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Abstract. We study almost Dedekind domains with respect to
the failure of ideals to have radical factorization, that is, we study
how to measure how far an almost Dedekind domain is from be-
ing an SP-domain. To do so, we consider the maximal space M =
Max(R) of an almost Dedekind domain R, interpreting its (frac-
tional) ideals as maps fromM to Z, and looking at the continuity
of these maps when M is endowed with the inverse topology and
Z with the discrete topology. We generalize the concept of critical
ideals by introducing a well-ordered chain of closed subsets of M
(of which the set of critical ideals is the first step) and use it to
define the class of SP-scattered domains, which includes the almost
Dedekind domains such thatM is scattered and, in particular, the
almost Dedekind domains such thatM is countable. We show that
for this class of rings the group Inv(R) is free by expressing it as a
direct sum of groups of continuous maps, and that, for every length
function ` on R and every ideal I of R, the length of R/I is equal
to the length of R/ rad(I).

1. Introduction

An almost Dedekind domain is an integral domain R such that, for
every maximal ideal M of R, RM is a discrete valuation ring. Almost
Dedekind domains are a non-Noetherian generalization of Dedekind
domains; indeed, an almost Dedekind domain is Dedekind if and only
if it is Noetherian. Almost Dedekind domains appear naturally in sev-
eral places of commutative algebra; for example, if the ring Int(D) of
integer-valued polynomials on a domain D in Prüfer, then D must be
an almost Dedekind domain [1, Proposition VI.1.5].

Dedekind domains can also be characterized as those integral do-
mains such that every ideal can be factorized as a product of prime
ideals; for this reason, almost Dedekind domains are an interesting
class in which to study weaker forms of factorizations (see for exam-
ple [5, Chapter 3]). One of these forms is radical factorization, that is,
the possibility for an ideal to be written as a product of radical ideals.
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Domains where every ideal has radical factorizations are called SP-
domains, and they must be almost Dedekind [22], although not every
almost Dedekind domain has radical factorizations. There are many
equivalent characterizations of SP-domains; see [15, Theorem 2.1] or
[5, Theorem 3.1.2], partly summarized in Theorem 2.1 below.

In [9], the authors considered SP-domains with nonzero Jacobson
radical from a topological point of view, and showed that, for such a
ring R, the group Inv(R) of invertible ideals of R is isomorphic (as an
`-group) to the group C(Max(R),Z) of the continuous function from
the maximal space Max(R), endowed with the inverse topology, to Z,
endowed with the discrete topology; in particular, this implies that
Inv(R) is a free group. Subsequently, they showed that also the group
Div(R) of the divisorial ideals of R is a free group by interpreting it as
the completion of Inv(R) as an `-group.

The purpose of this paper is to study how much of the theory in
[9] can be generalized to general almost Dedekind domains, and how
its results must be modified in this more general context. The starting
point is to associate to each fractional ideal I of the almost Dedekind
domain R a natural map νI : M −→ Z, where M = Max(R) is the
maximal space of R endowed with the inverse topology. We show that
νI is continuous if and only if I can be written as a product J1 · · · Jn
of radical ideals such that every Ji is the radical of a finitely generated
ideal (Proposition 3.8); through this result, we are first able to gen-
eralize [9, Theorem 5.1] to SP-domains with zero Jacobson radical by
only considering continuous function with compact support (Corollary
4.2), and then we define three groups measuring how much an almost
Dedekind domain is far from being an SP-domain.

In Section 5, we study a sufficient condition under which the group
Inv(R) of invertible ideals is free. Generalizing the notion of critical
ideals (which appear in one of the characterizations of SP-domains),
we define a descending chain of closed subsets ofM that is analogous to
the derived chain of a topological space, and we call an almost Dedekind
domain SP-scattered if this chain terminates at the empty set. For SP-
scattered domains, we find an isomorphism between Inv(R) and a direct
sum of groups of continuous functions (Theorem 5.9); in particular,
this proves that for these rings Inv(R) is a free group. In the following
Section 6, we consider the group Div(R) of divisorial ideal of R; while
we are not able to generalize the results of the previous section to this
group, we show that for every SP-domain both Div(R) and the quotient
Div(R)/Inv(R) are free groups (Theorem 6.2). In the final Section 7 we
analyze length functions over almost Dedekind domains: in particular,
we show that, if R is an SP-scattered domain and I is an ideal, the
length of R/I is always equal to the length of R/ rad(I).
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2. Preliminaries

2.1. Invertible ideals. Let R be an integral domain with quotient
field K. A fractional ideal of R is an R-submodule I of K such that
dI ⊆ R for some d ∈ R \ {0}; for clarity, we call a fractional ideal
contained in R (i.e., an ideal of R) an integral ideal. We denote by
F(R) the set of fractional ideals of R and by I(R) the set of integral
ideals.

A fractional ideal is invertible if there is a fractional ideal J such
that IJ = R; in this case, J is unique and equal to (R : I) := {x ∈ K |
xI ⊆ R}. When I is invertible, we set I−1 := (R : I). The set Inv(R) of
invertible fractional ideals of R is a group under the product of ideals.

If T is an overring of R (i.e., a ring between R and K) then there is a
natural map Ψ : Inv(R) −→ Inv(T ) given by the extension I 7→ IT . If
R is a Prüfer domain, then Ψ is surjective (since all finitely generated
ideals are invertible), and ker Ψ = {I ∈ Inv(R) | IT = T}.

2.2. Almost Dedekind domains. Let R be an integral domain. We
say that R is an almost Dedekind domain if RM is a discrete valuation
ring for every maximal ideal M of R. An almost Dedekind domain
that is also Noetherian is necessarily a Dedekind domain, but there
are examples of non-Noetherian almost Dedekind domains, the first of
which was given by Nakano [12]. An almost Dedekind domain R is
necessarily one-dimensional and Prüfer (see [7] for properties of Prüfer
domains). In particular, all its finitely generated (fractional) ideals are
invertible.

An SP-domain is an integral domain such that every proper ideals is
a product of radical ideals; an SP-domain is always almost Dedekind.
Among almost Dedekind domain, SP-domains enjoy several character-
izations; see [15, Theorem 2.1] and [5, Theorem 3.1.2] for the proof of
the following equivalences.

Theorem 2.1. Let R be an almost Dedekind domain. Then, the fol-
lowing are equivalent:

(i) R is an SP-domain (i.e., every proper ideal of R is a finite
product of radical ideals);

(ii) every proper principal ideal of R is a (finite) product of radical
ideals;

(iii) every proper principal ideal I of R can be represented uniquely
as I = J1 · · · Jk, where J1 ⊆ · · · ⊆ Jk are radical ideals;

(iv) the radical of every finitely generated ideal of R is finitely gen-
erated;

(v) R has no critical ideals (see Section 2.5 for the definition).

We note that some of the these equivalences also holds without as-
suming beforehand that R is an almost Dedekind domain.
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2.3. The inverse topology. Let R be an integral domain. The Zariski
topology on the spectrum Spec(R) is the topology whose open sets are
those in the form D(I) := {P ∈ Spec(R) | I * P}, where I is an
ideal; consequently, the closed sets are the V (I) := Spec(R) \D(I). If
I is finitely generated, D(I) is compact; conversely, if D(I) is compact,
then D(I) = D(J) for some finitely generated ideal J .

The inverse topology on Spec(R) is the coarsest topology such that
every open and compact subset of the Zariski topology is closed. The
constructible topology is the coarsest topology such that every open and
compact subset of the Zariski topology is both open and closed; the con-
structible topology is finer than the Zariski topology, and we denote by
Spec(R)cons the spectrum of R endowed with the constructible topol-
ogy. With both the inverse and the constructible topologies, Spec(R) is
a compact space; furthermore, Spec(R)cons is Hausdorff. See [3, Chap-
ter 1] for properties of the inverse and constructible topology (in the
topological context of spectral spaces).

Let R be a ring. On the maximal spectrum Max(R) of R, the inverse
and the constructible topology coincide [3, Corollary 4.4.9]; we denote
this topological space with M, or with MR if we wan to stress the
domain considered. Then, M is a completely regular space (in partic-
ular, Hausdorff) that is totally disconnected and has a basis of clopen
subsets [3, Corollary 4.4.9]. When R is one-dimensional (in particular,
if R is an almost Dedekind domain), M is compact if and only if the
Jacobson radical of R is nonzero.

The inverse topology is intimately connected with the study of inter-
section of localizations of a ring. We will use several times the following
well-known lemma.

Lemma 2.2. Let R be a one-dimensional Prüfer domain and let X ⊆
M a nonempty closed subset of R. Then, the maximal ideals of T :=⋂
{RP | P ∈ X} are exactly the extensions of the ideals in X.

Proof. Since R is a one-dimensional Prüfer domain, the maximal ideals
of T are the ideals QT , where Q are the maximal ideals of R such that
QT 6= T [8, Theorem 1]. If Q ∈ X, then clearly QT 6= T . If Q /∈ X,
then QDP = DP for all P ∈ X. Since X is closed in M, it is closed
in Spec(R), endowed with the Zariski topology, and in particular it is
compact; by [4, Corollary 5],

QT = Q

(⋂
P∈X

RP

)
=
⋂
P∈X

QRP =
⋂
P∈X

RP = T.

Thus the maximal ideals of T are exactly the extensions of the elements
of X. �

2.4. Isolated points. Let X be a topological space. A point p ∈ X
is isolated if {p} is an open set; the set of non-isolated points of X is
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called the derived set of X, and is denoted by D(X). More generally,
if α is an ordinal, then Dα(X) is defined recursively by

Dα(X) :=


X if α = 0;

D(Dγ(X)) if α = γ + 1;⋂
β<αDβ(X) if α is a limit ordinal.

A topological space is scattered if Dα(X) = ∅ for some ordinal α.
A characterization closely related to the following one was obtained

in [15, Lemma 3.1], where the topology considered on the maximal
space was the Zariski topology.

Proposition 2.3. Let R be an almost Dedekind domain and M ∈M.
Then, M is isolated in M if and only if M is finitely generated.

Proof. If M is finitely generated, then D(M) is compact in the Zariski
topology and thus V (M) = {M} is an open set ofM, i.e., M is isolated.
Conversely, if M is isolated then {M} = V (M) is open and compact,
and thus D(M) is a closed set of Spec(R)cons; hence, it is a compact
open set of Spec(R) (endowed with the Zariski topology), and thus
D(M) = D(I) for some finitely generated ideal I, i.e., M = rad(I) for
some finitely generated ideal I. Take a ∈ M \M2 (which exists since
R is almost Dedekind); then, (I, a) is a finitely generated ideal with
radical M that is not contained in M2. Thus (I, a) = M and M is
finitely generated. �

2.5. Critical ideals. Let R be an almost Dedekind domain. A max-
imal ideal M of R is said to be critical if, for every finitely generated
ideal I ⊆ M , there is a maximal ideal N such that I ⊆ N2; equiv-
alently, M is not critical if it contains an invertible radical ideal. We
denote by Crit(R) the set of critical maximal ideals of R.

Proposition 2.4. Let R be an almost Dedekind domain. Then, Crit(R)
is a closed set of M.

Proof. Let Ω := Max(R) \
⋃
{V (I) | I is a finitely generated radical

ideal} =
⋂
{D(I) | I is a finitely generated radical ideal}: then, by

definition, Ω is closed in the inverse topology of Max(R). We claim
that Ω = Crit(R).

Indeed, if M ∈ Ω and J ⊆ M is finitely generated then M ∈ V (J),
and thus by definition J cannot be radical; hence, there is an N ∈
Max(R) such that J ⊆ N2, and so M ∈ Crit(R). Conversely, if M ∈
Crit(R), then M does not contain any invertible radical ideal, and thus
M ∈ Ω. The claim is proved. �

Proposition 2.5. Let R be an almost Dedekind domain. Then, Crit(R) ⊆
D(M).

Proof. If M /∈ D(M), then by Proposition 2.3 M is finitely generated,
and thus it cannot be critical. �
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2.6. Bounded maps and free abelian groups. Let X be a set. We
denote by F(X,Z) and by Fb(X,Z) the group of all function (respec-
tively, all bounded functions) X −→ Z, with the operation being the
pointwise addition. Then, Fb(X,Z) is a free abelian group [13, Satz 1],
and thus so are all its subgroups.

Let G ⊆ Fb(X,Z). We say that G is a Specker group if, for every
g ∈ G and every n ∈ Z, the function χg−1(b) belongs to G, where χA
denotes the characteristic function of A. If H ⊆ G are Specker groups,
then G = H ⊕ S for some free subgroup S of G [13, Satz 2].

Let now X be a topological space, endow Z with the discrete topol-
ogy, and let f : X −→ Z be a function (not necessarily continuous).
The zero set of f is Z(f) := {x ∈ X | f(x) = 0}, while the non-zero
set (or cozero set) is X \ Z(f); the support of f , denoted by supp(f),
is the closure of its non-zero set. We say that f has compact support
if supp(f) is compact, and we denote by Fc(X,Z) the set of functions
with compact support, which is a subgroup of F(X,Z). If X is compact,
every function has compact support.

We denote by C(X,Z) the set of all continuous functions X −→ Z,
and by Cc(X,Z) the set of all continuous functions with compact sup-
port. Both C(X,Z) and Cc(X,Z) are groups under pointwise addition,
and thus they are subgroups of F(X,Z).

We shall use repeatedly the following fact.

Lemma 2.6. Let f : X −→ Z be a continuous function. If f has
compact support, then f is bounded.

Proof. Let Xi := f−1(i). Then, the Xi are open (since Z has the discrete
topology), pairwise disjoint and a cover of supp(f). Since f has compact
support, the cover must have a finite subcover, and thus only finitely
many of them may be nonempty. It follows that Xi = ∅ when |i| is
large, that is, f is bounded. �

In particular, the lemma implies that Fc(X,Z) and Cc(X,Z) are sub-
groups of Fb(X,Z), and thus are free.

3. The map associated to an ideal

Let R be an almost Dedekind domain, and let M be a maximal ideal.
Then, RM is a discrete valuation ring, and thus it is associated to a
surjective valuation map vM : K \ {0} −→ Z. In particular, for every
fractional ideal I (not necessarily finitely generated) the quantity

vM(I) := inf{vM(i) | i ∈ I \ {0}}

is well-defined, and corresponds to the integer n such that IRM =
(MRM)n (where, if n := −m is negative, (MRM)n = ((MRM)m)−1 =
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(RM : (MRM)m)). Therefore, we can associate to each ideal I a map

νI : M−→ Z,
M 7−→ vM(I).

Proposition 3.1. Let R be an almost Dedekind domain, and let I, J
be fractional ideals of R. Then, the following hold.

(a) νI ≤ νJ if and only if I ⊇ J ;
(b) νI = νJ if and only if I = J .
(c) νIJ = νI + νJ .
(d) νI+J = sup{νI , νJ}.
(e) νI∩J = inf{νI , νJ}.
(f) If I is an integral ideal of R, then νI is bounded if and only if

rad(I)k ⊆ I for some k.

Proof. Straightforward. �

Lemma 3.2. Let R be an almost Dedekind domain and let I ⊆ R
be invertible. Then, I = JL−1 for some invertible ideals J, L ⊆ R;
moreover, if νI is continuous then we can take J, L continuous.

Proof. By [7, Theorem 25.2(c) and Remark 25.3], I(I−1 ∩R) = II−1 ∩
IR = R ∩ I. Set thus J := I ∩R and L := I−1 ∩R: then, J and L are
invertible integral ideals of R and I = JL−1. Moreover, νJ = νI∩R =
sup{νI , νR} = sup{νI , 0} is continuous since νI and the zero function
are continuous; hence also νL = νI − νJ is continuous, as claimed. �

Proposition 3.3. Let R be an almost Dedekind domain, and let I be
a nonzero fractional ideal of R. Then, the following hold.

(a) If I ⊆ R, then Z(νI) = D(I), and supp νI = Spec(D)\Z(νI) =
V (I). In particular, Z(νI) and supp νI are disjoint.

(b) supp νI is compact.
(c) If I is invertible, then supp νI = Spec(R) \Z(νI); in particular,

supp νI and Z(νI) are disjoint.

Proof. (a) If I ⊆ R, then clearly νI(P ) > 0 if and only if I ⊆ P , if
and only if P ∈ V (I). Hence, Z(νI) = Spec(D) \ V (I) = D(I) and
supp(I) is the closure of V (I). Moreover, V (I) ⊆ M is always closed
in the Zariski topology, and thus also in the constructible topology;
hence supp νI = V (I).

(b) Let d ∈ R. Then, νdR = −νd−1R, and thus supp νdR = supp νd−1R.
Note also that, if I ⊆ R, then supp νI = V (I) is closed in the compact
space Spec(D)cons and thus it is itself compact.

If now I is a fractional ideal of R, we can find a d ∈ R, d 6= 0 such
that dI ⊆ R. Then, Z(νd−1R) ∪ Z(νdI) ⊆ Z(νI), and thus

supp νI ⊆ supp νd−1R ∪ supp νdI = supp νdR ∪ supp νdI .

Since d ∈ R and dI ⊆ R, the right hand side is compact (being the
union of two compact spaces); hence, also supp νI is compact, as it is
the closed subset of a compact set.
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(c) By Lemma 3.2, I = JL−1 with J = I ∩R and L = I−1∩R; thus,
νI = νJ − νL and supp νI ⊆ supp νJ ∪ supp νL. We claim that Z(νI) =
Z(νJ) ∩ Z(νL). Indeed, if P is in the intersection then it is clearly in
Z(νI). If P ∈ Z(νI), then IRP = RP , and thus I ∩ R * P , so that
P ∈ Z(νI∩R) = Z(νJ), and this forces also P ∈ Z(νI−1∩R) = Z(νL).
Therefore, using (a),

supp νI ⊆ supp νJ ∪ supp νL =

=(Spec(D) \ Z(νJ)) ∪ (Spec(D) \ Z(νL)) =

= Spec(D) \ (Z(νJ) ∩ Z(νL)) =

= Spec(D) \ Z(νI) ⊆ supp νI

since supp νI is, by definition, the closure of Spec(D) \ Z(νI). Hence
supp νI = Spec(D) \ Z(νI), as claimed. �

Example 3.4. For arbitrary fractional ideals I, supp νI is not always
disjoint from Z(νI).

Indeed, let R be an almost Dedekind domain with a single nonin-
vertible maximal ideal M , and suppose that there is a radical ideal J
that is not invertible (this surely happens if R is not an SP-domain).
Then, M\ {M} is a discrete space, and if I is an ideal not contained
in M then I is invertible and V (I) is finite; in particular, J ⊆M .

If N ∈ M \ {M}, then (R : J)RN = (RN : JRN) by [17, Lemma
5.3] and [19, Proposition 8.3], and so J(R : J)RN = RN ; in particular,
Z(ν(R:J)) \ {M} = Z(νJ) \ {M}. On the other hand, since J is not
invertible, J(R : J) ( R, and so J(R : J) ⊆ M . Therefore, (νJ +
ν(R:J))(M) ≥ 1, and since R ⊆ (R : J) we have ν(R:J)(M) = 0, so that
M ∈ Z(ν(R:J)). On the other hand, supp ν(R:J) contains infinitely many
points inM\{M}, which is a discrete set; hence, supp ν(R:J) must also
contain M . Thus, M ∈ Z(ν(R:J)) ∩ supp ν(R:J) 6= ∅.

We now want to investigate when the map νI is continuous, with
respect to the inverse topology. In this context, a particular importance
have radical ideals.

Proposition 3.5. Let R be an almost Dedekind domain, and let I be
an ideal of R.

(a) I is radical if and only if the range of νI is {0, 1}.
Suppose now that I is radical.

(b) νI is equal to the characteristic function of V (I).
(c) The following are equivalent:

(i) νI is continuous;
(ii) V (I) is clopen in M;

(iii) I = rad(J) for some invertible ideal J .

Proof. (a) and (b) are immediate.
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In (c), (i) ⇐⇒ (ii) is immediate from (b). If I = rad(J) with
J finitely generated, then V (I) = V (J) and D(I) = D(J) are both
closed in the constructible topology of Spec(R), and thus V (I) and
D(I)∩M are both closed inM, so that V (I) is clopen; hence (iii) =⇒
(ii). On the other hand, if V (I) is clopen, then D(I) ∩M is closed in
M, and thus one of D(I) and D(I) ∩M must be closed in Spec(R),
endowed with the constructible topology. However, both cases imply
that D(I) is compact, with respect to the Zariski topology, and thus
that I = rad(J) for some finitely generated (i.e., invertible) ideal J .
Thus (ii) =⇒ (iii) and the claim is proved. �

Definition 3.6. We say that an ideal I is continuous if νI is continu-
ous.

Lemma 3.7. Let X ⊆M be clopen, with respect to the inverse topol-
ogy, and let I :=

⋂
{P | P ∈ X}.

(a) If I 6= (0), then I is a radical ideal such that V (I) = X.
(b) If X is compact in M then I 6= (0).

Proof. (a) By definition, I is radical, and clearly X ⊆ V (I). Further-
more, since I 6= (0), V (I) is a closed set of the Zariski topology con-
tained in M; hence, the restrictions of the Zariski, inverse and con-
structible topologies all agree on V (I). Hence, X is closed in the Zariski
topology, and thus X = V (J) for some radical ideal J such that I ⊆ J .
But then, J =

⋂
{P | P ∈ X} = I; hence X = V (I), as claimed.

(b) As X is compact with respect to the inverse topology, it is also
closed in M; by Lemma 2.2, the maximal ideals of R′ :=

⋂
{RM |

M ∈ X} are exactly the extensions of the elements of X. By [3, Corol-
lary 4.4.17], Max(R′) is closed in the constructible and thus in the
Zariski topology of Spec(R′); hence the Jacobson radical Jac(R′) of R′

is nonzero. Thus, I = Jac(R′) ∩R 6= (0), as claimed. �

Proposition 3.8. Let R be an almost Dedekind domain, and let I be
an integral ideal of R. Then, the following are equivalent:

(i) νI is continuous;
(ii) I = J1 · · · Jk for some continuous radical ideals J1 ⊆ · · · ⊆ Jk;

(iii) I = J1 · · · Jk for some continuous radical ideals J1, . . . , Jk.

Proof. (i) =⇒ (ii) By Proposition 3.3, νI has compact support, and
thus it is bounded by Lemma 2.6, say νI(M) ≤ k for all M ∈M.

Let Xn := ν−1
I ([n,+∞)). Since νI is continuous, each Xn is clopen,

with respect to the inverse topology; moreover, Xn ⊆ V (I) for all n > 1
and Xn is empty for n > k. By Lemma 3.7, the ideals Jn :=

⋂
{P | P ∈

Xn} are radical ideals such that V (Jn) = Xn, and thus J1 ⊆ J2 ⊆ · · · ⊆
Jk. Moreover, by Proposition 3.5, the Jn are continuous. We claim that
I = J1 · · · Jk. Indeed, let P ∈M. Then, Jn ⊆ P if and only if P ∈ Xn,
if and only if νI(P ) ≥ n; since Jn is radical, this means that νJn(P ) = 1
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if νI(P ) ≥ n while νJn(P ) = 0 otherwise. Thus,

νJ1···Jk(P ) =
k∑
i=1

νJi(P ) = n = νI(P ).

Since P was arbitrary, νI = νJ1···Jk and so I = J1 · · · Jk, as claimed.
(ii) =⇒ (iii) is obvious.
(iii) =⇒ (i) Since I = J1 · · · Jk, we have νI = νJ1 + · · · + νJk , and

since each νJi is continuous by hypothesis also νI is continuous. �

When I is invertible, the previous proposition holds (with the same
proof) if we impose that the Ji are not only continuous, but also in-
vertible. However, we can find two more useful characterizations; to do
so we need some preliminaries.

Proposition 3.9. Let R be an almost Dedekind domain and let I be
an ideal of R that is the radical of a finitely generated ideal. Then, I is
finitely generated if and only if Crit(R) ∩ V (I) is empty.

Proof. If I is finitely generated and M ∈ V (I), then M is not critical
because I itself does not satisfy the condition defining a critical ideal.
Conversely, suppose that Crit(R)∩ V (I) = ∅: therefore, for every M ∈
V (I) we can find a radical finitely generated ideal JM ⊆ M . In the
inverse topology, {V (JM)}M∈V (I) is an open cover of the compact space
V (I), and thus there is a finite subcover {V (J1), . . . , V (Jk)}. Let J0 be
a finitely generated ideal such that rad(J0) = I, and let J := J0 +
(J1 ∩ · · · ∩ Jk): then, J is radical since J1 ∩ · · · ∩ Jk is radical, and it
is finitely generated since the Ji are finitely generated and R is Prüfer.
Moreover, V (J) = V (J0)∩ (V (J1)∪ · · · ∪V (Jk)) = V (J0) = V (I) since
every M ∈ V (I) is in some V (Ji). Therefore, J must be equal to I,
which thus is finitely generated. �

Lemma 3.10. Let R be an almost Dedekind domain, and let I ⊆ J be
radical ideals. If I is invertible and D(J) is compact, with respect to
the Zariski topology, then J is invertible.

Proof. Since D(J) is compact, there is a finitely generated ideal J ′

such that D(J ′) = D(J), and thus V (J) = V (J ′). Then, J = I + J ′ is
finitely generated, and since R is a Prüfer domain then J must also be
invertible. �

Proposition 3.11. Let R be an almost Dedekind domain, and let I be
an integral invertible ideal of R. Then, the following are equivalent:

(i) νI is continuous;
(ii) I = J1 · · · Jk for some continuous invertible radical ideals J1 ⊆
· · · ⊆ Jk;

(iii) I = J1 · · · Jk for some continuous invertible radical ideals J1, . . . , Jk;
(iv) rad(I) is invertible;
(v) V (I) ∩ Crit(R) = ∅.
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Proof. The equivalence of (i), (ii) and (iii) follows from Proposition 3.8
and the fact that, when I = J1 · · · Jk, the ideal I is invertible if and
only if each Ji is invertible.

(ii) =⇒ (v) By Proposition 3.9, each V (Ji) is disjoint from Crit(R).
Hence, also V (I) = V (J1 · · · Jk) = V (J1) ∪ · · · ∪ V (Jk) is disjoint from
Crit(R).

(v) =⇒ (iv) We have V (rad(I))∩Crit(R) = V (I)∩Crit(R) = ∅. By
Proposition 3.9, rad(I) is finitely generated.

(iv) =⇒ (i) Suppose that νI is not continuous, and consider the
spacesXt := ν−1

I ([t,+∞)). If they are all clopen, then also each f−1(t) =
Xt∩ (M\Xt+1) is open, and thus νI would be continuous, a contradic-
tion. Let thus s be the minimal index such that Xs is not clopen inM:
then, s > 0 since X0 =M. Moreover, X1 =M\X0 = supp νI = V (I)
is clopen (as I is invertible) and thus s > 1.

For n < s, since Xn is clopen the ideal Jn :=
⋂
{P | P ∈ Xn} is a

continuous radical ideal containing J1 = rad(I), and since by hypoth-
esis rad(I) is invertible then also J1, . . . , Js−1 are invertible by Lemma
3.10. Let I ′ := IJ−1

1 · · · J−1
s−1: then, I ′ is an invertible integral ideal of R

such that ν−1
I′ ([t,+∞)) = ν−1

I ([t + s− 1,+∞)) = Xt+s−1 for all t ≥ 0.
In particular, V (I ′) = ν−1

I′ ([1,+∞)) = ν−1
I ([s,+∞)) = Xs. However,

V (I ′) is clopen since I ′ is invertible, while Xs is not by the definition
of s. This is a contradiction, and thus νI must be continuous. �

In particular, if we apply Proposition 3.11 to every invertible ideal,
we get back some of the characterizations of SP-domains given in The-
orem 2.1.

4. Function spaces

There are two ways in which the correspondence between continuous
valuation functions νI and invertible ideals can fail: continuous radical
ideals may not be invertible, and invertible ideals may not give rise to
continuous function. To study how much these properties fail, we need
to work in the context of groups of functions.

Since every νI is a function of compact support fromM to Z (Propo-
sition 3.3), we have a map

(1)
Ψ: F(R) −→ Fc(M,Z),

ν 7−→ νI ,

which is injective by Proposition 3.1. We also denote by Ψ the restric-
tion of this map to Inv(R). In this last case, Inv(R) carries also a group
structure; since νIJ = νI + νJ , we have Ψ(IJ) = Ψ(I) + Ψ(J), that is,
Ψ is an injective group homomorphism from Inv(R) to Fc(M,Z).

In particular, Ψ sends the set I(R) of integral ideals inside the set
Fc(M,N), and conversely: that is, if Ψ(I) = νI ∈ Fc(M,N) then I
must be an integral ideal.
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We now want to consider the set of continuous functions in the form
νI .

Proposition 4.1. Let R be an almost Dedekind domain. Then:

(a) Cc(M,Z) is generated by the νI , as I ranges among the contin-
uous radical ideals;

(b) Cc(M,N) ⊆ Ψ(I(R)).

Proof. Let f ∈ Cc(M,Z). Since Z has the discrete topology, we can
write f = a1χX1 + · · · + anχXn , where each Xi is a clopen subset of
R contained in supp f and each ai ∈ Z; in particular, each Xi (being
a closed subset of a compact space) is itself compact, with respect to
the inverse topology. By Lemma 3.7, Ji :=

⋂
{P | P ∈ Xi} is a radical

ideal with V (Ji) = Xi: thus, f = a1νJ1 + · · · + anνJn lies in the group
generated by the νI .

If now f ∈ Cc(M,N), then again we can write f = a1χX1 + · · · +
anχXn , with the ai ≥ 0: with the same construction we can write f = νI
with I := Ja11 · · · Jann . �

An immediate corollary is the extension of [9, Theorem 5.1] to SP-
domains with zero Jacobson radical.

Corollary 4.2. Let R be an SP-domain. Then, Inv(R) ' Cc(M,Z).

Proof. Since R is an SP-domain, every continuous radical ideal is in-
vertible (Proposition 3.5(c) and Theorem 2.1). By Proposition 4.1,
Cc(M,Z) is generated by the set of νI , as I ranges among the contin-
uous radical ideals; by Proposition 3.11, these ideals generate Inv(R),
and thus Ψ(Inv(R)) generates Cc(M,Z). Since Ψ is an injective group
homomorphism when restricted to Inv(R), it follows that its image is
the whole Cc(M,Z) and thus Inv(R) and Cc(M,Z) are isomorphic, as
claimed. �

Note that Cc(M,Z), in general, does not lie inside Ψ(F(R)): indeed,
suppose that J is radical with V (J) compact. Then, νJ is continuous,
and thus so is−νJ ; however,−νJ = νL for some L if and only if JL = R,
that is, −νJ ∈ Ψ(F(R)) if and only if J is invertible, which in general
needs not to happen. Nevertheless, Cc(M,N) generates Cc(M,Z) as a
group, and thus the group generated by Ψ(I(R)) contains Cc(M,Z).

To explore the relationship between Ψ(Inv(R)) and Cc(M,Z), we
will consider three groups:

• the first one is Σ(R) := Ψ(Inv(R)) ∩ Cc(M,Z), the group of
continuous invertible ideals;

• the second one is the quotient Σr(R) :=
Cc(M,Z)

Σ(R)
, that mea-

sures how many continuous functions do not come from invert-
ible ideals;
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• the third one is the quotient Σi(R) :=
Ψ(Inv(R))

Σ(R)
, that mea-

sures how many invertible ideals are not continuous.

We shall study the first two of these groups in the remainder of this
section, and the last one in the following Section 5. Before doing so, we
reinterpret the characterizations of SP-domains through these groups.

Proposition 4.3. Let R be an almost Dedekind domain. The following
are equivalent:

(i) R is an SP-domain;
(ii) Cc(M,Z) = Ψ(Inv(R));

(iii) Σ(R) = Cc(M,Z);
(iv) Σ(R) = Ψ(Inv(R));
(v) Σr(R) = (0);

(vi) Σi(R) = (0).

Proof. (iii) ⇐⇒ (v) and (iv) ⇐⇒ (vi) are a direct consequence of
the definitions; thus, it is enough to consider the first four conditions.

The domain R is an SP-domain if and only if rad(I) is invertible for
every integral invertible ideal I, and thus by Proposition 3.11 if and only
if νI is continuous for every invertible ideal I; i.e., R is an SP-domain
if and only if Ψ(Inv(R)) ⊆ Cc(M,Z), if and only if Σ(R) = Ψ(Inv(R)).
Thus (i) ⇐⇒ (iv).

On the other hand, Cc(M,Z) is generated by the νI , as I ranges
among the continuous radical ideals I; thus, Cc(M,Z) ⊆ Ψ(Inv(R))
(i.e., Σ(R) = Cc(M,Z)) if and only if, for every radical ideal I, νI is
continuous, if and only if every such I is invertible. By Propositions
3.5 and 3.11, this happens if and only if, whenever I is the radical of a
finitely generated ideal, then it is itself finitely generated, and thus if
and only if R is an SP-domain. Thus (i) ⇐⇒ (iii).

Finally, it is clear that (ii) implies (iii) and (iv), and that (iii) and
(iv) together imply (ii). Since (iii) and (iv) are both equivalent to (i),
all conditions are equivalent. �

Proposition 4.4. Let R be an almost Dedekind domain. Then, the
restriction map gives an isomorphism Σ(R) ' Cc(M\ Crit(R),Z); in
particular, Σ(R) is a free abelian group.

Proof. Let
Φ: Σ(R) −→ Cc(M\ Crit(R),Z),

νI 7−→ νI |M\Crit(R);

be the restriction map. Then, Φ is well-defined: if I is invertible, then
I = JL−1 for some invertible continuous ideals J, L (Lemma 3.2) and
by Proposition 3.11 both V (J) and V (L) are disjoint from Crit(R).
Hence, supp νI ⊆ V (J) ∪ V (L) ⊆M\ Crit(R), and so νI |M\Crit(R) has
compact support. Moreover, this shows that if Φ(νI) is zero then the
whole νI must be zero, and thus Φ is injective.
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Let now f ∈ Cc(M\ Crit(R),Z): then, f =
∑

i aiχXi for some com-
pact clopen subsets Xi ofM\Crit(R) and some ai ∈ Z. We claim that
the Xi are clopen inM: indeed, they are open since they are open sub-
sets of the open set M\ Crit(R), while they are closed since they are
compact subsets of the Hausdorff space M. By Lemma 3.7, the ideals
Ji :=

⋂
{P | P ∈ Xi} are nonzero and such that V (Ji) = Xi; more-

over, they are invertible by Proposition 3.11, since Xi ∩ Crit(R) = ∅.
Setting I :=

∏
i J

ai
i we have f = νI . Thus, Φ is surjective and hence an

isomorphism.
The last claim follows from the fact that Cc(M\ Crit(R),Z) is free,

being a subgroup of the free group C(M\Crit(R),Z) [13, Satz 1]. �

For Σr(R) the result is similar, but involves Crit(R) instead of its
complement.

Proposition 4.5. Let R be an almost Dedekind domain. Then, Σr(R) '
Cc(Crit(R),Z); in particular, Σr(R) is a free abelian group.

Proof. Consider the quotient map π : Cc(M,Z) −→ Σr(R), and let
f, g ∈ Cc(M,Z). We claim that π(f) = π(g) if and only if the restric-
tions of f and g to Crit(R) are the same, and to do so it is enough to
prove that π(f) = 0 if and only if f |Crit(R) = 0.

Indeed, suppose that f |Crit(R) = 0. We can write f =
∑

i ciχZi , for
some disjoint clopen and compact sets Zi, and the hypothesis implies
that no Zi meets Crit(R). By Lemma 3.7, we can find radical ideals
Ji such that νJi = χZi ; by Proposition 3.5, each Ji is the radical of
a finitely generated ideal, and since Zi ∩ Crit(R) = ∅, by Proposition
3.9 the Ji themselves are finitely generated and thus invertible. Let
L :=

∏
i J

ai
i : then, f = νL ∈ Ψ(Inv(R)), and thus f is in the kernel of

π, i.e., π(f) = 0.
Conversely, suppose that π(f) = 0. Then, f = νL for some L ∈

Inv(R); by Lemma 3.2 f = νI − νJ for some invertible integral ideals
I, J such that νI , νJ are continuous. By Proposition 3.11, I and J are
products of continuous invertible radical ideals; by Proposition 3.9, the
support of each of these radical ideals does not meet Crit(R). Therefore,
νI − νJ is the zero function on Crit(R), i.e., f |Crit(R) = 0, as claimed.

The first part of the above equivalence implies that the quotient π
factors through Cc(Crit(R),Z), i.e., that we have a chain of maps

Cc(M,Z) −→ Cc(Crit(R),Z) −→ Σr(R),

and the second part that the rightmost map is injective. It follows that
Cc(Crit(R),Z) and Σr(R) are isomorphic, as claimed. The “in partic-
ular” part now follows from the fact that Cc(Crit(R),Z) is free, as a
subgroup of the free group Fb(Crit(R),Z) (see [16, Satz 1] and Lemma
2.6). �
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Corollary 4.6. Let R be an almost Dedekind domain. Then, Σr(R) has
finite rank if and only if Crit(R) is finite; in this case, | rk Σr(R)| =
|Crit(R)|.

Proof. The group Cc(Crit(R),Z) has finite rank if and only if Crit(R)
is finite, and in this case Cc(Crit(R),Z) =

⊕
{Z | M ∈ Crit(R)} has

rank |Crit(R)|. The claim follows from Proposition 4.5. �

Corollary 4.7. Let R,R′ be almost Dedekind domains. If Crit(R) and
Crit(R′) are homeomorphic (when they are endowed with the inverse
topology) then Σr(R) ' Σr(R

′).

Proof. Immediate from Proposition 4.5. �

In general, it may not be easy to individuate the set Crit(R) of critical
maximal ideals of R. In the next proposition, we give a weaker version
of Proposition 4.5 that only depend on the topological structure ofM.

Proposition 4.8. Let R be an almost Dedekind domain. Then, there
is a surjective map Cc(D(M),Z) −→ Σr(R).

Proof. By Proposition 2.5, Crit(R) ⊆ D(M). Since Crit(R) is closed in
M, the restriction map Cc(D(M),Z) −→ Cc(Crit(R),Z) is surjective;
the claim now follows from Proposition 4.5. �

5. The freeness of Inv(R)

In this section we study the group Σi(R) := Ψ(Inv(R))/Σ(R). The
first result is that this group can actually be reduced to an already
known object.

Proposition 5.1. Let R be an almost Dedekind domain, and let T :=⋂
{RP | P ∈ Crit(R)}. Then, Σi(R) ' Inv(T ).

Proof. Since Crit(R) is closed, by Lemma 2.2 the maximal ideals of
T are the extensions of the critical ideals of R. Moreover, since R is
Prüfer, the extension map Inv(R) −→ Inv(T ) is surjective, with kernel
K := {I ∈ Inv(R) | IT = T} = {I ∈ Inv(R) | supp(νI)∩Crit(R) = ∅}.
Therefore, the corresponding surjective map Ψ(Inv(R)) −→ Inv(T ) has
kernel

{νI | supp(νI) ∩ Crit(R) = ∅} = Σ(R),

using Proposition 4.4. Hence, Inv(T ) ' Ψ(Inv(R))/Σ(R), which is
Σi(R) by definition. �

Therefore, we have an exact sequence

0 −→ Σ(R) −→ Inv(R) −→ Inv(T ) −→ 0.

The ring T is itself an almost Dedekind domain, and thus we can apply
the same reasoning: setting T2 :=

⋂
{TP | P ∈ Crit(T )}, we have

0 −→ Σ(T ) −→ Inv(T ) −→ Inv(T2) −→ 0
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or more generally

0 −→ Σ(Tk) −→ Inv(Tk) −→ Inv(Tk+1) −→ 0

where Tk+1 :=
⋂
{(Tk)P | P ∈ Crit(Tk)} (and we set T0 := D and

T1 := T for uniformity). For this reason, we introduce the following
definition.

Definition 5.2. Let R be an almost Dedekind domain. For every or-
dinal α, define recursively the following:

• Crit0(R) :=M;
• T0 := R;
• if α = γ + 1 is a successor ordinal,

Critα(R) := {P ∈M | PTγ ∈ Crit(Tγ)};
• if α is a limit ordinal,

Critα(R) :=
⋂
γ<α

Critγ(R);

• Tα :=
⋂
{RP | P ∈ Critα(R)}.

We call the minimal ordinal α such that Critα(R) = Critα+1(R) (equiv-
alently, such that Tα = Tα+1) the SP-rank of R. If Critα(R) = ∅ (equiv-
alently, if Tα = K) for this α, then we say that R is SP-scattered.

Note that, if Critα(R) = Critα+1(R), then, for all γ > α, Critα(R) =
Critγ(R) and Tγ = Tα.

The following two lemmas generalize Propositions 2.4 and 2.5, and
allow to give a sufficient condition for R to be SP-scattered. In partic-
ular, Lemma 5.3 can be seen as a variant of [9, Lemma 6.5].

Lemma 5.3. Let R be an almost Dedekind domain, and let α be an
ordinal. Then:

(a) for every P ∈MR, PTα 6= Tα if and only if P ∈ Critα(R);
(b) Critα(R) is the image of MTα under the canonical restriction

map MTα −→MR;
(c) Critα(R) is closed in MR.

Proof. We proceed by induction. If α = 0, then Crit0(R) = M and
the claim is obvious; if α = 1, then Crit1(R) = Crit(R) is closed by
Proposition 2.4; thus Crit(R) is the image of MT1 by Lemma 2.2.

Suppose that the three claims hold for every λ < α. If α is a
limit ordinal, then Critα(R) =

⋂
λ<α Critλ(R) is closed, and thus also

Critα(R) is closed; the other claims follow from Lemma 2.2 and the
definition of Tα. If α = γ + 1 is a successor ordinal, then by definition
P ∈ Critα(R) if and only if PTγ ∈ Crit(Tγ); therefore, the restriction
map MTγ −→ MR sends Crit(Tγ) to Critγ+1(R) = Critα(R). By the
case α = 1, Crit(Tγ) is closed in MTγ ; since the restriction map is
closed, it follows that Critα(R) is closed in MR. The other two claims
follow again from Lemma 2.2. �
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Lemma 5.4. Let R be an almost Dedekind domain. Then, Critα(R) ⊆
Dα(M) for every ordinal α.

Proof. By induction on α. If α = 1 the claim is exactly Proposition
2.5. If α = γ + 1 is a successor ordinal, by Lemma 5.3 the restriction
map θ : MTγ −→ MR establishes a homeomorphism between MTγ

and Critγ(R); therefore, by induction,

Critα(R) = θ(Crit(Tγ)) ⊆ θ(D(MTγ )) =

= D(Critγ(R)) ⊆ D(Dγ(M)) = Dα(R).

If α is a limit ordinal then, by induction,

Critα(R) =
⋂
β<α

Critβ(R) ⊆
⋂
β<α

Dβ(M) = Dα(M).

The claim is proved. �

Proposition 5.5. Let R be an almost Dedekind domain. Then, the
following hold.

(a) If M is countable, then it is scattered.
(b) If M is scattered, then R is SP-scattered.

Proof. (a) If M is countable, then so is Spec(R). As a compact Haus-
dorff countable space, Spec(R)cons is scattered [11], and a subspace of
a scattered space is scattered; hence M is scattered.

(b) Since M is scattered, there is an ordinal α such that Dα(M)
is empty. By Lemma 5.4, Critα(R) ⊆ Dα(M), and thus Critα(R) is
empty; in particular, R is SP-scattered. �

When R has finite rank, applying finitely many times the reasoning
after Proposition 5.1 we will get the zero module, and thus an isomor-
phism Inv(Tn) ' Cc(MTn ,Z) = Cc(Critn(R),Z); using its freeness, we
can pull back this isomorphism to get a decomposition

Inv(R) '
n⊕
i=0

Cc(Criti(R) \ Criti+1(R),Z).

We now want to prove this result to arbitrary SP-scattered domain,
and for this we need two group-theoretic lemmas.

Lemma 5.6. Let G be an abelian group. Let {Gλ}λ∈Λ be a well-ordered
set of ascending chain of subgroups of G such that:

• each Gλ is free;
• for all λ, Gλ+1 ' Gλ ⊕Hλ for some subgroup Hλ;
• if λ is a limit ordinal, then Gλ =

⋃
α<λGα;

• G =
⋃
λGλ.

Then, G ' G0 ⊕
⊕
λ∈Λ

Hλ, and in particular it is free.

Proof. The statement is equivalent to [6, Chapter 3, Lemma 7.3]. �
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Lemma 5.7. Let G1, G2, G3, and let φ1 : G1 −→ G2 and φ2 : G2 −→
G3 be surjective maps. Then, there is an exact sequence

0 −→ kerφ1 −→ ker(φ2 ◦ φ1)
φ1−−→ kerφ2 −→ 0

Proof. Immediate. �

Proposition 5.8. Let R be an almost Dedekind domain, and let α be
an ordinal. Then, there is an exact sequence

0 −→
⊕
i<α

Cc(Criti(R) \ Criti+1(R),Z) −→ Inv(R) −→ Inv(Tα) −→ 0.

Proof. Since R is Prüfer, the extension map I 7→ IT is a surjective ho-
momorphism from Inv(R) to Inv(Tα), with kernel Kα := {I ∈ Inv(R) |
IT = T} = {I ∈ Inv(R) | supp(νI) ∩ Critα(R) = ∅}. We need to show
that Kα '

⊕
i<α Cc(Criti(R)\Criti+1(R),Z), and we do so by induction

on α.
If α = 0 there is nothing to prove. If α = 1, the claim is exactly

Proposition 4.4. Suppose now that the claim holds for all λ < α.
If α = γ+1 is a successor ordinal, then the surjective map Inv(R) −→

Inv(Tα) factors through Inv(Tγ); by Lemma 5.7, we have an exact se-
quence

(2) 0 −→ Kγ −→ Kα −→ Kγ,α −→ 0,

where Kγ,α is the kernel of Inv(Tγ) −→ Inv(Tα). By Proposition 4.4,

Kγ,α ' Cc(MTγ \ Crit(Tγ),Z) ' Cc(Critγ(R) \ Critα(R),Z),

which is free by [13, Satz 1]; hence, (2) splits as Kα ' Kγ,α ⊕Kγ, and
the claim now follows by induction.

Suppose now that α is a limit ordinal. Consider the sequence {Kλ}λ<α:
by induction, it is an ascending chain of free subgroups ofKα, and it sat-
isfies the two middle conditions of Lemma 5.6 with Hλ = Cc(Critλ(R)\
Critλ+1(R),Z). We show that Kα =

⋃
λ<αKλ.

Indeed, suppose I ∈ Kα: then,

supp νI ⊆M\ Critα(R) =
⋃
λ<α

(M\ Critλ(R))

since α is a limit ordinal. Since each Critλ(R) is closed in the inverse
topology (Lemma 5.3), {M \ Critλ(R)}λ<α is an open cover of the
compact set supp νI , and since {M \ Critλ(R)}λ<α is also a chain it
means that there is a λ such that supp νI ⊆ M \ Critλ(R). Hence,
I ∈ Kλ, and so Kα is the union of the Kλ. From Lemma 5.6 we now
get that Kα is free and that it has the claimed decomposition. �

Theorem 5.9. Let R be an SP-scattered almost Dedekind domain with
SP-rank α. Then,

Inv(R) '
⊕
i<α

Cc(Criti(R) \ Criti+1(R),Z);
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in particular, Inv(R) is free.

Proof. By definition, Tα = K and so Inv(Tα) = (0). Hence, Inv(R)
is homeomorphic to Kα, the kernel of the extension map Inv(R) −→
Inv(Tα). The claim now follows from Proposition 5.8. �

Remark 5.10. The isomorphism in Theorem 5.9 is not canonical. In-
deed, suppose that R has a single critical maximal ideal M , so that
T1 = RM and T2 = K. Let X :=M\ Crit(R). Then, by the theorem,

Inv(R) ' Cc(X,Z)⊕ Cc(Crit(R),Z) = Cc(X,Z)⊕ νIZ,
where I is an invertible ideal such that νI is not continuous. However,
there is no way to choose I canonically; indeed, if J is an invertible
ideal with νJ continuous, then we also have

Inv(R) ' Cc(X,Z)⊕ Cc(Crit(R),Z) = Cc(X,Z)⊕ νIJZ,
and the first component of a νL will be different in the two decompo-
sitions. On the other hand, by Proposition 4.4, the second component
will always be the same, since it coincides with νL|Crit(R), i.e., in this
case, to νL(M).

Remark 5.11. If R is not SP-scattered, then the exact sequence of
Proposition 5.8 is still valid when α is the SP-rank of R; in particular,
if Inv(Tα) is free then the sequence is split and Inv(R) is free. Therefore,
to prove that Inv(R) is free for every almost Dedekind domain R, it is
enough to prove it for the domains R such that Crit(R) = Max(R).

6. Divisorial ideals

Let R be a ring. A fractional ideal I of R is said to be divisorial if (R :
(R : I)) = I or, equivalently, if I is an intersection of principal ideals;
the set Div(R) of divisorial ideals contains Inv(R) and is a monoid
under the “v-product” I ∗v J := (R : (R : IJ)) [7, Section 34]. When
R is completely integrally closed, Div(R) is a group [7, Theorem 34.3];
for example, this happens when R is a one-dimensional Prüfer domain,
and in particular when R is an almost Dedekind domain.

In this context, the relationship between Div(R) and Inv(R) is better
understood in the context of lattice-ordered groups [9, Section 3]. A
lattice-ordered group (or `-group for short) is a group (G,+) endowed
with a partial order ≤ such that, for every x, y ∈ G, the infimum x∧ y
and the supremum x ∨ y exists, and such that whenever x, y, g ∈ G
and x ≤ y then x + g ≤ y + g. An `-homomorphism of `-groups is
a homomorphism φ : G −→ G′ such that φ(x ∧ y) = φ(x) ∧ φ(y) for
every x, y ∈ G (equivalently, such that φ(x∨ y) = φ(x)∨φ(y) for every
x, y ∈ G).

An `-group G is said to be complete if, whenever a set of elements of
G is bounded below, it has an infimum; the completion of an `-group
G is the smallest complete `-group H containing G (and such that
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the inclusion is an `-homomorphism). Every `-group has a completion;
moreover, if G is an `-group and H is an `-group containing G, then
H is the completion of G if and only if H is complete and, for each
0 < h ∈ H, there are g1, g2 ∈ H such that 0 < g1 ≤ h ≤ g2 [2, Theorem
2.4].

The group Inv(R) of invertible ideals of a Prüfer domain R (so, in
particular, of an almost Dedekind domain R) is an `-group if we set
that I ≤ J if and only if I ⊇ J ; the infimum I∧J is the sum I+J , while
the supremum I ∨ J is the intersection I ∩ J . If T is an overring of R,
then the canonical map φ : Inv(R) −→ Inv(T ) is an `-homomorphism,
since φ(I + J) = (I + J)T = IT + JT = φ(I) + φ(J). When R is
also one-dimensional, its completion is exactly the group Div(R) of
divisorial ideals of R [9, Proposition 3.1].

The group C(X,Z) of continuous functions is an `-group, where the
order is the componentwise order; its completion can be expressed in
terms of the Gleason cover EX of X. A topological space is said to
be extremally disconnected if the closure of every open set is open. It
can be shown that, if X is a regular Hausdorff space, then there is
a “minimal” extremally disconnected space EX endowed with a map
j : EX −→ X that is perfect (i.e., closed, continuous and compact) and
surjective, and that extremally disconnected spaces are the projective
objects in the category of regular Hausdorff spaces and perfect maps.
Such a space EX can also be constructed explicitly as the space of
convergent ultrafilters on the open sets of X [20].

The following two results extend [9, Lemma 5.2 and Theorem 5.3] to
non-compact spaces; the proof is essentially the same.

Lemma 6.1. Let X be a Hausdorff regular space. Then, the natural
embedding ψ : Cc(X,Z) −→ Cc(EX ,Z), f 7→ f ◦j, makes Cc(EX ,Z) into
the completion of ψ(Cc(X,Z)) as an `-group. Moreover, the quotient
group Cc(EX ,Z)/ψ(Cc(X,Z)) is free.

Proof. We first show that ψ is well-defined. Clearly f ◦ j is continuous;
since j is compact, by [20, Lemma 4] j−1(Z) is compact for every
compact subspace Z of X; hence, supp(j ◦ f) ⊆ j−1(supp(f)) is the
closed subset of a compact space, and thus it is compact. Hence f ◦ j
has compact support and ψ is well-defined.

We now claim that Cc(EX ,Z) and ψ(Cc(X,Z)) are Specker groups
of F(EX ,Z). For every f ∈ Cc(EX ,Z) and every n ∈ N \ {0}, the set
f−1(n) ⊆ supp(f) is a clopen subset of EX , and thus its characteris-
tic function is continuous and has compact support. Hence χf−1(n) ∈
Cc(EX ,Z); by definition, Cc(EX ,Z) is Specker.

Likewise, if g ∈ Cc(X,Z), then χg−1(n) ∈ Cc(X,Z). Since ψ(g)−1(n) =
j−1(g−1(n)), we have χψ(g)−1(n) = ψ(χg−1(n)) ∈ ψ(Cc(X,Z)), and thus
also ψ(Cc(X,Z)) is Specker.
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By [13, Satz 2] there is a free subgroup S such that Cc(EX ,Z) =
ψ(Cc(X,Z))⊕S. Hence, the quotient Cc(EX ,Z)/ψ(Cc(X,Z)) is isomor-
phic to S and thus free.

It only remains to prove that Cc(EX ,Z) is the completion of ψ(Cc(X,Z)).
By [10, Proposition 3.29], the space C(EX ,Z) is a complete `-group; if

now F := {fα} is a subset of Cc(EX ,Z) that is bounded below, say 0 <
g ≤ fα for every α, then F is also bounded below in C(EX ,Z), and thus
F has an infimum f in C(EX ,Z). However, supp g ⊆ supp fα for every
α, and thus supp g is a closed set of a compact set, and in particular it
is compact. Hence g ∈ Cc(EX ,Z) and Cc(EX ,Z) is complete.

To prove that Cc(EX ,Z) is the completion of Cc(X,Z), we need to
prove that if 0 < f ∈ Cc(X,Z) then there are g1, g2 ∈ Cc(EX ,Z) such
that 0 < ψ(g1) ≤ f ≤ ψ(g2). The support of f is clopen, and thus
j−1(supp(f)) is an open set of EX ; therefore, j−1(supp(f)) is extremally
disconnected and, in fact, j : j−1(supp(f)) −→ supp(f) is the mini-
mal perfect mapping onto supp(f), so that j−1(supp(f)) ' Esupp(f).
By [9, Lemma 5.2], we can find g̃1, g̃2 ∈ C(j−1(supp(f)),Z) with the
right properties; since g̃1, g̃2 can be extended to continuous functions
of compact support g1, g2 : EX −→ Z, we get 0 < ψ(g1) ≤ f ≤ ψ(g2),
as claimed. The claim is proved. �

Theorem 6.2. Let R be an SP-domain. Then, there is a commutative
diagram

Inv(R)
⊆−−−→ Div(R)yΨ β

y
Cc(M,Z)

ψ−−−→ Cc(EM,Z)

such that the vertical arrows are isomorphisms. In particular, Div(R) '
Cc(EX ,Z) and the quotient Div(R)/Inv(R) are free groups.

Proof. By [9, Proposition 3.1], Div(R) is the completion (as an `-group)
of Inv(R); on the other hand, by Lemma 6.1, Cc(EM,Z) is the comple-
tion of ψ(Cc(M,Z)). Therefore, β must be an isomorphism.

In particular, Div(R) is isomorphic to Cc(EM,Z), and thus free by
[13, Satz 1]. Moreover, Div(R)/Inv(R) is isomorphic to the quotient
Cc(EM,Z)/ψ(Cc(M,Z)); by Lemma 6.1, this group is free too. �

It is temping to apply the same methods used in the previous the-
orem for the case of SP-scattered domains. However, while the map
Inv(R) −→ Inv(Tα) is a `-homomorphism for every α, the decomposi-
tion Inv(R) '

⊕
i<α Cc(Xi,Z) of Theorem 5.9 (where Xi := Criti(R) \

Criti+1(R)) is not a decomposition of `-groups, in the sense that the
isomorphism map is not an `-homomorphism, since the order on Inv(R)
does not correspond to the componentwise order of the direct sum.
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For example, suppose thatM = {M0,M1, . . .}∪{M∞} = X∪{M∞},
where Mi is isolated for i ∈ N, while M∞ is critical (and thus a non-
isolated point of M). By Theorem 5.9, we have

Inv(R) ' Cc(X,Z)⊕ Cc({M∞},Z);

in particular, the first summand is isomorphic to the direct sum of
countably many copies of Z, while the second summand is isomorphic
to Z.

The generator of the second summand in Inv(R) is an invertible
ideal I that is contained in M∞ and is not continuous; in particular,
there must be a maximal ideal Mi containing I, so that I ≥ Mi in
Inv(R). However, in the direct sum representation I corresponds to
(0, n), where 0 is the zero function on X and n > 0, while P correspond
to (χ{P}, 0): in particular, (0, 1) and (χ{P}, 0) are not comparable in the
componentwise order of Cc(X,Z)⊕ Cc({M∞},Z).

Note also that, in this case, both Cc(X,Z) and Cc({M∞},Z) are com-
plete `-groups, and thus by [2, Corollary to Theorem 2.4] so is their
direct sum (with the componentwise order); however, if J is a rad-
ical ideal contained in M∞, then J is divisorial (since it is the in-
tersection of the Mi containing it) but not invertible (otherwise M∞
would not be critical). Hence, we don’t have a natural decomposition
Div(R) ' Cc(EX ,Z)⊕Cc(E{M∞},Z), and thus the analogue of Theorem
5.9, i.e., the decomposition

Div(R) '
⊕
i<α

Cc(EXi ,Z)

does not hold, in general.

7. Length functions

Let R be an integral domain and let Mod(R) be the set of R-modules.
A singular length function on R is a map ` : Mod(R) −→ {0,∞} such
that:

• `(0) = 0;
• for every short exact sequence 0 −→M1 −→M2 −→M3 −→ 0,

we have `(M2) = `(M1) + `(M3);
• for every module M , we have `(M) = sup{`(N) | N is a finitely

generated submodule of M}.
Every length function ` is uniquely determined by the map τ associating
to each ideal I of R the length `(R/I) [23, Proposition 3.3]. We call
τ the ideal colength associated to `. Given two ideals I ⊆ J , we have
τ(I) ≥ τ(J). See [14] and [21] for an introduction to length functions.

If ` is a length function on R and T is a flat overring of R, we define
`⊗T as the length function on R such that (`⊗T )(M) = `(M⊗T ) for
all modules M [18, Section 3]; likewise, if τ is the corresponding ideal
colength, we set (τ ⊗ T )(I) := (` ⊗ T )(R/I) = `(T/IT ), i.e., τ ⊗ T is
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the colength corresponding to ` ⊗ T . The functions ` ⊗ T and τ ⊗ T
can also be seen as length function on T .

Let F(R) be the set of R-submodules of K. A stable semistar oper-
ation on R is a closure operation ? : F(R) −→ F(R), I 7→ I?, such
that:

• x · I? = (xI)? for every x ∈ K, I ∈ F(R);
• (I ∩ J)? = I? ∩ J? for every I, J ∈ F(R).

There is a natural bijective correspondence between singular length
functions and stable semistar operations; a length function ` with ideal
colength τ and a semistar operation ? are associated when τ(I) = 0 if
and only if 1 ∈ I? [18, Section 6].

Let R be an almost Dedekind domain. IfM is scattered, then every
stable semistar operation ? on R is in the form I 7→

⋂
{IRP | P ∈

∆} for some ∆ ⊆ Max(R) [19, Corollaries 8.6 and 8.9]; this writing
corresponds to a decomposition ` =

∑
{` ⊗ RP | P ∈ ∆} (see [18,

Section 3] and [19, Proposition 7.7]). In particular, 1 ∈ I? if and only
if V (I) ∩∆ is empty; hence, 1 ∈ I? if and only if 1 ∈ rad(I)?, and

τ(I) = τ(rad(I))

for every ideal I. In this section, we want to prove that this equality
holds, more generally, for all SP-scattered domains.

Lemma 7.1. Let ` be a singular length function on R, and let τ be the
corresponding ideal colength. Then, for every I, J , we have

τ(IJ) = τ(I) + τ(J).

Proof. If τ(IJ) = 0, then τ(I) = 0 = τ(J) since IJ is contained in both
I and J . Conversely, if τ(I) = τ(J) = 0, let ? be the stable semistar
operation associated to `: then, I? = R? = J?, and thus

(IJ)? = (I?J?)? = (R?R?)? = R?;

hence τ(IJ) = 0. Thus τ(IJ) = 0 if and only if τ(I) = τ(J) = 0, and
since ` is singular it follows that τ(IJ) =∞ if and only if at least one
of τ(I) and τ(J) is equal to ∞. The claim follows. �

Lemma 7.2. Let ` be a singular length function on R, and let τ be the
corresponding ideal colength. Let I, J be two ideals. If In ⊆ J ⊆ I for
some integer n, then τ(I) = τ(J).

Proof. Since In ⊆ J ⊆ I, we have τ(In) ≥ τ(J) ≥ τ(I). By Lemma
7.1, τ(In) = nτ(I); since τ(I) is either 0 or ∞, we have nτ(I) = τ(I).
Thus τ(I) = τ(J), as claimed. �

Lemma 7.3. Let R be a one-dimensional Prüfer domain, let Ω ⊆ M
be a closed set, let T :=

⋂
{RP | P ∈ Ω} and let I be an ideal such that

V (I) ⊆ Ω. Let ` be a singular length function on R, and let τ be the
corresponding ideal colength. Then, τ(I) = (τ ⊗ T )(I).
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Proof. Since V (I) ⊆ Ω, we have I = IT ∩ R. Let ? be the spectral
semistar operation associated to `: then, I? = (IT )? ∩ R?, and thus
1 ∈ I? if and only if 1 ∈ (IT )?. Therefore, τ(I) = 0 if and only if
(τ ⊗ T )(I) = 0. The claim follows. �

Theorem 7.4. Let R be an almost Dedekind domain, and let α be
an ordinal. Let ` be a singular length function on R, and let τ be the
corresponding ideal colength. Then, for every ideal I we have

(3) τ(I) = τ(rad(I)) + (τ ⊗ Tα)(I).

Proof. Suppose first that τ(I) = 0. Then, also τ(rad(I)) = 0; further-
more, `⊗ Tα ≤ ` (i.e., (`⊗ Tα)(M) ≤ `(M) for every module M), and
thus τ ⊗ Tα ≤ τ . Hence also (τ ⊗ Tα)(I) = 0, and the claim follows.

Suppose now that τ(I) = ∞, and let ? be the spectral semistar
operation associated to `: then, 1 /∈ I?, and thus J := I? ∩ R is a
proper ideal of R such that J = J? ∩ R. In particular, τ(J) = ∞. If
V (J) ⊆ Critα(R), then by Lemma 7.3 we have τ(J) = (τ⊗Tα)(J) =∞.
In particular, since I ⊆ J , we also have (τ ⊗ Tα)(I) = ∞; thus, (3)
holds.

Suppose now that V (J) * Critα(R), and let β ≤ α be the minimal
ordinal such that V (J) is not contained in Critβ(R). Such a β cannot
be a limit ordinal (since in this case Critβ(R) is the intersection of
Critγ(R) for γ < β): therefore, β = γ + 1 for some γ. By construction,
V (J) ⊆ Critγ(R).

By Lemma 7.3, we have τ(J) = (τ ⊗ Tγ)(J), and since rad(JTγ) =
rad(J)Tγ, we also have τ(rad(JTγ)) = τ(rad(J)Tγ); moreover, (τ ⊗
Tγ)⊗ Tα = τ ⊗ (Tγ ⊗ Tα) = τ ⊗ Tα. Since the same holds for I, we can
substitute R with Tγ, I with ITγ and J with JTγ; equivalently, we can
suppose without loss of generality that γ = 0 and β = 1.

Under this condition, there is a non-critical maximal ideal P of R
such that J ⊆ P . Since Crit(R) is a closed subset of M, there is a
clopen subset Ω such that P ∈ Ω and Ω ∩ Crit(R) = ∅. Let S :=⋂
{RP | P ∈ Ω} and S⊥ :=

⋂
{RQ | Q ∈ M \ Ω}: then, since Ω

is clopen, {S, S⊥} is a Jaffard family (see [5, Section 6.3]), so that
τ(J) = (τ ⊗ S)(JS) + (τ ⊗ S⊥)(JS⊥) and J? = (JS)? ∩ (JS⊥)? [18,
Theorem 3.10]. As J = J? ∩ R ⊆ P , moreover, (JS)? ⊆ PS ( S and
thus 1 /∈ (JS)?; hence (τ ⊗ S)(JS) =∞.

Since Ω is disjoint from Crit(R), S is an SP-domain; in particular,
every ideal I contains a power of its radical, and thus by Lemma 7.2
(τ ⊗ S)(JS) = (τ ⊗ S)(rad(JS)). Therefore, (τ ⊗ S)(rad(JS)) = ∞;
it follows that τ(rad(J)) = ∞, and since I ⊆ J also τ(rad(I)) = ∞.
Thus τ(I) = τ(rad(I)) = τ(rad(I)) + (τ ⊗ Tα)(I), as claimed. �

Corollary 7.5. Let R be an SP-scattered almost Dedekind domain; let
` be a singular length function and let τ be the corresponding ideal
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colength. Then, for every ideal I, we have

τ(I) = τ(rad(I)).

Proof. Since R is SP-scattered, we have Tα = K for some ordinal α. The
claim now follows from Theorem 7.4 and the fact that (τ ⊗K)(I) = 0
for every nonzero ideal I. �
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