
WILF’S CONJECTURE FOR NUMERICAL
SEMIGROUPS WITH LARGE SECOND GENERATOR

DARIO SPIRITO

Abstract. We study Wilf’s conjecture for numerical semigroups
S such that the second least generator a2 of S satisfies a2 >
c(S)+µ(S)

3 , where c(S) is the conductor and µ(S) the multiplic-
ity of S. In particular, we show that for these semigroups Wilf’s
conjecture holds when the multiplicity is bounded by a quadratic
function of the embedding dimension.

1. Introduction and preliminaries

A numerical semigroup is a subset S ⊆ N that contains 0, is closed
under addition and such that the complement N \S is finite. In partic-
ular, there is a largest integer not contained in S, which is called the
Frobenius number of S and is denoted by F (S). The conductor of S
is defined as c(S) := F (S) + 1, and it is the minimal integer x such
that x + N ⊆ S. Calculating F (S) is a classical problem (called the
Diophantine Frobenius problem), introduced by Sylvester [11]; see [8]
for a general overview.

Given coprime integers a1 < . . . < an, the numerical semigroup
generated by a1, . . . , an is the set

〈a1, . . . , an〉 := {λ1a1 + · · ·+ λnan | λi ∈ N}.

Conversely, if S is a numerical semigroup, there are always a finite
number of integers a1, . . . , an such that S = 〈a1, . . . , an〉; moreover,
there is a unique minimal set of such integers, whose cardinality, called
the embedding dimension of S, is denoted by ν(S). The integer a1, the
smallest minimal generator of S, is called the multiplicity of S, and is
denoted by µ(S).

In 1978, Wilf [12] suggested a relationship between the conductor
and the embedding dimension of S. More precisely, set

L(S) := {x ∈ S | 0 ≤ x < c(S)}.

Wilf hypothesized that the inequality

ν(S)|L(S)| ≥ c(S)

2010 Mathematics Subject Classification. 05A20, 11B13, 11D07, 20M14.
Key words and phrases. Numerical semigroups; Wilf’s conjecture; sumset.

1



2 DARIO SPIRITO

holds for every numerical semigroup S; this question is known as Wilf ’s
conjecture. The conjecture is still unresolved in the general case, al-
though there have been several partial results: for example, it has
been proven that Wilf’s conjecture holds when ν(S) ≤ 3 [11, 3], when
|N \ S| ≤ 60 [4], when c(S) ≤ 3µ(S) [5, 1] and when ν(S) ≥ µ(S)/2
[10].

In this paper, we study Wilf’s conjecture when a2, the second small-
est generator of S, is large, in the sense that

a2 >
c(S) + µ(S)

3
.

This condition is favorable to the study of Wilf’s condition because it
implies that the conductor c(S) is not too large with respect to the
other parameters of S, and that the embedding dimension ν(S) is not
too small with respect to the multiplicity µ(S) (see Proposition 2.4).
From a technical point of view, the main advantage is that we can split
the generators of S into three sets (see Section 2) in a way that make
easier to estimate the cardinality of L(S).

The main result of this paper is Theorem 5.2, which says that, for
every ε > 0, Wilf’s conjecture holds (among the semigroups with a2 >
c(S)+µ(S)

3
) whenever

µ(S) ≤ 8

25
ν(S)2 +

1

5
ν(S)− 1

2
− ε

and ν is larger than a quantity ν0(ε) depending on ε; this could be com-
pared to the results in [7], where Wilf’s conjecture is proved (without
hypothesis on the second generator) for µ(S) ≤ c′ν(S)4/3, where c′ is a
constant (see Remark 5.4 for details).

Following the same method of proof, we also show a few variants of
this result: we show that for ν(S) ≥ 10 we can take ε = 3/4 (Proposi-
tion 5.3), we prove the conjecture under the additional hypothesis that
c(S) ≡ 0 mod µ(S) (Proposition 5.5) and we improve the previous in-
equality to µ(S) ≤ 4

9
ν(S)2 provided that we allow a finite number of

counterexamples for every (large) value of ν(S) (Proposition 5.6).

The structure of the paper is at follows. Section 2 is focused on the
combinatorial features of semigroups satisfying the condition a2 >

c+µ
3

,
and in particular on what bounds the condition imposes on the param-
eters of S. Section 3 estimates the cardinality of L(S) in function of the
size of generators of S, first in a general way and then distinguishing
six different cases according to a parameter θ(S) (see Definition 3.3).
In Section 4 we present two inequalities that are proved through purely
analytic methods. In Section 5, we give a criterion summing up the pre-
vious results (Proposition 5.1) and then we prove the main Theorem
5.2 and its variants (Propositions 5.3-5.7).
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For general information and results about numerical semigroups, the
reader may consult [9].

2. Splitting the generators

From now on, S will be a numerical semigroup, µ := µ(S) its multi-
plicity, ν := ν(S) its embedding dimension, and c := c(S) its conductor.
We denote by Ap(S) the Apéry set of S with respect to its multiplicity,
i.e.,

Ap(S) := {i ∈ S | i− µ /∈ S}.
We recall that, for every t ∈ {0, . . . , µ−1}, there is a unique x ∈ Ap(S)
such that x ≡ t mod µ; in particular, Ap(S) has cardinality µ. Note
also that, since F (S) = c(S)− 1 is the maximal integer not belonging
to S, the largest element of Ap(S) is F (S) +µ, and thus every element
of Ap(S) is strictly smaller than c+ µ.

Let now P := {a1, . . . , aν} be the set of minimal generators of S,
with µ = a1 < a2 < · · · < aν . We shall always suppose that a2 >

c+µ
3

.
Since each x ∈ P \ {µ} belongs to Ap(S), we can subdivide P \ {µ}
into the following three sets:

P1 :=

{
a ∈ P \ {µ} | 1

3
(c+ µ) < a <

1

2
(c+ µ)

}
,

P2 :=

{
a ∈ P \ {µ} | 1

2
(c+ µ) ≤ a <

2

3
(c+ µ)

}
,

P3 :=

{
a ∈ P \ {µ} | 2

3
(c+ µ) ≤ a < c+ µ

}
.

We set qi := |Pi|, for i ∈ {1, 2, 3}.
Let π : Z −→ Z/µZ be the canonical quotient map, and let A :=

π(P ), Ai := π(Pi). Given two subsets X, Y ⊆ Z/µZ, the sumset of X
and Y is

X + Y := {x+ y | x ∈ X, y ∈ Y }.

Proposition 2.1. Let S = 〈a1, a2, . . . , aν〉 be a numerical semigroup

with a2 >
c(S)+µ(S)

3
. Then, Z/µZ = A ∪ (A1 + A1) ∪ (A1 + A2).

Proof. Let x ∈ Ap(S), x 6= 0. Then, x < c + µ and x is a sum of
elements of P \ {µ} (since x − nµ /∈ S for n > 0). The sum of three
elements of P \ {µ} is bigger than c + µ, and thus cannot be equal to
x; likewise, x cannot be the sum of two elements of P2∪P3, and it also
cannot be the sum of an element of P1 and an element of P3. Hence,
the unique possibilities are x ∈ P , x ∈ P1 + P1, or x ∈ P1 + P2. The
claim follows by projecting onto Z/µZ. �

The following is a modification of an idea introduced by S. Eliahou
in [2].
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Definition 2.2. Let (a, b) ∈ P1 × P2. We say that (a, b) is an Apéry
pair if a+ b ∈ Ap(S), and we denote by Σ the set of all Apéry pairs.

A subset {(ai, bi)}ni=1 ⊆ Σ is independent if ai 6= aj and bi 6= bj for
every i 6= j; we denote by σ the maximal cardinality of an independent
set of Apéry pairs.

We can relate Σ and σ through a graph-theoretic argument; see e.g.
[6] for the terminology used in the proof.

Proposition 2.3. Let Σ and σ as above. Then,

|Σ| ≤ σ ·max{q1, q2}

Proof. Define a graph G by taking the disjoint union P1tP2 as the set
of vertices and Σ as the set of edges. Then, an independent subset of
Σ is exactly an independent subset of edges of G, that is, a matching,
and σ is exactly the matching number of G.

Since G is a bipartite graph, by König’s theorem (see e.g. [6, Theorem
1.1.1]) the matching number of G is equal to the its point covering
number, i.e., to the cardinality of the smallest set S ⊆ V (G) such that
every edge of G has a vertex in S.

For every v ∈ V (G), the number of edges incident to v is at most q1
if v ∈ P2 and at most q2 if v ∈ P1; hence, the point covering number of
G is at least |E(G)|/max{q1, q2}. The claim follows. �

Using this terminology, we now relate quantitatively µ, ν, q1 and q2.

Proposition 2.4. Let S = 〈a1, a2, . . . , aν〉 be a numerical semigroup

with a2 >
c(S)+µ(S)

3
. Then:

(a) µ ≤ ν +
q1(q1 + 1)

2
+ σ ·max{q1, q2};

(b) µ ≤ ν +
q1(q1 + 1)

2
+ q1q2;

(c) µ ≤ 1

2
ν(ν + 1);

(d) q1 ≥
2ν − 1−

√
(2ν + 1)2 − 8µ

2
.

Proof. (a) By Proposition 2.1, we have

µ ≤ |A|+ |A1 + A1|+ |A1 + A2|.

By definition, |A| = ν, while |A1 +A1| ≤ q1(q1 + 1)/2 by symmetry. If
x ∈ Ap(S)∩(P1+P2), then x = a1+b1 for some Apéry pair (a1, b1) ∈ Σ;
hence,

|Ap(S) ∩ (P1 + P2)| ≤ |Σ| ≤ σ ·max{q1, q2},
with the last inequality coming from Proposition 2.3. Since |A1+A2| ≤
|Ap(S) ∩ (P1 + P2)| the claim follows by summing the three bounds.

(b) is immediate from (a) and the fact that σ ≤ min{q1, q2}.
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(c) Since q1 + q2 ≤ ν − 1, using (b) we have

µ ≤ ν +
q1(q1 + 1)

2
+ q1q2 ≤

≤ ν +
q1(q1 + 1)

2
+ q1(ν − 1− q1) = ν − 1

2
q21 +

(
ν − 1

2

)
q1,

and thus

(1) q21 − (2ν − 1)q1 + 2(µ− ν) ≤ 0.

Therefore, the discriminant of the equation is nonnegative, that is,

0 ≤ (2ν − 1)2 − 8(µ− ν) = (2ν + 1)2 − 8µ,

or equivalently

µ ≤ 1

2
ν2 +

1

2
ν +

1

8
.

Moreover, since µ and ν are integers, so is 1
2
ν2 + 1

2
ν = ν(ν+1)

2
, and thus

we can discard the 1
8
.

(d) The inequality (1) holds for

2ν − 1−
√

(2ν + 1)2 − 8µ

2
≤ q1 ≤

2ν − 1 +
√

(2ν + 1)2 − 8µ

2
.

The claim follows. �

Remark 2.5. The bound in Proposition 2.4(d) may actually be neg-
ative: however, if q1 = 0 then part (a) shows that µ ≤ ν, and thus
µ = ν. In this case, S is of maximal embedding dimension and Wilf’s
conjecture holds by [3, Theorem 20 and Corollary 2].

3. Estimates on |L(S)|

The goal of this section is to estimate the cardinality of L := L(S).

Lemma 3.1. Let x, y, b, p be real numbers, with p > 0 and x < y, and
let A := b+ pZ := {b+ pn | n ∈ Z}. Then:

(a) |A ∩ [x, y)| ≥
⌊
y − x
p

⌋
;

(b) if x ∈ A and y /∈ A, then |A ∩ [x, y)| =
⌊
y − x
p

⌋
+ 1.

Proof. Let k :=
⌊
y−x
p

⌋
. Then,

x+ kp ≤ x+
y − x
p
· p = y;

hence, the k sets [x, x + p), [x + p, x + 2p), . . . , [x + (k − 1)p, x + kp)
are disjoint subintervals of [x, y). In each [x+ ip, x+ (i+ 1)p) there is
exactly one element of A; hence, |A ∩ [x, y)| ≥ k.
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Moreover, if x ∈ A then x + kp ∈ A; since y /∈ A, then x + kp 6= y,
and thus the interval [x+ kp, y) is nonempty and contains exactly one
element of A (namely, x+ kp). Hence, |A ∩ [x, y)| = k + 1. �

Proposition 3.2. Let S = 〈a1, a2, . . . , aν〉 be a numerical semigroup

with a2 >
c(S)+µ(S)

3
. Then,

(2)

|L(S)| ≥
⌊
c

µ

⌋
(1+σ)+

(⌊
1

2

c

µ
− 1

2

⌋
+ 1

)
(q1−σ)+

(⌊
1

3

c

µ
− 2

3

⌋
+ 1

)
(q2−σ).

Proof. If x is an integer, let

Lx := {a ∈ L(S) | a ≡ x mod µ}.

Clearly, Lx and Ly are disjoint if x 6≡ y mod µ. Hence,

|L(S)| =
∑

x∈Ap(S)

|Lx| ≥ |L0|+
∑

x∈P1∪P2

|Lx|.

If x ∈ Ap(S), then, Lx = (x + µZ) ∩ [x, c); by Lemma 3.1(a) we have

|Lx| ≥
⌊
c− x
µ

⌋
. In particular, |L0| ≥

⌊
c

µ

⌋
.

Take an independent set {(at, bt)}σi=1 of Apéry pairs of maximal cardi-
nality, and write P1 = {a1, . . . , aσ, c1, . . . , cr}, P2 = {b1, . . . , bσ, d1, . . . , ds}.
Then, ∑

x∈P1∪P2

|Lx| ≥
σ∑
t=1

(|Lai |+ |Lbi |) +
r∑
j=1

|Lcj |+
s∑

k=1

|Ldk |.

Suppose (a, b) is an Apéry pair. By Lemma 3.1(a),

|La|+ |Lb| =
⌊
c− a
µ

⌋
+

⌊
c− b
µ

⌋
≥

≥ 2c− (a+ b)

µ
− 2 >

c− µ
µ
− 2 =

c

µ
− 3.

(3)

Moreover, |La| and |Lb| are both integers, and thus

|La|+ |Lb| ≥
⌊
c

µ

⌋
− 2.

On the other hand, if x = cj for some j then x ∈ P1 and so

|Lx| ≥
⌊
c− 1

2
(c+ µ)

µ

⌋
=

⌊
1

2

c

µ
− 1

2

⌋
,

while if x = dk for some k then x ∈ P2 and thus

|Lx| ≥
⌊
c− 2

3
(c+ µ)

µ

⌋
≥
⌊

1

3

c

µ
− 2

3

⌋
.
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Summing everything, we have

|L(S)| ≥
⌊
c

µ

⌋
+σ

(⌊
c

µ

⌋
− 2

)
+

⌊
1

2

c

µ
− 1

2

⌋
(q1−σ)+

⌊
1

3

c

µ
− 2

3

⌋
(q2−σ).

Applying Lemma 3.1(b), for every x ∈ {0} ∪ P1 ∪ P2, except possibly
one (namely, the x such that c ≡ x mod µ), there is a further element in
Lx ∩ [x, c); hence, we can add q1 + q2 to the quantity on the right hand
side. Distributing this quantity (adding 2σ to the second summand,
q1−σ to the third one and q2−σ to the last one) and putting together
the first two summand we have our claim. �

Due to the presence of the floor functions, we can get better estimates
on the right hand side of (2) if we analyze it according to the integral
part of c/µ. To do so, we introduce the following parameter.

Definition 3.3. Let S be a numerical semigroup. Let k be the largest

integer such that c(S)
µ(S)
− (6k − 1) < 6: then, we set

θ(S) :=
c(S)− (6k − 1)µ(S)

µ(S)
.

It is immediate from the definition that θ(S) is a rational number
and belongs to [0, 6).

Proposition 3.4. Let S = 〈a1, a2, . . . , aν〉 be a numerical semigroup

with a2 >
c(S)+µ(S)

3
, and suppose that c(S) > 3µ(S). Let

l :=

{
5 if θ(S) ∈ [0, 4)

−1 if θ(S) ∈ [4, 6).

and define

α := 1− 1

l + bθc+ 1
(θ − bθc),

β := min

{
1

2
,
1

2
− 1

l + bθc+ 1

(
θ

2
−
⌊
θ

2

⌋
− 1

2

)}
,

γ := min

{
1

3
,
1

3
− 1

l + bθc+ 1

(
θ

3
−
⌊
θ

3

⌋
− 1

3

)}
,

Then,

ν(S)|L(S)|
c(S)

≥ ν(S)

µ(S)
[α(1 + σ) + β(q1 − σ) + γ(q2 − σ)].

Note that the hypothesis c(S) > 3µ(S) is not really restrictive in our
context, since, by [1], Wilf’s conjecture holds when c ≤ 3µ.

Proof. Let θ := θ(S), ν := ν(S), µ := µ(S), c := c(S), L := L(S). By
definition, c = (6k − 1)µ+ θµ. Then,⌊

c

µ

⌋
=

⌊
(6k − 1)µ+ θµ

µ

⌋
= 6k − 1 + bθc =

c

µ
− (θ − bθc);
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analogously, ⌊
1

2

c

µ
− 1

2

⌋
+ 1 =

c

2µ
+

1

2
−
(
θ

2
−
⌊
θ

2

⌋)
and ⌊

1

3

c

µ
− 2

3

⌋
+ 1 =

c

3µ
+

1

3
−
(
θ

3
−
⌊
θ

3

⌋)
.

Multiplying (2) by ν
c
, we obtain

ν|L|
c
≥ ν

µ

[
1− µ

c
(θ − bθc)

]
(1 + σ)+

+
ν

µ

[
1

2
− µ

c

(
θ

2
−
⌊
θ

2

⌋
− 1

2

)]
(q1 − σ)+

+
ν

µ

[
1

3
− µ

c

(
θ

3
−
⌊
θ

3

⌋
− 1

3

)]
(q2 − σ).

(4)

Since c > 3µ, we have c ≥ (l+θ)µ; equivalently,
µ

c
≤ 1

l + θ
≤ 1

l + bθc+ 1
.

Since θ ≥ bθc, it follows that

1− µ

c
(θ − bθc) ≥ 1− 1

l + bθc+ 1
(θ − bθc),

and the right hand side is exactly α.
If θ

2
−
⌊
θ
2

⌋
− 1

2
≤ 0, then the coefficient of q1 − σ in (4) is at least 1

2
;

otherwise, as above,

1

2
− µ

c

(
θ

2
−
⌊
θ

2

⌋
− 1

2

)
≥ 1

2
− 1

l + bθc+ 1

(
θ

2
−
⌊
θ

2

⌋
− 1

2

)
.

Thus the coefficient of q1 − σ is larger than β. Analogously we obtain
that the coefficient of q2 − σ in (4) is at least γ. Since, by definition,
1 + σ, q1 − σ and q2 − σ are always nonnegative, we have

ν|L|
c
≥ ν

µ
[α(1 + σ) + β(q1 − σ) + γ(q2 − σ)],

as claimed. �

Proposition 3.5. Let α, β, γ, l be as in Proposition 3.4. Then:

if bθc = 0: α ≥ 5

6
; β ≥ 1

2
; γ ≥ 1

3
;

if bθc = 1: α ≥ 6

7
; β ≥ 3

7
; γ ≥ 2

7
;

if bθc = 2: α ≥ 7

8
; β ≥ 1

2
; γ ≥ 1

4
;

if bθc = 3: α ≥ 8

9
; β ≥ 4

9
; γ ≥ 1

3
;

if bθc = 4: α ≥ 3

4
; β ≥ 1

2
; γ ≥ 1

4
;
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if bθc = 5: α ≥ 4

5
; β ≥ 2

5
; γ ≥ 1

5
;

Proof. The estimates for α follow immediately from Proposition 3.4
and the fact that θ − bθc ≤ 1.

If bθc ≡ 0 mod 2, then θ
2
−
⌊
θ
2

⌋
≤ 1

2
; thus,

1

2
−
(
θ

2
−
⌊
θ

2

⌋
− 1

2

)
≥ 1

2
− 0 =

1

2
,

and so β = 1
2
. On the other hand, if bθc ≡ 1 mod 2 then θ

2
−
⌊
θ
2

⌋
≤ 1

and so

β ≥ 1

2
− 1

l + bθc+ 1

(
1− 1

2

)
=

1

2

(
1− 1

l + bθc+ 1

)
;

the claim is obtained substituting l and bθc with their actual values.
Similarly, if bθc ≡ 0 mod 3 then θ

3
−
⌊
θ
3

⌋
≤ 1

3
and so γ = 1

3
. On the

other hand, if bθc ≡ 1 mod 3 then θ
3
−
⌊
θ
3

⌋
≤ 2

3
and thus

γ ≥ 1

3
− 1

l + bθc+ 1

(
2

3
− 1

3

)
=

1

3

(
1− 1

l + bθc+ 1

)
.

If bθc ≡ 2 mod 3, the same reasoning gives a similar estimate, but with
2

l+bθc+1
instead of 1

l+bθc+1
. Substituting the actual values of l and bθc

we get the values in the statement. �

Corollary 3.6. Let αi, βi, γi be the values found in Proposition 3.5
when bθc = i, and let

`i(x, y, z) := αi(1 + z) + βi(x− z) + γi(y − z).

If i ≤ 3 and j ≥ 4, then `i(x, y, z) ≥ `j(x, y, z) for all x, y, z ∈ R such
that x, y, z ≥ 0 and z ≤ min{x, y}.

Proof. With i, j as defined, we have αi ≥ αj, βi ≥ βj and γi ≥ γj; the
fact that 1 + z, x − z and y − z are nonnegative now guarantees that
`i(x, y, z) ≥ `j(x, y, z). �

4. Some inequalities

We collect in this section some inequalities, obtained through ana-
lytic methods, that we will use in the proof of our main result.

Definition 4.1. Let ρ ≥ 1 be a real number. Set

I(ρ) :=

{
(x, y) ∈ R2 | x ≥ 1, y ≥ 0,

x(x+ 1)

2
+ xy = ρ

}
and

A(ρ) :=

{
(x, y) ∈ R2 | x ≥ 1, y ≥ 0,

x(x+ 1)

2
+ xy ≥ ρ

}
.
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Figure 1. The line I(10) (the bolded subset of the hy-
perbola) and the region A(10) (shaded).

Graphically, the set
{

(x, y) ∈ R2 | x > 0, x(x+1)
2

+ xy = ρ
}

is a branch

of a hyperbola having the y-axis as a vertical asymptote and crossing

the x-axis at x0 := −1+
√
1+8ρ

2
≥ 1 (since ρ ≥ 1). In particular, I(ρ) is

the subset of this branch defined by x varying between 1 and x0, while
A(ρ) is the part of the first quadrant that is above I(ρ); see Figure 1.

Lemma 4.2. Let f(x, y) := α+βx+γy, where α, β, γ are positive real
numbers such that 2β ≥ γ. For every (x, y) ∈ A(ρ), we have

f(x, y) ≥ α− γ

2
+
√

2γ(2β − γ)
√
ρ.

Proof. For every (x, y) ∈ A(ρ) there is an (x′, y′) ∈ I(ρ) such that
x′ ≤ x and y′ ≤ y. Since f is a linear function with positive coefficients,
the minimum of f on A(ρ) must belong to I(ρ) (and it exists since I(ρ)
is compact).

Let (x0, y0) be the point of minimum of f on I(ρ). By Lagrange
multipliers, {

∂xf(x0, y0) = x0 + 1
2

+ y0 = βλ

∂yf(x0, y0) = x0 = γλ

for some λ ∈ R; imposing (x0, y0) ∈ I(ρ) we have

ρ = x0

(
1

2
x0 +

1

2
+ y0

)
=

= ∂yf(x0, y0) ·
(
∂xf(x0, y0)−

1

2
∂yf(x0, y0)

)
=
γ(2β − γ)

2
λ2

and thus

λ =

√
2

γ(2β − γ)

√
ρ.
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Substituting in f , we have

f(x0, y0) = α + βγλ+ γ

[
(β − γ)λ− 1

2

]
=

= α− γ

2
+ γ (β + β − γ)

√
2

γ(2β − γ)

√
ρ =

= α− γ

2
+
√

2γ(2β − γ)
√
ρ,

as claimed. �

Lemma 4.3. Let ζ, ξ be real numbers such that ζ ≤ 1, and let λ :=
4(1−ζ)
ξ2

. If x, y are positive real numbers such that

(5)


2y ≤ x < ξ2y2 − (2ζ − 1)y − (1− ζ)2

ξ2
+
λ3ξ2

32
· 1

y

(
y

y − λ

)5/2

,

y > max

{
λ,

(ζ − 2)2

ξ2

}
then

(6) ζ − ξ
√
x− y ≥ x

y
.

Proof. Since y > 0, the inequality (6) is equivalent to

ξy
√
x− y ≥ x− ζy,

and squaring both sides (which makes since since x− ζy ≥ x− y > 0)
this is equivalent to

ξ2y2(x− y) ≥ x2 − 2ζxy + ζ2y2,

that is,

(7) x2 − (2ζy + ξ2y2)x+ ζ2y2 + ξ2y3 ≤ 0.

The claim will follow once we prove that the roots of (7) exist and lie
outside the interval defined by the first inequality in (5).

For x = 2y, the left hand side of (7) becomes

4y2 − (2ζy + ξ2y2)(2y) + ζ2y2 + ξ2y3 =

= (4− 4ζ + ζ2)y2 + (ξ2 − 2ξ2)y3 =

= y2[(ζ − 2)2 − ξ2y]

which is negative by the second hypothesis of (5).
The larger root of the equation (7) is equal to

x+ :=
(2ζy + ξ2y2) +

√
y2ξ2[4(ζ − 1)y + ξ2y2]

2
=

=
2ζy + ξ2y2 + ξ2y2

√
1− λ

y

2
.
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By hypothesis, λ < y, and thus we can expand
√

1− λ
y

as a Taylor

series in λ
y

around 0. Then,

ξ2y2

√
1− λ

y
= ξ2y2

(
1− 1

2
· λ
y
− 1

8

λ2

y2
+R2(λ/y)

)
=

= ξ2y2 − 2(1− ζ)y − 2(1− ζ)2

ξ2
+ ξ2y2R2(λ/y),

where R2 is the remainder, and thus

x+ =
2ζy + ξ2y2 + ξ2y2 − 2(1− ζ)y − 2(1−ζ)2

ξ2
+ ξ2y2R2(λ/y)

2
=

= ξ2y2 + (2ζ − 1)y − (1− ζ)2

ξ2
+
ξ2y2R2(λ/y)

2
.

Since d3

dz3

√
1− z = −3

8
1

(1−z)5/2 , by Taylor’s theorem there is an η ∈
[0, λ/y] such that

|ξ2y2R2(λ/y)| = ξ2y2
1

6

(
λ

y

)3
3

8

1

(1− η)5/2
.

The function z 7→ 3
8

1
(1−z)5/2 is increasing in [0, 1); hence, to bound above

the remainder we can take η = λ/y. We obtain

|ξ2y2R2(λ/y)| ≤ λ3ξ2

16

1

(1− (λ/y))5/2
,

from which the claim follows. �

5. Wilf’s conjecture for large second generator

The estimates of the previous section are connected to Wilf’s con-
jecture in the following way.

Proposition 5.1. Let S = 〈a1, a2, . . . , aν〉 be a semigroup of multiplic-
ity µ, embedding dimension ν and such that a2 >

c+µ
3

. Let α, β, γ be
defined as in Proposition 3.4, and let

`(x, y, z) := α(1 + z) + β(x− z) + γ(y − z).

If, for every (x, y) ∈ A(µ− ν), we have{
`(x, y, x) ≥ µ/ν,

`(x, y, y) ≥ µ/ν,

then Wilf ’s conjecture holds for S.

Proof. By Proposition 3.4, we have

ν|L|
c
≥ ν

µ
`(q1, q2, σ).
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By Proposition 2.4(a), the triple (q1, q2, σ) satisfies the inequality

q1(q1 + 1)

2
+ σ ·max{q1, q2} ≥ µ− ν.

We distinguish two cases.

If q1 ≥ q2, then the previous inequality becomes
q1(q1 + 1)

2
+ σq1 ≥ µ− ν,

that is, (q1, σ) ∈ A(µ−ν). Since the coefficients α, β, γ are positive and
q2 ≥ σ, we have

`(q1, q2, σ) ≥ `(q1, σ, σ) ≥ µ

ν
by hypothesis, and thus

ν|L|
c
≥ ν

µ

µ

ν
= 1.

Thus, ν|L| ≥ c, i.e., Wilf’s conjecture holds for S.

Suppose that q1 ≤ q2, and consider the subset of the three-dimensional
space

Ω :=

{
(x, y, z) ∈ R3 | x, y, z ≥ 0, z ≤ x ≤ y,

x(x+ 1)

2
+ yz ≥ µ− ν

}
.

Then, (q1, q2, σ) ∈ Ω. By definition, ` is a linear function with positive
coefficients. Thus, as in the proof of Lemma 4.2, the point of minimum
of ` on Ω belongs to the boundary

∆ :=

{
(x, y, z) | x, y, z ≥ 0, z ≤ x ≤ y,

x(x+ 1)

2
+ yz = µ− ν

}
.

Let also

∆′ :=

{
(x, y, z) | x, y, z ≥ 0,

x(x+ 1)

2
+ yz = µ− ν

}
.

The point of minimum (x0, y0, z0) of ` on ∆′, by Lagrange multipliers,
must satisfy 

∂x`(x0, y0, z0) = x0 + 1
2

= βλ

∂y`(x0, y0, z0) = z0 = γλ

∂z`(x0, y0, z0) = y0 = (α− β − γ)λ.

for some λ. For every choice of bθc, we have γ > α− β − γ; hence, we
have z0 > y0. Since z ≤ y for all points of Ω, the point of minimum of `
on ∆ must satisfy another boundary condition, that is, either x0 = z0
or x0 = y0. In the former case, (x0, y0) ∈ I(µ − ν), and thus as in the
previous case `(x0, y0, x0) ≥ µ/ν by hypothesis.

On the other hand, if x0 = y0 then (x0, z0) ∈ I(µ − ν), and thus
`(x0, y0, z0) = `(x0, x0, z0). However,

`(x0, x0, z0) = α(1+z0)+(β+γ)(x0−z0) ≥ α(1+z0)+β(x0−z0) = `(x0, z0, z0)



14 DARIO SPIRITO

since x0 ≥ z0 and γ > 0. By hypothesis, `(x0, z0, z0) ≥ µ/ν, and thus
also `(x0, x0, z0) ≥ µ/ν. In both cases, we have

ν|L|
c
≥ ν

µ
`(q1, q2, σ) ≥ ν

µ

µ

ν
= 1,

and thus Wilf’s conjecture holds for S. �

Theorem 5.2. For every ε > 0 there is a ν0(ε) such that, if S =
〈a1, a2, . . . , aν〉 is a numerical semigroup such that:

• a2 > c(S)+µ(S)
3

,
• ν(S) = ν ≥ ν0(ε), and
• µ(S) ≤ 8

25
ν2 + 1

5
ν − 1

2
− ε,

then S satisfies Wilf ’s conjecture.

Proof. If µ ≤ 3ν, then Wilf’s conjecture holds by [10]. Thus, we can
suppose µ > 3ν.

Let `(x, y, z) := α(1 + z) + β(x − z) + γ(y − z), where α, β, γ are
defined as in Proposition 3.4. By Proposition 5.1, we need to show that
`(x, y, x) ≥ µ/ν and `(x, y, y) ≥ µ/ν for all (x, y) ∈ A(µ− ν).

Let f(x, y) := A+Bx+Cy be either `(x, y, x) or `(x, y, y). By Lemma
4.2, we have

f(x, y) ≥
(
A− C

2

)
+
√

2C(2B − C)
√
µ− ν.

Set ζ := A− C
2

and ξ :=
√

2C(2B − C). By Lemma 4.3, for every ε > 0
and for large enough ν the inequality f(x, y) ≥ µ/ν holds as long as

(8) µ < ξ2ν2 + (2ζ − 1)ν − (1− ζ)2

ξ2
− ε

since the last term of the first equation of (5) goes to 0 as ν goes to
infinity.

Since we are interested in the asymptotic worst case for the right
hand side of (8), we need to take the smallest ξ2 form the possible
ones. If f(x, y) = `(x, y, x), then we have f(x, y) = α + (α − γ)x + γy
and thus

ξ2 = 2γ(2α− 2γ − γ) = 2γ(2α− 3γ);

on the other hand, if f(x, y) = `(x, y, y) then f(x, y) = α+βx+(α−β)y
and thus

ξ2 = 2(α− β)(2β − (α− β)) = 2(α− β)(3β − α).

Substituting the α, β and γ with the estimates found in Proposition
3.5 (and note that, by Corollary 3.6, it would be enough to consider
the cases bθc = 4 and bθc = 5), the minimum among these values is
8/25, which happens for bθc = 5 and for the case `(x, y, y) (see Table
1). Therefore, for large ν, if µ is smaller than the right hand side of (8)
when ξ and ζ are calculated in this case then they are smaller in every
case. Making the substitution we have our claim. �
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`(x, y, x) `(x, y, y)
bθc = 0 4/9 4/9
bθc = 1 24/49 18/49
bθc = 2 1/2 15/32
bθc = 3 14/27 32/81
bθc = 4 3/8 3/8
bθc = 5 2/5 8/25

Table 1. Values of ξ2 for f(x, y) = `(x, y, x) and
f(x, y) = `(x, y, y).

A more explicit version is the following.

Proposition 5.3. Let S = 〈a1, a2, . . . , aν〉 be a numerical semigroup

with ν(S) = ν ≥ 10. If a2 >
c(S)+µ(S)

3
and

µ(S) ≤ 8

25
ν(S)2 +

1

5
ν(S)− 5

4
,

then S satisfies Wilf ’s conjecture.

Proof. As in the proof of Theorem 5.2, we can suppose µ > 3c.
Following the proof of Theorem 5.2, let `(x, y, z) := α(1 + z) +β(x−

z) + γ(y− z), where α, β, γ are as in Proposition 3.4. By Corollary 3.6,
it is enough to consider the cases (α, β, γ) =

(
3
4
, 1
2
, 1
4

)
and (α, β, γ) =(

4
5
, 2
5
, 1
5

)
.

We need to consider four different f(x, y) := A+Bx+ Cy:

• bθc = 4 and f(x, y) = `(x, y, x): then, A = 3
4
, B = 1

2
, C = 1

4
;

• bθc = 4 and f(x, y) = `(x, y, y): then, A = 3
4
, B = 1

2
, C = 1

4
;

• bθc = 5 and f(x, y) = `(x, y, x): then, A = 4
5
, B = 3

5
, C = 1

5
;

• bθc = 5 and f(x, y) = `(x, y, y): then, A = 4
5
, B = 2

5
, C = 2

5
.

Set ξ :=
√

2C(2B − C), ζ := A − C
2

and λ := 4(1−ζ)
ξ2

. By Lemmas 4.2

and 4.3, we have f(x, y) ≥ µ/ν on A(µ− ν) if

µ < ξ2ν2 + (2ζ − 1)ν − (1− ζ)2

ξ2
− λ3ξ2

32
· 1

ν

(
ν

ν − λ

)5/2

.

Substituting the values of ξ, ζ, λ of each case and using ν ≥ 10 we have
that f(x, y) ≥ µ/ν under the following conditions:

• if bθc = 4, when

µ <
3

8
ν2 +

1

4
ν − 3

8
− 3

4
· 1

10

(
10

6

)5/2

;
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• if bθc = 5 and f(x, y) = `(x, y, x), when

µ <
2

5
ν2 +

2

5
ν − 9

40
− 27

80
· 1

10

(
10

7

)5/2

;

• if bθc = 5 and f(x, y) = `(x, y, y), when

µ <
8

25
ν2 +

1

5
ν − 1

2
− 5

4
· 1

10

(
10

5

)5/2

.

Among these, the worst case (for all coefficients) is the last one, and
thus it is enough to consider that one. We have

5

4
· 1

10

(
10

5

)5/2

=
5 · 4
√

2

40
=

√
2

2
<

3

4
,

and thus f(x, y) ≥ µ/ν if

µ <
8

25
ν2 +

1

5
ν − 1

2
− 3

4
.

By Proposition 5.1, Wilf’s conjecture holds in this case, as claimed. �

Remark 5.4. Let ρ := dµ
ν
e. In [7], it is shown that Wilf’s conjecture

holds when µ ≥ f(ρ)
g(ρ)

, where f is a polynomial of degree 5 and g a

polynomial of degree 1, and if all prime factors of µ are at least equal
to ρ. Asymptotically, the first condition can be rephrased as µ ≥ cρ4,
where c is a constant. Since ρ ∈ [µ/ν, µ/ν + 1), this is equivalent to

µ ≥ c′
(µ
ν

)4
=⇒ µ ≤ c′ν4/3

for some constant c′.
Written in this way, this result can be compared with Theorem 5.2:

in the latter, we are able to increase the exponent of ν from 4/3 to 2,
at the price of adding the hypothesis a2 >

c+µ
3

.

To conclude the paper, we give three variants of Theorem 5.2 that
can be proved with a similar argument. The first one looks at case
c ≡ 0 mod µ, the second one strengthens the coefficient 8

25
and the

third one weakens Wilf’s conjecture.

Proposition 5.5. If S = 〈a1, a2, . . . , aν〉 is a numerical semigroup such
that

• a2 > c(S)+µ(S)
3

,
• ν(S) ≥ 10 and
• c ≡ 0 mod µ,

then S satisfies Wilf ’s conjecture.

Proof. Let α, β, γ, l be as in Proposition 3.4. Since c ≡ 0 mod µ, the
number θ is an integer. Thus, α is always equal to 1; likewise, β is
always equal to 1

2
, since θ

2
−
⌊
θ
2

⌋
is either 0 or 1

2
. If θ is equivalent to 0
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or 1 modulo 3, then in the same way γ = 1
3
; on the other hand, if θ = 2

we have

γ =
1

3
− 1

8

(
2

3
− 1

3

)
=

7

24
,

while if θ = 5 then

γ =
1

3
− 1

5

(
2

3
− 1− 1

3

)
=

4

15
.

Since the minimal γ is 4
15

, we have always `(x, y, z) ≥ (1 + z) + 1
2
(x−

z) + 4
15

(y − z).

Let f(x, y) := `(x, y, y). Then, f(x, y) = 1 + 1
2
x + 1

2
y. Let A := 1,

B := 1
2

=: C. As in the proof of Theorem 5.2, define:

ξ :=
√

2C(2B − C) =

√
1

2
,

ζ := A− C

2
=

3

4
,

λ :=
4(1− ζ)

ξ2
= 2.

By Lemma 4.3, the inequality f(x, y) ≥ µ/ν holds as long as

µ < ξ2ν2 + (2ζ − 1)ν − (1− ζ)2

ξ2
− λ3ξ2

32
· 1

ν

(
ν

ν − λ

)5/2

=

=
1

2
ν2 +

1

2
ν − 1

4
− 1

2ν

(
ν

ν − λ

)5/2

.

Since ν ≥ 10, we have

1

2ν

(
ν

ν − λ

)5/2

≤ 1

20

(
5

4

)5/2

<
1

10

and thus the claim holds for

µ <
1

2
ν2 +

1

2
ν − 1

4
− 1

10
.

Since 1
2
ν2+1

2
ν is always an integer and 1

4
+ 1

10
< 1

2
, we have f(x, y) ≥ µ/ν

(and thus that Wilf’s conjecture holds) whenver µ ≤ 1
2
ν2 + 1

2
ν − 1.

By Proposition 2.4(c), we always have µ ≤ 1
2
ν2 + 1

2
ν, so the only

case left to consider is µ = 1
2
ν2 + 1

2
ν = ν(ν+1)

2
. Under this condition, we

have, by Proposition 2.4(d),

q1 ≥
2ν − 1− 1

2
= ν − 1.

Since also q1 ≤ ν− 1, we must have q1 = ν− 1 and q2 = 0. In this case,

ν|L|
c
≥ ν

µ

[
1 +

1

2
(ν − 1)

]
=
ν

µ
· ν + 1

2
=
ν(ν + 1)

2µ
= 1

and thus S satisfies Wilf’s conjecture.
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Suppose now f(x, y) = `(x, y, x) = α+ (α− γ)x+ γy. Since γ ≥ 4
15

,

it is enough to consider the case α = 1, γ = 4
15

. Define A, B, C, ξ, ζ,

λ as above; then, we have A = 1, B = 11
15

, C = 4
15

and so

ξ :=
√

2C(2B − C) =

√
48

75
,

ζ := A− C

2
=

13

15
,

λ :=
4(1− ζ)

ξ2
=

55

12
.

Then,

λ3ξ2

32
· 1

ν

(
ν

ν − λ

)5/2

≤
(
55
12

)3 · 48
75

32
· 1

10

(
10

10− 55
12

)5/2

≤ 9

10

and so Wilf’s conjecture holds for

µ <
48

75
ν2 +

11

15
ν − 1

18
− 9

10
.

Since both 48
75

and 11
15

are larger than 1/2 and 1
18

+ 9
10
< 1, the quantity on

the right hand side is strictly larger than 1
2
ν2 + 1

2
ν. Hence, the previous

inequality holds whenever a2 >
c+µ
3

, and thus Wilf’s conjecture holds
also in this case. �

Proposition 5.6. There is an integer N such that, for every ν ≥ N ,
there are only finitely many numerical semigroups S = 〈a1, a2, . . . , aν〉
with

• a2 > c(S)+µ(S)
3

,
• ν = ν(S), and
• µ(S) ≤ 4

9
ν2,

and that do not satisfy Wilf ’s conjecture.

Proof. Fix any χ ∈ (0, 1/3), and consider the function

f(q1, q2) := 1− χ+
1

2
q1 +

1

3
q2.

By Lemmas 4.2 and 4.3, for every ε > 0 there is an N1(χ, ε) such
that, for every point (q1, q2) ∈ A(µ, ν), with ν ≥ N1(χ, ε), we have
f(q1, q2) ≥ µ/ν whenever

µ ≤ 4

9
ν2 +

(
2

3
− 2χ

)
ν − 1

16
− ε.

Let N2(χ, ε) :=
(
ε+ 1

16

) (
2
3
− 2χ

)−1
: then, for ν ≥ N2(χ, ε), we have(

2

3
− 2χ

)
ν − 1

16
− ε ≥ 0.
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Therefore, for every ν ≥ N := N(χ, ε) := max{N1(χ, ε), N2(χ, ε)} we
have f(q1, q2) ≥ µ/ν whenever µ ≤ 4

9
ν2. Equivalently, we have

1 +
1

2
q1 +

1

3
q2 ≥

µ

ν
+ χ.

Using the inequality bxc > x− 1 on Proposition 3.2, we have

ν|L|
c
≥ ν

µ

(
1 +

1

2
q1 +

1

3
q2

)
− ν

c

(
1 +

1

2
q1 +

2

3
q2

)
which for ν ≥ N is bigger than

ν

µ

(µ
ν

+ χ
)
− ν

c

(
µ

ν
+ χ+

1

3
q2

)
≥ 1 +

ν

µ
χ− 1

c

(
µ+ χν +

ν(ν − 1)

3

)
,

using also the fact that q2 ≤ ν−1. The quantity on the right hand side
is bigger than 1 when

ν

µ
χ− 1

c

(
µ+ χν +

ν(ν − 1)

3

)
≥ 0;

since c, ν, µ and χ are positive, this is equivalent to

(9) c ≥ µ

χν

(
µ+ χν +

ν(ν − 1)

3

)
,

and all semigroups satisfying this inequality satisfy Wilf’s conjecture.
In particular, for any value of ν, µ and χ, there are only a finite

number of semigroups that do not satisfy this condition. For any ν,
there are also a finite number of multiplicities µ satisfying µ ≤ 4

9
ν2;

hence, for any fixed ν ≥ N there are only finitely many numerical
semigroups that verify the hypothesis of the theorem and that do not
satisfy Wilf’s conjecture. �

We note that the right hand side of (9) is very large: for example,
if ν = 10, µ = 50 and χ = 1

6
, then it is equal to 26050. The strategy

used in the proof of Theorem 5.2 (i.e., writing c = (6k − 1)µ+ θµ and
using different estimates for different bθc) can be employed to obtain
numerically better bounds (but still with the hypothesis µ ≤ 4

9
ν2).

Proposition 5.7. For every λ < 4
5

there is a ν0(λ) such that, if S =

〈a1, a2, . . . , aν〉 is a numerical semigroup such that a2 >
c(S)+µ(S)

3
and

ν ≥ ν0(λ), then

(10) ν(S)|L(S)| ≥ λ · c(S).

Proof. Fix a λ < 4
5
. Let `(x, y, z) := α(1+z)+β(x−z)+γ(y−z), where

α, β, γ are defined as in Proposition 3.4. Let f(x, y) := A + Bx + Cy
be either `(x, y, x) or `(x, y, y); as in the proof of Theorem 5.2, we
need to prove that f(x, y) ≥ λ(µ/ν) for both choices of f and all
(x, y) ∈ I(µ− ν), that is, we have to show that λ−1f(x, y) ≥ µ/ν.
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By Lemmas 4.2 and 4.3, for every ε > 0 there is a ν1(ε) such that,
for every ν ≥ ν1(ε) this inequality holds for

µ ≤
(
2(Cλ−1)(2Bλ−1 − Cλ−1)− ε

)
ν2 =

(
2C(2B − C)

λ2
− ε
)
ν2.

By the proof of Theorem 5.2, 2C(2B −C) is at least 8
25

; if λ < 4
5
, then

2C(2B − C)

λ2
>

8

25
· 25

16
=

1

2
.

Therefore, we can choose an ε satisfying

0 < ε <
2C(2B − C)

λ2
− 1

2
,

and for such an ε there is a ν2(ε, λ) such that(
2C(2B − C)

λ2
− ε
)
ν2 >

1

2
ν2 +

1

2
ν

for all ν ≥ ν1(ε, λ). Setting ν0(λ) := max{ν1(ε), ν2(ε, λ)}, we have that
the inequality (10) holds for ν ≥ ν0(λ) and µ ≤ 1

2
ν2 + 1

2
ν. Since every

semigroup with a2 >
c(S)+µ(S)

3
satisfies the latter condition (by Propo-

sition 2.4(c)), the claim holds. �
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