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Abstract. Conditions on type preorders are provided in order to characterize the
induced filter models for theλ-calculus and some of its restrictions. Besides, two
examples are given of filter models in which not all the continuous functions are
representable.

1. Introduction

The semantics of theλ-calculus can be looked at from several points of view. A possible
one considers a model as an abstract way of handling and dealing with the syntax. This
is the point of view of those investigations looking for extensions of theλ-calculus such
that the intended semantical domain turns out to be fully abstract w.r.t. the calculus.

From another point of view, instead, the semantics is seen mainly as a tool to con-
firm one’s “syntactic intuitions” and to prove properties ofthe calculus. According to
this latter viewpoint, “semantically oriented” extensions of a calculus are not always
commendable. The focus is on the calculus: the model has to fitas tight as possible the
calculus, not vice versa. This is indeed the point of view of the present paper, and, in
general, the one of an investigation we are carrying on, started in a companion paper [3].
In such a research we try to devise a general setting and uniform tools to “tailor” models
closely fitting as many as possible aspects of the computational paradigm embodied by
theλ-calculus.

One of the most natural framework for such an investigation is the typing disci-
pline with Intersection Types. Intersection type assignment systems allow to charac-
terize many of the most importantdenotational(as well asoperational) properties of
λ-terms. In particular it is possible to describe, in anatural andfinitary way, many se-
mantic domains for theλ-calculus. Such finitary descriptions allow not only to analyze
pre-existing models, but also to modify them, sometimes “tailoring” them according to
one’s needs (see [6, 10, 14, 18, 17, 22, 5, 12] and the references there.)

Finitary characterizations of models for theλ-calculus, the so calledfilter models,
can be obtained by simply introducing specific constants, typing rules and type pre-
orders in a basic intersection type assignment system. An element of a particular do-
main, representing the denotational meaning of a termM , comes then out to correspond
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to the set of types that can be inferred forM .
In [3] we have characterized those intersection type assignment systems aiming, in per-
spective, at providing finitary descriptions of filter models validating in a precise way
the notions ofβ andη reduction and expansion for the wholeλ-calculus, as well as
some of their restrictions, likeβv [21], β-I [11] andβ-KN [17].

The present paper keeps on the same direction by proving a number of characteri-
zation results for filterλ-structures induced by type preorders.
Since any type preorder can induce a particular filterλ-structure, it is possible to “tailor”
particular models by providing suitable conditions on the inducing type preorders. Our
first “tailoring” result characterizes those type preorders inducingλ-structures in which
relevant sets of functions can be represented. A second result characterizesλ-structures
which are models of the wholeλ-calculus. In a third result we characterize those filter
λ-structures which are also models of the aforementioned restrictedλ-calculi: the call-
by-valueλ-calculus, theλI -calculus, theλKN-calculus. The result is also extended to
the extensional models.

A further “tailoring” result of the present paper concerns the possibility of “trim-
ming” something that is usually overabundant in filter models: the set of the repre-
sentable functions. Such a task is not a trivial one in the intersection filters setting. In
fact in any filter model introduced in the literature, but theone in [8], any continuous
function is representable. Our contribution to this task isthe construction of type pre-
orders inducing filter models of the wholeλ-calculus in which not all continuous func-
tions are representable. The proofs of this property will profit from the characterization
results of the paper.

We shall assume the reader to be acquainted with the main concepts concerning the
λ-calculus and its models. The paper will be structured as follows: in Section 2 we recall
the notions of intersection type language, type preorder and type assignment system,
while the definitions of filterλ-structure and filter model will be recalled in Section
3. The four characterization results will form the subject of Section 4. In Section 5 we
shall define two particular preorders in whose induced filtermodels only a proper subset
of the continuous functions is representable.

2. Intersection types languages and type assignments

Intersection types, the building blocks for the filter models, are syntactical objects built
by closing a given setCC of type atoms(constants) under thefunction typeconstructor
→ and theintersection typeconstructor∩.

Definition 1 (Intersection type language).The intersection type languageover CC,
denoted byTT = TT(CC) is defined by the following abstract syntax:

TT = CC | TT→TT | TT ∩ TT.

Much of the expressive power of intersection type languagescomes from the fact
that they are endowed with apreorder relation, ≤, which induces, on the set of types,
the structure of a meet semi-lattice with respect to∩.

Definition 2 (Intersection type preorder). An intersection type preorderis a pair
(CC,≤) whereCC is a set of type constants and≤ is a binary relation overTT = TT(CC)



satisfying the following set of axioms and rules:

(refl) A ≤ A (idem) A ≤ A ∩A

(inclL) A ∩B ≤ A (inclR) A ∩B ≤ B

(mon)
A ≤ A′ B ≤ B′

A ∩B ≤ A′ ∩B′
(trans)

A ≤ B B ≤ C

A ≤ C

(Ω) if Ω∈CC A ≤ Ω (ν) if ν∈CC A→B ≤ ν

NOTATION. -Σ will be short for(CC,≤).
- A ∼ B will be short forA ≤ B ≤ A.
- Since∩ is commutative and associative (modulo∼), we shall write

⋂
i≤nAi forA1 ∩

. . .∩An. Similarly we shall write∩i∈IAi, whereI denotes always a finite set. Moreover
we make the convention that∩i∈∅Ai isΩ whenΩ∈CC.
- We shall denote by≤` the type preorder generated by a recursive set

`
of axioms and

rules of the shapeA ≤ B (where
`

it is said to generate≤ if A ≤ B holds if and only
if it can be derived from the axioms and rules of

`
together with those in Definition 2).

The constants in
`

will be denoted byCC
`

.
- When we consider an intersection type preorder of the form(CC

`

,≤`), we shall write

TT

`

andΣ
`

for TT(CC
`

) and(CC
`

,≤`), respectively.
- A∼`B will be short forA ≤` B ≤` A.
- We write “the type preorderΣ validates

`
” to mean that all axioms and rules of

`

are admissible.1

Figure 1 lists a few special purpose axioms and rules which have been considered
in the literature. Their meaning can be grasped if we consider types to denote subsets of
a domain of discourse and we look at→ as the function space constructor in the light
of Curry-Scott semantics, see [23].

(Ω-η) Ω ≤ Ω→Ω (→-∩) (A→B) ∩ (A→C) ≤ A→B ∩ C

(Ω-lazy) A→B ≤ Ω→Ω (η)
A′ ≤ A B ≤ B′

A→B ≤ A′→B′

Fig. 1.Possible Axioms and Rules concerning≤.

We can introduce now four significant intersection type preorders which have been
extensively considered in the literature. The order is logical, rather than historical, and
the references define the corresponding filter models: [9], [14], [1], [6]. A richer list of
type preorders can be found in [3]. These preorders are of theformΣ

`

= (CC
`

,≤`),
with various different names

`
, picked for mnemonic reasons. In Figure 2 we list their

sets of constantsCC
`

and their sets
`

of extra axioms and rules taken from Figure 1.
HereCC∞ is an infinite set of fresh atoms (i.e. different fromΩ, ν).

1 Recall that a rule isadmissiblein a system if, for each instance of the rule, if its premises are
derivable in the system then so is its conclusion.



CC
CDV = CC∞ CDV = {(→-∩), (η)}

CC
EHR = {ν} EHR = CDV ∪ {(ν)}

CC
AO = {Ω} AO = CDV ∪ {(Ω), (Ω-lazy)}

CC
BCD = {Ω} ∪ CC∞ BCD = CDV ∪ {(Ω), (Ω-η)}

Fig. 2. Particular Atoms, Axioms and Rules.

2.1. Particular classes of type preorders

In this subsection we introduce important classes of type preorders. The first two are
the classes ofnatural type preorders and ofstrict natural type preorders. These are
disjointclasses, whose relevance lies in their allowing various characterizations in terms
of approximable mappings andλ-structures.

Definition 3 ((Strict) Natural type preorders).
LetΣ = (CC,≤) be a type preorder.

(i) Σ is strict naturalif Ω/∈CC and it validatesCDV as defined in Figure 2.
(ii) Σ is naturalif Ω∈CC and it validatesAO as defined in Figure 2.

Naturality for type preorders has a strong semantic flavour.If we look at intersection as
representing join and at arrow types as representing functions, then rule (→-∩) reflects
the join property of step functions with the same antecedent((d ⇒ e) t (d ⇒ e′) w
d ⇒ (e t e′)), rule (η) reflects the order relation between step functions (d′ v d and
e v e′ imply d ⇒ e v d′ ⇒ e′), and rule (Ω-lazy) reflects the fact that⊥ ⇒ ⊥ is the
bottom function.

Among the type preorders of Figure 2,CDV, EHR are strict natural, andAO, BCD
are natural.

Notice that by the implicit assumption that axiom(ν)∈Σ wheneverν∈CC
Σ (Defi-

nition 2) a strict natural type theory containing the constant ν validatesEHR.
We introduce two other interesting classes of preorders playing a crucial role in the

characterization results of Section 4.

Definition 4 (Beta and eta preorders).
LetΣ = (CC,≤) be a type preorder andTT = TT(CC).

(i) Σ is betaiff for all I, Ai, Bi, C,D∈TT:⋂
i∈I(Ai→Bi) ≤ C→D =⇒

⋂
i∈JBi ≤ D whereJ = {i∈I | C ≤ Ai}.

(ii) Σ is etaiff for all ψ∈CC at least one of the following conditions hold:
(1) ν≤ψ;
(2) there existI, Ai, Bi∈TT such that

⋂
i∈I(Ai→Bi)≤ψ andBi∼Ω for all i∈I;

(3) there exist non empty families of types{Ai, Bi}i∈I , {Di,j, Ei,j}j∈Ji
in TT such

that ⋂
i∈I(Ai→Bi)≤ψ ≤

⋂
i∈I(

⋂
j∈Ji

(Di,j→Ei,j)) &

∀i∈I. Ai ≤
⋂

j∈Ji
Di,j &

⋂
j∈Ji

Ei,j ≤ Bi.

The condition for a natural type theory of being beta reflectsthe criterion used to
establish if a sups of step functions is greater than a step function (see [15]).



WhenΣ = Σ
`

it is usually possible to prove the conditions defined above by
induction on the derivation of judgments. For the type preorders of Figure 2 we get that
they are all beta andEHR,AO are eta.

2.2. Intersection type assignments

We introduce now the notion ofintersection type assignment system. First we need a
few preliminary definitions. LetVar denote the set of term variables.

Definition 5 (Type assignment system).
(i) A basisoverCC is a set of statements of the shapex:B, where thesubjectsx are

in Var, thepredicatesB are inTT(CC), and all subjects are distinct variables.
(ii) An intersection-type assignment systemrelative toΣ = (CC,≤), denoted by

λ∩Σ , is a formal system for deriving judgments of the formΓ `Σ M : A, where the
subjectM is an untypedλ-term, thepredicateA is in TT(CC), andΓ is a basis overCC.

NOTATION. We shall write:
– x∈Γ as short for(x : A)∈Γ for someA;
– Γ, x:A as short forΓ ∪ {x:A}, provisox/∈Γ .

We use] to denote the union between bases defined by:
Γ1 ] Γ2 = {(x:τ) | (x:τ)∈Γ1&x/∈Γ2} ∪

{(x:τ) | (x:τ)∈Γ2&x/∈Γ1} ∪
{(x:τ1 ∩ τ2) | (x:τ1)∈Γ1&(x:τ2)∈Γ2}

A termM is said to betypablein λ∩Σ , for a given basisΓ , if there is a typeA∈TT(CC)
such that the judgmentΓ `Σ M : A is derivable.

Various type assignment systems can be defined, each of them parametrized w.r.t a
particularΣ=(CC,≤). The simplest system is given in the following definition.

Definition 6 (Basic type assignment system).
Given a type preorderΣ, the axioms and rules of thebasic type assignment system,
denoted byλ∩Σ

B , for deriving judgmentsΓ `Σ
B M : A, are the following:

(Ax) Γ `Σ
B x:A if (x:A)∈Γ

(→I)
Γ, x:A `Σ

B M : B

Γ `Σ
B λx.M : A→B

(→E)
Γ `Σ

B M : A→ B Γ `Σ
B N : A

Γ `Σ
B MN : B

(∩I)
Γ `Σ

B M : A Γ `Σ
B M : B

Γ `Σ
B M : A ∩B

(≤)
Γ `Σ

B M : A A ≤ B

Γ `Σ
B M : B

If Ω∈CC, a natural choice is to setΩ as the universal type of allλ-terms. This
amounts to modify the basic type assignment system by addinga suitable axiom forΩ.

Definition 7 (Ω-type assignment system).
Given a type preorderΣ = (CC,≤) with Ω∈CC, the axioms and rules of theΩ-type
assignment system(denotedλ∩Σ

Ω), for deriving judgments of the formΓ `Σ
Ω M : A,

are those of the basic one, plus the further axiom

(Ax-Ω) Γ `Σ
Ω M : Ω.



Analogously to the case ofΩ, whenν∈CC, it is natural to considerν as the universal
type for abstractions, hence modifying the basic system by the addition of a special
axiom forν.

Definition 8 (ν-type assignment system).
Given a type preorderΣ = (CC,≤) with ν∈CC, the axioms and rules of theν-type
assignment system(denotedλ∩Σ

ν ), for deriving judgements of the formΓ `Σ
ν M : A,

are those of the basic one, plus the further axiom

(Ax-ν) Γ `Σ
ν λx.M : ν.

For simplicity we assume the symbolsΩ andν to be reserved for the universal type
constants respectively used in the systemsλ∩Σ

Ω andλ∩Σ
ν , i.e. we forbidΩ∈CC or ν∈CC

when we deal withλ∩Σ
B .

NOTATION. - λ∩Σ will range overλ∩Σ
B , λ∩Σ

Ω andλ∩Σ
ν . More precisely we assume

that λ∩Σ stands forλ∩Σ
Ω wheneverΩ∈CC, for λ∩Σ

ν wheneverν∈CC, and forλ∩Σ
B

otherwise. Similarly for̀ Σ.
- WhenΣ = Σ

`

we shall denoteλ∩Σ and`Σ by λ∩
`

and`
`

, respectively.

It is easy to prove that the following rules are admissible inλ∩Σ .

(W)
Γ `Σ M : A x/∈Γ

Γ, x:B `Σ M : A
(C)

Γ, x:B `Σ M : A Γ `Σ N : B

Γ `Σ M [x := N ] : A

(S)
Γ, x:B `Σ M : A x/∈FV(M)

Γ `Σ M : A
(≤ L)

Γ, x:B `Σ M : A C ≤ B

Γ, x:C `Σ M : A

As usual a generation lemma is handy: its proof can be found in[4].

Lemma 1 (Generation lemma).
LetΣ = (CC,≤) be a type preorder andTT = TT(CC).

(i) AssumeA 6∼ Ω. ThenΓ `Σ x : A iff (x:B)∈Γ andB ≤ A for someB∈TT.
(ii) AssumeA 6∼ Ω. ThenΓ `Σ MN : A iff Γ `Σ M : Bi → Ci, Γ `Σ N : Bi,

and
⋂

i∈I Ci ≤ A for someI andBi, Ci∈TT.
(iii) Assumeν 6≤ A. ThenΓ `Σ λx.M : A iff Γ, x:Bi `Σ M : Ci, and

⋂
i∈I(Bi →

Ci) ≤ A for someI andBi, Ci∈TT.

3. Filter λ-structures and (restricted) filter models

It is possible to use intersection types for building modelsfor λ-calculus and some of
its restrictions. Let us first recall the general notion of restrictedλ-calculus.

Definition 9 (Restrictedλ-calculus).LetR ⊆ {〈(λx.M)N,M [x := N ]〉 |M,N∈Λ}.
Therestrictedλ-calculusλR is the calculus obtained from the standardλ-calculus by
restricting theβ-rule to the redexes inR (calledβ-R-redexes).

Next definition of (restricted) model is a generalization of the classical notion of
model for the untypedλ-calculus of Hindley-Longo (see [16]).



Definition 10 ((Restricted) models).A model for the (restricted)λ-calculusλR con-
sists of a triple〈D, ·, [[ ]]D〉 such thatD is a set,· : D × D → D, Env : V ar → V for
someV ⊆ D and the interpretation function[[ ]]D : Λ× Env→ D satisfies:

(i) [[x]]Dρ = ρ(x);
(ii) [[MN ]]Dρ = [[M ]]Dρ · [[N ]]Dρ ;
(iii) [[λx.M ]]Dρ · [[N ]]Dρ = [[M ]]D

ρ[x:=[[N ]]Dρ ] for 〈(λx.M)N,M [x := N ]〉∈R;

(iv) If ρ(x) = ρ′(x) for all x∈FV(M), then[[M ]]Dρ = [[M ]]Dρ′ ;
(v) If y/∈FV(M), then[[λx.M ]]Dρ = [[λy.M [x := y]]]Dρ ;
(vi) If ∀d∈D.[[M ]]Dρ[x:=d] = [[N ]]Dρ[x:=d], then[[λx.M ]]Dρ = [[λx.N ]]Dρ .

〈D, ·, [[ ]]D〉 is extensionalif moreover

[[λx.Mx]]Dρ = [[M ]]Dρ .

We can devise semantics domains out of intersection types bymeans of an appropri-
ate notion of filter over a type preorder. This is a particularcase of filter over a generic
>-meet semi-lattice (see [19]).

Definition 11 (Σ-filters). Let Σ = (CC,≤) be a type preorder andTT = TT(CC). A
Σ-filter (or a filter overTT) is a setX ⊆ TT such that

(i) if Ω∈CC thenΩ∈X ;
(ii) if A ≤ B andA∈X , thenB∈X ;
(iii) if A,B∈X , thenA ∩B∈X .

FΣ denotes the set ofΣ-filters.

NOTATION. GivenX ⊆ TT, ↑X denotes theΣ-filter generated byX . ForA∈TT, we
write ↑A instead of↑{A}.

It is possible to turn the space of filters into an applicativestructure in which to
interpretλ-terms. Assuming the Stone duality viewpoint, the interpretation of terms
coincides with the sets of types which are deducible for them.

Definition 12 (Filter structures).
(i) Application · : FΣ ×FΣ → FΣ is defined as

X · Y =↑{B | ∃A∈Y.A→ B∈X}.

(ii) For anyλ-termM and environmentρ : V ar → FΣ \ {∅},

[[M ]]Σρ = {A | ∃Γ |= ρ. Γ `Σ M : A},

whereΓ |= ρ if and only if(x : B)∈Γ impliesB∈ρ(x).
(iii) A filter λ-structureis a triple 〈FΣ , ·, [[ ]]Σ〉.

By rules (Ω), (≤) and (∩I) the interpretations of allλ-terms are filters.
Thanks to the following theorem, it is sufficient that clause(iii) of Definition 10

holds in order a filterλ-structure〈FΣ , ·, [[ ]]Σ〉 be also a model for the restrictedλ-
calculusλR (calledfilter model forλR).



Theorem 1. For all type preordersΣ the interpretation function[[ ]]Σ satisfies condi-
tions (i), (ii), (iv), (v), (vi) of Definition 10.

PROOF. We only consider the interesting cases.
(ii) Let A∈[[MN ]]Σρ . The caseA ∼ Ω is trivial. Otherwise there existsΓ |= ρ such

thatΓ `Σ MN : A. By Lemma 1(ii) there existI andBi, Ci∈TT such that for alli∈I,
Γ `Σ M : Bi → Ci, Γ `Σ N : Bi, and

⋂
i∈I Ci ≤ A. From the first two judgments

above, we getBi∈[[N ]]Σρ andBi → Ci∈[[M ]]Σρ . By definition of application it follows
A∈[[M ]]Σρ · [[N ]]Σρ .
Let nowA∈[[M ]]Σρ · [[N ]]Σρ . Then there existI, Bi, Ci∈TT such that

⋂
i∈I Ci ≤ A and

for any i∈I, Bi → Ci∈[[M ]]Σρ andBi∈[[N ]]Σρ , hence there exist two bases overCC, Γi

andΓ ′
i , such thatΓi |= ρ, Γ ′

i |= ρ, and moreoverΓi `Σ M : Bi → Ci, Γ ′
i `Σ N : Bi.

Consider the basisΓ ∗ = ]i∈I(Γi ] Γ ′
i ). We haveΓ ∗ |= ρ, Γ ∗ `Σ M : Bi → Ci and

Γ ∗ `Σ N : Bi. From the last two judgments, by applying(→E), we deduceΓ ∗ `Σ

MN : Ci, which implies, by(∩I) and(≤), Γ ∗ `Σ MN : A, henceA∈[[MN ]]Σρ .
(vi) Suppose that the premise holds andA∈[[λx.M ]]Σρ . The caseν ≤ A is trivial.

Otherwise there isΓ |= ρ such thatΓ `Σ λx.M : A. Sincex/∈FV(λx.M) by rule (S)
we can assumex/∈Γ . By Lemma 1(iii) there existI andBi, Ci∈TT such that, for each
i∈I, Γ, x : Bi `Σ M : Ci, and

⋂
i∈I(Bi → Ci) ≤ A. By the premise, we get, for each

i∈I, Γ, x : Bi `Σ N : Ci, hence by(→I) and(≤) we getΓ `Σ λx.N : A, which
implies[[λx.M ]]Σρ ⊆ [[λx.N ]]Σρ . Similarly one proves[[λx.N ]]Σρ ⊆ [[λx.M ]]Σρ .

Corollary 1 ((Restricted) filter models). A filter λ-structure〈FΣ , ·, [[ ]]Σ〉 is a filter
modelfor the restrictedλ-calculusλR iff for any redex(λx.M)N∈R, environmentρ,

[[(λx.M)N ]]Σρ = [[M ]]Σ
ρ[x:=[[N ]]Σρ ] , that is,

(\) ∃Γ |= ρ. Γ `Σ (λx.M)N : A ⇔ ∃Γ ′ |= ρ. Γ ′ `Σ M [x := N ] : A.

4. Four characterization results

The first two characterization results we give concern natural type preorders. We begin
studying the representability of interesting classes of (strict) Scott continuous functions.
These characterizations generalise those given in [8].

Definition 13 (Representable functions).Given a type preorderΣ, a functionf :
FΣ→FΣ is said to berepresentable inΣ if it is representable in the induced filterλ-
structure〈FΣ , ·, [[ ]]Σ〉, that is there existsX∈FΣ such that for anyY ∈FΣ , X · Y =
f(Y ).

Next lemma is useful for characterizing the sets of representable functions.

Lemma 2. Let Σ = (CC,≤) be a natural type preorder andf : FΣ → FΣ be a
continuous function. Thenf is representable iff for allI andAi, Bi, C,D∈TT(CC), with
D 6∼ Ω, it holds

([) (∀i∈I.Bi∈f(↑Ai)) &
⋂

i∈I

(Ai → Bi) ≤ C → D ⇒ D∈f(↑C).



PROOF. (⇐) LetXf =↑ {A → B | B∈f(↑A)} We prove that for anyC∈TT(CC) we
havef(↑C) = Xf · ↑C.

X · ↑C = ↑{D | ∃C′ ≥ C.C′ → D∈X} by definition of application
= ↑{D | C → D∈X} by (η)
= {D | C → D∈X} by (→-∩)
= {D | ∃I, Ai, Bi.(∀i∈I.Bi∈f(↑Ai)&⋂

i∈I(Ai → Bi) ≤ C → D} by definition ofXf

= {D | D∈f(↑C)} by ([)
= f(↑C).

(⇒) Suppose by contradiction that there existI, Ai, Bi, C,D (with D 6∼ Ω), such that⋂
i∈I(Ai → Bi) ≤ C → D, and for anyi∈I, Bi∈f(↑Ai), butD/∈f(↑C). If X is any

filter candidate to representf , then, for anyi∈I, Bi∈X · ↑Ai, which implies, by easy
computations,Ai → Bi∈X , for anyi∈I. Since

⋂
i∈I(Ai → Bi) ≤ C → D, it follows

C → D∈X , henceD∈X · ↑C, making it impossible thatX representsf .

Theorem 2 (Characterization of sets of representable functions).
(i) The set of functions representable in a strict natural preorder Σ = (CC,≤)

contains:
(1) the step function⊥ ⇒ ⊥;
(2) the strict step functions iffA→B ≤ C→D imply C ≤ A,B ≤ D for all

A,B,C,D∈TT(CC);
(3) the strict continuous functions iffΣ is a beta preorder.
(ii) The set of functions representable in a natural preorderΣ = (CC,≤) con-

tains:
(1) the step function⊥ ⇒ ⊥ iff A→B ∼ Ω impliesB ∼ Ω;
(2) the constant functions iffΩ→B ≤ C→D impliesB ≤ D for all B,C,D in

TT(CC);
(3) the step functions iffA→B ≤ C→D andD 6∼ Ω implyC ≤ A,B ≤ D for all

A,B,C,D∈TT(CC);
(4) the continuous functions iffΣ is a beta preorder.

PROOF. (sketch) For each point above, the theses follow applying condition ([) of
Lemma 2 to the class of functions involved, taking into account that:

– D∈(↑A⇒↑B)(↑C) iff C ≤ A andB ≤ D;
– B∈f(↑A) iff ↑A⇒↑B v f ;

where↑A⇒↑B is the step function from↑A to ↑B, f is a continuous function andv
is the point-wise ordering.

All the type theories of Figure 2 are beta. Moreover, the typepreordersAO,BCD
(CDV, EHR) are (strict) natural and therefore, by Theorem 2(ii4), in all the filter λ-
structures induced by such preorders all (strict) continuous functions are representable.

Our second characterization result on natural type preorders consists in giving a
criterion for selecting those type preorders whose inducedfilter λ-structures are indeed
filter models of the wholeλ-calculus. To do that we use a result of [20], in which an



applicative structure is showed to be a model provided that it contains the combinators
K, S and ε. Thus, a condition for having a filter model can be obtained bysimply
forcing the existence of such combinators.

Theorem 3 (Characterization of model-inducing preorders).
LetΣ = (CC,≤) be a natural type preorder. The filterλ-structure〈FΣ , ·, [[ ]]Σ〉 is a
filter model of the wholeλ-calculus iff the following three conditions are fulfilled.

(i) (existence ofK)
∀C,D,E ∃I, Ai, Bi.

⋂
i∈I(Ai → Bi → Ai) ≤ C → D → E ⇔

C ≤ E;
(ii) (existence ofS)

∀D,E, F,G ∃I, Ai, Bi, Ci.
⋂

i∈I((Ai → Bi → Ci) → (Ai → Bi) → Ai → Ci)
≤ D → E → F → G ⇔
∃H.E ≤ F → H andD ≤ F → H → G;
(iii) (existence ofε)

∀C,D ∃I, Ai, Bi.
⋂

i∈I((Ai → Bi) → Ai → Bi) ≤ C → D ⇔
∃J,Ej , Fj .C ≤

⋂
j∈J (Ej → Fj) ≤ D.

The filterλ-structure〈FΣ , ·, [[ ]]Σ〉 is an extensional model if the third condition above
is replaced by:
(iii ′) ∀A ∃I, Ai, Bi.A ∼

⋂
i∈I(Ai → Bi).

These conditions are obtained by considering the application of combinators to fil-
ters. Similarly, one could characterize the representability of an arbitrary combinator of
the shapeλx1 . . . xn.C, whereC is a combination of variable (that is, it does not contain
anyλ-abstraction).

Our third result characterizes those type preorders inducing filter models for the
main restrictedλ-calculi studied in the literature, namely theλI -calculus [11], theλKN-
calculus [17] and the call-by-valueλ-calculus [21]. The redexes of these calculi are
defined as follows.

Definition 14 (Restricted redexes).([21, 11, 17])
(i) A redex(λx.M)N is aβv-redexif N is a variable or an abstraction.

(ii) A redex(λx.M)N is aβ-I -redexif x∈FV(M).
(iii) A redex(λx.M)N is aβ-KN-redexif it is a β-I -redex orN is either a variable

or a closed strongly normalising term.

Before characterizing (restricted) filter models we need a technical result on typing
properties of strongly normalizing terms: for a proof see [13].

Proposition 1 (Characterization of strongly normalizing terms). A λ-term M is
strongly normalizing iff for any type preorderΣ = (CC,≤) there existsA∈TT(CC) and
a basisΓ overCC such thatΓ `Σ M : A.

LetΣ = (CC,≤) be a type preorder: we say that a basisΓ ∗ overCC is a〈Σ,Γ,M〉-
basis iff the subjects ofΓ ∗ are the variables which occur free inM and are not subjects
of Γ , i.e.{x∈Γ ∗} = {x∈FV(M) | x/∈Γ}.



Theorem 4 (Characterizations of (restricted) filter models). LetΣ = (CC,≤) be a
type preorder and=(Σ,M, x)2 be short for:

∀Γbasis overCC ∀Γ ∗〈Σ,Γ,M〉-basis ∀A,B∈TT(CC).
Γ `Σ λx.M : B→A ⇒ Γ ∗, Γ, x:B `Σ M : A.

The filterλ-structure〈FΣ , ·, [[ ]]Σ〉:
(i) is a model of the call-by-valueλ-calculus iff for anyM , x, ρ:
(1) [[λx.M ]]Σρ 6= ∅ and
(2) =(Σ,M, x) holds;
(ii) is a model of theλI -calculus iff for anyM , x,N , ρ such thatx∈FV(M):
(1) [[M [x := N ]]]Σρ 6= ∅ implies[[N ]]Σρ 6= ∅ and
(2) =(Σ,M, x) holds;

(iii) is a model of theλKN-calculus iff it is a model of theλI -calculus;
(iv) is a model of the wholeλ-calculus iff for anyM , ρ:
(1) [[M ]]Σρ 6= ∅ and
(2) =(Σ,M, x) holds.

PROOF. We prove with details point (i) and give hints for the other points.
(⇒) Let 〈FΣ , ·, [[ ]]Σ〉 be a model of the call-by-value calculus. Assume by contra-

diction that[[λx.M0]]
Σ
ρ0

= ∅ for someM0, x, ρ0: this implies[[(λzy.y)(λx.M0)]]
Σ
ρ0

=

[[λzy.y]]Σρ0
· [[λx.M0]]

Σ
ρ0

= ∅. Since(λzy.y)(λx.M0) is a βv-redex which reduces to
λy.y andA → A∈[[λy.y]]Σρ for all ρ this contradicts (⇐) of condition(\) in Corollary
1. Now we prove that=(Σ,M, x) holds for anyM,x. LetΓ `Σ λx.M : B → A. Then
Γ ′ `Σ (λx.M)x : A, whereΓ ′ = Γ, x:B. Letρ be an environment such thatρ(y) =↑C
if y:C∈Γ ′. It is easy to check thatΓ ′ |= ρ. Since(λx.M)x is aβv-redex, condition
(\) of Corollary 1 holds, hence there exists a basisΓ ′′ such thatΓ ′′ |= ρ and moreover
Γ ′′ `Σ M : A. By definition of |=, we have that for any variabley, if y:D∈Γ ′′ and
y:C∈Γ ′ thenC ≤ D. Applying rules(S) and(≤ L) we obtainΓ ∗, Γ, x:B `Σ M : A
whereΓ ∗ = {z : E∈Γ ′′ | z∈FV(M)& z /∈Γ} is a 〈Σ,Γ,M〉-basis. Notice that the
predicates inΓ ∗ must vary according to the environmentρ, and thatρ by construction
can assign arbitrary filters to the subjects ofΓ ∗. The proof of(⇒) is so complete.

(⇐) First we show (⇒) of condition(\) in Corollary 1. FromΓ `Σ (λx.M)N : A
by Lemma 1(ii) and=(Σ,M, x) we getΓ ∗, Γ, x : Bi `Σ M : Ci, Γ `Σ N : Bi, and⋂

i∈I Ci ≤ A for all 〈Σ,Γ,M〉-basisΓ ∗ and for someI, Bi, Ci∈TT. ThenΓ ∗, Γ `

M [x := N ] : Ci follows by rules (C) and (W), and soΓ ∗, Γ `Σ M [x := N ] : A using
rules (∩I) and (≤). We conclude observing that we can chooseΓ ∗ such thatΓ ∗ |= ρ.

As to (⇐) of (\) let D be a deduction ofΓ ` M [x := N ] : A andΓi ` N : Bi for
i∈I be all the statements inD whose subject isN . Without loss of generality we can
assume thatx does not occur inΓ .
If I is non-empty, notice thatΓ ⊆ Γi but Γ � FV(N) = Γi � FV(N) (by Γ � X we
denote{x : A∈Γ | x∈X}). So using rules (S) and(∩I), we have thatΓ ` N :

⋂
i∈I Bi.

Moreover, one can easily see, by induction onM , thatΓ, x :
⋂

i∈I Bi ` M : A. Thus,
by rule (→I), we haveΓ ` λx.M :

⋂
i∈I Bi→A. Hence, by(→E) we can conclude

Γ ` (λx.M)N : A.

2 Notice that〈Σ, Γ, M〉-bases in=(Σ, M, x) are useful only forλ∩Σ

ν , sinceλ∩Σ

B andλ∩Σ

Ω

enjoy the sub-formula property.



If I is empty, we get fromD a derivation ofΓ `M : A by replacing eachN by x. Two
cases have to be considered:

– if N is a variable, sayx, then by Definition 12(ii)ρ(x) 6= ∅;
– if N is an abstraction, then[[N ]]Σρ 6= ∅ by hypothesis.

In both cases there is a basisΓ ′ |= ρ, such thatΓ ′ `Σ
ν N : B for some typeB. By rule

(W) we getΓ, x : B `M : A and we can concludeΓ ]{x : B}]Γ ′ ` (λx.M)N : A.
As to the proofs of the other points, proceed as in the previous case taking into

account for point (iii) that ifN is a closed strongly normalizing term, by Proposition 1
it is typable in all intersection type systems from the emptybasis.

Notice thatΩ∈CC or ν∈CC implies condition (i1) of Theorem 4,Ω∈CC or ν /∈CC

implies condition (ii1) of Theorem 4 andΩ∈CC implies condition (iv1) of Theorem 4.

The characterization of filter models can be extended to encompass extensional-
ity. To this aim it is useful to know when typing is invariant underη-expansion and
η-reduction. Let

(η-exp)
M →η N Γ ` N : A

Γ `M : A
(η-red)

M →η N Γ `M : A

Γ ` N : A

Next proposition corresponds to Theorem 4.5 of [3].

Proposition 2 (Characterization of subjectη-reduction/expansion).
(i) Rule(η-exp) is admissible inλ∩Σ iff Σ is eta;

(ii) Rule(η-red) is admissible inλ∩Σ
B iff Σ validatesCDV, in λ∩Σ

Ω iff Σ validates
CDV ∪ {(Ω-η)}, and it is never admissible inλ∩Σ

ν .

Theorem 5 (Characterization of extensional (restricted) filter models).
LetΣ = (CC,≤) be a type preorder. The filterλ-structure〈FΣ , ·, [[ ]]Σ〉 is a extensional
filter model of the restrictedλ-calculusλR iff it is a model ofλR, Σ is an eta type
preorder which validatesCDV, and moreover ifΩ∈CC thenΣ validates axiom (Ω-η), if
ν∈CC thenν∈[[M ]]Σρ for all M,ρ.

PROOF. (⇒) Let ϕ∈CC be a constant that does not satisfy all the conditions in Defini-
tion 4(ii). One can show thatϕ/∈[[λy.xy]]Σ

ρ[x:=↑ϕ]: this implies thatΣ must be eta.

We haveA→ B∩C∈[[λy.xy]]Σρ[x:=↑(A→B)∩(A→C)] for allA,B,C, butA→ B∩C∈ ↑

(A → B) ∩ (A → C) only if Σ validates axiom (→-∩). Similarly one can show
thatΣ must validate axiom (η) and axiom (Ω-η) whenΩ∈CC. Lastly if ν∈CC then
ν∈[[λx.Mx]]Σρ for all M,ρ by axiom(Ax-ν) impliesν∈[[M ]]Σρ for all M,ρ.

(⇐) follows from Proposition 2, but the caseν∈CC, in which ν is harmless being
contained in the interpretations of all terms.

Using the previous theorems we get:〈F
`

, ·, [[ ]]
`

〉 with
`
∈{CDV} is a model

of the λI -calculus, with
`

= EHR is a model of the call-by-valueλ-calculus, with`
∈{AO,BCD} is a model of the wholeλ-calculus.



5. Trimmed filter models

In this section we provide actual examples of filter models ofthe wholeλ-calculus
where not all continuous functions are representable. In particular we devise two type
preorders which are natural but not beta. This implies, by Theorem 2(ii4), that some
continuous function cannot be represented in the filterλ-structures induced by such
preorders. For the first model we acknowledge the adaptationof an idea in [8].

Definition 15 (Trimmed models).A (strict) filter model will be calledtrimmedif not
all the (strict) continuous functions are representable init.

The type preorderΣ♦

Definition 16 (Σ♦). Let CC
♦ = {Ω,♦,♥}. The type preorderΣ♦ is the preorder

induced by the set of rules♦ = BCD ∪ {(♦-♥)}, where

(♦-♥) A ≤ A[♦ := ♥].

In order to show thatΣ♦ induces a trimmed filter model we need a few technical
results.

Lemma 3. (i) A ≤♦ B impliesA[♦ := ♥] ≤♦ B[♦ := ♥];
(ii) Γ `♦ M : A impliesΓ [♦ := ♥] `♦ M : A[♦ := ♥];
(iii) Γ, Γ ′ `♦ M : A impliesΓ, Γ ′[♦ := ♥] `♦ M : A[♦ := ♥];
(iv) ∀i∈I. Γ, x : Ai `♦ M : Bi and

⋂
i∈I(Ai→Bi) ≤♦

⋂
j∈J(Cj→Dj) imply

∀j∈J. Γ, x : Cj `♦ M : Dj .

PROOF. (i) By induction on the definition of≤♦.
(ii) By induction on derivations using (i) for rule(≤♦).
(iii) From (ii) and the admissible rule (≤♦L), taking into account that if(x : B)∈Γ ,

then(x : B[♦ := ♥])∈Γ [♦ := ♥] andB ≤♦ B[♦ := ♥].
(iv) We shall denote byψ, ξ (possibly with indexes) elements ofCC

♦.We show by
induction on the definition of≤♦ that

(
⋂

i∈I(Ai→Bi)) ∩ (
⋂

h∈H ψh) ≤♦ (
⋂

j∈J (Cj→Dj)) ∩ (
⋂

k∈K ξk)

and∀i∈I. Γ, x : Ai `♦ M : Bi imply ∀j∈J. Γ, x : Cj `♦ M : Dj .

The only interesting case is when the applied rule is(♦-♥), i.e. we have⋂

i∈I

(Ai→Bi) ∩ (
⋂

h∈H

ψh) ≤♦ (
⋂

i∈I

(Ai→Bi) ∩ (
⋂

h∈H

ψh))[♦ := ♥].

By hypothesisΓ, x : Ai `♦ M : Bi, so we are done by (iii).

Theorem 6. The natural type preorderΣ♦ is not beta, but〈F♦, ·, [[ ]]♦〉 is a filter
model of the wholeλ-calculus.

PROOF. A counter-example to the condition of Definition 4(i) is♦→♦ ≤♦ ♥→♥,
since♥6≤♦♦.
To show that〈F♦, ·, [[ ]]♦〉 is a model of the wholeλ-calculus, it suffices, by Theorem
4(iv), to verify that=(Σ♦,M, x) holds for anyM , x. By Lemma 1(iii)Γ `♦ λx.M :
A→B impliesΓ, x : Ci `♦ M : Di for someI, Ci, Di such that

⋂
i∈I(Ci→Di) ≤♦

A→B. So, we are done by Lemma 3(iv).

The step function↑♦ ⇒↑♦ is an instance of non-representable function inF♦.



The type preorderΣ♠

Definition 17 (The mappingp). LetCC♠ = {Ω,♠,♣} The mappingp : TT
♠→TT

♠ is
inductively defined as follows:

p(Ω) = Ω; p(♠) = Ω; p(♣) = ♣;
p(A→B) = A→p(B);
p(A ∩B) = p(A) ∩ p(B).

Definition 18 (Σ♠). Σ♠ is the type preorder induced by the set of rules♠ = BCD ∪
{(♠-♣), (♠-♣-→)} where:

(♠-♣) A ≤ p(A);
(♠-♣-→) A→B ≤ p(A)→p(B).

Given a basisΓ , let p(Γ ) be the basis obtained by substituting any judgmentx:A of Γ
by x:p(A).

We show thatΣ♠ induces a trimmed filter model. As in the case ofΣ♦, we prove
some technical results in order to show that=(Σ♠,M, x)) holds for anyM , x.

Lemma 4. (i) The mappingp is idempotent, i.e.p(p(A)) = p(A).
(ii) A→p(B) ∼♠ p(A)→p(B);
(iii) A ≤♠ B impliesp(A) ≤♠ p(B);
(iv) Γ `♠ M : A impliesp(Γ ) `♠ M : p(A);
(v) Γ, Γ ′ `♠ M : A impliesΓ, p(Γ ′) `♠ M : p(A);
(vi) ∀i∈I. Γ, x : Ai `♠ M : Bi and

⋂
i∈I(Ai→Bi) ≤♠

⋂
j∈J(Cj→Dj) imply

∀j∈J. Γ, x : Cj `♠ M : Dj .

PROOF. (i) Easy.
(ii) We getp(A) → p(B) ≤♠ A→ p(B) by axiom(♠-♣) and rule(η). Moreover

A→ p(B) ≤♠ p(A) → p(p(B)) = p(A) → p(B) by axiom(♠-♣-→) and (i).
(iii) By induction on the definition of≤♠ using (i) and (ii).
(iv) By induction on derivations using (iii) for rule(≤♠). We give the details just

for rule (→ E). SupposeM ≡ NL andΓ `♠ N : B→A, Γ `♠ L : B. Then, by
induction,p(Γ ) `♠ N : p(B→A), p(Γ ) `♠ L : p(B). Sincep(B→A) = B→p(A),
by (ii) we getp(Γ ) `♠ NL : p(A).

(v) From (iv) and the admissible rule (≤♠ L), taking into account that if(x : B)∈Γ ,
then(x : p(B))∈p(Γ ) andB ≤♠ p(B).

(vi) We shall denote byψ, ξ (possibly with indexes) elements ofCC
♠.We show by

induction on the definition of≤♠ that

(
⋂

i∈I(Ai→Bi)) ∩ (
⋂

h∈H ψh) ≤♠ (
⋂

j∈J (Cj→Dj)) ∩ (
⋂

k∈K ξk)

and∀i∈I. Γ, x : Ai `♠ M : Bi imply ∀j∈J. Γ, x : Cj `♠ M : Dj .

The only interesting case is when the applied rules are(♠-♣) or (♠-♣-→), i.e. we
haveA→ B ≤♠ p(A→ B) = A→ p(B) orA→B ≤♠ p(A)→p(B). By hypothesis
Γ, x:A `♠ M : B, so we are done by (v).



Theorem 7. The natural type preorderΣ♠ is not beta, but〈F♠, ·, [[ ]]♠〉 is a filter
model of the wholeλ-calculus.
PROOF. As in the proof of Theorem 6, Lemma 4(vi) allows to prove thatfor any
M , x, =(Σ♠,M, x) holds, hence we can apply Theorem 4(iv) in order to conclude
that 〈F♠, ·, [[ ]]♠〉 is a model. On the other hand♠ is not a beta theory. For instance,
ϕ→ω ≤♠ Ω→ω, butΩ 6≤♠ϕ.

The step function↑♠ ⇒↑♣ is an example of function not representable inF♠.
Actually F♠ is the inverse limit solution of the domain equationD ' [D→D]

computed in the category ofp-lattices(see [2]), whose objects areω-algebraic lattices
D endowed with a finitary additive projectionδ : D→D and whose morphismsf :
(D, δ)→(D′, δ′) are continuous functions such thatδ′ ◦ f v f ◦ δ.

6. Conclusions

When stepping into the world ofλ-calculus semantics, intersection type systems turn
out to be a useful “vehicle” to move around, since they provide a finitary way to de-
scribe and analyse particular classes of models. By simply adding a single constant or
condition on a type preorder, a different semantical domainis characterized. One is then
naturally induced to expect that intersection types will provide, in the long run, a sort
of tailor shop in which particular domains can be tailored for any specific need. As a
matter of fact, the possibility of pacing along this direction has been shown to be real
also in [3].

In the present paper we have made a step forward in this direction. Filterλ-structures
induced by intersection type preorders have been shown to provide models for the whole
λ-calculus and for a number of relevant “restricted”λ-calculi when particular condi-
tions on the type preorders are fulfilled. Even more, our proposed conditions provide
precise characterizations for intersection type-inducedmodels.

When a model is produced, the second step is almost always to make it precisely
fit the calculus, by “trimming” it and eliminating the exceeding parts. We have shown
in the present paper that in the framework of intersection-induced models for theλ-
calculus such a trimming is indeed possible, by providing two examples of filter models
in which not all the continuous functions are representable.

Much to do is left about model “tailoring”, like trying to seeif many conditions on
type preorders implicitly expressed in terms of generationproperties of type assignment
can be made explicit on the type preorders itself. Besides itwould be interesting to
check whether also the webbed models [7] allow for “tailoring operations”.
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