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Abstract. We prove a necessary and sufficient criterion for the
ring of integer-valued polynomials to behave well under localiza-
tion. Then, we study how the Picard group of Int(D) and the
quotient group P(D) := Pic(Int(D))/Pic(D) behave in relation to
Jaffard, weak Jaffard and pre-Jaffard families; in particular, we
show that P(D) ≃

⊕
P(T ) when T ranges in a Jaffard family of

D, and study when similar isomorphisms hold when T ranges in
a pre-Jaffard family. In particular, we show that the previous iso-
morphism holds when D is an almost Dedekind domain such that
the ring integer-valued polynomials behave well under localization
and such that the maximal space of D is scattered with respect to
the inverse topology.

1. Introduction

Let D be an integral domain with quotient field K. A polynomial
f(X) ∈ K[X] is integer-valued over D if f(d) ∈ D for every d ∈ D;
the set of all integer-valued polynomials is a ring, denoted by Int(D).
The ring of integer-valued polynomials presents several properties that
makes it a very interesting subject of study: for example, it is a simple
example of a construction that does not involve limits, infinite fami-
lies of indeterminates, or intersections of complicated families of rings,
and that rather consistently produces rings that are non-Noetherian,
even starting from a Noetherian ring. Furthermore, this construction
can be tailored to several topics (for example, considering polynomials
that are integer-valued only on a subset) in order to obtain examples
of phenomenon that are difficult to obtain with other constructions.
We refer the reader to the book [2] for background and results about
integer-valued polynomials.

One particular problem of the theory of integer-valued polynomials
is its relationship with localization: given a domain D and a multi-
plicatively closed set, under what hypothesis the equality S−1Int(D) =
Int(S−1D) holds? Several special cases have been proved (see e.g. [2,
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Section 1.2], [3, Proposition 2.1], [8]); we give in Section 3 a neces-
sary and sufficient criterion for this to happen, involving the conductor
(D : f(D)), and show how the known criterion descend from ours.
We also deal not only with localizations but, more generally, with flat
overrings of the base domain D.

We then concentrate on generalizing globalization properties for the
Picard group Pic(Int(D)) of Int(D). Unless Int(D) is trivial (i.e., un-
less Int(D) = D[X]), the Picard group of Int(D) is usually much larger
than the Picard goup of D, and can be calculated only in very spe-
cial circumstances (for example, for discrete valuation domains and for
some kinds of one-dimensional Noetherian local domains [2, Chapter
6]). To obtain a description of Pic(Int(D)) in more cases, the main tool
is globalization: for example, when D is a one-dimensional Noetherian
domain, there is always an exact sequence

0 −→ Pic(D) −→ Pic(Int(D)) −→
⊕

M∈Max(D)

Pic(Int(DM)) −→ 0,

which allows at least to understand the main features of Pic(Int(D)).
In this context, our first result (given in two different forms in The-
orems 4.4 and 4.7) gives a generalization of the previous exact se-
quence, proving that a similar result holds if, instead of the family
{DM | M ∈ Max(D)}, one takes a Jaffard family of D, a particular
kind of family of flat overrings with strong independence properties
(see Section 2.2 for a precise definition). The result becomes more
striking using the int-polynomial Picard group P(D), defined as the
quotient between Pic(Int(D)) and the image of the canonical inclusion
of Pic(D): in this terminology, the theorem guarantees that P(D) and
the direct sum

⊕
{P(T ) | T ∈ Θ} are isomorphic for any Jaffard family

Θ.
In Sections 6 and 7, we further generalize this result by considering

weak Jaffard families and pre-Jaffard families, that are obtained by
relaxing the conditions defining a Jaffard family. In the former case,
we obtain in Theorem 6.4 an exact sequence

0 −→
⊕
T∈Θ
T ̸=T∞

P(T ) −→ P(D) −→ P(D,T∞) −→ 0

(see below for the definition of T∞ and P(D,T∞)). For pre-Jaffard
families, we use the result on weak Jaffard families to set up a transfinite
inductive reasoning (which uses the derived sequence of the pre-Jaffard
family, see Section 2.2) that allows to prove, under some additional
hypothesis, the existence of an exact sequence

0 −→
⊕

T∈Θ\Tα

P(T ) −→ P(D) −→ P(D,Tα) −→ 0
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(see below for the definition of Tα). In particular, when also the pre-
Jaffard family is sharp, one obtain an isomorphism P(D) ≃

⊕
{P(T ) |

T ∈ Θ}, just like in the case of Jaffard families. In particular, such
an isomorphism holds when D is an almost Dedekind domain such
that Int(D) behaves well under localization and such that the maximal
space of D is scattered in the inverse topology (Corollary 7.6).

2. Preliminaries

Throughout the paper, D is an integral domain with quotient field
K.
An overring of D is a ring contained between D and K; we denote

by Over(D) the set of all overrings of D. A flat overring is an overring
that is flat as a D-module; in particular, every localization and every
quotient ring of D is a flat overring. If T is a flat overring of D, then
for every prime ideal P of T we have TP = DP∩D; in particular, every
flat overring is an intersection of localizations of D, and every (prime)
ideal of T is the extension of a (prime) ideal of D [1, 18].
Let I be a D-submodule of K and A ⊆ K. The conductor of A in I

is (I : A) := {x ∈ K | xA ⊆ I}; moreover, (I : A) = (I : AD), where
we denote by AD the D-submodule generated by A. The conductor is
always a D-submodule of K, and can be (0). If T is a flat overring of
D and J is a finitely generated D-module, then (I : J)T = (IT : JT )
[15, Theorem 7.4].

A fractional ideal of D is a D-submodule I of K such that (D :
I) ̸= (0), i.e. such that xI ⊆ D for some nonzero x ∈ K. A frac-
tional ideal I is invertible if there is a fractional ideal J such that
IJ = D; equivalently, I is invertible if it is finitely generated and lo-
cally principal (i.e., IDM is principal for every M ∈ Max(D)). The set
of invertible ideal is an abelian group, denoted by Inv(D), having as a
subgroup the set Princ(D) of principal fractional ideals of D; the quo-
tient Inv(D)/Princ(D) is called the Picard group of D, and is denoted
by Pic(D).

2.1. Topologies. LetD be an integral domain. The spectrum Spec(D)
of D can be endowed, in addition the usual Zariski topology, with an-
other topology, called the inverse topology. The inverse topology is
defined as the topology having, as a subbasis of open sets, the closed
sets of the Zariski topology. Under the inverse topology, the spectrum
is still a compact T1 space.
The set Over(D) of the overrings of D can be endowed with a natural

topology, called the Zariski topology, whose subbasic open sets are the
ones in the form

B(x1, . . . , xn) := {T ∈ Over(D) | x1, . . . , xn ∈ T},
as x1, . . . , xn varies in K. The Zariski topology on Over(D) is inti-
mately connected with the Zariski topology on the spectrum Spec(D)
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of D: for example, the localization map P 7→ DP is a topological
embedding when Spec(D) and Over(D) are endowed with the respec-
tive Zariski topologies [7, Lemma 2.4]. Moreover, the Zariski topol-
ogy has several good properties: for example, it is a spectral space, in
the sense that there is a ring R (not explicitly constructed) such that
Spec(R) ≃ Over(D) [9, Proposition 3.5].

The inverse topology on Over(D) is the topology such that theB(x1, . . . , xn)
are a subbasis of closed sets. This topology is closely connected with
the properties of representations of D as intersection of overrings (see
e.g. [16]). Properties of the inverse topology, in the context of spectral
spaces, can be found in [6].

We shall use many times the following result [10, Corollary 5]: if
Θ ⊆ Over(D) is compact, with respect to the Zariski topology, and if
I is a flat D-submodule of K, then

I

(⋂
T∈Θ

T

)
=
⋂
T∈Θ

IT.

2.2. Jaffard and pre-Jaffard families. D be an integral domain
with quotient field K. We say that a subset Θ ⊆ Over(D) is a pre-
Jaffard family of D if the following conditions hold [21]:

• either Θ = {K} or K /∈ Θ;
• every T ∈ Θ is flat over D;
• Θ is complete: if I is an ideal of D, then I =

⋂
{IT | T ∈ Θ};

• Θ is independent : if T ̸= T ′ are in Θ, then TT ′ = K;1

• Θ is compact in the Zariski topology.

For example, if D is a one-dimensional domain, the family Θ = {DM |
M ∈ Max(D)} is a pre-Jaffard family of D.

In particular, if Θ is a pre-Jaffard family and P is a nonzero prime
ideal of D, then there is exactly one T ∈ Θ such that PT ̸= T .

A family Θ of overrings of D is locally finite if every nonzero x ∈ D
is a nonunit in only finitely many elements of Θ; if Θ = {DM | M ∈
Max(D)} is locally finite, we say that D itself is locally finite. Any
locally finite family of overrings is compact, with respect to the Zariski
topology (see e.g. the proof of [10, Corollary 8]).

A Jaffard family is a pre-Jaffard family that is locally finite. Jaffard
families enjoy several good factorization properties that make them
a non-local generalization of h-local domains and thus of Dedekind
domains; see for example [11, Section 6.3], [19, Section 4] or [20].

We say that an overring T of D is a Jaffard overring if T belongs
to a Jaffard family of D. Given a Jaffard family Θ of D, we can
construct a well-ordered decreasing chain {N α(D)} of subsets of Θ

1This is not the best way to define independence for general families of overrings,
but it is equivalent for flat overrings, and is the property we will be using; see [21,
Lemma 3.4 and Definition 3.5].
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and a corresponding ascending chain {Tα} of overrings of D in the
following way. Given an ordinal number α, we set: [21, Section 6]

• if α = 0, N 0(Θ) := Θ and T0 := D;

• Tα :=
⋂

T∈Nα(D)

T .

• if α = γ + 1 is a limit ordinal, then N α(D) is the set of all
elements of N γ(D) that are not Jaffard overrings of Tγ;

• if α is a limit ordinal, then N α(D) :=
⋂
β<α

N β(D).

Note that, in [21], the set N α(D) was denoted simply by Θα. Each
N α(D) is a pre-Jaffard family of Tα (in particular, it is compact with
respect to the Zariski topology) [21, Proposition 6.1], and it is a closed
subset of Θ, with respect to the inverse topology. We call {Tα} the
derived sequence of Θ.

If N 1(Θ) is a single element T∞, we say that Θ is a weak Jaffard
family pointed at T∞. Weak Jaffard families are usually the stepping
stones in inductive arguments used to generalize properties of Jaffard
families to pre-Jaffard families.
When N α(Θ) = ∅ for some α (equivalently, when Tα = K) we say

that Θ is sharp.

2.3. Homology. We shall frequently use a basic results of homological
algebra, the snake lemma: if

0 A1 B1 C1 0

0 A2 B2 C2 0

f g h

is a commutative diagram of abelian groups (or, more generally, of
modules over a ring R) with exact rows, then the sequence

0 −→ ker(f) −→ ker(g) −→ ker(h) −→ coker(f) −→ coker(g) −→ coker(h) −→ 0

is exact. In particular, if f, g, h are injective, then the sequence of
cokernels

0 −→ coker(f) −→ coker(g) −→ coker(h) −→ 0

is exact.

3. When integer-valued polynomials localize

In this section, we find a necessary and sufficient criterion for Int(D)
to localize at a flat overring, i.e., for when the equality Int(D)T =
Int(T ) holds. Before doing so, we introduce a notion that generalizes
Jaffard families and Jaffard overrings.
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Definition 3.1. Let D be an integral domain and Θ ⊆ Over(D). We
say that Θ is a t-Jaffard family of D if:

• either Θ = {K} or K /∈ Θ;
• every T ∈ Θ is flat over D;
• Θ is independent;
• Θ is locally finite;
•
⋂
{T | T ∈ Θ} = D.

We say that an overring T of D is a t-Jaffard overring if it belongs to
a t-Jaffard family of D.

Note that, in particular, every Jaffard family is a t-Jaffard family,
and thus every Jaffard overring is a t-Jaffard overring. The converse
does not hold: for example, if D is a Krull domain, then the family of
localizations at its prime ideals of height 1 is a t-Jaffard family, but it
is not a Jaffard family unless D has dimension 1.

The following proposition can be seen as a variant of [19, Lemma
5.3].

Proposition 3.2. Let T be a t-Jaffard overring of D. Then, for every
fractional ideal I of D, we have (D : I)T = (T : IT ).

Proof. Let Θ be a t-Jaffard family of D containing T , and let A :=⋂
{S | S ∈ Θ \ {T}}. Since Θ \ {T} is locally finite, it is compact, and

thus, by [10, Corollary 5]

AT =

 ⋂
S∈Θ\{T}

S

T =
⋂

S∈Θ\{T}

ST = K.

Hence,

(D : I)T = (T ∩ A : I)T = ((T : I) ∩ (A : I))T = (T : I)T ∩ (A : I)T.

We have (T : I)T = (T : IT )T = (T : IT ); on the other hand,
(A : I) is an A-ideal, and thus (A : I)T = (A : I)AT = K. Hence,
(D : I)T = (T : IT ), as claimed. □

We now go back to studying integer-valued polynomials. The fol-
lowing is a slight generalization of [2, Theorem I.2.1].

Proposition 3.3. Let T be a flat overring of D and f ∈ K[X]. Then
f(D)T = f(T )T .

Proof. Clearly f(D) ⊆ f(T ), and thus f(D)T ⊆ f(T )T . Conversely,
let t ∈ T : we need to show that f(t) ∈ f(D)T . Consider I := (f(D)T :
f(t)) = (f(D)D : f(t))T . If f(t) /∈ f(D)T , then (f(D)D : f(t)) ⊆ P
for some prime ideal P such that PT ̸= T ; hence, 1 /∈ (f(D)D :
f(t))DP = (f(D)DP : f(t)). However, f(D)DP = f(DP )DP by [2,
Theorem I.2.1] (since DP is a localization of D), and f(t) ∈ DP since
T ⊆ DP (by the flatness of T ). This is a contradiction, and thus
f(t) ∈ f(D)T and f(D)T = f(T )T . □
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Proposition 3.4. Let T be a flat overring of D, and let f ∈ K[X].

(a) f ∈ Int(D)T if and only if (D :D f(D))T = T .
(b) f ∈ Int(T ) if and only if (T :T f(D)T ) = T .

Proof. (a) If (D :D f(D))T = T , then 1 = d1t1 + · · · + dntn for some
di ∈ (D :D f(D)), ti ∈ T ; hence

f(X) = f(X)(d1t1 + · · ·+ dntn) =
n∑

i=1

(f(X)diti).

However, f(d)di ∈ D for all d ∈ D, since di ∈ (D :D f(D)), and thus
each f(X)di ∈ Int(D). Hence f(X) ∈ Int(D)T . Conversely, suppose
f ∈ Int(D)T . If T = DP for some prime ideal P , then Int(D)DP =
Int(D)P and thus there is an s ∈ D \ P such that sf ∈ Int(D); hence
s ∈ (D :D f(D)) and (D :D f(D))DP = DP . For the general case,
if f ∈ Int(D)T then f ∈ Int(D)DP for all prime ideals P of D such
that PT ̸= T (as T is flat, T ⊆ DP for all such P ), and thus (D :D
f(D))DP = DP ; the claim now follows from the fact that all maximal
ideals of T are extensions of prime ideals of D.

(b) If f ∈ Int(T ) then f(T ) ⊆ T and thus f(D)T ⊆ T ; hence
(T :T f(D)T ) = T . Conversely, if (T :T f(D)T ) = T then it contains
1, and thus f(D)T ⊆ T . Since f(D)T = f(T )T , we have f(T ) ⊆ T
and f ∈ Int(T ). □

Joining the two characterizations, we have our criterion.

Theorem 3.5. Let T be a flat overring of D. Then, Int(D)T = Int(T )
if and only if (D :D f(D))T = (T :T f(D)T ) for every f ∈ K[X].

Proof. It is enough to apply the two conditions of Proposition 3.4. □

As a consequence, we get back several known results about the pos-
sibility of localizing the ring Int(D). Recall that a Mori domain is a
domain whose divisorial ideals satisfy the ascending chain condition.

Proposition 3.6. Let T be a flat overring of D. Suppose that one of
the following conditions hold:

(a) T is a Jaffard overring of D;
(b) T is a t-Jaffard overring of D;
(c) D is one-dimensional and locally finite;
(d) [2, Theorem I.2.3] D is Noetherian;
(e) [3, Proposition 2.1] D is Mori.

Then, we have Int(D)T = Int(T ).

Proof. If T is a Jaffard or t-Jaffard overring, then (D : I)T = (T :
IT ) for all ideals I, and thus in particular for I = f(D)D. If D is
one-dimensional and locally finite, then every flat overring is a Jaffard
overring and we are in the previous case.
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If D is Noetherian, then f(D)D is finitely generated, and thus we
can bring the flat overring inside the conductor.

If D is Mori, then every ideal is strictly v-finite, and thus there is a
finitely generated ideal J ⊆ f(D)D such that (D : f(D)) = (D : J).
Hence,

(D : f(D))T = (D : J)T = (T : JT ) ⊇ (T : f(D)T ) ⊇ (D : f(D))T

and thus (D : f(D))T = (T : f(D)T ). □

We end this section with a result which will be useful alter.

Proposition 3.7. Let D be an integral domain, T a flat overring and
Λ be a complete family of flat overrings of T . If Int(D)S = Int(S) for
every S ∈ Λ, then Int(D)T = Int(T ).

Proof. Let f ∈ Int(T ): then, f(T ) ⊆ T ⊆ S for every S ∈ Λ, i.e.,
f ∈ Int(T, S) = Int(S) = Int(D)S. Hence,

f ∈
⋂
S∈Λ

Int(D)S =
⋂
S∈Λ

Int(D)TS = Int(D)T,

since Λ is complete over T . The claim is proved. □

4. The Picard group

When Int(D) is nontrival, a direct calculation of its Picard group can
only be done under very special circumstances, for example when D is
a discrete valuation ring or an analytically irreducible one-dimensional
domain [2, Proposition VIII.2.8 and Corollary VIII.3.10]. To reach
more cases, the main tool is globalization: for example, if D is one-
dimensional Noetherian domain, then there is a short exact sequence
[2, Theorem VIII.1.9]

0 −→ Pic(D) −→ Pic(Int(D)) −→
⊕

M∈Max(D)

Pic(Int(DM)) −→ 0.

In this section, we begin to extend the use of this kind of exact sequence
by considering the case of Jaffard families.

Definition 4.1. Let T be a flat overring of D. Then extension map
of Picard groups is the group homomorphism

ψD,T : Pic(D) −→ Pic(T ),

[I] 7−→ [IT ].

If Θ is a family of flat overrings of D, the Picard group of D relative
to Θ is

Pic(D,Θ) := {[I] ∈ Pic(D) | [IT ] = [T ] for all T ∈ Θ}.

If Θ = {T} we write Pic(D,T ) := Pic(D, {T}).
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Since ψD,T is a group homomorphism, Pic(D,Θ) is always a subgroup
of Pic(D) (indeed, it is the intersection of the kernels of the ψD,T , as T
ranges in Θ). When every element of Θ is local, Pic(D,Θ) = Pic(D).
The starting point of the globalization results of [2, Chapter VIII]

is an extension map from Int(D) to the direct product of Int(D)M =
Int(D)DM , asM ranges among the maximal ideals of D [2, Proposition
VIII.1.6]. Likewise, our study begins by examining the extension map

(1)
πΘ : Pic(Int(D)) −→

∏
T∈Θ

Pic(Int(T )),

[I] 7−→ ([IInt(T )]),

for some arbitrary family Θ of flat overrings.

Lemma 4.2. Let T be a flat overring of D. Then, Int(D)T is a flat
overring of Int(D).

Proof. Since T is flat, it is the colimit of a directed set {Mi} of free
D-modules; since each of these is contained in the quotient field of D,
there are xi such that Mi = xiD. It is straightforward to see that
Int(D)T is the colimit of {xiInt(D) = Int(D)Mi}, and thus it is flat
over Int(D). □

Proposition 4.3. Let Θ be a family of flat overrings of D. Then, there
is an exact sequence

0 −→ Pic(D,Θ) −→ Pic(Int(D))
πΘ−−−−→

∏
T∈Θ

Pic(Int(D)T ).

Proof. Let i : Pic(D,Θ) −→ Pic(Int(D)), I 7→ IInt(D) be the ex-
tension map; we need to show that i(Pic(D,Θ)) = ker πΘ. If [I] ∈
Pic(D,Θ), then I becomes principal in each T ∈ Θ, and thus πΘ ◦
i([I]) = [IInt(D)T ] is principal, i.e., i(Pic(D,Θ)) ⊆ kerπΘ.

Conversely, suppose [I] ∈ Pic(Int(D)) becomes principal in each
Pic(Int(D)T ). By [2, Remark VIII.1.5], we can suppose without loss of
generality that I is a unitary ideal of Int(D). Let J := I ∩D. For each
T , the ideal JT is principal and generated by an element of J ; hence,
IInt(D)T = JInt(D)T for each T ∈ Θ. Let Λ := {Int(D)T | T ∈ Θ};
then, the map ⋆Λ : I 7→

⋂
{IT | T ∈ Λ} is a star operation (see

e.g. [14, Chapter 32]) and I⋆Λ = (JInt(D))⋆Λ . Since I is invertible,
I = I⋆Λ , and analogously JInt(D) = (JInt(D))⋆Λ ; thus I = JInt(D).
Hence [J ] ∈ i(Pic(D,Θ)) and i(Pic(D,Θ)) ⊇ kerπΘ, as claimed. □

We now prove the first theorem of this section.

Theorem 4.4. Let Θ be a Jaffard family of D. Then, there is an exact
sequence

0 −→ Pic(D,Θ) −→ Pic(Int(D)) −→
⊕
T∈Θ

Pic(Int(T )) −→ 0.
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Proof. We first note that, by Proposition 3.6(a), we have Int(D)T =
Int(T ), and thus Pic(Int(D)T ) = Pic(Int(T )).
Let ∆ be the image of the extension map πΘ : Pic(Int(D)) −→∏
{Pic(Int(T )) | T ∈ Θ}. We claim that its image is just the direct

sum.
Indeed, if [I] ∈ Pic(Int(D)) then by [2, Remark VIII.1.5] we can

suppose that I is an integral unitary ideal of Int(D); in particular,
I contains a nonzero constant a. Since Θ is a Jaffard family, it is
locally finite, and thus aT = T for all but finitely many T ∈ Θ; hence,
IInt(T ) = Int(T ) for all but finitely many T , and thus [IInt(T )] is
almost always equal to [Int(T )]. It follows that ∆ is contained in the
direct sum.

To prove the converse, it is enough to show that, for any T ∈ Θ and
any [J ] ∈ Pic(Int(T )), there is a [I] ∈ Pic(Int(D)) such that [IInt(T )] =
[J ] and [IInt(S)] = [Int(S)] for every S ∈ Θ, S ̸= T . Again by [2,
Remark VIII.1.5] we can suppose that J is an integral unitary ideal of
Int(T ); moreover, we can suppose that J = (f1, . . . , fn)Int(T ) for some
f1, . . . , fn ∈ Int(D). Let L := J∩D = J∩T ∩D = I∩D: then, LS = S
for every S ∈ Θ, S ̸= T . Then, I ′ := (f1, . . . , fn)Int(D) + LInt(D) is
contained in I and finitely generated, but I ′Int(T ) = J and I ′Int(S) =
Int(S), as well as I ′K[X] = K[X]. It follows that I ′ = I, and thus I is
finitely generated.

We show that I is locally principal. Let M be a maximal ideal of
Int(D): if M ∩ D = (0) then Int(D)M is a localization of K[X], and
thus IInt(D)M is principal. If M ∩ D ̸= (0), then Int(D)M contains
Int(D)S for some S ∈ Θ, and thus IInt(D)M = IInt(S)Int(D)M . If
S ̸= T , then IInt(D)M = IInt(S)Int(D)M = Int(D)M is principal. If
S = T , then IInt(T ) = J is invertible, and thus IInt(D)M is principal
since Int(D)M is a localization of Int(T ). Thus I is locally principal
and thus invertible; therefore the direct sum is in the image of ψΘ. The
claim is proved. □

While very similar to the localization result for Dedekind domains,
Theorem 4.4 includes in its statement the group Pic(D,Θ), which may
not be easy to calculate. In the next theorem, we trade its presence
with the one of the Picard groups Pic(T ); we first show how they are
related.

Proposition 4.5. Let Θ be a Jaffard family of D. Then, there is an
exact sequence

0 −→ Pic(D,Θ) −→ Pic(D) −→
⊕
T∈Θ

Pic(T ) −→ 0.



INTEGER-VALUED POLYNOMIALS AND THE PICARD GROUP 11

Proof. By [19, Proposition 7.1], the extension map

Γ: Inv(D) −→
⊕
T∈Θ

Inv(T ),

I 7−→ IT

is an isomorphism. Since every principal ideal of D becomes principal
in each T , Γ induces a surjective map Γ′ : Pic(D) −→

⊕
{Pic(T ) |

T ∈ Θ}, whose kernel by definition is exactly Pic(D,Θ). The claim is
proved. □

Definition 4.6. Let D be an integral domain, and let ιD : Pic(D) −→
Pic(Int(D)), I 7→ IInt(D), be the canonical extension map. We define
the int-polynomial Picard group of D as the quotient

P(D) :=
Pic(Int(D))

ιD(Pic(D))
.

If T is a flat overring of D, we also define the int-polynomial Picard
group of (D,T ) as

P(D,T ) :=
Pic(Int(D)T )

ιD,T (Pic(T ))
,

where ιD,T : Pic(T ) −→ Pic(Int(D)T ) is the extension map.

Note that, when D is a local ring, Pic(D) = (0), and thus P(D) =
Pic(Int(D)).

Theorem 4.7. Let Θ be a Jaffard family of D. Then, there is an exact
sequence

0 −→ Pic(D) −→ Pic(Int(D)) −→
⊕
T∈Θ

P(T ) −→ 0.

In particular,

P(D) ≃
⊕
T∈Θ

P(T ).

Proof. Consider the commutative diagram

0 Pic(D,Θ) Pic(D)
⊕
T∈Θ

Pic(T ) 0

0 Pic(D,Θ) Pic(Int(D))
⊕
T∈Θ

Pic(Int(T )) 0

ιD ιΘ

The first row is exact by Proposition 4.5, while the second one from
Theorem 4.4; on the other hand, the leftmost vertical map is the iden-
tity and the other two vertical maps are injective. By the snake lemma,
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there is an exact sequence 0 −→ coker ιD −→ coker ιΘ −→ 0. By defi-
nition, coker ιD is just P(D), while coker ιΘ is the direct sum

⊕
P(T ),

and thus we have the isomorphism. The sequence (which is exact by
definition)

0 −→ Pic(D) −→ Pic(Int(D)) −→ P(D) −→ 0

then becomes the one in the statement by substituting P(D) with the
direct sum. □

A domain is h-local if every nonzero ideal is contained in only finitely
many maximal ideals and every nonzero prime ideal is contained in
only one maximal ideal. The previous theorems immediately give the
following.

Corollary 4.8. Let D be an integral domain such that one of the fol-
lowing conditions holds.

(a) D is h-local;
(b) D is one-dimensional and locally finite;
(c) D is a one-dimensional Noetherian domain.

Then, there is an exact sequence

0 −→ Pic(D) −→ Pic(Int(D)) −→
⊕

M∈Max(D)

Pic(Int(DM)) −→ 0.

In particular, P(D) ≃
⊕

M∈Max(D)

P(DM) ≃
⊕

M∈Max(D)

Pic(Int(DM)).

Proof. We first note that, if D is one-dimensional and locally finite,
then D is h-local; likewise, if D is one-dimensional and Noetherian,
then it is locally finite. Hence it is enough to prove the claim for D
h-local.

If D is h-local, Θ := {DM | M ∈ Max(D)} is a Jaffard family,
and thus the claim follows either from Theorem 4.4 (since Pic(D,Θ) =
Pic(D)) or by Theorem 4.7 (since P(DM) = Pic(Int(DM)) as DM is
local). □

Proposition 4.9. Let D be a locally finite Prüfer domain. Then, there
is a split exact sequence

0 −→ Pic(D) −→ Pic(Int(D)) −→
⊕

M∈Max(D)
h(M)=1

Pic(Int(DM)) −→ 0.

In particular,

Pic(Int(D)) ≃ Pic(D)⊕
⊕

M∈Max(D)
h(M)=1

Pic(Int(DM))
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Proof. Let T :=
⋂
{DM | M ∈ Max(D), h(M) > 1}, and let Θ :=

{DM | M ∈ Max(D), h(M) = 1} ∪ {T}. Then, Θ is complete, locally
finite, and each of its elements is flat over D. Moreover, DMDN = K
if M,N have height 1, while

TDN =

 ⋂
M∈Max(D)
h(M)>1

DM

DN =
⋂

M∈Max(D)
h(M)>1

DMDN = K

since each subset of Max(D) is compact. Hence, Θ is independent and
thus a Jaffard family. By Theorem 4.4 there is an exact sequence

0 −→ Pic(D) −→ Pic(Int(D)) −→ P(T )⊕
⊕

M∈Max(D)
h(M)=1

P(DM) −→ 0.

Each Pic(DM) is trivial since DM is local. We claim that Pic(Int(T )) =
Pic(T ).

Let P be a maximal ideal of T . Then, TP is a valuation domain of
dimension strictly greater than 1, and thus by [2, Proposition I.3.16] we
have Int(TP ) = TP [X]; hence also Int(T ) = T [X]. Since T is integrally
closed, the natural map Pic(T ) −→ Pic(T [X]) is an isomorphism [12,

Corollary 6.1.5], and thus the quotient P(T ) = Pic(Int(T ))
Pic(T )

is trivial.

Hence, the sequence in the statement is exact.
To show that it is split, it is enough to note that Pic(Int(DM)) is al-

ways a free group (ifDM is not discrete since in that case Pic(Int(DM)) =
Pic(DM [X]) = (0), if DM is discrete by [5, Proposition 7.7]). The iso-
morphism follows. □

5. The surjectivity of the extension map

A consequence of Theorem 4.4 (or rather, of its proof) is that when T
is a Jaffard overring then the extension map Pic(Int(D)) −→ Pic(Int(D)T ) =
Pic(Int(T )) is surjective. This property is in general not true, not even
for an extension map Pic(D) −→ Pic(T ) where D ⊆ T is a flat ex-
tension: D may be a local ring (so Pic(D) is trivial), while the Picard
group of a flat overring may not be trivial. Moreover, even if the sur-
jectivity hold, it need not to pass to integer-valued polynomials: we
will give in Example 6.5 below an example where Pic(D) −→ Pic(T )
is surjective, while Pic(Int(D)) −→ Pic(Int(T )) is not. In this section,
we collect some sufficient conditions for this surjectivity to hold, which
will be useful later, as well as a direct application to the calculation of
Pic(Int(D)) for one-dimensional domains.

Lemma 5.1. Let D be an integral domain, T a flat overring of D, and
let L be a sublattice of Over(D) such that

⋃
{S | S ∈ L} = T . If the

extension map Pic(D) −→ Pic(S) is surjective for every S ∈ L, then
the extension map Pic(D) −→ Pic(T ) is surjective.
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Proof. We first note that, for every finite subset A ⊆ T , there is an
S ∈ L containing A: indeed, each a ∈ A is contained in some Sa ∈ L,
and since L is a sublattice of Over(D), there is an S ∈ L containing
all Sa and thus all of A.
Let I := (x1, . . . , xn) be an invertible ideal of T , and let J :=

(y1, . . . , ym) be its inverse. Then, xiyj ∈ T for every i, j, and there
are rij ∈ T such that 1 =

∑
i,j rijxiyj. Therefore, there is an S ∈ L

that contains all xi, all xiyj and all rij.
Consider I0 := (x1, . . . , xn)S and J0 := (y1, . . . , ym)S; then, by con-

struction, I0J0 ⊆ S and 1 ∈ I0J0. Hence, I0J0 = S, so I0 is invertible
in S. Clearly I0T = I. By hypothesis, there is an invertible ideal
I1 of D such that [I1S] = [I0]; thus, [I1T ] = [I1ST ] = [I0T ] = [I].
It follows that the extension map Pic(D) −→ Pic(T ) is surjective, as
claimed. □

Lemma 5.2. Let D be an integral domain, T a flat overring of D,
and let L be a sublattice of Over(D) such that

⋃
{S | S ∈ Λ} = T .

If the extension map Pic(Int(D)) −→ Pic(Int(D)S) is surjective for
every S ∈ L, then the extension map Pic(Int(D)) −→ Pic(Int(D)T ) is
surjective.

Proof. Let L1 := {Int(D)S | S ∈ Λ}: then, L1 is a sublattice of
Over(Int(D)). We claim that its union is Int(D)T . Indeed, if h ∈
Int(D)T then h = f1t1 + · · · + fntn for some fi ∈ Int(D), ti ∈ T ; if
S ∈ L contains t1, . . . , tn, then h ∈ Int(D)S. Hence, we can apply
Lemma 5.1 to L1. □

We shall apply this criteria in Propositions 6.1 and 7.2 below; we
conclude this section by showing that for one-dimensional Prüfer do-
mains we can exclude some maximal ideals with infinite residue field
while controlling the change in the Picard group.

Lemma 5.3. Let D be a one-dimensional Prüfer domain, and let T
be a flat overring of D. Then, the extension map Pic(Int(D)) −→
Pic(Int(D)T ) is surjective.

Proof. Let L be the family of all Jaffard overrings of D contained in T .
Then, L is a sublattice of Over(D), since the product of two Jaffard
overrings is a Jaffard overring, and the extension map Pic(Int(D)) −→
Pic(Int(D)S) = Pic(Int(S)) is surjective for all such S.

Take a ∈ T , and let I := (D :D a) = a−1D ∩D. Since D is a Prüfer
domain, I is finitely generated; therefore, both the closed set V (I) and
the open set D(I) ∩ Max(D) of Max(D) are compact in the Zariski
topology of Max(D). Let Θ1 := {P ∈ Max(D) | P ∈ V (I)} and Θ2 :=
{Q ∈ Max(D) | Q ∈ D(I) ∩Max(D)}, and let Si :=

⋂
{DP | P ∈ Θ1}.

Applying [21, Propostion 4.8] to Θ := {DM |M ∈ Max(D)}, we obtain
that {S1, S2} is a pre-Jaffard family of D; being finite, it is a Jaffard
family, and thus S1 and S2 are Jaffard overrings.
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By construction, a ∈ DQ for every Q ∈ Θ2, and thus a ∈ S2. More-
over, if P is a maximal ideal of D such that PT ̸= T , then a ∈ DP ,
and thus P ∈ Θ2; hence S2 ⊆ T . It follows that S2 ∈ L, and thus a
belongs to the union of the elements of L. Since a was arbitrary, T is
equal to the union, and we can apply Lemma 5.2. □

Proposition 5.4. Let D be a one-dimensional Prüfer domain, let X :=
{M ∈ Max(D) | Int(DM) ̸= DM [X]} and let T :=

⋂
{DM | M ∈ X}.

Then, there is an exact sequence

0 −→ Pic(D,T ) −→ Pic(Int(D)) −→ Pic(Int(D)T ) −→ 0.

In particular, P(D) ≃ P(D,T ).

Proof. LetX be the closure ofX in Max(D), with respect to the inverse
topology. Then,X is a closed set of Spec(D), with respect to the inverse
topology, and thus it is compact in the Zariski topology; hence, also
{DM |M ∈ X} is compact, since it is homeomorphic to X. Moreover,
T =

⋂
{DP | P ∈ X}. By [21, Proposition 4.8] Θ := {T} ∪ {DN | N ∈

Max(D) \X} is a pre-Jaffard family of D. By Proposition 4.3, there is
an exact sequence

0 −→ Pic(D,Θ) −→ Pic(Int(D)) −→ Pic(Int(D)T )⊕
∏

N∈Max(D)\X

Pic(Int(D)DN).

Let N ∈ Max(D) \X. By definition, Int(DN) = DN [X], and thus

DN [X] ⊆ Int(D)DN ⊆ Int(DN)DN = DN [X]DN = DN [X];

hence Pic(Int(D)DN) = Pic(DN [X]) = Pic(DN) = (0) since DN is
local and integrally closed. Hence, the direct product in the previous
sequence vanishes. Moreover, IDN is principal for every invertible ideal
I of D; hence, Pic(D,Θ \ X) = Pic(D), and Pic(D,Θ) = Pic(D,T ).
Thus, the exact sequence becomes

0 −→ Pic(D,T ) −→ Pic(Int(D)) −→ Pic(Int(D)T ).

To conclude, we note that the rightmost map of the sequence is the
extension map, which is surjective by Lemma 5.3. Hence, the sequence
of the statement is exact.

To prove the isomorphism, we apply the same method of Theorem
4.7: there is a commutative diagram

0 Pic(D,T ) Pic(D) Pic(T ) 0

0 Pic(D,T ) Pic(Int(D)) Pic(Int(D)T ) 0
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The rows are exact (by definition and by the first part of the proof),
while the vertical maps are injective (and the leftmost one is the iden-
tity). By the snake lemma, the cokernels of the other two vertical
maps are isomorphic; since they are, respectively, P(D) and P(D,T ),
the claim is proved. □

6. Weak Jaffard families

We now start to study how to extend Theorem 4.4 towards weak
Jaffard and pre-Jaffard families. In these cases, we have two problems:
first, the equality Int(D)T = Int(T ) may not hold (see Example 6.5
below); second, the cokernel of the map Pic(D) −→ Pic(Int(D)) cannot
reduce to the direct sum, and in general it may be difficult to actually
determine it inside the direct product of the various Pic(Int(T )) or
Pic(Int(D)T ). The first problem cannot be resolved with our methods,
and, for the most part, we will have to use the equality Int(D)T =
Int(T ) as an additional hypothesis; to solve the second problem, on
the other hand, our strategy will be to write the cokernel as the middle
element of some other exact sequences, using this knowledge to write
exact sequences involving the int-polynomial Picard groups.
We study in this section the case of weak Jaffard families, which will

then be used as an inductive step in the next section (where we will
deal with pre-Jaffard families).

Proposition 6.1. Let D be an integral domain and let Θ be a weak
Jaffard family of D pointed at T . Then, the extension maps Pic(D) −→
Pic(T ) and Pic(Int(D)) −→ Pic(Int(D)T ) are surjective.

Proof. Let L be the lattice of Jaffard overrings of D contained in T .
Then, the extension maps Pic(D) −→ Pic(S) and Pic(Int(D)) −→
Pic(Int(D)S) = Pic(Int(S)) are surjective for every S ∈ L. We claim
that

⋃
{S | S ∈ L} = T .

Indeed, let a ∈ T , and consider (D :D a). Then, (D :D a)T = T , and
thus by [21, Proposition 5.3(a)] there are only finitely many R ∈ Θ
such that (D :D a)R ̸= R, say R1, . . . , Rn. Define A :=

⋂
{R ∈

Θ, R ̸= R1, . . . , Rn}: then, {A,R1, . . . , Rn} is a complete and inde-
pendent finite family of flat overrings of D, and thus it is a Jaffard
family; moreover, (D :D a)A = A. In particular, A is a Jaffard over-
ring of D contained in T (hence, A ∈ L) such that a ∈ A: it follows
that

⋃
{S | S ∈ L} = T .

The claims now follow from Lemmas 5.1 and 5.2. □

Proposition 6.2. Let Θ be a weak Jaffard family of D pointed at T∞.
Let πΘ : Pic(Int(D)) −→

∏
{Pic(Int(D)T ) | T ∈ Θ} be the extension

map and let ∆ be its cokernel. Then, there is an exact sequence

0 −→
⊕

T∈Θ\{T∞}

Pic(Int(T )) −→ ∆ −→ Pic(Int(D)T∞) −→ 0.
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Proof. We first note, that, for each T ∈ Θ \ {T∞}, we have Int(D)T =
Pic(Int(T )) by Proposition 3.6(a), and thus Pic(Int(D)T ) = Pic(Int(T ))
for these overrings.

The inclusion ∆ ⊆
∏
{Pic(Int(D)T ) | T ∈ Θ} induces a projection

map π′ : ∆ −→ Int(D)T∞, whose kernel contains exactly the extensions
of the classes [I] ∈ Pic(Int(D)) such that I becomes principal in each
T ∈ Θ \ Λ. We claim that this kernel is exactly

⊕
{Pic(Int(T )) | T ∈

Λ}.
We first show that the direct sum belongs to the kernel, and to do

so we need to show that it is actually inside ∆. If [J ] ∈ Pic(Int(T ))
for some T ∈ Θ, T ̸= T∞, we can consider the Jaffard family {T, T⊥},
where T⊥ :=

⋂
{S | S ∈ Θ \ {T}}: then, by Theorem 4.4, there is a

class [I] ∈ Int(Pic(D)) such that [IT ] = [J ] and [IT⊥] = [T⊥], so that
[IS] = [S] for all other S ∈ Θ. Thus the direct sum is contained in the
kernel.

Conversely, suppose that [I] ∈ kerπ′. Then, [IT∞] = [T∞], and thus
there is an f ∈ I such that IT∞ = fT∞. Hence, I ′ := f−1I is an integral
ideal of Int(D) such that I ′T∞ = T∞; by [21, Proposition 5.3(a)], I ′T ̸=
T for only finitely many T ∈ Θ. Since [I ′] = [I], it follows that πΘ([I])
belongs to the direct sum. Therefore, kerπ′ =

⊕
T∈Λ Pic(Int(T )), and

the claim is proved.
To conclude, we need to show that the map ∆ −→ Int(D)T∞ is sur-

jective. However, this map factorizes the extension map Int(D) −→
Int(D)T∞, which is surjective by Proposition 6.1, and thus it is surjec-
tive itself. The claim is proved. □

We now transform this result using int-polynomial Picard groups;
the following lemma has the same role of Proposition 4.5.

Lemma 6.3. Let Θ be a weak Jaffard family pointed at T∞. Then,
there is an exact sequence

0 −→
⊕

T∈Θ\{T∞}

Pic(T ) −→ Pic(D)

Pic(D,Θ)
−→ Pic(T∞) −→ 0.

Proof. The extension map Pic(D) −→ Pic(T∞) is surjective, with ker-
nel Pic(D,T∞). In particular, the kernel contains Pic(D,Θ), and thus

the extension map induces a surjective map
Pic(D)

Pic(D,Θ)
−→ Pic(T∞)

with kernel
Pic(D,T∞)

Pic(D,Θ)
. We claim that this group is isomorphic to⊕

T∈Θ\{T∞}

Pic(T ).

Indeed, consider the extension map ϕ : Pic(D,T∞) −→
⊕

T∈Θ\{T∞}

Pic(T ).

Note that ϕ is well-defined since, if IT∞ = T∞, then IS ̸= S only for
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finitely many S ∈ Θ [21, Proposition 5.3(a)]. Moreover, ϕ is surjective:
indeed, let [I] ∈ Pic(T ), with I ⊆ T , and set J := I ∩ D. Then, J
is an invertbile ideal of D such that JS = S for all S ∈ Θ, S ̸= T ,
and in particular JT∞ = T∞. Therefore, ϕ([J ]) is the element of the
direct sum whose only nonzero coefficient is the one corresponding to
T , which is equal to [I]. Thus, ϕ is surjective.
The kernel of ϕ is given by all [I] ∈ Pic(D,T∞) that become principal

in Pic(T ) for each T ∈ Θ; that is, by definition, kerϕ = Pic(D,Θ).

Thus
Pic(D,T∞)

Pic(D,Θ)
≃

⊕
T∈Θ\{T∞}

Pic(T ). The exactness of the sequence of

the statement follows. □

Theorem 6.4. Let Θ be a weak Jaffard family of D pointed at T∞.
Then, there is an exact sequence

0 −→
⊕

T∈Θ\{T∞}

P(T ) −→ P(D) −→ P(D,T∞) −→ 0.

Proof. Consider the commutative diagram

0
⊕

T∈Θ\{T∞}

Pic(T )
Pic(D)

Pic(D,Θ)
Pic(T∞) 0

0
⊕

T∈Θ\{T∞}

Pic(Int(T )) ∆ Pic(Int(D)T∞) 0

where ∆ is the cokernel of πΘ. The first row is defined (and is exact) by
Lemma 6.3, while the second row is exact by Proposition 6.2. All ver-
tical maps are injective: the side ones since Pic(A) −→ Pic(Int(D)A)
is always injective, while the middle one because the kernel of the nat-
ural map Pic(D) −→ ∆ is exactly Pic(D,Θ). By the snake lemma, the
sequence of cokernels

0 −→
⊕

T∈Θ\{T∞}

P(T ) −→ G −→ P(D,T∞) −→ 0

is exact. Moreover, the quotient G between ∆ and
Pic(D)

Pic(D,Θ)
is iso-

morphic to

Pic(Int(D))/Pic(D,Θ)

Pic(D)/Pic(D,Θ)
≃ Pic(Int(D))

Pic(D)
= P(D);

thus, we obtain exactly the exact sequence of the statement. □

Example 6.5. Let p be a prime number, and let V := Z(p). Applying
repeatedly [17, Chapter 6, Theorem 4], we can construct a chain of
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extensions Q = L0 ⊂ L1 ⊂ · · · ⊂ Ln ⊂ · · · such that, for every n, V
has n+ 1 extensions Wn, Z1,n, . . . , Zn,n to Ln:

• Wn extends to Wn+1 and Zn+1,n+1 in Ln+1;
• for i = 1, . . . , n, Zi,n has a unique extension to Ln+1, namely
Zi,n+1;

• V ⊂ Wn is an immediate extension;
• for each i, the extension V ⊂ Zi,n is trivial on value groups,
while the extension of residue fields has degree at least n.

Let L :=
⋃

n Ln. Then, the integral closure V of V in L is a one-
dimensional Prüfer domain whose localization at the maximal ideals
are the extensions of V to L, namely W∞ :=

⋃
nWn and, for each

i ∈ N, Zi,∞ :=
⋃

n Zi,n.

Each Zi,∞ is an isolated point of Zar(V ) (because there is a z ∈
Zi,i \ (Wi ∪ Z1,i ∪ · · · ∪ Zi−1,i)), while W∞ is not isolated, since every
finite subset of W∞ is contained in some Wk and thus also in Wk,∞.
In particular, V is equal to the intersection of all Wi,∞, and Θ :=
{W∞, Zi,∞ | i ∈ N} is a weak Jaffard family of V .

The residue field of each Zi,∞ is infinite, and thus Int(Zi,∞) is trivial;
therefore, also Int(V ) is trivial, and thus Int(V )W∞ = W∞[X]. How-
ever, W∞ is a DVR with finite residue field, and thus Int(W∞) is not
trivial [2, Proposition I.3.16]; it follows that Int(V )W∞ ̸= Int(W∞).

7. Pre-Jaffard families

Proposition 6.2 is, in some ways, the best result that is possible
to obtain without adding more hypothesis. However, if Int(D)T∞ =
Int(T∞) (something that need not to happen, see Example 6.5), then
one may in principle repeat the process by taking a weak Jaffard family
Θ′ of T∞ and apply the same result; hopefully, this can lead to a finer
description of ∆ and thus of Pic(Int(D)) and P(D). The purpose of this
section is to systematize this idea by using the notions of pre-Jaffard
family and of its derived sequence (see Section 2.2); we use throughout
the section the notation introduced therein.

Lemma 7.1. Let Θ be a pre-Jaffard family of D, and let γ be a limit

ordinal. Then,
⋃
γ<α

Tγ = Tα.

Proof. Let R be the union of Tγ, for γ < α. Then, R is the union of a
chain of flat overrings, and thus it is itself flat; moreover, R ⊆ Tα since
Tγ ⊆ Tα when γ < α. If R ̸= Tα, then (since Tα is flat too) there should
be a nonzero prime ideal P of D such that PR ̸= R and PTα = Tα.
Since Θ is a Jaffard family, there is a unique T ∈ Θ such that PT ̸= T ;
by construction, T /∈ N α(Θ), and since α is a limit ordinal there is a
β < α such that T /∈ N β(Θ). In this case, we have PTβ = Tβ, and
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thus PR = R since Tβ ⊆ R. This is a contradiction, and thus R = Tα,
as claimed. □

Proposition 7.2. Let Θ be a pre-Jaffard family of D, and let {Tα} be
the derived series of D. Then:

(a) for each α, the extension map Pic(D) −→ Pic(Tα) is surjective;
(b) if Int(D)Tγ = Int(Tγ) for every γ < α, then the extension map

Pic(Int(D)) −→ Pic(Int(D)Tα) is surjective.

Proof. We proceed by induction on α, considering both cases at the
same time. If α = 0 then Tα = D and the claim is trivial. If α is a

limit ordinal, then by Lemma 7.1
⋃
γ<α

Tγ = Tα, and the claim follows

by applying the inductive hypothesis and Lemmas 5.1 and 5.2 to {Tγ |
γ < α}.

Suppose that α = γ + 1 is a successor ordinal. Then, the extension
map Pic(D) −→ Pic(Tα) factors as

Pic(D) −→ Pic(Tγ) −→ Pic(Tα).

The first of these maps is surjective by hypothesis; on the other hand,
N γ(Θ) is a pre-Jaffard family of Tγ, and thus Tα belongs to the weak
Jaffard family (N γ(Θ)\N α(Θ))∪{Tα}, which implies that Pic(Tγ) −→
Pic(Tα) is surjective by Proposition 6.1. In the same way, Pic(Int(D)) −→
Pic(Int(D)Tα) factors as

Pic(D) −→ Pic(Int(D)Tγ) −→ Pic(Int(D)Tα).

The first map is surjective by hypothesis; the second one is surjec-
tive since Pic(Int(D)Tγ) = Pic(Int(Tγ)) and thus we can apply again
Proposition 6.1. The claim is proved. □

Theorem 7.3. Let Θ be a pre-Jaffard family of D, and let {Tα} be the
derived series of D. Fix an ordinal α and suppose that the following
conditions hold:

• Int(D)T = Int(T ) for each T ∈ Θ\N α(Θ) and for each T = Tγ
with γ < α;

• P(Int(T )) is a free group for each T ∈ Θ \ N α(Θ).

Then, there is an exact sequence

0 −→
⊕

T∈Θ\Nα(Θ)

P(T ) −→ P(D) −→ P(D,Tα) −→ 0.

Proof. By induction on α. If α = 1 then Λα = (Θ \N α(Θ))∪{Tα} is a
weak Jaffard family of D, and thus the statement is exactly Theorem
6.4.
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Suppose that α = γ+1 is a successor ordinal. There is a commutative
diagram

(2)

0
⊕

T∈Θ\N γ(Θ)

P(T ) P(D) P(Tγ) 0

0 L P(D) P(D,Tα) 0,

f
g

where L is the kernel of P(D) −→ P(D,Tα); note that this map is
surjective since Pic(Int(D)) −→ Pic(Int(D)Tα) is surjective by Propo-
sition 7.2.

The first row is exact by induction (using the hypothesis Int(D)Tγ =
Int(Tγ) and thus P(D,Tγ) = P(Tγ)), while the second one is exact by
definition of L. Since the map in the middle column is an equality, its
kernel and cokernel are trivial, and thus by the snake lemma coker f ≃
ker g; by Theorem 6.4, the latter is isomorphic to

⊕
{P(T ) | T ∈

N γ(Θ) \ N α(Θ)}, and thus there is an exact sequence

0 −→
⊕

T∈Θ\N γ(Θ)

P(T ) −→ L −→
⊕

T∈N γ(Θ)\Nα(Θ)

P(T ) −→ 0.

By hypothesis, each P(T ) is free; hence the sequence splits and thus L
is isomorphic to the direct sum of P(T ) for T ∈ Θ \N α(Θ). The claim
now follows reading the second row of (2).

Suppose now that α is a limit ordinal; for each γ ≤ α, let Lγ be
the kernel of the surjective map P(D) −→ P(D,Tγ). By induction,
{Lγ}γ<α is a chain of free subgroups of Lα such that each element is a
direct summand of the next ones; we claim that

⋃
γ<α Lγ = Lα.

Let k ∈ Lα: then, k is the image in P(D,Tα) of an invertible ideal
I := (f1, . . . , fn) of Int(D) such that IInt(D)Tα is principal, say gen-
erated by g. In particular, there are t1, . . . , tn ∈ Int(D)Tα such that
g = f1t1+ · · ·+fntn, and fig−1 ∈ Int(D)Tα for every i. By Lemma 7.1,
Tα is the union of Tγ, for γ < α, and thus the same holds for Int(D)Tα
and Int(D)Tγ; therefore, there is a γ < α such that Int(D)Tγ contains
all ti and all fig

−1. Then, IInt(D)Tγ is a principal ideal, generated by
g; in particular, the image of k in P(D,Tγ) is trivial, i.e., g ∈ Lγ.

Therefore, we can apply [22, Lemma 5.6] (or [13, Chapter 3, Lemma
7.3]), obtaining that Lα ≃

⊕
{P(T ) | T ∈ Θ \ N α(Θ)}. The claim is

proved. □

Corollary 7.4. Let Θ be a pre-Jaffard family of D such that:

• Int(D)T = Int(T ) for every T ∈ Θ;
• P(Int(T )) is free for every T ∈ Θ;
• Θ is sharp.

Then, P(D) ≃
⊕
T∈Θ

P(T ).
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Proof. The first condition implies, thanks to Proposition 3.7, that Int(D)Tα =
Tα for every α; moreover, together with the second condition, it also
implies that we can apply Theorem 7.3. Since Θ is sharp, there is an α
such that N α(Θ) = ∅, i.e., Tα = K; for this α, Int(D)Tα = Int(D)K =
K[X], and thus P(D,Tα) = (0). The claim follows from Theorem
7.3. □

The condition that P(Int(T )) is free is satisfied, for example, when
T = DM is a discrete valuation ring. A ring such that all the local-
izations at the maximal ideals are DVRs is called an almost Dedekind
domain; the following two results apply Theorem 7.3 to this class of
rings. We note that it is possible to characterize for which almost
Dedekind domains the ring of integer-valued polynomials behave well
under localization [4, Theorem 4.3].

Theorem 7.5. Let D be an almost Dedekind domain, {Tα} be the
derived series of the canonical pre-Jaffard family Θ := {DM | M ∈
Max(D)} of D, corresponding to N α(Θ) ⊆ Max(D). If, for every
M /∈ N α(Θ), we have Int(D)DM = Int(DM), and Int(D)Tα = Int(Tα),
then there is an exact sequence

0 −→
⊕

M/∈Nα(Θ)

Pic(Int(DM)) −→ P(D) −→ P(Tα) −→ 0.

Proof. The condition on localization implies, by Proposition 3.7, that
Int(D)Tγ = Tγ for every γ < α. The claim now follows from Theorem
7.3. □

Corollary 7.6. Let D be an almost Dedekind domain. If Int(D)DM =
Int(DM) for all M ∈ Max(D) and Max(D) is scattered (with respect
to the inverse topology) then

P(D) ≃
⊕

M∈Max(D)

P(DM)

and

Pic(Int(D)) ≃ Pic(D)⊕
⊕

M∈Max(D)

Pic(Int(DM))

Proof. If Max(D) is scattered, then the canonical pre-Jaffard family
Θ := {DM | M ∈ Max(D)} is sharp [21, Corollary 8.6]. The claim
now follows from Corollary 7.4 (or by Theorem 7.5 applied with α
being the Cantor-Bendixson rank of Max(D), endowed with the inverse
topology). □
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