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1. Introduction

The Zariski topology on the set Over(D) of overrings of an integral domain was introduced as a nat-
ural generalization of the Zariski topology on the space Zar(D) of valuation overrings of D (called the 
Zariski space of D), which in turn was introduced by Zariski in order to tackle the problem of resolution of 
singularities [35,36].

It has been proved that Over(D), like Zar(D), is a spectral space, meaning that it is homeomorphic to 
the prime spectrum of a ring [10, Proposition 3.5]. There are other subspaces of Over(D) that are always 
spectral: for example, this happens for the space of integrally closed overrings [10, Proposition 3.6] and the 
space of local overrings [12, Corollary 2.14].

In the last two cases, the role of D in the definition of the space is merely to provide a setting (Over(D)): 
that is, for an overring, being integrally closed or local (or a valuation domain, for the case of Zar(D)) is a 
property completely independent from D. Indeed, with very similar proofs it is possible to generalize these 
results to the case of the spaces of rings comprised between two fixed rings (see e.g. [10, Propositions 3.5 
and 3.6] and [12, Example 2.13]), as well as using these methods to study spaces of modules [31, Example 2.2].

In this paper, we study four subspaces of Over(D) that are much more closely related to D; more precisely, 
such that, given an overring T , the belonging of T to the space depends not on the properties of T but 
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rather on the relation between D and T . In Section 3 we shall start from the space of localizations (at prime 
ideals); then we will consider the space of quotient rings (Section 4), sublocalizations of D (i.e., intersection 
of localizations of D; Section 5) and flat overrings (Section 6).

In each case, we will study two questions: under which conditions they are spectral spaces and under 
which condition they are closed in the constructible topology of Over(D). We shall answer completely these 
questions in the case of localizations (Theorem 3.2) and quotient rings (Corollary 4.3 and Theorem 4.4); 
for sublocalizations we will find a sufficient condition (Theorem 5.5), while for flat overrings we will prove 
a characterization that is, however, very difficult to use (Proposition 6.1). We shall also study the space of 
flat submodules of an R-module (for rings R that are not necessarily integral domains) and the possibility 
of representing the space of sublocalizations of D in a more topological way.

2. Preliminaries

2.1. Spectral spaces

A spectral space is a topological space homeomorphic to the prime spectrum of a (commutative, unitary) 
ring (endowed with the Zariski topology). Spectral spaces can be characterized topologically as those spaces 
that are T0 (i.e., such that for every pair of points at least one of them is contained in an open set not 
containing the other), compact, with a basis of open and compact subsets closed by finite intersections, and 
such that every nonempty irreducible closed subset has a generic point (i.e., it is the closure of a single 
point) [25, Proposition 4].

If X is a spectral space, the constructible topology (or patch topology) on X (which we denote by Xcons) 
is the coarsest topology such that the open and compact subspaces of the original topology are both open 
and closed. The space Xcons is always a spectral space, that is moreover Hausdorff and totally disconnected 
[25, Theorem 1].

A subset Y ⊆ X is said to be proconstructible if it is closed, with respect to the constructible topology; in 
this case, the constructible topology on Y coincides with the topology induced by the constructible topology 
on X, and Y (with the original topology) is a spectral space (this follows from [6, 1.9.5(vi-vii)]). The converse 
does not hold, i.e., a subspace Y of a spectral space X may be spectral but not proconstructible; however, 
the following result holds.

Lemma 2.1. Let Y ⊆ X be spectral spaces. Suppose that there is a subbasis B of X such that, for every 
B ∈ B, both B and B ∩ Y are compact. Then, Y is a proconstructible subset of X.

Proof. The hypothesis on B implies that the inclusion map Y ↪→ X is a spectral map; by [6, 1.9.5(vii)], it 
follows that Y is a proconstructible subset of X. �

For further results about the constructible topology and the relation between ultrafilters and the con-
structible topology, see [19,11,10,12].

2.2. The space X (X)

Let X be a spectral space. The inverse topology on X is the space X inv having, as a basis of closed sets, 
the open and compact subspaces of X; equivalently, it is the topology having as closed sets the subsets of 
X that are compact and closed by generizations. The space X inv is again a spectral space. Following [15], 
we denote by X (X) the space of nonempty subsets of X that are closed in the inverse topology; this space 
can be endowed with a topology having, as a basis of open sets, the sets of the form

U(Ω) := {Y ∈ X (X) | Y ⊆ Ω},
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as Ω ranges among the open and compact subspaces of X. Under this topology, X (X) is again a spectral 
space [15, Theorem 3.2(1)].

If X = Spec(R) for some ring R, we set X (R) := X (Spec(R)).

2.3. Semistar operations

Let D be an integral domain with quotient field K, and let F(D) be the set of D-submodules of K. 
A semistar operation on D is a map � : F(D) −→ F(D) such that, for every I, J ∈ F(D) and every x ∈ K,

(1) I ⊆ I�;
(2) (I�)� = I�;
(3) if I ⊆ J then I� ⊆ J�;
(4) x · I� = (xI)�.

A semistar operation is called spectral if it is in the form sΔ for some Δ ⊆ Spec(D), where

IsΔ :=
⋂

{IDP | P ∈ Δ}

for every I ∈ F(D). If � is spectral, then (I ∩ J)� = I� ∩ J� for every I, J ∈ F(D).
Starting from any semistar operations �, we can define two maps �f and �̃ by putting, for every I ∈ F(D),

I�f =
⋃

{J� | J ⊆ I, J is finitely generated}

and

I �̃ :=
⋃

{(I : E) | 1 ∈ E�, E is finitely generated}.

Both �f and �̃ are semistar operations, and we always have (�f )f = �f and ˜̃� = �̃. If � = �f then � is said 
to be of finite type; on the other hand, � = �̃ if and only if � is spectral and of finite type.

If � = sΔ is a spectral operation, then � is of finite type if and only if Δ is compact [16, Corollary 4.4].
The space SStar(D) of semistar operations on D can be endowed with a topology having, as a basis of 

open sets, the sets of the form

VI := {� ∈ SStar(D) | 1 ∈ I�},

as I ranges in F(D). In the induced topology, both the space SStarf (D) of finite-type operations and the 
space SStarf,sp(D) of finite-type spectral operations are spectral (see [16, Theorem 2.13] for the former and 
[13, Theorem 4.6] for the latter). Moreover, SStarf,sp(D) is homeomorphic to X (D) [15, Proposition 5.2].

2.4. The t-operation

Let D be an integral domain with quotient field K, and let � be a semistar operation on D. If D� = D, then 
the restriction of � to the set F(D) of fractional ideals of D is said to be a star operation on D. A classical 
example of a star operation is the divisorial closure (or v-operation), which is defined by Iv := (D : (D : I)), 
where (I : J) := {x ∈ K | xJ ⊆ I}; the divisorial closure is the biggest star operation on D, in the sense 
that I� ⊆ Iv for every star operation � and every I ∈ F(D).

The t-operation is the finite-type operation associated to the v-operation; that is, t := vf . The t-operation 
is the biggest finite-type star operation. The w-operation, defined by w := t̃ = ṽ, is the biggest spectral star 
operation of finite type.
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If � is a star operation on D, a prime ideal P of D such that P = P � is said to be a �-prime; the set of 
all �-primes is called the �-spectrum and is denoted by QSpec�(D). If � = sΔ is a spectral star operation, 
then QSpec�(D) = Δ↓ = {Q ∈ Spec(D) | Q ⊆ P for some P ∈ Δ}.

We always have D =
⋂
{DP | P ∈ QSpect(D)}.

See [20, Chapter 32] for more properties of star operations.

2.5. Overrings

Let D be an integral domain with quotient field K. An overring of D is a ring comprised between D
and K. The space Over(D) of the overrings of D can be endowed with a topology having, as a basis of open 
sets, the sets of the form

B(x1, . . . , xn) := {T ∈ Over(D) | x1, . . . , xn ∈ T} = Over(D[x1, . . . , xn]),

as x1, . . . , xn range in K. Under this topology, Over(D) is a spectral space [10, Proposition 3.5].

3. Localizations

The first space we analyze is the space of localizations of an integral domain D at its primes ideals, which 
we denote by Loc(D); that is,

Loc(D) := {DP | P ∈ Spec(D)}.

Definition 3.1. Let D be an integral domain. We say that D is rad-colon coherent if, for every x ∈ K \D, 
there is a finitely generated ideal I such that rad(I) = rad((D :D x)), i.e., if and only if D((D :D x)) is 
compact in Spec(D) for every x ∈ K.

Obvious examples of rad-colon coherent domains are Noetherian domains or, more generally, domains 
with Noetherian spectrum. Another large class of such domains is the class of coherent domains, i.e., domains 
where the intersection of two finitely generated ideals is still finitely generated; this follows from the fact 
that (D :D x) = D ∩ x−1D. In particular, this class contains all Prüfer domains [20, Proposition 25.4(1)], 
or more generally the polynomial rings in finitely many variables over Prüfer domains [22, Corollary 7.3.4]. 
See the following Example 3.3 for a domain that is not rad-colon coherent.

Theorem 3.2. Let D be an integral domain.

(a) Loc(D) is a spectral space.
(b) Loc(D) is proconstructible in Over(D) if and only if D is rad-colon coherent.

Proof. (a) By [7, Lemma 2.4], the map

λ : Spec(D) −→ Over(D)

P �−→ DP

is a topological embedding whose image is exactly Loc(D). In particular, since Spec(D) is a spectral space, 
so is Loc(D).
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(b) We first note that

B(x) ∩ Loc(D) = {DP ∈ Loc(D) | x ∈ DP }
= {DP ∈ Loc(D) | 1 ∈ (DP : x) ∩D} =
= {DP ∈ Loc(D) | 1 ∈ (D :D: x)DP } =
= {DP ∈ Loc(D) | (D :D: x) � P} = λ(D((D :D x))).

Suppose Loc(D) is proconstructible in Over(D). Since, for any x ∈ K, B(x) is also a proconstructible 
subspace of Over(D), then B(x) ∩ Loc(D) is closed in Over(D)cons; since the Zariski topology is weaker 
than the constructible topology, B(x) ∩ Loc(D) must be compact in the Zariski topology. By the previous 
calculation, B(x) ∩Loc(D) = λ(D(D :D x)), and thus D((D :D x)) must be compact. Hence, D is rad-colon 
coherent.

Conversely, suppose D is rad-colon coherent. Then, each B(x) ∩ Loc(D) is compact, and thus {B(x) ∩
Loc(D) | x ∈ K} is a subbasis of compact subsets for Loc(D); applying Lemma 2.1 we see that Loc(D) is 
a proconstructible subset of Over(D). �

As a first use of this theorem, we give an example of a domain that is not rad-colon coherent.

Example 3.3. Let D be an essential domain that is not a PvMD; that is, suppose that D is the intersection 
of a family of valuation rings, each of which is a localization of D, but suppose that there is a t-prime ideal 
P such that DP is not a valuation ring. Such a ring does indeed exist – see [23].

Let E be the set of prime ideals P of D such that DP is a valuation domain. Since D is not a PvMD, not 
all t-primes are in E . Since E ⊆ QSpect(D) [27, Lemma 3.17], we thus have E � QSpect(D). If E is compact, 
then sE is a semistar operation of finite type on D; however, since D is essential (and thus, by definition, ⋂
{DP | P ∈ E} = D) we have DsE = D, and thus the restriction of sE to the fractional ideals of D is a 

spectral star operation of finite type, which implies that IsE ⊆ Iw. In particular,

E = QSpecsE (D) ⊇ QSpecw(D) ⊇ QSpect(D),

and thus E = QSpect(D), a contradiction. Therefore, E is not compact.
However, λ(E) = Loc(D) ∩ Zar(D); if Loc(D) were to be proconstructible in Over(D), so would be λ(E)

(since Zar(D) is always proconstructible). But this would imply that λ(E) is, in particular, compact, a 
contradiction. Hence Loc(D) is not proconstructible in Over(D), and D is not rad-colon coherent.

There are at least three natural ways to extend Loc(D) to non-local overrings of D.
The first is by considering general localizations of D (which we will call, for clarity, quotient rings), 

that is, overrings in the form S−1D for some multiplicatively closed subsets S of D. We denote this set by 
Overqr(D).

The second is through the set of flat overrings of D (that is, overrings that are flat when considered as 
D-modules). We denote this set by Overflat(D).

The third is by considering sublocalizations of D, i.e., overrings that are intersection of localizations (or, 
equivalently, quotient rings) of D. We denote this set by Oversloc(D).

It is well-known that Overqr(D) ⊆ Overflat(D) ⊆ Oversloc(D), and that both inclusions may be strict. For 
example, any overring of a Prüfer domain is flat, but it need not be a quotient ring: in the case of Dedekind 
domains, this happens if and only if the class group of D is torsion [21, Corollary 2.6] (more generally, a 
Prüfer domain D such that Overqr(D) = Overflat(D) is said to be a QR-domain – see [20, Section 27] or 
[18, Section 3.2]). As for sublocalizations that are not flat, we shall give an example later (Example 6.3); 
see also [24].
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In all three cases, a natural question is to ask if (or when) the spaces are spectral, and if (or when) they 
are proconstructible in Over(D); moreover, we could ask if there is some construction through which we 
can represent them. We shall treat the case of quotient rings in Section 4, the case of sublocalizations in 
Section 5 and the case of flat overrings in Section 6.

A first result is a relation between their proconstructibility and the proconstructibility of Loc(D).

Proposition 3.4. Let D be an integral domain. If Overqr(D) or Overflat(D) is proconstructible, then D is 
rad-colon coherent.

Proof. Let X be either Overqr(D) or Overflat(D), and let LocOver(D) be the space of local overrings of D. 
Then, X ∩LocOver(D) = Loc(D); since LocOver(D) is always proconstructible [12, Corollary 2.14], if X is 
proconstructible so is Loc(D). By Theorem 3.2(b), it follows that D is rad-colon coherent. �

Note that Oversloc(D) ∩ LocOver(D) may not be equal to Loc(D) – see Example 6.3.

4. Quotient rings

As localizations at prime ideals of D can be represented through Spec(D), we can represent quotient rings 
by multiplicatively closed subsets; more precisely, there is a one-to-one correspondence between Overqr(D)
and the set of multiplicatively closed subsets that are saturated. For technical reasons, it is more convenient 
to work with the complements of multiplicatively closed subsets.

Definition 4.1. Let R be a ring (not necessarily a domain). A semigroup prime on R is a nonempty subset 
Q ⊆ R such that:

(1) for each r ∈ R and for each π ∈ Q, rπ ∈ Q;
(2) for all σ, τ ∈ R \ Q, στ ∈ R \ Q;
(3) Q �= R.

By [30, (2.3)], a nonempty Q ⊆ R is a semigroup prime of R if and only if it is a union of prime ideals, 
if and only if R \ Q is a saturated multiplicatively closed subset.

Let S(R) denote the set of semigroup primes of a ring R. As in [30] and in [14], we endow S(R) with 
the topology (which we call the Zariski topology) whose subbasic closed sets have the form

VS(x1, . . . , xn) := {Q ∈ S(R) | x1, . . . , xn ∈ Q},

as x1, . . . , xn ranges in R; equivalently, we can consider the subbasis of open sets

DS(x1, . . . , xn) := S(R) \ VS(x1, . . . , xn) = {Q ∈ S(R) | xi /∈ Q for some i}.

We collect the properties of this topology of our interest in the next proposition.

Proposition 4.2. [14, Propositions 2.3 and 3.1] Let R be a ring and endow S(R) with the Zariski topology.

(a) The family {DS(x) | x ∈ R} is a basis of compact and open subsets of S(R), which is closed by 
intersections.

(b) The set-theoretic inclusion Spec(R) ↪→ S(R) is a topological embedding.
(c) S(R) is a spectral space.
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(d) Suppose D is an integral domain. The map

λqr : S(D) −→ Over(D)

Q �−→ (R \ Q)−1D

is a topological embedding whose image is Overqr(D).

In particular, by points (c) and (d) of the previous proposition we get immediately the following result.

Corollary 4.3. Overqr(D) is a spectral space for every integral domain D.

On the other hand, proconstructibility holds less frequently for Overqr(D) than it does for Loc(D).

Theorem 4.4. Let D be an integral domain with quotient field K. Then, Overqr(D) is proconstructible in 
Over(D) if and only if, for every x ∈ K, the ideal rad((D :D x)) is the radical of a principal ideal.

Proof. As in the proof of Theorem 3.2, we see that an overring T is in B(x) ∩ Overqr(D) if and only if 
T = λqr(Q) for some semigroup prime Q not containing (D :D x). Moreover, we note that a semigroup 
prime contains an ideal I if and only if it contains the radical of I.

Therefore, if each rad((D :D x)) is the radical of a principal ideal, then each B(x) ∩ Overqr(D) is 
equal to λqr(DS(y)) for some y ∈ D. However, by Proposition 4.2(a), DS(y) is compact, and thus so is 
B(x) ∩ Overqr(D); by Lemma 2.1, Overqr(D) is proconstructible in Over(D).

Conversely, suppose there is a x ∈ K be such that I := rad((D :D x)) is not the radical of a principal 
ideal.

Claim 1 : let y ∈ D. Then, D[y−1] ∈ B(x) if and only if y ∈ I.
If x ∈ D[y−1], then

1 ∈
(
D

[
y−1] :D[y−1] x

)
= (D :D x)D

[
y−1] , (1)

since D[y−1] is flat over D.
If now P ∈ V(I) (i.e., I ⊆ P ), then in particular (D :D x) ⊆ P , and so PD[y−1] = D[y−1]; it follows that 

y ∈ P . Since this happens for every P ∈ V(I) and I is a radical ideal, y ∈ I.
Suppose now that y ∈ I. Then, every prime ideal containing I explodes in D[y−1], and thus ID[y−1] =

D[y−1]. Therefore, the same happens to (D :D x), and so x ∈ D[y−1] (with the same calculation of (1), just 
backwards).

Let now U := {B(z−1) | z ∈ I}.

Claim 2 : U is an open cover of B(x) ∩ Overqr(D).
Let T ∈ B(x) ∩ Overqr(D): then, 1 ∈ (T :T x) = (D :D x)T , and thus there are d1, . . . , dn ∈ (D :D x), 

t1, . . . , tn ∈ T such that 1 = d1t1+· · ·+dntn. For every i, there is a wi ∈ D such that w−1
i ∈ T and witi ∈ D; 

let w := w1 · · ·wn. Then, w is invertible in T , and thus D[w−1] ⊆ T , that is, T ∈ B(w−1); moreover,

w = d1wt1 + · · · + dnwtn ∈ d1D + · · · + dnD ⊆ (D :D x) ⊆ I,

and so B(w−1) ∈ U . Therefore, U is a cover of B(x) ∩ Overqr(D).

Claim 3 : there are no finite subsets of U that cover B(x) ∩ Overqr(D).
Consider a finite subset U0 := {B(z−1

1 ), . . . , B(z−1
n )} of U , for some z1, . . . , zn ∈ I. In particular, 

rad(ziD) ⊆ I for every I; moreover, rad(ziD) �= I since I is not the radical of any principal ideal. It 
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follows that for every i there is a prime ideal Pi containing zi but not I. By prime avoidance, there is an 
y ∈ I \ (P1 ∪ · · · ∪ Pn); in particular, D[y−1] ∈ B(x) ∩ Overqr(D).

We claim that D[y−1] /∈ B(z−1
i ) for every i: indeed, zi ∈ Pi, and PiD[y−1] �= D[y−1]. Therefore, zi is not 

invertible in D[y−1], and z−1
i /∈ D[y−1]. Hence, D[y−1] is an element of B(x) ∩ Overqr(D) not contained in 

any element of U0, which thus is not a cover.

Therefore, B(x) ∩ Overqr(D) is not compact; it follows that Overqr(D) is not proconstructible, as 
claimed. �

We remark that the first implication of the previous theorem follows also from [24, Theorem 2.5] and the 
following Theorem 5.5.

Corollary 4.5. Let D be a Noetherian domain, and let X1(D) be the set of height-1 prime ideals of D. The 
following are equivalent:

(i) Overqr(D) is proconstructible in Over(D);
(ii) D =

⋂
{DP | P ∈ X1(D)} and every P ∈ X1(D) is the radical of a principal ideal.

Proof. (i =⇒ ii) Suppose that Overqr(D) is proconstructible.
Let Q be a prime t-ideal, and consider A :=

⋂
{DP | P ∈ D(Q)}. We claim that A �= D: indeed, if A = D, 

then the map � : I �→
⋂
{IDP | P ∈ D(Q)} would be a star operation of finite type (since D(Q) is compact) 

such that Q� = D � Q = Qt, i.e., it would not be smaller than the t-operation, an absurdity. Hence, there 
is an x ∈ A \D, and rad((D :D x)) = Q. By Theorem 4.4, Q = rad(yD) for some y ∈ D.

If Q has not height 1, then this contradicts the Principal Ideal Theorem; thus, QSpect(D) = X1(D), and 
D =

⋂
{DP | P ∈ X1(D)}.

(ii =⇒ i) Conversely, suppose that the two conditions hold; the first one implies that QSpect(D) = X1(D)
(since X1(D) is a compact subspace of Spec(D)). For every x ∈ K \ D, (D :D x) is a proper t-ideal, and 
thus its minimal primes are t-ideals, i.e., have height 1. However, (D :D x) has only finitely many minimal 
primes, say P1, . . . , Pn, and by hypothesis Pi = rad(yiD) for some yi ∈ D; hence, rad((D :D x)) is the 
radical of the principal ideal y1 · · · ynD. By Theorem 4.4, Overqr(D) is proconstructible. �
Corollary 4.6. Let D be a Krull domain, and let X1(D) be the set of height-1 prime ideals of D. Then, the 
following are equivalent:

(i) Overqr(D) is proconstructible in Over(D);
(ii) each P ∈ X1(D) is the radical of a principal ideal;
(iii) the class group of D is a torsion group.

Proof. The equivalence between (i) and (ii) follows as in the previous corollary, noting that D =
⋂
{DP | P ∈

X1(D)} holds for every Krull domain; the equivalence of (ii) and (iii) follows from the proof of Theorem 1 
of [32]. �
5. Sublocalizations

Our first result about Oversloc(D) shows a striking difference between the space of sublocalizations and 
the spaces we considered in the previous sections.

Proposition 5.1. Let D be an integral domain. Then, Oversloc(D) is a spectral space if and only if it is 
proconstructible in Over(D).
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Proof. If Oversloc(D) is proconstructible, then it is spectral. On the other hand, for every x1, . . . , xn ∈ K, 
the intersection B(x1, . . . , xn) ∩ Oversloc(D) is compact, since it has a minimum, namely the intersection 
of the localizations of D that contain x1, . . . , xn. Since {B(x1, . . . , xn) ∩ Oversloc(D) | x1, . . . , xn ∈ K}
is a subbasis of Oversloc(D), by Lemma 2.1 if Oversloc(D) is spectral then it is also proconstructible in 
Over(D). �

We are now tasked to study the spectrality of Oversloc(D). To this end, we use spectral semistar opera-
tions; more precisely, we use the fact that there is a map

π : SStarsp(D) −→ Oversloc(D)

� �−→ D�

that is continuous [12, Proposition 3.2(2)] and surjective (by definition of Oversloc(D)). We shall use the 
following topological lemma.

Lemma 5.2. Let φ : X −→ Y be a continuous surjective map between two topological spaces. Suppose that:

(a) X is spectral;
(b) Y is T0;
(c) there is a subbasis C of Y such that, for every C ∈ C, φ−1(C) is compact.

Then, Y is a spectral space and φ is a spectral map.

Proof. Let Ω := O1 ∩ . . . ∩ Om be a finite intersection of elements of C. Then, φ−1(Ω) =
⋂

i φ
−1(Oi) is 

compact, since X is spectral and each φ−1(Oi) is compact by hypothesis; moreover, since φ is surjective, 
also Ωi = φ(φ−1(Ω)) is compact. Therefore, the set C0 of finite intersections of elements of C is a basis of 
compact subsets. If now Ω′ is any open and compact subset of Y , then Ω is a finite union of elements of C0, 
and thus φ−1(Ω′) is also compact.

The claim now follows from [8, Proposition 9]. �
Proposition 5.3. Let D be an integral domain. If SStarsp(D) is a spectral space, then so is Oversloc(D).

Proof. Let B := {B(x) ∩ Oversloc(D) | x ∈ K} be the canonical subbasis of Oversloc(D). Then,

π−1(B(x) ∩ Oversloc(D)) = {� ∈ SStarsp(D) | x ∈ D�} =
= {� ∈ SStarsp(D) | 1 ∈ x−1D�} =
= {� ∈ SStarsp(D) | 1 ∈ (x−1D)�} =
= {� ∈ SStarsp(D) | 1 ∈ (x−1D ∩D)�} =
= Vx−1D∩D ∩ SStarsp(D) = V(D:Dx) ∩ SStarsp(D).

However, V(D:Dx) ∩ SStarsp(D) is compact since it has a minimum (explicitly, sD((D:Dx))). Hence, the map 
π : SStarsp(D) −→ Oversloc(D) satisfies the hypothesis of Lemma 5.2, and thus Oversloc(D) is a spectral 
space. �

However, SStarsp(D) is not, in general, a spectral space. To avoid this problem, we restrict π to the 
space SStarf,sp(D) (which is always spectral [13, Theorem 4.6]), obtaining the map πs : SStarf,sp(D) −→
Oversloc(D); analogously to the previous proof, we need to show that πs is surjective and that π−1

s (B(x) ∩
Oversloc(D)) is compact. We claim that D being rad-colon coherent is a sufficient condition for this to 
happen; we need a lemma.
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Lemma 5.4. Let D be an integral domain, and let � be a spectral semistar operation on D.

(a) If D(F ∩D) is a compact subset of Spec(D) for every finitely generated fractional ideal F of D, then 
�f = �̃.

(b) If D is rad-colon coherent, then D�f = D�̃.

Note that the equality �f = �̃ may actually fail; see [2, p.2466].

Proof. (a) Since �f and �̃ are of finite type, it is enough to show that F �f = F �̃ if F is finitely generated. 
The containment F �̃ ⊆ F �f always holds; suppose x ∈ F �f . Then, since F �f ⊆ F �, we have x ∈ F �. 
Consider I := x−1F ∩D. Then, xI = F ∩ xD ⊆ F . Moreover,

I� = (x−1F ∩D)� = x−1F � ∩D�

since � is spectral, and thus 1 ∈ I�. Since x−1F is finitely generated, by hypothesis D(I) is compact, and 
thus there is a finitely generated ideal J of D such that rad(I) = rad(J); passing, if needed, to a power of 
J , we can suppose J ⊆ I, so that xJ ⊆ xI ⊆ F . For any spectral operation 	, rad(A) = rad(B) implies that 
1 ∈ A� if and only if 1 ∈ B�; therefore, 1 ∈ J�, and thus x ∈ (F : J) ⊆ F �̃, and x ∈ F �̃. Hence, �f = �̃, as 
requested.

(b) It is enough to repeat the proof of the previous point by using F = D, and noting that D(x−1D∩D)
is compact since D is rad-colon coherent. �
Theorem 5.5. Let D be an integral domain. If D is rad-colon coherent, then Oversloc(D) is a spectral space.

Proof. Suppose D is rad-colon coherent. If T ∈ Oversloc(D), then there is a 	 ∈ SStarsp(D) such that 
T = D�; since D is D-finitely generated, moreover, we have D� = D�f . By Lemma 5.4(b), D�f = D�̃; but 
	̃ ∈ SStarf,sp(D), and thus πs is surjective.

As in the proof of Proposition 5.3,

π−1
s (B(x) ∩ Oversloc(D)) = V(D:Dx) ∩ SStarf,sp(D),

which is compact since it has a minimum (sD((D:Dx))). Since SStarf,sp(D) is a spectral space [13, Theo-
rem 4.6], by Lemma 5.2 Oversloc(D) is spectral. �
Corollary 5.6. If D is a domain with Noetherian spectrum (in particular, if D is Noetherian) then 
Oversloc(D) is a spectral space.

Note that it is not hard to see that, if D(J) is not compact in Spec(D), then VJ ∩SStarf,sp(D) is actually 
not compact; therefore, the proof of Theorem 5.5 cannot easily be further generalized.

Another natural question is whether πs is injective; however, this is usually false. For example, if Δ is any 
subset of Spec(D) containing the t-spectrum, then πs(sΔ) = D. Thus, πs does not give a way to “represent” 
Oversloc(D) like Spec(D) does for Loc(D) and S(D) for Overqr(D). To circumvent this problem, we shall 
use, instead of the whole spectrum, the t-spectrum; note that QSpect(D) is a proconstructible subspace of 
Spec(D) [5, Proposition 2.5], so a spectral space, and thus the space X (QSpect(D)) is defined and spectral.

Consider the map

πt : X (QSpect(D)) −→ Oversloc(D)

Δ �−→ DsΔ .
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Note that, if D is rad-colon coherent, πt is continuous and spectral, since it is the composition of the spectral 
inclusion X (QSpect(D)) ↪→ X (D) ([15, Proposition 4.1], noting the inclusion QSpect(S) ↪→ Spec(D) is 
spectral since QSpect(D) is proconstructible), the homeomorphism X (D) −→ SStarf,sp(D) and the map 
πs : SStarf,sp(D) −→ Over(D) (which is spectral by Lemma 5.2 and the proof of Theorem 5.5).

We first show that, using πt, we do not lose anything.

Proposition 5.7. Let D be an integral domain. Then:

(a) for any Δ, Λ ∈ X (D), if Δ ∩ QSpect(D) = Λ ∩ QSpect(D) then πs(sΔ) = πs(sΛ);
(b) πs(SStarf,sp(D)) = πt(X (QSpect(D))).

Proof. It is enough to show that, for every Δ ∈ X (D), πs(Δ) = πs(Δ0), where Δ0 := Δ ∩ QSpect(D). Let 
T := πs(sΔ); then, since Δ is a proconstructible subset of Spec(D), also Δ0 is proconstructible. In particular, 
Δ0 is compact and closed by generizations relative to QSpect(D), and so it belongs to X (QSpect(D)). We 
claim that T = πt(Δ0).

Indeed, let P ∈ Δ. Then, tP : IDP �→ ItDP is a star operation of finite type on DP (see [26]), and 
QDP is a maximal tP -ideal if and only if Q is maximal among the t-prime ideals contained in P . Hence, 
DP =

⋂
{DQ | Q ⊆ P, Q = Qt}, and

T =
⋂

{DQ | Q = Qt, Q ⊆ P for some P ∈ Δ}.

The set of primes on the right hand side is exactly Δ0. Therefore, T = πt(Δ0) ∈ πt(X (QSpect(D))), and 
(a) is proved.

Moreover, this also shows that πs(SStarf,sp(D)) ⊆ πt(X (QSpect(D))); since the other inclusion is obvi-
ous, (b) holds. �

The t-spectrum is much less redundant than Spec(D): indeed, if D =
⋂
{DP | P ∈ Δ} for some compact 

Δ ⊆ QSpect(D), then Δ must contain the t-maximal ideals, since t is the biggest star operation of finite 
type. In general, πt is not always injective; however, when this happens then πt is also a homeomorphism, 
as the next proposition shows.

Proposition 5.8. Let D be a rad-colon coherent domain. Then, the following are equivalent:

(i) πt is a homeomorphism;
(ii) πt is injective;
(iii) if Δ, Λ ∈ X (D) are such that πs(sΔ) = πs(sΛ), then Δ ∩ QSpect(D) = Λ ∩ QSpect(D).

Proof. The implication (i =⇒ ii) is obvious; the equivalence between (ii) and (iii) follows from Proposi-
tion 5.7.

Suppose now that πt is injective; then, πt is bijective (since it is also surjective by Theorem 5.5, being 
D rad-colon coherent), continuous and spectral. Clearly, if Δ ⊇ Λ then πt(Δ) ⊆ πt(Λ). Conversely, suppose 
πt(Δ) ⊆ πt(Λ): then, T :=

⋂
{DP | P ∈ Δ} ⊆

⋂
{DQ | Q ∈ Λ}, and thus T ⊆ DQ for every Q ∈ Λ. Hence, 

πt(Δ) = πt(Δ ∪ Λ), and by the injectivity of πt is must be Δ = Δ ∪ Λ, i.e., Λ ⊆ Δ. Therefore, πt is also an 
order isomorphism (in the order induced by the respective topologies of X (QSpect(D)) and Oversloc(D)); 
by [25, Proposition 15], πt is a homeomorphism. �

A t-prime ideal P of D is well-behaved if PDP is t-closed in DP [34]; this is equivalent to DP being a 
DW-domain, i.e., to the fact that, on DP , the w-operation coincides with the identity (this follows from 
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[29, Proposition 2.2]). A domain is called well-behaved if every t-prime ideal is well-behaved; examples of 
well-behaved domains are Noetherian domains, Krull domains and domains where every t-prime ideal has 
height 1.

Proposition 5.9. Let D be an integral domain. Then, D is well-behaved if and only if the map πt :
X (QSpect(D)) −→ Oversloc(D) is injective.

Proof. Suppose πt is injective, and let P ∈ QSpect(D) and Δ := QSpect(DP ). Then, Δ is compact (being 
proconstructible in Spec(DP )), and thus Δ ∩D := {Q ∩D | P ∈ Δ} is a compact subspace of QSpect(D), 
since it is the continuous image of Δ under the canonical map Spec(DP ) −→ Spec(D). If PDP /∈ Δ, then 
P /∈ Δ ∩D; however,

πt(Δ ∩D) =
⋂

{DQ∩D | Q ∈ Δ} =
⋂

{(DP )Q | Q ∈ Δ} = DP ,

with the last equality coming from the properties of the t-spectrum. If we denote by Λ1 the closure in the 
inverse topology of QSpect(D) of Δ ∩D, and by Λ2 the closure of (Δ ∩D) ∪{P}, we have thus πt(Λ1) = πt(Λ2)
while Λ1 �= Λ2, against the injectivity of πt.

On the other hand, suppose D is well-behaved. Suppose πt(Δ) = πt(Λ) =: T for some Δ, Λ ∈
X (QSpect(D)), Δ �= Λ, and let P ∈ Δ \ Λ. By [7, Lemma 2.4], the subspace {DQ | Q ∈ Λ} ⊆ Over(D) is 
compact; then,

DP = DPT = DP

⋂
Q∈Λ

DQ =
⋂
Q∈Λ

DPDQ,

with the last equality coming from [17, Corollary 5]. The family {DPDQ | Q ∈ Λ} is again compact [17, 
Lemma 4]; thus, � : I �→

⋂
Q∈Λ IDPDQ is a finite-type spectral semistar operation such that D� = DP , 

and thus it restricts to a finite-type star operation �′ on DP . Since PDP is t-closed, and �′ is of finite type, 
(PDP )�′ must be equal to PDP ; however,

P �′
= P � =

⋂
Q∈Λ

PDQDP =
⋂
Q∈Λ

DQDP = DP ,

since P � Q for every Q ∈ Λ. This is a contradiction, and πt is injective. �
Remark 5.10.

(1) There are examples of integral domains that are not well-behaved (see [34, Section 2] or [1, Example 1.4]), 
and thus πt is not always injective.

(2) It would be tempting to substitute the space X (QSpect(D)) with X (Δ), where Δ is the set of well-
behaved t-prime ideals of D. However, Δ may not be compact and thus, a fortiori, may not be a 
spectral space. For example, consider a domain D and a prime ideal Q that is a maximal t-ideal (that 
is, P is maximal among the ideals I such that I = It) but not well-behaved. (An explicit example 
is E + XES [X], where E is the ring of entire functions, X is an indeterminate and S is the set of 
finite products of elements of the form Z − α, as α ranges in C; see [33, Example 2.6, Section 4.1 and 
Proposition 4.3].) Let Λ be the set of prime ideals that are associated to some principal ideal; then, 
P ∈ Λ if and only if P is minimal over the ideal (bD :D aD), for some a, b ∈ D.
Since a principal ideal is t-closed, so is (bD :D aD) = b

aD∩D; moreover, a minimal prime over a t-ideal 
is again a t-ideal, and thus Λ ⊆ QSpect(D). Moreover, if P ∈ Λ then PDP will be associated to a 
principal ideal of DP (if P is minimal over (bD :D aD), then PDP is minimal over (bD :D aD)DP =
(bDP :DP

aDP )). Hence, each prime of Λ is well-behaved, and Λ ⊆ Δ.
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By [4], we have D =
⋂
{DP | P ∈ Λ}, and thus also D =

⋂
{DP | P ∈ Δ}. If Δ were compact, it would 

define a finite-type star operation � : I �→
⋂
{IDP | P ∈ Δ} such that Q� = D. On the other hand, we 

should have � ≤ t and thus Q� ⊆ Qt = Q, a contradiction. Hence, Δ is not compact.

Recall that a domain is v-coherent if, for any ideal I, (D : I) = (D : J) for some finitely generated 
ideal J .

Corollary 5.11. Let D be a v-coherent domain. Then, πt is injective.

Proof. Since D is v-coherent, (IDQ)t = ItDQ for every ideal I of D [26, proof of Proposition 4.6] and every 
Q ∈ Spec(D); thus, if P ∈ QSpect(D) then (PDP )t = P tDP = PDP . By Proposition 5.9, πt is injective. �
6. Flat overrings

The space Overflat(D) of flat overrings of D is much more mysterious than Overqr(D) and Oversloc(D), 
and we are not able to characterize when it is spectral or proconstructible. The main theorem of this section 
is the following partial result.

Proposition 6.1. Let D be an integral domain. Then, Overflat(D) is a proconstructible subspace of Over(D)
if and only if Overflat(D) ∩ B(x1, . . . , xn) is compact for every x1, . . . , xn ∈ K.

Proof. If Overflat(D) is proconstructible, the compactness of Overflat(D) ∩ B(x1, . . . , xn) follows like in the 
proof of Proposition 5.1.

Suppose that the compactness property holds, and let x1, . . . , xn ∈ K. Consider the canonical subbasis 
S := {B(x) ∩ X | x ∈ K} of X := Overflat(D). By [10, Proposition 3.3] and [19, Theorem 8] (or [10, 
Corollary 2.17]), we need to show that, for every ultrafilter U on X, the ring AU := {x ∈ K | B(x) ∩X ∈ U }
is flat.

Take a1, . . . , an ∈ D, x1, . . . , xn ∈ AU such that a1x1 + · · · + anxn = 0. For all C ∈ Overflat(D) ∩
B(x1, . . . , xn), by the equational characterization of flatness (see e.g. [28, Theorem 7.6] or [9, Corollary 6.5]) 
there are b(C)

jk ∈ D, y(C)
k ∈ C such that

{
0 = a1b

(C)
1k + · · · + anb

(C)
nk for all k

xi = b
(C)
i1 y

(C)
1 + · · · + b

(C)
iN y

(C)
N for all i.

(2)

Let Ω(C) := B(y(C)
1 , . . . , y(C)

nC ). Then, the family of the Ω(C) is an open cover of Overflat(D) ∩B(x1, . . . , xn). 
Hence, there is a finite subcover {Ω(C1), . . . , Ω(Cn)}; by the properties of ultrafilters, it follows that Ω(Cj) ∈
U for some j. Thus, y(Cj)

i ∈ AU for all i; then, (2) holds in AU . Hence, applying again the equational 
criterion, AU is flat. �
Corollary 6.2. Let D be an integral domain such that Overflat(D) = Oversloc(D). Then, Overflat(D) is a 
proconstructible subset of Over(D). In particular, D is rad-colon coherent.

Proof. It is enough to note that Oversloc(D) ∩ B(x1, . . . , xn) has always a minimum, and apply Proposi-
tion 6.1. �
Example 6.3. The space of flat overrings can be spectral even if it is not proconstructible.

Let K be a field, and let D := K[[X2, X3, XY, Y ]]; that is, D is the set of the power series in two variables 
over K without the monomial corresponding to X. Then, D is a two-dimensional local Noetherian domain; 
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its integral closure is A := K[[X, Y ]] = D[X], which is also equal to the intersection of the localizations at 
the height-1 primes of D. (In particular, A is a local sublocalization of D that is not a localization.) By 
Corollary 5.11, it is easy to see that the sublocalizations of D are D itself and the intersections T (Δ) :=⋂
{DP | P ∈ Δ}, as Δ ranges among the subsets of X1(D) := {P ∈ Spec(D) | P has height 1}.
A power series φ :=

∑
i,j≥0 aijX

iY j is invertible in A if and only if a00 �= 0; hence, if φ ∈ A is not invertible 
then φ2 ∈ D. Since every height-1 prime ideal of A is principal (being A a unique factorization domain) 
and the canonical map Spec(A) −→ Spec(D) is surjective, every height-1 prime ideal of D is the radical of 
a principal ideal (if P = Q ∩D, for Q ∈ Spec(A), Q = φA, then P is the radical of φ2D). Hence, T (Δ) is a 
quotient ring of D for every Δ � X1(D); in particular, they are all flat. Hence, Overqr(D) = Overflat(D) is 
spectral; however, (D :D X) is equal to the maximal ideal of D, which cannot be the radical of a principal 
ideal since it is of height 2. By Theorem 4.4, Overqr(D) (and so Overflat(D)) is not proconstructible.

The space Overflat(D) is, however, amenable to generalizations. Indeed, if R is a ring and M is an 
R-module, then the set SModR(M) of R-submodules of M can be endowed with a topology (called the 
Zariski topology) whose basic open sets are of the form

D(x1, . . . , xn) := {N ∈ SModR(M) | x1, . . . , xn ∈ N},

as x1, . . . , xn vary in M . Under this topology, SModR(M) is a spectral space [31, Example 2.2(2)]; moreover, 
if D is an integral domain with quotient field K, then the Zariski topology on Over(D) is exactly the 
restriction of the Zariski topology on SModD(K) = F(D), and Over(D) is proconstructible in F(D).

We can consider on SModR(M) the subspace SModFlatR(M) consisting of all flat R-submodules of M . 
Surprisingly, in many cases spectrality and proconstructibility of SModFlatR(M) are equivalent.

Proposition 6.4. Let R be a ring and M be an R-module; suppose that R is an integral domain or that M
is torsion-free. Then, SModFlatR(M) is a spectral space if and only if it is proconstructible in SModR(M).

Proof. Clearly if SModFlatR(M) is proconstructible in SModR(M) then it is spectral.
Conversely, suppose that Y := SModFlatR(M) is spectral. By Lemma 2.1, Y is proconstructible if and 

only if Ω ∩Y is compact for every Ω in some subbasis of SModR(M); since D(x1, . . . , xn) = D(x1) ∩· · ·∩D(xn)
for every x1, . . . , xn ∈ M , we can consider the subbasis {D(x) ∩ Y | x ∈ M}. By definition, D(x) ∩ Y =
{N ∈ Y | x ∈ Y }.

Let x ∈ M . If x has no torsion (so, in particular, if M is torsion-free), then the principal submodule 〈x〉
is isomorphic to R, which is flat; thus, D(x) ∩Y has a minimum, namely 〈x〉, and D(x) ∩Y is compact. On 
the other hand, if R is an integral domain, then every flat R-module is torsion-free [3, I.2, Proposition 3]; 
thus, if x has torsion then no module containing x can be flat, and so D(x) ∩ Y must be empty (and in 
particular compact).

In all the cases considered, it follows that SModFlatR(M) is proconstructible in SModR(M). �
Corollary 6.5. Let D be an integral domain with quotient field K, and suppose that D is not rad-colon 
coherent. Then, SModFlatD(K) is not a spectral space.

Proof. The space Over(D) is proconstructible in SModD(K) [31, Example 2.2(5)], and thus Overflat(D) is 
proconstructible in Over(D) if and only if it is proconstructible in SModD(K). If SModFlatD(K) were spec-
tral, by Proposition 6.4, it would follow that it is proconstructible in SModD(K); thus, also the intersection 
Over(D) ∩ SModD(K) = Overflat(D) would be proconstructible in SModD(K).

However, if D is not rad-colon coherent then Overflat(D) is not proconstructible in Over(D) (Proposi-
tion 3.4); hence, SModFlatD(K) cannot be spectral. �
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