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Abstract. Conditions on type preorders are provided in order to chierize the
induced filter models for tha-calculus and some of its restrictions. Besides, two
examples are given of filter models in which not all the camtims functions are
representable.

1. Introduction

The semantics of the-calculus can be looked at from several points of view. A fiides
one considers a model as an abstract way of handling anchdeuith the syntax. This
is the point of view of those investigations looking for exé@®ns of the\-calculus such
that the intended semantical domain turns out to be fullyrabsw.r.t. the calculus.

From another point of view, instead, the semantics is seenlyras a tool to con-
firm one’s “syntactic intuitions” and to prove propertiestbé calculus. According to
this latter viewpoint, “semantically oriented” extenssoof a calculus are not always
commendable. The focus is on the calculus: the model hasas fight as possible the
calculus, not vice versa. This is indeed the point of viewhaf present paper, and, in
general, the one of an investigation we are carrying ortestam a companion paper [3].
In such aresearch we try to devise a general setting andromifmls to “tailor” models
closely fitting as many as possible aspects of the computtmaradigm embodied by
the A-calculus.

One of the most natural framework for such an investigatithe typing disci-
pline with Intersection Typedntersection type assignment systems allow to charac-
terize many of the most importadenotationalas well asoperationa) properties of
A-terms. In particular it is possible to describe, inatural andfinitary way, many se-
mantic domains for tha-calculus. Such finitary descriptions allow not only to auzal
pre-existing models, but also to modify them, sometimeiditiag” them according to
one’s needs (see [6, 10, 14,18,17,22,5, 12] and the refesdhere.)

Finitary characterizations of models for thecalculus, the so callefilter models
can be obtained by simply introducing specific constantsinty rules and type pre-
orders in a basic intersection type assignment system. émesit of a particular do-
main, representing the denotational meaning of a tefpeomes then out to correspond
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to the set of types that can be inferred far.

In [3] we have characterized those intersection type agsigm systems aiming, in per-
spective, at providing finitary descriptions of filter maglghlidating in a precise way
the notions ofg andn reduction and expansion for the wholecalculus, as well as
some of their restrictions, likg, [21], 5-1 [11] and-KN [17].

The present paper keeps on the same direction by proving aetush characteri-
zation results for filten-structures induced by type preorders.

Since any type preorder can induce a particular fdtstructure, it is possible to “tailor”
particular models by providing suitable conditions on thevicing type preorders. Our
first “tailoring” result characterizes those type preosdaducing\-structures in which
relevant sets of functions can be represented. A seconli ceswacterizes-structures
which are models of the whole-calculus. In a third result we characterize those filter
A-structures which are also models of the aforementionedates A-calculi: the call-
by-value\-calculus, the\l -calculus, the\K N-calculus. The result is also extended to
the extensional models.

A further “tailoring” result of the present paper concerhs possibility of “trim-
ming” something that is usually overabundant in filter maddéhe set of the repre-
sentable functions. Such a task is not a trivial one in thergsction filters setting. In
fact in any filter model introduced in the literature, but thee in [8], any continuous
function is representable. Our contribution to this tasthis construction of type pre-
orders inducing filter models of the whalecalculus in which not all continuous func-
tions are representable. The proofs of this property wadfipfrom the characterization
results of the paper.

We shall assume the reader to be acquainted with the mairptsconcerning the
A-calculus and its models. The paper will be structured ds\vist in Section 2 we recall
the notions of intersection type language, type preorddrtgpe assignment system,
while the definitions of filter\-structure and filter model will be recalled in Section
3. The four characterization results will form the subjeicBection 4. In Section 5 we
shall define two particular preorders in whose induced fifttedels only a proper subset
of the continuous functions is representable.

2. Intersection types languages and type assignments

Intersection typeshe building blocks for the filter models, are syntactidajlects built
by closing a given seC of type atomgconstants) under thfenction typeconstructor
— and theintersection typeonstructon.

Definition 1 (Intersection type language).The intersection type languagaver C,
denoted byl = T () is defined by the following abstract syntax:
T=C|T-T|TNT.

Much of the expressive power of intersection type languageses from the fact
that they are endowed withmeorder relation <, which induces, on the set of types,
the structure of a meet semi-lattice with respectto

Definition 2 (Intersection type preorder). An intersection type preordeés a pair
(@€, <) where is a set of type constants ardis a binary relation oveflm = T ()



satisfying the following set of axioms and rules:

(refl) A< A (idem) A< ANA
(incly) ANB< A (inclg) AnNB< B
(mO)AgA’ B< B (tranS)AgB B<C
ANB<ANB A<LC
(Dif e AL (v)ifre@© A—-B<v

NOTATION. - X will be short for(C, <).

- A ~ Bwill be shortforA < B < A.

- Sincen is commutative and associative (moduld we shall write), ., A; for A; N
...NA,. Similarly we shall writen;c ; 4;, wherel denotes always a finite set. Moreover
we make the convention thatcy A; is 2 when2eC.

- We shall denote b\;gv the type preorder generated by a recursivsef axioms and

rules of the shapd < B (where/ itis said to generatg if A < B holds if and only
if it can be derived from the axioms and rules\ptogether with those in Definition 2).
The constants ify/ will be denoted by V.

- When we consider an intersection type preorder of the Kzﬁﬁﬁ, <y), we shall write
TV andxV for T(CV) and(CV, <y), respectively.

- A~y B will be shortforA <y B <y A.

- We write “the type preordeE’ validates\/” to mean that all axioms and rules §f
are admissiblé.

Figure 1 lists a few special purpose axioms and rules whisle baen considered
in the literature. Their meaning can be grasped if we consjghes to denote subsets of
a domain of discourse and we look-at as the function space constructor in the light
of Curry-Scott semantics, see [23].

(02-n) N<N-0 (—-n) (A—=B)N(A—-C)< A—-BnNC
A'<A B<LDB
A—-B < A'—B’

(f2-lazy) A—B < 2—02 (n)

Fig. 1. Possible Axioms and Rules concernifig

We can introduce now four significant intersection type plecs which have been
extensively considered in the literature. The order isdabirather than historical, and
the references define the corresponding filter models: 19], [1], [6]. A richer list of
type preorders can be found in [3]. These preorders are dothe >V = ((CV, <v)
with various different namey, picked for mnemonic reasons. In Figure 2 we list their
sets of constant&"V and their set§/ of extra axioms and rules taken from Figure 1.
Here, is an infinite set of fresh atoms (i.e. different fram v).

! Recall that a rule imdmissiblein a system if, for each instance of the rule, if its premises a
derivable in the system then so is its conclusion.



DV _ .. CDY = {(—-N), ()}

CEHR _ [y EHR = CDV U {(v)}

cA0 _ (o AO =DV U{(2),(2-lazy)}
«BCP — (0} U BCD =CDVU{(Q),(2-n)}

Fig. 2. Particular Atoms, Axioms and Rules.

2.1. Particular classes of type preorders

In this subsection we introduce important classes of tygenlers. The first two are

the classes ofhatural type preorders and dftrict naturaltype preorders. These are
disjointclasses, whose relevance lies in their allowing variousattierizations in terms

of approximable mappings andstructures.

Definition 3 ((Strict) Natural type preorders).

Let Y = (@, <) be a type preorder.
(i) X is strict naturalf ¢ and it validateDV as defined in Figure 2.
(i) X isnaturalif 2 and it validates4O as defined in Figure 2.

Naturality for type preorders has a strong semantic flaubwe look at intersection as
representing join and at arrow types as representing fomstithen rule-G-N) reflects
the join property of step functions with the same antece@l@éht e¢) Ul (d = ¢’') O
d = (eUe")), rule () reflects the order relation between step functiais{ d and
eC e implyd = e C d = ¢), and rule 2-lazy) reflects the fact that = 1 is the
bottom function.

Among the type preorders of Figure@pV, EHR are strict natural, and O, BCD
are natural.

Notice that by the implicit assumption that axigm)e X whenever e@*> (Defi-
nition 2) a strict natural type theory containing the constavalidates£ HR.

We introduce two other interesting classes of preordessmea crucial role in the
characterization results of Section 4.

Definition 4 (Beta and eta preorders).
Let X = (@, <) be a type preorder andl = T ().

(i) Yisbetaiffforall I, A;, B;,C,DeT:

Nicr(Ai—=B;) < C=D = (\;c,B: < DwhereJ = {icl | C < A;}.

(ii) X is etaiff for all 1 at least one of the following conditions hold:

(1) v<v;

(2) there existl, A;, B;€T such thaﬂieI(AiHBi)S’l/) and B;~ {2 for all i1

(3) there exist non empty families of types;, B; }icr, {D;,j, Ei j }jes, in T such
that

Nier(Ai—=Bi) <Y < Nie1(Njey, (Dij—Ei ) &
V’LGI Az S ﬂjEJi Di,j & ﬂ Ei,j S BZ

The condition for a natural type theory of being beta refléutscriterion used to
establish if a sups of step functions is greater than a stegitin (see [15]).

jeJi



WhenX = XV it is usually possible to prove the conditions defined aboye b
induction on the derivation of judgments. For the type pideos of Figure 2 we get that
they are all beta andHR, AO are eta.

2.2. Intersection type assignments

We introduce now the notion afitersection type assignment systdfirst we need a
few preliminary definitions. LeVar denote the set of term variables.

Definition 5 (Type assignment system).

(i) Abasisover( is a set of statements of the shap&, where thesubjectsr are
in Var, thepredicates3 are in T (), and all subjects are distinct variables.

(i) An intersection-type assignment systestative to X' = (€, <), denoted by
AN*, is a formal system for deriving judgments of the fafn-~ M : A, where the
subject)M is an untyped\-term, thepredicated is in (), andI" is a basis ovefC.

NOTATION. We shall write:
— ze€l" as shortfor(x : A)el” for someA4;
— I',z:A as short fol” U {z: A}, provisoz¢I .
We used to denote the union between bases defined by:
Ny ={(xr) | (vr)eln&agls} U
{(z:7) | (z:7)elr&a¢l 1} U
{(xrry N) | (zm) el &(z:m)ElL}
Aterm M is said to baypablein A\n*, for a given basid", if there is a typedeT ()
such that the judgmett - M : A is derivable.

Various type assignment systems can be defined, each of taeameptrized w.r.t a
particularX=((C, <). The simplest system is given in the following definition.

Definition 6 (Basic type assignment system).
Given a type preordes’, the axioms and rules of theasic type assignment system
denoted bymg, for deriving judgments’ -3 M : A, are the following:

(AX) 'ty A if (A)el

F,J::Al—gM:B Fl—gM:AHB Fi—gN:A

! E
O e A5 =8 I'r% MN:B

't M:A ' M:B (<) It M:A A<B
'ty M:ANB = 'ty M:B

(nn)

If €@, a natural choice is to se® as the universal type of all-terms. This
amounts to modify the basic type assignment system by addsngable axiom for?.

Definition 7 ({2-type assignment system).

Given a type preorde’ = (C, <) with €, the axioms and rules of th@-type
assignment systet(mienotedmg), for deriving judgments of the fordi -5 M : A,
are those of the basic one, plus the further axiom

(AX-) ' F5 M : 2.



Analogously to the case @?, whenve, it is natural to consider as the universal
type for abstractions, hence modifying the basic systemhbyatddition of a special
axiom forv.

Definition 8 (v-type assignment system).

Given a type preordef’ = (€, <) with ve(C, the axioms and rules of thetype
assignment systeifdenoted\n.’), for deriving judgements of the forf > M : A,
are those of the basic one, plus the further axiom

(Axv) T'FZ Xz.M : v.

For simplicity we assume the symbabsandv to be reserved for the universal type
constants respectively used in the systamg andAn:, i.e. we forbid2e @ or ve @
when we deal with\n .

NOTATION. - A\N* will range overA\n;, A\Ng and AN’ . More precisely we assume
that \n* stands forA\N§ whenever2e@, for A2 wheneverve@, and for\ng
otherwise. Similarly for-*.

-WhenX = XV we shall denotan* and-* by AV and+V, respectively.

Itis easy to prove that the following rules are admissiblar .
( )Fl—EM:A gl ©) I'e:BF*M:A ' N:B
Ie:BHX M: A '+ Mz:=N]: A
S Iao:BH M : A 2¢FV(M) (<L) Iz:BF* M:A C<B
' M:A - Ie:CHEM: A

As usual a generation lemma is handy: its proof can be foufdlin

Lemma 1 (Generation lemma).
Let X = (@, <) be a type preorder an@l = T ().
(i) Assumed £ 2. Thenl' ¥ x : Aiff (z:B)el’ and B < A for someBcT.
(i) Assumed % 2. Thenl' - MN : Aiff ' M : B, — C;, ' V* N : B;,
and(,.; C; < Aforsomel andB;, C;cT.
(i) Assumes £ A. ThenI' B> \a.M : Aiff I',2:B; * M : C;, and(,,;(B; —
C;) < Afor somel andB;, C;<T.

3. Filter \-structures and (restricted) filter models

It is possible to use intersection types for building modeis\-calculus and some of
its restrictions. Let us first recall the general notion aftrieted-calculus.

Definition 9 (Restricted A-calculus).LetR C {((Az.M)N, Mz := N]) | M, NeA}.
Therestricted\-calculus)y is the calculus obtained from the standaxetalculus by
restricting thes-rule to the redexes iR (called 3-R-redexes).

Next definition of testricted model is a generalization of the classical notion of
model for the untyped-calculus of Hindley-Longo (see [16]).



Definition 10 ((Restricted) models).A model for the (restricted)-calculus\g con-
sists of a triple(D, -, [ ]P) such thatD is a set, : D x D — D, Env: Var — V for
some) C D and the interpretation functiqh]]D : A x Env— D satisfies:

(i) [2]7 = p(a);

i D __ D D.

(") [[MN]]p - [[M]]p ’ IIN]]p '

(i) [Az.M]D-[N]D = [[M]]}J)[I::[[NHE] for (Ax. M )N, M|z := N])€R;

(iv) If p(x) = p/(x) for all zeFV (M), then[M]? = [M]7;
(v) If ygFV (M), then[Az. M]D = [Ay. M|z := y]]]pD;
(Vi) If VdeD.[M]7,._y = [N]7,._g, then[Az. M]7 = [Az.N]7.

(D,-,[]P) is extensionaif moreover
e Mz]D = [M]7.

We can devise semantics domains out of intersection typaslays of an appropri-
ate notion of filter over a type preorder. This is a particalase of filter over a generic
T-meet semi-lattice (see [19]).

Definition 11 (X-filters). Let X' = (€, <) be a type preorder andl = T(C). A
Y -filter (or a filter overT) is a setX C T such that
(i) if ReCthenNeX;
(i) if A< BandAeX,thenBeX;
(i) if A, BeX,thenAnN BeX.
F* denotes the set df-filters.

NOTATION. GivenX C T, T X denotes theV-filter generated byX. For AcT, we
write T A instead of] { A}.

It is possible to turn the space of filters into an applicastreicture in which to
interpret \-terms. Assuming the Stone duality viewpoint, the intetaien of terms
coincides with the sets of types which are deducible for them

Definition 12 (Filter structures).
(i) Application _-_: F¥ x F* — F?¥ is defined as

XY =1{B|JA€Y.A — BeX}.
(i) Forany\-term M and envionmeng : Var — F* \ {0},
[M]7 ={A|3r=p. T +* M : A},

wherel” = pifandonly if(x : B)eI impliesBep(z).
(iii) Afilter A\-structureis a triple (F*, -, [ ]*).

By rules (12), (<) and (0l) the interpretations of al\-terms are filters.

Thanks to the following theorem, it is sufficient that clasg of Definition 10
holds in order a filter\-structure(F*, - [ ]*) be also a model for the restricted
calculusiy (calledfilter model forAg).



Theorem 1. For all type preordersY the interpretation functiorf |* satisfies condi-
tions (i), (ii), (iv), (v), (vi) of Definition 10.

PROOF We only consider the interesting cases.

(ii) Let Ac[M N] . The cased ~ (2 s trivial. Otherwise there exist§ |= p such
thatl" > MN : A. By Lemma 1(ii) there exisf andB,, C;cT such that for alk€1,
I't*M:B; — C;, ' N : B;, and(",; Ci < A. From the first two judgments
above, we geB;€[N]> andB; — C;e[M]’ . By definition of application it follows
Ae[M]> - [N].
Let now Ac[M]> - [N]>’. Then there exist, B;, C;€T such thaf,., C; < A and
foranyicl, B; — C;e[M]} andB;c[N]?, hence there exist two bases oy I’;
andI/, suchthat’; = p, I/ = p, and moreovef; -* M : B; — C;, I/ v* N : B;.
Consider the basis* = W;c; (I W I). We havel ™ = p, I'* ¥ M : B; — C,; and
r'* =¥ N : B;. From the last two judgments, by applyitg-E), we deduce™ +*
MN : C;, which implies, by(nl) and(<), I > M N : A, henceAe[M N .

(vi) Suppose that the premise holds aad [[)\x.M]]f. The caser < A is trivial.
Otherwise there i$" |= p such thatl” ¥ \z.M : A. Sincex¢FV (\z.M) by rule (S)
we can assume¢ . By Lemma 1(iii) there exisf and B;, C;€T such that, for each
iel, Iz : B; > M : C;, and(,c;(B; — C;) < A. By the premise, we get, for each
iel, I'x : B; =¥ N : C;, hence by(—I) and (<) we getl" ¥ \z.N : A, which
implies[Az.M].7 C [Az.N]; . Similarly one prove§\z.N] C [Az.M];.

Corollary 1 ((Restricted) filter models). A filter A-structure (F*,-, [ ]*) is afilter
modelfor the restricted\-calculus)g iff for any redex(A\z.M)N€R, environmenp,

[(Az.M)N] = [[M]]pf[w::mﬂ , that is,

() I Ep.THF Qe M)N:A & 3 E=p. ' Mz :=N]: A.

4. Four characterization results

The first two characterization results we give concern @type preorders. We begin
studying the representability of interesting classestofts Scott continuous functions.
These characterizations generalise those given in [8].

Definition 13 (Representable functions)Given a type preordel’, a functionf :
F*¥ - F¥ is said to berepresentable it if it is representable in the induced filte
structure(F¥ -, [ ]*), that is there exist&{ € F* such that for anfy € F¥, X - Y =

fY).
Next lemma is useful for characterizing the sets of repriadda functions.

Lemma 2. Let ¥’ = (@, <) be a natural type preorder and : 7* — F* be a
continuous function. Thefis representable iff for all and A;, B;, C, DeT (), with
D o 2, itholds

(b)) (Viel.Bief(14:) & (A — B:)<C—D = Def(1C).

el



PROOF (<) LetX; =1{A — B | Bef(1 A)} We prove that for ang’eT(C) we
havef(1C) = X4 1C.

X-1C=1{D|3C" >C.C" - DeX} by definition of application
=1{D|C — DeX} by ()
={D|C — DeX} by (—-n)
= {D |31, A;, B;.(Viel.B;ef(1 A)&
Nici(Ai = B;) <C — D} by definition of X,
={D|Def(10)} by (b)
=f(10).

(=) Suppose by contradiction that there eXis#};, B;, C, D (with D ¢ (2), such that
Nicr(Ai — B;) < C — D, andfor anyicl, B;c f(T A;), butD¢f(1C). If X is any
filter candidate to represelfit then, for anyicl, B;€X- T A;, which implies, by easy
computationsd; — B;€ X, for anyicl. Since(),.;(4; — B;) < C — D, it follows
C — DeX, henceDeX- 1C, making it impossible thak' representg’.

Theorem 2 (Characterization of sets of representable fun@ns).

(i) The set of functions representable in a strict natural pdeorX = (C, <)
contains:

(1) the step function. = 1;

(2) the strict step functions ifl—B < C—D imply C < A, B < D for all
A, B,C,DeT(C);

(3) the strict continuous functions iff is a beta preorder.

(i) The set of functions representable in a natural preorder= (C, <) con-
tains:

(1) the step functiod. = L iff A—B ~ 2 impliesB ~ (2,
(2) the constant functions ifff2—B < C—D impliesB < D for all B,C, D in
mT(©);
(3) the step functions il —B < C—D andD ¢ Q2 implyC < A, B < D for all
A,B,C,DeT(Q);

(4) the continuous functions iff is a beta preorder.

PROOF. (sketch) For each point above, the theses follow applyimgdition (b) of
Lemma 2 to the class of functions involved, taking into acddbat:

- De(1A=1B)(10)iff C < AandB < D;

- Bef(TA)If TA=1BC f;
wherel A =1 B is the step function fromi A to T B, f is a continuous function ard
is the point-wise ordering.

All the type theories of Figure 2 are beta. Moreover, the tppeordersA0O, BCD
(CDV, EHR) are (strict) natural and therefore, by Theorem 2(ii4), linttee filter A-
structures induced by such preorders all (strict) contisifanctions are representable.

Our second characterization result on natural type presrclensists in giving a
criterion for selecting those type preorders whose indditted \-structures are indeed
filter models of the whole\-calculus. To do that we use a result of [20], in which an



applicative structure is showed to be a model provided thatritains the combinators
K, S ande. Thus, a condition for having a filter model can be obtainedsioyply
forcing the existence of such combinators.

Theorem 3 (Characterization of model-inducing preorders)
Let X = (@, <) be a natural type preorder. The filtevstructure (F* - []*) is a
filter model of the whol@-calculus iff the following three conditions are fulfilled.
(i) (existence oK)
C<F;
(ii) (existence o)
VD,E,F,G EI,Ai,Bi, Ci- ﬂlel((Al — Bz — Cz) — (Az — Bz) — Ai — Cz)
<D—-F—-F—->G<&
JHE<F—-HandD < F — H — G,
(iii) (existence of)
HJ, Ej,Fj.C S ﬂjEJ(Ej — FJ) S D.
The filter\-structure(F*, -, [ ]*) is an extensional model if the third condition above
is replaced by:
(i) YA 3L, A;, Bi. A ~ ;e (Ai — By).

These conditions are obtained by considering the apmicati combinators to fil-
ters. Similarly, one could characterize the represeritglbil an arbitrary combinator of
the shapeuz; ... x,.C, whereC is a combination of variable (that is, it does not contain
any A-abstraction).

Our third result characterizes those type preorders imdufiiter models for the
main restricted\-calculi studied in the literature, namely the-calculus [11], the\K N-
calculus [17] and the call-by-valuk-calculus [21]. The redexes of these calculi are
defined as follows.

Definition 14 (Restricted redexes)([21,11, 17])
() Aredex(A\z.M)N is ag,-redexif N is a variable or an abstraction.
(i) Aredex(\z.M)N is ap-1-redexif zeFV(M).
(iii) Aredex(Az.M)N is a-KN-redexif it is a 8-1-redex orN is either a variable
or a closed strongly normalising term.

Before characterizing (restricted) filter models we neegchnical result on typing
properties of strongly normalizing terms: for a proof seg][1

Proposition 1 (Characterization of strongly normalizing terms). A \-term M is
strongly normalizing iff for any type preorder = (€, <) there existsAcT (C) and
a basisI” over @ such thatl" -+ M : A.

Let X = (@, <) be a type preorder: we say that a basisoverC is a(X, I', M)-
basis iff the subjects af* are the variables which occur freeld and are not subjects
of I'i.e.{xel*} = {zeFV (M) | z¢I'}.



Theorem 4 (Characterizations of (restricted) filter models. Let ¥ = (C, <) be a
type preorder ands(X, M, x)? be short for:

VI'basis overC VI (X, I', M )-basis VA, BET ().
't o.M :B—A = I'*.Tx:B+> M : A.

The filter \-structure(F* - [ ]*):
(i) is a model of the call-by-valug-calculus iff for anyM, z, p:
(1) [Mz.M]; # 0 and
(2) (X, M, z) holds;
(i) is a model of the\l-calculus iff for anyM, x, N, p such thatzee FV(M):
(1) [M[z := N]]>’ # 0 implies[N].’ # 0 and
(2) (X, M, z) holds;
(iii) is a model of the\K N-calculus iff it is a model of thal -calculus;
(iv) is a model of the wholg-calculus iff for anyM, p:
(1) [M]; # 0 and
(2) (X, M, z) holds.

PROOF We prove with details point (i) and give hints for the otheims.

(=) Let (F*,-,[]*) be a model of the call-by-value calculus. Assume by contra-
diction that[[)\;r.Mo]]fU = () for someM, =, po: this implies[(Azy.y)(Az.Mo)]?> =
[[)\,zy.y]]fU - [Mx. M) = 0. Since(Azy.y)(Ax.Mo) is a 3,-redex which reduces to
Ay.y andA — AE[[Ay.y]]f for all p this contradicts<) of condition(t) in Corollary
1. Now we prove tha® (X, M, x) holds for anyM, z. LetI" =* \z.M : B — A.Then
I'"+=¥ (\z.M)z : A,wherel” = T, x: B. Letp be an environmentsuch thafy) =1 C
if y:Cel”. Itis easy to check thal” = p. Since(Az.M)x is aj3,-redex, condition
() of Corollary 1 holds, hence there exists a bdsissuch that’™’ = p and moreover
I'" =¥ M : A. By definition of =, we have that for any variablg if y:Del™” and
y:Cel” thenC < D. Applying rules(S) and(< L) we obtainl™*, I',z:B F* M : A
wherel™ = {z : EcI"” | z€FV(M) & z¢I'} is a(X, I, M)-basis. Notice that the
predicates i must vary according to the environmentand thatp by construction
can assign arbitrary filters to the subjectd 6t The proof of(=) is so complete.

(<) First we show£) of condition(t) in Corollary 1. FromlI" -* (Az.M)N : A
by Lemma 1(ii) and3 (X, M, x) we getI™*, I,z : B; V> M : C;, ' V¥ N : B;, and
Nic; Ci < Aforall (¥, I', M)-basisI™ and for somel, B;, C;€T. ThenI™, I" -
M{z := N] : C; follows by rules (C) and (W), and sb*, I' =+ M |x := N] : A using
rules (1) and (<). We conclude observing that we can chod8esuch that’™ = p.

As to (<) of () let D be a deduction of' - M [z := N]: Aandl; - N : B, for
i€l be all the statements i whose subject igV. Without loss of generality we can
assume that does not occur if".

If I is non-empty, notice thal' C I; butI' [FV(N) = I; [FV(N) (by I' | X we
denote{z : AcI" | z€X'}). So using rules (S) an@l), we have thal” = N : (), ; B;.
Moreover, one can easily see, by inductiondnthatl’,z : (,.; Bi = M : A. Thus,
by rule (—l1), we havel’ - \z.M : (,.; B;—A. Hence, by(—E) we can conclude
I'- (Az.M)N : A.

el

2 Notice that(X, I, M)-bases in&(X, M, z) are useful only forAn, sinceAnz and A\Ng
enjoy the sub-formula property.



If Iis empty, we get fronD a derivation ofl" - M : A by replacing eactV by x. Two
cases have to be considered:

— if N is avariable, say, then by Definition 12(iiy(x) # 0;
— if N is an abstraction, thq]”j’\f]]f # () by hypothesis.

In both cases there is a bagis |= p, such that” >’ N : B for some typeB. By rule
(W)we getl’,z : B+ M : Aandwe can concludéw {z : B}WI’F (Az.M)N : A.

As to the proofs of the other points, proceed as in the previase taking into
account for point (iii) that ifV is a closed strongly normalizing term, by Proposition 1
it is typable in all intersection type systems from the enysgis.

Notice thatf2e @ or v implies condition (i1) of Theorem 42 or v ¢ C
implies condition (ii1) of Theorem 4 an@<( implies condition (iv1) of Theorem 4.

The characterization of filter models can be extended torepess extensional-
ity. To this aim it is useful to know when typing is invarianbdern-expansion and
n-reduction. Let

M—, N I'FN:A
I'EM:A

M-, N I'EFM:A
I'EN:A

(n-red)

(n-exp)

Next proposition corresponds to Theorem 4.5 of [3].

Proposition 2 (Characterization of subjectn-reduction/expansion).

(i) Rule(n-exp) is admissible imn?* iff X is eta;

(i) Rule(n-red) is admissible imnNy iff X' validatescDV, in AN iff X validates
CcDV U {(£2-n)}, and it is never admissible kN>

Theorem 5 (Characterization of extensional (restricted) fter models).

LetX = (@, <) be a type preorder. The filterstructure(F* - [ ]*) is a extensional
filter model of the restricted\-calculus \r iff it is a model of \g, X' is an eta type
preorder which validates DV, and moreover if2€ € then X' validates axiom@-n), if
ve thenve[M]> forall M, p.

PROOF (=) Let ¢ be a constant that does not satisfy all the conditions in Defin
tion 4(ii). One can show tha&gz[[)\y.:cy]]f[x:_mz this implies that”’ must be eta.
We haved — BNCE[Ay.yl . _ia pyn(a_cy forall 4, B,C,butA — BNCe 1
(A - B)n (A — C) only if X validates axiom ---n). Similarly one can show
that X must validate axiomr() and axiom (2-n) when 2. Lastly if ve( then
ve[ x.Mz]; forall M, p by axiom(Ax-v) impliesve[M]> forall M, p.

(<) follows from Proposition 2, but the cases@C, in which v is harmless being
contained in the interpretations of all terms.

Using the previous theorems we gé#V - []V) with V €{cDV} is a model
of the Al-calculus, with\/ = £HR is a model of the call-by-valua-calculus, with
V €{A0, BCcD} is a model of the whol@-calculus.



5. Trimmed filter models

In this section we provide actual examples of filter modelshef whole \-calculus
where not all continuous functions are representable. tiqodar we devise two type
preorders which are natural but not beta. This implies, bgofm 2(ii4), that some
continuous function cannot be represented in the fitetructures induced by such
preorders. For the first model we acknowledge the adaptafian idea in [8].

Definition 15 (Trimmed models).A (strict) filter model will be calledrimmedif not
all the (strict) continuous functions are representablé.in

The type preorder X<

Definition 16 (X°). Let ©¥ = {£2,¢,V}. The type preordet® is the preorder
induced by the set of rules = B¢D U {(-0)}, where
(0-0) A < A[O = 9.
In order to show thatZ¢ induces a trimmed filter model we need a few technical
results.
Lemma 3. (i) A< BimpliesA[Q := Q) <4 B[O = ©;
(i) T M : AimpliesI'[$ := Q] FC M : A[G = Q);
@iy I, 1"+ M : AimpliesI, I'[$ := Q] ¢ M : A[$ = Q);
(iv) Viel. Iz : A; F© M : By and(;c;(Ai—Bi) <o ;e ,(C;—D;) imply
vied Iz : C; FO M - D;.
PROOF (i) By induction on the definition of.,.
(i) By induction on derivations using (i) for rule< ).
(iii) From (ii) and the admissible rule{,,L), taking into account that ifz : B)er,
then(z : B[¢ :=Q))el'[¢ := V] andB <, B[ := Q).
(iv) We shall denote by, ¢ (possibly with indexes) elements Gt .We show by
induction on the definition of, that

(ﬂieI(AiHBi» N (ﬂheH 7/}h> <o (ﬂjeJ(C]—HDj» N (ﬂkeK fk)
andvicl. I'x: A; = M : B;imply VjeJ. Iz : C; F© M : D;.
The only interesting case is when the applied rulg)s?), i.e. we have
((Ai=Bi) N ([ ¥n) <o (((Ai=B:) N ([ vn))[0 = ].
iel heH el heH
By hypothesid’, z : A; ¢ M : B;, so we are done by (iii).
Theorem 6. The natural type preorde& < is not beta, but{(F< -, []¢) is a filter
model of the wholé-calculus.

PROOF A counter-example to the condition of Definition 4(i) §s—< <, O—Q,
sinceV L .

To show that/ F©, -, [ ]®) is a model of the whole-calculus, it suffices, by Theorem
4(iv), to verify that3 (X, M, z) holds for anyM, . By Lemma 1(iii))I" - \z.M :
A—B impliesI',z : C; F© M : D, for somel, C;, D; such tha(),_,(C;—D;) <
A—B. So, we are done by Lemma 3(iv).

The step functiorf $ =1 < is an instance of non-representable functiotFin.

icl



The type preorder X*

Definition 17 (The mappingp). Let C* = {12, &, &} The mapping : T*—T* is
inductively defined as follows:

p(£2) =12; p(d)=102; p(k)=;
p(A—B) = A—p(B);
P(ANB) =p(A)Np(B).

Definition 18 (X*). X is the type preorder induced by the set of rues= BCD U
{(#-&%), (A-&-—)} where:

(d-&) A <p(A);
(#--—) A—B < p(A)—p(B).

Given a basid", letp(I") be the basis obtained by substituting any judgmendtof I"
by z:p(A).

We show thatZ*® induces a trimmed filter model. As in the case’st, we prove
some technical results in order to show tB4t*, M, x)) holds for anyM, .

Lemma 4. (i) The mapping is idempotent, i.ep(p(A)) = p(4).

(i) A—p(B) ~a p(4)— p( )i

(i) A <4 Bimpliesp(A) <4 p(B);

(iv) TH* M : A|mpl|esp( )I—* M : p(A);

(v) I, T" =* M : AimpliesI,p(I"") F* M : p(A);

(Vi) Viel. Iz : A; £ M : B; and(,c;(Ai—B;) <a (e, (C;—D;) imply
VieJ. Iz : C; % M : D;.

PROOF (i) Easy.

(i) We getp(A) — p(B) <4 A — p(B) by axiom(&-&) and rule(n). Moreover
A — p(B) <a p(4) — p(p(B)) = p(A) — p(B) by axiom(k-&k-—) and (i).

(ii) By induction on the definition oK 4 using (i) and (ii).

(iv) By induction on derivations using (iii) for rule<,). We give the details just
for rule (— E). SupposéV/ = NL andI’ -* N : B—A, " -* L : B. Then, by
induction,p(I") * N : p(B—A), p(I") -* L : p(B). Sincep(B—A) = B—p(A),
by (i) we getp(I") F* NL : p(A).

(v) From (iv) and the admissible rulecq L), taking into account that ifz : B)el’,
then(z : p(B))ep(") andB <4 p(B).

(vi) We shall denote by, ¢ (possibly with indexes) elements GE*.We show by
induction on the definition o£ 4 that

(Mier(Ai=B) N (Nye ¥n) <a (M;es (C5—=D;5)) N (Nyek &k)
andvicl. I'x: A; F* M : B;imply VjeJ. I,z : C; * M : D;.

The only interesting case is when the applied rules(#wah) or (#-&-—), i.e. we
haveAd — B <4 p(A — B) = A — p(B) or A—B <4 p(4)—p(B). By hypothesis
I z:AF* M : B, sowe are done by (v).



Theorem 7. The natural type preorde®® is not beta, but(F*, -, [ ]*) is a filter
model of the wholé-calculus.

PROOF As in the proof of Theorem 6, Lemma 4(vi) allows to prove tfat any

M, z, I(X*, M, z) holds, hence we can apply Theorem 4(iv) in order to conclude
that (F%,-,[]*) is a model. On the other harl is not a beta theory. For instance,
p—w <4 2—w, but2<L .

The step functiori & =1 & is an example of function not representablerift.

Actually F* is the inverse limit solution of the domain equatitn ~ [D—D]
computed in the category oflattices(see [2]), whose objects axealgebraic lattices
D endowed with a finitary additive projectiah: D—D and whose morphisms :
(D, §)— (D', ¢") are continuous functions such thidb f C f o 4.

6. Conclusions

When stepping into the world of-calculus semantics, intersection type systems turn
out to be a useful “vehicle” to move around, since they prewadfinitary way to de-
scribe and analyse particular classes of models. By singiyng a single constant or
condition on a type preorder, a different semantical donsatharacterized. One is then
naturally induced to expect that intersection types witiyide, in the long run, a sort
of tailor shop in which particular domains can be tailoredday specific need. As a
matter of fact, the possibility of pacing along this directihas been shown to be real
also in [3].

Inthe present paper we have made a step forward in this idine€tilter A-structures
induced by intersection type preorders have been showtida models for the whole
A-calculus and for a number of relevant “restrictedtalculi when particular condi-
tions on the type preorders are fulfilled. Even more, our psepl conditions provide
precise characterizations for intersection type-indunedels.

When a model is produced, the second step is almost alwayske imprecisely
fit the calculus, by “trimming” it and eliminating the exceéed parts. We have shown
in the present paper that in the framework of intersectimuted models for the-
calculus such a trimming is indeed possible, by providing éwamples of filter models
in which not all the continuous functions are representable

Much to do is left about model “tailoring”, like trying to séemany conditions on
type preorders implicitly expressed in terms of genergtimperties of type assignment
can be made explicit on the type preorders itself. Besidesitld be interesting to
check whether also the webbed models [7] allow for “tailgraperations”.
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