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Abstract. It is well-known that, in general, multiplication by
an ideal I does not commute with the intersection of a family of
ideals, but that this fact holds if I is flat and the family is finite. We
generalize this result by showing that finite families of ideals can
be replaced by compact subspaces of a natural topological space,
and that ideals can be replaced by submodules of an epimorphic
extension of a base ring. As a particular case, we give a new proof
of a conjecture by Glaz and Vasconcelos.

1. Introduction

Let D be an integral domain with quotient field K. An overring of
D is a ring between D and K. The set of all overrings of D is denoted
by Over(D), and can be endowed with a natural topology (called the
Zariski topology) whose basis of open sets consists of the sets of the
form

B(x1, . . . , xn) := {T ∈ Over(D) : x1, . . . , xn ∈ T},
as x1, . . . , xn vary in K. Under this topology, Over(D) is a compact
T0 space with a unique closed point (D itself) and a generic point (the
quotient field K). One of the clues that this topology is the most
natural to be put on Over(D) is that it makes the localization map

λ : Spec(D) −→ Over(D)

P 7−→ DP

a topological inclusion [4, Lemma 2.4].
This topology, whose origins can be traced back to Zariski’s study

of the space Zar(D) of the valuation overrings of an integral domain
D [25, Chapter 6, §17] (what is now called the Zariski space or the
Riemann-Zariski space of D), has recently been studied in greater de-
tail (see for example [7, 8, 21, 20]). For example, it has been proved that
Over(D) is a spectral space, meaning that there is a ring R such that
Spec(R) is homeomorphic to Over(D) [5, Proposition 3.5]; the same
can be proved of several distinguished subspaces of Over(D), like for
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example local overrings [7, Corollary 2.14] or integrally closed overrings
[5, Proposition 3.6].

The aim of this paper is to prove a simple and very general result
(Theorem 3, in the form of Corollary 5) which intertwines the Zariski
topology on Over(D) with the algebraic properties of the overrings,
namely the possibility to commute intersections and products in the
case of compact spaces of overrings. In this way, we generalize [13,
Lemma 1.1] (which deal with locally finite intersections) and [21, The-
orem 3.5] (which proves the same for Noetherian collections of inte-
grally closed overrings). As a consequence, we obtain a new proof of
the Graz-Vasconcelos conjecture [12, page 340], independent from the
one obtained in [23]. Since it poses no additional challenge, we also
work in a more general setting, substituing to the extension D ⊆ K
any ring extension that is also an epimorphism, and using modules
instead of only overrings.

2. Results

Let A ⊆ B be a ring extension; we denote by F(B|A) the collection of
all the A-submodules of B. The set F(B|A) becomes a T0 topological
space by declaring, as a basis of open sets, the family of the sets of the
form B(x1, . . . , xn) := {G ∈ F(B|A) : x1, . . . , xn ∈ G}, for x1, . . . , xn
varying in B. Note that, since B(x1, . . . , xn) = B(x1) ∩ · · · ∩ B(xn), a
convenient subbasis for this topology is {B(x) : x ∈ B}. We call this
topology the Zariski topology, as it generalizes the Zariski topology on
Over(D) defined in the Introduction. Note that, in particular, the set
I(A) of all the integral ideals of A becomes then a subspace of F(B|A).
On the set Spec(A) of the prime ideals of A, this topology does not
coincide with the classical Zariski topology, but rather with the so-
called inverse topology (see [14] and the discussion before Example 2.2
of [22]). This should, however, not cause any confusion; the only place
where we will consider Spec(R) will be Proposition 11.

If X is any topological space and Y ⊆ X, we will denote by Y the
closure of Y in X.

Remark 1. Let A ⊆ B be a ring extension and let F(B|A) be endowed
with the Zariski topology. The following properties hold.

(1) For any F,G ∈ F(B|A), we have F ∈ {G} if and only if F ⊆ G.
(2) Any compact nonempty subspace C of F(B|A) has minimal

elements, with respect to the inclusion ⊆. As a matter of fact,
by Zorn’s lemma it is enough to show that any chain (under
inclusion) Σ ⊆ C has a lower bound. By (1), the collection of

sets F := {{F} ∩ C : F ∈ Σ} is a chain. Thus, in particular,
given any finite subset F1, . . . , Fn ∈ Σ, if G is contained in all
Fi, then G ∈

⋂n
i=1 {Fi} ∩ C. This proves that F is a collection

of closed sets of C with the finite intersection property. By
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compactness, there exists a submodule F ? ∈ {F} ∩ C, for any
F ∈ Σ, and applying again (1) we see that F ? is a lower bound
of Σ in C.

Let now φ : A −→ B be a ring homomorphism. Then, φ is an
epimorphism in the category of rings if, for every ψ1, ψ2 : B −→ C,
the equality ψ1 ◦ φ = ψ2 ◦ φ implies that ψ1 = ψ2. If the inclusion map
A ↪→ B is an epimorphisms, we will call the ring extension A ⊆ B an
epimorphic extension.

Examples of epimorphisms are surjective maps and localizations;
more generally, a map φ : A −→ B such that the induced homo-
morphism φp : Ap −→ Bp is surjective for every p ∈ Spec(A) such
that φ(p)B 6= B is an epimorphism (maps with this property are called
weakly surjective [16, Chapter 1, §3]; on extensions, being an epimor-
phism and being weakly surjective are equivalent conditions [16, The-
orem 4.4]). In particular, if D is an integral domain and K is its
quotient field, the ring extension D ⊆ K is an epimorphic extension.
On the other hand, if X is an indeterminate over A, then the extension
A ⊆ A[X] is not epimorphic: indeed, for every α ∈ A, we can build a
ring homomorphism ψα : A[X] −→ A by defining ψα(a) := a if a ∈ A
and ψα(X) = α. In this case, we have ψα 6= ψβ if α 6= β, but every
i ◦ ψα is the identity on A.

The first step of our way is the following fact, which is a generaliza-
tion of [1, Theorem 2].

Proposition 2. Let A ⊆ B be an epimorphic extension. Let I be a
flat A-submodule of B, and let G1, . . . , Gn ∈ F(B|A). Then,

I(G1 ∩ . . . ∩Gn) = IG1 ∩ . . . ∩ IGn.

Proof. With a small abuse of notation, for any F,G ∈ F(B|A), we will
denote by F ⊗ G the submodule of B ⊗ B generated by the elements
f ⊗ g, as f varies in F and g varies in G. By induction, it suffices to
show the statement for n = 2. Consider the map

λ : B ⊗A B −→ B

b1 ⊗ b2 7−→ b1b2.

Clearly, if I,G ∈ F(B|A), then λ(I ⊗ G) = IG; therefore, by [18,
Theorem 7.4]

I(G1 ∩G2) = λ(I ⊗ (G1 ∩G2)) = λ((I ⊗G1) ∩ (I ⊗G2)).

Since A ⊆ B is an epimorphic extension, λ is an isomorphism (indeed,
this property actually characterizes epimorphisms [17, Lemma 1.0]); in
particular, λ is a bijection, and thus

λ((I ⊗G1) ∩ (I ⊗G2)) = λ(I ⊗G1) ∩ λ(I ⊗G2) = IG1 ∩ IG2.

This completes the proof. �
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Note that this proposition does not hold if A ⊆ B is not an epimor-
phism: for example, if X is an indeterminate over A, B = A[X] = I,
G1 = A, G2 = XA[X], then G1 ∩ G2 = (0) and so I(G1 ∩ G2) = (0),
while IG1 ∩ IG2 = A[X] ∩XA[X] = XA[X].

Theorem 3. Let A ⊆ B be an epimorphic extension, let I be a flat
A-submodule of B and let Y be a (nonempty) compact subspace of
F(B|A). Then, the following equality holds:

I

(⋂
J∈Y

J

)
=
⋂
J∈Y

IJ

Proof. The (⊆) containment is obvious. Take now an element x ∈⋂
{IJ : J ∈ Y }. For any J ∈ Y , by definition, there exist a positive

integer nJ and elements i
(J)
1 , . . . , i

(J)
nJ ∈ I, t

(J)
1 , . . . , t

(J)
nJ ∈ J such that

x = i
(J)
1 t

(J)
1 + · · ·+ i(J)

nJ
t(J)
nJ

=

nJ∑
h=1

i
(J)
h t

(J)
h .

Consider the open neighborhood ΩJ := B({t(J)
1 , . . . , t

(J)
nJ }) of J . Then

the collection of sets A := {ΩJ : J ∈ Y } is an open cover of Y .
By compactness, A admits a finite subcover, say {ΩJ1 , . . . ,ΩJr}, for
suitable J1, . . . , Jr ∈ Y . For any l = 1, . . . , r, set Yl := ΩJl ∩ Y . By
Proposition 2, we have

I

(⋂
J∈Y

J

)
= I

(⋂
J∈Y1

J ∩ . . . ∩
⋂
J∈Yr

J

)
= I

(⋂
J∈Y1

J

)
∩. . .∩I

(⋂
J∈Yr

J

)
,

and thus it suffices to show that x ∈ I
(⋂

J∈Yl J
)
, for each l = 1, . . . , r.

However, the elements t
(Jl)
1 , . . . , t

(Jl)
nJl

belong to J for every J ∈ Yl, and
thus they belong to the intersection

⋂
{J : J ∈ Yl}; hence, the repre-

sentation x =

nJl∑
h=1

i
(Jl)
h t

(Jl)
h shows that x ∈ I(

⋂
J∈Yl J). �

Before giving some corollaries of independent interest, we state the
following useful lemma.

Lemma 4. Let A ⊆ B be a ring extension and let F(B|A) be endowed
with the Zariski topology. Fix a submodule I ∈ F(B|A). Then, the
maps

sI : F(B|A) −→ F(B|A)

J 7−→ I + J
and

mI : F(B|A) −→ F(B|A)

I 7−→ IJ

are continuous.

Proof. Let B(x) be a subbasic open set of F(B|A), with x ∈ B. If
J0 ∈ s−1

I (B(x)), then x = i + j for some i ∈ I, j ∈ J0; therefore, B(j)
is an open neighborhood of J0 contained in s−1

I (B(x)), and thus sI is
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continuous. Similarly, if J0 ∈ m−1
I (B(x)), then x = i1j1 + · · · + injn

for some j1, . . . , jn ∈ J0 and i1, . . . , in ∈ I. Then, J0 ∈ B(j1, . . . , jn) ⊆
m−1
I (B(x)), and this shows that mI is continuous. �

Note that the continuity of mI make it possible to shorten the proof
of [21, Lemma 3.7].

Corollary 5. Let D be an integral domain, let I and T be D-submodules
of the quotient field K of D, and let ∆ be a compact subset of Over(D),
with respect to the Zariski topology. If T is flat over D, then(⋂

U∈∆

IU

)
T =

⋂
U∈∆

(IUT ).

Proof. By Lemma 4, the collection {IU : U ∈ ∆} is compact, since it is
the continuous image of ∆ via mI . The conclusion is now an immediate
consequence of Theorem 3. �

As a particular case of the main results, we provide now a new topo-
logical proof of the Glaz-Vasconcelos conjecture.

Corollary 6. [23, Theorem 1.7] Let D be an integrally closed integral
domain, and let I be a D-submodule of its quotient field K. If I is flat
over D, then I =

⋂
{IV : V ∈ Zar(D)}.

Proof. The space Zar(D) is compact in the Zariski topology [25, Chap-
ter 6, Theorem 40]; moreover, since D is integrally closed, D =

⋂
{V :

V ∈ Zar(D)} [3, Corollary 5.22]. Hence, by Theorem 3,

I = ID = I

 ⋂
V ∈Zar(D)

V

 =
⋂

V ∈Zar(R)

IV,

as claimed. �

Another immediate consequence of the main results deals with in-
tersections of localizations of integral domains.

Corollary 7. Let D be an integral domain, let Y be a compact nonempty
subspace of Over(D) such that D =

⋂
{R : R ∈ Y }, and let S be a mul-

tiplicative subset of D. Then, S−1D =
⋂
{S−1R : R ∈ Y }.

Proof. It suffices to use Theorem 3, keeping in mind that S−1D is a
flat D-module. �

Corollary 8. [11, Proposition 43.5] Let D be an integral domain, let
Y be a locally finite subspace of Over(D) (i.e., any nonzero element
of D is noninvertible only in finitely many members of Y ) such that
D =

⋂
{R : R ∈ Y }, and let S be a multiplicative subset of D. Then,

S−1D =
⋂
{S−1R : R ∈ Y }
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Proof. By Corollary 7, it is enough to show that a locally finite collec-
tion of overrings of D is compact, with respect to the Zariski topology
of Over(D).

Let A be an open cover of Y . By Alexander’s Subbasis Theorem (see
e.g. [15, Chapter 5, Theorem 6, page 139]), we can assume, without
loss of generality, that A consists of subbasic open sets of Over(D),

say A =

{
B
(
ai
bi

)
: i ∈ I

}
, where ai, bi ∈ D, bi 6= 0, for any i ∈ I. Fix

now an index i′ ∈ I and note that, by assumption, the set Y ′ := {R ∈
Y : b−1

i′ /∈ R} is finite, say Y ′ = {R1, . . . Rn}. Thus, any member of

Y −Y ′ belongs to B
(
ai′

bi′

)
and any Rj ∈ Y ′ belongs to some B

(
aij
bij

)
.

The proof is now complete. �

Note that the main part of the proof of the previous corollary is also
a consequence of [8, Proposition 2.9], where it was proved in the more
general context of semistar operations; we inserted the proof here for
the reader’s convenience. Moreover, the proof of the previous corollary
also extends [9, Remark 4.7], where the authors proved that any locally
finite family of localizations is compact.

Corollary 9. Let D be a Prüfer domain with quotient field K, let a be
an ideal of D, and let Y ⊆ I(D) be compact. Then,

a +
⋂
b∈Y

b =
⋂
b∈Y

(a + b).

Proof. It suffices to prove that, for every prime ideal p, the equality

aDp +

(⋂
b∈Y

b

)
Dp =

(⋂
b∈Y

(a + b)

)
Dp

holds. Fix thus a prime ideal p, and let V := Dp; since D is a Prüfer
domain, V is a valuation domain.

Since V is flat over D and {a + b : b ∈ Y } is compact (Lemma 4),
we have, by Theorem 3,

(1)

(⋂
b∈Y

(a + b)

)
V =

⋂
b∈Y

((a + b)V ) =
⋂
b∈Y

(aV + bV )

Observe now that, since V is a valuation domain, the collection of
ideals Y ′ := {bV : b ∈ Y } is totally ordered and compact, by Lemma
4. Thus, since by compactness Y ′ has minimal elements under inclusion
(Remark 1), it follows that Y ′ has a minimum. Then, there is an ideal
b0 ∈ Y such that b0V ⊆ bV , for any b ∈ Y . It follows that the last
member of the equality (1) becomes⋂

b∈Y

(aV + bV ) = aV + b0V = aV +

(⋂
b∈Y

bV

)
= aV +

(⋂
b∈Y

b

)
V,
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where the last equality is again a consequence of Theorem 3. The proof
is now complete. �

Remark 10. The previous corollary is closely related to the dual AB-5∗

of Grothendieck AB-5 (see, for example, [2]). Precisely, if D is a Prüfer
domain and any filter base of ideals of D is compact, with respect to
the Zariski topology of I(D), then D is AB-5? (as D-module).

In the case of Prüfer domains, we can also prove a partial converse
of Theorem 3. Recall that a prime ideal P of a Prüfer domain D is
branched if the set of prime ideals of D properly contained in P has a
maximum (see e.g. [11, Theorem 17.3]). If the dimension of D is finite,
every prime ideal is branched.

Proposition 11. Let D be a Prüfer domain with quotient field K, and
let ∆ ⊆ Spec(D) be a nonempty set.

(a) ∆ is compact (in the “classical” Zariski topology of Spec(D)) if

and only if, for every flat D-submodule I of K,
⋂
p∈∆

IDp = I

(⋂
p∈∆

Dp

)
.

(b) Suppose that every prime ideal of D is branched. Then, ∆ is
compact (in the “classical” Zariski topology of Spec(R)), if and

only if
⋂
p∈∆

DqDp = Dq

(⋂
p∈∆

Dp

)
for every q ∈ Spec(D).

Proof. In both points, one implication follows from Corollary 7 and the
fact that the map λ : Spec(D) −→ Over(D), P 7→ DP , is a topological
inclusion. Suppose ∆ is not compact, and let T :=

⋂
p∈∆Dp; note

that, without loss of generality, we can suppose that ∆ = ∆↓ = {q ∈
Spec(D) : q ⊆ p for some p ∈ ∆}, since ∆ is compact if and only if ∆↓

is compact.
The set of prime ideals p such that pT 6= T is the image of Spec(T )

under the canonical map Spec(T ) −→ Spec(D); since it contains ∆,
and ∆ is not compact, it must also contain a prime ideal q /∈ ∆. Since
D is a Prüfer domain, q is a flat D-module; however,⋂

p∈∆

qDp =
⋂
p∈∆

Dp = T 6= qT = q

(⋂
p∈∆

Dp

)
,

against the hypothesis. Therefore, part (a) is proved.
If every prime ideal of D is branched, so is q; therefore, there is a

prime ideal q0 directly below q. No ideal p ∈ ∆ contains q; therefore,
DpDq ) Dq, and in particular Dq0 ⊆ DpDq. Hence,⋂

p∈∆

DqDp ⊇ Dq0 ) Dq = DqT = Dq

(⋂
p∈∆

Dp

)
,

against the hypothesis. Part (b) is proved. �



8 TOPOLOGY, INTERSECTIONS AND FLAT MODULES

Note that part (b) of the previous proposition does not hold with-
out the hypothesis that the prime ideals are branched: indeed, if V
is a valuation domain with maximal ideal m unbranched, and ∆ :=
Spec(V ) \ {m}, then

VmV = V =
⋂
p∈∆

Vp =
⋂
p∈∆

VpVm,

despite ∆ not being compact.
Another question arising from Theorem 3 is if the equality I

(⋂
J∈Y J

)
=⋂

J∈Y IJ , for all compact families Y of submodules of an epimorphic
extension A ⊆ B, implies that I is flat. This is true if the base ring A
is a domain, but fails in general (see [1, Theorem 2] and the subsequent
discussion).

Remark 12. While Theorem 3 is quite general, it may be in general
hard, or at least not easy, to find examples of compact subspaces to
which it can be applied, or to prove that a given family is actually
compact.

Some examples can be constructed using the fact that, under the
Zariski topology, F(B|A) is a spectral space, i.e., it is homeomorphic
to the prime spectrum of a ring [22, Example 2.2(2)]. For example,
it follows form Remark 1(1) and either [24, Proposition 2.3] or [19,
Proposition 2.2] that a subset Y of F(B|A) is compact if and only if
every element of the closure of Y , with respect to the constructible
topology, contains a point of Y , where the constructible topology on
F(B|A) is the coarsest topology on F(B|A) for which any open and
compact subspace of F(B|A) is both open and closed.

Another class of examples comes from the domination map d : Zar(A) −→
Spec(A) of the Zariski space of a domain A (i.e., the set of valuation
overrings of A). For example, if S is a compact subspace of Spec(A),
then d−1(S) is compact, by [19, Proposition 2.2 and Lemma 2.7(3)].
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