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Abstract. We study the properties of some distinguished subspaces of the Zariski space
Zar(K|D) of a field F over a domain D, in particular the topological properties of subspaces
defined through algebraic means. We are mainly interested in two classes of problems: under-
standing when spaces of the form Zar(K|D) \ {V } are compact (which is strongly linked to the
problem of determining when Zar(K|D) is a Noetherian space), and studying spaces of rings
defined through pseudo-convergent sequences on an (arbitrary, but fixed) rank one valuation
domain.

1. Introduction and notation. Let D be an integral domain and K be a field con-
taining D (not necessarily the quotient field of D). In the Thirties, studying the problem
of resolution of singularities, Zariski introduced the Zariski space of K over D (under
the name generalized Riemann surface) as the set Zar(K|D) of all valuation domains
of K containing D [23, 24]. He introduced on this set a topology (later called the Zariski
topology) which is generated by the open sets

B(x1, . . . , xn) := {V ∈ Zar(K|D) | x1, . . . , xn ∈ V },

as x1, . . . , xn range in K, and showed that, under this topology, Zar(K|D) is a compact
space [25, Chapter VI, Theorem 40].

Later, it was shown that Zar(K|D) is actually a spectral space (in the sense of
Hochster [9]), that is, for every K and D there is a ring R such that Zar(K|D) ' Spec(R);
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such an R can also be constructed explicitly as a Bézout domain having quotient field
K(X) (called the Kronecker function ring of K over D) [4, 5, 6]. As a spectral space,
Zar(K|D) can also be endowed with the inverse topology (the topology generated by the
complements of the open and compact subspaces of the original topology) and the con-
structible (or patch) topology (the topology generated by both the open and compact sub-
spaces and their complements). These two topologies are both spectral (so, in particular,
compact) and, more importantly, Zar(K|D)cons (i.e., Zar(K|D) under the constructible
topology) is an Hausdorff space, something that does not happen for the Zariski or the
inverse topology unless D is a field and K is an algebraic extension, i.e., unless Zar(K|D)
is just {K}. Of particular importance are the closed sets of Zar(K|D)cons: they are called
proconstructible subsets, and they are again spectral spaces (in the Zariski topology).

These three topologies are closely linked with the algebraic properties of the valuation
domains, and in particular there is a connection between the topological properties of
X ⊆ Zar(K|D) and the algebraic properties of the intersection of the elements of X
(called the holomorphy ring A(X) of X) [11, 12, 13, 14]: for example, if X is a compact
subset of one-dimensional valuation domains such that

⋂
V ∈X mV 6= (0), then A(X) is a

one-dimensional Bézout domain [14, Theorem 5.3]. In particular, for Prüfer domains, the
set Zar(D) (that is, Zar(K|D) with K being the quotient field of D) is homeomorphic to
the spectrum of D (under the Zariski topology). More generally, there is always a map
γ : Zar(K|D) −→ Spec(D), V 7→ mV ∩ D, called the center map, which is continuous
([25, Chapter VI, §17, Lemma 1] or [4, Lemma 2.1]), surjective (this follows, for example,
from [1, Theorem 5.21] or [8, Theorem 19.6]) and closed [4, Theorem 2.5].

The space Zar(K|D) can also be considered as a subspace of the set Over(K|D) of
the rings comprised between D and K, as a subspace of the set of D-submodules of K or,
even more generally, as a subspace of the power set of K; all these sets become spectral
spaces under the natural extension of the Zariski topology [3, 1.9.5(vi-vii)]. It is to be
noted that a closer look at Zariski’s proof of the compactness of Zar(K|D) actually shows
that Zar(K|D) is a proconstructible subset of the power set P(K) [13, discussion after
Proposition 2.1].

2. Compactness. In general, it is hard to find subsets of Zar(K|D) that are not com-
pact. A general algebro-geometric criterion was given in [7, Lemma 5.8(2)] through the
theory of semistar operations; to be useful, however, it has to be applied together with
the theory of the b-operation/integral closure, which can be defined either as the semistar
operation induced by the whole Zar(D) or through integral dependence of ideals [21]. The
first consequence is the following.

Theorem 2.1 ([19, Proposition 7.1]). Let D be a Noetherian ring with quotient field K,
and let ∆ be the set of Noetherian valuation overrings of D. Then, ∆ is compact if and
only if dim(D) ≤ 1.

(Note that, when dim(D) ≤ 1, the set ∆ is actually just Zar(D).) If ∆ is as in the
theorem, then we can write ∆ = X(D) ∩ Zar(D), where X(D) is the set of Noetherian
overrings of D; in particular, X(D) cannot be proconstructible in the Zariski topology
of Over(D), since this would imply that ∆, as the intersection of two proconstructible
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subspaces, is itself proconstructible. The same happens for other subsets of Noetherian
rings.

Proposition 2.2 ([19, Proposition 7.3 and Corollary 7.7]). Let D be a Noetherian do-
main. Then, the following are equivalent:

(i) dim(D) = 1;
(ii) X(D) is compact;
(iii) the set {T ∈ Over(D) | T is a Dedekind domain} is compact;
(iv) the set {T ∈ Over(D) | T is Noetherian of dimension 1} is compact.

The same holds if “compact” is substituted with “proconstructible”.

Another interesting case is the one in which we delete just one valuation domain.

Theorem 2.3 ([19, Theorem 3.6]). Let D be an integral domain and V be a minimal
element of Zar(D). If Zar(D) \ {V } is compact, then V is equal to the integral closure of
D[x1, . . . , xn]M for some x1, . . . , xn ∈ K and some M ∈ Max(D[x1, . . . , xn]).

This condition is very strong; for example, it cannot happen in any of the following
cases:

• D is Noetherian and dim(V ) ≥ 2;
• dim(V ) > 2 dim(D) [19, Proposition 4.3];
• D is local and

⋂
{P | P ∈ Y} = (0) for some family Y of nonzero incomparable prime

ideals [19, Theorem 5.1].

A topological space X is Noetherian if all its subsets are compact; equivalently, if the
open sets of X satisfy the ascending chain condition. For example, the prime spectrum
of any Noetherian ring is a Noetherian space [1, Chapter 6, Exercises 5–8]. On the other
hand, by either of the previous two cases, Zar(D) is not a Noetherian space as soon as D
is a Noetherian domain of dimension 2 or more. Indeed, the Noetherianity of Zar(K|D)
is an extremely rare phenomenon.

Proposition 2.4. Let D be an integral domain and let K be a field containing D; suppose
that D is integrally closed in K.

(a) [20, Proposition 4.2] If D = F is a field, then Zar(K|F ) is a Noetherian space if and
only if trdegF K ≤ 1 and, for every T ∈ K transcendental over F , every valuation
on F [T ] extends to finitely many valuations of K.

(b) [20, Theorem 5.11 and Corollary 5.12] If D is local and not a field, then Zar(D) is
Noetherian if and only if D is a pseudo-valuation domain,1 K is the quotient field of
D and Zar(L|F ) is Noetherian, where F is the residue field of D and L is the residue
field of the associated valuation domain.

(c) [20, Theorem 5.11 and Corollary 5.12] If D is not a field, then Zar(K|D) is Noetherian
if and only if K is the quotient field of D, Spec(D) is Noetherian and Zar(DM ) is
Noetherian for every M ∈ Max(D).

1A pseudo-valuation domain (PVD) is a local domain (D,m) having a valuation overring V
whose maximal ideal is m; such V is called the valuation domain associated to D.



164 D. SPIRITO

In particular, these domains have a fairly peculiar Zariski space: in the local case, the
non-minimal valuations of D are all comparable, and the valuative dimension of D can
be only dim(D) or dim(D) + 1 [20, Proposition 5.13].

3. Pseudo-convergent sequences. Let now V be a one-dimensional valuation ring
with valuation v, value group Γv ⊆ R and quotient field K. A pseudo-convergent sequence
of V is a sequence E = {sn}n∈N ⊂ K such that

v(sn − sn−1) < v(sn+1 − sn)
for all n ∈ N, n ≥ 1. Pseudo-convergent sequences were introduced by Ostrowski to
determine all the rank-one extensions of V to K(X) [15, 16], and subsequently used by
Kaplansky to investigate maximal valued fields [10]. They can be generalized to pseudo-
monotone sequences [2, Definition 4.6].

The gauge of E is the sequence of the δn := v(sn+1 − sn) [22, p. 327]; it is a strictly
increasing sequence of real numbers, and its limit δE ∈ R ∪ {∞} is called the breadth
of E. In particular, δE is infinite if and only if E is a Cauchy sequence (in the topology
induced by the valuation). If V is discrete, every pseudo-convergent sequence has infinite
breadth. The ideal Br(E) := {x ∈ V | v(x) ≥ δE} is called the breadth ideal of E.

Pseudo-convergent sequences can be divided into two classes: E is of algebraic type if
v(f(sn)) is definitively increasing for some polynomial f ∈ K[X], while it is of transcen-
dental type otherwise [10, Definitions, p. 306]. If v(α − sn) < v(α − sn+1) for all n ∈ N
(or, equivalently, if v(α − sn) = δn), then α is said to be a pseudo-limit of E; if α ∈ K
(the algebraic closure of K), then we can use the same definition once we fix an extension
u of v to K. In particular, E is of algebraic type if and only if it has a pseudo-limit
in K [10, Theorems 2 and 3]. Pseudo-limits are not unique, but if α is one of them, then
the set L(E) of the pseudo-limits of E is the coset α+ Br(E) [10, Lemma 3]. The name
“algebraic” and “transcendental” derive from the fact that, if E is a Cauchy sequence, the
limit of E in K̂ is algebraic (resp., transcendental) over K if and only if E is of algebraic
(resp., transcendental) type.

To each pseudo-convergent sequence E we associate the map wE : K(X) −→ R∪{∞}
such that [17, Propositions 4.3 and 4.4]

wE(φ) := lim
n→∞

v(φ(sn)).

Then, wE is a valuation on K(X) if E is of transcendental type or if E is of algebraic type
and δE <∞; if E is of algebraic type and δE =∞, then wE is only a pseudo-valuation2.
If wE is a valuation, the corresponding valuation ring WE is a one-dimensional extension
of V to K(X); if K is algebraically closed, then every rank-one extension of V to K(X)
is in this form [15, 16]. We denote the set of all rings in the form WE as W: then, the
Zariski and the constructible topologies agree on W, and under them W is a regular
zero-dimensional space that is not compact [17, Propositions 6.3 and 6.4].

2A pseudo-valuation on K is a map v : K −→ Γv ∪ {∞} (where (Γv, +) is a totally ordered
abelian group) such that v(a + b) ≥ min{v(a), v(b)} and v(ab) = v(a) + v(b) for all a, b ∈ K;
that is, it is a valuation without the hypothesis that only 0 goes to ∞. It is not linked with the
notion of pseudo-valuation domain used in Section 2.
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To every pseudo-convergent sequence E can be associated another valuation domain,
defined as

VE := {φ ∈ K(X) | φ(sn) ∈ V for all large n}.

The ring VE is always an extension of V to K(X), and it is contained in WE (if WE is
defined). If E is of transcendental type, then VE = WE is an immediate extension of E
[17, Theorem 4.9(a)]. On the other hand, if E is of algebraic type, then the value group
of VE is always isomorphic to Γv ⊕ Z, and the rank of VE depends on the breadth [17,
Theorem 4.9(b,c)]:

• if kδ ∈ Γv for some positive k ∈ N, then VE has rank 2 and WE has rank 1;
• if δ <∞ and kδ /∈ Γv for all positive k ∈ N, then VE = WE has rank 1;
• if δ = ∞, then VE has rank 2 and its one-dimensional overring is K[X](q), where q is

the minimal polynomial of the limit of E.

The valuation vE can also be described explicitly as a map into R2 (see [17, Theorem
4.10]).

We denote the set of all the VE as V: then, V is a regular space in both the Zariski
and the constructible topologies [17, Theorem 6.15], but the two topologies agree on V if
and only if the residue field of V is finite [17, Proposition 6.11]. There is also a map

W −→ V
WE 7−→ VE

that, under the Zariski topology, is continuous and injective, but not a topological em-
bedding [17, Proposition 6.13].

There are two natural ways to partition V, either by fixing the breadth of the sequences
or by fixing a pseudo-limit.

Let δ ∈ R ∪ {∞}, and define V(•, δ) := {VE ∈ V | δE = δ}. Then, the Zariski and the
constructible topologies agree on V(•, δ) [18, Theorem 3.5]; furthermore, this topology is
also generated by the ultrametric distance

dδ(VE , VF ) := lim
n→∞

max{d(sn, tn)− e−δ, 0},

where E := {sn}n∈N and F := {tn}n∈N. Under this metric, V(•, δ) is complete, and is
the completion of the subspace [18, Proposition 3.4]

VK(•, δ) := {VE ∈ V(•, δ) | E has a pseudo-limit in K}.

When δ =∞, the space V(•,∞) is canonically isomorphic to the completion K̂, and d∞
reduces to the distance induced by v̂; furthermore, VK(•,∞) corresponds to K. Hence,
V(•, δ) can be seen as a generalization of the completion of V , with the elements of V(•, δ)
corresponding to the closed balls of V of radius e−δ. Note that the various dδ cannot be
unified to a metric on the whole V (since otherwise they would define closed subspaces
of V, but the V(•, δ) are not closed) [18, Proposition 3.8].

Let β ∈ K, fix an extension u of v to K and let

Vu(β, •) := {VE ∈ V | β is a pseudo-limit of E w.r.t. u}.
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Then, each Vu(β, •) is a closed subspace of V [18, Proposition 4.2], and the Zariski and
the constructible topologies agree on Vu(β, •) [18, Proposition 4.6]; furthermore, the
elements of Vu(β, •) are parametrized by the breadth, and so there is a bijection between
Vu(β, •) and (−∞, δ(β,K)] (given by E 7→ δE), where δ(β,K) := sup{u(β − x) | x ∈ K}
represent (the valuation relative to) the distance between β and K. The topology induced
by Vu(β, •) on (−∞, δ(β,K)] is generated by the sets (a, b], with b ∈ QΓv [18, Theorem
4.4]. This topology is metrizable if and only if Γv is countable; in particular, we have the
following.

Proposition 3.1 ([18, Corollary 4.8]). If Γv is not countable, then Zar(K(X)|V )cons is
not metrizable.

To conclude, we list some open problems on the topological properties of V, W and
their subsets.

• Is V zero-dimensional?
• Is V a normal space?
• Are V(δ1, •) and V(δ2, •) homeomorphic for δ1 6= δ2? (This is true if δ1 − δ2 ∈ Γv [18,

Proposition 3.9].)
• If Γv is countable, are V and W metrizable?
• If Γv is countable, is Zar(K(X)|V )cons metrizable?
• More generally, when is Zar(K|D)cons metrizable?
• If any of them is metrizable, can we find an ultrametric distance?
• What happens to V when the rank of V is not 1?
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