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DISCRETE-TIME KALMAN FILTER

Problem formulation

Discrete-time linear system:

x(k+1) = AK)x(k)+B,(k)v(k)
y(k) = Clk)x(k)+ w(k)

@ x € R" system state
@ y € R measured output
@ v € RP process disturbance

o w € R9 measurement disturbance
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x(k+1) = AK)x(k)+B,(k)v(k)
y(k) = Clk)x(k)+ w(k)

@ x € R" system state
@ y € R measured output
@ v € RP process disturbance

o w € R9 measurement disturbance

Looking for a recursive algorithm that yields an estimate X of the
system state
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DISCRETE-TIME KALMAN FILTER

Assumption 1

w and v are stochastic processes
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DISCRETE-TIME KALMAN FILTER

Assumption 1

w and v are stochastic processes

w, v white noises: zero mean, independent components

e E[v(k)]=0;
o E[v(k)v(h)"] = Q(k)d(k—h), Q(k)>0
e E[w(k)]=0;

)
o E[w(k)w(h)T] = R(k)8(k — h), R(k) >0
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DISCRETE-TIME KALMAN FILTER

Assumption 1

w and v are stochastic processes

w, v white noises: zero mean, independent components

o E[v(k)] =

o E[v(k)v(h)T]= Q(K)S(k — h), Q(k) >0
o E[w(k)] =0

o E[w(k)w(h)T] = R(k)8(k — h), R(k) >0

The statistics of x(kp) is known
) E[X(ko)] = X0;
° E[(X(ko) —Yo)(X(ko) —Yo)T] = Var[x(ko)] =Py

Giulia Giordano KALMAN FILTER 4/51



DISCRETE-TIME KALMAN FILTER

Assumption 1

w and v are stochastic processes

w, v white noises: zero mean, independent components

e E[v(k)]=0;
o E[v(k)v(h)"] = Q(k)d(k—h), Q(k)>0
e E[w(k)]=0;

° E[W(k;W(h)T] = R(k)6(k—h), R(k) >0
The statistics of x(kp) is known
o E[x(ko)] = Xo;
o E[(x(ko) —Xo0)(x(ko) —X0)"] = Var[x(ko)] = Po
v, w and x are uncorrelated
o E[w(k)v(h)']=0, E[w(k)x(h)"]=0, E[v(k)x(h)']=0
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DISCRETE-TIME KALMAN FILTER

Assumption 2

The filter belongs to the class of Luenberger observers:

X(k+1) = [A(k) = L(k) C(k)]% (k) + L(Kk)y (k)
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The filter belongs to the class of Luenberger observers:
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DISCRETE-TIME KALMAN FILTER

Our goal

A

Estimation error e(k) = x(k) — %(k)

e(k+1) = [A(k) — L(k)C(k)]e(k) + By (k)v(k) — L(k)w(k) )
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DISCRETE-TIME KALMAN FILTER

Our goal

A

Estimation error e(k) = x(k) — %(k)

e(k+1) = [A(k) — L(k)C(k)]e(k) + By (k)v(k) — L(k)w(k) )

We look for the sequence of matrices L(k) that minimizes

E[llx(Kk) = 2(k)II*] = trE[(x(k) — £(k))(x(k) = %(K)) ]

<trM =Y M, tr[SST]=tr[S"S]= Zs,-f-)
i i
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DISCRETE-TIME KALMAN FILTER

Let us consider. ..

. P(K) = E[(x(k) — 2(k))(x(k) — 2(k))T]

Hence, P(ko) = Py and, at first, the best estimate is X(ko) = Xo
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DISCRETE-TIME KALMAN FILTER
Let us consider. ..

- P(k) = E[(x(k) — (k) (x(k) = 2(k))T]

Hence, P(ko) = Py and, at first, the best estimate is X(ko) = Xo

Given P(k),
P(k+1) = [A(k) = L(k) C(K)IP(K)[A(k) = L(k)C(K)] " + J
B, (k)Q(K)B (k) + L(k)R(K)L' (k)
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DISCRETE-TIME KALMAN FILTER

Minimization

We choose L so as to minimize tr[P(k+1)]:

min {tr[(A— LC)P(A—LC)" +B,QB, + LRL")]} =
ming {tr[APAT] = 2tr[APCT LT+ tr[LCPCT L]+ tr[B, @B, |+ tr[LRL"]}

/
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DISCRETE-TIME KALMAN FILTER

Minimization

We choose L so as to minimize tr[P(k+1)]:

min {tr[(A— LC)P(A—LC)" +B,QB, + LRL")]} =
ming {tr[APAT] = 2tr[APCT LT+ tr[LCPCT L]+ tr[B, @B, |+ tr[LRL"]}

/

2L(CPCT +R)—2APCT =0 = L=APCT(CPCT +R)1 |

Differentiate with respect to L and equate to zero:
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DISCRETE-TIME KALMAN FILTER

Minimization

We choose L so as to minimize tr[P(k+1)]:

min {tr[(A— LC)P(A—LC)" +B,QB, + LRL")]} =
ming {tr[APAT] = 2tr[APCT LT+ tr[LCPCT L]+ tr[B, @B, |+ tr[LRL"]}

/

Differentiate with respect to L and equate to zero:

2L(CPCT +R)—2APC" =0 = L=APC"(CPC" +R)1 J
Plug into the expression of P(k+1), /
(A—LC)P(A—LC)" +B,Q@B, +LRL"
= APAT —APCT(CPCT +R)"'CPA" +B,QB,
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DISCRETE-TIME KALMAN FILTER
Result

Optimal filter

X(k+1) = [A(k) = L(k) C(K)I%(Kk) + L(k)y (k)

L(k) = A(k)P(k)CT (K)[C(k)P(k)CT (k) + R(k)] ™

P(k) is recursively given by

P(k+1) = A(k)P(k)AT (k)
—A(k)P(k)CT (K)[C(K)P(k)CT (k) + R(K)] "+ C(k)P(K)AT (k)
+ B, (k)Q(K)B, (k).

with initial conditions P (ko) = Pp and X(ko) = Xo
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DISCRETE-TIME KALMAN FILTER

We achieve similar results even if...

...v(k) and w(k) have a known nonzero mean: v(k), w(k)
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DISCRETE-TIME KALMAN FILTER

We achieve similar results even if...

...v(k) and w(k) have a known nonzero mean: v(k), w(k)

Optimal filter

%(k+1) =
[A(k) — L(k)C(k)]%(k) + L(k)y(k) — L(k)w(k) + B, (k)v(k)

Giulia Giordano KALMAN FILTER 10/51



DISCRETE-TIME KALMAN FILTER
We achieve similar results even if...

...v(k) and w(k) have a known nonzero mean: v(k), w(k)

Optimal filter

%(k+1) =
[A(k) — L(k)C(k)]%(k) + L(k)y(k) — L(k)w(k) + B, (k)v(k)

Estimation error x(k+1) —X(k+1)=e(k+1) =
[A(k) = LK) C(K)]e(k) + By (k)[v(k) = V(k)] — L(K)[w (k) —w(k)]
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DISCRETE-TIME KALMAN FILTER

In the presence of a known signal u € R". ..

... for instance a control signal, the system becomes

x(k+1) = A(k)x(k)+ B, (k)v(k)+ B(k)u(k)
y(k) C(k)x(k)+w(k)
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In the presence of a known signal u € R". ..

... for instance a control signal, the system becomes

x(k+1) = A(k)x(k)+ B, (k)v(k)+ B(k)u(k)
y(K) = C(Rx(K) +w(k)

Optimal filter
R(k+1)=[A(k)— L(k)C(k)]%(k)+ L(k)y(k)+ B(k)u(k)
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DISCRETE-TIME KALMAN FILTER

In the presence of a known signal u € R". ..

... for instance a control signal, the system becomes

x(k+1) = A(k)x(k)+ B, (k)v(k)+ B(k)u(k)
y(K) = C(Rx(K) +w(k)

Optimal filter
R(k+1)=[A(k)— L(k)C(k)]%(k)+ L(k)y(k)+ B(k)u(k)

Estimation error x(k+1) —x(k+1) =
[A(k) — L(k)C(k)][x(k) — %(k)] + By (k)v(k) — L(k)w(k)

exactly as in the absence of u !
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DISCRETE-TIME KALMAN FILTER

Steady-state (asymptotic) filtering algorithm

When all of the system matrices are constant, under suitable
assumptions, P(k+1) tends to the symmetric, positive definite
solution P of the discrete-time algebraic Riccati equation

P=APA" —APC'(CPC" +R)*CPA" + B, QB
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DISCRETE-TIME KALMAN FILTER

Steady-state (asymptotic) filtering algorithm

When all of the system matrices are constant, under suitable
assumptions, P(k+1) tends to the symmetric, positive definite
solution P of the discrete-time algebraic Riccati equation

P=APA" —APC'(CPC" +R)*CPA" + B, QB

ASYMPTOTIC Kalman filter
X(k+1)=(A—LC)X(k)+ Ly(k)

where
L=APCT(CPCT +R)!

P=APAT —APCT(CPC" +R) *CPA" + B,QB,
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DISCRETE-TIME KALMAN FILTER

Duality
optimal LQ control, Q@ = HTH optimal observer, Q =/
K feedback matrix: u(k) = Kx(k) L observer gain

are DUAL problems
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DISCRETE-TIME KALMAN FILTER

Duality
optimal LQ control, Q@ = HTH optimal observer, Q =/
K feedback matrix: u(k) = Kx(k) L observer gain

are DUAL problems

dual dual
AT B

A% cT HT¥'B,
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DISCRETE-TIME KALMAN FILTER

Duality
optimal LQ control, Q@ = HTH optimal observer, Q =/
K feedback matrix: u(k) = Kx(k) L observer gain

are DUAL problems

dual dual

A aT psleT Tl g

P=ATPA—ATPB(BTPB+R) 'BTPA+H H (LQ)
dual
<~

P=APAT — APCT(CPCT +R)"1CPA" + B,B] (KF)
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DISCRETE-TIME KALMAN FILTER

Duality
optimal LQ control, Q@ = HTH optimal observer, Q =/
K feedback matrix: u(k) = Kx(k) L observer gain

are DUAL problems

dual dual dual
AT BE ¢ HT &' B,

AE

P=ATPA—ATPB(BTPB+R) 'BTPA+H H (LQ)
dual
<~

P=APAT — APCT(CPCT +R)"1CPA" + B,B] (KF)

K=—(BTPB+R)'BTPA L=APCT(CPCT +R)™1
K=-L"
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DISCRETE-TIME KALMAN FILTER

Kalman filter: asymptotic stability

e(k+1)=(A—LC)e(k)+ B,v(k)— Lw(k) stable?
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DISCRETE-TIME KALMAN FILTER

Kalman filter: asymptotic stability

e(k+1)=(A—LC)e(k)+ B,v(k)— Lw(k) stable?

P is the symmetric positive definite solution of
P=AP—-PC'(CPC" +R)'CPIA" +B,QB,

which is the

discrete-time Lyapunov equation

(A—LC)P(A—-LC)"' —P=-B,QB) — LRL"

with B, @B, + LRL" symmetric positive definite matrix
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DISCRETE-TIME KALMAN FILTER

Kalman filter: asymptotic stability

e(k+1)=(A—LC)e(k)+ B,v(k)— Lw(k) stable?

P is the symmetric positive definite solution of
P=AP—-PC'(CPC" +R)'CPIA" +B,QB,

which is the

discrete-time Lyapunov equation
(A—LC)P(A—-LC)"' —P=-B,QB) — LRL"

with B, @B, + LRL" symmetric positive definite matrix

A— LC is asymptotically stable and the sequence {ex} goes to zero
when v(k), w(k) =0Vk

V.
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CONTINUOUS-TIME
KALMAN-BUCY FILTER

Rudolf Emil Kalman and Richard Snowden Bucy
“New Results in Linear Filtering and Prediction Theory”
Transactions of the ASME, Journal of Basic Engineering, pp. 95-108,

March 1961



CONTINUOUS-TIME KALMAN-BUCY FILTER

Problem formulation

Continuous-time linear system:

x(t) = A(t)x(t)+ B(t)u(t)+ B,(t)v(t)
y(t) = C()x(t) +w(t)

x € R" system state
y € R9 measured output
u € R™ known input

v € RP process disturbance

w € RY9 measurement disturbance
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Problem formulation

Continuous-time linear system:

x(t) = A(t)x(t)+ B(t)u(t)+ B,(t)v(t)
y(t) = C()x(t) +w(t)

x € R" system state
y € R9 measured output
u € R™ known input

v € RP process disturbance

w € RY9 measurement disturbance

Looking for a recursive algorithm that yields an estimate X of the
system state
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CONTINUOUS-TIME KALMAN-BUCY FILTER

Assumption 1

w and v are stochastic processes

Giulia Giordano KALMAN FILTER 17 /51



CONTINUOUS-TIME KALMAN-BUCY FILTER

Assumption 1

w and v are stochastic processes

w, v white noises: zero mean, independent components
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CONTINUOUS-TIME KALMAN-BUCY FILTER

Assumption 1

w and v are stochastic processes

w, v white noises: zero mean, independent components

o E[v(t)v(7)"]= Q(t)8(t—1), Q(t) >0
e E[w(t)]=0;
o E[w(t)w(t)"]=R(t)8(t—1), R(t) >0
The statistics of x(tg) is known
o E[x(to)] = Xo;
o E[(x(to) —Xo0)(x(to) —X0) "] = Var[x(to)] = Po
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Assumption 1

w and v are stochastic processes

w, v white noises: zero mean, independent components

o E[v(t)v(7)"]= Q(t)8(t—1), Q(t) >0
e E[w(t)]=0;
o E[w(t)w(t)"]=R(t)8(t—1), R(t) >0
The statistics of x(tg) is known
o E[x(to)] = Xo;
o E[(x(to) —Xo0)(x(to) —X0) "] = Var[x(to)] = Po
v, w and x are uncorrelated
o E[w(t)v(t)"]=0, E[w(t)x(t)']=0, E[v(t)x(t)']=0
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CONTINUOUS-TIME KALMAN-BUCY FILTER

Assumption 2

The filter belongs to the class of Luenberger observers:

x() = [A(t) = L(t) C(0)]I%(2) + L(t)y (t) + B(t)u(t)
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Assumption 2

The filter belongs to the class of Luenberger observers:

x() = [A(t) = L(t) C(0)]I%(2) + L(t)y (t) + B(t)u(t)

L(t) € R™9 is the matrix we want to determine
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CONTINUOUS-TIME KALMAN-BUCY FILTER

Our goal
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CONTINUOUS-TIME KALMAN-BUCY FILTER
Our goal

A

Estimation error e(t) = x(t) — X(t)

é(t) = [A(t) — L(t) C(t)]e(t) + By (t)v(t) — L(t)w(t) )

We look for the matrix L(t) that minimizes

E[lIx(2) = 2(2)||*] = Ele" ()e(£)] = trE[(x(t) = £(£))(x(£) = %(t)) ]

Giulia Giordano KALMAN FILTER



CONTINUOUS-TIME KALMAN-BUCY FILTER
Our goal

A

Estimation error e(t) = x(t) — X(t)

é(t) = [A(t) — L(t) C(t)]e(t) + By (t)v(t) — L(t)w(t) )

We look for the matrix L(t) that minimizes

E[lIx(2) = 2(2)||*] = Ele" ()e(£)] = trE[(x(t) = £(£))(x(£) = %(t)) ]
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CONTINUOUS-TIME KALMAN-BUCY FILTER

Sampled system, At small enough

e(t+At)=[/+AAt—LC At]e(t)+ B, At v(t)— L At w(t)

(eMAt =y o MRy mar+ A MR(AL2 + EM3 (AL + . )

cf. Euler
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CONTINUOUS-TIME KALMAN-BUCY FILTER

Sampled system, At small enough

e(t+At)=[/+AAt—LC At]e(t)+ B, At v(t)— L At w(t)

(eMAt =y o MRy mar+ A MR(AL2 + EM3 (AL + . )

cf. Euler

Hence, given P(t),
P(t+At)=[I+AAt—LC At]P(t)[| + AAt—LC At]T +
B,QB) At+LRL" At
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CONTINUOUS-TIME KALMAN-BUCY FILTER

Sampled system, At small enough

e(t+At)=[/+AAt—LC At]e(t)+ B, At v(t)— L At w(t)

(eMAt =y o MRy mar+ A MR(AL2 + EM3 (AL + . )

cf. Euler

Hence, given P(t),
P(t+At)=[I+AAt—LC At]P(t)[| + AAt—LC At]T +
B,QB) At+LRL" At

/

limacso PEHEIPA — p(1) = [A(t) — L(t) C()]P(t) +
P(t)[A(t) — L(t) C(8)] T + B, (t)Q()B) (t) + L(t)R(t)LT (t)
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CONTINUOUS-TIME KALMAN-BUCY FILTER

Minimization

We choose L so as to minimize tr[P(t)]:

min, {tr[AP— LCP+ PAT — PCTLT + B,QB] + LRLT]}
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CONTINUOUS-TIME KALMAN-BUCY FILTER

Minimization

We choose L so as to minimize tr[P(t)]:

min, {tr[AP —LCP+PAT —PC"L" +B,QB, + LRL"]}
Differentiate with respect to L and equate to zero:

—2PC" +2lR=0 = L=PC'R! )
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CONTINUOUS-TIME KALMAN-BUCY FILTER

Minimization

We choose L so as to minimize tr[P(t)]:

min, {tr[AP— LCP+ PAT — PCTLT + B,QB] + LRLT]}

Differentiate with respect to L and equate to zero:

—2PC"42lR=0 = L=PC'R! )
Plug into the expression of P(t), /
AP+ PAT —PCTR™1CP+B,QB/ )

Giulia Giordano KALMAN FILTER 21 /51



CONTINUOUS-TIME KALMAN-BUCY FILTER

Result

Optimal filter

x(t) = [A(t) = L(t) C(0)]%(2) + L(t)y (t) + B(t)u(t)

L(t)=P(t)CT()R}(t)

where

P(t) = A(t)P(t)+ P(t)AT (t) — P(t)CT (t)R1C(t)P(t)+
B, (t)Q(t)B, (t)

with initial conditions P(tp) = Pp and X(ty) = Xo
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CONTINUOUS-TIME KALMAN-BUCY FILTER

Steady-state (asymptotic) filtering algorithm

When all of the system matrices are constant, under suitable
assumptions, P(t) tends to zero and P is the symmetric, positive
definite solution P of the continuous-time algebraic Riccati equation

AP+ PAT —PCTRICP+B,QB] =0
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CONTINUOUS-TIME KALMAN-BUCY FILTER

Steady-state (asymptotic) filtering algorithm

When all of the system matrices are constant, under suitable
assumptions, P(t) tends to zero and P is the symmetric, positive
definite solution P of the continuous-time algebraic Riccati equation

AP+ PAT —PCTR1CP+B,QB] =0

ASYMPTOTIC Kalman filter
X(t) = (A= LO)X(t) + Ly(t)+ Bu(t)

dove
L=PCTR!

AP+PAT —PC'R™'CP+B,QB) =0
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CONTINUOUS-TIME KALMAN-BUCY FILTER

Duality
optimal LQ control, Q=H"H optimal observer, Q =/
K feedback matrix: u(k) = Kx(k) L observer gain
1

are DUAL problems
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CONTINUOUS-TIME KALMAN-BUCY FILTER

Duality
optimal LQ control, Q=H"H optimal observer, Q =/
K feedback matrix: u(k) = Kx(k) L observer gain
1

are DUAL problems

dual

A dus dual

AT Bl cT  pT g,
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CONTINUOUS-TIME KALMAN-BUCY FILTER

Duality
optimal LQ control, Q=H"H optimal observer, Q =/
K feedback matrix: u(k) = Kx(k) L observer gain
1

are DUAL problems

dual

A dus dual

AT Bl cT  pT g,

ATP+PA—PBRIBTP+HTH=0 (LQ)
dual
<~

AP+ PAT — PCTR-1CP+ B,B] =0 (KF)
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CONTINUOUS-TIME KALMAN-BUCY FILTER

Duality
optimal LQ control, Q=H"H optimal observer, Q =/
K feedback matrix: u(k) = Kx(k) L observer gain
1

are DUAL problems

dual

A dus dual

AT Bl cT  pT g,

ATP+PA—PBRIBTP+HTH=0 (LQ)
dual
<~

AP+ PAT — PCTR-1CP+ B,B] =0 (KF)

K=-RBTP L=PC'"R1
K=-L"
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CONTINUOUS-TIME KALMAN-BUCY FILTER

Kalman filter: asymptotic stability

é(t)=(A—LC)e(t)+Byv(t)— Lw(t) stable?
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CONTINUOUS-TIME KALMAN-BUCY FILTER

Kalman filter: asymptotic stability

é(t)=(A—LC)e(t)+Byv(t)— Lw(t) stable?
P is the symmetric positive definite solution of
AP+ PA" —PC"R™1CP+B,QB/ =0

which is the

continuous-time Lyapunov equation

[A—LCIP+P[A—-LC]' =-B,QB) —LRL"

with B, @B, + LRL" symmetric positive definite matrix
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CONTINUOUS-TIME KALMAN-BUCY FILTER

Kalman filter: asymptotic stability

é(t)=(A—LC)e(t)+Byv(t)— Lw(t) stable?
P is the symmetric positive definite solution of
AP+ PA" —PC"R™1CP+B,QB/ =0

which is the

continuous-time Lyapunov equation
[A—LCIP+P[A—-LC]' =-B,QB) —LRL"

with B, @B, + LRL" symmetric positive definite matrix

A— LC is asymptotically stable and e(t) tends to zero when
v(t), w(t)=0Vt

Giulia Giordano KALMAN FILTER 25 /51



EXAMPLES AND APPLICATIONS




APPLICATIONS

With a known input
Model

x(t) = Ax(t)+Blu(t)+v(t)]
y(t) = Cx(t)+w(D)
with

01 0
A=los] o=l
C=[1 0]
mechanical system mg= F, con x; = q, x2 = ¢, u= F/m, with

disturbances v and w.

Sampled system — discrete-time system matrices —>
discrete-time Kalman filter
R(k+1)=(A—-LC)X(k)+ Ly(k)+ Bu(k).
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APPLICATIONS

With a known input

Simulation

State space trajectory: x blue, X red
u=1Ts=1 Q=1 R=2

70 T T T T T T T T

0 200 400 600 800 1000 1200 1400 1600 1800
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APPLICATIONS

With a known input

Simulation

6
2000 T - T T
4 T | - . : T
A [\~ ~ 1500 : - : - s 1
2 N p foee i\ o - .
0

o4 1000 : : LR

& 500 : N I L 1

o—r——————
U : : ]
a0k : : L = [ 1

Error x — X for the two components  Comparison: x(1) blue, X(1) red;

x(2) green, X(2) black
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APPLICATIONS

With a known input
Model

with

Now rewrite the system approximating the derivative with Euler's
method: x(t+7) = [/ + TA]x(t) + Bt[u(t) + v(t)] and compute
the continuous-time Kalman filter
R(t+71)=(I+At—LCT)R(t)+ Lty(t) + Bru(t).
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APPLICATIONS

With a known input

Simulation

State space trajectory: x blue, X red
u=11=001, Q=1 R=2

60

501 -

40f -

30 -

i i i i i i
-200 0 200 400 600 800 1000 1200 1400
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APPLICATIONS

With a known input

Simulation

02f

o

M
MMMW"U{‘ “'L‘ «1, A Jﬂu‘)w’ Wﬂu "h\ )'dwﬂﬁ M ’lﬂ«mq

-0. I I i i I
0 5 10 15 20 25 30 35 40 45 50

-0.2+

Error x — X for the two components

Giulia Giordano

1500 T A T
1000} P
: 7 :
500 - s ;//~/ s
: : - ; ;
O : 1
50 ; ; ; i i ; ; ; i

60 T T T T T T T T

40F e

-2 L L L i i i L L

Comparison: x(1) blue, X(1) red;

x(2) green, X(2) black
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APPLICATIONS

With a known input

Marginally stable system with disturbances: the model

# SISTEMA %

Transfer function with 0 = 2.

1
52+CO2 '

Discrete-time system version, discrete-time Kalman filter.
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APPLICATIONS

With a known input

Marginally stable system with disturbances: simulation

State space trajectory: x blue, X red

500

4001

3001

2001

1001

oF

-100-

-200-

-300-

-400-

i i i i i i i i
500 -400 -300 -200 -100 O 100 200 300 400 500

-500
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APPLICATIONS

With a known input

Marginally stable system with disturbances: simulation

T.=02, Q=1 R=1

100 ———— 500 ; T

/ \\
/ \ [\
OF R / -t ’\ f V- / :
N \\ /' \ / \\//
\ \/
‘ L
70

\
\

80 9 100

[
i

-500 i i i i i i
0 10 20 30 40 50 60

Comparison: x(1) blue, (1) red;
x(2) green, %(2) black
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APPLICATIONS

With a known input

Stable system with disturbances: model

v

SISTEMA

Transfer function

1
52+300s+-20000

Discrete-time version of the system, discrete-time Kalman filter.

Giulia Giordano
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APPLICATIONS

With a known input

Stable system with disturbances: simulation

State space trajectory: x blue, X red

-10

x10

- i i
-0.15 -0.1 -0.05 0 0.05 0.1
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APPLICATIONS

With a known input

Stable system with disturbances: simulation

T,=02, Q=1 R=1

4X10 10

2F 1

4 ]

0 2‘0 4‘0 éO 8‘0 1‘00 1éU 1“10 1é0 1‘80 200 o 2‘0 4‘0 éO 8‘0 160 1‘20 ‘IAO 1é0 1‘80 200
Error x — % Comparison: x(1) blue, X(1) red;

x(2) green, %(2) black
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APPLICATIONS

Output estimate

For a system with disturbances

x(k+1) = Ax(k)+ Bv(k)
z(k) = Hx(k)
y(k) = Cx(k)+ Dw(k)
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APPLICATIONS

Output estimate

For a system with disturbances

x(k+1) = Ax(k)+ Bv(k)
z(k) = Hx(k)
y(k) = Cx(k)+ Dw(k)

we want to estimate output z based on measured output y:
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APPLICATIONS

Output estimate

For a system with disturbances

x(k+1) = Ax(k)+ Bv(k)
z(k) = Hx(k)
y(k) = Cx(k)+ Dw(k)

we want to estimate output z based on measured output y:
Kalman filter:

f(k+1) = (A—LO)R(K)+ Ly(k)
2(k) = HX(k)

where: L = APCT(CPCT + R)1
P=APAT + APCT(CPCT +R)"*CPAT + BQB'.
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APPLICATIONS

Output estimate

For a system with disturbances ...and a known input

x(k+1) = Ax(k)+ Bv(k)+ Eu(k)
z(k) = Hx(k)
y(k) = Cx(k)+ Dw(k)

we want to estimate output z based on measured output y:
Kalman filter:

f(k+1) = (A—LO)R(K)+ Ly(k)
2(k) = HX(k)

where: L = APCT(CPCT + R)1
P=APAT + APCT(CPCT +R)"1CPAT + BQB'.
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APPLICATIONS

Output estimate

For a system with disturbances ...and a known input

x(k+1) = Ax(k)+ Bv(k)+ Eu(k)
z(k) = Hx(k)
y(k) = Cx(k)+ Dw(k)

we want to estimate output z based on measured output y:
Kalman filter:

f(k+1) = (A—LCO)R(K)+ Ly(k)+ Eu(k)
2(k) = HX(k)

where: L = APCT(CPCT + R)1
P=APAT + APCT(CPCT +R)"1CPAT +BQB'.
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APPLICATIONS

With disturbances only

Masses and springs system: model

ki ko x = Ax+Bv
m 000 ™ 000 ™ z = (Cyx
— y = CGx+w

0 0 0 1 0 O 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0
A= -1 1 0 0 0 O , B= 1)

1 -2 1 0 0 O 0

0 1 -1 0 0 O 0
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APPLICATIONS

With disturbances only

Masses and springs system: simulation

Bode Dia
" ‘ ode Diagram ‘ o 100 ; .
0 1 L A
g ° T \ 1
% -10 B 6or ) i
Bl _
2 -2 40+ > 4
g 0 1 -
s 20} o —
40 "
a0 B ol—= E 1 L 1 1 L 1 L 1
’ 0 10 15 20 25 30 35 40 45 50
50 L
Lu
6 T T T T T T T T T
180 4
€ -0 . 4 B ]
Y N
g eno 1 2 / o
L N /]
-720 4 0 \
-900 L -2 4
10 o 10° 10! A i i i i i i { i i
Frequency (rad/sec) 0 5 10 15 20 25 30 35 40 45 50
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APPLICATIONS

With disturbances only

Three-floor building: model

k1 =2, kip=1, kog=1, ¢ =0.01

Qs
0 0 0 1 0 0

0 0 0 0 1 0

w 0 0 o 0 o0 1
T —(ki+k12) k12 0 - 0 O

ki2 —(ki2+ko3z) ks 0 —¢@ 0

L 0 ko3 —ko3 0 0 —Q
C;=[1 0000 0],G=[01000 0]
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APPLICATIONS

With disturbances only

Three-floor building: simulation

Bode Diagram 20
10
. L i 100
g ~ | . %
2 -
g | 4 10
2
-30 . 2 i i ; ; i i i ; .
0 5 10 15 20 25 30 35 40 45 50
40 1
%60 .
4
s — 1 y
g N\ of / ]
2 -360 \_ J P
g \ o/ \ g A\ A
-720+ b / v
- 4
1080 . J
10° 10" 10° 10' ; ; ; ; ; i i i ;
Frequency (rad/sec) 0 5 10 15 20 25 30 35 40 45 50
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APPLICATIONS

With disturbances only

Car damper: model

M
U Q) Q@
L -
gK
5 ki =2 k=3, h=0.1
E q
k
?V
i
0 0 1 o0 0
0 0 0 1 0
A= B—
7(k1—|—k2) ko —h h ’ kq ’
ko —ky h —h 0

C;=[1 00 0],=[1 -1 0 0].
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APPLICATIONS

With disturbances only

Car damper: simulation

Bode Diagram

10 T T
5 / 1
/ \
o /
0 \ -
3 4 \
- - \ 1
= -10 4
15 \“ 4
2 . .
360 — — — - T 4
270 \\\ —
5 \
€ 10 \ ]
o AN
8§ o 1
& ~
N\
0 \ 1
-00 \ \
=) = o 1 \
10 10 10 10 4 i i i i 1 L i L L
Frequency (rad/sec) 0 5 10 15 20 25 30 35 40 45 50
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APPLICATIONS

With a known input

Second-order system: model

s z
> — —_—
v st
u
1
>
bl 2 2
st
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APPLICATIONS

With a known input

Second-order system: simulation

0w=2 T,=02 Q=1 R=1

Bode Diagram

o
0 ) ]
g w0 N\ ,
Y
3 N
2 20 \ ]
g
g AN
S = N ]
\\
-40 ~ 4
50 .
180 ———— — e
10 T T T
135 N\ 4
€ w ] 5 J
] ) | :
£’ \ o \S i
0 o I 7
_q ]
-45 L s}
- 5 T 5
107" 10 10 10 -1 i i i i

i i i i 1
0 20 40 60 80 100 120 140 160 180 200

Frequency (rad/sec)
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APPLICATIONS

With a known input

Fourth-order system: model

[ z
(s:+w]:)(5:+a)_3) L

1
(s*+ c—.)f){s: + co‘f)
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APPLICATIONS

With a known input

Fourth-order system: simulation

0 =4 =4 T,=02, Q=1 R=1

Bode Diagram

20

10 4
@
=
2 O
8 \
2 \
g -10 - E
= N

-20 h 4

-3( I

80 v —

20 T T T T T T

135 4
g 0 4 10 . 4
2 A
g E ol- VAVA
’ ] 10 1
-45 I . = : : : :

107 o 10 e -2 i i i i i i i i i

Frequency (radisec) 0 10 20 30 40 50 60 70 8 90 100
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APPLICATIONS

With a known input

System with selective prefilters: model

ST+

Vsat

Win 1 W |
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APPLICATIONS

With a known input

System with selective prefilters: simulation

wo=4 o, =4 0, = 02,8=1,7y=1,Q=1 R=1

Bode Diagram

10 10
Frequency (rad/sec)

Giulia Giordano

20 T 100
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2
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3
2
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-20 = -10 i i i i i L i L Il
20 40 60 80 100 120 140 160 180 200
30 . I
180 T T =
40 T
135
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3
g 45
[
0 -
45 L L =
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