

Dario Spirito

Abstract We study when two fractional ideals of the same integral domain generate the same star operation.

Keywords Star operations \cdot Principal star operations \cdot *m*-canonical ideals

2010 Mathematics Subject Classification 13G05 · 13A15

1 Introduction

Throughout the paper, *R* will denote an integral domain with quotient field *K* and $\mathcal{F}(R)$ will be the set of *fractional ideals* of *R*, that is, the set of *R*-submodules *I* of *K* such that $xI \subseteq R$ for some $x \in K \setminus \{0\}$.

A *star operation* on *R* is a map $\star : \mathcal{F}(R) \longrightarrow \mathcal{F}(R)$ such that, for every $I, J \in \mathcal{F}(R)$ and every $x \in K$:

- $I \subseteq I^*;$
- if $I \subseteq J$, then $I^* \subseteq J^*$;
- $(I^{\star})^{\star} = I^{\star};$
- $(xI)^* = x \cdot I^*;$
- $R^{\star} = R$.

The usual examples of star operations are the identity (usually denoted by *d*), the *v*-operation (or *divisorial closure*) $J \mapsto J^v := (R : (R : J))$, the *t*- and the *w*-operation (which are defined from *v*) and the star operations $I \mapsto \bigcap_{T \in \Delta} IT$, where Δ is a set of overrings of *R* intersecting to *R*. While these examples are the easiest to work with, they usually cover only a rather small part of the set of star operations.

D. Spirito (🖂)

Dipartimento di Matematica e Fisica, Università degli Studi "Roma Tre", Roma, Italy e-mail: spirito@mat.uniroma3.it

[©] Springer Nature Switzerland AG 2020

A. Facchini et al. (eds.), *Advances in Rings, Modules and Factorizations*, Springer Proceedings in Mathematics & Statistics 321, https://doi.org/10.1007/978-3-030-43416-8_17

A much more general construction is given in [9, Proposition 3.2]: if (I : I) = R, then the map $J \mapsto (I : (I : J))$ is a star operation. This construction is much more flexible than the more "classical" ones, and allows to construct a much higher number of star operations (see, e.g., [10, Proposition 2.1(1)] or [11, Theorem 2.1] for its use to construct an infinite family of star operations, or [14, 15] for constructions in the case of numerical semigroups). In this paper, we slightly generalize this construction (removing the condition (I : I) = R), associating to each ideal *I* a star operation v(I)(which we call the star operation generated by *I*); we study under which conditions two ideals *I* and *J* generate the same star operation and, in particular, we are interested in understanding when this happens only for isomorphic ideals.

The structure of the paper is as follows: in Section 3 we give some general properties of principal star operations; in Section 4, we generalize some results of [9] from *m*-canonical ideals to general ideals; in Section 5 we study the effect of localizations on principal star operations; in Section 6 we study operations generated by ideals whose *v*-closure is *R* (and, in particular, what happens when *R* is a unique factorization domain); in Section 7 we study the Noetherian case, reaching a necessary and sufficient condition for v(I) = v(J) under the assumption (I : I) = (J : J) = R.

2 Background

By an *ideal* of R we shall always mean a fractional ideal of R, reserving the term *integral ideal* for those contained in R.

Let \star be a star operation on *R*. An ideal *I* of *R* is \star -closed if $I = I^{\star}$; the set of \star -closed ideals is denoted by $\mathcal{F}^{\star}(R)$. When $\star = v$ is the divisorial closure, the elements of $\mathcal{F}^{v}(R)$ are called *divisorial ideals*.

Let Star(R) be the set of star operations on R. Then, Star(R) has a natural order structure, where $\star_1 \leq \star_2$ if and only if $I^{\star_1} \subseteq I^{\star_2}$ for every $I \in \mathcal{F}(R)$, or equivalently if $\mathcal{F}^{\star_1}(R) \supseteq \mathcal{F}^{\star_2}(R)$. Under this order, Star(R) is a complete lattice whose minimum is the identity and whose maximum is the *v*-operation.

A star operation is said to be *of finite type* if it is determined by its action on finitely generated ideals, or equivalently if

$$I^* = \bigcup \{J^* \mid J \subseteq I \text{ is finitely generated} \}$$

for every $I \in \mathcal{F}(R)$. A star operation is *spectral* if there is a subset $\Delta \subseteq \text{Spec}(D)$ such that

$$I^{\star} = \bigcap \{ IR_P \mid P \in \Delta \}$$

for every $I \in \mathcal{F}(R)$.

If \star is a star operation of *R*, a prime ideal *P* is a \star -prime if it is \star -closed; the set of the \star -primes, denoted by Spec^{\star}(*R*), is called the \star -spectrum. A \star -maximal ideal of *R* is an ideal maximal among the set of proper ideals of *R* that are \star -closed;

their set is denoted by Max^{*}(R). Any *-maximal ideal is prime; however, *-maximal ideals need not exist. If * is a star operation of finite type, then every *-closed proper integral ideal is contained in some *-maximal ideal; furthermore, for every *-closed ideal I we have $I = \bigcap \{IR_P \mid P \in \text{Spec}^*(R)\}$.

3 Principal Star Operations

Definition 3.1. Let *R* be an integral domain. For every $I \in \mathcal{F}(R)$, the *star operation* generated by *I*, denoted by v(I), is the supremum of all the star operations \star on *R* such that *I* is \star -closed. If $\star = v(I)$ for some ideal *I*, we say that \star is a *principal* star operation. We denote by Princ(*R*) the set of principal star operations of *R*.

We can give a more explicit representation of v(I).

Proposition 3.2. For every fractional ideal J, we have

$$J^{v(I)} = J^v \cap (I : (I : J)) = J^v \cap \bigcap_{\alpha \in (I:J) \setminus \{0\}} \alpha^{-1} I.$$

$$(1)$$

Furthermore, if (I : I) = R *then* $J^{v(I)} = (I : (I : J))$ *.*

Proof. The fact that the two maps $J \mapsto J^v \cap (I : (I : J))$ and $J \mapsto J^v \cap \bigcap_{\alpha \in (I:J) \setminus \{0\}} \alpha^{-1}I$ give star operations and coincide follows in the same way as [9, Lemma 3.1 and Proposition 3.2]. The second representation clearly implies that they close *I*; furthermore, if *I* is closed then J^v and each $\alpha^{-1}I$ are closed, and thus the two representations of (1) give exactly v(I).

The "furthermore" statement follows again from [9, Lemma 3.1 and Proposition 3.2]. $\hfill \Box$

In the paper [9] that introduced the map $J \mapsto (I : (I : J))$ when (I : I) = R, an ideal *I* was said to be *m*-canonical if J = (I : (I : J)) for every ideal *J*. This is equivalent to saying that (I : I) = R and that v(I) is the identity.

The definition of v(I) can be extended to semistar operations, as in [13, Example 1.8(2)]; such construction was called the *divisorial closure with respect to I* in [4]. The terminology "generated" is justified by the following Proposition 3.3.

Proposition 3.3. Let \star be a star operation on R. Then, $\star = \inf\{v(I) \mid I \in \mathcal{F}^{\star}(R)\}$.

Proof. Let $\sharp := \inf\{v(I) \mid I \in \mathcal{F}^{\star}(R)\}$. By definition, $\star \leq v(I)$ for every $I \in \mathcal{F}^{\star}(R)$, and thus $\star \leq \sharp$. Conversely, let J be a \star -ideal; then, $\sharp \leq v(J)$ and thus J is \sharp -closed. It follows that $\star \geq \sharp$, and thus $\star = \sharp$.

Our main interest in this paper is to understand when two ideals generate the same star operation. The first cases are quite easy.

D. Spirito

Lemma 3.4. Let I be a fractional ideal of R. Then, the following hold.

(a) v(I) = v if and only if I is divisorial.

(b) If (I : I) = R, then v(I) = d if and only if I is m-canonical.

- (c) For every $a \in K$, $a \neq 0$, we have v(I) = v(aI).
- (d) If L is an invertible ideal of R, then v(I) = v(IL).

Proof. The only non-trivial part is the last point. If L is invertible, then

$$I^{v(IL)}L \subset (I^{v(IL)}L)^{v(IL)} = (IL)^{v(IL)} = IL$$

and thus $I^{v(IL)} \subseteq IL(R:L) = I$, i.e., I is v(IL)-closed; it follows that $v(I) \ge v(IL)$. Symmetrically, we have $v(IL) \ge v(IL(R:L)) = v(I)$, and thus v(I) = v(IL).

We note that if J = IL for some invertible ideal L, then I and J are locally isomorphic. However, the latter condition is neither necessary nor sufficient for I and J to generate the same star operation, even excluding divisorial ideals. For example, if R is an almost Dedekind domain that is not Dedekind, then all ideals are locally isomorphic but not all are divisorial, and two nondivisorial maximal ideals generate different star operations (if $M \neq N$ are two such ideals, then (M : N) = M and so $N^{v(M)} = N^v \cap (M : (M : N)) = R$). For an example of non-locally isomorphic ideals generating the same star operation see Example 7.10.

The following necessary condition has been proved in [14, Lemma 3.7] when I and J are fractional ideals of a numerical semigroup; the proof of the integral domain case (which was also stated later in the same paper) can be obtained in exactly the same way.

Proposition 3.5. Let *R* be an integral domain and *I*, *J* be nondivisorial ideals of *R*. If v(I) = v(J) then

$$I = I^{v} \cap \bigcap_{\gamma \in (I:J)(J:I) \setminus \{0\}} (\gamma^{-1}I).$$

4 Local Rings

As the construction of the principal star operation v(I) generalizes the definition of *m*-canonical ideal, we expect that *I* is in some way "*m*-canonical for v(I)". Pursuing this strategy, we obtain the following generalization of [9, Lemma 2.2(e)].

Lemma 4.1. Let I be an ideal of a domain R such that (I : I) = R. Let $\{J_{\alpha} \mid \alpha \in A\}$ be v(I)-ideals such that $\bigcap_{\alpha \in A} J_{\alpha} \neq (0)$. Then,

$$\left(I:\bigcap_{\alpha\in A}J_{\alpha}\right) = \left(\sum_{\alpha\in A}(I:J_{\alpha})\right)^{v(I)}$$

Proof. Let $J := \sum_{\alpha \in A} (I : J_{\alpha})$. Since (I : I) = R, we have $L^{v(I)} = (I : (I : L))$ for every ideal L; therefore,

$$(I:J) = \left(I:\sum_{\alpha \in A} (I:J_{\alpha})\right) = \bigcap_{\alpha \in A} (I:(I:J_{\alpha})) = \bigcap_{\alpha \in A} J_{\alpha}^{v(I)} = \bigcap_{\alpha \in A} J_{\alpha}$$

and thus

$$J^{v(I)} = (I : (I : J)) = \left(I : \bigcap_{\alpha \in A} J_{\alpha}\right),$$

as claimed.

The following definition abstracts a property proved, for *m*-canonical ideals of local domains, in [9, Lemma 4.1].

Definition 4.2. Let \star be a star operation on *R*. We say that an ideal *I* of *R* is *strongly* \star -*irreducible* if $I = I^* \neq \bigcap \{J \in \mathcal{F}^*(R) \mid I \subsetneq J\}.$

Lemma 4.3. Let *R* be a domain and *I* be a nondivisorial ideal of *R*. If *I* is strongly v(I)-irreducible and v(I) = v(J), then I = uJ for some $u \in K$.

Proof. Suppose v(I) = v(J). Then

$$I = I^{v(J)} = I^v \cap \bigcap_{\alpha \in (J:I) \setminus \{0\}} \alpha^{-1} J.$$

Both I^v and each $\alpha^{-1}J$ are v(I)-ideals; hence, either $I = I^v$ (which is impossible since I is not divisorial) or $I = \alpha^{-1}J$ for some $\alpha \in K$.

Lemma 4.4. Suppose (R, M) is a local ring and R = (I : I). If M is v(I)-closed, then I is strongly v(I)-irreducible.

Proof. Let $\{J_{\alpha}\}$ be a family of v(I)-ideals such that $I = \bigcap J_{\alpha}$. Then,

$$R = (I : I) = \left(I : \bigcap_{\alpha} J_{\alpha}\right) = \left(\sum_{\alpha} (I : J_{\alpha})\right)^{v(I)}$$

by Lemma 4.1.

Hence $(I : J_{\alpha}) \subseteq R$ for every α ; suppose $I \subsetneq J_{\alpha}$ for all α . Then, $1 \notin (I : J_{\alpha})$ and thus $(I : J_{\alpha}) \subseteq M$; therefore, $\sum (I : J_{\alpha}) \subseteq M$ and, since M is v(I)-closed, also $\left(\sum_{\alpha} (I : J_{\alpha})\right)^{v(I)} \subseteq M$, a contradiction. Therefore, we must have $J_{\alpha} = I$ for some α , and I is strongly v(I)-irreducible.

As a consequence of the previous two lemmas, we have a very general result for local rings.

Proposition 4.5. Let (R, M) be a local domain and I a nondivisorial ideal of R such that (I : I) = R. If $M = M^{v(I)}$ (in particular, if M is divisorial), then v(I) = v(J) for some ideal J if and only if I = uJ for some $u \in K$.

Proof. By Lemma 4.4, *I* is strongly v(I)-irreducible; by Lemma 4.3 it follows that I = uJ.

Corollary 4.6. Let (R, M) be a local domain, and I and J two nondivisorial ideals of R. If R is completely integrally closed and M is divisorial, then v(I) = v(J) if and only if I = uJ for some $u \in K$.

Proof. Since *R* is completely integrally closed, (L : L) = R for all ideals *L*; furthermore, since *M* is divisorial $M^{v(L)} = M$ for every *L*. The claim follows from Proposition 4.5.

One problem of the previous results is the hypothesis (I : I) = R. In the following proposition we eliminate it at the price of forcing more properties on R.

Proposition 4.7. Let (R, M) be a local ring, and let T := (M : M). Let I, J be ideals of R, properly contained between R and T, such that v(I) = v(J).

- (a) If $(I : I), (J : J) \subseteq T$, then (I : I) = (J : J).
- (b) Suppose also that (I : I) =: A is local with divisorial maximal ideal, and that I and J are not divisorial over A. Then, there is a $u \in K$ such that I = uJ.

Proof. If *M* is principal, T = R and the statement is vacuous. Suppose thus *M* is not principal: then, we also have T = (R : M). We first claim that $L^v = T$ for every ideal *L* properly contained between *R* and *T*. Indeed, the containment $R \subsetneq L$ implies that $(R : L) \subsetneq R$ and thus, since *R* is local, $(R : L) \subseteq M$ and $L^v \supseteq T \supsetneq L$; hence, $L^v = T$.

(a) Let $T_1 := (I : I)$ and $T_2 := (J : J)$, and define \star_i as the star operation $L^{\star_i} := L^v \cap LT_i$. Since *T* contains T_1 and T_2 , it is both a T_1 - and a T_2 -ideal. We claim that $L \neq R$ is \star_i -closed if and only if it is a T_i -ideal: the "if" part is obvious, while if $L = L^v \cap LT_i$ then $L^v = T$ is a T_i -ideal and thus *L* is intersection of two T_i -ideals.

If v(I) = v(J), then *I* is *-closed if and only if *J* is *-closed; therefore, since *I* is *₁-closed and *J* is *₂-closed, both *I* and *J* are *T*₁- and *T*₂-ideals. But (*I* : *I*) (respectively, (*J* : *J*)) is the maximal overring of *R* in which *I* (respectively, *J*) is an ideal; thus (*I* : *I*) = (*J* : *J*).

(b) Consider the star operation generated by *I* on *A*, i.e., $v_A(I) : L \mapsto (A : (A : L)) \cap (I : (I : L))$ for every $L \in \mathcal{F}(A)$. By the first paragraph of the proof, applied on the *A*-ideals, we have (A : (A : L)) = T for all ideals *L* of *A* properly contained between *A* and *T*; in particular, this happens for *J* (since $R \subset J$ implies $A = AR \subseteq AJ = J$, and $A \neq J$ since *J* is not divisorial), and thus $J^{v_A(I)} = J^{v(I)} = J$. Symmetrically, $I^{v_A(J)} = I$; hence, $v_A(I) = v_A(J)$. By Proposition 4.5, applied to *A*, we have I = uJ for some $u \in K$, as claimed.

Recall that a *pseudo-valuation domain* (PVD) is a local domain (R, M) such that M is the maximal ideal of a valuation overring of R (called the valuation domain *associated* to R) [8].

Corollary 4.8. Let (R, M) be a pseudo-valuation domain with associated valuation ring V, and suppose that the field extension $R/M \subseteq V/M$ is algebraic. Let I, J be nondivisorial ideals of R. Then, v(I) = v(J) if and only if I = uJ for some $u \in K$.

Proof. By [12, Proposition 2.2(5)], there are $a, b \in K$ such that $a^{-1}I$ and $b^{-1}J$ are properly contained between R and V = (M : M). Furthermore, since $R/M \subseteq V/M$ is algebraic, every ring between R and V is the pullback of some intermediate field, and in particular it is itself a PVD with maximal ideal M. The claim follows from Proposition 4.7.

5 Localizations

Let \star be a star operation on R and T a flat overring of R. Then, \star is said to be *extendable* to T if the map

$$\star_T \colon \mathcal{F}(T) \longrightarrow \mathcal{F}(T)$$
$$IT \longmapsto I^*T$$

is well-defined; when this happens, \star_T is called the *extension* of \star to *T* and is a star operation on *T* [16, Definition 3.1]. In general, not all star operations are extendable, although finite-type operations are (see [10, Proposition 2.4] and [16, Proposition 3.3(d)]).

We would like to have an equality $v(I)_T = v(IT)$, where the latter is considered as a star operation on *T*. In general, this is false, both because v(I) may not be extendable and because the extension $v(I)_T$ may not be equal to v(IT).

For example, let *V* be a valuation domain and suppose that its maximal ideal *M* is principal. Let *P* be a prime ideal of *V*. Then, the only star operation on *V* is the identity, and thus v(I) = d for all ideals *I*; in particular, v(I) is extendable to V_P and the extension $v(I)_{V_P}$ is the identity on V_P . Suppose now that $P = PV_P$ is not principal as an ideal of V_P . Then, V_P has two star operations (the identity and the *v*-operation) and if $a \in K \setminus \{0\}$ then aV_P generates the *v*-operation. Hence, the extension of $v(aV) \in \text{Star}(V)$ to V_P is different from $v(aV_P) \in \text{Star}(V_P)$.

In the Noetherian case, however, everything works.

Proposition 5.1. If *R* is Noetherian, then $v(I)_T = v(IT)$ for every flat overring *T* of *R*.

Proof. By definition, $J^{v(I)} = (R : (R : J)) \cap (I : (I : J))$; multiplication by a flat overring commutes with finite intersections, and since every ideal is finitely generated, the colon localizes, and thus

D. Spirito

$$\begin{aligned} J^{v(I)}T &= (R:(R:J))T \cap (I:(I:J))T = \\ &= (T:(T:JT)) \cap (IT:(IT:JT)) = \\ &= (JT)^{v_T} \cap (IT:(IT:JT)) = (JT)^{v(IT)}, \end{aligned}$$

i.e., $v(I)_T = v(IT)$.

Another case where localization works well is for Jaffard families. If *R* is an integral domain with quotient field *K*, a *Jaffard family* of *R* is a set Θ of flat overrings of *R* such that [6, Section 6.3.1]:

- Θ is locally finite;
- $I = \prod \{ IT \cap R \mid T \in \Theta, IT \neq T \}$ for every integral ideal *I*;
- $(IT_1 \cap R) + (IT_2 \cap R) = R$ for every integral ideal *I* and every $T_1 \neq T_2$ in Θ .

Jaffard families can be used to factorize the set of star operations of a domain R into a direct product of sets of star operations.

Theorem 5.2. Let *R* be an integral domain and let Θ be a Jaffard family on *R*. Then, every star operation on *R* is extendable to every $T \in \Theta$, and the map

$$\lambda_{\Theta} \colon \operatorname{Star}(R) \longrightarrow \prod_{T \in \Theta} \operatorname{Star}(T)$$
$$\star \longmapsto (\star_T)_{T \in \Theta}$$

is an order-preserving order-isomorphism.

Proof. It is a part of [16, Theorem 5.4].

For principal star operations, the previous result must be modified using, instead of the direct product, a "direct sum"-like construction. Given a family Θ of overrings, we set

$$\bigoplus_{T \in \Theta} \operatorname{Princ}(T) := \left\{ (\star^{(T)}) \in \prod_{T \in \Theta} \operatorname{Princ}(T) \mid \star^{(T)} \neq v^{(T)} \text{ for only finitely many } T \right\}.$$

Using this terminology, we have the following.

Proposition 5.3. Let *R* be an integral domain and Θ be a Jaffard family on *R*. For every ideal *I* of *R* and every $T \in \Theta$, we have $v(I)_T = v(IT)$; furthermore, the map

$$\Upsilon: \operatorname{Princ}(R) \longrightarrow \bigoplus_{T \in \Theta} \operatorname{Princ}(T)$$
$$v(I) \longmapsto (v(IT))_{T \in \Theta}$$

is a well-defined order-isomorphism.

306

Proof. By Theorem 5.2 v(I) is extendable to any $T \in \Theta$; furthermore, by [16, Lemma 5.3], we have (J : L)T = (JT : LT) for every pair of fractional ideals J, L of R. Using the same calculation of Proposition 5.1 we get $v(I)_T = v(IT)$.

In particular, it follows that the map Υ is just the restriction of the localization map λ_{Θ} to Princ(*R*); since λ_{Θ} is an isomorphism (by Theorem 5.2), we have only to show that the image of Υ is the direct sum $\bigoplus_{T \in \Theta} \operatorname{Princ}(T)$.

Since IT = T for all but a finite number of T (by definition of a Jaffard family), we have $v(IT) = v(T) = v^{(T)}$ for all but a finite number of T. In particular, the image of Υ lies inside the direct sum.

Suppose, conversely, that $(v(J_T))_{T\in\Theta} \in \bigoplus_{T\in\Theta} \operatorname{Princ}(T)$. We can suppose that $J_T \subseteq T$ for every T, and that $J_T = T$ if $v(J_T) = v^{(T)}$. Define thus $I := \bigcap_{T\in\Theta} J_T$: then, I is nonzero (since $J_T \neq T$ for only a finite number of T) and $IT = J_T$ for every T [16, Lemma 5.2]. Therefore, $v(I)_T = v(IT) = v(J_T)$, and the image of Υ is exactly $\bigoplus_{T\in\Theta} \operatorname{Princ}(T)$.

Proposition 5.3 can be interpreted as a way to factorize principal star operations.

Corollary 5.4. Let *R* be an integral domain and Θ be a Jaffard family on *R*. Let *I* be an integral ideal of *R*. Then, there are $T_1, \ldots, T_n \in \Theta$ such that $v(I) = v(IT_1 \cap R) \land \cdots \land v(IT_n \cap R)$.

Proof. Since $I \subseteq R$, we have IT = T for all but finitely many $T \in \Theta$; let T_1, \ldots, T_n be the exceptions. The claim follows from Proposition 5.3.

Recall that an integral domain is said to be *h*-local if every ideal is contained in a finite number of maximal ideals and every prime ideal is contained in only one maximal ideal.

Corollary 5.5. Let R be an h-local Prüfer domain, and let \mathcal{M} be the set of nondivisorial maximal ideals of R. Then, there is a bijective correspondence between $\operatorname{Princ}(R)$ and the set $\mathcal{P}_{\operatorname{fin}}(\mathcal{M})$ of finite subsets of \mathcal{M} . Furthermore, \mathcal{M} is finite if and only if every star operation is principal.

Proof. Since *R* is *h*-local, $\{R_M \mid M \in Max(R)\}$ is a Jaffard family of *R*, and thus by Proposition 5.3 there is a bijective correspondence Υ between Princ(*R*) and $\bigoplus_{M \in Max(R)} Princ(R_M)$. If $M \notin \mathcal{M}$, then MR_M is principal and thus $Star(R_M) =$ $Princ(R_M) = \{d = v\}$; hence, Υ restricts to a bijection Υ' between Princ(R) and $\bigoplus_{M \in \mathcal{M}} Princ(R_M)$. Since R_M is a valuation domain, each $Princ(R_M)$ is composed by two elements (the identity and the *v*-operation). Thus, we can construct a bijection Υ_1 from the direct sum to $\mathcal{P}_{fin}(\mathcal{M})$ by associating to $\star := (\star^{(M)})$ the finite set $\Upsilon_1(\star) := \{M \in \mathcal{M} \mid \star^{(M)} \neq v\}$. The composition $\Upsilon_1 \circ \Upsilon'$ is a bijection from Princ(R) to $\mathcal{P}_{fin}(\mathcal{M})$.

The last claim follows immediately.

A factorization property similar to Corollary 5.4 can be proved for ideals having a primary decomposition with no embedded primes.

Proposition 5.6. Let Q_1, \ldots, Q_n be primary ideals, let $P_i := \operatorname{rad}(Q_i)$ for all i and let $I := Q_1 \cap \cdots \cap Q_n$. If the P_i are pairwise incomparable, then $v(I) = v(Q_1) \wedge \cdots \wedge v(Q_n)$.

Proof. For every *i*, the ideal Q_i is $v(Q_i)$ -closed, and thus *I* is $(v(Q_1) \land \cdots \land v(Q_n))$ -closed; hence, $v(I) \ge v(Q_1) \land \cdots \land v(Q_n)$. To prove the converse, we need to show that each Q_i is v(I)-closed.

Without loss of generality, let i = 1, and define $\widehat{Q} := Q_2 \cap \cdots \cap Q_n$; we claim that $Q_1 = (I :_R \widehat{Q})$. Since $Q_1 \widehat{Q} \subseteq Q_1 \cap \widehat{Q} = I$, clearly $Q_1 \subseteq (I :_R \widehat{Q})$. Conversely, let $x \in (I :_R \widehat{Q})$. Since the radicals of the Q_i are pairwise incomparable, $Q_i \nsubseteq P_1$ for every i > 1, and so $\widehat{Q} \nsubseteq P_1$; therefore, there is a $q \in \widehat{Q} \setminus P_1$. Then, $xq \in I$, and in particular $xq \in Q_1$. If $x \notin Q_1$, then since Q_1 is primary we would have $q^t \in Q_1$ for some $t \in \mathbb{N}$; however, this would imply $q \in \operatorname{rad}(Q_1) = P_1$, against the choice of q. Thus, $Q_1 \subseteq (I :_R \widehat{Q})$ and so $Q_1 = (I :_R \widehat{Q})$.

By definition, *I* is v(I)-closed; hence, also $(I :_R \widehat{Q})$ is v(I)-closed. It follows that Q_1 is v(I)-closed, and thus that each Q_i is v(I)-closed, i.e., $v(I) \le v(Q_1) \land \cdots \land v(Q_n)$. The claim is proved.

6 v-Trivial Ideals

In this section, we analyze principal operations generated by v-trivial ideals.

Definition 6.1. An ideal *I* of a domain *R* is *v*-trivial if $I^v = R$.

Lemma 6.2. If I is v-trivial, then (I : I) = R.

Proof. If $I^v = R$, then (R : I) = R, and thus $(I : I) \subseteq (R : I) = R$.

Definition 6.3. A star operation \star is *semifinite* (or *quasi-spectral*) if every \star -closed ideal $I \subseteq R$ is contained in a \star -prime ideal.

All finite type and all spectral operations are semifinite; on the other hand, if V is a valuation domain with maximal ideal that is branched but not finitely generated, the v-operation on V is not semifinite. The class of semifinite operations is closed by taking infima, but not by taking suprema (see [5, Example 4.5]).

Lemma 6.4. Let R be an integral domain, and let I, J be v-trivial ideals of R.

(a) If $J \subsetneq I$, then $J^{v(I)} = I$, and in particular $v(I) \neq v(J)$.

Suppose v is semifinite on R.

- (b) $I \cap J$ is v-trivial.
- (c) $I \subseteq J^{v(I)}$.
- (d) If $I \neq J$, then $v(I) \neq v(J)$.

Proof. (a) Since *I* is *v*-trivial, by Lemma 6.2 and Proposition 3.2 we have $J^{v(I)} = (I : (I : J))$.

However, $R \subseteq (I : J) \subseteq (R : J) = R$ (using the *v*-triviality of *J*) and thus $J^{v(I)} = (I : R) = I$, as claimed. In particular, $J = J^{v(J)} \neq J^{v(I)}$ and so $v(I) \neq v(J)$.

(b) If $(I \cap J)^v \neq R$, then by semifiniteness there is a prime ideal *P* such that $I \cap J \subseteq P = P^v$. However, this would imply $I \subseteq P$ or $J \subseteq P$, against the hypothesis that *I* and *J* are *v*-trivial.

(c) Since $J \subseteq J^{v(I)}$, it follows that $J^{v(I)}$ is *v*-trivial, and by the previous point so is $J^{v(I)} \cap I$. If $I \nsubseteq J^{v(I)}$, it would follow that $J^{v(I)} \cap I \subsetneq I$, but $J^{v(I)} \cap I$ is v(I)-closed, against (a). Hence $I \subseteq J^{v(I)}$.

(d) If both *I* and *J* are v(I)-closed, then so is $I \cap J$; by (b), $(I \cap J)^v = R$. The claim follows applying (a) to $I \cap J$ and *I* (or *J*).

Corollary 6.5. Let R be a domain such that v is semifinite. Let I, J be ideals of R such that I^v and J^v are invertible; then, v(I) = v(J) if and only if I = LJ for some invertible ideal L.

Proof. By invertibility, we have

$$R = I^{v}(R : I^{v}) = (I^{v}(R : I^{v}))^{v} = (I(R : I^{v}))^{v};$$

since $I \subseteq I(R : I^v) \subseteq R$, the ideal $I(R : I^v)$ is *v*-trivial. Analogously, $R = (J(R : J^v))^v$ and $J(R : J^v)$ is *v*-trivial. Hence, by Lemma 6.4(d) $I(R : I^v) = J(R : J^v)$; thus, $I = I^v(R : J^v)J$, and $L := I^v(R : J^v)$ is invertible.

We denote by h(I) the height of the integral ideal I.

Corollary 6.6. Let R be a unique factorization domain. Then,

- (a) for every principal star operation $\star \neq v$ there is a proper ideal I such that h(I) > 1 and $\star = v(I)$;
- (b) if I, J are fractional ideals of R, v(I) = v(J) if and only if I = uJ for some $u \in K$.

Proof. Let $\star = v(I)$ for some ideal *I*. By [7, Corollary 44.5], every *v*-closed ideal of *R* is principal; hence, let $I^v = pR$. Then, $(p^{-1}I)^v = R$, i.e., $p^{-1}I$ is *v*-trivial. In particular, $\star = v(I) = v(p^{-1}I)$, and $p^{-1}I$ is a proper ideal of *R* with $h(p^{-1}I) > 1$ (since all prime ideals of height 1 are *v*-closed).

Suppose that we also have $\star = v(J)$. With the same reasoning of the previous paragraph, $q^{-1}J$ is v-trivial for some q; thus $v(p^{-1}I) = v(I) = v(J) = v(q^{-1}J)$. Applying Lemma 6.4 (d) to $p^{-1}I$ and $q^{-1}J$ we get $p^{-1}I = q^{-1}J$, i.e., $I = (pq^{-1})J$. For star operations generated by v-trivial prime ideals, we can also determine the set of closed ideals.

Proposition 6.7. Let *R* be a domain such that *v* is semifinite and such that I^{v} is invertible for every ideal *I*, and let $P \in \text{Spec}(R)$. Then $\mathcal{F}^{v(P)}(R) = \mathcal{F}^{v}(R) \cup \{LP \mid L \text{ is an invertible ideal}\}$. In particular, v(P) is a maximal element of $\text{Princ}(R) \setminus \{v\}$.

Proof. Let *I* be a nondivisorial ideal; multiplying by an invertible ideal *L*, we can suppose $I^v = R$. If $I \subseteq P$, by Lemma 6.4 (a) $I^{v(P)} = P$, and thus $I \neq I^{v(P)}$ unless I = P; suppose $I \nsubseteq P$. Then (P : I) = P: we have $(P : I) \subseteq (R : I) = R$, and thus if $xI \subseteq P$ then $x \in P$. Therefore, $I^{v(P)} = I^v \cap (P : (P : I)) = R \cap (P : P) = R \neq I$.

For the "in particular" claim, note that if $v(I) \ge v(P)$ then *I* should be \star -closed; by the previous part of the proof, this means that either *I* is divisorial (and so v(I) = v) or I = LP for some invertible *L* (and thus v(I) = v(P) by Lemma 3.4(d)).

Corollary 6.8. Let *R* be a unique factorization domain, and let $P \in \text{Spec}(R)$. Then, $\mathcal{F}^{v(P)}(R) = \mathcal{F}^{v}(R) \cup \{aP \mid a \in K\}.$

We have seen in Proposition 3.3 that all star operations can be "generated" by principal star operations; we can use v-trivial ideals to show that in many cases we need infinitely many of them.

Proposition 6.9. Let R be a domain such that v is semifinite, and let I_1, \ldots, I_n be v-trivial ideals; let $\star := v(I_1) \land \cdots \land v(I_n)$. Then, the ideal $I_1 \cap \cdots \cap I_n$ is the minimal v-trivial ideal that is \star -closed.

Proof. Let $J := I_1 \cap \cdots \cap I_n$. By Lemma 6.4 (b), J is v-trivial. Clearly J is \star -closed. Suppose L is v-trivial; then, applying Lemma 6.4(c),

$$L^{\star} = L^{v(I_1) \wedge \dots \wedge v(I_n)} \supseteq I_1 \cap \dots \cap I_n = J.$$

Therefore, J is the minimum among v-trivial \star -closed ideals.

Corollary 6.10. Let *R* be a unique factorization domain, and let $\star \in \text{Star}(R)$ be such that $\star \neq v$. If $\bigcap \{J \in \mathcal{F}^{\star}(R) \mid J^{v} = R\} = (0)$, then \star is not the infimum of a finite family of principal star operations.

Proof. Since *R* is a UFD, the *v*-operation is semifinite, and every principal star operation can be generated by a *v*-trivial ideal. If \star were to be finitely generated, say $\star = v(I_1) \land \cdots \land v(I_n)$, then $J := I_1 \cap \cdots \cap I_n$ would be the minimal *v*-trivial \star -closed ideal; however, by hypothesis, there must be a *v*-trivial \star -closed ideal J' not containing J, and thus \star cannot be finitely generated.

Proposition 6.11. Let R be a domain, and let Δ be a set of overrings whose intersection is R. Let \star be the star operation $I \mapsto \bigcap \{IT \mid T \in \Delta\}$. Suppose that

- (1) v is semifinite;
- (2) every v-trivial ideal contains a finitely generated v-trivial ideal;
- (3) there is a v-trivial \star -closed ideal.

Then, \star is not the infimum of a finite family of principal star operations.

Proof. By substituting an overring $T \in \Delta$ with $\{T_M \mid M \in Max(T)\}$, we can suppose without loss of generality that each member of Δ is local.

If \star were finitely generated, by Proposition 6.9 there would be a minimal *v*-trivial \star -closed ideal, say *J*. By hypothesis, there is finitely generated *v*-trivial ideal $I \subseteq J$; since $I^{\star} = J$, by [1, Theorem 2], we have IT = JT for every $T \in \Delta$.

Since $I^* \neq R$, there must be an $S \in \Delta$ such that $IS \neq S$; by Nakayama's lemma, $I^2S = (IS)^2 \subsetneq IS$, and so $(I^2)^* \subseteq I^2S \cap R \subsetneq I$. In particular, $(I^2)^*$ is a *v*-trivial *-closed ideal, against the definition of *I*. Thus, * is not finitely generated.

The first two hypothesis hold, for example, for unique factorization domains of dimension d > 1; the third one holds, for example, in the following cases:

- * is a spectral star operation of finite type different from the *w*-operation (see [2, 17]);
- if *R* is integrally closed and (at least) one maximal ideal is not divisorial, and \star is the *b*-operation/integral closure;
- if *R* is a UFD, all star operations coming from overrings, except the *v*-operation.

7 Noetherian Domains

In this section, we study in more detail the case of Noetherian domains; in particular, we shall give in Theorem 7.8 a necessary and sufficient condition on when v(I) = v(J), under the assumption that (I : I) = R = (J : J). We first state a case that is already settled, even without this hypothesis.

Proposition 7.1. [14, Proposition 5.4] Let (R, M) be a local Noetherian integral domain of dimension 1 such that its integral closure V is a discrete valuation domain that is finite over R; suppose also that the induced map of residue fields $R/M \subseteq V/M_V$ is an isomorphism. Then, v(I) = v(J) if and only if I = uJ for some $u \in K$, $u \neq 0$.

We denote by Ass(I) the set of associated primes of I.

Proposition 7.2. Let *R* be a domain and *I* an ideal of *R*. Then, $\text{Spec}^{v(I)}(R) \supseteq$ $\text{Spec}^{v}(R) \cup \text{Ass}(I)$, and if *R* is Noetherian the two sets are equal. *Proof.* If $P \in Ass(I)$, then $P = (I :_R x) = x^{-1}I \cap R$ for some $x \in R$, and thus it is v(I)-closed; if $P \in Spec^{v}(R)$ then $P = P^{v}$ and thus $P = P^{v(I)}$.

Conversely, suppose *R* is Noetherian and $P = P^{v(I)}$. Then $P = P^v \cap (I : (I : P)) = P^v \cap (I : J)$, where J = (I : P); let $J = j_1 R + \dots + j_n R$. We have

$$P = P^{v} \cap (I : J) = P^{v} \cap R \cap (I : J) = P^{v} \cap (I :_{R} J) = P^{v} \cap (I :_{R} j_{1}R + \dots + j_{n}R) = P^{v} \cap \bigcap_{i=1}^{n} (I :_{R} j_{i}R)$$

and, since *P* is prime, this implies that $P^{v} = P$ or $(I :_{R} j_{i}R) = P$ for some *i*. In the latter case, since $j_{i} \in K$, $j_{i} = a/b$ for some $a, b \in R$; hence $(I :_{R} j_{i}R) = (I : ab^{-1}R) \cap R = (bI :_{R} aR)$, and thus *P* is associated to *bI*. There is an exact sequence

$$0 \longrightarrow \frac{bR}{bI} \longrightarrow \frac{R}{bI} \longrightarrow \frac{R}{bR} \longrightarrow 0$$

and, since *R* is a domain, $bR/bI \simeq R/I$ and thus $Ass(bI) \subseteq Ass(I) \cup Ass(bR)$ [3, Chapter IV, Proposition 3]; therefore, *P* is associated to *I* or it is divisorial (since an associated prime of a divisorial ideal—in this case, bR—is divisorial).

Remark 7.3. Note that, if $P^{\nu} = R$, then $(I : P) \subseteq (R : P) = R$, and thus $j_i \in R$; in this case, b = 1 and the last part of the proof can be greatly simplified.

The following is a slight improvement of Proposition 6.7. We denote by $X^{1}(R)$ the set of height-1 prime ideals of *R*.

Corollary 7.4. Let *R* be an integrally closed Noetherian domain. Then, the maximal elements of Princ(*R*) \setminus {*v*} are the *v*(*P*), as *P* ranges in Spec(*R*) \setminus *X*¹(*R*).

Proof. Since *R* is integrally closed, the divisorial prime ideals of *R* are the height 1 primes. In particular, if *P* is a prime ideal of height > 1, then v(P) is maximal by Proposition 6.7.

Conversely, suppose v(I) is maximal in $Princ(R) \setminus \{v\}$. If all associated primes of *I* have height 1, then $I = \bigcap_{P \in X^1(R)} IR_P$, and so *I* is divisorial, against $v(I) \neq v$. Hence, there is a $P \in Ass(I) \setminus X^1(R)$; by Proposition 7.2, $P \in Spec^{v(I)}(R)$, and thus $v(I) \leq v(P)$. As v(I) is maximal, it follows that v(I) = v(P). The claim is proved.

Corollary 7.5. Let *R* be a Noetherian unique factorization domain. Then, v(I) is a maximal element of $Princ(R) \setminus \{v\}$ if and only if I = uP for some prime ideal $P \in Spec(R) \setminus X^1(R)$ and some $u \in K$.

Proof. It is enough to join Corollary 7.4 (the maximal elements are the v(P)) with Corollary 6.6 (v(I) = v(P) if and only if I = uP).

Proposition 7.2 allows to determine, in the Noetherian case, all the spectra of the principal star operations. We need a lemma.

Lemma 7.6. Let $\star_1, \ldots, \star_n \in \text{Star}(R)$, and let $\star := \star_1 \land \cdots \land \star_n$. Then, $\text{Spec}^*(R) = \bigcup_i \text{Spec}^{\star_i}(R)$.

Proof. If $P = P^{\star_i}$ for some *i* then $P^{\star} \subseteq P^{\star_i} = P$ and thus $P = P^{\star}$. Conversely, if $P = P^{\star}$ then $P = P^{\star_1} \cap \cdots \cap P^{\star_n}$; since *P* is prime, it follows that $P = P^{\star_i}$ for some *i*. The claim is proved.

Proposition 7.7. *Let R* be a Noetherian domain, and let $\Delta \subseteq \text{Spec}(R)$ *. Then, the following are equivalent:*

- (i) $\Delta = \operatorname{Spec}^{v(I)}(R)$ for some ideal I;
- (*ii*) $\Delta = \operatorname{Spec}^{\star}(R)$ for some $\star = v(I_1) \wedge \cdots \wedge v(I_n)$;
- (iii) $\Delta = \operatorname{Spec}^{v}(R) \cup \Delta'$, for some finite set Δ' .

Proof. (i) \implies (ii) is obvious, while (ii) \implies (iii) follows from Lemma 7.6.

If (iii) holds, then by [18, Chapter 4, Theorem 21] there is an ideal *I* whose set of associated primes is Δ' . By Proposition 7.2, $\operatorname{Spec}^{v(I)}(R) = \operatorname{Spec}^{v}(R) \cup \Delta' = \Delta$, and so (i) holds.

We now characterize when two nondivisorial ideals with (I : I) = (J : J) = R generate the same star operation.

Theorem 7.8. Let R be a Noetherian domain, and let I, J be nondivisorial ideals such that (I : I) = (J : J) = R. Then, v(I) = v(J) if and only if $Ass(I) \cup Spec^{v}(R) = Ass(J) \cup Spec^{v}(R)$ and, for every $P \in Ass(I) \cup Spec^{v}(R)$, there is an $a_{P} \in K$ such that $IR_{P} = a_{P}JR_{P}$.

Proof. Suppose the two conditions hold. By Proposition 7.2, $Ass(I) \cup Spec^{v}(R) = Spec^{v(I)}(R)$, and thus $Spec^{v(I)}(R) = Spec^{v(J)}(R) =: \Delta$. For every ideal *L*, using Proposition 5.1 we have

$$L^{v(I)} = \bigcap_{P \in \Delta} L^{v(I)} R_P = \bigcap_{P \in \Delta} (LR_P)^{v(I)_{R_P}} = \bigcap_{P \in \Delta} (LR_P)^{v(IR_P)}.$$

Since IR_P and JR_P are isomorphic, $(LR_P)^{v(IR_P)} = (LR_P)^{v(JR_P)}$; it follows that v(I) = v(J).

Conversely, suppose $v(I) = v(J) =: \star$. Then, Spec^{*}(*R*) is equal to both Ass $(I) \cup$ Spec^{*v*}(*R*) and Ass $(J) \cup$ Spec^{*v*}(*R*), which thus are equal. Note also that (I : I) = R implies that $R_P = (I : I)R_P = (IR_P : IR_P)$ for every prime ideal *P*.

Let now $P \in \text{Spec}^{\star}(R)$. Since v(I) = v(J), clearly $v(I)_{R_P} = v(J)_{R_P}$, which by Proposition 5.1 implies that $v(IR_P) = v(JR_P)$. However, PR_P is $v(IR_P)$ -closed because P is v(I)-closed; it follows, by Proposition 4.5, that $IR_P = a_P JR_P$ for some $a_P \in K$, as claimed.

Corollary 7.9. Let R be an integrally closed Noetherian domain, and let I, J be nondivisorial ideals. Then, v(I) = v(J) if and only if $Ass(I) \cup X^1(R) = Ass(J) \cup X^1(R)$ and for every $P \in Ass(I)$ there is an $a_P \in R_P$ such that $IR_P = a_P JR_P$.

Proof. Since *R* is integrally closed and Noetherian, we have (I : I) = R for every ideal *I*; furthermore, the divisorial primes are the height 1 primes, and for any such *P* the localizations IR_P and JR_P are isomorphic since R_P is a DVR. The claim now follows from Theorem 7.8.

Example 7.10. Let *R* be a Noetherian integrally closed domain, and suppose that R_M is not a UFD for some maximal ideal *M*. Let *P* be an height 1 prime contained in *M* such that PR_M is not principal, and let *Q* be a prime ideal of height bigger than 1 such that P + Q = R (in particular, $Q \nsubseteq M$). We claim that v(PQ) = v(Q) but PQ and Q are not locally isomorphic.

In fact, since they are coprime, $PQ = P \cap Q$, and thus $Ass(PQ) = \{P, Q\}$ while $Ass(Q) = \{Q\}$; moreover, $P \nsubseteq Q$ and thus $PQR_Q = QPR_Q = QR_Q$. Since $P \in X^1(R)$, by Corollary 7.9 it follows that v(PQ) = v(Q). However, $QR_M = R_M$ is principal, while $PQR_M = PR_M$, by hypothesis, is not; therefore, Q and PQ are not locally isomorphic. In particular, there cannot be an invertible ideal L such that Q = LPQ, because LR_M would be principal and thus Q and PQ would be locally isomorphic.

References

- 1. Anderson, D.D.: Star-operations induced by overrings. Comm. Algebra 16(12), 2535–2553 (1988)
- Anderson, D.D., Cook, S.J.: Two star-operations and their induced lattices. Comm. Algebra 28(5), 2461–2475 (2000)
- 3. Bourbaki, N.: Commutative Algebra. Chapters 1–7. Elements of Mathematics (Berlin). Springer, Berlin, 1989. Translated from the French, Reprint of the 1972 edition
- 4. Elliott, J.: Semistar operations on Dedekind domains. Comm. Algebra 43(1), 236-248 (2015)
- Finocchiaro, C.A., Fontana, M., Spirito, D.: Spectral spaces of semistar operations. J. Pure Appl. Algebra 220(8), 2897–2913 (2016)
- Fontana, M., Houston, E., Lucas, T.: Factoring Ideals in Integral Domains. Lecture Notes of the Unione Matematica Italiana, vol. 14. Springer, Heidelberg; UMI, Bologna (2013)
- 7. Gilmer, R.: Multiplicative Ideal Theory. Marcel Dekker Inc., New York, 1972. Pure and Applied Mathematics, No. 12
- Hedstrom, J.R., Houston, E.G.: Pseudo-valuation domains. Pacific J. Math. 75(1), 137–147 (1978)
- Heinzer, W.J., Huckaba, J.A., Papick, I.J.: *m*-canonical ideals in integral domains. Comm. Algebra 26(9), 3021–3043 (1998)
- Houston, E.G., Mimouni, A., Park, M.H.: Integral domains which admit at most two star operations. Comm. Algebra 39(5), 1907–1921 (2011)
- Houston, E.G., Mimouni, A., Park, M.H.: Noetherian domains which admit only finitely many star operations. J. Algebra 366, 78–93 (2012)
- Houston, E.G., Mimouni, A., Park, M.H.: Integrally closed domains with only finitely many star operations. Comm. Algebra 42(12), 5264–5286 (2014)
- Picozza, G.: Star operations on overrings and semistar operations. Comm. Algebra 33(6), 2051–2073 (2005)
- Spirito, D.: Star Operations on Numerical Semigroups. Comm. Algebra 43(7), 2943–2963 (2015)

- 15. Spirito, D.: Star operations on numerical semigroups: the multiplicity 3 case. Semigroup Forum **91**(2), 476–494 (2015)
- Spirito, D.: Jaffard families and localizations of star operations. J. Commut. Algebra 11(2), 265–300 (2019)
- 17. Wang, F., McCasland, R.L.: On *w*-modules over strong Mori domains. Comm. Algebra **25**(4), 1285–1306 (1997)
- Zariski, O., Samuel, P.: Commutative algebra. Vol. 1. Springer, New York, Heidelberg, Berlin, 1975. With the cooperation of I. S. Cohen, Corrected reprinting of the: edition, p. 28. Graduate Texts in Mathematics, No (1958)