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Abstract We characterize when the Zariski space Zar.KjD/ (where D is an inte-
gral domain, K is a field containing D, and D is integrally closed in K) and the set
Zarmin.LjD/ of its minimal elements are Noetherian spaces.

1. Introduction

The Zariski space Zar.KjD/ of the valuation rings of a field K containing a subring
D was introduced by O. Zariski (under the name abstract Riemann surface) during
his study of resolution of singularities [24, 25]. In particular, he introduced a topol-
ogy on Zar.KjD/ (which was later called Zariski topology) and proved that it makes
Zar.KjD/ into a compact space [26, Chapter VI, Theorem 40]. Later, the Zariski topol-
ogy on Zar.KjD/ was studied more carefully, showing that it is a spectral space in the
sense of Hochster [14]; i.e., that there is a ring R such that the spectrum of R (endowed
with the Zariski topology) is homeomorphic to Zar.KjD/ [4–6]. This topology has also
been used to study representations of an integral domain by intersection of valuation
rings [16–18] and, for example, in real and rigid algebraic geometry [15, 21].

In [22], it was shown that in many cases Zar.D/ is not a Noetherian space; i.e.,
there are subspaces of Zar.D/ that are not compact. In particular, it was shown that
Zar.D/ n ¹V º (where V is a minimal valuation overring of D) is often non-compact;
for example, this happens when dim.V / > 2dim.D/ [22, Proposition 4.3] or when D
is Noetherian and dim.V /� 2 [22, Corollary 5.2].

In this paper, we study integral domains such that Zar.D/ is a Noetherian space,
and, more generally, we study when the Zariski space Zar.KjD/ is Noetherian. We
show that, if D D F is a field, then Zar.KjF / can be Noetherian only if the transcen-
dence degree of K over F is at most 1 and, when trdegF K D 1, we characterize when
this happens in terms of the extensions of the valuation domains of F ŒX�, where X is
an element of K transcendental over F (Proposition 4.2). In Section 5, we study the
case where K is the quotient field of D. We first consider the local case, showing that
if Zar.D/ is Noetherian, then D must be a pseudo-valuation domain (Theorem 5.8)
and, subsequently, we globalize this result to the non-local case, showing that Zar.D/
is Noetherian if and only if Spec.D/ and Zar.DM / are as well, for every maximal ideal
M of D (Theorem 5.11 and Corollary 5.12). We also prove the analogous results for
the set Zarmin.KjD/ of the minimal elements of Zar.KjD/.
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2. Background

Throughout the paper, whenX1 andX2 are topological spaces, we shall use the notation
X1 'X2 to denote that X1 and X2 are homeomorphic.

2.1. Overrings and the Zariski space
Let D be an integral domain and let K be a ring containing D. We define Over.KjD/
as the set of rings contained between D and K . The Zariski topology on Over.KjD/ is
the topology having, as a subbasis of open sets, the sets in the form

B.x1; : : : ; xn/ WD
®
V 2Over.KjD/

ˇ̌
x1; : : : ; xn 2 V

¯
;

as x1; : : : ; xn range in K . If K is the quotient field of D, an element of Over.KjD/ is
called an overring of D.

If K is the quotient field of D, a subset X � Over.KjD/ is a locally finite family
if every x 2D (or, equivalently, every x 2K) is a non-unit in only finitely many T 2
Over.KjD/.

If K is a field containing D, the Zariski space of D in K is the set of all valuation
domains containing D and whose quotient field is K; we denote it by Zar.KjD/.
The Zariski topology on Zar.KjD/ is simply the Zariski topology inherited from
Over.KjD/. If K is the quotient field of D, then Zar.KjD/ will simply be denoted by
Zar.D/, and its elements are called the valuation overrings of D.

Under the Zariski topology, Zar.KjD/ is compact [26, Chapter VI, Theorem 40].
We denote by Zarmin.KjD/ the set of minimal elements of Zar.KjD/, with respect

to containment. If V is a valuation domain, we denote by mV its maximal ideal. Given
X � Zar.D/, we define

X" WD
®
V 2 Zar.D/

ˇ̌
V �W for some W 2X

¯
:

Since a family of open sets is a cover of X if and only if it is a cover of X", we have
that X is compact if and only if X" is compact.

If X is a subset of Zar.D/, we denote by A.X/ the intersection
T
¹V j V 2 Xº,

called the holomorphy ring of X [20]. Clearly, A.X/DA.X"/.
The center map is the application

� WZar.KjD/�! Spec.D/

V 7�!mV \D:

If Zar.KjD/ and Spec.D/ are endowed with the respective Zariski topologies, the map
� is continuous ([26, Chapter VI, §17, Lemma 1] or [4, Lemma 2.1]), surjective (this
follows, for example, from [2, Theorem 5.21] or [11, Theorem 19.6]) and closed [4,
Theorem 2.5].

In studying Zar.KjD/, it is usually enough to consider the case where D is inte-
grally closed in K; indeed, if D is the integral closure of D in K , then Zar.KjD/D
Zar.KjD/.
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2.2. Noetherian spaces
A topological space X is Noetherian if its open sets satisfy the ascending chain con-
dition, or equivalently if all its subsets are compact. If X D Spec.R/ is the spectrum
of a ring, then X is a Noetherian space if and only if R satisfies the ascending chain
condition on radical ideals; in particular, the spectrum of a Noetherian ring is always
a Noetherian space. If Spec.R/ is Noetherian, then every ideal of R has only finitely
many minimal primes (see, e.g., the proof of [3, Chapter 4, Corollary 3, p. 102] or [2,
Chapter 6, Exercises 5 and 7]).

Every subspace and every continuous image of a Noetherian space is again Noe-
therian; in particular, if Zar.D/ is Noetherian, then so are Zarmin.D/ and Spec.D/ [22,
Proposition 4.1].

2.3. Kronecker function rings
Let K be the quotient field of D. For every V 2 Zar.D/, let V b WD V ŒX�mV ŒX� �
K.X/. If �� Zar.D/, the Kronecker function ring of D with respect to � is

Kr.D;�/ WD
\
¹V b j V 2�ºI

we denote Kr.D;Zar.D// simply by Kr.D/.
The ring Kr.D;�/ is always a Bézout domain whose quotient field is K.X/,

and, if � is compact, the intersection map W 7! W \ K establishes a homeomor-
phism between Zar.Kr.D;�// and the set �" [4–6]. Since Kr.D;�/ is a Prüfer
domain, furthermore, Zar.Kr.D;�// is homeomorphic to Spec.Kr.D;�//; hence,
Spec.Kr.D;�// is homeomorphic to �", and asking if Zar.D/ is Noetherian is equiv-
alent to asking if Spec.Kr.D// is Noetherian or, equivalently, if Kr.D/ satisfies the
ascending chain condition on radical ideals.

See [11, Chapter 32] or [10] for general properties of Kronecker function rings.

2.4. Pseudo-valuation domains
LetD be an integral domain with quotient fieldK . ThenD is called a pseudo-valuation
domain (for short, PVD) if, for every prime ideal P of D, whenever xy 2 P for some
x;y 2K , then at least one of x and y is in P . Equivalently, D is a pseudo-valuation
domain if and only if it is local and its maximal ideal M is also the maximal ideal of
some valuation overring V of D (called the valuation domain associated to D) [12,
Corollary 1.3 and Theorem 2.7]. If D is a valuation domain, then it is also a PVD, and
the associated valuation ring is D itself.

The prototypical example of a pseudo-valuation domain that is not a valuation
domain is the ring F C XLŒŒX��, where F � L is a field extension; its associated
valuation domain is LŒŒX��.

3. Examples and reduction

The easiest case for the study of the topology of Zar.D/ is when D is a Prüfer domain;
i.e., when DM is a valuation domain for every maximal ideal M of D.
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PROPOSITION 3.1
Let D be a Prüfer domain. Then

(a) Zar.D/ is a Noetherian space if and only if Spec.D/ is Noetherian;
(b) Zarmin.D/ is Noetherian if and only if Max.D/ is Noetherian.

Proof
Since D is Prüfer, the center map � W Zar.D/ �! Spec.D/ is a homeomorphism [4,
Proposition 2.2]. This proves the first claim; the second one follows from the fact that
the minimal valuation overrings of D correspond to the maximal ideals. �

Another example of a domain that has a Noetherian Zariski space is the pseudo-
valuation domainD WDQCYQ.X/ŒŒY ��, where X , Y are indeterminates on Q; in this
case Zar.D/ can be written as the union of the quotient field of D and two sets home-
omorphic to Zar.QŒX�/' Spec.QŒX�/, which are Noetherian. From this, it is possible
to build examples of non-Prüfer domains whose Zariski spectrum is Noetherian and
having arbitrary finite dimension [22, Example 4.7].

More generally, we have the following routine observation.

LEMMA 3.2
Let D be an integral domain, and suppose that a prime ideal P of D is also the max-
imal ideal of a valuation overring V of D. Then the quotient map � W V �! V=P

establishes a homeomorphism between ¹W 2 Zar.D/ jW � V º and Zar.V=P jD=P /,
and between Zarmin.D/ and Zarmin.V=P jD=P /.

Proof
Consider the sets Over.V jD/ and Over.V=P jD=P /. Then the map

e� WOver.V jD/�!Over.V=P jD=P /

A 7�! �.A/DA=P

is a bijection, whose inverse is the map sending B to ��1.B/. Furthermore, it is a
homeomorphism; indeed, if x 2 V=P then e��1.B.x//DB.y/, for any y 2 ��1.x/,
while if x 2 V then e�.B.x//DB.�.x//.

The condition on P implies that D is a pullback in the diagram

hence, every A 2 Over.V jD/ arises as a pullback. By [8, Theorem 2.4(1)], A is a
valuation domain if and only if �.A/ is a valuation domain and V=P is the quotient
field of �.A/; hence, e� restricts to a bijection between Zar.D/\Over.V jD/D ¹W 2
Zar.D/ jW � V º and Zar.V=P jD=P /. Furthermore, since e� is a homeomorphism, so
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is its restriction. The claim about Zar.D/ and Zar.V=P jD=P / is proved; the claim for
the space of minimal elements follows immediately. �

PROPOSITION 3.3
LetD be an integral domain, and let L be a field containingD. Then there is a domain
R such that

� Zar.LjD/' Zar.R/ n ¹F º, where F is the quotient field of R;
� Zarmin.LjD/' Zarmin.R/.

Proof
Let X be an indeterminate over L, and define R WD D C XLŒŒX��. Then the prime
ideal P WD XLŒŒX�� of R is also a prime ideal of the valuation domain LŒŒX��; by
Lemma 3.2, it follows that Zar.LjD/' � WD ¹W 2 Zar.R/ j W � LŒŒX��º. Further-
more, every valuation overring V of R contains XLŒŒX��, and thus it is either in �
or properly contains LŒŒX��; however, since LŒŒX�� has dimension 1, the latter case is
possible only if V D L..X// is the quotient field of R. The first claim is proved, and
the second follows easily. �

Proposition 3.3 shows that, theoretically, it is enough to consider spaces of valua-
tion rings between a domain and its quotient field. However, it is convenient to not
be restricted to this case; the following Proposition 3.4 is an example, as will be the
analysis of field extensions in Section 4.

PROPOSITION 3.4
Let D be an integral domain that is not a field, let K be its quotient field, and let L
be a field extension of K . If trdegK L � 1, then Zar.LjD/ and Zarmin.LjD/ are not
Noetherian.

Proof
If trdegK L� 1, there is an elementX 2LnK that is not algebraic overL. If Zar.LjD/
is Noetherian, so is its subset Zar.LjDŒX�/, and thus also Zar.K.X/jDŒX�/ D
Zar.DŒX�/, which is the (continuous) image of Zar.LjDŒX�/ under the intersection
map W 7!W \K.X/. However, since D is not a field, Zar.DŒX�/ is not Noetherian
by [22, Proposition 5.4]; hence, Zar.LjD/ cannot be Noetherian.

Consider now Zarmin.LjD/. It projects onto Zarmin.K.X/jD/, and thus we can
suppose that LD K.X/. Let V be a minimal valuation overring of D. Then there is
an extension W of V to L such that X is the generator of the maximal ideal of W ;
furthermore, W belongs to Zarmin.K.X/jD/. In particular, Spec.W / nMax.W / has a
maximum, say P . Let � WD Zar.LjD/ n ¹W º; then � can be written as the union of
ƒ WD .Zarmin.LjD/n ¹W º/

" and ¹WP º". The latter is compact since ¹WP º is compact;
if Zarmin.LjD/ n ¹W º were compact, so would be ƒ. In this case, � also would be
compact, against the proof of [22, Proposition 5.4]. Hence, � is not compact, and so
Zarmin.LjD/ is not Noetherian. �
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4. Field extensions

In this section, we consider a field extension F � L and analyze when the Zariski
space Zar.LjF / and its subset Zarmin.LjF / are Noetherian. By Proposition 3.3, this is
equivalent to studying the Zariski space of the pseudo-valuation domain F CXLŒŒX��.

This problem naturally splits into three cases, according to whether the transcen-
dence degree of L over F is 0, 1 or at least 2. The first and the last cases have definite
answers, and we collect them in the following proposition. Part (b) is a slight gen-
eralization of [22, Corollary 5.5(b)]. Recall that the inverse topology (with respect to
the Zariski topology) on Zar.KjD/ is the topology whose closed sets are the subsets
�� Zar.KjD/ that are compact (in the Zariski topology) and such that �D�" (this
is not the usual definition, but it is equivalent; see, for example, [6, Remark 2.2 and
Proposition 2.6]). In particular, the intersection of two subsets with these properties is
still compact in the Zariski topology.

PROPOSITION 4.1
Let F �L be a field extension.

(a) If trdegF LD 0, then Zar.LjF /D ¹Lº D Zarmin.LjD/, and in particular
both spaces are Noetherian.

(b) If trdegF L� 2, then Zar.LjF / and Zarmin.LjF / are not Noetherian.

Proof
(a) is obvious. For (b), let X , Y be elements of L that are algebraically independent.
Then the intersection map Zarmin.LjF /�! Zarmin.F.X;Y /jF / is surjective, and thus
it is enough to prove that Zarmin.F.X;Y /jF / is not Noetherian.

Let V 2 Zarmin.F.X;Y /jF / and, without loss of generality, suppose X;Y 2 V .
Let � WD Zarmin.F.X;Y /jF / n ¹V º. Then ƒ WD Zar.F.X;Y /jF / n ¹V º is the union
of �" and a finite set (the valuation domains properly containing V ). If � were
compact, so would be ƒ, and thus ƒ would be closed in the inverse topology.
Since also Zar.F ŒX;Y �/ is closed in the inverse topology, it would follow that
ƒ\ Zar.F ŒX;Y �/D Zar.F ŒX;Y �/ n ¹V º is compact, against the proof of [22, Propo-
sition 5.4]. Hence, ƒ is not compact, and thus � cannot be compact. Therefore,
Zarmin.F.X;Y /jF / is not Noetherian. �

On the other hand, the case of transcendence degree 1 is more subtle. In [22, Corol-
lary 5.5(a)], it was shown that Zar.LjF / is Noetherian if L is finitely generated over
F ; we now state a characterization.

PROPOSITION 4.2
Let F �L be a field extension such that trdegF LD 1. Then the following are equiva-
lent:

(i) Zar.LjF / is Noetherian;
(ii) Zarmin.LjF / is Noetherian;
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(iii) for every X 2L transcendental over F , every valuation on F ŒX� has only
finitely many extensions to L;

(iv) there is an X 2L, transcendental over F , such that every valuation on
F ŒX� has only finitely many extensions to L;

(v) for every X 2L transcendental over F , the integral closure of F ŒX� in L
has Noetherian spectrum;

(vi) there is an X 2L, transcendental over F , such that the integral closure of
F ŒX� in L has Noetherian spectrum.

Proof
Every valuation domain of L containing F must contain the algebraic closure of F
in L; hence, without loss of generality, we can suppose that F is algebraically closed
in L.

(i)H) (ii) is obvious; (ii)H) (i) follows since trdegF LD 1 and thus Zar.LjF /D
Zarmin.LjF /[ ¹Lº.

(i) H) (iii). Take X 2 L n F , and suppose there is a valuation w on F ŒX� with
infinitely many extensions to L; let W be the valuation domain corresponding to w.
Then the integral closure W of W in L would have infinitely many maximal ideals.
Since every maximal ideal ofW contains the maximal ideal ofW , the Jacobson radical
J of W contains the maximal ideal of W , and in particular it is non-zero. It follows
that J has infinitely many minimal primes; hence, Max.W / is not a Noetherian space.
However, Max.W / is homeomorphic to a subspace of Zar.LjF /, which is Noetherian
by hypothesis; this is a contradiction, and so every valuation has only finitely many
extensions.

(iii) H) (v). Let T be the integral closure of F ŒX�, and suppose that Spec.T / is
not Noetherian. We first claim that T is not locally finite; i.e., that there is an ˛ 2 T
such that there are infinitely many maximal ideals of T containing ˛. Indeed, if T is
locally finite and ¹I˛º˛2A is an ascending chain of radical ideals, then once I˛ ¤ .0/,
the ideal I˛ is contained in only finitely many prime ideals (since T has dimension 1),
and thus in only finitely many radical ideals; it follows that the chain stabilizes and
Spec.R/ is Noetherian, a contradiction.

Consider the norm N.˛/ of ˛ over F ŒX�; i.e., the product of the algebraic conju-
gates of ˛ over F ŒX�. ThenN.˛/¤ 0, and it is both an element of F ŒX� (being equal to
the constant term of the minimal polynomial of ˛ over F ŒX�) and an element of every
maximal ideal containing ˛ (since all the conjugates are in T ). Since every maximal
ideal of F ŒX� is contained in only finitely many maximal ideals of T (since a maximal
ideal of F ŒX� corresponds to a valuation v and the maximal ideals of T containing it to
the extensions of v), it follows thatN.˛/ is contained in infinitely many maximal ideals
of F ŒX�. However, this contradicts the Noetherianity of Spec.F ŒX�/; hence, Spec.T /
is Noetherian.

Now (iii) H) (iv) and (v) H) (vi) are obvious, while the proof of (iv) H) (vi) is
exactly the same as in the previous paragraph; hence, we need only to show (vi) H)
(i); the proof is similar to the one of [22, Corollary 5.5(a)].
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Let X 2 L, X transcendental over F , be such that the spectrum of the integral
closure T of F ŒX� is Noetherian. Since X is transcendental over F , there is an F -
isomorphism � of F.X/ sending X to X�1; moreover, we can extend � to an F -
isomorphism � of L. Since �.F ŒX�/ D F ŒX�1�, the integral closure T of F ŒX� is
sent by � to the integral closure T 0 of F ŒX�1�; in particular, T ' T 0, and Spec.T /'
Spec.T 0/. Thus, also Spec.T 0/ is Noetherian and so is Spec.T / [ Spec.T 0/. Further-
more, Zar.T /' Spec.T /' Spec.LjF ŒX�/, and analogously for T 0; hence, Zar.T /[
Zar.T 0/ is Noetherian. But every W 2 Zar.LjF / contains at least one between X and
X�1, and thusW contains F ŒX� or F ŒX�1�; i.e.,W 2 Zar.T / orW 2 Zar.T 0/. Hence,
Zar.LjF /D Zar.T /[ Zar.T 0/ is Noetherian. �

We remark that there are field extensions that satisfy the conditions of Proposition 4.2
without being finitely generated. For example, if L is purely inseparable over some
F.X/, then every valuation on F ŒX� extends uniquely to L, and thus condition (iii) of
the previous proposition is fulfilled; more generally, each valuation on F.X/ extends
in only finitely many ways when the separable degree ŒL W F.X/�s is finite [11, Corol-
lary 20.3]. There are also examples in characteristic 0; for example, [19, Section 12.2]
gives examples of non-finitely generated algebraic extensions F of the rational num-
bers such that every valuation on Q has only finitely many extensions to F . The same
construction works also on Q.X/, and if L is such an example, then Q�L will satisfy
the conditions of Proposition 4.2.

5. The domain case

We now want to study when the space Zar.D/ is Noetherian, where D is an integral
domain; without loss of generality, we can suppose that D is integrally closed since
Zar.D/D Zar.D/. We start by studying intersections of Noetherian families of valua-
tion rings.

Recall that a treed domain is an integral domain whose spectrum is a tree (i.e., such
that, if P andQ are non-comparable prime ideals, then they are coprime). In particular,
every Prüfer domain is treed.

LEMMA 5.1
Let R be a treed domain. If Max.R/ is Noetherian, then every ideal of R has only
finitely many minimal primes.

Note that we cannot improve this result to Spec.R/ being Noetherian; for example,
the spectrum of a valuation domain with unbranched maximal ideal is not Noetherian,
while its maximal spectrum—a singleton—is Noetherian.

Proof
Let I be an ideal of R, and let ¹P˛ j ˛ 2Aº be the set of its minimal prime ideals. For
every ˛, choose a maximal idealM˛ containing P˛ ; note thatM˛ ¤Mˇ if ˛¤ ˇ since
R is treed. Let ƒ be the set of the M˛ .
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Let X �ƒ, and define J.X/ WD
T
¹IRM jM 2Xº\R. We claim that, ifM 2ƒ,

then J.X/ �M if and only if M 2 X . Indeed, clearly J.X/ is contained in every
element of X . On the other hand, suppose N 2ƒ nX . Since Max.R/ is Noetherian, X
is compact, and thus also ¹RM jM 2Xº is compact; by [7, Corollary 5]:

J.X/RN D
� \
M2X

IRM

�
RN \RN D

\
M2X

IRMRN \RN :

Since M;N 2 ƒ, no prime contained in both M and N contains I ; hence, IRMRN
contains 1 for each M 2X . Therefore, 1 2 J.X/RN , i.e., J.X/ªN .

Hence, every subset X of ƒ is closed in ƒ since it is equal to the intersection
between ƒ and the closed set of Spec.R/ determined by J.X/. Since ƒ is Noetherian,
it follows that ƒ must be finite; therefore, also the set of minimal primes of I is finite.
The claim is proved. �

As consequence of Lemma 5.1, we can generalize [16, Theorem 3.4(2)]. We premit an
easy lemma.

LEMMA 5.2
LetD be an integral domain with quotient fieldK , and let V;W 2 Zar.D/. If V W DK ,
then V bW b DK.X/.

Proof
Let Z WD V bW b . Then, since Zar.D/ and Zar.Kr.D// are homeomorphic, Z D .Z \
K/b ; however, K � V W � V bW b , and thus Z \K DK . It follows that Z DKb D
K.X/, as claimed. �

THEOREM 5.3
Let �� Zar.D/ be a Noetherian space, and suppose that V W DK for every V ¤W
in �. Then � is a locally finite space.

Proof
Let �b WD ¹V b j V 2�º, and let R WD Kr.D;�/; then (since, in particular, � is com-
pact), Zar.R/ is equal to .�b/".

Since R is a Bézout domain, it follows that Spec.R/' .�b/", while Max.R/'
�b ; in particular, Max.R/ is Noetherian, and thus by Lemma 5.1 every ideal of R has
only finitely many minimal primes. However, since V bW b DK.X/ for every V ¤W
in � (by Lemma 5.2), it follows that every non-zero prime of R is contained in only
one maximal ideal; therefore, every non-zero ideal of R is contained in only finitely
many maximal ideals, and thus the family ¹RM jM 2Max.R/º is locally finite. This
family coincides with �b ; since �b is locally finite, also � must be locally finite, as
claimed. �

We say that two valuation domains V;W 2 Zar.D/ n ¹Kº are dependent if V W ¤K .
Since Zar.D/ is a tree, being dependent is an equivalence relation on Zar.D/ n ¹Kº;
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we call an equivalence class a dependency class. If Zar.D/ is finite-dimensional (i.e.,
if every valuation overring of D has finite dimension), then the dependency classes of
Zar.D/ are exactly the sets in the form ¹W 2 Zar.D/ jW � V º, as V ranges among
the one-dimensional valuation overrings of D.

Under this terminology, the previous theorem implies that, ifD is local and Zar.D/
is Noetherian, then Zar.D/ can only have finitely many dependency classes; indeed,
otherwise, we could form a Noetherian but not locally finite subset of Zar.D/ by taking
one minimal overring in each dependency class, against the theorem. We actually can
say (and will need) something more.

Given a set X � Zar.D/, we define comp.X/ as the set of all valuation overrings
of D that are comparable with some elements of X ; i.e.,

comp.X/ WD
®
W 2 Zar.D/

ˇ̌
9 V 2X such that W � V or V �W

¯
:

If X D ¹V º is a singleton, we write comp.V / for comp.X/. Note that, for every subset
X , comp.comp.X//D Zar.D/ since comp.X/ contains the quotient field of D.

The purpose of the following propositions is to show that, ifD is local and Zar.D/
is Noetherian, then Zar.D/ can be written as comp.W / for some valuation overring
W ¤K . The first step is showing that Zar.D/ is equal to comp.X/ for some finite X .

PROPOSITION 5.4
Let D be a local integral domain. If Zarmin.D/ is Noetherian, then there are valu-
ation overrings W1; : : : ;Wn of D, Wi ¤ K , such that Zar.D/ D comp.W1/ [ � � � [
comp.Wn/.

Proof
Let R WD Kr.D/ be the Kronecker function ring of D. Then the extension N WDMR
of the maximal ideal M of D is a proper ideal of R, and the prime ideals containing
N correspond to the valuation overrings of R where N survives; i.e., to the valuation
overrings of D centered on M .

Since Zarmin.D/ is Noetherian, so is Max.R/; since R is treed (being a Bézout
domain), by Lemma 5.1 N has only finitely many minimal primes. Thus, there are
finitely many valuation overrings ofD, sayW1; : : : ;Wn, such that every V 2 Zarmin.D/

is contained in one Wi . We claim that Zar.D/D comp.W1/[ � � � [ comp.Wn/. Indeed,
let V be a valuation overring ofD. Since Zar.D/ is compact, V contains some minimal
valuation overring V 0, and by construction V 0 2 comp.Wi / for some i ; in particular,
Wi � V

0. The valuation overrings containing V 0 (i.e., the valuation overrings of V 0) are
linearly ordered; thus, V must be comparable with Wi , i.e., V 2 comp.Wi /. The claim
is proved. �

The following result can be seen as a generalization of the classical fact that, if X D
¹V1; : : : ; Vnº is finite, then Zar.A.X// is the union of the various Zar.Vi / (since A.X/
will be a Prüfer domain, and its localization at the maximal ideals will be a subset
of X ).



When the Zariski space is a Noetherian space 309

PROPOSITION 5.5
Let D be an integral domain and let X � Zar.D/ be a finite set. Then
Zar.A.comp.X///D comp.X/.

Proof
Since comp.V / � comp.W / if V � W , we can suppose without loss of gener-
ality that the elements of X are pairwise incomparable. Let X D ¹V1; : : : ; Vnº,
Ai WDA.comp.Vi // and let A WDA.comp.X//DA1\ � � � \An. Note that D �A, and
thus the quotient field of A coincides with the quotient field of D and of the Vi .

If V 2 comp.X/, then clearly A� V ; thus, comp.X/� Zar.A/.
Conversely, let V 2 Zar.A/, and let mi be the maximal ideal of Vi . Then mi �W

for every W 2 comp.Vi /; in particular, mi � Ai . Therefore, P WDm1 \ � � � \mn � A;
since A� V , this implies that PV � V .

Suppose V … comp.X/, and let T WD V \ V1 \ � � � \ Vn. Since the rings
V;V1; : : : ; Vn are pairwise incomparable, T is a Bézout domain whose localizations at
the maximal ideals are V;V1; : : : ; Vn. In particular, V is flat over T , and each mi is a
T -module; hence,

PV D
� n\
iD1

mi

�
V D

n\
iD1

miV:

Since V is not comparable with Vi , for each i , the set mi is not contained in V ; in
particular, the family ¹miV j i D 1; : : : ; nº is a family of V -modules not contained
in V . Since the V -submodules of the quotient field K are linearly ordered, the family
has a minimum, and thus

Tn
iD1miV is not contained in V . However, this contradicts

PV � V ; hence, V must be in comp.X/, and Zar.A/D comp.X/. �

The proof of part (a) of the following proposition closely follows the proof of [13,
Proposition 1.19].

PROPOSITION 5.6
Let X WD ¹V1; : : : ; Vnº be a finite family of valuation overrings of the domain D, and
suppose that ViVj DK for every i ¤ j , where K is the quotient field of D. Let Ai WD
A.comp.Vi //, and let A WDA.comp.X//. Then

(a) each Ai is a localization of A;
(b) for each ideal I of A, there is an i such that IAi ¤Ai ;
(c) if i ¤ j , then AiAj DK .

Proof
(a) By induction and symmetry, it is enough to prove that B WD A2 \ � � � \ An is a
localization of A. Let J be the Jacobson radical of B ; then J ¤ .0/ since it contains
the intersection mV2 \ � � � \mVn . Furthermore, if W ¤K is a valuation overring of V1,
then J ªW since otherwise (as in the proof of Proposition 5.5) mV2 \� � �\mVn would
be contained in mW \ .W \ V2 \ � � � \ Vn/, against the fact that ¹W;V2; : : : ; Vnº are
independent valuation overrings.
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Hence, for every such W we can apply [13, Proposition 1.13] to D WD B \W ,
obtaining that B is a localization of D, say B D S�1D, where S is a multiplicatively
closed subset of D; in particular, there is a sW 2 S \mW . Each sW is in B \A1 DA
(since mW is contained in every member of comp.V1/); let T be the set of all sW . Then

T �1AD T �1.B \A2/D T
�1B \ T �1A1:

Each sW is a unit of B , and thus T �1B DB . On the other hand, no valuation overring
W ¤K of V1 can be an overring of T �1A1 since T contains sW , which is inside the
maximal ideal ofW . Since Zar.A1/D comp.V1/, it follows that T �1A1 DK , and thus
T �1ADB ; in particular, B is a localization of A.

(b) Without loss of generality, we can suppose I D P to be prime. There is a
valuation overring W of A whose center on A is P ; since Zar.A/ D comp.X/ by
Proposition 5.5, there is a Vi such that W 2 comp.Vi /. Hence, PAi ¤Ai .

(c) By Proposition 5.5, Zar.Ai / \ Zar.Aj / D ¹Kº. It follows that K is the only
common valuation overring of AiAj ; in particular, AiAj must be K . �

By [23, Proposition 4.3], Proposition 5.6 can also be rephrased by saying that the set
¹A1; : : : ;Anº is a Jaffard family of A, in the sense of [9, Section 6.3].

PROPOSITION 5.7
Let D be an integrally closed domain; suppose that Zar.D/ D comp.V1/ [ � � � [
comp.Vn/, where X WD ¹V1; : : : ; Vnº is a family of incomparable valuation overrings
of D such that ViVj DK if i ¤ j . Then

(a) the restriction of the center map � to X is injective;
(b) jMax.D/j � jX j.

Proof
(a) If P is the image of both Vi and Vj , then P survives in both Ai and Aj ; however,
since Ai and Aj are localizations of A (Proposition 5.6(a)), AP would be a common
overring of Ai and Aj , against the fact that AiAj DK (Proposition 5.6(c)). Therefore,
the center map is injective on X .

(b) Let M be a maximal ideal; then there is a unique i such that MAi ¤ Ai . In
particular, M can contain only one element of �.X/, namely �.Vi /; thus, jMax.D/j �
j�.X/j D jX j, as claimed. �

We are ready to prove the pivotal result of the paper.

THEOREM 5.8
Let D be an integrally closed local domain. If Zarmin.D/ is a Noetherian space, then
D is a pseudo-valuation domain.

Proof
Since D is local, by Proposition 5.4 there are W1; : : : ;Wn, not equal to K , such that
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Zar.D/ D comp.W1/ [ � � � [ comp.Wn/. By eventually passing to bigger valuation
domains, we can suppose without loss of generality that WiWj D K if i ¤ j ; since
D is local, by Proposition 5.7(b) we have 1� n, and so Zar.D/D comp.V / for some
V ¤K .

Let � be the set of W 2 Zar.D/ such that comp.W /D Zar.D/; then � is a chain,
and thus it has a minimum in Zar.D/, say V0 (explicitly, V0 is the intersection of the
elements of �); furthermore, clearly V0 2 �. Since V 2 �, we have V0 � V , and in
particular V0 ¤ K . Let M be the maximal ideal of V0; then M is contained in every
W 2 comp.V0/D Zar.D/, and thus M �D.

Consider now the diagram

Clearly, D D ��1.D=M/; let F1 be the quotient field of D=M . By Lemma 3.2, the
set of minimal valuation overrings of D is homeomorphic to Zarmin.V0=M jD=M/,
which thus is Noetherian; by Proposition 3.4, it follows that either D=M is a field and
trdegD=M .V0=M/D 1 (in which case D is a pseudo-valuation domain with associated
valuation domain V0) or trdegF1.V0=M/D 0.

In the latter case, we note that D=M is integrally closed in V0=M since D=M is
the intersection of all the elements of Zar.V0=M jD=M/; hence, V0=M is the quotient
field of D=M . If D=M is not a field, by the same argument of the first part of the
proof, it follows that Zar.D=M/D comp.W0/ for some valuation overring W0 ¤ F1;
however, this contradicts the choice of V0 because ��1.W0/ would be comparable with
every element of Zar.D/. Hence, it must be V0=M DD=M (i.e., V0 DD); that is, D
is a valuation domain and, in particular, a pseudo-valuation domain. �

With this result, we can find the possible structures of Zar.D/ and Zarmin.D/ when D
is local and Zarmin.D/ is Noetherian. Indeed,D is a pseudo-valuation domain; let V be
its associated valuation overring. Then we have two cases: either D D V (i.e., D itself
is a valuation domain) or D ¤ V .

In the first case, Zarmin.D/ is a singleton, while Zar.D/ is homeomorphic to
Spec.D/; in particular, Zar.D/ is linearly ordered, and it is a Noetherian space if and
only if Spec.D/ is Noetherian.

In the second case, we can separate Zar.D/ into two parts: Zarmin.D/ and � WD
Zar.D/nZarmin.D/. The former must be homeomorphic to Zarmin.LjF /D Zar.LjF /n
¹Lº (where F and L are the residue fields of D and V , respectively); on the other
hand, the latter is linearly ordered, and is composed of the valuation overrings of V ,
so in particular it is homeomorphic to Spec.V /, which is (set-theoretically) equal to
Spec.D/. In other words, Zar.D/ is composed of a long “stalk” (�), under which there
is an infinite family of minimal valuation overrings. In particular, we get the following.
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PROPOSITION 5.9
Let D, V , F , L as above. Then

(a) Zarmin.D/ is Noetherian if and only if Zar.LjF / is Noetherian;
(b) Zar.D/ is Noetherian if and only if Zar.LjF / and Spec.V / are Noetherian.

Proof
If Zarmin.D/ is Noetherian, then Zarmin.LjF / is Noetherian as well. By Proposi-
tions 4.1 and 4.2, Zar.LjF / is Noetherian.

If Zar.D/ is Noetherian, so are Spec.D/D Spec.V / and �' Zar.LjF / (in the
notation above). Conversely, if Zar.LjF / and Spec.V / are Noetherian, then so are
Zarmin.D/ and �, and thus also Zarmin.D/[�D Zar.D/ is Noetherian. �

Furthermore, we can now apply Propositions 4.1 and 4.2 to characterize when
Zar.LjF / is Noetherian (see Corollary 5.12).

We now study the non-local case.

LEMMA 5.10
Let D be an integral domain such that DM is a PVD for every M 2Max.D/ and,
for every M , let V.M/ be the valuation overring associated to DM . Then the space
¹V.M/ jM 2Max.D/º is homeomorphic to Max.D/.

Proof
Let � WD ¹V.M/ jM 2 Max.D/º. If � is the center map, then �.V .M// DM for
everyM ; thus, � restricts to a bijection between� and Max.D/. Since � is continuous
and closed, it follows that it is a homeomorphism. �

THEOREM 5.11
Let D be an integrally closed domain. Then

(a) Zarmin.D/ is Noetherian if and only if Max.D/ is Noetherian and
Zarmin.DM / is Noetherian for every M 2Max.D/;

(b) Zar.D/ is Noetherian if and only if Spec.D/ is Noetherian and Zar.DM / is
Noetherian for every M 2Max.D/.

Proof
(a) If Zarmin.D/ is Noetherian, then Max.D/ is Noetherian since it is the image of
Zarmin.D/ under the center map, while each Zarmin.DM / is Noetherian since they are
subspaces of Zarmin.D/.

Conversely, suppose that Max.D/ is Noetherian and that Zar.DM / is Noetherian
for every M 2Max.D/. By the latter property and Theorem 5.8, every DM is a PVD;
by Lemma 5.10, the space� WD ¹V.M/ jM 2Max.D/º (in the notation of the lemma)
is homeomorphic to Max.D/, and thus Noetherian. Let ˇ be the map sending a W 2
Zarmin.D/ to V.mW \D/.
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Let X be any subset of Zarmin.D/, and let � be an open cover of X ; without
loss of generality, we can suppose � D ¹B.f˛/ j ˛ 2 Aº, where the f˛ are ele-
ments of K . Then � is also a cover of X 0 WD ¹ˇ.V / j V 2 Xº; since X 0 is compact
(being a subset of the Noetherian space �), there is a finite subfamily of �, say
�0 WD ¹B.f1/; : : : ;B.fn/º, that covers X 0. For each i , let Xi WD ¹V 2X j fi 2 ˇ.V /º;
then X D X1 [ � � � [Xn. We want to find, for each i , a finite subset �i �� that is a
cover of Xi .

Fix thus an i , let f WD fi , and let I WD .D WD f / be the conductor ideal. For every
M 2Max.D/, let Z.M/ WD ��1.M/\Xi D ¹V 2Xi jmV \D DM º, where � is the
center map. The union of the Z.M/ is Xi ; we separate the cases I ªM and I �M .

If I ªM , then 1 2 IDM D .DM WDM f /, and thus f 2DM ; hence, in this case,
B.f / contains Z.M/.

Suppose I �M ; clearly, we can suppose Z.M/¤ ;. We claim that in this case
M is minimal over I . Indeed, if there is a V 2Z.M/, then f 2 V , and thus f 2 ˇ.V /;
therefore, f 2DP for every prime ideal P ¨M (sinceDP © ˇ.V / for every such P ),
and thus I ª P . Therefore, M is minimal over I . By Lemma 5.1, I has only finitely
many minimal primes; hence, there are only finitely many maximal ideals M such
that I �M and Z.M/¤ ;. For each of these M , the set of valuation domains in X
centered on M is a subset of Zarmin.DM /, and thus it is compact; hence, for each of
them, � admits a finite subcover �.M/. It follows that �i WD ¹B.f /º [

S
�.M/ is a

finite subset of � that is a cover of Xi .
Hence,

S
i �i is a finite subset of � that covers X ; thus, X is compact. Since X

was arbitrary, Zarmin.D/ is Noetherian.
(b) If Zar.D/ is Noetherian, then Spec.D/ and every Zar.DM / are Noetherian.
Conversely, suppose that Spec.D/ is Noetherian and that Zar.DM / is Noetherian

for every M 2Max.D/. By the previous point, Zarmin.D/ is Noetherian. Furthermore,
if P 2 Spec.D/nMax.D/, thenDP is a valuation domain; hence, Zar.D/nZarmin.D/

is homeomorphic to Spec.D/ nMax.D/, which is Noetherian by hypothesis. Being the
union of two Noetherian subspaces, Zar.D/ itself is Noetherian. �

COROLLARY 5.12
Let D be an integral domain that is not a field, and let L be a field containing D;
suppose that D is integrally closed in L. Then Zar.LjD/ (resp., Zarmin.LjD/) is Noe-
therian if and only if the following hold:

� L is the quotient field of D;
� Spec.D/ is Noetherian (resp., Max.D/ is Noetherian);
� for every M 2Max.D/, the ring DM is a pseudo-valuation domain such that

Zar.LjF / is Noetherian, where F is the residue field of DM and L is the
residue field of the associated valuation overring of DM .

Proof
Join Proposition 3.4, Theorem 5.11, and Proposition 5.9. �
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For our last result, we recall that the valuative dimension dimv.D/ of an integral
domainD is the supremum of the dimensions of the valuation overrings ofD; a domain
D is called a Jaffard domain if dim.D/ D dimv.D/ <1, while it is a locally Jaf-
fard domain if DP is a Jaffard domain for every P 2 Spec.D/ [1]. Any locally Jaf-
fard domain is Jaffard, but the converse does not hold [1, Example 3.2]. The class of
Jaffard domains includes, for example, finite-dimensional Noetherian domains, Prüfer
domains, and universally catenarian domains.

PROPOSITION 5.13
Let D be an integrally closed integral domain of finite Krull dimension, and suppose
that Zarmin.D/ is a Noetherian space. Then

(a) dimv.D/ 2 ¹dim.D/;dim.D/C 1º;
(b) D is locally Jaffard if and only if D is a Prüfer domain.

Proof
(a) LetM be a maximal ideal ofD. Then Zarmin.DM / is Noetherian, and thusDM is a
pseudo-valuation domain; by [1, Proposition 2.9], dimv.DM /D dim.DM /C trdegF L,
where F is the residue field of DM , and L is the residue field of the associated valu-
ation ring of DM . By Propositions 5.9 and 4.1, trdegF L � 1, and thus dimv.DM / �

dim.DM /C 1. Hence, dimv.D/� dim.D/C 1; since dimv.D/� dim.D/ always, we
have the claim.

(b) If D is a Prüfer domain, then it is locally Jaffard. Conversely, if D is locally
Jaffard, then dimv.DP /D dim.DP / for every prime ideal P of D. Take any maximal
ideal M , and let F , L as above; using dimv.DM /D dim.DM /C trdegF L, it follows
that trdegF LD 0. Since D (and so DM ) is integrally closed, it must be F D L; i.e.,
DM itself is a valuation domain. Therefore, D is a Prüfer domain. �

Note that there are domains D that are Jaffard domains and have Zar.D/ Noetherian
but are not Prüfer domains. Indeed, the construction presented in [1, Example 3.2] gives
a ringR with two maximal ideals,M andN , such thatRM is a two-dimensional valua-
tion ring whileRN is a one-dimensional pseudo-valuation domain with dimv.RN /D 2;
in particular, it is a Jaffard domain that is not Prüfer. Choosing k DK.Z1/ in the con-
struction (or, more generally, choosing k such that K.Z1;Z2/ is finite over k), the
Zariski space of RN is Noetherian (being homeomorphic to Zar.K.Z1;Z2/jk/, which
is Noetherian by Proposition 4.2), and thus Zar.R/ is Noetherian.
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