THE GOLOMB TOPOLOGY OF POLYNOMIAL RINGS, II

DARIO SPIRITO

Abstract

We study the interplay of the Golomb topology and the algebraic structure in polynomial rings $K[X]$ over a field K. In particular, we focus on infinite fields K of positive characteristic such that the set of irreducible polynomials of $K[X]$ is dense in the Golomb space $G(K[X])$. We show that, in this case, the characteristic of K is a topological invariant, and that any selfhomeomorphism of $G(K[X])$ is the composition of multiplication by a unit and a ring automorphism of $K[X]$.

1. Introduction

Let R be an integral domain, i.e., a commutative unitary ring without zero-divisors. The Golomb space $G(R)$ on R is the topological space having $R^{\bullet}:=R \backslash\{0\}$ as its base space and whose topology (the Golomb topology) is generated by the cosets $a+I$, where $a \in R$ and I is an ideal such that a^{\bullet} and I are coprime, i.e., $\langle a, I\rangle=R$. This construction was originally considered on the set \mathbb{N} of natural numbers by Brown [4] and Golomb $[7,8]$, as part of a series of coset topologies [9], and subsequently extended to arbitrary rings by [5] (following ideas introduced in [1]) with particular focus on what happens when R is a Dedekind domain with infinitely many maximal ideals. In this case, $G(R)$ is a Hausdorff space that is not regular, and is a connected space that is disconnected at each of its points.

An interesting question is how much the topological structure of $G(R)$ reflects the algebraic structure of R : for example, it is an open question whether the fact that $G(R)$ and $G(S)$ are homeomorphic implies that R and S are isomorphic (as rings). Relatedly, one can ask if there are self-homeomorphisms of $G(R)$ besides the one arising from the algebraic structure, i.e., multiplication by units and automorphisims of R (and their compositions).

These problems were studied in [10] for $R=\mathbb{Z}$, showing that the only self-homeomorphisms are the trivial ones (the identity and the multiplication by -1$)[10$, Theorem 7.7$]$ and that $G(\mathbb{Z}) \simeq G(R)$ cannot happen when $R \neq \mathbb{Z}$ is contained in the algebraic closure of $\mathbb{Q}[10$, Theorem
$7.8]$; a variant of its method showed that \mathbb{N}, with the Golomb topology, is rigid, i.e., it does not have any nontrivial self-homeomorphism [2]. As a second case, $[11]$ studied the space $G(R)$ when $R=K[X]$ is a polynomial ring over a field K, showing that several algebraic properties of K (for example, having positive or zero characteristic, being algebraically or separably closed) imply different properties on the Golomb space. In particular, it was shown that if K, K^{\prime} are fields of positive characteristic that are algebraic over their base field, then $G(K[X]) \simeq G\left(K^{\prime}[X]\right)$ imply $K \simeq K^{\prime}$ when one of them is algebraically closed [11, Theorem 5.11 and Corollary 7.2] and when they have the same characteristic [11, Theorem 7.5].

In this paper, we improve these results in two ways. In Section 2, we show that, if the set of irreducible polynomials of $K[X]$ is dense in $G(K[X])$, then the characteristic of K can be detected from the Golomb topology; that is, if K, K^{\prime} satisfy these hypothesis and $G(K[X]) \simeq$ $G\left(K^{\prime}[X]\right)$, then the characteristic of K and K^{\prime} are equal (Theorem 2.6). As a consequence, we show that if $G(K[X]) \simeq G\left(K^{\prime}[X]\right)$ and K is algebraic over \mathbb{F}_{p}, then K and K^{\prime} must be isomorphic (Theorem 2.7). In Section 3, we concentrate on self-automorphisms of the Golomb space $G(K[X])$ and show that (under the above density hypothesis, and the condition that the characteristic of K is positive) all such self-automorphisms are algebraic in nature, being compositions of a multiplication by a unit and a ring automorphism of $K[X]$ (Theorem 3.9). The key to both results is a variant of the proofs of [1, Lemma 5.10] and [11, Theorem 6.7], which allows to prove that, under appropriate hypothesis, any homeomorphism of Golomb spaces respects powers, i.e., $h\left(a^{n}\right)=h(a)^{n}$ for every $a \in G(R), n \in \mathbb{N}$.

Throughout the paper, K is a field, and if R is an integral domain then $G(R)$ denotes the Golomb space as defined above. Given a set $X \subseteq R$, we set $X^{\bullet}:=X \backslash\{0\}$. By a "polynomial ring", we always mean a polynomial ring in one variable. We denote by $U(R)$ the set of the units of R, so that $U(K[X])=K^{\bullet}$.

If $h: G(R) \longrightarrow G(S)$ is a homeomorphism, then h sends units to units [5, Theorem 13] and prime ideals to prime ideals (i.e., if P is a prime ideal of R, then $h\left(P^{\bullet}\right) \cup\{0\}$ is a prime ideal of S; equivalently, $h\left(P^{\bullet}\right)=Q^{\bullet}$ for some prime ideal Q of S) [11, Theorem 3.6].

If x is a prime element of R, we set $\operatorname{pow}(x):=\left\{u x^{n} \mid u \in U(R), n \in\right.$ $\mathbb{N}\}$. If $h: G(R) \longrightarrow G(S)$ is a homeomorphism, then $h(\operatorname{pow}(x))=$ pow $(h(x))$ (see [11, Section 2]).

If P is a prime ideal of R, the P-topology on $R \backslash P$ is just the P-adic topology, i.e., the topology having the sets $a+P^{n}$, for $n \in \mathbb{N}$, as a local basis for a. The P-topology can be recovered from the Golomb topology, and thus, for any prime ideal P of R, a homeomorphism $h: G(R) \longrightarrow G(S)$ restricts to a homeomorphism between $R \backslash P$
endowed with the P-topology and $S \backslash Q$ endowed with the Q-topology (where $h\left(P^{\bullet}\right)=Q^{\bullet}$) [10, Theorem 4.3].

We say that R is Dirichlet if the set of irreducible elements of R is dense, with respect to the Golomb topology. If $R=K[X]$ is Dirichlet, where K is a field, we say for brevity that K itself is Dirichlet. This happens, for example, when K is pseudo-algebraically closed and admits separable irreducible polynomials of arbitrary large degree [3, Theorem A]; in particular, it happens when K is an algebraic extension of a finite field that is not algebraically closed [6, Corollary 11.2.4].

2. Detecting the characteristic

In this section, we show how to detect the characteristic of a polynomial ring from its Golomb topology.

Given an element $t \in R^{\bullet}$, we denote by σ_{t} the multiplication by t, i.e.,

$$
\begin{aligned}
\sigma_{t}: G(R) & \longrightarrow G(R), \\
y & \longmapsto t y .
\end{aligned}
$$

It is easy to see that the map σ_{t} is always continuous, and that it is a homeomoprhism if t is a unit of R.

If R is a polynomial ring over a Dirichlet field, and $h: G(R) \longrightarrow$ $G(R)$ is a self-homeomorphism such that $h\left(P^{\bullet}\right)=P^{\bullet}$ for every prime ideal P, then h must be equal to σ_{u} for some unit $u[11$, Proposition 7.4]; this result can be improved in the following way.

Proposition 2.1. Let R, S be polynomials rings over Dirichlet fields. If $h: G(R) \longrightarrow G(S)$ is a homeomorphism such that $h(1)=1$, then $h(u z)=h(u) h(z)$ for every $u \in U(R)$ and $z \in R^{\bullet}$.

Proof. Let u be a unit of R. Consider the map $h^{\prime}:=h^{-1} \circ \sigma_{h(u)} \circ h$, that is,

$$
h^{\prime}(z)=h^{-1}(h(u) h(z))
$$

for every $z \in R^{\bullet}$. Since u is a unit, so is $h(u)$, and thus $\sigma_{h(u)}$ is a selfhomeomorphism of $G(S)$; therefore, h^{\prime} is a homeomorphism of $G(R)$.

Let now P be a prime ideal of R; then, $h\left(P^{\bullet}\right)=Q^{\bullet}$ for some prime ideal Q of S. For every $z \in P$, we have $h(u) h(z) \in Q$, and thus $h^{\prime}(z)=$ $h^{-1}(h(u) h(z)) \in P$. Hence, $h^{\prime}(P) \subseteq P$, i.e., h fixes every prime ideal of R; by [11, Proposition 7.4], $h^{\prime}=\sigma_{t}$ for some unit t of R. However, since $h(1)=1$,

$$
h^{\prime}(1)=h^{-1}(h(u) h(1))=h^{-1}(h(u))=u,
$$

and thus it must be $t=u$, i.e., $h^{\prime}(z)=u z$ for every $z \in R^{\bullet}$; it follows that, $h(u z)=h(u) h(z)$ for every $z \in R^{\bullet}$.

We now want to study the relationship between a homeomorphism of Golomb topologies and powers of elements. For an element $z \in R^{\bullet}$, we denote by $z^{\mathbb{N}}$ the set of powers of z, i.e., $z^{\mathbb{N}}:=\left\{z^{n} \mid n \in \mathbb{N}\right\}$.

Lemma 2.2. Let R, S be polynomial rings over Dirichlet fields, and let $h: G(R) \longrightarrow G(S)$ be a homeomorphism such that $h(1)=1$. The set

$$
\mathcal{X}_{h}:=\left\{z \in R \mid z \text { is irreducible and } h\left(z^{\mathbb{N}}\right)=h(z)^{\mathbb{N}}\right\}
$$

is dense in $G(R)$.
Proof. Let Q be a prime ideal of S, and let P be the prime ideal of R such that $h\left(P^{\bullet}\right)=Q^{\bullet}$. Then, h restricts to a homeomorphism between the P-topology on $R \backslash P$ and the Q-topology on $S \backslash Q$; it follows that for every $m \in \mathbb{N}$ there is an n such that $h\left(1+P^{n}\right) \subseteq 1+Q^{m}$. Let z be any irreducible element in $1+P^{n}$ (which exists since R is Dirichlet); then, for every $t \in \mathbb{N}$, we have $z^{t} \in 1+P^{n}$ too, and thus also $h\left(z^{t}\right) \in 1+Q^{m}$. Moreover, $z^{t} \in \operatorname{pow}(z)$, and thus there are a unit u of S and an integer $\alpha(t)$ such that $h\left(z^{t}\right)=u h(z)^{\alpha(t)}$. Since $U(S) \longrightarrow S / Q$ is injective, it follows that $u=1$ for every t. Hence, $h\left(z^{\mathbb{N}}\right)=h(z)^{\mathbb{N}}$.

Let now $\Omega=c+I$ be a subbasic open set of $G(R)$, and let $d+J$ be a subbasic open set contained in $h(\Omega)$. Let Q be a prime ideal of S that is coprime with J; then, the prime P such that $h\left(P^{\bullet}\right)=Q^{\bullet}$ is coprime with I. Since R is Dirichlet, $(c+I) \cap\left(1+P^{n}\right)$ contains irreducible elements for every n; in particular, is n is large enough, every irreducible polynomial in $1+P^{n}$ is in \mathcal{X}_{h}, and thus $\mathcal{X}_{h} \cap(c+I)$ is nonempty. Thus \mathcal{X}_{h} is dense.

The following proof follows the one of [11, Theorem 6.8], which in turn was based on the one of [1, Lemma 5.10].

Lemma 2.3. Let R, S be polynomial rings over Dirichlet fields, and let $h: G(R) \longrightarrow G(S)$ be a homeomorphism such that $h(1)=1$. For every $a \in R$, we have $h\left(a^{\mathbb{N}}\right)=h(a)^{\mathbb{N}}$.
Proof. If a is a unit, the statement follows from Proposition 2.1. Take any $a \in R, a \notin U(R)$, and let $b:=h(a)$. We first claim that $h\left(a^{\mathbb{N}}\right) \subseteq b^{\mathbb{N}}$. Take any $n \in \mathbb{N}$ and let $f: G(R) \longrightarrow G(R)$ be defined as $f(y)=y^{n}$, and let $\phi:=h \circ f \circ h^{-1}$. Then, $\phi: G(S) \longrightarrow G(S)$ is continuous (since f is continuous) and $\phi\left(P^{\bullet}\right) \subseteq P^{\bullet}$ for every prime ideal P of R. Let

$$
c:=\phi(b)=h(f(a))=h\left(a^{n}\right),
$$

and suppose that $c \notin b^{\mathbb{N}}$. Take an integer k such that $\operatorname{deg} b^{k}>\operatorname{deg} h\left(a^{n}\right)=$ $\operatorname{deg} c$; then, since b and $b^{k}-1$ are coprime, so are c and $b^{k}-1$ (since c and b belong to the same prime ideals, by [10, Theorem 3.6]), and thus $\Omega:=c+\left(b^{k}-1\right) S$ is an open set. Since ϕ is open, there is a neighborhood $b+d S$ of b such that $\phi(b+d S) \subseteq \Omega$.
By Lemma 2.2, we can find an irreducible polynomial $z \in h^{-1}(b+$ $\left.d\left(b^{k}-1\right) S\right)$ such that $h\left(z^{\mathbb{N}}\right)=h(z)^{\mathbb{N}}$; setting $y:=h(z)$, we have

$$
\phi(y)=\left(h \circ f \circ h^{-1}\right)(h(z))=h\left(z^{n}\right)=h(z)^{l}
$$

for some integer l. Thus, we have

$$
\phi(y) \in \phi(b+d S) \subseteq \Omega=c+\left(b^{k}-1\right) S
$$

and

$$
\phi(y)=h(z)^{l} \in\left(b+d\left(b^{k}-1\right) S\right)^{l} \subseteq b^{l}+\left(b^{k}-1\right) S ;
$$

hence, $c \equiv b^{l} \bmod \left(b^{k}-1\right) S$. If $l=i k+j$, we have $b^{j} \equiv b^{l} \bmod \left(b^{k}-1\right) S$; hence, we have $c \equiv b^{j} \bmod \left(b^{k}-1\right) S$ for some $0 \leq j<k$. However, by hypothesis, $c \neq b^{j}$, and the degree of both c and b^{j} is less than the degree of $b^{k}-1$; this is a contradiction, and thus we must have $h\left(a^{\mathbb{N}}\right) \subseteq b^{\mathbb{N}}$.

The opposite inclusion is obtained using the homeomorphism h^{-1}. Thus, $h\left(a^{\mathbb{N}}\right)=b^{\mathbb{N}}=h(a)^{\mathbb{N}}$, as claimed.

Lemma 2.4. Let R be an integral domain. If $U(R)$ is infinite, then its exponent is infinite.

Proof. Suppose that the exponent of $U(R)$ is finite, say equal to n. Since R is a domain, there can be at most n units of order divisible by n (the roots of $X^{n}-1=0$); however, this is impossible since $U(R)$ is infinite. Hence, the exponent is infinite.
Proposition 2.5. Let R, S be polynomial rings over infinite Dirichlet fields, and let $h: G(R) \longrightarrow G(S)$ be a homeomorphism such that $h(1)=$ 1. For every $a \in R$ and every $n \in \mathbb{N}$, we have $h\left(a^{n}\right)=h(a)^{n}$.

Proof. If a is a unit the claim follows from Proposition 2.1. Take $a \in$ $R \backslash U(R)$ and $n \in \mathbb{N}$; by Lemma 2.3, we have $h\left(a^{n}\right)=h(a)^{s}$ for some $s \in \mathbb{N}$. By hypothesis, R has infinitely many units, and thus by Lemma 2.4 there is a unit u whose order is larger than n and s; then, using Proposition 2.1 we have

$$
h\left((u a)^{n}\right)=(h(u a))^{t}=(h(u) h(a))^{t}=h(u)^{t} h(a)^{t}
$$

for some t and

$$
h\left((u a)^{n}\right)=h\left(u^{n} a^{n}\right)=h\left(u^{n}\right) h\left(a^{n}\right)=h(u)^{n} h(a)^{s} .
$$

The equality

$$
h(u)^{t} h(a)^{t}=h(u)^{n} h(a)^{s}
$$

can only hold if $n=t=s$; in particular, $n=s$ and $h\left(a^{n}\right)=h(a)^{n}$, as claimed.

Theorem 2.6. Let K, K^{\prime} be infinite Dirichlet fields. If $G(K[X])$ and $G\left(K^{\prime}[X]\right)$ are homeomorphic, then they have the same characteristic.

Proof. If one of K and K^{\prime} has characteristic 0 , the claim follows from [11, Corollary 4.2]. Suppose thus that char $K=p$ and char $K^{\prime}=q$, with $p, q>0$.

Let $h: G(K[X]) \longrightarrow G\left(K^{\prime}[X]\right)$ be a homeomorphism such that $h(1)=1$, and let a be an irreducible element. Let f be a factor of $a-1$. By [11, Proposition 5.5], the sequence $a^{p^{n}}$ converges to 1 in the (f)-topology, and thus also $h\left(a^{p^{n}}\right)$ converges to 1 in the $h((f))$-topology. By Proposition 2.5, $h\left(a^{p^{n}}\right)=h(a)^{p^{n}}$. By [11, Proposition 5.5], it follows
that $v_{q}\left(p^{n}\right) \longrightarrow \infty$, where v_{q} is the q-adic valuation; thus, it must be $q=p$. The claim is proved.

We note that the proof of the previous theorem actually needs only one irreducible element a such that $h\left(a^{n}\right)=h(a)^{n}$ for every n.
Theorem 2.7. Let K, K^{\prime} be fields. If K is algebraic over \mathbb{F}_{p} and $G(K[X]) \simeq$ $G\left(K^{\prime}[X]\right)$, then $K \simeq K^{\prime}$.

Proof. If K is finite then $|U(K[X])|=|K|-1$. Since the set of units is preserved by homeomorphisms of the Golomb topology, K and K^{\prime} must have the same cardinality, and thus they are isomorphic. Suppose K, K^{\prime} are infinite.

By [11, Corollary 4.2], K^{\prime} has positive characteristic, and by [11, Corollary 7.2] K^{\prime} must be algebraic over its base field \mathbb{F}_{q}.

If K is algebraically closed, then the set $G_{1}(K[X]):=\{z \in K[X] \mid z$ is contained in a unique prime ideal $\}$ is not dense in $G(K[X])$ [11, Proposition 5.2(a)]; conversely, if K is not algebraically closed then $G_{1}(K[X])$ is dense since it contains the irreducible polynomials. The same holds for K^{\prime}. Since a homeomorphism of Golomb topologies sends $G_{1}(K[X])$ to $G_{1}\left(K^{\prime}[X]\right)[10$, Theorem 3.6(b)], it follows that if K is algebraically closed then so is K^{\prime}, and in this case $p=q$ by [11, Theorem 5.11]; hence $K \simeq K^{\prime}$.

If K and K^{\prime} are not algebraically closed, they are pseudo-algebraically closed fields containing separable irreducible polynomials of arbitrarily large degree [3, Theorem A]; by Theorem 2.6, it follows that $p=q$. By [11, Theorem 7.5], it follows that $K \simeq K^{\prime}$.

3. SELF-HOMEOMORPHISMS AND AUTOMORPHiSmS

In this section, we concentrate on the study of self-homeomorphisms of the Golomb space $G(K[X])$. We shall work under the following assumptions:

Hypothesis 3.1.

- K is an infinite field of characteristic $p>0$;
- $R:=K[X]$;
- R is Dirichlet, i.e., the set of irreducible polynomials is dense in $G(R)$;
- $h: G(R) \longrightarrow G(R)$ is a self-homeomorphism such that $h(1)=$ 1.

In particular, under these hypothesis, we have $h\left(a^{n}\right)=h(a)^{n}$ for every $a \in R$ and $n \in \mathbb{N}$, by Proposition 2.5.

Given a set $X \subseteq R$, we define the p-radical of X as

$$
\operatorname{rad}_{p}(X):=\left\{f \in R \mid f^{p^{n}} \in X \text { for every large } n\right\}
$$

This construction is invariant under h, in the following sense.

Lemma 3.2. Assume Hypothesis 3.1. For every $X \subseteq R^{\bullet}$, we have $h\left(\operatorname{rad}_{p}(X)\right)=\operatorname{rad}_{p}(h(X))$.

Proof. If $f \in \operatorname{rad}_{p}(X)$, then $f^{p^{n}} \in X$ for every $n \geq N$, and thus $h\left(f^{p^{n}}\right) \in h(X)$. By Proposition 2.5, it follows that $h(f)^{p^{n}} \in h(X)$ for $n \geq N$, and thus $h(f) \in \operatorname{rad}_{p}(h(X))$. Conversely, if $g=h(f) \in$ $\operatorname{rad}_{p}(h(X))$, then $g^{n}=h(f)^{p^{n}}=h\left(f^{p^{n}}\right)$ belongs to $h(X)$ for large n, and thus applying h^{-1} we have $f^{p^{n}} \in X$ for large n. Thus $f \in \operatorname{rad}_{p}(X)$ and $g \in h\left(\operatorname{rad}_{p}(X)\right)$.

Lemma 3.3. Let P a prime ideal of a ring R of characteristic p. For every $m \in \mathbb{N}^{+}$, we have $\operatorname{rad}_{p}\left(1+P^{m}\right)=1+P$.

Proof. If $t \in 1+P$, then $t=1+x$ with $x \in P$; if $p^{n} \geq m$, then $t^{p^{n}}=(1+x)^{p^{n}}=1+x^{p^{n}} \in 1+P^{m}$, and thus $t \in \operatorname{rad}_{p}\left(1+P^{m}\right)$. Conversely, if $t \in \operatorname{rad}_{p}\left(1+P^{m}\right)$ then $t^{p^{n}} \in 1+P^{m}$ for some m; in particular, $t^{p^{n}} \in 1+P$, and thus $t^{p^{n}}-1=(t-1)^{p^{n}} \in P$. Hence $t-1 \in P$, i.e., $t \in 1+P$.

Proposition 3.4. Assume Hypothesis 3.1, and let P, Q be prime ideals of R with $h\left(P^{\bullet}\right)=Q^{\bullet}$. Then, $h(1+P)=1+Q$.

Proof. Since $h(1)=1, h(1+P)$ is open in the Q-topology, and thus $1+Q^{m} \subseteq h(1+P)$ for some m. Therefore,
$1+Q=\operatorname{rad}_{p}\left(1+Q^{m}\right) \subseteq \operatorname{rad}_{p}(h(1+P))=h\left(\operatorname{rad}_{p}(1+P)\right)=h(1+P)$
using Lemmas 3.2 and 3.3. Applying the same reasoning to h^{-1} gives $1+P \subseteq h^{-1}(1+Q)$, i.e., $h(1+P) \subseteq 1+Q$. Hence, $h(1+P)=1+Q$, as claimed.

Corollary 3.5. Assume Hypothesis 3.1, and let P, Q be prime ideals of R with $h\left(P^{\bullet}\right)=Q^{\bullet}$. If $u \in K^{\bullet}$, then $h(u+P)=h(u)+Q$. In particular, if $f \equiv u \bmod P$ for some unit u, then $h(f) \equiv h(u) \bmod Q$.

Proof. By Propositions 2.1, we have $u+P=u(1+P)$; by Proposition 3.4, it follows that

$$
h(u+P)=h(u) h(1+P)=h(u)(1+Q)=h(u)+Q,
$$

as claimed. The "in particular" statement follows from the fact that $f \equiv u \bmod P$ is equivalent to $f \in u+P$.

Corollary 3.6. Assume Hypothesis 3.1. If f is a linear polynomial, so is $h(f)$.

Proof. Since f is linear, (f) is prime and every polynomial $g \notin(f)$ is equivalent to a unit modulo (f). By Corollary 3.5, it follows that every $g \notin(h(f))$ is equivalent to a unit modulo $(h(f))$; hence, $h(f)$ must be linear too.

In particular, by Corollary 3.6, $h(X)$ is a linear polynomial; it follows that there is an automorphism σ of R sending $h(X)$ to h. Since σ restricts to a self-homeomorphism of $G(R)$, passing from h to $H:=\sigma \circ h$ we obtain a self-homeomorphism of $G(R)$ that fixes both 1 and X. Thus, it is not restrictive to assume also that $h(X)=X$, as we do in the remaining part of the section.
Lemma 3.7. Assume Hypothesis 3.1 and suppose $h(X)=X$. For every $u \in K^{\bullet}$, we have $h(X+u)=X+h(u)$.
Proof. We have

$$
\left\{\begin{array}{l}
X+u \equiv u \bmod (X) \\
X \equiv-u \bmod (X+u)
\end{array}\right.
$$

Applying h to both equivalences, using $h(X)=X$ and Corollary 3.5, we have

$$
\left\{\begin{array}{l}
h(X+u) \equiv h(u) \bmod (X) \\
X \equiv-h(u) \bmod (h(X+u))
\end{array}\right.
$$

The first equation implies that X divides $h(X+u)-h(u)$; since $h(X+u)$ is linear, it follows that $h(X+u)=v X+h(u)$ for some $v \in K^{\bullet}$. The second equation implies that $v X+h(u)$ divides $X+h(u)$; the only possibility is $v=1$, i.e., $h(X+u)=X+h(u)$. The claim is proved.
Lemma 3.8. Assume Hypothesis 3.1 and suppose $h(X)=X$. Then, the map

$$
\begin{aligned}
& H: K \longrightarrow K, \\
& a \longmapsto \begin{cases}h(a) & \text { if } a \neq 0 \\
0 & \text { if } a=0\end{cases}
\end{aligned}
$$

is an automorphism of K.
Proof. Let $a, b \in K$. If $a=0$ or $b=0$ then clearly $H(a b)=H(a) H(b)$ and $H(a+b)=H(a)+H(b)$.

Suppose $a \neq 0 \neq b$. Then, $H=h$ on these values, and $h(a b)=$ $h(a) h(b)$ by Proposition 2.1. Furthermore,

$$
X+a+b \equiv b \bmod (X+a) ;
$$

applying h and using Lemma 3.7, we have

$$
X+h(a+b) \equiv h(b) \bmod (X+h(a))
$$

that is, $X+h(a)$ divides $X+h(a+b)-h(b)$. Thus, it must be $X+$ $h(a)=X+h(a+b)-h(b)$ and $h(a)=h(a+b)-h(b)$, that is, $h(a)+h(b)=h(a+b)$. It follows that H is an automorphism of K, as claimed.

Theorem 3.9. Let K is an infinite Dirichlet field of positive characteristic, and let h be a self-homeomorphism of $G(K[X])$. Then, there are a unit $u \in K^{\bullet}$ and an automorphism σ of $K[X]$ such that $h(f)=u \sigma(f)$ for every $f \in K[X]^{\bullet}$.

Proof. By [5, Theorem 13], $h(1)=u$ is a unit of R; since the multiplication σ_{u} is a self-homeomorphism of $G(R)$, the map $h_{1}:=\sigma_{u}^{-1} \circ h$ is a self-homeomorphism such that $h_{1}(1)=1$.

By Corollary 3.6, $h_{1}(X)$ is a linear polynomial, and thus there is an automorphism σ_{1} of R such that $h_{1}(X)=\sigma_{1}(X)$. Thus, $h_{2}:=\sigma_{1}^{-1} \circ h_{1}$ is again a self-homeomorphism of $G(R)$, and furthermore both 1 and X are fixed points of h_{2}.

By Lemma 3.8, the restriction of h_{2} to K is an automorphism H; this map can be extended to an automorphism σ_{2} of R by setting $\sigma_{2}\left(\sum_{i} a_{i} X^{i}\right)=\sum_{i} H\left(a_{i}\right) X^{i}$. Thus, $h_{3}:=\sigma_{2}^{-1} \circ h_{2}$ is a self-homeomorphism of $G(R)$ such that $h_{3}(u)=u$ for every $u \in K^{\bullet}$ and $h_{3}(X)=X$. By Lemma 3.7, it follows that $h_{3}(X+u)=X+u$ for every $u \in K^{\bullet}$.

Let now $f \in R$, and take any $t \in K$. Then,

$$
\left\{\begin{array}{l}
f \equiv f(t) \bmod (X-t) \\
h_{3}(f) \equiv h_{3}(f)(t) \bmod (X-t)
\end{array}\right.
$$

Since $h_{3}((X-t))=(X-t)$, by Corollary 3.5 the first equivalence also implies $h_{3}(f) \equiv h_{3}(f(t)) \bmod (X-t)$. Hence, $h_{3}(f)(t)=h_{3}(f(t))=$ $f(t)$. Since this happens for every $t \in K$, and K is infinite, it follows that $f=h_{3}(f)$, that is, h_{3} is the identity on $G(R)$.

Going back to the definition,

$$
h_{3}=\sigma_{2}^{-1} \circ h_{2}=\sigma_{2}^{-1} \circ \sigma_{1}^{-1} \circ h_{1}=\sigma_{2}^{-1} \circ \sigma_{1}^{-1} \circ \sigma_{u}^{-1} \circ h,
$$

i.e., $h=\sigma_{u} \circ \sigma_{1} \circ \sigma_{2}$. Since $\sigma_{u}(x)=u x$ for every x, setting $\sigma:=\sigma_{1} \circ \sigma_{2}$ (which is still an automorphism of R), we obtain $h(f)=u \sigma(f)$ for every $f \in G(R)$, as claimed.

References

[1] Taras Banakh, Jerzy Mioduszewski, and Sławomir Turek. On continuous selfmaps and homeomorphisms of the Golomb space. Comment. Math. Univ. Carolin., 59(4):423-442, 2018.
[2] Taras Banakh, Dario Spirito, and Sł awomir Turek. The Golomb space is topologically rigid. Comment. Math. Univ. Carolin., 62(3):347-360, 2021.
[3] Lior Bary-Soroker. Dirichlet's theorem for polynomial rings. Proc. Amer. Math. Soc., 137(1):73-83, 2009.
[4] Morton Brown. A countable connected Hausdorff space. In L.W. Cohen, editor, The April meeting in New York, volume 4, pages 330-371. Bull. Amer. Math. Soc., 1953. Abstract 423.
[5] Pete L. Clark, Noah Lebowitz-Lockard, and Paul Pollack. A note on Golomb topologies. Quaest. Math., 42(1):73-86, 2019.
[6] Michael D. Fried and Moshe Jarden. Field arithmetic, volume 11 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer-Verlag, Berlin, second edition, 2005.
[7] Solomon W. Golomb. A connected topology for the integers. Amer. Math. Monthly, 66:663-665, 1959.
[8] Solomon W. Golomb. Arithmetica topologica. In General Topology and its Relations to Modern Analysis and Algebra (Proc. Sympos., Prague, 1961), pages 179-186. Academic Press, New York; Publ. House Czech. Acad. Sci., Prague, 1962.
[9] John Knopfmacher and Stefan Porubsky. Topologies related to arithmetical properties of integral domains. Exposition. Math., 15(2):131-148, 1997.
[10] Dario Spirito. The Golomb topology on a Dedekind domain and the group of units of its quotients. Topology Appl., 273:107101, 20, 2020.
[11] Dario Spirito. The Golomb topology of polynomial rings. Quaest. Math., 44(4):447-468, 2021.

Dipartimento di Scienze Matematiche, Informatiche e Fisiche, Università degli Studi di Udine, Udine, Italy

Email address: dario.spirito@uniud.it

