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1 Introduction

Throughout the paper, R will denote an integral domain with quotient field K and
F(R) will be the set of fractional ideals of R, that is, the set of R-submodules I of
K such that xI € R for some x € K \ {0}.

A star operation on R is a map % : F(R) —> F(R) such that, for every I, J €
F(R) and every x € K:

o [ C I

e if ] C J,then [* C J*;
o (I") =17

o (xI)*=x-1%

e R* =R.

The usual examples of star operations are the identity (usually denoted by d),
the v-operation (or divisorial closure) J +— J' := (R : (R :J)), the t- and the
w-operation (which are defined from v) and the star operations I +— (5 I T,
where A is a set of overrings of R intersecting to R. While these examples are the
easiest to work with, they usually cover only a rather small part of the set of star
operations.
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A much more general construction is given in [9, Proposition 3.2]:if (I : I) = R,
then the map J +— (I : (I : J)) is a star operation. This construction is much more
flexible than the more “classical” ones, and allows to construct a much higher number
of star operations (see, e.g., [ 10, Proposition 2.1(1)] or [11, Theorem 2.1] for its use
to construct an infinite family of star operations, or [14, 15] for constructions in the
case of numerical semigroups). In this paper, we slightly generalize this construction
(removing the condition (1 : I) = R), associating to eachideal I a star operation v (/)
(which we call the star operation generated by I); we study under which conditions
twoideals / and J generate the same star operation and, in particular, we are interested
in understanding when this happens only for isomorphic ideals.

The structure of the paper is as follows: in Section 3 we give some general proper-
ties of principal star operations; in Section4, we generalize some results of [9] from
m-canonical ideals to general ideals; in Section 5 we study the effect of localizations
on principal star operations; in Section6 we study operations generated by ideals
whose v-closure is R (and, in particular, what happens when R is a unique factoriza-
tion domain); in Section7 we study the Noetherian case, reaching a necessary and
sufficient condition for v(/) = v(J) under the assumption (I : I) = (J : J) = R.

2 Background

By an ideal of R we shall always mean a fractional ideal of R, reserving the term
integral ideal for those contained in R.

Let x be a star operation on R. An ideal / of R is x-closed if I = I*; the set
of x-closed ideals is denoted by F*(R). When » = v is the divisorial closure, the
elements of FV(R) are called divisorial ideals.

Let Star(R) be the set of star operations on R. Then, Star(R) has a natural order
structure, where *; < %, if and only if I*' C I** forevery I € F(R), or equivalently
if 7*1(R) 2 F**(R). Under this order, Star(R) is a complete lattice whose minimum
is the identity and whose maximum is the v-operation.

A star operation is said to be of finite type if it is determined by its action on
finitely generated ideals, or equivalently if

I" = U{J * | J C I is finitely generated}

for every I € F(R). A star operation is spectral if there is a subset A C Spec(D)
such that

I*:ﬂ{IRP | P e A}

for every I € F(R).

If » is a star operation of R, a prime ideal P is a x-prime if it is x-closed; the
set of the x-primes, denoted by Spec*(R), is called the x-spectrum. A x-maximal
ideal of R is an ideal maximal among the set of proper ideals of R that are x-closed;
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their set is denoted by Max*(R). Any x-maximal ideal is prime; however, x-maximal
ideals need not exist. If « is a star operation of finite type, then every x-closed proper
integral ideal is contained in some x-maximal ideal; furthermore, for every x-closed
ideal I we have I = [\{IRp | P € Spec*(R)}.

3 Principal Star Operations

Definition 3.1. Let R be an integral domain. For every I € F(R), the star operation
generated by I, denoted by v(7), is the supremum of all the star operations x on R
such that 7 is x-closed. If x = v(7) for some ideal I, we say that « is a principal star
operation. We denote by Princ(R) the set of principal star operations of R.

We can give a more explicit representation of v (7).

Proposition 3.2. For every fractional ideal J, we have

J'D =g NI :I:0)=J"N ﬂ a”ll. (1)
ae(l:J)\{0}

Furthermore, if (I : I) = R then J' = (I : (I : J)).

Proof. The fact that the two maps J+— J°N{U:(:J)) and J— J"N
MNaea: IO} a~'I give star operations and coincide follows in the same way as [9,
Lemma 3.1 and Proposition 3.2]. The second representation clearly implies that they
close I; furthermore, if I is closed then JV and each a~'I are closed, and thus the
two representations of (1) give exactly v(7).

The “furthermore” statement follows again from [9, Lemma 3.1 and Proposi-
tion 3.2]. O

In the paper [9] that introduced the map J +— ( : ({ : J)) when ({ : I) = R, an
ideal I was said to be m-canonical if J = (I : (I : J)) for every ideal J. This is
equivalent to saying that (/ : /) = R and that v([/) is the identity.

The definition of v(/) can be extended to semistar operations, as in [13, Example
1.8(2)]; such construction was called the divisorial closure with respect to I in [4].
The terminology “generated” is justified by the following Proposition 3.3.

Proposition 3.3. Let x be a star operation on R. Then, x = inf{v(I) | I € F*(R)}.

Proof. Lett :=inf{v([) | I € F*(R)}.Bydefinition,x < v(I)foreveryl € F*(R),
and thus * < g. Conversely, let J be a x-ideal; then, §f < v(J) and thus J is g-closed.
It follows that » > f, and thus » = f. O

Our main interest in this paper is to understand when two ideals generate the same
star operation. The first cases are quite easy.
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Lemma 3.4. Let I be a fractional ideal of R. Then, the following hold.

(a) v(I) = v ifand only if I is divisorial.

(b) If (I : I) = R, then v(I) = d if and only if I is m-canonical.
(c) Foreverya € K, a # 0, we have v(I) = v(al).

(d) If L is an invertible ideal of R, then v(I) = v(IL).

Proof. The only non-trivial part is the last point. If L is invertible, then
IU(IL)L C (IU(IL)L)U(IL) — (IL)U(IL) = JL

and thus 7YY C IL(R: L) =1, i.e., I is v(IL)-closed; it follows that v(I) >
v(IL). Symmetrically, we have v(/L) > v(IL(R : L)) = v(I), and thus v(]) =
v(IL). [l

We note that if J = IL for some invertible ideal L, then / and J are locally
isomorphic. However, the latter condition is neither necessary nor sufficient for / and
J to generate the same star operation, even excluding divisorial ideals. For example,
if R is an almost Dedekind domain that is not Dedekind, then all ideals are locally
isomorphic but not all are divisorial, and two nondivisorial maximal ideals generate
different star operations (if M # N are two such ideals, then (M : N) = M and
so N'™M) = NV N (M : (M : N)) = R). For an example of non-locally isomorphic
ideals generating the same star operation see Example 7.10.

The following necessary condition has been proved in [14, Lemma 3.7] when [/
and J are fractional ideals of a numerical semigroup; the proof of the integral domain
case (which was also stated later in the same paper) can be obtained in exactly the
same way.

Proposition 3.5. Let R be an integral domain and I, J be nondivisorial ideals of
R. If v(I) = v(J) then

I=1"N ﬂ (v'D).

~e(I:))(J:D\(0}

4 Local Rings

As the construction of the principal star operation v(/) generalizes the definition of
m-canonical ideal, we expect that / is in some way “m-canonical for v(/)”. Pursuing
this strategy, we obtain the following generalization of [9, Lemma 2.2(e)].

Lemma 4.1. Let [ be anideal of a domain R suchthat (I : I) = R. Let{J, | a € A}
be v(I)-ideals such that ()., Jo 7 (0). Then,

v(l)
(1 : ﬂ J(,) = (Z(z : J(,)> )
a€cA a€cA
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Proof. LetJ := >, ,(I : J,).Since (I : I) = R, wehave L") = (I : (I : L)) for
every ideal L; therefore,

(I:J):(I:Z(I:Ja)):ﬂ(]:(I:Ja)):ﬂJ(ﬁ(”:ﬂJa

acA acA acA aeA

and thus

acA

J”(”:(l:(I:J))=<I:ﬂJa>,

as claimed. O

The following definition abstracts a property proved, for m-canonical ideals of
local domains, in [9, Lemma 4.1].

Definition 4.2. Let » be a star operation on R. We say that an ideal / of R is strongly
*-irreducible if [ = I* #(\{J € F*(R) | 1 € J}.

Lemma 4.3. Let R be a domain and I be a nondivisorial ideal of R. If I is strongly
v(I)-irreducible and v(I) = v(J), then I = uJ for some u € K.

Proof. Suppose v(I) = v(J). Then

I=1"Y=1"N ﬂ a 'J.
ae(J:N\{0}

Both IV and each a~'J are v(I)-ideals; hence, either I = IV (which is impossible
since [ is not divisorial) or I = o~ 'J for some o € K. O

Lemma 4.4. Suppose (R, M) is a local ring and R = (I : I). If M is v(I)-closed,
then I is strongly v(I)-irreducible.

Proof. Let {J,,} be a family of v([)-ideals such that I = () J,,. Then,

v(l)
R:(I:I):(I:ﬂj,l):(Z(l:]@)

by Lemma 4.1.

Hence (I : J,) € R for every «; suppose I C J, for all . Then, 1 ¢ (I : J,)
and thus (I : J,) € M; therefore, Y (I : J,) € M and, since M is v(I)-closed, also
(Za(l : Ja))u(” C M, a contradiction. Therefore, we must have J, = I for some
a, and [ is strongly v([/)-irreducible. ]

As a consequence of the previous two lemmas, we have a very general result for
local rings.
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Proposition 4.5. Let (R, M) be alocal domain and I a nondivisorial ideal of R such
that (I : I) = R. If M = M"Y (in particular, if M is divisorial), then v(I) = v(J)
for some ideal J if and only if | = uJ for some u € K.

Proof. By Lemma 4.4, I is strongly v([)-irreducible; by Lemma 4.3 it follows that
I=ulJ. O

Corollary 4.6. Let (R, M) be a local domain, and I and J two nondivisorial ideals
of R. If R is completely integrally closed and M is divisorial, then v(I) = v(J) if
and only if I = uJ for some u € K.

Proof. Since R is completely integrally closed, (L : L) = R for all ideals L; fur-
thermore, since M is divisorial M*®) = M for every L. The claim follows from
Proposition 4.5. (]

One problem of the previous results is the hypothesis (/ : 1) = R.In the following
proposition we eliminate it at the price of forcing more properties on R.

Proposition 4.7. Let (R, M) be a local ring, and let T := (M : M). Let 1, J be
ideals of R, properly contained between R and T, such that v(I) = v(J).

(a) If(I:1),(J:J)CS T, then(I:1)=(J:J).
(b) Suppose also that (I : I) =: A is local with divisorial maximal ideal, and that
I and J are not divisorial over A. Then, thereis au € K such that [ = uJ.

Proof. If M is principal, T = R and the statement is vacuous. Suppose thus M is
not principal: then, we also have T = (R : M). We first claim that LY = T for every
ideal L properly contained between R and 7. Indeed, the containment R C L implies
that (R : L) € R and thus, since R is local, (R : L) € M and L*" © T 2 L; hence,
L' =T.

(@LetT):=(:1)and T; := (J : J), and define %; as the star operation L* :=
LY N LT;. Since T contains T} and 7>, it is both a T}- and a T>-ideal. We claim that
L # R is x;-closed if and only if it is a T;-ideal: the “if” part is obvious, while if
L =L"NLT; then L’ = T is a T;-ideal and thus L is intersection of two T;-ideals.

If v(1) = v(J), then I is x-closed if and only if J is x-closed; therefore, since
I is x1-closed and J is xp-closed, both I and J are T)- and T,-ideals. But (I : I)
(respectively, (J : J)) is the maximal overring of R in which I (respectively, J) is
anideal; thus (7 : I) = (J : J).

(b) Consider the star operation generated by 7 on A, i.e., va(l) : L+ (A:(A:
L)Y)YN({ :(:L))forevery L € F(A). By the first paragraph of the proof, applied
on the A-ideals, we have (A : (A : L)) = T for all ideals L of A properly contained
between A and T'; in particular, this happens for J (since R C J implies A = AR C
AJ =J,and A # J since J is not divisorial), and thus J*() = J*() = J. Sym-
metrically, 7"4¢/) = I; hence, v4(I) = v4(J). By Proposition 4.5, applied to A, we
have I = uJ for some u € K, as claimed. [l

Recall that a pseudo-valuation domain (PVD) is a local domain (R, M) such that
M is the maximal ideal of a valuation overring of R (called the valuation domain
associated to R) [8].



When Two Principal Star Operations Are the Same 305

Corollary 4.8. Let (R, M) be a pseudo-valuation domain with associated valuation
ring V, and suppose that the field extension R/M < V /M is algebraic. Let I, J be
nondivisorial ideals of R. Then, v(I) = v(J) if and only if I = uJ for some u € K.

Proof. By [12, Proposition 2.2(5)], there are a, b € K such that a~'J and b~'J are
properly contained between R and V = (M : M). Furthermore, since R/M C V/M
is algebraic, every ring between R and V is the pullback of some intermediate field,
and in particular it is itself a PVD with maximal ideal M. The claim follows from
Proposition 4.7. 0

5 Localizations

Let x be a star operation on R and 7 a flat overring of R. Then, x is said to be
extendable to T if the map

*x7: F(T) — F(T)
IT — I'T

is well-defined; when this happens, x7 is called the extension of x to T and is a star
operation on T [16, Definition 3.1]. In general, not all star operations are extendable,
although finite-type operations are (see [10, Proposition 2.4] and [16, Proposition
3.3(d)D.

We would like to have an equality v(/)r = v(IT), where the latter is considered
as a star operation on 7. In general, this is false, both because v(/) may not be
extendable and because the extension v(/)7 may not be equal to v(/T).

For example, let V be a valuation domain and suppose that its maximal ideal
M is principal. Let P be a prime ideal of V. Then, the only star operation on V is
the identity, and thus v(I) = d for all ideals I; in particular, v(I) is extendable to
Vp and the extension v([)y, is the identity on Vp. Suppose now that P = PVp is
not principal as an ideal of Vp. Then, Vp has two star operations (the identity and
the v-operation) and if a € K \ {0} then aVp generates the v-operation. Hence, the
extension of v(aV) € Star(V) to Vp is different from v(aVp) € Star(Vp).

In the Noetherian case, however, everything works.

Proposition 5.1. If R is Noetherian, then v(I)r = v(IT) for every flat overring T
of R.

Proof. By definition, J*) = (R : (R : J))N (I : (I : J)); multiplication by a flat
overring commutes with finite intersections, and since every ideal is finitely gener-
ated, the colon localizes, and thus
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J'DT =(R:(R:INTNU:U:))T =
=(T:(T:JT)NUT:UT :JT)) =
=D NUT : T :JT)) = JT)'UD,

ie.,v()r =vUT). O

Another case where localization works well is for Jaffard families. If R is an
integral domain with quotient field K, a Jaffard family of R is a set ® of flat overrings
of R such that [6, Section 6.3.1]:

e O is locally finite;
o [ =[[ITNR|T €®,IT # T} for every integral ideal I;
e (IT'NR)+ (IT, N R) = R for every integral ideal I and every 71 # T in ©.

Jaffard families can be used to factorize the set of star operations of a domain R
into a direct product of sets of star operations.

Theorem 5.2. Let R be an integral domain and let © be a Jaffard family on R. Then,

every star operation on R is extendable to every T € ®, and the map

Ao: Star(R) —> ]_[ Star(T)

Te®

* —> (*7)7c0
is an order-preserving order-isomorphism.
Proof. Ttis a part of [16, Theorem 5.4]. (I

For principal star operations, the previous result must be modified using, instead
of the direct product, a “direct sum”-like construction. Given a family ® of overrings,
we set

@ Princ(T) := { (»") e l_[ Princ(T) | 7 £ v for only finitely many T} .
Te® Te®
Using this terminology, we have the following.

Proposition 5.3. Let R be an integral domain and © be a Jaffard family on R. For
everyideal I of R and every T € ®, we have v(I)r = v(IT); furthermore, the map

Y : Princ(R) — @Princ(T)
Te®
v(l) —> (v(UT))reo

is a well-defined order-isomorphism.
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Proof. By Theorem 5.2 v([l) is extendable to any T € ®; furthermore, by [16,
Lemma 5.3], we have (J : L)T = (JT : LT) for every pair of fractional ideals J, L
of R. Using the same calculation of Proposition 5.1 we get v(I)7 = v(IT).

In particular, it follows that the map Y is just the restriction of the localization
map Ag to Princ(R); since \g is an isomorphism (by Theorem 5.2), we have only to
show that the image of Y is the direct sum ;¢ Princ(7T).

Since IT = T for all but a finite number of 7' (by definition of a Jaffard family),
we have v(IT) = v(T) = v? for all but a finite number of 7. In particular, the
image of Y lies inside the direct sum.

Suppose, conversely, that (v(J7))rco € Pye Princ(T). We can suppose that
Jr C T forevery T, and that J7 = T if v(Jr) = vD). Define thus I := (), ¢ Jr:
then, I is nonzero (since Jp # T for only a finite number of 7) and IT = Jr for
every T [16, Lemma 5.2]. Therefore, v(/)y = v(IT) = v(Jr), and the image of Y
is exactly g Princ(T). O

Proposition 5.3 can be interpreted as a way to factorize principal star operations.

Corollary 5.4. Let R be an integral domain and © be a Jaffard family on R. Let 1
be an integral ideal of R. Then, there are Ty, ..., T, € ® such that v(I) = v(IT; N
R)YAN---Av(IT,NR).

Proof. Since I C R,wehave IT = T forall but finitely many 7 € ®;letTy, ..., T,
be the exceptions. The claim follows from Proposition 5.3. (]

Recall that an integral domain is said to be h-local if every ideal is contained in
a finite number of maximal ideals and every prime ideal is contained in only one
maximal ideal.

Corollary 5.5. Let R be an h-local Priifer domain, and let M be the set of non-
divisorial maximal ideals of R. Then, there is a bijective correspondence between
Princ(R) and the set Pgn (M) of finite subsets of M. Furthermore, M is finite if and
only if every star operation is principal.

Proof. Since R is h-local, {Ry, | M € Max(R)} is a Jaffard family of R, and thus
by Proposition 5.3 there is a bijective correspondence Y between Princ(R) and
@MeMaX(R) Princ(Ry). If M ¢ M, then M R, is principal and thus Star(Ry,) =
Princ(Ry;) = {d = v}; hence, Y restricts to a bijection Y’ between Princ(R) and
De aq Princ(Ryy). Since Ry is a valuation domain, each Princ(Rjs) is composed
by two elements (the identity and the v-operation). Thus, we can construct a bijec-
tion Y, from the direct sum to Pg, (M) by associating to x := (»™) the finite
set Y1 (x) :={M € M | ™ = p}. The composition Y| o Y’ is a bijection from
Princ(R) to Pgn(M).

The last claim follows immediately. O

A factorization property similar to Corollary 5.4 can be proved for ideals having
a primary decomposition with no embedded primes.
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Proposition 5.6. Let Q1, ..., Q, be primary ideals, let P; := rad(Q;) for all i and
let I := Q1 N---NQ,. If the P; are pairwise incomparable, then v(I) = v(Q;) A
< AV(Qn).

Proof. For every i, the ideal Q; is v(Q;)-closed, and thus [ is (v(Q1) A--- A
v(Q,))-closed; hence, v(I) > v(Q1) A --- A v(Q,). To prove the converse, we need
to show that each Q; is v([)-closed.

Without loss of generahty, leti =1, and define Q = 0NN 0y we claim
that Oy = (1 g Q) Since QlQ con Q = I,clearly Q; C (I R Q) Conversely,
let x € (I g Q) Since the radicals of the Q; are pa1rw1se incomparable, Q; Q Py
for everyi > 1, and so Q ¢ Py; therefore, thereisa g € Q \ P;.Then, xq € I, and
in particular xg € Q. If x ¢ Qj, then since Q; is primary we would have ¢’ € 0,
for some ¢ € N; however, this would imply ¢ € rad(Q1) = P, against the choice
of g. Thus, O € (I ;g Q) andso Oy = (I iz O).

By definition, 7 is v(I)-closed; hence, also (1 :x Q) is v(I)-closed. It follows that
Q, is v(I)-closed, and thus that each Q; is v([)-closed, i.e., v(I) < v(Q) A--- A
v(Q,). The claim is proved. O

6 v-Trivial Ideals

In this section, we analyze principal operations generated by v-trivial ideals.

Definition 6.1. An ideal I of a domain R is v-trivial if I” = R.
Lemma 6.2. [f [ is v-trivial, then (I : I) = R
Proof. f I" =R, then (R: 1) =R,andthus (/ : I) S (R: ) =R. O

Definition 6.3. A star operation * is semifinite (or quasi-spectral) if every %-closed
ideal I C R is contained in a x-prime ideal.

All finite type and all spectral operations are semifinite; on the other hand, if V is a
valuation domain with maximal ideal that is branched but not finitely generated, the
v-operation on V is not semifinite. The class of semifinite operations is closed by
taking infima, but not by taking suprema (see [5, Example 4.5]).

Lemma 6.4. Let R be an integral domain, and let I, J be v-trivial ideals of R.
(a) IfJ C I, then J*) = I, and in particular v(I) # v(J).
Suppose v is semifinite on R.

(b) INJ isv-trivial.
(c) I < JvD,
(d) If I # J, thenv(I) # v(J).
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Proof. (a)Since [ is v-trivial, by Lemma 6.2 and Proposition 3.2 we have J'") = (I :
(I:J0)).

However, R € (I : J) € (R : J) = R (using the v-triviality of J) and thus J') =
(I : R) = I, as claimed. In particular, J = J*) = J*D and so v(I) # v(J).

(b) If (I NJ)Y # R, then by semifiniteness there is a prime ideal P such that
I NJ C P = P". However, this would imply / € P or J C P, against the hypoth-
esis that 7 and J are v-trivial.

(c) Since J € JUD it follows that J*) is v-trivial, and by the previous point so
is J*O N1 I 1 g D, it would follow that JYO' N T C 1, but J*D' N 1 is v(I)-
closed, against (a). Hence I € JVD,

(d) If both I and J are v([)-closed, then sois I/ N J; by (b), (I N J)" = R. The
claim follows applying (a) to / N J and [ (or J). (]

Corollary 6.5. Let R be a domain such that v is semifinite. Let 1, J be ideals of R
such that IV and J® are invertible; then, v(I) = v(J) ifand only if I = LJ for some
invertible ideal L.

Proof. By invertibility, we have
R=I'(R:I")=U"(R:I"))'=U(R:I")";

since I € I(R:1") C R, theideal I(R : I") is v-trivial. Analogously, R = (J(R :
JY))? and J(R : JV) is v-trivial. Hence, by Lemma 6.4(d) /(R : I') = J(R : J");
thus, I = I"(R : J")J,and L := IV(R : JV) is invertible. O

We denote by /(1) the height of the integral ideal /.

Corollary 6.6. Let R be a unique factorization domain. Then,

(a) for every principal star operation x # v there is a proper ideal 1 such that
h(l) > 1 and » = v(l);

(b) if I, J are fractional ideals of R, v(I) = v(J) if and only if I = uJ for some
uek.

Proof. Let x = v(I) for some ideal /. By [7, Corollary 44.5], every v-closed ideal
of R is principal; hence, let /" = pR. Then, (p~'I)" = R, i.e., p~'I is v-trivial. In
particular, * = v(I) = v(p~'I), and p~'I is a proper ideal of R with h(p~'I) > 1
(since all prime ideals of height 1 are v-closed).

Suppose that we also have * = v(J). With the same reasoning of the pre-
vious paragraph, ¢~'J is v-trivial for some g; thus v(p~'I) = v(I) = v(J) =
v(g~"'J). Applying Lemma 6.4 (d) to p~'I and ¢~'J we get p~'I =¢q~'J, ie.,
I=(pg~"J. 0
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For star operations generated by v-trivial prime ideals, we can also determine the
set of closed ideals.

Proposition 6.7. Let R be a domain such that v is semifinite and such that 1" is
invertible for every ideal I, and let P € Spec(R). Then F*P)(R) = F'(R) U {LP |
L is an invertible ideal}. In particular, v(P) is a maximal element of Princ(R) \ {v}.

Proof. Let I be a nondivisorial ideal; multiplying by an invertible ideal L, we can
suppose I' = R.If I C P,by Lemma 6.4 (a) I’") = P, and thus I # I*® unless
I = P; suppose [ g P. Then (P :1)= P: we have (P :I)C(R:I)=R, and
thusifx € P thenx € P.Therefore, I'® =1'N(P:(P:I))=RN(P:P) =
R#1I.

For the “in particular” claim, note thatif v(/) > v(P) then / should be x-closed; by
the previous part of the proof, this means that either / is divisorial (and so v(/) = v)
or I = L P for some invertible L (and thus v(/) = v(P) by Lemma 3.4(d)). (Il

Corollary 6.8. Let R be a unique factorization domain, and let P € Spec(R). Then,
F'PNR)=F'(R)U{aP |a € K).

We have seen in Proposition 3.3 that all star operations can be “generated” by
principal star operations; we can use v-trivial ideals to show that in many cases we
need infinitely many of them.

Proposition 6.9. Let R be a domain such that v is semifinite, and let I, ..., I,
be v-trivial ideals; let x == v(I}) A --- A v(I,). Then, the ideal I, N ---N 1, is the
minimal v-trivial ideal that is x-closed.

Proof. LetJ :=1,N---N1I,.ByLemma6.4 (b), J is v-trivial. Clearly J is x-closed.
Suppose L is v-trivial; then, applying Lemma 6.4(c),

L* = LU(II)/\-<~AU(’r1) > Il N---N In = J.

Therefore, J is the minimum among v-trivial x-closed ideals. |

Corollary 6.10. Let R be a unique factorization domain, and let x € Star(R) be
such that x # v. If (\{J € F*(R) | J" = R} = (0), then * is not the infimum of a
finite family of principal star operations.

Proof. Since R is a UFD, the v-operation is semifinite, and every principal star
operation can be generated by a v-trivial ideal. If » were to be finitely generated,
say x = v([}) A--- Av(l,), then J := I; N ---N I, would be the minimal v-trivial
*-closed ideal; however, by hypothesis, there must be a v-trivial x-closed ideal J'
not containing J, and thus x cannot be finitely generated. (I
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Proposition 6.11. Let R be a domain, and let A be a set of overrings whose inter-
section is R. Let * be the star operation I — (\{IT | T € A}. Suppose that

(1) v is semifinite;
(2) every v-trivial ideal contains a finitely generated v-trivial ideal;
(3) there is a v-trivial x-closed ideal.

Then, x is not the infimum of a finite family of principal star operations.

Proof. By substitutinganoverring T € Awith{Ty, | M € Max(T)}, we can suppose
without loss of generality that each member of A is local.

If » were finitely generated, by Proposition 6.9 there would be a minimal v-trivial
*-closed ideal, say J. By hypothesis, there is finitely generated v-trivial ideal I < J;
since I* = J, by [, Theorem 2], we have IT = JT forevery T € A.

Since I* # R, there mustbe an S € A such that /S # S; by Nakayama’s lemma,
1S = (IS)> C IS, and so (I*)* € I?’SN R C I. In particular, (/?)* is a v-trivial
*-closed ideal, against the definition of /. Thus, « is not finitely generated. ]

The first two hypothesis hold, for example, for unique factorization domains of
dimension d > 1; the third one holds, for example, in the following cases:

e « is a spectral star operation of finite type different from the w-operation (see [2,
17D);

e if R is integrally closed and (at least) one maximal ideal is not divisorial, and  is
the b-operation/integral closure;

e if R is a UFD, all star operations coming from overrings, except the v-operation.

7 Noetherian Domains

In this section, we study in more detail the case of Noetherian domains; in particular,
we shall give in Theorem 7.8 a necessary and sufficient condition on when v(/) =
v(J), under the assumption that (/ : [) = R = (J : J). We first state a case that is
already settled, even without this hypothesis.

Proposition 7.1. []4, Proposition 5.4] Let (R, M) be a local Noetherian integral
domain of dimension 1 such that its integral closure V is a discrete valuation domain
that is finite over R; suppose also that the induced map of residue fields R/M C
V /My is an isomorphism. Then, v(I) = v(J) ifand only if | = uJ for someu € K,
u#0.

We denote by Ass(/) the set of associated primes of /.

Proposition 7.2. Let R be a domain and 1 an ideal of R. Then, Spec’® (R) 2
Spec”(R) U Ass(1), and if R is Noetherian the two sets are equal.
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Proof. If P € Ass(I), then P = (I :z x) = x~'I N R for some x € R, and thus it
is v(I)-closed; if P € Spec’(R) then P = P and thus P = P*D,

Conversely, suppose R is Noetherian and P = P*), Then P = P' N (I : (I :
P)yY=P'N{:J),where J = (I : P);letJ = jiR+---+ j,R. We have

P=P'N(I:))=P'NRNUI:1)=P°NI:xJ)=
=P'N(:g jR+ -+ juR) =P' NN, g jiR),

and, since P is prime, this implies that P = P or (I : j;R) = P for some i. In
the latter case, since j; € K, j; = a/b for some a, b € R; hence (I ;g jiR) = (I :
ab™'R) N R = (bI :x aR),and thus P is associated to b1 . There is an exact sequence

bR R
0O— —— —— — —0
bl bl bR
and, since R is a domain, bR/bI >~ R/I and thus Ass(bl) C Ass(I) U Ass(bR) [3,
Chapter IV, Proposition 3]; therefore, P is associated to [ or it is divisorial (since an
associated prime of a divisorial ideal—in this case, b R—is divisorial). O

Remark 7.3. Note that, if P* = R, then (/ : P) C (R: P) = R, and thus j; € R;
in this case, b = 1 and the last part of the proof can be greatly simplified.

The following is a slight improvement of Proposition 6.7. We denote by X'(R)
the set of height-1 prime ideals of R.

Corollary 7.4. Let R be an integrally closed Noetherian domain. Then, the maximal
elements of Princ(R) \ {v} are the v(P), as P ranges in Spec(R) \ X' (R).

Proof. Since R is integrally closed, the divisorial prime ideals of R are the height 1
primes. In particular, if P is a prime ideal of height > 1, then v(P) is maximal by
Proposition 6.7.

Conversely, suppose v(/) is maximal in Princ(R) \ {v}. If all associated primes
of I have height 1, then I = mPewa) IRp, and so I is divisorial, against v(/) # v.
Hence, there is a P € Ass(I) \ X'(R); by Proposition 7.2, P € Spec'”’(R), and
thus v(/) < v(P). As v([) is maximal, it follows that v(/) = v(P). The claim is
proved. ([

Corollary 7.5. Let R be a Noetherian unique factorization domain. Then, v(I) is
a maximal element of Princ(R) \ {v} if and only if I = uP for some prime ideal
P € Spec(R) \ X'(R) and some u € K.

Proof. 1t is enough to join Corollary 7.4 (the maximal elements are the v(P)) with
Corollary 6.6 (v(/) = v(P) if and only if I = uP). O

Proposition 7.2 allows to determine, in the Noetherian case, all the spectra of the
principal star operations. We need a lemma.

Lemma 7.6. Let*y, ..., *, € Star(R), andletx := x| A - -+ A *,. Then, Spec*(R) =
\U; Spec* (R).
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Proof. If P = P* for some i then P* C P* = P and thus P = P*. Conversely, if
P = P*then P = P* N---N P*; since P is prime, it follows that P = P* for
some i. The claim is proved. O

Proposition 7.7. Let R be a Noetherian domain, and let A C Spec(R). Then, the
following are equivalent:

(i) A = Spec” D (R) for some ideal I;
(ii) A = Spec*(R) for some x = v(I}) A --- Av(ly);
(iii) A = Spec”(R) U A’, for some finite set A\'.

Proof. (1) = (ii) is obvious, while (i) = (iii) follows from Lemma 7.6.

If (iii) holds, then by [18, Chapter 4, Theorem 21] there is an ideal I whose set
of associated primes is A’. By Proposition 7.2, Spec’”’(R) = Spec'(R) U A’ = A,
and so (i) holds. [l

We now characterize when two nondivisorial ideals with (/ : I) = (J : J) = R
generate the same star operation.

Theorem 7.8. Let R be a Noetherian domain, and let I, J be nondivisorial ide-
als such that (I : 1) = (J : J) = R. Then, v(I) = v(J) if and only if Ass(I) U
Spec’(R) = Ass(J) U Spec”(R) and, for every P € Ass(I) U Spec’(R), there is an
ap € K such that IRp = apJRp.

Proof. Suppose the two conditions hold. By Proposition 7.2, Ass(1) U Spec”(R) =
Spec’”(R), and thus Spec’”(R) = Spec'”)(R) =: A. For every ideal L, using
Proposition 5.1 we have

Lv(]) — ﬂ LU(I)RP — ﬂ(LRP)U(I)RP — m (LRP)U(IRP).
PeA PeA PeA

Since IRp and JRp are isomorphic, (LRp)"UR?) = (LRp)"R®); it follows that
v(l) = v(J).

Conversely, suppose v(/) = v(J) =: ». Then, Spec*(R) is equal to both Ass(/) U
Spec’(R) and Ass(J) U Spec”(R), which thus are equal. Note also that (/ : ) = R
implies that Rp = (I : [)Rp = (IRp : I Rp) for every prime ideal P.

Let now P € Spec*(R). Since v(I) = v(J), clearly v(I)g, = v(J)g,, which by
Proposition 5.1 implies that v(/ Rp) = v(J Rp). However, PRp is v({ Rp)-closed
because P is v([)-closed; it follows, by Proposition 4.5, that /Rp = apJ Rp for
some ap € K, as claimed. O

Corollary 7.9. Let R be an integrally closed Noetherian domain, and let I, J be
nondivisorial ideals. Then, v(I) = v(J) if and only if Ass(1) U X' (R) = Ass(J) U
X'(R) and for every P € Ass(I) there is an ap € Rp such that IRp = apJ Rp.
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Proof. Since R is integrally closed and Noetherian, we have (I : I) = R for every
ideal I; furthermore, the divisorial primes are the height 1 primes, and for any such
P the localizations I Rp and J R p are isomorphic since R p is a DVR. The claim now
follows from Theorem 7.8. O

Example 7.10. Let R be a Noetherian integrally closed domain, and suppose that
Ry, is not a UFD for some maximal ideal M. Let P be an height 1 prime contained
in M such that PRy is not principal, and let Q be a prime ideal of height bigger
than 1 such that P + Q = R (in particular, Q §Z M). We claim that v(P Q) = v(Q)
but P Q and Q are not locally isomorphic.

In fact, since they are coprime, PQ = P N Q, and thus Ass(P Q) = {P, Q} while
Ass(Q) = {Q}; moreover, P ;(_ Q and thus PORy = QPRy = QRy. Since P €
X'(R), by Corollary 7.9 it follows that v(P Q) = v(Q). However, QRy; = Ry is
principal, while P QRy; = P Ry, by hypothesis, is not; therefore, Q and P Q are
not locally isomorphic. In particular, there cannot be an invertible ideal L such that
Q = LPQ,because LRy, would be principal and thus Q and P Q would be locally
isomorphic.
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