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Abstract. Filter models and (solutions of) recursive domain equations
are two different ways of constructing lambda models. Many partial re-
sults have been shown about the equivalence between these two con-
structions (in some specific cases). This paper deepens the connection by
showing that the equivalence can be shown in a general framework. We
will introduce the class of disciplined intersection type theories and its
four subclasses: natural split, lazy split, natural equated and lazy equated.
We will prove that each class corresponds to a different recursive domain
equation. For this result, we are extracting the essence of the specific
proofs for the particular cases of intersection type theories and making
one general construction that encompasses all of them. This general ap-
proach puts together all these results which may appear scattered and
sometimes with incomplete proofs in the literature.

1 Introduction

This paper is concerned with two different ways of constructing models of the
untyped lambda calculus which are strongly related.

1. Scott’s D∞-models. They were introduced in the 70’s as solutions of the
recursive domain equation D = [D → D] [19]. Their construction depends
on an initial domain D0 and an initial embedding i0. Variations of D0 and
i0 define different D∞-models.

2. Filter models. They were introduced in the 80’s using the notion of type as
the elementary brick for their construction [5]. We start from an extension
of the simply typed lambda calculus with intersection types and subtyping.
Then, the interpretation of a λ-term is defined as the set of its types and it
has the property of being a filter. The so-called intersection type theory T
is a set of subtyping statements A ≤ B. Variations on the intersection type
theory T induce different filter lambda models denoted by FT .

Many partial results have been shown about the correspondence between both
constructions (in some specific cases). Historically, some instances of D0 and i0
have given rise to some specific filter models such as Scott and Park lambda
models [19, 16]. This result has been generalized [5, 8, 9, 3] by showing that in
the category of ω-algebraic complete lattices, any D∞-model can be described



as a filter model by coding the compact elements of D0 as types and defin-
ing an intersection type theory T that contains both the order of D0 and i0

1.
The converse is obviously not true. Filter models are in a sense weaker struc-
tures than D∞-models. Not all of them satisfy the recursive domain equation
D = [D → D]. If we restrict our attention to the extensional filter models, then
some of them have been described as D∞-models by choosing an appropriate
D0 and i0 [7, 8, 2, 10]. In spite of the fact that the non-extensional filter models
do not satisfy D = [D → D], in some cases it is possible to find other recursive
domain equations for them [2]. For instance, the non-extensional filter model for
the lazy λ-calculus [1] satisfies the equation D = [D → D]⊥, while the filter
model of [5] satisfies the equation D = E × [D → D] for a suitable E. In some
cases [8], it is not clear if a filter model satisfy any domain equation at all.
In this paper we show that the connection between filter models and (solutions
of) domain equations can be shown in a general framework. We characterize the
classes of filter models that correspond to each recursive domain equation as
shown in Fig. 1. Many filter models in the literature belong to one of these four
classes. Our classification will be done by analyzing patterns of axioms in the
definition of the subtyping relation inducing the filter model. In order to give
a proper formalization for the study of these patterns of axioms, we will define
the subtyping parametric on a set Σ of axioms. The judgements are of the form
Σ ` A ≤ B. This defines the intersection type theory T Σ, or just T , generated
by Σ [8]. Depending on the shape of the axioms Σ, we will introduce four classes
of type theories: natural split, lazy split, natural equated and lazy equated (Sec-
tion 3). Each class corresponds to a different recursive domain equation in the

Class Equation

Natural split D = E × [D → D]

Lazy split D = E × [D → D]⊥

Natural equated D = [D → D]

Lazy equated D = [D → D]⊥

Fig. 1. Classification of recursive domain equations

following sense: the intersection type theory T belongs to the class iff the fil-
ter model FT satisfies the corresponding recursive domain equation. This result
will be a consequence of a stronger and more refined theorem which states the
correspondence between intersection type theories and triples 〈F,D0, i0〉 where
F is a functor, D0 an object and i0 an embedding in the category of complete
ω-algebraic lattices. We will specify in each of the four cases how to construct

1 In the categories of Scott domains or stable sets, D∞-models cannot be captured in
their full generality.



FT as a colimit of ω-chains starting from certain 〈F,D0, i0〉 (Section 4).
The contribution of this paper can be summarized as follows.

1. We introduce the class of disciplined type theories and its four subclasses:
natural split, lazy split, natural equated and lazy equated.

2. In Theorem 27, we prove that filter models over any disciplined intersection
type theory can be constructed as the colimit of certain ω-chain. In Theorem
30, we prove the converse.

3. As corollaries of those two theorems, we deduce the correspondence between
intersection type theories and recursive domain equations shown in Fig. 1

4. In the proofs of Theorem 27 and Theorem 30, we are extracting the essence
of the specific proofs for Scott, Park, CDZ, DHM and HR and making one
general construction that encompasses all these particular cases. This general
approach puts together all these results which may appear scattered and
sometimes with incomplete proofs in the literature.

Acknowledgments: authors thank the referees for many useful suggestions.

2 Domain-theoretic Preliminaries

This auxiliary section is devoted to recall some definition and facts from lattice
theory of some importance in the following sections. For fundamental notions
and results on lattices we refer to [13].

Definition 1. 1. Let D = 〈D,v〉 be a complete lattice. A subset Z ⊆ D is
directed if it is non-empty and for any z, z′ ∈ Z there exists z′′ ∈ Z such
that z, z′ v z′′.

2. A monotone function f : D → E is continuous if for any directed Z ⊆ D,
we have that f(

⊔
Z) =

⊔
f(Z) . The space of continuous functions from D

to E, ordered with the pointwise ordering, is denoted by [D → E].
3. An element d ∈ D is compact if for any directed Z ⊆ D, d v

⊔
Z implies

that there exists z ∈ Z such that d v z. The set of compact elements of D is
denoted by K(D).

4. D is an ω-algebraic lattice if K(D) is countable and moreover, for any x ∈ D,
x =

⊔
{d ∈ K(D) | d v x}. ALG is the category of complete ω-algebraic

lattices and continuous functions (see [17]).
5. Given two ω-algebraic lattices D and E, and two compact elements d ∈
K(D), e ∈ K(E), we define the step function

(d⇒ e)(x) =
{
e if d v x
⊥ otherwise

We have that (d ⇒ e) v f if and only if e v f(d). Hence d ⇒ e v d′ ⇒ e′

if and only if d′ v d and e v e′. Finite sups of step functions are the compact
elements in [D → E].

Lemma 2. Let D,E ∈ ALG. Then,



1. K([D → E]) = {
⊔n
i=1(di ⇒ ei) | n ∈ N & di, ei compact & 1 ≤ i ≤ n}.

2. [D → E] is ω-algebraic.
3.
⊔n
j=1(cj ⇒ dj) v

⊔n
i=1(ai ⇒ bi) ⇔

∀j ∈ {1 . . . n}.dj v
⊔
{bi | 1 ≤ i ≤ n & ai v cj}.

Morever ALG is a CCC (cartesian closed category) with “enough points”.

Definition 3. Let i : D → E, j : E → D be continuous functions. We say that
ι = 〈i, j〉 : D → E is an embedding-projection pair (ep for short) if j ◦ i = IdD
and i ◦ j v IdE.
If 〈i, j〉 : D → E and 〈h, k〉 : E → E′, then 〈i, j〉 ◦ 〈h, k〉 = 〈h ◦ i, j ◦ k〉.
ALGE is the category of ω-algebraic lattices and ep’s.

Next lemma on ep’s is very useful. Its proof can be recovered by using the results
of Section 0-3 of [13] on basic properties of Galois connections.

Lemma 4. Let D,E ∈ ALG and ι = 〈i, j〉 : D → E be an ep.

1. ∀x ∈ D, y ∈ E. i(x) v y ⇔ x v j(y).
j is the right adjoint of i and it is often denoted by iR.

2. ι is completely determined by the embedding i, since j is forced to satisfy the
following equality:

(†) j(y) =
⊔
{x | i(x) v y}

3. i is additive, injective and preserves compact elements.

Thanks to Lemma 4(2), we identify an ep ι = 〈i, iR〉 with its embedding i.

Definition 5. Let F : ALGE → ALGE be a locally continuous endofunctor2,
D0 ∈ ALG and i0 : D0 → F (D0) be an embedding in ALG.

1. The triple ρ = 〈F,D0, i0〉 is called a specification of a colimit.
2. Every specification ρ = 〈F,D0, i0〉, induces an ω-chain

D0
i0→ F (D0)

F (i0)→ F 2(D0)
F 2(i0)→ F 3(D0) . . .

that we call the ω-chain of ρ.
3. Then, D0 is called the initial domain and i0 the initial embedding.
4. The colimit of ρ, denoted by colim(ρ), is the colimit of the ω-chain of ρ.

3 Intersection Type Theories and Filter Models

In this section we recall the notion of intersection type theory and its induced
filter model. We will consider intersection type theories generated by a set Σ of
axioms [8]. Depending on the shape of the axioms Σ, we introduce four classes
of type theories: natural split, lazy split, natural equated and lazy equated. We
show that many of the examples of intersection type theories that appear in the
literature fit in one of these four patterns of axioms. In this section we will also
show that any of these four classes behaves well in the sense that they all induce
reflexive filter structures and, hence, λ-models.
2 See [20]: what matters here is that F locally continuous implies that it commutes

with colimits in ALGE and the domain equation X = F (X) has solution in ALG.



Definition 6. Let A be a countable set of symbols, called atoms.

1. We assume there is a special atom > in A, called top.
2. The set B(A) (or just B) of basic types over A is defined by B = A | B ∩ B.
3. The set T(A) (or just T) of types over A is defined by T = A | T→ T | T∩T.

Greek letters α, β, . . . range over A and A,B, . . . range over B or T.
Next definition is standard [5] except for the axiom (>lazy). The intuition behind
this last axiom is that anything that is more defined than a function is still a
function. Note that we can deduce that A→ > = > → >.

Definition 7. An intersection type theory T is a set of statements of the form
A ≤ B (to be read: A is a subtype of B), with A,B ∈ T, that satisfies the
following axioms and rules.

(refl) A ≤ A

(inclL) A ∩B ≤ A

(inclR) A ∩B ≤ B

(trans)
A ≤ B B ≤ C

A ≤ C

(glb)
C ≤ A C ≤ B
C ≤ A ∩B

(>) A ≤ >

(>lazy) A→ > ≤ > → >

(→∩) (A→ B) ∩ (A→ C) ≤ A→ B ∩ C (→)
A′ ≤ A B ≤ B′
A→ B ≤ A′ → B′

We write A = B (to be read as “A is equivalent to B”) for A ≤ B ∈ T and
B ≤ A ∈ T . We extend ≤, ∩ and→ to T/= in the obvious way. The equivalence
class of a type A is denoted as [A]. Syntactic identity is denoted as A ≡ B.
Intersection is associative and commutative with respect to equivalence of types,
so if n ≥ 1, we may write

⋂n
i=1Ai or

⋂
{A1, · · · , An} for A1 ∩ · · · ∩ An. The

empty intersection
⋂
∅ denotes >. In the literature, the top > is denoted by

different symbols such as ω in [6] or Ω in [11]. If n ≥ 1, we may write
⋂n
i=1Ai

or
⋂
{A1, · · · , An} for A1 ∩ · · · ∩An. The case

⋂
∅ denotes >.

We now recall the definition of filter structure [5, 8].

Definition 8. Let T be an intersection type theory.

1. A filter (resp. basic filter) is a set X ⊆ T (resp. X ⊆ B) such that:
(a) > ∈ X;
(b) A ≤ B(resp.A ≤B B) and A ∈ X imply B ∈ X;
(c) A ∈ X and B ∈ X imply A ∩B ∈ X.

2. Let Y ⊆ T. Then, ↑Y denotes the filter generated by Y . If Y = {A}, we write
↑A instead of ↑{A} and ↑A is called a principal filter. Actually it coincides
with the upper closure of A, i.e. ↑A = {B | A ≤ B}. If Y ⊆ B the basic filter
generated by Y is denoted by ↑B Y . Similarly, we write ↑BA instead of ↑B {A}
for the principal filter.

3. FT (resp. FB) is the set of filters (resp. basic filters) over T , ordered by
set-theoretic inclusion, and is called the filter structure (resp. basic filter
structure) over T .



It is well-known that FT is an ω-algebraic lattice [8]. Given X ⊆ FT

(fil-sup)
⊔
X =↑ {

⋂n
j=1Aj | n ∈ IN,∀1 ≤ j ≤ n.∃X ∈ X .Aj ∈ X},

Moreover X u Y = X ∩ Y , the bottom filter is ↑>, the top filter is T. Compact
elements in FT are the principal filters and they inherit the order ≤op:

↑A ⊆↑B ⇔ B ≤ A

In the following definition we show how to interpret the untyped lambda calculus
in a filter structure FT .

Definition 9. Let T be an intersection type theory.

1. We define AppT : FT → [FT → FT ] and AbsT : [FT → FT ] → FT as
follows.

AppT (X)(Y ) = {B | ∃A ∈ Y.A→ B ∈ X}
AbsT (f) = ↑{A→ B | B ∈ f(↑ A)}

2. We define an interpretation on λ-terms as follows [8] 3.

[[x]]ρ = ρ(x)
[[MN ]]ρ = (AppT ([[M ]]ρ))([[N ]]ρ)
[[λx.M ]]ρ = AbsT (λλd ∈ FT .[[M ]]ρ[x/d])

Not any filter structure FT gives rise to a lambda model 〈FT ,AppT ,AbsT , [[ ]]〉,
but if the definition of an intersection type theory satisfy some restrictions, not
only the induced filter structure will be a λ-model, but also the connection with
suitable colimits emerges rather clearly. Importantly, the restrictions we put in
Definition 12 are easily satisfied by the main intersection type theories in the
literature. Before that we have to introduce the notion of specification of axioms.

Definition 10. A specification of axioms is a pair Σ = (<B, def) where <B
is a partial order on B such that ∩ is the meet and > is the top and def is a
function from A to T. The function def is extended from A to T by def(A∩B) =
def(A) ∩ def(B) and def(A→ B) = A→ B.

Definition 11. Let Σ = (<B, def) be a specification of axioms. The intersection
type theory generated by Σ, denoted by T Σ or just T , derives judgements of the
form A ≤ B ∈ T Σ or Σ ` A ≤ B and it is defined as the smallest intersection
type theory that contains the following two axioms.

(B-ax)
A ≤B B

Σ ` A ≤ B (def-ax) Σ ` α = def(α)

We write Σ ` A ≤ B if A ≤ B ∈ T Σ . If there is little danger of confusion, when
Σ or T are clear from the context, then we will just write (A ≤ B).
Figure 2 shows how many of the intersection type theories that appear in the
literature can be generated by a specification Σ = (≤B, def). For the B-axioms,



T A B-axioms ≤B def-axioms α = def(α)

Scott [19] {0,>} 0 ≤B > 0 = > → 0,> = > → >
Park [16] {0,>} 0 ≤B > 0 = 0→ 0,> = > → >
CDZ [9] {0, 1,>} 0 ≤B 1 ≤B > 0 = 1→ 0, 1 = 0→ 1,> = > → >
HR [15] {0, 1,>} 0 ≤B 1 ≤B > 0 = 1→ 0, 1 = (0→ 0) ∩ (1→ 1),> = > → >
DHM [12] {0, 1,>} 0 ≤B 1 ≤B > 0 = > → 0, 1 = 0→ 1,> = > → >

BCD [5] A∞ ci ≤B > ci = ci,> = > → >

AO [1] {>} > = >

Fig. 2. Intersection type theories generated by Σ = (≤B, def)

we do not specify the whole set ≤B. Each ≤B is actually defined as the least
partial order that contains the pairs A ≤B B shown in the table. We define a
countable set of constants A∞ = {ci | i ∈ N} ∪ {>}.

Definition 12. Let Σ = (<B, def) be a specification of axioms.

1. We say that Σ (and also T Σ) is lazy if def(>) = >.
2. We say that Σ (and also T Σ) is natural if def(>) = > → >.
3. We say that Σ (and also T Σ) is split if the following two conditions hold.

(a) A− {>} 6= ∅.
(b) def(α) = α, ∀ α ∈ A− {>}.

4. We say that Σ (and also T Σ) is equated if the following conditions hold.
(a) ∀α ∈ A− {>}, ∃A1, . . . An ∈ B, B1, . . . Bn ∈ B− {>},

def(α) ≡
n⋂
i=1

(Ai → Bi);

(b) ∀A,B ∈ B− {>},

A ≤B B ⇔ ∀j ∈ {1 . . . n}.
⋂
{Bi | 1 ≤ i ≤ m & Ai ≥B Cj} ≤B Dj

where def(A) ≡
⋂m
i=1(Ai → Bi) and def(B) ≡

⋂n
j=1(Cj → Dj).

5. We say that Σ (and also T Σ) is disciplined if it is either one of these
four possible combinations: natural split, lazy split, natural equated or lazy
equated.

The examples of intersection type theories given in Figure 2 are classified ac-
cording to the four classes defined above as follows.

Natural split BCD
Lazy split none
Natural equated Scott, Park, CDZ, HR, DHM
Lazy equated AO

3 It coincides with the interpretation defined through the type assignment system [8].



Lemma 13. In any intersection type theory T , the following statements hold:

1. If A ≤ C and B ≤ D then A ∩B ≤ C ∩D.
2. (A1 → B1) ∩ . . . ∩ (An → Bn) ≤ (A1 ∩ . . . ∩An)→ (B1 ∩ . . . ∩Bn).
3. If ∀j ∈ {1 . . . n}.

⋂
{Bi | 1 ≤ i ≤ m & Ai ≥ Cj} ≤ Dj then

m⋂
i=1

(Ai → Bi) ≤
n⋂
j=1

(Cj → Dj).

Definition 14. We define two functions to extract the sets of outermost atoms
and arrows of a type.

ats(α) = {α} ars(α) = ∅
ats(A→ B) = ∅ ars(A→ B) = {A→ B}
ats(A ∩B) = ats(A) ∪ ats(B) ars(A ∩B) = ars(A) ∪ ars(B)

Theorem 15. (Conservativity of ≤B). Let A,B ∈ B and Σ be disciplined.
Then, A ≤B B iff Σ ` A ≤ B.

Since ≤B is antisymmetric, we have the following:

Corollary 16. If Σ ` α = β then α ≡ β.

The converse of Lemma 13 part 3 is an important property which is not always
true. We will see later that it is a sufficient and necesary condition for having a
reflexive filter structure. For this, we will define the following notion.

Definition 17. We say that T is β-sound if⋂m
i=1(Ai → Bi) ≤ (C → D)⇒

⋂
{Bi | 1 ≤ i ≤ m & Ai ≥ C} ≤ D

∀Ai, Bi, C,D ∈ T with 1 ≤ i ≤ m.

A particular case of β-soundness is the invertibility of the rule (→), i.e. if A→
B ≤ C → D then A ≥ C and B ≤ D.

Theorem 18. Let T be disciplined. If E ≤ F then

1.
⋂

ats(def(E)) ≤
⋂

ats(def(F ))
2. ∀j ∈ {1 . . . n}.

⋂
{Bi | 1 ≤ i ≤ m & Ai ≥ Cj} ≤ Dj where

ars(def(E)) ≡ {(Ai → Bi) | 1 ≤ i ≤ m} and
ars(def(F )) ≡ {(Cj → Dj) | 1 ≤ i ≤ n}.

Proof. We prove it by induction on the derivation of E ≤ F . The interesting
case is (B-ax) which follows from Condition 4b (⇒) in Definition 12. ut

Corollary 19. Let T be disciplined. Then T is β-sound.

Theorem 20. If T is disciplined then 〈FT ,AppT ,AbsT , [[ ]]〉 is a λ-model.

Proof. Since T is β-sound, it follows from [8, 18] that 〈FT ,AppT ,AbsT , [[ ]]〉 is a
reflexive filter structure, i.e. AppT ◦AbsT = Id[FT→FT ]. Since any reflexive filter
structure is a λ-model [14, 4], we conclude that FT is also a λ-model. ut



4 Classification of Recursive Domain Equations

This section shows that filter structures over disciplined type theories corre-
spond to the colimit of certain ω-chains. Definition 24 gives the correspon-
dence between the intersection type theories T and the induced specification
ρ(T ) = 〈F (T ), D

(T )
0 , i

(T )
0 〉 of a colimit. In Theorem 27, we prove that FT is iso-

morphic to the colimit of ρ(T ). In Theorem 30 we prove the converse: for any
triple ρ = 〈F,D0, i0〉 of certain class C, it is possible to construct a displined
Tρ such that FTρ is isomorphic to the colimit of ρ. As a consequence of these
two theorems, we can justify the correspondence between classes and recursive
domain equations shown in Figure 1.

Definition 21. We define four different functors in ALGE.

HomY (X) = Y × [X → X]
HomY

⊥(X) = Y × [X → X]⊥
Hom(X) = [X → X]
Hom⊥(X) = [X → X]⊥

with the expected actions on morphisms (for instance, Hom(i)(f) = i ◦ f ◦ j for
an embedding projection pair 〈i, j〉 and a continuous function f : X → X).

Definition 22. Let D0 = {⊥}. The trivial embedding trv : D0 → F (D0) is
defined as trv(⊥) = ⊥.

Definition 23. Let Σ be equated. We define the embedding d̂ef : FB → [FB →
FB] on compact elements as follows.

1. If def(A) ≡
⋂m
i=1(Ai → Bi) then

d̂ef(↑BA) =
{⊔m

i=1(↑BAi ⇒↑BBi) if Σ is natural⊔m
i=1((↑BAi ⇒↑BBi), 0) if Σ is lazy

2. If def(>) = > then d̂ef(↑B>) = ⊥.

Definition 24. Let T be disciplined. We define a specification of a colimit ac-
cording to the following four cases.

T F (T ) D
(T )
0 i

(T )
0

Natural split HomF
B
{⊥} trv

Lazy split HomF
B

⊥ {⊥} trv

Natural equated Hom FB d̂ef

Lazy equated Hom⊥ FB d̂ef

Finally, for any n > 0, define inductively D(T )
n = F (T )(Dn−1).



Definition 25. Let T be disciplined. We define µ
(T )
n : K(D(T )

n ) → T/ = by
induction as follows.

1. – if T is split, then µ
(T )
0 (⊥) = [>]

– if T is equated, then µ
(T )
0 (↑BA) = [A]

2. Let n > 0. Then
– if T is natural split, then
µ

(T )
n (↑BA,

⊔m
i=1(di ⇒ ei)) = [A] ∩ (

⋂m
i=1(µ(T )

n−1(di)→ µ
(T )
n−1(ei))

– if T is lazy split, then
µ

(T )
n (↑BA,⊥) = [A]
µ

(T )
n (↑BA, (

⊔m
i=1(di ⇒ ei), 0)) = [A] ∩ (

⋂m
i=1(µ(T )

n−1(di)→ µ
(T )
n−1(ei))

– if T is natural equated, then
µ

(T )
n (

⊔m
i=1(di ⇒ ei)) =

⋂m
i=1(µ(T )

n−1(di)→ µ
(T )
n−1(ei))

– if T is lazy equated, then
µ

(T )
n (⊥) = [>]
µ

(T )
n (

⊔m
i=1(di ⇒ ei), 0) =

⋂m
i=1(µ(T )

n−1(di)→ µ
(T )
n−1(ei)).

From now on we omit the superscript (T ) on µn.

Proposition 26. Let T be disciplined. Then for all n,

1. ∀e, e′ ∈ K(D(T )
n ). e′ v e ⇔ µn(e) ≤ µn(e′).

2. ∀d ∈ K(D(T )
n ).µn(d) = µn+1(in(d)) where in = F (T )(n)

(i0).
3. ∀A ∈ T. ∃n ≥ 0, a ∈ K(D(T )

n ). µn(a) = [A].

Theorem 27. Let T be disciplined. Then

FT ' colim(ρ(T ))

Proof. First define µ̄n : K(D(T )
n )→ FT , for any n ≥ 0 and d ∈ K(D(T )

n ) by

µ̄n(d) =↑ [µn(d)]

µ̄n are monotone by Proposition 26(1). Then the extensions µ̃n : D(T )
n → FT of

µ̄ defined by
µ̃n(x) =

⊔
{µ̄n(d) | d ∈ K(D(T )

n ) & d v x}

are continuous. It follows from Proposition 26(2) that for any n ≥ 0, x ∈ D(T )
n ,

µ̃n(x) = µ̃n+1(in(x)). Hence, FT together with µ̃n is a cocone for the ω-chain of
〈F (T ), D

(T )
0 , i

(T )
0 〉. To prove that it is initial, consider another cocone, a domain

E with σn : D(T )
n → E such that σn+1 ◦ in = σn. We define θ : FT → E on

compact elements by θ(↑A) = σn(a) where a is an element of some K(D(T )
n ) such

that µn(a) = [A]. This element exists by Proposition 26(3). We prove that θ is
monotone. Suppose ↑ A ⊆↑ B, i.e. B ≤ A. By Proposition 26(2)(3) there exist
n ≥ 0, a ∈ K(D(T )

n ) and b ∈ K(D(T )
n ) such that µn(a) = [A] and µn(b) = [B].

It follows from Proposition 26(1) that a v b. Hence σn(a) v σn(b), since σn
are monotone. By the definition of θ, θ(↑A) v θ(↑B). We have defined θ to
have θ(µ̄n(d)) = σn(d). The continuous extension θ̃ : FT → E is the unique
mediating morphism such that ∀n.θ̃ ◦ µ̃n = σn. ut



Corollary 28.

1. If T is natural split then FT ' FB × [FT → FT ].
2. If T is lazy split then FT ' FT × [FB → FB]⊥.
3. If T is natural equated then FT ' [FT → FT ].
4. If T is lazy equated then FT ' [FT → FT ]⊥.

As expected, we can go in the other direction, proving that a certain kind of
colimits could be recovered as filter structures of disciplined intersection type
theories.
Definition 29. We define the sets of triples Ci (i ∈ {1, 2, 3, 4}) as follows:

C1 = {〈HomE , {⊥}, tr〉 | E ∈ ALG}
C2 = {〈HomE

⊥, {⊥}, tr〉 | E ∈ ALG}
C3 = {〈Hom, E, i0〉 | E ∈ ALG & i0 : E → [E → E]}
C4 = {〈Hom⊥, E, i0〉 | B ∈ ALG & i0 : E → [E → E]⊥}

We define C = C1 ∪ C2 ∪ C3 ∪ C4.

Theorem 30. Let ρ = (F,D0, i0) ∈ C. Then there exists a disciplined intersec-
tion type theory T ρ such that

colim(ρ) ' FT
ρ

Proof. For each ρ = 〈F,D0, i0〉 ∈ C, we first define a set Aρ of atoms.

Aρ = {d | d ∈ K(B) & d 6= ⊥} ∪ {>}

Then, we define a preorder ≤B on B(Aρ) as follows.

d ≤B e⇔ e v d
d =B

⋂m
i=1 ei ⇔ d =

⊔m
i=1 ei

d ≤ >
For the cases where the embeddings i0 are non-trivial, we define def as follows.

def(d) =
⋂m
i=1(ai → bi)⇔ i0(d) =

⊔m
i=1(ai ⇒ bi)

It is routine to check that the resulting intersection type theory T ρ is disci-
plined in all four cases. Since B ' FB, by Theorem 27 we have that FT ρ '
colim(ρT

ρ

) ' colim(ρ). ut
We now prove the converse of Corollary 28. These two corollaries together justify
the classification shown in Figure 1.

Corollary 31.

1. If FT ' E × [FT → FT ] then ∃T ′ natural split such that T/= ' T ′/=.
2. If FT ' E × [FT → FT ]⊥ then ∃T ′ lazy split such that T/= ' T ′/=.
3. If FT ' [FT → FT ] then ∃T ′ natural equated such that T/= ' T ′/=.
4. If FT ' [FT → FT ]⊥ then ∃T ′ natural equated such that T/= ' T ′/=.

Proof. We prove only the third case. The rest is similar. Take ρ = (Hom,FT , i0)
where i0 is the isomorphism from D to [D → D]. By the previous theorem, we
have that FT ' colim(ρ) ' FT ′ for some T ′ natural equated. Since K(FT ) '
T/= and K(FT ′) ' T ′/=, we conclude that T/= ' T ′/=. ut
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