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1 Introduction

Throughout the paper, R will denote an integral domain with quotient field K and

F(R) will be the set of fractional ideals of R, that is, the set of R-submodules I of

K such that x I ⊆ R for some x ∈ K \ {0}.

A star operation on R is a map ⋆ : F(R) −→ F(R) such that, for every I, J ∈

F(R) and every x ∈ K :

• I ⊆ I ⋆;

• if I ⊆ J , then I ⋆ ⊆ J ⋆;

• (I ⋆)⋆ = I ⋆;

• (x I )⋆ = x · I ⋆;

• R⋆ = R.

The usual examples of star operations are the identity (usually denoted by d),

the v-operation (or divisorial closure) J �→ J v := (R : (R : J )), the t- and the

w-operation (which are defined from v) and the star operations I �→
⋂

T ∈� I T ,

where � is a set of overrings of R intersecting to R. While these examples are the

easiest to work with, they usually cover only a rather small part of the set of star

operations.

D. Spirito (B)

Dipartimento di Matematica e Fisica, Università degli Studi “Roma Tre”, Roma, Italy

e-mail: spirito@mat.uniroma3.it

© Springer Nature Switzerland AG 2020

A. Facchini et al. (eds.), Advances in Rings, Modules and Factorizations,

Springer Proceedings in Mathematics & Statistics 321,

https://doi.org/10.1007/978-3-030-43416-8_17

299



300 D. Spirito

A much more general construction is given in [9, Proposition 3.2]: if (I : I ) = R,

then the map J �→ (I : (I : J )) is a star operation. This construction is much more

flexible than the more “classical” ones, and allows to construct a much higher number

of star operations (see, e.g., [10, Proposition 2.1(1)] or [11, Theorem 2.1] for its use

to construct an infinite family of star operations, or [14, 15] for constructions in the

case of numerical semigroups). In this paper, we slightly generalize this construction

(removing the condition (I : I ) = R), associating to each ideal I a star operation v(I )

(which we call the star operation generated by I ); we study under which conditions

two ideals I and J generate the same star operation and, in particular, we are interested

in understanding when this happens only for isomorphic ideals.

The structure of the paper is as follows: in Section 3 we give some general proper-

ties of principal star operations; in Section 4, we generalize some results of [9] from

m-canonical ideals to general ideals; in Section 5 we study the effect of localizations

on principal star operations; in Section 6 we study operations generated by ideals

whose v-closure is R (and, in particular, what happens when R is a unique factoriza-

tion domain); in Section 7 we study the Noetherian case, reaching a necessary and

sufficient condition for v(I ) = v(J ) under the assumption (I : I ) = (J : J ) = R.

2 Background

By an ideal of R we shall always mean a fractional ideal of R, reserving the term

integral ideal for those contained in R.

Let ⋆ be a star operation on R. An ideal I of R is ⋆-closed if I = I ⋆; the set

of ⋆-closed ideals is denoted by F ⋆(R). When ⋆ = v is the divisorial closure, the

elements of Fv(R) are called divisorial ideals.

Let Star(R) be the set of star operations on R. Then, Star(R) has a natural order

structure, where ⋆1 ≤ ⋆2 if and only if I ⋆1 ⊆ I ⋆2 for every I ∈ F(R), or equivalently

if F ⋆1(R) ⊇ F ⋆2(R). Under this order, Star(R) is a complete lattice whose minimum

is the identity and whose maximum is the v-operation.

A star operation is said to be of finite type if it is determined by its action on

finitely generated ideals, or equivalently if

I ⋆ =
⋃

{J ⋆ | J ⊆ I is finitely generated}

for every I ∈ F(R). A star operation is spectral if there is a subset � ⊆ Spec(D)

such that

I ⋆ =
⋂

{I RP | P ∈ �}

for every I ∈ F(R).

If ⋆ is a star operation of R, a prime ideal P is a ⋆-prime if it is ⋆-closed; the

set of the ⋆-primes, denoted by Spec⋆(R), is called the ⋆-spectrum. A ⋆-maximal

ideal of R is an ideal maximal among the set of proper ideals of R that are ⋆-closed;
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their set is denoted by Max⋆(R). Any ⋆-maximal ideal is prime; however, ⋆-maximal

ideals need not exist. If ⋆ is a star operation of finite type, then every ⋆-closed proper

integral ideal is contained in some ⋆-maximal ideal; furthermore, for every ⋆-closed

ideal I we have I =
⋂

{I RP | P ∈ Spec⋆(R)}.

3 Principal Star Operations

Definition 3.1. Let R be an integral domain. For every I ∈ F(R), the star operation

generated by I , denoted by v(I ), is the supremum of all the star operations ⋆ on R

such that I is ⋆-closed. If ⋆ = v(I ) for some ideal I , we say that ⋆ is a principal star

operation. We denote by Princ(R) the set of principal star operations of R.

We can give a more explicit representation of v(I ).

Proposition 3.2. For every fractional ideal J , we have

J v(I ) = J v ∩ (I : (I : J )) = J v ∩
⋂

α∈(I :J )\{0}

α−1 I. (1)

Furthermore, if (I : I ) = R then J v(I ) = (I : (I : J )).

Proof. The fact that the two maps J �→ J v ∩ (I : (I : J )) and J �→ J v ∩⋂
α∈(I :J )\{0} α−1 I give star operations and coincide follows in the same way as [9,

Lemma 3.1 and Proposition 3.2]. The second representation clearly implies that they

close I ; furthermore, if I is closed then J v and each α−1 I are closed, and thus the

two representations of (1) give exactly v(I ).

The “furthermore” statement follows again from [9, Lemma 3.1 and Proposi-

tion 3.2]. �

In the paper [9] that introduced the map J �→ (I : (I : J )) when (I : I ) = R, an

ideal I was said to be m-canonical if J = (I : (I : J )) for every ideal J . This is

equivalent to saying that (I : I ) = R and that v(I ) is the identity.

The definition of v(I ) can be extended to semistar operations, as in [13, Example

1.8(2)]; such construction was called the divisorial closure with respect to I in [4].

The terminology “generated” is justified by the following Proposition 3.3.

Proposition 3.3. Let ⋆ be a star operation on R. Then, ⋆ = inf{v(I ) | I ∈ F⋆(R)}.

Proof. Let ♯ := inf{v(I ) | I ∈ F ⋆(R)}. By definition,⋆ ≤ v(I ) for every I ∈ F ⋆(R),

and thus ⋆ ≤ ♯. Conversely, let J be a ⋆-ideal; then, ♯ ≤ v(J ) and thus J is ♯-closed.

It follows that ⋆ ≥ ♯, and thus ⋆ = ♯. �

Our main interest in this paper is to understand when two ideals generate the same

star operation. The first cases are quite easy.
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Lemma 3.4. Let I be a fractional ideal of R. Then, the following hold.

(a) v(I ) = v if and only if I is divisorial.

(b) If (I : I ) = R, then v(I ) = d if and only if I is m-canonical.

(c) For every a ∈ K , a 
= 0, we have v(I ) = v(aI ).

(d) If L is an invertible ideal of R, then v(I ) = v(I L).

Proof. The only non-trivial part is the last point. If L is invertible, then

I v(I L)L ⊆ (I v(I L)L)v(I L) = (I L)v(I L) = I L

and thus I v(I L) ⊆ I L(R : L) = I , i.e., I is v(I L)-closed; it follows that v(I ) ≥

v(I L). Symmetrically, we have v(I L) ≥ v(I L(R : L)) = v(I ), and thus v(I ) =

v(I L). �

We note that if J = I L for some invertible ideal L , then I and J are locally

isomorphic. However, the latter condition is neither necessary nor sufficient for I and

J to generate the same star operation, even excluding divisorial ideals. For example,

if R is an almost Dedekind domain that is not Dedekind, then all ideals are locally

isomorphic but not all are divisorial, and two nondivisorial maximal ideals generate

different star operations (if M 
= N are two such ideals, then (M : N ) = M and

so N v(M) = N v ∩ (M : (M : N )) = R). For an example of non-locally isomorphic

ideals generating the same star operation see Example 7.10.

The following necessary condition has been proved in [14, Lemma 3.7] when I

and J are fractional ideals of a numerical semigroup; the proof of the integral domain

case (which was also stated later in the same paper) can be obtained in exactly the

same way.

Proposition 3.5. Let R be an integral domain and I, J be nondivisorial ideals of

R. If v(I ) = v(J ) then

I = I v ∩
⋂

γ∈(I :J )(J :I )\{0}

(γ−1 I ).

4 Local Rings

As the construction of the principal star operation v(I ) generalizes the definition of

m-canonical ideal, we expect that I is in some way “m-canonical for v(I )”. Pursuing

this strategy, we obtain the following generalization of [9, Lemma 2.2(e)].

Lemma 4.1. Let I be an ideal of a domain R such that (I : I ) = R. Let {Jα | α ∈ A}

be v(I )-ideals such that
⋂

α∈A Jα 
= (0). Then,

(
I :

⋂

α∈A

Jα

)
=

(∑

α∈A

(I : Jα)

)v(I )

.
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Proof. Let J :=
∑

α∈A(I : Jα). Since (I : I ) = R, we have Lv(I ) = (I : (I : L)) for

every ideal L; therefore,

(I : J ) =

(
I :

∑

α∈A

(I : Jα)

)
=

⋂

α∈A

(I : (I : Jα)) =
⋂

α∈A

J v(I )
α =

⋂

α∈A

Jα

and thus

J v(I ) = (I : (I : J )) =

(
I :

⋂

α∈A

Jα

)
,

as claimed. �

The following definition abstracts a property proved, for m-canonical ideals of

local domains, in [9, Lemma 4.1].

Definition 4.2. Let ⋆ be a star operation on R. We say that an ideal I of R is strongly

⋆-irreducible if I = I ⋆ 
=
⋂

{J ∈ F ⋆(R) | I � J }.

Lemma 4.3. Let R be a domain and I be a nondivisorial ideal of R. If I is strongly

v(I )-irreducible and v(I ) = v(J ), then I = u J for some u ∈ K .

Proof. Suppose v(I ) = v(J ). Then

I = I v(J ) = I v ∩
⋂

α∈(J :I )\{0}

α−1 J.

Both I v and each α−1 J are v(I )-ideals; hence, either I = I v (which is impossible

since I is not divisorial) or I = α−1 J for some α ∈ K . �

Lemma 4.4. Suppose (R, M) is a local ring and R = (I : I ). If M is v(I )-closed,

then I is strongly v(I )-irreducible.

Proof. Let {Jα} be a family of v(I )-ideals such that I =
⋂

Jα. Then,

R = (I : I ) =

(
I :

⋂

α

Jα

)
=

(∑

α

(I : Jα)

)v(I )

by Lemma 4.1.

Hence (I : Jα) ⊆ R for every α; suppose I � Jα for all α. Then, 1 /∈ (I : Jα)

and thus (I : Jα) ⊆ M ; therefore,
∑

(I : Jα) ⊆ M and, since M is v(I )-closed, also(∑
α(I : Jα)

)v(I )
⊆ M , a contradiction. Therefore, we must have Jα = I for some

α, and I is strongly v(I )-irreducible. �

As a consequence of the previous two lemmas, we have a very general result for

local rings.
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Proposition 4.5. Let (R, M) be a local domain and I a nondivisorial ideal of R such

that (I : I ) = R. If M = Mv(I ) (in particular, if M is divisorial), then v(I ) = v(J )

for some ideal J if and only if I = u J for some u ∈ K .

Proof. By Lemma 4.4, I is strongly v(I )-irreducible; by Lemma 4.3 it follows that

I = u J . �

Corollary 4.6. Let (R, M) be a local domain, and I and J two nondivisorial ideals

of R. If R is completely integrally closed and M is divisorial, then v(I ) = v(J ) if

and only if I = u J for some u ∈ K .

Proof. Since R is completely integrally closed, (L : L) = R for all ideals L; fur-

thermore, since M is divisorial Mv(L) = M for every L . The claim follows from

Proposition 4.5. �

One problem of the previous results is the hypothesis (I : I ) = R. In the following

proposition we eliminate it at the price of forcing more properties on R.

Proposition 4.7. Let (R, M) be a local ring, and let T := (M : M). Let I, J be

ideals of R, properly contained between R and T , such that v(I ) = v(J ).

(a) If (I : I ), (J : J ) ⊆ T , then (I : I ) = (J : J ).

(b) Suppose also that (I : I ) =: A is local with divisorial maximal ideal, and that

I and J are not divisorial over A. Then, there is a u ∈ K such that I = u J .

Proof. If M is principal, T = R and the statement is vacuous. Suppose thus M is

not principal: then, we also have T = (R : M). We first claim that Lv = T for every

ideal L properly contained between R and T . Indeed, the containment R � L implies

that (R : L) � R and thus, since R is local, (R : L) ⊆ M and Lv ⊇ T � L; hence,

Lv = T .

(a) Let T1 := (I : I ) and T2 := (J : J ), and define ⋆i as the star operation L⋆i :=

Lv ∩ LTi . Since T contains T1 and T2, it is both a T1- and a T2-ideal. We claim that

L 
= R is ⋆i -closed if and only if it is a Ti -ideal: the “if” part is obvious, while if

L = Lv ∩ LTi then Lv = T is a Ti -ideal and thus L is intersection of two Ti -ideals.

If v(I ) = v(J ), then I is ⋆-closed if and only if J is ⋆-closed; therefore, since

I is ⋆1-closed and J is ⋆2-closed, both I and J are T1- and T2-ideals. But (I : I )

(respectively, (J : J )) is the maximal overring of R in which I (respectively, J ) is

an ideal; thus (I : I ) = (J : J ).

(b) Consider the star operation generated by I on A, i.e., vA(I ) : L �→ (A : (A :

L)) ∩ (I : (I : L)) for every L ∈ F(A). By the first paragraph of the proof, applied

on the A-ideals, we have (A : (A : L)) = T for all ideals L of A properly contained

between A and T ; in particular, this happens for J (since R ⊂ J implies A = AR ⊆

AJ = J , and A 
= J since J is not divisorial), and thus J vA(I ) = J v(I ) = J . Sym-

metrically, I vA(J ) = I ; hence, vA(I ) = vA(J ). By Proposition 4.5, applied to A, we

have I = u J for some u ∈ K , as claimed. �

Recall that a pseudo-valuation domain (PVD) is a local domain (R, M) such that

M is the maximal ideal of a valuation overring of R (called the valuation domain

associated to R) [8].
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Corollary 4.8. Let (R, M) be a pseudo-valuation domain with associated valuation

ring V , and suppose that the field extension R/M ⊆ V/M is algebraic. Let I, J be

nondivisorial ideals of R. Then, v(I ) = v(J ) if and only if I = u J for some u ∈ K .

Proof. By [12, Proposition 2.2(5)], there are a, b ∈ K such that a−1 I and b−1 J are

properly contained between R and V = (M : M). Furthermore, since R/M ⊆ V/M

is algebraic, every ring between R and V is the pullback of some intermediate field,

and in particular it is itself a PVD with maximal ideal M . The claim follows from

Proposition 4.7. �

5 Localizations

Let ⋆ be a star operation on R and T a flat overring of R. Then, ⋆ is said to be

extendable to T if the map

⋆T : F(T ) −→ F(T )

I T �−→ I ⋆T

is well-defined; when this happens, ⋆T is called the extension of ⋆ to T and is a star

operation on T [16, Definition 3.1]. In general, not all star operations are extendable,

although finite-type operations are (see [10, Proposition 2.4] and [16, Proposition

3.3(d)]).

We would like to have an equality v(I )T = v(I T ), where the latter is considered

as a star operation on T . In general, this is false, both because v(I ) may not be

extendable and because the extension v(I )T may not be equal to v(I T ).

For example, let V be a valuation domain and suppose that its maximal ideal

M is principal. Let P be a prime ideal of V . Then, the only star operation on V is

the identity, and thus v(I ) = d for all ideals I ; in particular, v(I ) is extendable to

VP and the extension v(I )VP
is the identity on VP . Suppose now that P = PVP is

not principal as an ideal of VP . Then, VP has two star operations (the identity and

the v-operation) and if a ∈ K \ {0} then aVP generates the v-operation. Hence, the

extension of v(aV ) ∈ Star(V ) to VP is different from v(aVP) ∈ Star(VP).

In the Noetherian case, however, everything works.

Proposition 5.1. If R is Noetherian, then v(I )T = v(I T ) for every flat overring T

of R.

Proof. By definition, J v(I ) = (R : (R : J )) ∩ (I : (I : J )); multiplication by a flat

overring commutes with finite intersections, and since every ideal is finitely gener-

ated, the colon localizes, and thus
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J v(I )T = (R : (R : J ))T ∩ (I : (I : J ))T =

= (T : (T : J T )) ∩ (I T : (I T : J T )) =

= (J T )vT ∩ (I T : (I T : J T )) = (J T )v(I T ),

i.e., v(I )T = v(I T ). �

Another case where localization works well is for Jaffard families. If R is an

integral domain with quotient field K , a Jaffard family of R is a set � of flat overrings

of R such that [6, Section 6.3.1]:

• � is locally finite;

• I =
∏

{I T ∩ R | T ∈ �, I T 
= T } for every integral ideal I ;

• (I T1 ∩ R) + (I T2 ∩ R) = R for every integral ideal I and every T1 
= T2 in �.

Jaffard families can be used to factorize the set of star operations of a domain R

into a direct product of sets of star operations.

Theorem 5.2. Let R be an integral domain and let � be a Jaffard family on R. Then,

every star operation on R is extendable to every T ∈ �, and the map

λ� : Star(R) −→
∏

T ∈�

Star(T )

⋆ �−→ (⋆T )T ∈�

is an order-preserving order-isomorphism.

Proof. It is a part of [16, Theorem 5.4]. �

For principal star operations, the previous result must be modified using, instead

of the direct product, a “direct sum”-like construction. Given a family � of overrings,

we set

⊕

T ∈�

Princ(T ) :=

{
(⋆(T )) ∈

∏

T ∈�

Princ(T ) | ⋆(T ) 
= v(T ) for only finitely many T

}
.

Using this terminology, we have the following.

Proposition 5.3. Let R be an integral domain and � be a Jaffard family on R. For

every ideal I of R and every T ∈ �, we have v(I )T = v(I T ); furthermore, the map

ϒ : Princ(R) −→
⊕

T ∈�

Princ(T )

v(I ) �−→ (v(I T ))T ∈�

is a well-defined order-isomorphism.



When Two Principal Star Operations Are the Same 307

Proof. By Theorem 5.2 v(I ) is extendable to any T ∈ �; furthermore, by [16,

Lemma 5.3], we have (J : L)T = (J T : LT ) for every pair of fractional ideals J, L

of R. Using the same calculation of Proposition 5.1 we get v(I )T = v(I T ).

In particular, it follows that the map ϒ is just the restriction of the localization

map λ� to Princ(R); since λ� is an isomorphism (by Theorem 5.2), we have only to

show that the image of ϒ is the direct sum
⊕

T ∈� Princ(T ).

Since I T = T for all but a finite number of T (by definition of a Jaffard family),

we have v(I T ) = v(T ) = v(T ) for all but a finite number of T . In particular, the

image of ϒ lies inside the direct sum.

Suppose, conversely, that (v(JT ))T ∈� ∈
⊕

T ∈� Princ(T ). We can suppose that

JT ⊆ T for every T , and that JT = T if v(JT ) = v(T ). Define thus I :=
⋂

T ∈� JT :

then, I is nonzero (since JT 
= T for only a finite number of T ) and I T = JT for

every T [16, Lemma 5.2]. Therefore, v(I )T = v(I T ) = v(JT ), and the image of ϒ

is exactly
⊕

T ∈� Princ(T ). �

Proposition 5.3 can be interpreted as a way to factorize principal star operations.

Corollary 5.4. Let R be an integral domain and � be a Jaffard family on R. Let I

be an integral ideal of R. Then, there are T1, . . . , Tn ∈ � such that v(I ) = v(I T1 ∩

R) ∧ · · · ∧ v(I Tn ∩ R).

Proof. Since I ⊆ R, we have I T = T for all but finitely many T ∈ �; let T1, . . . , Tn

be the exceptions. The claim follows from Proposition 5.3. �

Recall that an integral domain is said to be h-local if every ideal is contained in

a finite number of maximal ideals and every prime ideal is contained in only one

maximal ideal.

Corollary 5.5. Let R be an h-local Prüfer domain, and let M be the set of non-

divisorial maximal ideals of R. Then, there is a bijective correspondence between

Princ(R) and the set Pfin(M) of finite subsets of M. Furthermore, M is finite if and

only if every star operation is principal.

Proof. Since R is h-local, {RM | M ∈ Max(R)} is a Jaffard family of R, and thus

by Proposition 5.3 there is a bijective correspondence ϒ between Princ(R) and⊕
M∈Max(R) Princ(RM). If M /∈ M, then M RM is principal and thus Star(RM) =

Princ(RM) = {d = v}; hence, ϒ restricts to a bijection ϒ ′ between Princ(R) and⊕
M∈M

Princ(RM). Since RM is a valuation domain, each Princ(RM) is composed

by two elements (the identity and the v-operation). Thus, we can construct a bijec-

tion ϒ1 from the direct sum to Pfin(M) by associating to ⋆ := (⋆(M)) the finite

set ϒ1(⋆) := {M ∈ M | ⋆(M) 
= v}. The composition ϒ1 ◦ ϒ ′ is a bijection from

Princ(R) to Pfin(M).

The last claim follows immediately. �

A factorization property similar to Corollary 5.4 can be proved for ideals having

a primary decomposition with no embedded primes.
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Proposition 5.6. Let Q1, . . . , Qn be primary ideals, let Pi := rad(Qi ) for all i and

let I := Q1 ∩ · · · ∩ Qn . If the Pi are pairwise incomparable, then v(I ) = v(Q1) ∧

· · · ∧ v(Qn).

Proof. For every i , the ideal Qi is v(Qi )-closed, and thus I is (v(Q1) ∧ · · · ∧

v(Qn))-closed; hence, v(I ) ≥ v(Q1) ∧ · · · ∧ v(Qn). To prove the converse, we need

to show that each Qi is v(I )-closed.

Without loss of generality, let i = 1, and define Q̂ := Q2 ∩ · · · ∩ Qn; we claim

that Q1 = (I :R Q̂). Since Q1 Q̂ ⊆ Q1 ∩ Q̂ = I , clearly Q1 ⊆ (I :R Q̂). Conversely,

let x ∈ (I :R Q̂). Since the radicals of the Qi are pairwise incomparable, Qi � P1

for every i > 1, and so Q̂ � P1; therefore, there is a q ∈ Q̂ \ P1. Then, xq ∈ I , and

in particular xq ∈ Q1. If x /∈ Q1, then since Q1 is primary we would have q t ∈ Q1

for some t ∈ N; however, this would imply q ∈ rad(Q1) = P1, against the choice

of q. Thus, Q1 ⊆ (I :R Q̂) and so Q1 = (I :R Q̂).

By definition, I is v(I )-closed; hence, also (I :R Q̂) is v(I )-closed. It follows that

Q1 is v(I )-closed, and thus that each Qi is v(I )-closed, i.e., v(I ) ≤ v(Q1) ∧ · · · ∧

v(Qn). The claim is proved. �

6 v-Trivial Ideals

In this section, we analyze principal operations generated by v-trivial ideals.

Definition 6.1. An ideal I of a domain R is v-trivial if I v = R.

Lemma 6.2. If I is v-trivial, then (I : I ) = R.

Proof. If I v = R, then (R : I ) = R, and thus (I : I ) ⊆ (R : I ) = R. �

Definition 6.3. A star operation ⋆ is semifinite (or quasi-spectral) if every ⋆-closed

ideal I � R is contained in a ⋆-prime ideal.

All finite type and all spectral operations are semifinite; on the other hand, if V is a

valuation domain with maximal ideal that is branched but not finitely generated, the

v-operation on V is not semifinite. The class of semifinite operations is closed by

taking infima, but not by taking suprema (see [5, Example 4.5]).

Lemma 6.4. Let R be an integral domain, and let I, J be v-trivial ideals of R.

(a) If J � I , then J v(I ) = I , and in particular v(I ) 
= v(J ).

Suppose v is semifinite on R.

(b) I ∩ J is v-trivial.

(c) I ⊆ J v(I ).

(d) If I 
= J , then v(I ) 
= v(J ).
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Proof. (a) Since I is v-trivial, by Lemma 6.2 and Proposition 3.2 we have J v(I ) = (I :

(I : J )).

However, R ⊆ (I : J ) ⊆ (R : J ) = R (using the v-triviality of J ) and thus J v(I ) =

(I : R) = I , as claimed. In particular, J = J v(J ) 
= J v(I ) and so v(I ) 
= v(J ).

(b) If (I ∩ J )v 
= R, then by semifiniteness there is a prime ideal P such that

I ∩ J ⊆ P = Pv . However, this would imply I ⊆ P or J ⊆ P , against the hypoth-

esis that I and J are v-trivial.

(c) Since J ⊆ J v(I ), it follows that J v(I ) is v-trivial, and by the previous point so

is J v(I ) ∩ I . If I � J v(I ), it would follow that J v(I ) ∩ I � I , but J v(I ) ∩ I is v(I )-

closed, against (a). Hence I ⊆ J v(I ).

(d) If both I and J are v(I )-closed, then so is I ∩ J ; by (b), (I ∩ J )v = R. The

claim follows applying (a) to I ∩ J and I (or J ). �

Corollary 6.5. Let R be a domain such that v is semifinite. Let I, J be ideals of R

such that I v and J v are invertible; then, v(I ) = v(J ) if and only if I = L J for some

invertible ideal L.

Proof. By invertibility, we have

R = I v(R : I v) = (I v(R : I v))v = (I (R : I v))v;

since I ⊆ I (R : I v) ⊆ R, the ideal I (R : I v) is v-trivial. Analogously, R = (J (R :

J v))v and J (R : J v) is v-trivial. Hence, by Lemma 6.4(d) I (R : I v) = J (R : J v);

thus, I = I v(R : J v)J , and L := I v(R : J v) is invertible. �

We denote by h(I ) the height of the integral ideal I .

Corollary 6.6. Let R be a unique factorization domain. Then,

(a) for every principal star operation ⋆ 
= v there is a proper ideal I such that

h(I ) > 1 and ⋆ = v(I );

(b) if I, J are fractional ideals of R, v(I ) = v(J ) if and only if I = u J for some

u ∈ K .

Proof. Let ⋆ = v(I ) for some ideal I . By [7, Corollary 44.5], every v-closed ideal

of R is principal; hence, let I v = pR. Then, (p−1 I )v = R, i.e., p−1 I is v-trivial. In

particular, ⋆ = v(I ) = v(p−1 I ), and p−1 I is a proper ideal of R with h(p−1 I ) > 1

(since all prime ideals of height 1 are v-closed).

Suppose that we also have ⋆ = v(J ). With the same reasoning of the pre-

vious paragraph, q−1 J is v-trivial for some q; thus v(p−1 I ) = v(I ) = v(J ) =

v(q−1 J ). Applying Lemma 6.4 (d) to p−1 I and q−1 J we get p−1 I = q−1 J , i.e.,

I = (pq−1)J . �
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For star operations generated by v-trivial prime ideals, we can also determine the

set of closed ideals.

Proposition 6.7. Let R be a domain such that v is semifinite and such that I v is

invertible for every ideal I , and let P ∈ Spec(R). Then Fv(P)(R) = Fv(R) ∪ {L P |

L is an invertible ideal}. In particular, v(P) is a maximal element of Princ(R) \ {v}.

Proof. Let I be a nondivisorial ideal; multiplying by an invertible ideal L , we can

suppose I v = R. If I ⊆ P , by Lemma 6.4 (a) I v(P) = P , and thus I 
= I v(P) unless

I = P; suppose I � P . Then (P : I ) = P: we have (P : I ) ⊆ (R : I ) = R, and

thus if x I ⊆ P then x ∈ P . Therefore, I v(P) = I v ∩ (P : (P : I )) = R ∩ (P : P) =

R 
= I .

For the “in particular” claim, note that ifv(I ) ≥ v(P) then I should be ⋆-closed; by

the previous part of the proof, this means that either I is divisorial (and so v(I ) = v)

or I = L P for some invertible L (and thus v(I ) = v(P) by Lemma 3.4(d)). �

Corollary 6.8. Let R be a unique factorization domain, and let P ∈ Spec(R). Then,

Fv(P)(R) = Fv(R) ∪ {a P | a ∈ K }.

We have seen in Proposition 3.3 that all star operations can be “generated” by

principal star operations; we can use v-trivial ideals to show that in many cases we

need infinitely many of them.

Proposition 6.9. Let R be a domain such that v is semifinite, and let I1, . . . , In

be v-trivial ideals; let ⋆ := v(I1) ∧ · · · ∧ v(In). Then, the ideal I1 ∩ · · · ∩ In is the

minimal v-trivial ideal that is ⋆-closed.

Proof. Let J := I1 ∩ · · · ∩ In . By Lemma 6.4 (b), J is v-trivial. Clearly J is ⋆-closed.

Suppose L is v-trivial; then, applying Lemma 6.4(c),

L⋆ = Lv(I1)∧···∧v(In) ⊇ I1 ∩ · · · ∩ In = J.

Therefore, J is the minimum among v-trivial ⋆-closed ideals. �

Corollary 6.10. Let R be a unique factorization domain, and let ⋆ ∈ Star(R) be

such that ⋆ 
= v. If
⋂

{J ∈ F ⋆(R) | J v = R} = (0), then ⋆ is not the infimum of a

finite family of principal star operations.

Proof. Since R is a UFD, the v-operation is semifinite, and every principal star

operation can be generated by a v-trivial ideal. If ⋆ were to be finitely generated,

say ⋆ = v(I1) ∧ · · · ∧ v(In), then J := I1 ∩ · · · ∩ In would be the minimal v-trivial

⋆-closed ideal; however, by hypothesis, there must be a v-trivial ⋆-closed ideal J ′

not containing J , and thus ⋆ cannot be finitely generated. �
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Proposition 6.11. Let R be a domain, and let � be a set of overrings whose inter-

section is R. Let ⋆ be the star operation I �→
⋂

{I T | T ∈ �}. Suppose that

(1) v is semifinite;

(2) every v-trivial ideal contains a finitely generated v-trivial ideal;

(3) there is a v-trivial ⋆-closed ideal.

Then, ⋆ is not the infimum of a finite family of principal star operations.

Proof. By substituting an overring T ∈ � with {TM | M ∈ Max(T )}, we can suppose

without loss of generality that each member of � is local.

If ⋆ were finitely generated, by Proposition 6.9 there would be a minimal v-trivial

⋆-closed ideal, say J . By hypothesis, there is finitely generated v-trivial ideal I ⊆ J ;

since I ⋆ = J , by [1, Theorem 2], we have I T = J T for every T ∈ �.

Since I ⋆ 
= R, there must be an S ∈ � such that I S 
= S; by Nakayama’s lemma,

I 2S = (I S)2 � I S, and so (I 2)⋆ ⊆ I 2S ∩ R � I . In particular, (I 2)⋆ is a v-trivial

⋆-closed ideal, against the definition of I . Thus, ⋆ is not finitely generated. �

The first two hypothesis hold, for example, for unique factorization domains of

dimension d > 1; the third one holds, for example, in the following cases:

• ⋆ is a spectral star operation of finite type different from the w-operation (see [2,

17]);

• if R is integrally closed and (at least) one maximal ideal is not divisorial, and ⋆ is

the b-operation/integral closure;

• if R is a UFD, all star operations coming from overrings, except the v-operation.

7 Noetherian Domains

In this section, we study in more detail the case of Noetherian domains; in particular,

we shall give in Theorem 7.8 a necessary and sufficient condition on when v(I ) =

v(J ), under the assumption that (I : I ) = R = (J : J ). We first state a case that is

already settled, even without this hypothesis.

Proposition 7.1. [14, Proposition 5.4] Let (R, M) be a local Noetherian integral

domain of dimension 1 such that its integral closure V is a discrete valuation domain

that is finite over R; suppose also that the induced map of residue fields R/M ⊆

V/MV is an isomorphism. Then, v(I ) = v(J ) if and only if I = u J for some u ∈ K ,

u 
= 0.

We denote by Ass(I ) the set of associated primes of I .

Proposition 7.2. Let R be a domain and I an ideal of R. Then, Specv(I )(R) ⊇

Specv(R) ∪ Ass(I ), and if R is Noetherian the two sets are equal.
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Proof. If P ∈ Ass(I ), then P = (I :R x) = x−1 I ∩ R for some x ∈ R, and thus it

is v(I )-closed; if P ∈ Specv(R) then P = Pv and thus P = Pv(I ).

Conversely, suppose R is Noetherian and P = Pv(I ). Then P = Pv ∩ (I : (I :

P)) = Pv ∩ (I : J ), where J = (I : P); let J = j1 R + · · · + jn R. We have

P = Pv ∩ (I : J ) = Pv ∩ R ∩ (I : J ) = Pv ∩ (I :R J ) =

= Pv ∩ (I :R j1 R + · · · + jn R) = Pv ∩
⋂n

i=1(I :R ji R),

and, since P is prime, this implies that Pv = P or (I :R ji R) = P for some i . In

the latter case, since ji ∈ K , ji = a/b for some a, b ∈ R; hence (I :R ji R) = (I :

ab−1 R) ∩ R = (bI :R a R), and thus P is associated to bI . There is an exact sequence

0 −→
bR

bI
−→

R

bI
−→

R

bR
−→ 0

and, since R is a domain, bR/bI ≃ R/I and thus Ass(bI ) ⊆ Ass(I ) ∪ Ass(bR) [3,

Chapter IV, Proposition 3]; therefore, P is associated to I or it is divisorial (since an

associated prime of a divisorial ideal—in this case, bR—is divisorial). �

Remark 7.3. Note that, if Pv = R, then (I : P) ⊆ (R : P) = R, and thus ji ∈ R;

in this case, b = 1 and the last part of the proof can be greatly simplified.

The following is a slight improvement of Proposition 6.7. We denote by X1(R)

the set of height-1 prime ideals of R.

Corollary 7.4. Let R be an integrally closed Noetherian domain. Then, the maximal

elements of Princ(R) \ {v} are the v(P), as P ranges in Spec(R) \ X1(R).

Proof. Since R is integrally closed, the divisorial prime ideals of R are the height 1

primes. In particular, if P is a prime ideal of height > 1, then v(P) is maximal by

Proposition 6.7.

Conversely, suppose v(I ) is maximal in Princ(R) \ {v}. If all associated primes

of I have height 1, then I =
⋂

P∈X1(R) I RP , and so I is divisorial, against v(I ) 
= v.

Hence, there is a P ∈ Ass(I ) \ X1(R); by Proposition 7.2, P ∈ Specv(I )(R), and

thus v(I ) ≤ v(P). As v(I ) is maximal, it follows that v(I ) = v(P). The claim is

proved. �

Corollary 7.5. Let R be a Noetherian unique factorization domain. Then, v(I ) is

a maximal element of Princ(R) \ {v} if and only if I = u P for some prime ideal

P ∈ Spec(R) \ X1(R) and some u ∈ K .

Proof. It is enough to join Corollary 7.4 (the maximal elements are the v(P)) with

Corollary 6.6 (v(I ) = v(P) if and only if I = u P). �

Proposition 7.2 allows to determine, in the Noetherian case, all the spectra of the

principal star operations. We need a lemma.

Lemma 7.6. Let⋆1, . . . , ⋆n ∈ Star(R), and let⋆ := ⋆1 ∧ · · · ∧ ⋆n . Then, Spec⋆(R) =⋃
i Spec⋆i (R).
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Proof. If P = P⋆i for some i then P⋆ ⊆ P⋆i = P and thus P = P⋆. Conversely, if

P = P⋆ then P = P⋆1 ∩ · · · ∩ P⋆n ; since P is prime, it follows that P = P⋆i for

some i . The claim is proved. �

Proposition 7.7. Let R be a Noetherian domain, and let � ⊆ Spec(R). Then, the

following are equivalent:

(i) � = Specv(I )(R) for some ideal I ;

(ii) � = Spec⋆(R) for some ⋆ = v(I1) ∧ · · · ∧ v(In);

(iii) � = Specv(R) ∪ �′, for some finite set �′.

Proof. (i) =⇒ (ii) is obvious, while (ii) =⇒ (iii) follows from Lemma 7.6.

If (iii) holds, then by [18, Chapter 4, Theorem 21] there is an ideal I whose set

of associated primes is �′. By Proposition 7.2, Specv(I )(R) = Specv(R) ∪ �′ = �,

and so (i) holds. �

We now characterize when two nondivisorial ideals with (I : I ) = (J : J ) = R

generate the same star operation.

Theorem 7.8. Let R be a Noetherian domain, and let I, J be nondivisorial ide-

als such that (I : I ) = (J : J ) = R. Then, v(I ) = v(J ) if and only if Ass(I ) ∪

Specv(R) = Ass(J ) ∪ Specv(R) and, for every P ∈ Ass(I ) ∪ Specv(R), there is an

aP ∈ K such that I RP = aP J RP .

Proof. Suppose the two conditions hold. By Proposition 7.2, Ass(I ) ∪ Specv(R) =

Specv(I )(R), and thus Specv(I )(R) = Specv(J )(R) =: �. For every ideal L , using

Proposition 5.1 we have

Lv(I ) =
⋂

P∈�

Lv(I ) RP =
⋂

P∈�

(L RP)v(I )RP =
⋂

P∈�

(L RP)v(I RP ).

Since I RP and J RP are isomorphic, (L RP)v(I RP ) = (L RP)v(J RP ); it follows that

v(I ) = v(J ).

Conversely, suppose v(I ) = v(J ) =: ⋆. Then, Spec⋆(R) is equal to both Ass(I ) ∪

Specv(R) and Ass(J ) ∪ Specv(R), which thus are equal. Note also that (I : I ) = R

implies that RP = (I : I )RP = (I RP : I RP) for every prime ideal P .

Let now P ∈ Spec⋆(R). Since v(I ) = v(J ), clearly v(I )RP
= v(J )RP

, which by

Proposition 5.1 implies that v(I RP) = v(J RP). However, P RP is v(I RP)-closed

because P is v(I )-closed; it follows, by Proposition 4.5, that I RP = aP J RP for

some aP ∈ K , as claimed. �

Corollary 7.9. Let R be an integrally closed Noetherian domain, and let I, J be

nondivisorial ideals. Then, v(I ) = v(J ) if and only if Ass(I ) ∪ X1(R) = Ass(J ) ∪

X1(R) and for every P ∈ Ass(I ) there is an aP ∈ RP such that I RP = aP J RP .
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Proof. Since R is integrally closed and Noetherian, we have (I : I ) = R for every

ideal I ; furthermore, the divisorial primes are the height 1 primes, and for any such

P the localizations I RP and J RP are isomorphic since RP is a DVR. The claim now

follows from Theorem 7.8. �

Example 7.10. Let R be a Noetherian integrally closed domain, and suppose that

RM is not a UFD for some maximal ideal M . Let P be an height 1 prime contained

in M such that P RM is not principal, and let Q be a prime ideal of height bigger

than 1 such that P + Q = R (in particular, Q � M). We claim that v(P Q) = v(Q)

but P Q and Q are not locally isomorphic.

In fact, since they are coprime, P Q = P ∩ Q, and thus Ass(P Q) = {P, Q} while

Ass(Q) = {Q}; moreover, P � Q and thus P Q RQ = Q P RQ = Q RQ . Since P ∈

X1(R), by Corollary 7.9 it follows that v(P Q) = v(Q). However, Q RM = RM is

principal, while P Q RM = P RM , by hypothesis, is not; therefore, Q and P Q are

not locally isomorphic. In particular, there cannot be an invertible ideal L such that

Q = L P Q, because L RM would be principal and thus Q and P Q would be locally

isomorphic.
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