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Abstract. Let (D,m) be a local integral domain. We introduce
the concept of polynomially independent set over D as a subset
r ⊂ F (where F is a field containing D) as a set such that every
polynomial relation f(r) = 0 has coefficients in m, and we show
that, when considered modulo m, such sets have many properties
in common with sets of independent indeterminates. We study this
notion, generalizing a result of Seidenberg about singly-generated
algebras over integrally closed domains. Next, we introduce the
polynomial dimension of F over D as the largest cardinality of a
polynomially independent set, and show that this concept gener-
alizes the definition of transcendence degree of a field extension
and is better-behaved than the usual Krull dimension in dealing
with overrings; we also link it with the Zariski-Riemann space of
valuation rings of F containing D. Finally, we define the Nagata
ring of D with respect to a polynomially independent set r as a
generalization of the classical Nagata ring of an integral domain,
and we show that its localizations at the maximal ideals containing
m are an affine set of a space of rings (which we call the Seidenberg
transforms of D) that is isomorphic to a product of projective lines
over the residue field of D.

1. Introduction

Let D be an integral domain with quotient field K, and let T be an
overring of D, i.e., a ring between D and K. It is in general impossible
to gauge the properties of T from those of D: for example, every Noe-
therian domain of dimension at least 2 has non-Noetherian overrings,
or the dimension of T may be greater than the dimension of D; like-
wise, it is difficult to understand the relation between the spectrum of
T and the spectrum of D, even if T is a finitely generated algebra over
D.

In this context, a rather general theorem was proved by Seidenberg
for singly-generated algebras [8]: he showed that, if (D,m) is an inte-
grally closed local domain and α is an element such that α, α−1 /∈ D,
then the maximal idealm ofD extends to a non-maximal prime ideal P ,
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and that the quotient D[α]/P is isomorphic to the ring of polynomials
in one variable over the residue field D/m.
In this paper, we extend Seidenberg’s result to the case of more than

one element by defining the notion of polynomially independent set of
an integral domain, which is strongly linked with the notion of analyt-
ically independent set defined in [6]. Given a local domain (D,m) and
a field F containing D, we say that a subset r ⊂ F is polynomially
independent if every polynomial relation f(r) = 0 must have coeffi-
cients in the maximal ideal m of D. Polynomially independent sets
work in many ways as independent indeterminates over D, modulo the
maximal ideal m; for example, we extend Seindeberg’s result proving
that, if r is polynomially independent, then mD[r] is a prime ideal of
D[r], and D[r]/mD[r] is isomorphic to the polynomial ring (D/m)[X]
(where X is a set of indeterminates with the same cardinality as r).
Furthermore, this notion allows us to define a new kind of dimen-

sion of an integral domain, which we call polynomial dimension: more
precisely, the polynomial dimension dimp(F/D) of F over D is the
maximal number of elements in a polynomially independent set; if F is
the quotient field of D, we call it simply the polynomial dimension of
D, and denote it by dimp(D). We show that the polynomial dimension
is strongly linked to the Zariski-Riemann space of F over D and that it
can be thought of as a way to measure how far is D from being a Prüfer
domain: indeed, dimp(D) = 0 if and only if the integral closure ofD is a
Prüfer domain. Polynomial dimension is better behaved than the usual
(Krull) dimension when dealing with extension rings: for example, ifD′

is a domain between D and F then dimp(F/D
′) ≤ dimp(D/F ), and the

polynomial dimension of D[X] is always one more than the polynomial
dimension of D. We also show that the polynomial dimension is a gen-
eralization of the concept of transcendence degree of a field extension,
in the sense that if D = K is a field then dimp(F/K) = trdeg(F/K).
We also generalize the concept of Nagata rings: if r is a polynomially

independent set over D, we define the Nagata ring of D with respect to
r as the localization D[r]mD[r], and we denote it by D(r); this notion
reduces to the classical one when r = {X} is an indeterminate over
D. Suppose now that r = {r1, . . . , rn} is finite of cardinality n: then,
through the isomorphism D[r]/mD[r] ≃ D[X1, . . . , Xn], the localiza-
tions of D[r] at the maximal ideals containing m form a space that is
naturally homeomorphic to the affine space over D/m of dimension n.
We show that, if we also add the localizations of D[rϵ11 , . . . , r

ϵn
n ] (where

each ϵi is either 1 or −1) we obtain a space that is homeomorphic
to the n-fold product of the projective line over D/m. We call these
localizations the Seidenberg transforms of D with respect to r.

In the final part of the paper, we study polynomial independent sets
over Noetherian domains. We show that, if {x1, . . . , xn} is a system of
parameters of D, then {x1/xn, . . . , x2/xn} is a (maximal) polynomially
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independent set; in particular, the polynomial dimension of a local
Noetherian domain of Krull dimension n is n− 1. We also show, using
the connection with analytically independent sets, that all maximal
polynomially independent sets have the same cardinality if and only if
D is catenarian.

2. Polynomially independent sets

Throughout the paper, D is an integral domain with quotient field
K and F is a field containing K.
We denote by r := {rα | α ∈ A} a subset of F indexed by A, and

by X := {Xα | α ∈ A} a set of independent indeterminates indexed by
the same set. Analogously, r′ and X′ will be indexed by A′.

Given r, the valuation homomorphism relative to r is the map ϕr

given by
ϕr : D[X] −→ D[r],

f 7−→ f(r).

Definition 2.1. Let (D,m) be a local domain, and let r ⊆ F . We say
that r is a polynomially independent set over D if the kernel of the
valuation homomorphism ϕr is contained in mD[X].

Example 2.2. Let D = K be a field, and let r ⊆ F . Then, r is
polynomially independent if and only if it is algebraically independent:
indeed, mD[X] is just the zero ideal, and thus the condition of being
polynomially independent reduces to f(r) ̸= 0 for all nonzero polyno-
mials, i.e., to the condition of being algebraically independent.

Example 2.3. Let D be a domain and t be an indeterminate over D.
Then, t is polynomially independent over D, since the kernel of the
valuation homomorphism is (0).

Example 2.4. If r = {r} is a single element and D is integrally closed,
then r is polynomially independent over D if and only if r, r−1 /∈ D;
this follows essentially from the proof of [8, Theorem 6] (we shall deal
with this case in more detail in Proposition 2.15).

These three examples foreshadow several properties and connections
of polynomially independent sets. Indeed, our first result is a general-
ization of [8, Theorems 6 and 7] (in a different terminology).

Proposition 2.5. Let (D,m) be a local domain and let r ⊆ F . Then,
the following hold.

(a) r is polynomially independent if and only if ϕ−1
r (mD[r]) = mD[X].

(b) If r is polynomially independent, then mD[r] is a prime ideal of
D[r] and D[r]/mD[r] ≃ (D/m)[X].

Proof. (a) We always have ϕr(mD[X]) = mD[r], and thus mD[r] ⊆
ϕ−1
r (mD[X]).
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Suppose r is polynomially independent. If f ∈ ϕ−1
r (mD[X]), then

f(r) ∈ m, say f(r) = m; hence, g(X) := f(X) − m ∈ kerϕr. Thus,
g ∈ mD[X] and so f ∈ mD[X]; therefore ϕ−1

r (mD[X]) ⊆ mD[r] and
the two sets are equal.

Conversely, if ϕ−1
r (mD[r]) = mD[X] then in particular kerϕr =

ϕ−1
r (0) ⊆ ϕ−1

r (mD[r]) = mD[X] and so r is polynomially independent.
(b) follows directly from the previous point. □

Proposition 2.6. Let (D,m) be a local domain and r ⊆ F . Then, the
following are equivalent:

(i) r is polynomially independent over D;
(ii) every subset of r is polynomially independent over D;
(iii) every finite subset of r is polynomially independent over D.

Proof. (i) =⇒ (ii). Suppose that r is polynomially independent and let
r′ ⊆ r. We have a commutative diagram

D[X′] D[r′]

D[X] D[r]

ϕr′

ϕr

where the vertical arrows are the obvious inclusions and the horizontal
arrows are the valuation homomorphisms ϕr′ and ϕr. Since r′ ⊆ r, we
have kerϕr′ ⊆ kerϕr, and since the latter is contained in mD[X] it fol-
lows that the former is contained in mD[X′]. Hence, r′ is polynomially
independent over D.

(ii) =⇒ (iii) is obvious.
(iii) =⇒ (i). Suppose that the finite subsets of r are polynomially

independent. If f ∈ kerϕr, then f contains only finitely many in-
determinates, and thus we can consider f as a polynomial over (say)
D[X1, . . . , Xn]. Thus, f(r1, . . . , rn) = 0, and since the finite subset
{r1, . . . , rn} ⊆ r is polynomially independent, f ∈ mD[X1, . . . , Xn] ⊆
D[X]. Hence, kerϕr ⊆ D[X] and r is polynomially independent. □

Since mD[r] is a prime ideal, we can give the following definition.

Definition 2.7. Let (D,m) be a local domain and let r be a polynomi-
ally independent set over F . The Nagata ring of D with respect to r,
which we denote by D(r), is the localization D[r]mD[r].

Remark 2.8.

(1) The Nagata ringD(r) is always local, with maximal idealmD(r),
and its residue field is isomorphic to (D/m)(X).

(2) If r = {t} is an indeterminate over D, then D(t) is exactly the
classical Nagata ring of D.

Proposition 2.9. Let (D,m) be a local domain and suppose that r ⊆ F
is the disjoint union of r′ and r′′. Then, r is polynomially independent
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over D if and only if r′ is polynomially independent over D and r′′ is
polynomially independent over D(r′).

Proof. We denote by ϕr′′ : D(r′)[X′′] −→ D(r′)[r′′] the valuation homo-
morphism relative to r′′ over D[r′]mD[r′].

Suppose that r is polynomially independent. Then, r′ is polynomially
independent by Proposition 2.6.

Let f ∈ kerϕr′′ . Then, we can write

f(X′′) =
g1(r

′)

h1(r′)
Y1 + · · ·+ ga(r

′)

ha(r′)
Ya,

where each gi and hi is a polynomial, the Yj are distinct monomials
in the X′′ and hi(r

′) /∈ mD[r′] for all i. In particular, since r′ is a
polynomially independent set, we have hi /∈ mD[X′]. Let H(X′) :=
h1(X

′) · · ·ha(X′). Then, F (X) := H(X′)f(X′′) is a polynomial in
D[X], and F (r) = H(r′)f(r′′) = 0 since f(r′′) = 0. Since r is poly-
nomially independent, it follows that F ∈ mD[X]; in particular, each

H(X′) gi(X
′)

hi(X′)
must be in mD[X]. Since H(X′)

hi(X′)
is a polynomial outside

mD[X′] (being the product of polynomials outside mD[X′]), it follows
that each gi(X

′) is in mD[X′]. Thus f ∈ mD[r′]mD[r′][X
′′] = D(r′)[X′′],

and so kerϕr′′ ⊆ mD[r′]mD[r′][X
′′]. Therefore, r′′ is polynomially inde-

pendent over D(r′), as claimed.

Conversely, suppose that r′ and r′′ are polynomially independent
respectively over D and over D(r′). Let f ∈ kerϕr, and write

f(X) = g1(X
′)Y1 + · · ·+ ga(X

′)Ya,

where each g1(X
′) is a polynomial and the Ya are distinct monomials

in the X′′. We distinguish two cases.
If gi(X

′) ∈ mD[X′] for every i, then f ∈ mD[X].
Suppose that gj(X

′) /∈ mD[X′] for some j; then, since r′ is polyno-
mially independent over D it follows from Proposition 2.5 that gj(r

′) /∈
mD[r′]. Evaluating the gi in r′, we obtain a polynomial F (X′′) :=
g1(r

′)Y1+· · ·+ga(r′)Ya, which is not in mD[r′][X′′] since gi(r
′) /∈ mD[r′]

(and there is no cancellation). However, F (r′′) = f(r) = 0, and so F
belongs to the kernel of the valuation homomorphism ϕr′′ ; since r′′ is
polynomially independent, it follows that F ∈ mD(r′), and thus that
f ∈ mD[X].

In both cases, f ∈ mD[X], and thus kerϕr ⊆ mD[X], i.e., r is
polynomially independent over D. □

We now want to extend the definition of polynomial independence
from local to arbitrary domains.

Definition 2.10. Let D be an integral domain, F a field containing D
and let r ⊆ F . We say that r is polynomially independent over D if
there is a maximal ideal m of D such that kerϕr ⊆ mD[X].
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Lemma 2.11. Let D be an integral domain and r ⊆ F . Then, r
is polynomially independent over D if and only if it is polynomially
independent over Dm for some maximal ideal m of D.

Proof. Let ϕ
(m)
r : Dm[X] −→ Dm[r] be the valuation homomorphism

over Dm. Then, the kernel of ϕ
(m)
r is just the extension of the kernel

of ϕr; hence, kerϕ
(m)
r ⊆ mDm[X] if and only if kerϕr ⊆ mD[X]. The

claim follows by comparing the definitions. □

Remark 2.12. The reason why we do not require polynomial inde-
pendence over all localizations of D at maximal ideals is that by doing
so we would disqualify any subset (or even any element) that is con-
tained in some localization; for example, if the Jacobson radical of D
is (0) then there would be no element of the quotient field of D that is
polynomially independent over D.

Lemma 2.13. Let D,D′ be integral domains with D ⊆ D′ ⊆ F , and let
r ⊆ F . If r is polynomially independent over D′, then it is polynomially
independent over D.

Proof. Let f ∈ D[X] be such that f(r) = 0. Then, f is also a poly-
nomial over D′, and thus there is a maximal ideal m′ of D′ such that
f ∈ m′D′[X], i.e., all its coefficients belong to m′. Hence, its coefficients
are in m′ ∩D, which is contained in some maximal ideal m of D, and
so f ∈ mD[X]. Thus, r is polynomially independent over D. □

Proposition 2.14. Let (D,m) be a local domain, and let r ⊆ F . Then,
r is polynomially independent over D if and only if it is polynomially
independent over D.

Proof. If r is polynomially independent over D then it is independent
over D by Lemma 2.13. Conversely, suppose that r is polynomially in-
dependent over D. Let Q be the kernel of the valuation homomorphism
ϕr,D : D[X] −→ D; then, Q∩D[X] is the kernel of the valuation homo-
morphism ϕr,D. By hypothesis, Q ∩D[X] ⊆ mD[X] for some maximal
ideal m of D; since D[X] ⊆ D′[X] is integral, by going-up there is a
prime ideal P of D over m (so, in particular, P is maximal) such that
Q ⊆ PD[X]. Hence, r is polynomially independent over D. □

For singletons, polynomial independence is very close to an integral-
ity condition; the following result ties polynomial independence with
the results in [8, Section 3].

Proposition 2.15. Let (D,m) be a local integral domain, and let r ∈
F .

(a) If r is polynomially independent over D, then neither r nor 1/r
are integral over D.

(b) If the integral closure D of D is local, then r is polynomially
independent over D if and only if r, 1/r /∈ D.
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Proof. (a) If r were integral, then there would be a monic polynomial
f ∈ D[X] such that f(r) = 0; in particular, f ∈ kerϕ{r} \ mD[X],
a contradiction. Likewise, if 1/r were integral, then g(1/r) = 0 for
some monic polynomial g of degree n; then, g1(X) := Xng(1/X) is a
polynomial over D[X] outside mD[X], but g1(r) = rng(1/r) = 0, again
a contradiction. Hence neither r nor 1/r are integral over D.

(b) By Proposition 2.14, r is polynomially independent over D if and
only if it is polynomially independent over D. The claim now follows
from [8, Corollary to Theorem 6]. □

Example 2.16. If D is not local, part (b) of the previous proposition
does not hold.

Indeed, suppose D = Z(2) + YQ[[Y ]], and let r := 1+
√
17

4
. Then, r

belongs to the quotient field ofD and is a root of f(X) := 2X2−X−2 /∈
mD[X], and thus r is not polynomially independent. However, r is not

integral over D since its trace is T (r) = 1+
√
17

4
+ 1−

√
17

4
= 1

2
/∈ D;

likewise, 1/r is not integral, since 1/r = −1−
√
17

4
and so its trace is

T (1/r) = −1−
√
17

4
− 1+

√
17

4
= −1

2
/∈ D.

Remark 2.17. Let (D,m) be a local domain with quotient field K,
and let c0, . . . , ch be elements of D. Then, c0, . . . , ch are said to be
analytically independent in D if, whenever F (c0, . . . , ch) = 0 for some
homogeneous polynomial F ∈ D[X0, . . . , Xh], all coefficients of F are
in m [6, Section 4.4]. It is not hard to see that c0, . . . , ch are analytically
independent if and only if c1/c0, . . . , ch/c0 are polynomially indepen-
dent; moreover, if x1, . . . , xk are in K, then x1, . . . , xk are polynomially
independent if and only if yx1, . . . , ykk are analytically independent for
all y ∈ (D : (x1, . . . , xk)). Therefore, these two notions are essentially
equivalent when we are dealing with integral domains and with ele-
ments in the quotient field. Since we focus in the study of overrings,
and since we also want to deal with elements outside the quotient field,
we prefer to use the terminology of polynomial independence.

3. Polynomial dimension

In this section, we introduce the notion of polynomial dimension, a
kind of dimension that is better behaved than the usual Krull dimension
when dealing with ring extensions.

Definition 3.1. Let D be an integral domain and let F be a field
containing D. The polynomial dimension of F over D, denoted by
dimp(F/D), is the largest cardinality of a subset of F that is polyno-
mially independent over D.

Proposition 3.2. Let D ⊆ D′ be integral domains contained in the
field F . Then, the following hold.

(a) dimp(F/D) = sup{dimp(F/Dm) | m ∈ Max(D)}.
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(b) dimp(F/D) ≥ dimp(F/D
′).

(c) If D′ is integral over D, then dimp(F/D) = dimp(F/D
′).

Proof. (a) follows from Lemma 2.11, (b) from Lemma 2.13 and (c) from
Proposition 2.14. □

Corollary 3.3. Let D be a domain, and let K be its quotient field.
Then, dimp(K/D) = 0 if and only if the integral closure D of D is a
Prüfer domain.

Proof. By Proposition 3.2(a), we can suppose without loss of generality
that D is local. Suppose first that D is integrally closed. By Lemma
2.15, D admits nonempty polynomially independent sets if and only
if there is an r such that r, 1/r /∈ D, that is, if and only if D is not
a valuation domain. Hence, dimp(K/D) = 0 if and only if D is a
valuation domain.

If D is not integrally closed, the claim now follows from Proposition
3.2(a). □

The fact that the polynomial dimension does not change under in-
tegral extensions suggests a look at valuation domains. Indeed, we
can characterize when a sequence is polynomially independent through
chains in the Zariski space. We start with a lemma.

Lemma 3.4. Let (D,m) be a local domain, and let W ⊂ V be two
valuation domains containing D with the same quotient field such that
mW ∩D = mV ∩D = m. Take any r ∈ mW \mV . If f ∈ D[X]\mD[X],
then f(r) /∈ mV .

Proof. We can write f as the sum f1+ f2 of two polynomials such that
each coefficient of f1 is out of m and each coefficient of f2 is in m.
Then, f2(r) ∈ mW ⊆ mV . Write f1(X) =

∑
j ajX

j, with each aj ̸= 0;

note that f1 is not the zero polynomial since f /∈ mD[X]. Let v be
the valuation relative to V . For every j, the coefficient aj belongs to
D \m and thus is a unit in V , so that v(ajr

j) = v(rj). Since r ∈ mW ,
it follows that, for j ̸= j′, we have

v(ajr
j) = v(rj) ̸= v(rj

′
) = v(aj′r

j′);

therefore, v(f1(r)) = v(rj0), where j0 is the minimal index j such that
aj ̸= 0. In particular, f1(r) /∈ mV . Thus, we also have f(r) /∈ mV , as
claimed. □

Theorem 3.5. Let (D,m) be a local domain, F a field containing D,
and let r := {r1, . . . , rn} ⊆ F . Then, r is polynomially independent
over D if and only if there is a chain V0 ⊃ · · · ⊃ Vn of elements of
Zar(F |D) with center m such that ri ∈ mVi

\mVi−1
for all i.

Proof. Suppose r is polynomially independent: since D[r]/mD[r] ≃
(D/m)[r], we have a chain of prime ideals mD[r] ⊂ (m, r1)D[r] ⊂ · · · ⊂
(m, r1, . . . , rn)D[r] inside D[r]. Then, we can find a chain W0 ⊃ · · · ⊃
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Wn of overrings of D[r] such that W0 ∩D[r] = mD[r] and Wi ∩D[r] =
(m, r1, . . . , ri)D[r] for i > 0; each of the Wi has center m over D. The
claim now follows lifting the chain to a chain in Zar(F |D).

Conversely, suppose that such a chain exists; we proceed by in-
duction, doing the base case and the step at the same time. Let
S := {f(rn) | f ∈ D[X] \mD[X]}: applying Lemma 3.4 to Vn−1 ⊃ Vn,
we see that S ∩ mVn−1 = ∅, and since m ⊆ mVn−1 we have S ∩ m = ∅,
that is, rn is polynomially independent over D. If n = 1 we are
done. Suppose n > 1, and construct the Nagata ring D(rn): then,
by definition, D(rn) = S−1D[rn] ⊆ S−1Vn−1 = Vn−1, using the fact
that rn ∈ Vn ⊂ Vn−1. Furthermore, the only prime ideal of D(rn)
above m is its maximal ideal; it follows that mVn−1 ∩ D(rn) = mD(rn),
and thus V0 ⊃ · · · ⊃ Vn−1 is a chain satisfying the same hypothesis
of the statement, but with D(rn) in place of D. By inductive hy-
pothesis, {r1, . . . , rn−1} is polynomially independent over D(rn); hence,
r = {r1, . . . , rn−1}∪{rn} is polynomially independent over D by Propo-
sition 2.9. The claim is proved. □

This theorem has a strong consequence.

Theorem 3.6. Let (D,m) be a local domain, and let F be a field con-
taining D. Let γF,D : Zar(F |D) −→ Spec(D) be the center map. Then,
dimp(F/D) = dim γ−1

F,D(m).

Proof. Suppose first that both dimp(F/D) and dim γ−1
F,D(m) are finite.

By Theorem 3.5, the cardinality of a maximal independent set is equal
to the length of a maximal chain of valuation domains in γ−1

F,D(m), i.e.,
to its dimension.

If dimp(F/D) is infinite, then we can find polynomially independent
sets of arbitrary finite cardinality, and thus by Theorem 3.5 we can
find chains in γ−1

F,D(m) of arbitrary length, and thus its dimension is

finite. Similarly, if dim γ−1
F,D(m) is infinite then we can find polynomially

independent sets of arbitrary finite cardinality, and so the polynomial
dimension is infinite. □

The following corollary essentially reduces the study of polynomial
dimension over D of an arbitrary field F to the polynomial dimension
of the quotient field of D.

Corollary 3.7. Let (D,m) be a local domain, and let L ⊆ F be fields
containing D. Then,

dimp(F/D) = dimp(L/D) + trdeg(F/L).

Proof. Let r ⊂ F be a polynomially independent set over D, and let X
be a transcendence basis of F over L. Then, X is polynomially inde-
pendent over D(r), and thus by Proposition 2.9 r ∪X is polynomially
independent over D. Thus, dimp(F/D) ≥ dimp(L/D) + trdeg(F/L).
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Let V be a minimal element of Zar(L|D). Any extension V ′ of V to
F has rank at most dim(V ) + trdeg(F/L) [4, Proposition 20.5]; more-
over, if W ⊃ V then there is a W ′ ⊃ V ′ that extends W . Therefore,
dim γ−1

F,D(m) ≤ dim γ−1
L,D(m) + trdeg(F/L), which means, by Theorem

3.6, that dimp(F/D) ≤ dimp(L/D) + trdeg(F/L). Therefore, the two
sides must be equal. □

Corollary 3.8. Let (D,m) be a local domain, and let K be its quotient
field. Then, dimp(K/D) ≤ dimv(D) − 1, where dimv(D) denotes the
valuative dimension of D. Furthermore, if dim(D) = 1 then equality
holds.

Proof. By Theorem 3.6, dimp(K/P ) = dim γ−1
K,D(m). Every maximal

chain in Zar(K|D) containsK itself, which does not belong to γ−1
K,D(m);

thus dim γ−1
K,D(m) ≤ dimv(D)− 1.

If dim(D) = 1, then γ−1(m) = Zar(D) \ {K}, and the claim follows.
□

Corollary 3.9. Let (D,m) be an integrally closed local domain. If D
is not a valuation ring, then there is a chain V0 ⊂ V1 of valuation
overrings of D such that both V0 and V1 have center m.

Proof. Since D is integrally closed but not a valuation ring, we have
dimp(K/D) > 0. The claim now follows from Theorem 3.5. □

LetD be an integral domain. IfD is Noetherian, the Krull dimension
of the polynomial ring D[X] is dim(D)+1; however, in general, we can
only say that dim(D)+1 ≤ dim(D[X]) ≤ 2 dim(D)+1 [4, Section 30].
In this context, polynomial dimension is much more well-behaved.

Proposition 3.10. Let D be an integral domain with quotient field K,
and let X be an indeterminate over D. Then,

dimp(K(X)/D[X]) = dimp(K/D) + 1.

Proof. Suppose first thatD is local with maximal idealm. By Corollary
3.7, dimp(K(X)/D) = dimp(K/D)+1; sinceD ⊆ D[X], by Proposition
3.2(b) we have dimp(K(X)/D) ≤ dimp(K/D) + 1.
Let r ⊆ K be a polynomially independent set over D of maximal

cardinality. Then, X is polynomially independent over D(r), and thus
by Proposition 2.9 r∪{X} is polynomially independent over D; hence,
r is polynomially independent over the Nagata ringD(X). By Theorem
3.6 there is a chain C of valuation domains of cardinality |r| above the
maximal ideal mD(X) of D(X).

The Nagata ring D(X) is the localization of D[X] at the prime ideal
mD[X]; ifM is a maximal ideal above mD[X], then there is a valuation
domain V above M contained in all elements of the chain C. Applying
again Theorem 3.6, we obtain that the polynomial dimension ofD[X] is
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at least |r|+1; hence, it must be dimp(K(X)/D[X]) = dimp(K/D)+1,
as claimed.

If D is not local, the claim follows from Proposition 3.2(a). □

4. Quotients and automorphisms

A first case where we can calculate polynomial dimension is for pull-
backs. We start with a lemma about the behavior of polynomial inde-
pendence under quotients.

Lemma 4.1. Let D ⊆ T ⊆ F be domains with (D,m) local, and sup-
pose that mT ̸= T . Let P be a prime ideal of D, and let π : T −→
T/PT be the quotient map. Let r ⊆ T .

(a) If π(r) is polynomially independent over π(D), then r is poly-
nomially independent over D.

(b) If PT = P , then π(r) is polynomially independent over π(D) if
and only if r is polynomially independent over D.

Proof. (a) Let f ∈ D[X] be such that f(r) = 0. Then π(f(r)) = 0, and
thus f(π(r)) = 0, where f is the reduction of f modulo PT . Since π(r)
is polynomially independent over π(D), we must have f ∈ π(m)[X], and
thus all coefficients of f are in π−1(π(m)) = m. Hence, r is polynomially
independent.

(b) By the previous point, we need only to show that if r is polyno-
mially independent over D then π(r) is polynomially independent over
π(D).

Let f ∈ π(D)[X] be such that f(π(r)) = 0. Let f ∈ D[X] be a
polynomial whose reduction modulo P is f : then, π(f(r)) = 0, so
f(r) ∈ PT = P ⊆ m, and thus f ∈ mD[X]. Thus f ∈ π(m)π(D)[X]
and so π(r) is polynomially independent. □

Remark 4.2. Note that the converse of part (a) of the lemma does not
hold without the hypothesis PT = P : for example, suppose {r1, r2} is a
polynomially independent set over D, and suppose there is a valuation
overring V with center m such that r21 − r2 ∈ mV . (For example, this
can happen if D is a three-dimensional regular local ring, r1 = x/z
and r2 = y2/z2, where x, y, z generate m.) Then, π(r1)

2 = π(r2), so
{π(r1), π(r2)} is not algebraically independent. The point in which the
proof fails is that f(r1, r2) will be in mV , but not in D (and so not in
m), so that we cannot use the polynomial independence of {r1, r2}.
We also need a result about a “change of basis”-like property.

Proposition 4.3. Let (D,m) be a local domain and let F be a field
containing D Let r := {rα | α ∈ A} ⊆ F be polynomially independent
over D and, for every α ∈ A, let ϕα ∈ D(t), where t is an indeterminate
over D, be such that its reduction modulo mD(t) is not constant. Let
ϕ(r) := {ϕα(rα) | α ∈ A}. Then, ϕ(r) is polynomially independent
over D.
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Proof. Let ϕ ∈ D(t). Then, ϕ = P/Q for some P,Q ∈ D[t] such that
Q /∈ mD[t]; hence, if r is an element that is polynomially independent
then Q(r) /∈ mD[r] and thus ϕ(r) ∈ D(r) ⊆ D[r]mD[r]. Therefore,
ϕ(r) ⊆ D(r).
Let π be the quotient of D(r) over its maximal ideal. Then, π(r) is a

transcendence basis of (D/m)(X); moreover, π(ϕα(rα)) = ϕα(π(rα)) for
every α, where ϕα is the reduction of ϕα modulo mD(t). Since no ϕα is
a constant, the set {ϕα(π(rα)) | α ∈ A} = π(ϕ(r)) is algebraically inde-
pendent over D/m, i.e., polynomially independent; by Lemma 4.1(a),
ϕ(r) is polynomially independent over D. The claim is proved. □

We call an indexed set ϵ := {ϵα | α ∈ A} a ±1-sequence if ϵα ∈
{−1,+1} for all α.

Corollary 4.4. Let r := {rα | α ∈ A} ⊆ K be a polynomially in-
dependent set, and let ϵ := {ϵα | α ∈ A} be a ±1-sequence. Then,
r′ := rϵ := {rϵαα | α ∈ A} is polynomially independent.

Proof. Both ϕ(t) = t and ϕ(t) = 1/t are elements of D(t) \mD(t); the
claim now follows from Proposition 4.3. □

Proposition 4.5. Let (D,m) be a local domain, let P be a prime ideal
of D and let V be a valuation ring containing D such that PV = P .
Then,

dimp(K/D) = dimp(Q(V/P )/(D/P ))

= dimp(Q(D/P )/(D/P )) + trdeg(Q(V/P )/Q(D/P )).

Note that, if PV = V , then the quotient field of V coincides with
the quotient field of D.

Proof. Let r be a polynomially independent subset of Q(V ). For ev-
ery rα ∈ r, either r or r−1 is in V ; let it be sα. By Corollary 4.4,
s := {sα | α ∈ A} is polynomially independent, it is contained in
V and clearly it has the same cardinality of r. By Lemma 4.1(a),
π(s) is polynomially independent over D/P , and thus dimp(K/D) ≤
dimp(Q(V/P )/(D/P )).

Conversely, if s ⊆ Q(V/P ) is polynomially independent over D/P ,
then in the same way we can suppose s ⊆ V/P (since V/P is again a val-
uation domain); any r such that π(r) = s is polynomially independent
(by Lemma 4.1(b)) and thus dimp(K/D) ≥ dimp(Q(V/P )/(D/P )).
Therefore, dimp(K/D) = dimp(Q(V/P )/(D/P )).

The second equality follows from the first part of the proof and Corol-
lary 3.7. □

Example 4.6. Let D := A + XL[[X]], where A is a local integral
domain and L a field containing A. Then, we can apply the previous
theorem to P := XL[[X]] and V := L[[X]], obtaining

dimp(K/D) = dimp(L/A) = dimp(Q(A)/A) + trdeg(L/Q(A)).
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For example, if A = k is a field, then dimp(K/D) will be exactly the
transcendence degree of L over k.

IfA is a valuation domain, then dimp(Q(A)/A) = 0, and so dimp(K/D) =
trdeg(L/Q(A)), while dim(D) = dim(A) + trdeg(L/Q(A)); hence, for
any pair (n,m) with n ≤ m we can find a domain D with dim(D) = n
and dimp(D) = m by choosing A of dimension n and L of transcendence
degree m− n.

5. Seidenberg transforms

Definition 5.1. Let (D,m) be a local domain, and let r be a polyno-
mially independent set over D. An overring T of D is a Seidenberg
transform of D with respect to r if there is a ±1 sequence ϵ such that T
is the localization of D[rϵ] at a maximal ideal containing m. We denote
by Sr(D) (or simply Sr if there is no danger of confusion) the set of
Seidenberg transforms of D with respect to r.

Example 5.2. Let (D,m) be a regular local ring of dimension 2 with
m = (x, y). Then, the Seidenberg transforms with respect to r = {x/y}
are exactly the local quadratic transforms of D.

Lemma 5.3. Let r be a polynomially independent set over D, let ϵ be a
±1-sequence, and let T ∈ Sr(D). If D[rϵ] ⊆ T , then T is a localization
of D[rϵ].

Proof. By definition, there is a ±1-sequence ϵ′ such that T is a local-
ization of D[rϵ

′
]; without loss of generality, all members of ϵ′ are equal

to 1, i.e., D[rϵ
′
] = D[r]. Let S be the set of rα such that ϵα = −1;

then, r−1
α belongs to T for all such S, and thus S−1D[r] ⊆ T ; in partic-

ular, T is a localization of S−1D[r]. By construction, S−1D[r] contains
D[rϵ], and furthermore S−1D[r] is a localization of D[rϵ]; hence, T is
a localization of D[rϵ]. □

Proposition 5.4. Let r be a polynomially independent set over D and,
for every T ∈ Sr(D), let ∆T := {V ∈ Zarmin(D) | T ⊆ V }. Then, every
∆T is closed in the constructible topology, and {∆T | T ∈ Sr(D)} is a
partition of Zarmin(D).

Proof. Each ∆T is the counterimage of the maximal ideal of T under
the center map; since the center map is continuous, it follows that ∆T

is closed in the Zariski and thus in the constructible topology.
Suppose V ∈ Zarmin(D). Then, for each rα ∈ r at least one of rα

and r−1
α is in V , say rϵαα ∈ V ; hence, if ϵ := {ϵα | α ∈ A}, then

D′ := D[rϵ] ⊆ V . Since V is minimal over D, its center on D′ is a
maximal ideal M containing m; thus, T := D′

M ⊆ V . By definition,
T is a Seidenberg transform of D with respect to m, and so V ∈ ∆T ;
hence, Zarmin(D) is contained in the union of all the ∆T .
Suppose that ∆T ∩ ∆T ′ ̸= ∅, say V is in the intersection. If T and

T ′ are both contained in the same D[rϵ], then by Lemma 5.3 they are
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both localization of D[rϵ] at a maximal ideal; however, the center of V
on D[rϵ] contains both maximal ideals,and thus it must be T = T ′. □

Lemma 5.5. Let r ⊆ F be a polynomially independent set over the
local ring (D,m), and let k be the residue field of D. Then, the quotient
map π : D(r) −→ D(r)/mD(r) ≃ k(X) induces a homeomorphism

π0 : Sr(D) −→ Sπ(r)(k),

T 7−→ π(T ),

with respect to the Zariski topology.

Proof. By construction, all Seidenberg transforms with respect to r are
contained in the Nagata ring D(r). By Remark 2.8, the image of r in
k(X) is just the set X of indeterminates, and thus π(r) is polynomially
independent and it makes sense to consider Sπ(r)(k). If T ∈ Sr(D),
then without loss of generality T = D[r]P for some maximal ideal
P containing m; thus, π0(T ) = T/(mD(r) ∩ T ) = T/mT is just the
localization of k[X] at the image of P under π. In particular, π0 is
well-defined; it is surjective since π−1(k[X]Q) is just the localization of
D[r] at π−1(Q), and it is clearly injective. To see that it is a homeo-
moprhism, let B(z) := {T ∈ Sr(D) | z ∈ T}, for z ∈ F be a subbasic
open set. Then, π0(B(z)) = B(π(z)) (thus π0 is open), and if w ∈ k(X)
then π−1

0 (B(w)) = B(w′), where w′ is any element such that π(w′) = w
(thus π0 is continuous). The claim is proved. □

Theorem 5.6. Let r := {r1, . . . , rn} be a polynomially independent set
over the local ring (D,m), and let k be the residue field of D. Then,
there is a homeomorphism between Sr(D) and the product (P1

k)
n (when

both are endowed with the respective Zariski topology).

Note that the Zariski topology on (P1
k)

n is not the product topology
of the Zariski topologies on the P1

ks.

Proof. By Lemma 5.5, Sr(D) is homeomorphic with Sr′(k), where r′

is polynomially independent over k; therefore, without loss of gener-
ality we can suppose that D = k is a field and that r is algebraically
independent over D.

Fix a ±1-sequence ϵ = (ϵ1, . . . , ϵn), and consider the open subset
B(rϵ) of Sr(k). By Lemma 5.3, the elements of B(rϵ) are the localiza-
tions of k[rϵ] at the maximal ideals, and thus, since k[rϵ] ≃ k[X], the
localization map λ : Max(k[rϵ]) −→ Sr(k), M 7→ k[rϵ]M , is a homeo-
morphism onto its image. By definition, An

k is the set of maximal ideals
of k[X], and thus we have a homeomorphism ψϵ : B(rϵ) −→ An

k .
The points of An

k can also be expressed as as n-uple (α1, . . . , αn)
of elements of the algebraic closure k, where αi is the image of Xi

under the quotient map of k[X] onto the residue field of the maximal
ideal M corresponding to the point; in this interpretation, (α1, . . . , αn)
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and (α′
1, . . . , α

′
n) represent the same point if and only if there is a k-

automorphism ν such that ν(αi) = α′
i for every i. Moreover, the same

holds for P1
k. Hence, we can define a topological embedding

σϵ : An
k −→ (P1

k)
n,

(α1, . . . , αn) 7−→ (β1, . . . , βn)

such that

βi :=

{
[1 : αi] if ϵi = +1,

[αi : 1] if ϵi = −1.

Therefore, the composition Ψϵ := σϵ ◦ ψϵ : B(rϵ) −→ (P1
k)

n is a topo-
logical embedding for every ϵ.

Suppose now that T ∈ B(rϵ) ∩ B(rϵ′); we claim that Ψϵ(T ) =
Ψϵ′(T ). Let ψϵ(T ) := (α1, . . . , αn) and ψϵ′(T ) := (α′

1, . . . , α
′
n), while

set Ψϵ(T ) := (β1, . . . , βn) and Ψϵ′(T ) := (β′
1, . . . , β

′
n).

By construction, αi is equal to the image of rϵii under the quotient
T −→ T/mT . If ϵi = ϵ′i, we have αi = α′

i and, by definition of the maps
σϵ and σϵ′ , also βi = β′

i. If ϵi ̸= ϵ′i, then T must contain both ri and
r−1
i , which thus do not belong to its maximal ideal and are mapped
to units of k under the quotients. Hence, α′

i = α−1
i ; if, without loss of

generality, ϵi = +1 and ϵ′i = −1, we have

β′
i = [α′

i : 1] = [α−1
i : 1] = [1 : αi] = βi.

Therefore, βi = β′
i for all i, and so Ψϵ(T ) = Ψϵ′(T ).

Since each element of Sr(k) is the localization of some B(rϵ), these
sets are a cover of Sr(k), and so the maps Ψϵ can be glued into a single
map Ψ : Sr(k) −→ (P1

k)
n, that is continuous and open since every Ψϵ

is a homeomorphism; to prove that Ψ itself is a homeomorphism it is
enough to show that it is bijective.

We first show that Ψ is surjective. Let (β1, . . . , βn) ∈ (P1
k)

n, and
suppose without loss of generality that β1, . . . , βs are equal to [0 : 1]
and that βs+1, . . . , βn are different from [0 : 1], say βt := [1 : αt].
Let ϵ be the ±1-sequence having −1 as the first s elements and +1
as the other elements; then, (β1, . . . , βn) = σϵ(0, . . . , 0, αs+1, . . . , αn).
Since ψϵ is a homeomorphism, there is a T ∈ B(rϵ) such that ψϵ(T ) =
(0, . . . , 0, αs+1, . . . , αn), and so Ψ(T ) = Ψϵ(T ) = (β1, . . . , βn). Thus Ψ
is surjective.

To prove that Ψ is injective,, suppose that Ψ(T ) = Ψ(T ′) = (β1, . . . , βn).
As above, without loss of generality β1, . . . , βs are equal to [0 : 1], while
βs+1, . . . , βn are different from [0 : 1], say βt := [1, αt]; define ϵ as above.
Then, both T and T ′ belong to B(rϵ), and since Ψϵ is injective we have
Ψ(T ) = Ψϵ(T ) ̸= Ψϵ(T

′) = Ψ(T ′), a contradiction. Hence Ψ is injec-
tive.
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Therefore, Ψ is a bijective map such that all its restrictions to B(rϵ)
are homeomorphisms; it follows that Ψ itself is a homeomorphism, as
claimed. □

Remark 5.7. Despite the apparent symmetry between the rings D[r]
andD[rϵ] (where r is polynomially independent and ϵ is a±1-sequence),
in general the Seidenberg transforms with respect to r are not isomor-
phic to each other.

For example, let k be a field and A = k[X,XY,XY 2, . . . , XY n, . . .];
let P be the maximal ideal generated by the monomials and set D :=
AP . Then, D is a local domain with maximal ideal m = PD and Y is
polynomially independent over D. Consider the Seidenberg transforms
of D with respect to {Y }.

The ringD[Y ] is a localization of the polynomial ringA[Y ] = k[X, Y ];
in particular, all its localizations are regular local rings. On the other
hand, in the ring D[Y −1], for every n the element Y −n divides X;
it follows that, in the localization D[Y −1](m,Y −1), X belongs to the
intersection of the ideals generated by the powers Y −n. Therefore,
D[Y −1](m,Y −1) cannot be a Noetherian ring (in fact, it is a two-dimensional
valuation ring), and thus it cannot be isomorphic to the other Seiden-
berg transforms.

6. Maximal polynomially independent subsets

We say that r is a maximal polynomially independent set (of F over
D) if r cannot be enlarged to a bigger polynomially independent set,
i.e., if no r′ ⊋ r is polynomially independent. It’s easy to see that such
sets exist.

Proposition 6.1. Let r be a polynomially independent set over D.
Then, there is a maximal polynomially independent set r′ containing r.

Proof. It is enough to apply Zorn’s lemma to the set of polynomially
independent subsets of F , keeping in mind Proposition 2.6. □

A natural question is whether all maximal polynomially independent
set of the same field have the same cardinality, like it happens for
algebraically independent elements in a field extension; this is in general
not true. We shall characterize when this happens in the Noetherian
case and then give two sufficient conditions in the general case.

Proposition 6.2. Let D be a Noetherian local integrally closed domain
with quotient field K. Then, all maximal polynomially independent set
of K over D have the same cardinality if and only if D is catenarian.

Proof. By [7, Theorem 4.18] (applied withR = S = D), D is catenary if
and only if every maximal set of analytically independent elements have
the same cardinality. Since x0, . . . , xk are analytically independent if
and only if x1/x0, . . . , xk/x0 are polynomially independent (see Remark
2.17), the claim follows. □
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Proposition 6.3. Let D be an integral domain. Suppose there is a
maximal polynomially independent set r such that D(r) is integrally
closed. Then, all maximal polynomially independent subsets over D
have the same cardinality.

Proof. By Proposition 2.9 and Corollary 3.3, since r is maximal the
ring D(r) is a Prüfer domain and thus a valuation domain.

Let s be a maximal polynomially independent set. For every α ∈ A,
define:

ϕα(t) :=


t if sα ∈ D(s) \mD(s),

t+ 1 if sα ∈ mD(s),

t−1 + 1 if sα /∈ D(s).

Then, each ϕα is an invertible element of D(t) whose reduction modulo
mD(t) is not constant; by Proposition 4.3, ϕ(s) := {ϕα(sα) | α ∈ A}
is polynomially independent over D. Furthermore, since D(r) is a
valuation domain ϕα(sα) ∈ D(r) \mD(r) for every α.

Let π be the quotient of D(r) onto its residue field. By Proposition
4.3, π(ϕ(s)) is algebraically independent over D/m; hence, |s| ≤ |r|,
since the transcendence degree of the residue field of D(r) over D/m is
|r|.

Suppose that |s| < |r|: then, we can find s0 ∈ D(r) \ mD(r) such
that π(ϕ(s)) ∪ π(s0) is algebraically independent over D/m, and thus
by Lemma 4.1(a) ϕ(s) ∪ {s0} is polynomially independent over D.
Applying again Proposition 4.3, we see that ϕ−1(ϕ(s))∪{s0} = s∪{s0}
is polynomially independent over D. This contradicts the maximality
of s, and thus it cannot be that |s| < |r|. Therefore, |s| = r. Since s
was arbitrary, the claim is proved. □

Corollary 6.4. Let D be a local Noetherian integral domain that is
not catenarian. For every maximal polynomially independent set r, the
ring D[r] is not integrally closed.

Proof. If it were integrally closed, so would be D(r), and so all maximal
polynomially independent sets would have the same cardinality. This
contradicts Proposition 6.2. □

When (D,m) is a regular local ring, and x ∈ m\m2, then it is known
[1, (1.4)] that the localization of D[m/x] at (m/x)(D[m/x]), and thus
D(m/x), is integrally closed; hence, Proposition 6.3 gives an alternate
proof of the fact that in this case all polynomially independent subsets
have the same cardinality. It would be interesting to characterize when
the hypothesis of Proposition 6.3 holds.

7. The polynomial dimension of a Noetherian domain

When D is a Noetherian domain, we can obtain a precise calculation
of the polynomial dimension.
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Lemma 7.1. Let (D,m) be a Noetherian local domain, and let r ⊆ K
be a maximal polynomially independent set. Then, mD[r] has height 1
in D[r].

Proof. Note first that r is finite, since by Corollary 3.8 |r| ≤ dimpD ≤
dimvD − 1 <∞ since D is Noetherian.
The polynomial dimension of D′ := D(r) is 0: indeed, if r′ were

polynomially independent over D′, then by Proposition 2.9 r ∪ {r′}
would be polynomially independent over D, against the maximality
of r. By Corollary 3.3, the integral closure of D′ is a Prüfer domain;
however, since r is finite, D′ is Noetherian, and thus it must have
dimension 1, i.e., mD[r] has height 1 in D[r]. □

The following is a new way to see a well-known result (see e.g. [3,
Lemme 2]).

Corollary 7.2. Let D be a Noetherian domain and let p be a prime
ideal of D. Then, there is a discrete valuation overring V of D with
center p.

Proof. Without loss of generality, we can suppose that D is local with
maximal ideal p = m. We can find a maximal polynomially indepen-
dent set r: by the previous lemma, D(r) is a Noetherian local domain
of dimension 1 whose maximal ideal contracts to m. Since all valu-
ation overrings of a one-dimensional Noetherian domain are discrete,
the claim follows. □

Lemma 7.3. Let (D,m) be a local domain, let P ⊊ m be a prime
ideal, and let r be a set that is polynomially independent over DP . Let
S := D \ P . Then, D(r) ⊊ DP (r) = S−1D(r).

Proof. It is obvious that D(r) ⊆ S−1D(r) ⊆ DP (r). By definition,
DP (r) is the quotient of DP [X] by the kernel of the valuation homo-

morphism ϕ
(DP )
r over DP , which is exactly the localization of the kernel

of the valuation homomorphism ϕ
(D)
r relative to D at the multiplica-

tively closed subset S; thus,

DP (r) =
S−1D[X]

S−1 kerϕ
(D)
r

= S−1D(r).

To conclude the proof, let t ∈ m \ P . Then, t−1 ∈ DP ⊆ DP (r).
However, if t−1 ∈ D(r) then 1 = tt−1 ∈ mD(r), against the fact that
mD(r) is the maximal ideal of D(r). Then, t−1 ∈ DP (r) \ D(r), and
the claim is proved. □

The next theorem is a direct consequence of [6, Chapter 4, Theorem
3] and of the correspondence between analytically and polynomially
independent sets (see Remark 2.17). We give an alternate proof with
a more overring-centric approach; note that the correspondence also
implies that this also gives a proof of [6, Chapter 4, Theorem 3].
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Theorem 7.4. Let (D,m) be a Noetherian local domain of dimension
n ≥ 2. Let x1, . . . , xn be a system of parameters. Then, {x1/xn, . . . , xn−1/xn}
is a polynomially independent set of K over D.

Proof. We proceed by induction on n: suppose first that n = 2. There
is a maximal ideal M of the integral closure D of D that is minimal
over (x1, x2); hence, x1, x2 is a system of parameters of T := DM . In
particular, T contains neither x1/x2 nor x2/x1; since T is integrally
closed, by Proposition 2.15(b) x1/x2 is polynomially independent over
T , and by Lemma 2.13 is polynomially independent over D.

Suppose now that the claim holds up to n − 1. Let P be a mini-
mal prime over x2, . . . , xn: then, x2, . . . , xn is a system of parameters
over DP , and by inductive hypothesis r := {x2/xn, . . . , xn−1/xn} is a
polynomially independent set over DP and thus over D. We claim that
x1, xn is a system of parameters over D(r).

Indeed, (x1, . . . , xn)D(r) = (x1, xn)D(r) since, for 2 ≤ i ≤ n − 1,
xi = xn

xi

xn
∈ xnD(r) as xi

xn
∈ D(r). Moreover, mD[X] is minimal over

(x1, . . . , xn)D[X], so that since mD[r] is minimal over (x1, . . . , xn)D[r]
and thus (since D(r) is a localization of D[r]) also mD(r) is minimal
over (x1, . . . , xn)D(r). To conclude, we need to prove that D(r) has
dimension 2. If not, then it must have dimension 1 (since D(r) is Noe-
therian and its maximal ideal is minimal over a 2-generated ideal), and
since it is also local its unique localizations are itself and its quotient
field. By Lemma 7.3, it would follow that DP (r) is a field, against the
fact that its maximal ideal PDP (r) is nonzero. Hence x1, xn is a system
of parameters over D(r).

Applying again the case n = 2, we have that x1/xn is polynomially
independent overD(r); by Proposition 2.9, it follows that {x1/xn}∪r =
{x1/xn, . . . , xn−1/xn} is polynomially independent over D. □

Corollary 7.5. Let D be a Noetherian domain that is not a field.
Then, dimp(K/D) = dim(D)− 1.

Proof. Without loss of generality we can suppose that D is local. If
dim(D) = 1 then the integral closure D of D is a PID, in particular a
Prüfer domain, and so dimp(K/D) = 0 by Corollary 3.3. If dim(D) >
1, then Theorem 7.4 gives a polynomially independent set of cardinality
dim(D) − 1, and as in the end of the previous proof dimp(K/D) ≤
dimv(D) − 1 = dim(D) − 1; hence dimp(K/D) = dim(D) − 1, as
claimed. □
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