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DISCRETE-TIME KALMAN FILTER
CONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

Problem formulation

Discrete-time linear system:

x(k +1) = A(k)x(k) +Bv (k)v(k)
y(k) = C (k)x(k) +w(k)

x ∈ Rn system state
y ∈ Rq measured output
v ∈ Rp process disturbance
w ∈ Rq measurement disturbance

Looking for a recursive algorithm that yields an estimate x̂ of the
system state
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DISCRETE-TIME KALMAN FILTER
CONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

Assumption 1

w and v are stochastic processes

w , v white noises: zero mean, independent components
E [v(k)] = 0;
E [v(k)v(h)>] = Q(k)δ (k−h), Q(k) > 0

E [w(k)] = 0;
E [w(k)w(h)>] = R(k)δ (k−h), R(k) > 0

The statistics of x(k0) is known
E [x(k0)] = x0;
E [(x(k0)−x0)(x(k0)−x0)>] = Var [x(k0)] = P0

v , w and x are uncorrelated
E [w(k)v(h)>] = 0, E [w(k)x(h)>] = 0, E [v(k)x(h)>] = 0
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APPLICATIONS

Assumption 2

The filter belongs to the class of Luenberger observers:

x̂(k +1) = [A(k)−L(k)C (k)]x̂(k) +L(k)y(k)

L(k) ∈ Rn×q is the matrix we want to determine
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DISCRETE-TIME KALMAN FILTER
CONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

Our goal

Estimation error e(k) = x(k)− x̂(k)

e(k +1) = [A(k)−L(k)C (k)]e(k) +Bv (k)v(k)−L(k)w(k)

We look for the sequence of matrices L(k) that minimizes

E [‖x(k)− x̂(k)‖2] = trE [(x(k)− x̂(k))(x(k)− x̂(k))>]

(
trM = ∑

i

Mii , tr [SS>] = tr [S>S ] = ∑
ij

S2
ij

)
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DISCRETE-TIME KALMAN FILTER
CONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

Let us consider. . .

. . .P(k) = E [(x(k)− x̂(k))(x(k)− x̂(k))>]

Hence, P(k0) = P0 and, at first, the best estimate is x̂(k0) = x0

Given P(k),

P(k +1) = [A(k)−L(k)C (k)]P(k)[A(k)−L(k)C (k)]>+
Bv (k)Q(k)B>v (k) +L(k)R(k)L>(k)
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APPLICATIONS

Minimization

We choose L so as to minimize tr [P(k +1)]:

minL{tr [(A−LC )P(A−LC )>+BvQB
>
v +LRL>)]}=

minL{tr [APA>]−2tr [APC>L>]+tr [LCPC>L>]+tr [BvQB
>
v ]+tr [LRL>]}

Differentiate with respect to L and equate to zero:

2L(CPC>+R)−2APC> = 0 =⇒ L = APC>(CPC>+R)−1

Plug into the expression of P(k +1),

(A−LC )P(A−LC )>+BvQB
>
v +LRL>

= APA>−APC>(CPC>+R)−1CPA>+BvQB
>
v
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APPLICATIONS

Result

Optimal filter

x̂(k +1) = [A(k)−L(k)C (k)]x̂(k) +L(k)y(k)

L(k) = A(k)P(k)C>(k)[C (k)P(k)C>(k) +R(k)]−1

P(k) is recursively given by

P(k +1) = A(k)P(k)A>(k)
−A(k)P(k)C>(k)[C (k)P(k)C>(k) +R(k)]−1C (k)P(k)A>(k)
+Bv (k)Q(k)B>v (k),

with initial conditions P(k0) = P0 and x̂(k0) = x0
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APPLICATIONS

We achieve similar results even if...

...v(k) and w(k) have a known nonzero mean: v(k), w(k)

Optimal filter
x̂(k +1) =
[A(k)−L(k)C (k)]x̂(k) +L(k)y(k)−L(k)w(k) +Bv (k)v(k)

Estimation error x(k +1)− x̂(k +1) = e(k +1) =

[A(k)−L(k)C (k)]e(k) +Bv (k)[v(k)−v(k)]−L(k)[w(k)−w(k)]
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APPLICATIONS

In the presence of a known signal u ∈ Rm. . .

. . . for instance a control signal, the system becomes

x(k +1) = A(k)x(k) +Bv (k)v(k) +B(k)u(k)
y(k) = C (k)x(k) +w(k)

Optimal filter
x̂(k +1) = [A(k)−L(k)C (k)]x̂(k) +L(k)y(k) +B(k)u(k)

Estimation error x(k +1)− x̂(k +1) =

[A(k)−L(k)C (k)][x(k)− x̂(k)] +Bv (k)v(k)−L(k)w(k)

exactly as in the absence of u !
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APPLICATIONS

Steady-state (asymptotic) filtering algorithm

When all of the system matrices are constant, under suitable
assumptions, P(k +1) tends to the symmetric, positive definite
solution P of the discrete-time algebraic Riccati equation

P = APA>−APC>(CPC>+R)−1CPA>+BvQB
>
v

ASYMPTOTIC Kalman filter

x̂(k +1) = (A−LC )x̂(k) +Ly(k)

where
L = APC>(CPC>+R)−1

P = APA>−APC>(CPC>+R)−1CPA>+BvQB
>
v
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APPLICATIONS

Duality

optimal LQ control, Q = H>H optimal observer, Q = I
K feedback matrix: u(k) = Kx(k) L observer gain

are DUAL problems

A
dual↔ A> B

dual↔ C> H>
dual↔ Bv

P = A>PA−A>PB(B>PB +R)−1B>PA+H>H (LQ)
dual↔

P = APA>−APC>(CPC>+R)−1CPA>+BvB
>
v (KF)

K =−(B>PB +R)−1B>PA L = APC>(CPC>+R)−1

K =−L>
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APPLICATIONS

Kalman filter: asymptotic stability

e(k +1) = (A−LC )e(k) +Bvv(k)−Lw(k) stable?

P is the symmetric positive definite solution of

P = A[P−PC>(CPC>+R)−1CP]A>+BvQB
>
v

which is the

discrete-time Lyapunov equation

(A−LC )P(A−LC )>−P =−BvQB
>
v −LRL>

with BvQB
>
v +LRL> symmetric positive definite matrix

A−LC is asymptotically stable and the sequence {ek} goes to zero
when v(k), w(k)≡ 0 ∀k
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Rudolf Emil Kalman and Richard Snowden Bucy
“New Results in Linear Filtering and Prediction Theory”
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APPLICATIONS

Problem formulation

Continuous-time linear system:

ẋ(t) = A(t)x(t) +B(t)u(t) +Bv (t)v(t)
y(t) = C (t)x(t) +w(t)

x ∈ Rn system state
y ∈ Rq measured output
u ∈ Rm known input
v ∈ Rp process disturbance
w ∈ Rq measurement disturbance

Looking for a recursive algorithm that yields an estimate x̂ of the
system state
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APPLICATIONS

Assumption 1

w and v are stochastic processes

w , v white noises: zero mean, independent components
E [v(t)] = 0;
E [v(t)v(τ)>] = Q(t)δ (t− τ), Q(t) > 0

E [w(t)] = 0;
E [w(t)w(τ)>] = R(t)δ (t− τ), R(t) > 0

The statistics of x(t0) is known
E [x(t0)] = x0;
E [(x(t0)−x0)(x(t0)−x0)>] = Var [x(t0)] = P0

v , w and x are uncorrelated
E [w(t)v(τ)>] = 0, E [w(t)x(τ)>] = 0, E [v(t)x(τ)>] = 0
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APPLICATIONS

Assumption 2

The filter belongs to the class of Luenberger observers:

˙̂x(t) = [A(t)−L(t)C (t)]x̂(t) +L(t)y(t) +B(t)u(t)

L(t) ∈ Rn×q is the matrix we want to determine
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DISCRETE-TIME KALMAN FILTER
CONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

Our goal

Estimation error e(t) = x(t)− x̂(t)

ė(t) = [A(t)−L(t)C (t)]e(t) +Bv (t)v(t)−L(t)w(t)

We look for the matrix L(t) that minimizes

E [‖x(t)− x̂(t)‖2] =E [e>(t)e(t)] = trE [(x(t)− x̂(t))(x(t)− x̂(t))>]

choosing P(t) = E [(x(t)− x̂(t))(x(t)− x̂(t))>]
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DISCRETE-TIME KALMAN FILTER
CONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

Sampled system, ∆t small enough

e(t + ∆t) = [I +A ∆t−LC ∆t]e(t) +Bv ∆t v(t)−L ∆t w(t)

(
eM∆t = ∑

+∞

k=0
Mk (∆t)k

k! = I +M∆t + 1
2!M

2(∆t)2 + 1
3!M

3(∆t)3 + . . .
)

cf. Euler

Hence, given P(t),
P(t + ∆t) = [I +A ∆t−LC ∆t]P(t)[I +A ∆t−LC ∆t]>+
BvQB

>
v ∆t +LRL> ∆t

lim∆t→0
P(t+∆t)−P(t)

∆t = Ṗ(t) = [A(t)−L(t)C (t)]P(t) +
P(t)[A(t)−L(t)C (t)]>+Bv (t)Q(t)B>v (t) +L(t)R(t)L>(t)
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DISCRETE-TIME KALMAN FILTER
CONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

Minimization

We choose L so as to minimize tr [Ṗ(t)]:

minL{tr [AP−LCP +PA>−PC>L>+BvQB
>
v +LRL>]}

Differentiate with respect to L and equate to zero:

−2PC>+2LR = 0 =⇒ L = PC>R−1

Plug into the expression of Ṗ(t),

AP +PA>−PC>R−1CP +BvQB
>
v
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AP +PA>−PC>R−1CP +BvQB
>
v

Giulia Giordano KALMAN FILTER 21 / 51



DISCRETE-TIME KALMAN FILTER
CONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

Result

Optimal filter

˙̂x(t) = [A(t)−L(t)C (t)]x̂(t) +L(t)y(t) +B(t)u(t)

L(t) = P(t)C>(t)R−1(t)

where

Ṗ(t) = A(t)P(t) +P(t)A>(t)−P(t)C>(t)R−1C (t)P(t) +
Bv (t)Q(t)B>v (t)

with initial conditions P(t0) = P0 and x̂(t0) = x0
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DISCRETE-TIME KALMAN FILTER
CONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

Steady-state (asymptotic) filtering algorithm

When all of the system matrices are constant, under suitable
assumptions, Ṗ(t) tends to zero and P is the symmetric, positive
definite solution P of the continuous-time algebraic Riccati equation

AP +PA>−PC>R−1CP +BvQB
>
v = 0

ASYMPTOTIC Kalman filter

˙̂x(t) = (A−LC )x̂(t) +Ly(t) +Bu(t)

dove
L = PC>R−1

AP +PA>−PC>R−1CP +BvQB
>
v = 0
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DISCRETE-TIME KALMAN FILTER
CONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

Duality
optimal LQ control, Q = H>H optimal observer, Q = I
K feedback matrix: u(k) = Kx(k) L observer gain

↓
are DUAL problems

A
dual↔ A> B

dual↔ C> H>
dual↔ Bv

A>P +PA−PBR−1B>P +H>H = 0 (LQ)
dual↔

AP +PA>−PC>R−1CP +BvB
>
v = 0 (KF)

K =−R−1B>P L = PC>R−1

K =−L>
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DISCRETE-TIME KALMAN FILTER
CONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

Kalman filter: asymptotic stability

ė(t) = (A−LC )e(t) +Bvv(t)−Lw(t) stable?

P is the symmetric positive definite solution of

AP +PA>−PC>R−1CP +BvQB
>
v = 0

which is the

continuous-time Lyapunov equation

[A−LC ]P +P[A−LC ]> =−BvQB
>
v −LRL>

with BvQB
>
v +LRL> symmetric positive definite matrix

A−LC is asymptotically stable and e(t) tends to zero when
v(t), w(t)≡ 0 ∀t
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ė(t) = (A−LC )e(t) +Bvv(t)−Lw(t) stable?

P is the symmetric positive definite solution of

AP +PA>−PC>R−1CP +BvQB
>
v = 0

which is the

continuous-time Lyapunov equation

[A−LC ]P +P[A−LC ]> =−BvQB
>
v −LRL>

with BvQB
>
v +LRL> symmetric positive definite matrix

A−LC is asymptotically stable and e(t) tends to zero when
v(t), w(t)≡ 0 ∀t

Giulia Giordano KALMAN FILTER 25 / 51



DISCRETE-TIME KALMAN FILTER
CONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

Kalman filter: asymptotic stability
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DISCRETE-TIME KALMAN FILTER
CONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

With a known input
Model

ẋ(t) = Ax(t) +B[u(t) + v(t)]
y(t) = Cx(t) +w(t)

with

A =

[
0 1
0 0

]
, B =

[
0
1

]
C =

[
1 0

]
mechanical system mq̈ = F , con x1 = q, x2 = q̇, u = F/m, with
disturbances v and w .

Sampled system −→ discrete-time system matrices −→
discrete-time Kalman filter
x̂(k +1) = (A−LC )x̂(k) +Ly(k) +Bu(k).
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DISCRETE-TIME KALMAN FILTER
CONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

With a known input
Simulation

State space trajectory: x blue, x̂ red
u = 1, Ts = 1, Q = 1, R = 2
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APPLICATIONS

With a known input
Simulation

u = 1, Ts = 1, Q = 1, R = 2

Error x− x̂ for the two components Comparison: x(1) blue, x̂(1) red;
x(2) green, x̂(2) black
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APPLICATIONS

With a known input
Model

ẋ(t) = Ax(t) +B[u(t) + v(t)]
y(t) = Cx(t) +w(t)

with

A =

[
0 1
0 0

]
, B =

[
0
1

]
C =

[
1 0

]
Now rewrite the system approximating the derivative with Euler’s
method: x(t + τ) = [I + τA]x(t) +Bτ[u(t) + v(t)] and compute
the continuous-time Kalman filter
x̂(t + τ) = (I +Aτ−LCτ)x̂(t) +Lτy(t) +Bτu(t).
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DISCRETE-TIME KALMAN FILTER
CONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

With a known input
Simulation

State space trajectory: x blue, x̂ red
u = 1, τ = 0.01, Q = 1, R = 2
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CONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

With a known input
Simulation

u = 1, τ = 0.01, Q = 1, R = 2

Error x− x̂ for the two components Comparison: x(1) blue, x̂(1) red;
x(2) green, x̂(2) black
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DISCRETE-TIME KALMAN FILTER
CONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

With a known input
Marginally stable system with disturbances: the model

Transfer function 1
s2+ω2 , with ω = 2.

Discrete-time system version, discrete-time Kalman filter.
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APPLICATIONS

With a known input
Marginally stable system with disturbances: simulation

State space trajectory: x blue, x̂ red
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DISCRETE-TIME KALMAN FILTER
CONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

With a known input
Marginally stable system with disturbances: simulation

Ts = 0.2, Q = 1, R = 1

Error x− x̂ Comparison: x(1) blue, x̂(1) red;
x(2) green, x̂(2) black
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DISCRETE-TIME KALMAN FILTER
CONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

With a known input
Stable system with disturbances: model

Transfer function 1
s2+300s+20000 .

Discrete-time version of the system, discrete-time Kalman filter.
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APPLICATIONS

With a known input
Stable system with disturbances: simulation

State space trajectory: x blue, x̂ red
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APPLICATIONS

With a known input
Stable system with disturbances: simulation

Ts = 0.2, Q = 1, R = 1

Error x− x̂ Comparison: x(1) blue, x̂(1) red;
x(2) green, x̂(2) black
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DISCRETE-TIME KALMAN FILTER
CONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

Output estimate

For a system with disturbances

. . . and a known input

x(k +1) = Ax(k) +Bv(k)

+Eu(k)

z(k) = Hx(k)

y(k) = Cx(k) +Dw(k)

we want to estimate output z based on measured output y :
Kalman filter:

x̂(k +1) = (A−LC )x̂(k) +Ly(k)

+Eu(k)

ẑ(k) = Hx̂(k)

where:L = APC>(CPC>+R)−1

P = APA>+APC>(CPC>+R)−1CPA>+BQB>.
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ẑ(k) = Hx̂(k)

where:L = APC>(CPC>+R)−1

P = APA>+APC>(CPC>+R)−1CPA>+BQB>.

Giulia Giordano KALMAN FILTER 39 / 51



DISCRETE-TIME KALMAN FILTER
CONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

Output estimate

For a system with disturbances . . . and a known input

x(k +1) = Ax(k) +Bv(k) +Eu(k)

z(k) = Hx(k)

y(k) = Cx(k) +Dw(k)

we want to estimate output z based on measured output y :
Kalman filter:

x̂(k +1) = (A−LC )x̂(k) +Ly(k)

+Eu(k)
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DISCRETE-TIME KALMAN FILTER
CONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

With disturbances only
Masses and springs system: model

ẋ = Ax +Bv

z = Czx

y = Cyx +w

k1 = k2 = 1, m1 = m2 = m3 = 1

A =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
−1 1 0 0 0 0
1 −2 1 0 0 0
0 1 −1 0 0 0

 , B =


0
0
0
1
0
0

 ,

Cz =
[
1 0 0 0 0 0

]
, Cy =

[
0 0 1 0 0 0

]
.
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CONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

With disturbances only
Masses and springs system: simulation

Ts = 1, Q = 1, R = 1
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DISCRETE-TIME KALMAN FILTER
CONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

With disturbances only
Three-floor building: model

k1 = 2, k12 = 1, k23 = 1, ϕ = 0.01

A =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

−(k1 +k12) k12 0 −ϕ 0 0
k12 −(k12 +k23) k23 0 −ϕ 0
0 k23 −k23 0 0 −ϕ

 , B =


0
0
0
−1
−1
−1

 ,

Cz =
[
1 0 0 0 0 0

]
, Cy =

[
0 1 0 0 0 0

]
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APPLICATIONS

With disturbances only
Three-floor building: simulation

Ts = 1, Q = 1, R = 1
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DISCRETE-TIME KALMAN FILTER
CONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

With disturbances only
Car damper: model

k1 = 2, k2 = 3, h = 0.1

A =


0 0 1 0
0 0 0 1

−(k1 +k2) k2 −h h
k2 −k2 h −h

 , B =


0
0
k1
0

 ,
Cz =

[
1 0 0 0

]
, Cy =

[
1 −1 0 0

]
.
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DISCRETE-TIME KALMAN FILTER
CONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

With disturbances only
Car damper: simulation

Ts = 1, Q = 1, R = 1
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DISCRETE-TIME KALMAN FILTER
CONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

With a known input
Second-order system: model
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DISCRETE-TIME KALMAN FILTER
CONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

With a known input
Second-order system: simulation

ω = 2, Ts = 0.2, Q = 1, R = 1
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DISCRETE-TIME KALMAN FILTER
CONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

With a known input
Fourth-order system: model
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DISCRETE-TIME KALMAN FILTER
CONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

With a known input
Fourth-order system: simulation

ω1 = 4, ω2 = 4, Ts = 0.2, Q = 1, R = 1
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DISCRETE-TIME KALMAN FILTER
CONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

With a known input
System with selective prefilters: model
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DISCRETE-TIME KALMAN FILTER
CONTINUOUS-TIME KALMAN-BUCY FILTER

APPLICATIONS

With a known input
System with selective prefilters: simulation

ω = 4, ωv = 4, ωw = 2, Ts = 0.2, β = 1, γ = 1, Q = 1, R = 1
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