA Pu,v(A) = (Q̃, q̃I , F̃ , T̃ ), where Q̃ =
Q × Tk−1,k−1, q̃I = (qI , [u; v]), F̃ = {(p, [v;w]) ∈ Q̃ ∣ p ∈ F}, and T̃ contains

the transition (p, [w;a1 . . . ak−1]) [w;a1 . . . ak]ÐÐÐÐÐÐÐ→ (q, [w;a2 . . . ak]) iff w ∈ Dk−1 and

(p, [a1 . . . ak], q) ∈ T . We denote by P(A) the set {Pu,v(A) ∣ u, v ∈Dk−1}.



p1
[abc][abc]

p0 p2

[aba]

[aba]

p3

A3 :

(p0, [ab, ab]) (p1, [ab, bc]) (p2, [ab, cd]) (p3, [ab, dc])
[ab, abc]

[ab, cdc]

[ab, dcd]

Gab(A3) :

[ab, bcd]

Monday, 5 April 2010

Fig. 9. A FO(∼,<) definable DWA and its parameterized version.

Let A be a k-DWA and B be the (u, v)-parametrized version of A. A bad
counter of B is a sequence of transitions

p1
ᾱ1Ð→ . . .

ᾱn−1ÐÐÐ→ pn
ᾱnÐ→ pn+1

ᾱÐ→ . . .
ᾱÐ→ pn+m

ᾱÐ→ pn+1

such that

1. n ≥ 0 and m ≥ 2,
2. p1, . . . , pn+m are pairwise distinct states, and p1 is of the form (p, [u,u]),
3. ᾱ1, . . . , ᾱn, ᾱ ∈ T lk−1,k for some l > 0, and loc(ᾱ1) = . . . = loc(ᾱn) = loc(ᾱ).

Here loc ∶ Tk−1,k → Tk is defined by loc([u, v]) = [v] and loc is extended to strings
over Tk−1,k in the usual way.

Similarly to a DWA, a DPWA A can be thought of as a deterministic finite-
state automaton over the alphabet Tk−1,k of k − 1-parametrized k-types. We
say that A is canonical if A is minimal as a DFA. Clearly, a canonical DPWA
contains only reachable states and for all pairs of states p ≠ q, there is a ᾱ-
labelled path that starts at p leads to an accepting state, while the ᾱ-labelled
path that starts at q leads to a rejecting state. We can finally show that the
absence of bad counters is a necessary condition for FO definability:

Proposition 6. Let A be a canonical DWA. If there a DPWA B ∈ P(A) that
contains a bad counter, then L(A) is not definable in FO(∼,<).

6 Conclusion

In this work we have studied a number of variants of first-order logic, and also
introduced several natural subclasses of memory automata. We overviewed the
relationships of the logics to one another, the relationships of the automata
to one another, and the relationships of the logic and the automata. We then
investigated the decidability of definability in logical classes within memory au-
tomata. We have shown that the problem is undecidable for natural extensions of
deterministic memory automata, and decidable with certain restrictions on the



logics or the automata. Finally, we provide necessary and sufficient conditions
for determining when a memory automaton is definable within a logic.

The main question left open is an effective characterization of which deter-
ministic memory automata are definable in first-order logic with unrestricted
data comparison. The conditions we give in Section 5 for window automata are
a step towards this. Another significant open question is the relationship be-
tween non-uniform and uniform (non-local) definability. Non-uniform first-order
definability is weaker then first-order definability for the vocabularies with un-
restricted data equality, but we do not know if this separation is witnessed by
languages accepted by DMAs.

References

[1] Büchi, J. R. (1960) Weak second-order logic and finite automata. S. Math.
Logik Grunlagen Math., 6, 66–92.

[2] Schützenberger, M.-P. (1965) On finite monoids having only trivial sub-
groups. Information and Control , 8, 190 – 194.

[3] McNaughton, R. and Papert, S. A. (1971) Counter-Free Automata. MIT.
[4] Beauquier, D. and Pin, J.-E. (1989) Factors of words. ICALP .
[5] Benedikt, M. and Segoufin, L. (2009) Regular Tree Languages Definable in

FO and FOmod. TOCL, 11.
[6] Segoufin, L. (2006) Automata and logics for words and trees over an infinite

alphabet. CSL.
[7] Schwentick, T. (2007) Automata for XML - a survey. JCSS , 73, 289–315.
[8] Neven, F., Schwentick, T., and Vianu, V. (2004) Finite state machines for

strings over infinite alphabets. TOCL, 5, 403–435.
[9] Bojanczyk, M., Muscholl, A., Schwentick, T., Segoufin, L., and David, C.

(2006) Two-variable logic on words with data. LICS .
[10] Kaminski, M. and Francez, N. (1994) Finite-memory automata. TCS , 134.
[11] Benedikt, M., Ley, C., and Puppis, G. (2010), Automata vs. logics on

data words. Available at http://www.comlab.ox.ac.uk/publications/

publication3616-abstract.html.
[12] Bouyer, P., Petit, A., and Thérien, D. (2003) An algebraic approach to data

languages and timed languages. Inf. Comput., 182, 137–162.
[13] Francez, N. and Kaminski, M. (2003) An algebraic characterization of de-

terministic regular languages over infinite alphabets. TCS , 306, 155–175.
[14] Benedikt, M., Ley, C., and Puppis, G. (2010), Minimal memory automata.

Available at http://www.comlab.ox.ac.uk/michael.benedikt/papers/

myhilldata.pdf.
[15] Wilke, T. (1999) Classifying discrete temporal properties. STACS .

http://www.comlab.ox.ac.uk/publications/publication3616-abstract.html
http://www.comlab.ox.ac.uk/publications/publication3616-abstract.html
http://www.comlab.ox.ac.uk/michael.benedikt/papers/myhilldata.pdf
http://www.comlab.ox.ac.uk/michael.benedikt/papers/myhilldata.pdf

	Automata vs. Logics on Data Words
	Michael Benedikt, Clemens Ley, and Gabriele Puppis

