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THE SETS OF STAR AND SEMISTAR OPERATIONS
ON SEMILOCAL PRÜFER DOMAINS

DARIO SPIRITO

We study the sets of semistar and star operations on a semilocal Prüfer domain, with an emphasis on
which properties of the domain are enough to determine them. In particular, we show that these sets
depend chiefly on the properties of the spectrum and of some localizations of the domain; we also show
that, if the domain is h-local, the number of semistar operations grows as a polynomial in the number of
semistar operations of its localizations.

1. Introduction

Starting from the works of Krull [24], Gilmer [16, Chapter 32] and Okabe and Matsuda [26], the study
of star and semistar operations has usually followed the route of studying properties holding for some
classes of these operations, or of some particular cases: for example, studying the properties of stable,
spectral [1; 2; 12] or eab operations (see e.g., [13] and [10, Section 4]), or studying the t- [6; 28] or the
b-operation [23].

More recently, there has been interest in studying these closures from a global perspective, that is,
in studying the properties of the whole set: for example, studying a natural topology on the set of
semistar operations [9; 11], or studying the relationship between semistar and semiprime operations [8].
In particular, Houston, Mimouni and Park have been interested in the study of the cardinality of the
set of star operations in the Noetherian setting [18; 20], as well as in the integrally closed case (with
special interest in the case of Prüfer domains) [19; 21; 22]: in [21] they showed that there is a strong link
between the spectrum of a semilocal Prüfer domain D and the number of star operations on D, while
in [22, Theorem 4.3] they calculated the number of star operations when the spectrum of D is Y-shaped.
With different methods, Elliott showed that the structure of the set of semistar operations on a Dedekind
domain D (in particular, its cardinality) depends only on the number of maximal ideals of D [7].

In this paper, we deepen this study, linking it to Jaffard families (whose tie with star operations was
established in [29]) and extending it to semistar operations. In particular, we focus on which information
about a semilocal Prüfer domain D is sufficient to determine the sets SStar(D) and Star(D) of, respec-
tively, semistar and star operations; we do not require the rings to be finite-dimensional. We show in
Theorem 4.3 that SStar(D) can be determined by joining some geometric data (the spectrum of D, or
more precisely the homeomorphically irreducible tree underlying Spec(D)) and some algebraic data (the
set of semistar operations on some valuation rings of the form DP/Q DP ). We then show (Theorem 5.2)
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that, to determine Star(D), we must also add some information about the maximal ideals of D (namely,
if they are principal). We also show (Corollary 6.9) that the cardinality of SStar(D), when D is an h-local
domain with n maximal ideals, is a polynomial of degree n · 2n−1 in the number of semistar operations
on the localizations DP .

2. Notation and preliminaries

2A. Closures and semistar operations. Let (P,≤) be a partially ordered set. A closure operation on
P is a map c : P→ P such that:

(1) c is extensive: x ≤ c(x) for every x ∈ P;

(2) c is order-preserving: if x ≤ y, then c(x)≤ c(y);

(3) c is idempotent: c(c(x))= c(x) for every x ∈ P .

If x ∈ P is such that x = c(x), then x is said to be c-closed.
Let now D be an integral domain with quotient field K ; let F(D) be the set of D-submodules of K ,

and let F(D) be the set of fractional ideals of D, i.e., of the I ∈ F(D) such that x I ⊆ D for some x ∈ K ,
x 6= 0.

If ∗ : I 7→ I ∗ is a closure operation on F(D) or F(D), let (S) be the following property:

(S) x · I ∗ = (x I )∗ for every x ∈ K and every I where ∗ is defined.

This property is usually used to define the following three classes of closure operations:

• semistar operations are closure operations on F(D) with property (S);

• (semi)star operations are semistar operations ∗ such that D = D∗;

• star operations are closure operations ∗ on F(D) with property (S) and such that D = D∗.

We denote the sets of these closures, respectively, as SStar(D), (S)Star(D) and Star(D).
We shall need a fourth class of closure operations:

Definition 2.1. A fractional star operation on D is a closure operation on F(D) with property (S). We
denote their set by FStar(D).

These four sets are all partially ordered, with ∗1 ≤ ∗2 if I ∗1 ⊆ I ∗2 for every I (belonging to F(D) or
F(D), according to the case).

The identity map, I 7→ I , is a closure operation, and it is denoted by d both in the semistar and in the
star setting.

2B. Localizations of star operations. Let ∗ ∈ Star(D) and let T be a flat overring of D. Then, ∗ is
said to be extendable to T if the map

∗T : F(T )→ F(T )

IT 7→ I ∗T

is well-defined (where I is a fractional ideal of D) [29, Definition 3.1]. In this case, ∗T is a star operation.
The same definition can be given in the case of fractional star operations and semistar operations; it works
well in the former case, but poorly in the latter [29, Remark 5.12].
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2C. Jaffard families and localizations. Let D be an integral domain with quotient field K . An overring
of D is a ring between D and K ; the set of overrings of D is denoted by Over(D). A set 2 of overrings
of D is a Jaffard family of D if the following properties hold [29, Proposition 4.3]:

• I =
⋂
{IT | T ∈2} for every ideal I of D;

• 2 is locally finite (i.e., for every x ∈ K , x is not invertible in at most a finite number of T ∈2);

• K /∈2;

• TS = K for every T 6= S in 2;

• every T ∈2 is flat over D.

(This is only one possible definition; see [15, beginning of Section 6.3 and Theorem 6.3.5] for two
different characterizations.) In particular, if 2 is a Jaffard family of D, then [15, Theorem 6.3.1]

• for every prime ideal P of D there is exactly one T ∈2 such that PT 6= T ; in particular, 2 induces
a partition on Max(D);

• I =
⋂
{IT | T ∈2} for every I ∈ F(D).

If 2 is a Jaffard family of D, then, for every T ∈ 2, each star operation on D is extendable to T ;
moreover, the map

λ2 : Star(D)→
∏
T∈2

Star(T )

∗ 7→ (∗T )T∈2,

is an order isomorphism [29, Theorem 5.4]. An inspection of the proof of this result shows that the same
reasoning also gives a bijection from FStar(D) to

∏
{FStar(T ) | T ∈2}. On the other hand, the analogue

of this result does not hold for semistar operations [29, Remark 5.12].

2D. The standard decomposition. Let D be a Prüfer domain. Two maximal ideals M and N are
dependent if there is a nonzero prime ideal P ⊆ M ∩ N , or equivalently if DM DN 6= K . Since the
spectrum of a Prüfer domain is a tree, dependence is an equivalence relation. Let {1λ | λ ∈3} be the set
of equivalence classes of this relation, and define Tλ :=

⋂
{DP | P ∈1λ}; we call the set {Tλ | λ ∈3}

the standard decomposition of D. If D is semilocal, or more generally if Max(D) is a Noetherian space,
then the standard decomposition of D is a Jaffard family of D [29, Proposition 6.2].

2E. Semistar operations and quotients. Let D be a Prüfer domain, and suppose there is a nonzero
prime ideal P contained in the Jacobson radical Jac(D) of D. Then, P DP = P , and so DP is a fractional
ideal of D; it follows that every overring of D, except the quotient field K , is a fractional ideal of D.
Hence, in this case FStar(D)= SStar(D) \ {∧{K }} and (S)Star(D)= Star(D), where ∧{K } is the semistar
operation sending every nonzero I ∈ F(D) to K .

Let ϕ : DP→ DP/P =: k be the quotient map; then, A := D/P is a subring of k with quotient field k.
Let ∗ ∈ SStar(D) be a semistar operation such that P = P∗. Then, DP = (P : P) is also ∗-closed, and
thus, for every I ∈ F(D) such that P ⊆ I ⊆ DP , we have P ⊆ I ∗ ⊆ DP . Following [14] and [21], we
define a semistar operation ∗ϕ on D/P by

I ∗ϕ := ϕ(ϕ−1(I )∗) for every I ∈ F(D/P).
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Conversely, if ] ∈ SStar(D/P), then we can define a map ]ϕ from F(D) to itself in the following way:
let vP be the valuation relative to DP , and let I ∈ F(D). Then, we set I ]

ϕ

:= I if vP(I ) has no infimum
in vP(K ); otherwise, if vP(α)= inf vP(I ), then P ⊆ α−1 I ⊆ DP , and we put

I ]
ϕ

:= α ·ϕ−1
[(ϕ(α I ))]].

We have the following.

Proposition 2.2. Let D, P, A, ϕ as above; let11 := {∗ ∈ SStar(D) | P = P∗} and12 := {∗ ∈ SStar(D) |
P 6= P∗}. Then:

(a) The maps

11→ SStar(D/P)

∗ 7→ ∗ϕ

and
SStar(D/P)→11

] 7→ ]ϕ

are well-defined order isomorphisms, inverses one of each other, that restrict to isomorphisms be-
tween (S)Star(D)= Star(D) and (S)Star(D/P).

(b) The map

ιP : 12→ SStar(DP) \ {d}

∗ 7→ ∗|F(DP )

is a well-defined order isomorphism.

(c) If ∗1 ∈11 and ∗2 ∈12 then ∗1 ≤ ∗2.

Proof. (a) The proof is entirely analogous to the proof of [21, Lemmas 2.3 and 2.4].

(b) It is clear that ιP is well-defined and order-preserving; to see that it is bijective, it is enough to note that
the map ρP : SStar(DP)→ SStar(D) such that I ρP (∗) := (I DP)

∗ is well-defined, sends SStar(DP) \ {d}
to 12, and is the inverse of ιP .

(c) The overring DP is ∗1-closed for every ∗1 ∈ 11; hence, ∗1|F(DP ) is a (semi)star operation on DP

which closes P . Since DP a valuation domain, this implies that ∗1|F(DP ) is the identity; therefore,
I ∗1 ⊆ I DP for every I ∈ F(D). But, if ∗2 ∈12, then ∗2 = ρP(ιP(∗2)), so that I ∗2 ⊇ I DP for every I .
Hence, ∗1 ≤ ∗2. �

2F. Product and sum of posets. Let P1,P2 be two partially ordered sets. The product of P1 and P2,
denoted by P1×P2, is the partial order on the Cartesian product such that (x1, y1)≤ (x2, y2) if and only
if x1 ≤ x2 and y1 ≤ y2.

The ordinal sum of P1 and P2, denoted by P1⊕P2, is the partial order on the disjoint union of P1

and P2 such that the order on each Pi is the same, while if x ∈ P1 and y ∈ P2 then x ≤ y [4, Chapter 1,
Section 8].

Under this terminology, Proposition 2.2 can be rewritten as saying that SStar(D) is isomorphic to the
ordinal sum of SStar(D/P) and SStar(DP) \ {d}.
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2G. Homeomorphically irreducible trees. Let T be a finite tree. Then, T is said to be homeomorphi-
cally irreducible (or series-reduced) if no vertex has valence 2 (where the valence of x is the number of
elements of P directly linked to x) [3; 17]. When T is a rooted tree, we allow the root to have valence
2 (this is in contrast with the definition in [17] and [3], but is needed for our applications).

If T is a (possibly infinite) rooted tree, with root r , T has a natural structure of a partially ordered set,
where x ≤ y if the (unique) path from r to y passes through x . Call x ∈ T a branching point if x = r or
if there is a family 1⊆ T of pairwise incomparable elements such that x /∈1 but x is the infimum of 1;
we say that T is homeomorphically irreducible if each element of T is a branching point. If T is finite,
it is not hard to see that this definition coincides with the previous one.

Let T be a rooted tree. Then, the set of all branching points of T is an homeomorphically irreducible
tree, which we call the underlying homeomorphically irreducible tree associated to T .

3. The support of a semistar operation

In the paper, D will always indicate a Prüfer domain, and K its quotient field. We shall study only
semilocal Prüfer domains, that is, domains with only a finite number of maximal ideals; while many
definitions do make sense even in a more general setting, many results do not hold outside the semilocal
case. In particular, the two results we shall continuously use are the existence of a standard decomposition
2 and the following Proposition 3.2.

Definition 3.1. Let D be a semilocal Prüfer domain, and let 2 be its standard decomposition. The
skeleton of Over(D), indicated by SkOver(D), is the set of all intersections of elements of 2.

In particular, SkOver(D) contains D (the intersection of all elements of 2) and the quotient field
K (the empty intersection), as well as the elements of 2. We note that the structure (as a partially
ordered set) of SkOver(D) depends uniquely on the cardinality of 2, and that SkOver(D) is closed
under intersections.

The main use of SkOver(D) passes though the following proposition, which can be seen as a variant
of [21, Lemma 4.2].

Proposition 3.2. Let D be a semilocal Prüfer domain. Then, F(D) is the disjoint union of F(A), as A
ranges in SkOver(D).

Proof. Let 2 be the standard decomposition of D, let I ∈ F(D), and consider the set supp(I ) := {T ∈2 |
IT 6= K } (which we call the support of I ); we claim that I is a fractional ideal of A :=

⋂
{T | T ∈ supp(I )}.

Indeed, since 2 is a Jaffard family we have I =
⋂
{IT | T ∈2}. Moreover, we can throw away the

elements of 2 outside the support, so that I =
⋂
{IT | T ∈ supp(I )}; hence, I is an A-module. Each

T ∈2 is semilocal, and by the definition of the standard decomposition there is a nonzero prime ideal P
contained in the Jacobson radical Jac(T ) of T . Then, P = PTP ; in particular, pTP ⊆ T for every p ∈ P ,
so that TP is a fractional ideal of T and (IT )TP 6= K . Since TP is a valuation domain, it follows that IT
is a fractional ideal of TP , or equivalently aIT ⊆ TP for some a 6= 0. Hence, apIT ⊆ T for any p ∈ P;
choose one, and let dT := ap. Since supp(I ) is finite, we can define d as the product of such dT ; hence

d I = d
⋂
T∈2

IT =
⋂
T∈2

d IT ⊆
⋂
T∈2

T = A.

Therefore, I ∈ F(A), as claimed.
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Suppose now that F(A)∩F(B) 6= ∅ for some A 6= B in SkOver(D). We can suppose that A ( B
(just substitute A with A∩ B), and thus we can take T ∈2 containing A but not B. Each overring of A
is flat over D, and supp(B) is finite; hence, by [5, I.2.6, Proposition 6],

BT =
( ⋂

S∈supp(B)

S
)
· T =

⋂
S∈supp(B)

ST = K .

Let now I ∈ F(A)∩F(B); then, for every i ∈ I , i−1 I is a B-module containing 1, and thus B ⊆ i−1 I .
Since i−1 I is also an A-fractional ideal, it means that d B ⊆ A for some d 6= 0. Hence, d B ⊆ T , and
so d BT ⊆ T T = T ; however, BT = K , and thus we would have d K ⊆ T , a contradiction. Hence, the
union is disjoint. �

Remark 3.3. (1) SkOver(D) is the unique subset of Over(D) which allows us to split F(D) into sets
of fractional ideals. Indeed, if F(D)=

⊔
{F(A) | A ∈A} for some other A, then clearly A cannot

properly contain SkOver(D), and thus there is a B ∈ SkOver(D) \A. Thus, B ∈ F(A) for some
A ∈ A, and A ∈ F(B ′) for some B ′ ∈ SkOver(D); this means that B ∈ F(B ′), which implies that
B = B ′ = A. But, for any two overrings R1 and R2, F(R1) = F(R2) implies R1 = R2; hence
B ∈ SkOver(D), a contradiction.

(2) Proposition 3.2 cannot be extended outside the semilocal case. For example, if D = Z, let P be
the set of prime numbers, and define I :=

∑
p∈P

1
p Z. Then, supp(I )= {DM | M ∈Max(D)}, so A

should be Z itself; however, if d I ⊆ D then d should be divisible by every prime number, which
cannot happen.

We want to use Proposition 3.2 to decompose any semistar operation ∗ into fractional star operations.
We need another definition.

Definition 3.4. Let D be a semilocal Prüfer domain, and let SkOver(D) be the skeleton of Over(D). Let
∗ ∈ SStar(D). The support of ∗ is the set

supp(∗) := {A ∈ SkOver(D) | A∗ ∈ F(A)}.

We denote the set of semistar operations on D with support 1 as SStar1(D).

Note that supp(∗) is always closed under intersections, since if A∗ ∈ F(A) and B∗ ∈ F(B) then
(A∩ B)∗ ⊆ A∗ ∩ B∗ ∈ F(A∩ B). Moreover, the quotient field K is always included in supp(∗).

An equivalent definition of supp(∗) is that it is the set of elements A of SkOver(D) such that ∗ restricts
to a fractional star operation on A. Hence, given any set 1 such that SStar1(D) 6=∅, we have a map

γ1 : SStar1(D)→
∏
{FStar(A) | A ∈1}

∗ 7→ (∗|F(A))A∈1.

Proposition 3.5. Let D be a semilocal Prüfer domain, 1⊆ SkOver(D), and let γ1 be defined as above.
Then, γ1 is injective.

Proof. Suppose γ1(∗1) = γ1(∗2) = γ , and let I ∈ F(D). By Proposition 3.2, I ∈ F(A) for a unique
A ∈ SkOver(D). If A ∈ 1, then I ∗1 and I ∗2 are equal to I γA , where γA is the component of γ with
respect to A; hence I ∗1 = I ∗2 .
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On the other hand, if A /∈ 1, let B be the smallest element of 1 containing A; it exists since 1 is
closed under intersections. Then, I ∗ = (IA)∗ = (IA∗)∗ = (I B)∗ for every ∗ ∈ SStar1(D); in particular,
I ∗ = (I B)γ1(∗)B . Since γ1(∗1)= γ1(∗2), this again implies that I ∗1 = I ∗2 .

Therefore, I ∗1 = I ∗2 in every case, and ∗1 = ∗2. �

While γ1 is injective, it is usually very far from being surjective. For example, let D be a one-
dimensional Prüfer domain with exactly two maximal ideals, M and N ; then, 2 = {DM , DN }, and
SkOver(D) = {D, DM , DN , K } = Over(D). Suppose that DM is discrete while DN is not; then, by
[16, Chapter 31, Exercise 12] and [19, Theorem 3.1], FStar(D)= Star(D) is composed of two elements,
the identity and the v-operation. Consider the element (vD, dDM , dDN , dK ) of FStar(D)×FStar(DM)×

FStar(DN )×FStar(K ), where dA indicates the identity on A and vA the v-operation on A. Then, N vD = D,
while (NDN )

dDN = NDN ; in particular, N v * NDN , and thus (vD, dDM , dDN , dK ) cannot come from a
semistar operation.

An inspection of this example shows that the problem lies in the fact that vD is “not smaller” than
dDN ; in terms of the γ1, we would like to impose the condition that γ1(∗)|A ≤ γ1(∗)|B whenever
A ⊆ B. However, this condition doesn’t really make sense as stated, since γ1(∗)|A and γ1(∗)|B live in
different sets of closure operations. There are two possible approaches to this problem, both involving
localizations of fractional star operations.

The first one uses localizations from one member of SkOver(D) to another. Indeed, if A, B ∈
SkOver(D) and A ⊆ B, then B belongs to a Jaffard family of A (explicitly, {B, T1, . . . , Tk}, where
T1, . . . , Tk are the elements of 2 that contain A but not B). Hence, there is a localization map λA,B :

FStar(A)→ FStar(B), and the condition becomes

λA,B(γ1(∗)A)≤ γ1(∗)B .

The second approach, instead, uses localizations from A to the members of the standard decomposition
of T , and it is the one we will follow (mainly in view of the second part of Section 6).

Let 1⊆ SkOver(D), and let T ∈2. The component of 1 with respect to T is

1(T ) := {A ∈1 | A ⊆ T }.

Clearly, if 1 6=3 then there is a T ∈2 such that 1(T ) 6=3(T ). A special case is 1= {K }: in this case,
each 1(T ) is empty, and SStar1(D)= {∧{K }}.

Let now A ∈ 1(T ). Since T belongs to a Jaffard family of A, there is a localization map λA,T :

FStar(A)→ FStar(T ). Therefore, for every ∗ ∈ SStar1(D) we get a map

0T (∗) : 1(T )→ FStar(T )

A 7→ λA,T (∗|F(A)).

Proposition 3.6. Let D,2,1 as above; let T ∈2 and ∗ ∈ SStar1(D), and define 0T (∗) as above. Then,
0T (∗) is order-preserving.

Proof. Let A, B ∈1(T ), A ⊆ B, and take any ∗ ∈ SStar1(D). Let I be any integral ideal of T , and let
J := I ∩ A; then, J T = I , and also J BT = I . Hence, by definition,

I λA,T (∗|F(A)) = J ∗A ⊆ (J B)∗A = I λB,T (∗|F(B)).

Thus, λA,T (∗|F(A))≤ λB,T (∗|F(B)), as requested. �
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If Q1 and Q2 are partially ordered sets, we denote by hom(Q1, Q2) the set of order-preserving maps
between Q1 and Q2. This set is partially ordered; if φ,ψ ∈ hom(Q1, Q2), then φ ≤ ψ whenever
φ(x)≤ ψ(x) for every x ∈ Q1.

Theorem 3.7. Let D be a semilocal Prüfer domain with quotient field K , and let 2 be its standard
decomposition; let 1 6= {K } be a subset of SkOver(D) containing K that is closed under intersections.
The map

01 : SStar1(D)→
∏
{hom(1(T ),FStar(T )) | T ∈2,1(T ) 6=∅}

∗ 7→ (0T (∗))T∈2

is an order isomorphism.

Proof. By Proposition 3.6, 0 := 01 is well-defined and order-preserving. To show that it is an isomor-
phism, we define an inverse.

For every T ∈ 2 such that 1(T ) 6= ∅, let ϕT ∈ hom(1(T ),FStar(T )). Take an I ∈ F(D); by
Proposition 3.2, there is an A ∈ SkOver(D) such that I ∈F(A), and there is a B ∈1 such that A∗ ∈F(B).
Then, we define

I ∗ :=
⋂
T∈2

1(T )6=∅

(I BT )ϕT (B) =
⋂
T∈2
T⊇B

(IT )ϕT (B).

We first claim that the map ∗ so defined is a semistar operation.
Clearly, ∗ is extensive and (x I )∗ = x · I ∗ for every x and every I (since I ∈ F(A) implies x I ∈ F(A)).

To see that it is order-preserving, let I, J ∈ F(D), I ⊆ J . If I, J ∈ F(A) for some A ∈ SkOver(D) the
claim is trivial. If I ∈ F(A) and J ∈ F(A′), then A ⊆ A′; if A∗ ∈ F(B) and A′∗ ∈ F(B ′), then also
B ⊆ B ′, and thus I BT ⊆ J B ′T . Since ϕT is order-preserving, we have (I BT )ϕT (B) ⊆ (J B ′T )ϕT (B ′);
since this happens for all T , we have I ∗ ⊆ J ∗, and ∗ is order-preserving.

We need to show that ∗ is idempotent. We note that, if T ⊇ B, then IT 6= K ; therefore, by the proof
of Proposition 3.2, I ∗ is a fractional ideal over B. Thus,

(I ∗)∗ =
⋂
T∈2
T⊇B

[( ⋂
U∈2
U⊇B

(IU )ϕU (B)
)
· T
]ϕT (B)

=

⋂
T∈2
T⊇B

[ ⋂
U∈2
U⊇B

(IU )ϕU (B)T
]ϕT (B)

,

with the last equality holding since the innermost intersection is finite and each T ∈ 2 is flat. Each
(IU )ϕU (B) is a U -module; thus, if U 6= T , then (IU )ϕU (B)T = K . Hence, the calculation above reduces to⋂

T∈2
T⊇B

[(IT )ϕT (B)]ϕT (B) =
⋂
T∈2
T⊇B

(IT )ϕT (B) = I ∗

since each ϕT (B) is idempotent. Hence, ∗ is idempotent, and thus a semistar operation. Also, a direct
computation shows that the support of ∗ is exactly 1.

Therefore, we have a map

8 :=81 :
∏
{hom(1(T ),FStar(T )) | T ∈2,1(T ) 6=∅} → SStar1(D)

sending (ϕT )T∈2 to the map ∗ defined as above.
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We need to show that 8 ◦0 and 0 ◦8 are the identity (on SStar1(D) and the product, respectively).
Let ∗ ∈ SStar1(D). Then, if I ∈ F(A) and A∗ ∈ F(B), the map 8 ◦0(∗) sends I to⋂

T∈2
T⊇B

(IT )0T (∗)(B) =
⋂
T∈2
T⊇B

(IT )λB,T (∗|F(B)) =

⋂
T∈2
T⊇B

(I B)∗T = (I B)∗ = I ∗,

with the second to last equality coming from the fact that {T ∈ 2 | T ⊇ B} is a Jaffard family on B;
hence, 8 ◦0(∗)= ∗.

On the other hand, let ϕ = (ϕT )T∈2 be an element of the product, and fix a U ∈2. The component
with respect to U of 0 ◦8(ϕ) sends a B ∈1(U ) to λB,U (8(ϕ)|F(B)). Let I = JU be a fractional ideal
of U , where J is a fractional ideal of D; by definition, this map sends I to

J8(ϕ)U =
[ ⋂

T∈2
T⊇B

(J T )ϕT (B)
]

U =
⋂
T∈2
T⊇B

(J T )ϕT (B)U = (JU )ϕU (B),

again by flatness, the finiteness of the intersection and the equality T U = K for T 6=U . Hence, 0 ◦8(ϕ)
acts on F(B) as ϕ. Since this happens for each B, we have 0 ◦8(ϕ)= ϕ.

Therefore, 01 and 81 are inverses one of each other, and the theorem is proved. �

Corollary 3.8. Let D be a semilocal Prüfer domain with quotient field K , and let 1⊆ SkOver(D). Then,
1= supp(∗) for some ∗ ∈ SStar(D) if and only if K ∈1 and 1 is closed under intersections.

Proof. The conditions are clearly necessary. If 1 = {K }, then 1 = supp{∧{K }}; if 1 6= {K }, by the
previous theorem SStar1(D) is isomorphic to a product of nonempty sets, and thus is nonempty. �

By definition, SStar(D) is the disjoint union of SStar1(D), as 1 ranges among the subsets of
SkOver(D); or, equivalently, among those subsets that are closed under intersections. Therefore, in
light of Theorem 3.7, we can view SStar(D) as the union of products of sets of order-preserving maps.
To fully reconstruct the set of semistar operations from this union, we need also to consider the order
structure.

Proposition 3.9. Let D be a semilocal Prüfer domain, let 2 be its standard decomposition, and let
∗1, ∗2 ∈ SStar(D). Then, ∗1 ≤ ∗2 if and only if

(1) supp(∗1)⊇ supp(∗2); and

(2) for any A ∈ supp(∗2) and every T ∈2 such that T ⊇ A, we have 0T (∗1)(A)≤ 0T (∗2)(A).

Proof. Suppose first that ∗1 ≤ ∗2. If A ∈ supp(∗2), then A∗1 ⊆ A∗2 , and thus A∗1 is a fractional ideal of
A; hence, A ∈ supp(∗1) and supp(∗1)⊇ supp(∗2). Moreover, ∗1|F(A) ≤ ∗2|F(A); since the localization to
T preserves the order, 0T (∗1)≤ 0T (∗2).

Conversely, suppose that the two conditions hold. If supp(∗2)= {K }, then ∗2 = ∧{K } and the claim
holds; suppose supp(∗2) 6= {K }, so that in particular supp(∗2)(T ) 6= ∅ for some T ∈ 2. Let I be a
D-submodule of the quotient field K ; then, I ∈ F(B) for some B ∈ SkOver(D). Let Ai be the element
of SkOver(D) such that B∗i is a fractional ideal over Ai ; since supp(∗1)⊇ supp(∗2), we have A1 ⊆ A2.
Then,

I ∗1 = (IA1)
∗1 ⊆ (IA2)

∗1

and (IA2)
∗2 = I ∗2 , so we need only to show that (IA2)

∗1 ⊆ (IA2)
∗2 ; equivalently, we can suppose that

A2 = B ∈ supp(∗2).
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Since, by the proof of Theorem 3.7, the inverse of 0 is 8, we have

I ∗1 =

⋂
T∈2
T⊇B

(IT )0T (∗1)(B) ⊆
⋂
T∈2
T⊇B

(IT )0T (∗2)(B) = I ∗2,

since by hypothesis 0T (∗1)(A)≤ 0T (∗2)(A) for every T . Hence, ∗1 ≤ ∗2, as requested. �

4. Prüfer domains with the same semistar operations

Theorem 3.7 and Proposition 3.9, taken together, show that the structure of SStar(D) (both as a set and
as a partially ordered set) depends exclusively on the sets hom(1(T ),FStar(T )); or rather, exclusively
on the FStar(T ).

More precisely, let D1 and D2 be two semilocal Prüfer domains, and let 21 and 22 be their standard
decompositions. As was observed after Definition 3.1, if 21 and 22 have the same cardinality then
the structure of SkOver(D1) and SkOver(D2) is the same; that is, there is an order isomorphism ν :

SkOver(D1)→ SkOver(D2). Moreover, a subset 1⊆ SkOver(D1) is closed under intersections if and
only if ν(1) is as well, since the intersection of the elements of 1 is exactly its infimum in the natural
order of SkOver(D1) (that is, the inclusion). In particular, the subsets of D1 that can be a support of a
∗ ∈ SStar(D1) correspond bijectively to the subsets of D2 that can support a semistar operation on D2.
Besides, ν restricts to a bijection (which, for simplicity, we still call ν) between 1(T ) and ν(1)(ν(T )).

Suppose now that, besides ν, we have an order-preserving map νT : FStar(T )→ FStar(ν(T )), for
some T ∈21. Then, for every 1⊆ SkOver(D1) (not containing only the quotient field K1) closed under
intersections, we have a map

ν̂T : hom(1(T ),FStar(T ))→ hom(ν(1)(ν(T )),FStar(ν(T )))

ψ 7→ νT ◦ψ ◦ ν
−1,

which is bijective whenever νT is bijective. Hence, if we are given a bijection νT for every T ∈2, for
every 1 we can build a map

ν :
∏

T∈21
1(T ) 6=∅

hom(1(T ),FStar(T ))→
∏

U∈22
1(U ) 6=∅

hom(ν(1)(U ),FStar(U ))

(ϕT ) 7→ (ν̂T (ϕT )).

By composing ν with the bijections 01 and 0ν(1), we therefore obtain a bijective and order-preserving
map SStar1(D1)→SStarν(1)(D2). Also, since SStar{K1}(D1)={∧{K1}} is isomorphic to SStar{K2}(D2)=

{∧{K2}}, we can join all the supports to obtain a bijection SStar(D1)→ SStar(D2), which respects the
order (by Proposition 3.9). We have proved the following.

Proposition 4.1. Let D1 and D2 be two semilocal Prüfer domains, and let 21 and 22 be their standard
decompositions. If there is a bijection ν : 21 → 22 and, for every T ∈ 21, an order isomorphism
νT : FStar(T )→ FStar(ν(T )), then SStar(D1) and SStar(D2) are order isomorphic.

Obviously, the problem with this result is that it is difficult to check the hypothesis that FStar(T ) and
FStar(ν(T )) are isomorphic; in particular, if the standard decomposition of D1 is exactly {D1} (and so
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22 = {D2}) the theorem is essentially a vacuous statement. To get a better version, we need to consider
the structure of the spectrum.

Let D be a Prüfer domain. It is well-known that its spectrum Spec(D) is a rooted tree, with root (0);
in particular, we can construct the underlying homeomorphically irreducible tree associated to Spec(D)
(see Section 2G), which we denote by Spechi(D). In particular, (0) and the maximal ideals of D belong
to Spechi(D).

If D is semilocal, then Spechi(D) is finite: indeed, if V (P) ∩Max(D) = V (Q) ∩Max(D), then
at least one of P and Q is not in Spechi(D). Therefore, for any P ∈ Spechi(D), P 6= (0), there is a
Q ∈ Spechi(D) such that Q ( P and no element of Spechi(D) lies between Q and P; i.e., Q is directly
below P in Spechi(D). We denote by Z(P) the ring DP/Q DP ' (D/Q)P/Q ; when P = (0), we set
Z(P) as the quotient field of D. Clearly, Z(P) is a valuation domain.

Proposition 4.2. Let D1, D2 be semilocal Prüfer domains, and let 21,22 be, respectively, the standard
decompositions of D1 and D2. Suppose there is an order isomorphism ν : Spechi(D1)→ Spechi(D2).
Then, there is an order isomorphism ν : SkOver(D1)→ SkOver(D2) such that

(1) ν restricts to a bijection from 21 to 22;

(2) for every P ∈ Spechi(D1) and every T ∈21, PT = T if and only if ν(P)ν(T )= ν(T ).

Proof. Let D be a Prüfer domain. By [29, Proposition 6.2], the elements of 2 are in bijective correspon-
dence with the equivalence classes of the dependence relation on Max(D). Moreover, if D is semilocal,
for every equivalence class 1 there is a P ∈ Spec(D) such that T =

⋂
{DM | P ⊆ M}; in particular,

if P is maximal with respect to this property, P ∈ Spechi(D) and, in fact, P is a minimal element of
Spechi(D) \ {(0)}.

Thus, coming back to the notation of the statement, the map

ν0 : 21→22⋂
M∈Max(D1)

P⊆M

(D1)M 7→
⋂

N∈Max(D2)
ν(P)⊆N

(D2)N =
⋂

M∈Max(D1)
P⊆M

(D2)ν(M)

is a well-defined bijection; we can subsequently extend it to the whole of SkOver(D) by putting ν(T1 ∩

· · · ∩ Tn)= ν(T1)∩ · · · ∩ ν(Tn) for every T1, . . . , Tn ∈21, obtaining again a bijection.
The last point is a direct consequence of the construction. �

With this notation, we can state one of the main theorems of the paper.

Theorem 4.3. Let D1, D2 be semilocal Prüfer domains, and suppose that there is an order isomorphism
ν : Spechi(D1)→ Spechi(D2) such that, for every P ∈ Spechi(D1), there is an order isomorphism νP :

FStar(Z(P))→ FStar(Z(ν(P))). Then, there are order isomorphisms

ν : SStar(D1)→ SStar(D2) and νF : FStar(D1)→ FStar(D2)

such that, for every 1⊆ SkOver(D1),

ν(SStar1(D1))= SStarν(1)(D2),

where ν : SkOver(D1)→ SkOver(D2) is the bijection found in Proposition 4.2.
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Proof. We proceed by induction on the cardinality of Spechi(D). For every k ∈ N, k > 0, let

(SSk) ν exists whenever the hypotheses hold and |Spechi(D1)| ≤ n;

(FSk) νF exists whenever the hypotheses hold and |Spechi(D1)| ≤ n.

(Note that the existence of ν guarantees that |Spechi(D1)| = |Spechi(D2)|.) We will show that (FS2)

is true and that (FSn)⇒ (SSn)⇒ (FSn+1); by induction, this will prove (FSn) and (SSn) for every n.
Note that (FS1) and (SS1) are trivial, since they correspond to the case where D1 and D2 are fields.

(FS2). If |Spechi(D1)| = 2, then D1 and D2 are valuation domains; hence, Spechi(D1)= {(0),M} (where
M is the maximal ideal of D1) and Z(M)= D1. Hence, the claim is just the hypothesis FStar(Z(P))↔
FStar(Z(ν(P))).

(FSn)⇒ (SSn) can be proved by following the reasoning of the proof of Proposition 4.1, since if T is in
the standard decomposition of D then |Spechi(T )| ≤ |Spechi(D)|.

(SSn) ⇒ (FSn+1). Suppose first that 21 is a singleton, i.e., that 21 = {D1}. Then, there is a P ∈
Spechi(D1) contained in every maximal ideal of D1, and every overring of D1 (except for the quotient
field K1), is a fractional ideal of D1: therefore, FStar(D1) = SStar(D1) \ {∧{K1}}. By Proposition 2.2,
FStar(D1) is order-isomorphic to the ordinal union of SStar(D1/P) and SStar((D1)P) \ {d,∧{K1}}, and
analogously FStar(D2)' SStar(D2/ν(P))⊕ (SStar((D2)ν(P)) \ {d,∧{K2}}).

We have |Spechi(D1/P)| = |Spechi(D)| − 1 and |Spechi((D1)P)| = 2; by inductive hypothesis, and
since the hypotheses of the theorem descend to these cases, we have order isomorphisms SStar(D1/P)'
SStar(D2/ν(P)), while SStar((D1)P) ' SStar((D2)ν(P)). Hence, there is an order isomorphism ν :

FStar(D1)→ FStar(D2).
Suppose now that 21 is not a singleton. By Proposition 2.2, there is an order isomorphism between

FStar(D1) and
∏
{FStar(T ) | T ∈ 2}, and analogously for D2; moreover, as in the previous case,

FStar(T )= SStar(T ) \ {∧{K1}}. Since 21 is not a singleton, |Spechi(T )|< |Spechi(D1)| for every T ∈2;
applying the inductive hypothesis, we have order isomorphisms νT : SStar(T )→ SStar(ν(T )), which (by
the previous part of the proof) descend to order isomorphisms ν ′T : FStar(T )→ FStar(ν(T )). Therefore,
we get an order isomorphism νF : FStar(D1)→ FStar(D2) just by taking the product of the ν ′T .

By induction, the claim is proved. �

5. Star and (semi)star operations

Theorem 4.3 shows that the sets SStar(D) and FStar(D) of (respectively) the semistar operations and
the fractional star operations on D depend exclusively on Spechi(D) and the semistar operations on the
rings Z(P). However, these properties are not enough to determine which operations close D, i.e., which
closures are star or (semi)star operations.

For example, let (V,MV ) be a one-dimensional valuation domain with MV not principal, and let
(W,MW ) be a two-dimensional valuation domain such that MW is principal, as well as PWP (where P
is the other nonzero prime of W ). Then, Spechi(V )= {0,MV } corresponds bijectively to Spechi(W )=

{0,MW }; moreover, both FStar(V ) and FStar(W ) are linearly ordered sets with three elements, so that
they are order-isomorphic. However, there are two semistar operations closing V (the identity and the
v-operation) while only one closing W (the identity). Hence, the bijection ν : SStar(V )→ SStar(W )
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given by Theorem 4.3 does not restrict to a bijection ν : (S)Star(V )→ (S)Star(W ). In this section, we
determine which hypothesis we have to add to obtain an analogous result.

We start with characterizing (semi)star operations through the map 0.

Proposition 5.1. Let D be a semilocal Prüfer domain, 2 its standard decomposition, ∗ ∈ SStar(D); for
each T ∈2, let 0T (∗) be the map defined before Proposition 3.6. Then, D= D∗ if and only if D ∈ supp(∗)
and 0T (∗)(D) ∈ Star(T ) for every T ∈2.

Proof. If D = D∗, then D ∈ supp(∗) (since D is always in SkOver(D)), and thus D ∈1(T ) for every
T ∈2. By definition, 0T (∗)(D)= λD,T (∗|F(D)); however, D = D∗|F(D) , and thus

T 0T (∗)(D) = (DT )0T (∗)(D) = D∗T = T,

and 0T (∗)(D) ∈ Star(T ).
Conversely, suppose the two properties hold, and let 1 := supp(∗). By the proof of Theorem 3.7, we

have
D∗ = D81◦01(∗) =

⋂
T∈2

(DT )0T (∗)(D),

noting that each 1(T ) contains D and thus is nonempty. By hypothesis, each 0T (∗)(D) closes T ; thus,
D∗ =

⋂
T∈2 T = D. The claim is proved. �

If D ∈ 1(T ), let us thus denote by h̃om(1(T ),FStar(T )) the set of order-preserving maps ψ from
1(T ) to FStar(T ) such that ψ(D) ∈ Star(D). The previous proposition can thus be rewritten as fol-
lows: given a 1 ⊆ SkOver(D) closed under intersections and containing D and K , there is a bi-
jection between (S)Star1(D) (i.e., the set of (semi)star operations with support 1) and the product∏
{h̃om(1(T ),FStar(T )) | T ∈2}.
We thus obtain immediately an analogue of Proposition 4.1: if D1, D2 are semilocal Prüfer domains,

with standard decompositions 21,22, and there are bijections ν : 21 → 22 and νT : FStar(T ) →
FStar(ν(T )), for every T ∈ 2, and if νT (Star(T )) = Star(ν(T )), then the order isomorphism ν :

SStar(D1) → SStar(D2) restricts to a bijection from (S)Star(D1) to (S)Star(D2). We can actually
say more.

Theorem 5.2. Let D1, D2 be semilocal Prüfer domains, and suppose that there is an order isomorphism
ν : Spechi(D1)→ Spechi(D2) such that

(1) for every P ∈ Spechi(D1), there is an order isomorphism νP : FStar(Z(P))→ FStar(Z(ν(P)));

(2) for every M ∈Max(D1), M(D1)M is principal if and only if ν(M)(D2)ν(M) is principal.

Then, the maps ν : SStar(D1)→ SStar(D2) and νF : FStar(D1)→ FStar(D1) found in Theorem 4.3
restrict to order isomorphisms ν(S) : (S)Star(D1)→ (S)Star(D2) and νS : Star(D1)→ Star(D2).

Proof. By Theorem 4.3, the hypothesis guarantee that ν and νF are order isomorphisms.
The proof follows the same reasoning as the proof of Theorem 4.3: for every k ∈ N, k > 0, let

(Ssk) ν(S) exists whenever the hypotheses hold and |Spechi(D1)| ≤ n;

(Sk) νS exists whenever the hypotheses hold and |Spechi(D1)| ≤ n.
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Then, (S2) is true because, if V is a valuation domain, M is principal if and only if |Star(D1)| = 1,
while M is not principal if and only if |Star(D1)| = 2; furthermore, (Sn) ⇒ (Ssn) follows from the
reasoning before the statement of the theorem.

To show (Ssn)⇒ (Sn+1), we first suppose that 21 is a singleton: then, Star(D1)= (S)Star(D1), and
the isomorphism between FStar(D1) and SStar(D1/P)⊕ (SStar((D1)P) \ {d,∧{K1}}) (Proposition 2.2)
restricts to an isomorphism between Star(D1) and (S)Star(D1/P); the inductive hypothesis shows that
ν restricts to a bijection ν(S) : Star(D1)→ Star(D2).

On the other hand, if 21 is not a singleton, we use [29, Theorem 5.4] to reduce Star(D1) to the product∏
{Star(T ) | T ∈2}, and then apply the inductive hypothesis on each T .
The claim then follows by induction. �

Suppose now that D is a semilocal Prüfer domain whose standard decomposition is {D}. As we have
observed multiple times, there is a unique element of Spechi(D) just above (0): call it P . Then, Star(D)
corresponds to (S)Star(D/P); in particular, Star(D) cannot depend on SStar(Z(P)), since it depends
exclusively on D/P .

We can thus get the following results.

Theorem 5.3. Let D1, D2 be semilocal Prüfer domains, and suppose that there is an order isomorphism
ν : Spechi(D1)→ Spechi(D2) such that

(1) for every P ∈ Spechi(D1) such that P is not minimal in Spechi(D1) \ {(0)}, there is an order isomor-
phism νP : FStar(Z(P))→ FStar(Z(ν(P)));

(2) for every M ∈Max(D1), M(D1)M is principal if and only if ν(M)(D2)ν(M) is principal.

Then, there is an order isomorphism νS between Star(D1) and Star(D2).

Proof. By [29, Theorem 5.4], Star(D1) '
∏
{Star(T ) | T ∈ 21} and Star(D2) '

∏
{Star(U ) | U ∈ 22}

(where 21 and 22 are the standard decompositions of D1 and D2). By the previous reasoning, Star(T )'
(S)Star(T/PT ) (where PT is the minimal element of Spechi(T ) \ {(0)}); we can apply Theorem 5.2 to
each T/PT , obtaining order isomorphisms νS(T ) : Star(T )→ Star(ν(T )). To conclude, we just take νS

to be the product of all the νS(T ). �

Notice that, under the hypotheses of the last theorem, the isomorphisms ν and νF need not exist, and
thus Theorem 5.2 cannot be reduced to a corollary of Theorem 5.3.

6. The finite-dimensional case

The results in the previous two sections can be simplified if we work in the finite-dimensional case.
Indeed, suppose V is a finite-dimensional valuation domain: then, V admits only a finite number of
overrings (its localizations) and each one admits a finite number of (semi)star operations (at most two,
the identity and the v-operation). Therefore, SStar(V ) is finite; since it is also linearly ordered, it is
actually characterized by its cardinality.

Following this idea, we introduce the functions

ω : Spechi(D)→ N+

P 7→ |FStar(Z(P))|
and

ε : Spec(D)→ {1, 2}

P 7→ |Star(DP)|.
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We note that ω can also be thought of as a function from the set of the edges of Spechi(D) to N+: if E is
an edge from Q to P , then ω(E) would be defined as ω(P). Note also that ω((0)) is always equal to 1.

The following propositions establish the properties of ω and ε and their connection.

Proposition 6.1. Let V be a valuation domain with maximal ideal M.

(a) |SStar(V )| = ω(M)+ 1;

(b) |(S)Star(V )| = ε(M);

(c) ε(M)= 1 if and only if M is principal;

(d) let I be the set of nonzero idempotent prime ideals of V and N be the set of nonzero nonidempotent
prime ideals of V . Then,

(1) ω(M)=
∑

P∈Spec(V )
P 6=(0)

ε(P)= |N | + 2 · |I|.

Proof. (a) and (b) follow from the fact that every overring of V different from K is both a localization of
V and a fractional ideal of V , and they also show the first equality of (1). (c) is well known. The second
equality of (1) follows from the fact that P is nonidempotent if and only if PVP is principal, i.e., if and
only if ε(P)= 1. (d) is proved. �

Proposition 6.2. Let D be a semilocal finite-dimensional Prüfer domain, and let P ∈ Spechi(D) \ {0};
let Q be the element of Spechi(D) directly below P. Let 1 := {A ∈ Spec(D) | Q ( A ⊆ P}, and let I be
the set of idempotent prime ideals of D and N the set of nonidempotent prime ideals of D. Then,

ω(P)=
∑
A∈1

ε(A)= |1∩N | + 2 · |1∩ I|.

Proof. The claim follows directly from Proposition 6.1 and the fact that a prime ideal A such that
Q ( A ⊆ P is idempotent if and only if its extension in Z(P) is. �

With this terminology, Theorem 4.3 translates immediately to the following statement.

Theorem 6.3. Let D1, D2 be semilocal Prüfer domain of finite dimension. Suppose there is an order-
preserving map ν : Spechi(D1)→ Spechi(D2) such that ω(P)=ω(ν(P)) for every P ∈ Spechi(D1). Then,
there are order isomorphisms

ν : SStar(D1)→ SStar(D2) and νF : FStar(D1)→ FStar(D2)

such that, for every 1⊆ SkOver(D1) closed under intersections,

ν(SStar1(D1))= SStarν(1)(D2),

where ν : SkOver(D1)→ SkOver(D2) is the bijection found in Proposition 4.2.

Proof. Since FStar(V ) is linearly ordered for every valuation domain V , the condition ω(P)= ω(ν(P))
implies that there is an isomorphism between FStar(Z(P)) and FStar(Z(ν(P))). Hence, we can apply
Theorem 4.3. �

In the same way, we have analogues of the results about (semi)star operations.
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Theorem 6.4. Let D1, D2 be semilocal Prüfer domains, and suppose that there is an order isomorphism
ν : Spechi(D1)→ Spechi(D2) such that ε(M)= ε(ν(M)) for every M ∈Max(D1)

(a) if ω(P) = ω(ν(P)) for P ∈ Spechi(D1), then the maps ν and νF found in Theorem 4.3 restrict to
order isomorphisms ν(S) : (S)Star(D1)→ (S)Star(D2) and νS : Star(D1)→ Star(D2);

(b) if ω(P)= ω(ν(P)) for every P ∈ Spechi(D) such that P is not minimal in Spechi(D1) \ {(0)}, then
there is an order isomorphism νS between Star(D1) and Star(D2).

Proof. (a) follows from Theorem 5.2, while (b) follows from Theorem 5.3. �

Let now P be a finite rooted tree which is also homeomorphically irreducible. Then, there are finite-
dimensional semilocal Prüfer domains such that Spechi(D) ' P [25, Theorem 3.1]; by Theorem 6.3,
the cardinality of SStar(D) depends only on ω(P), as P ranges in Spechi(D). Hence, if we label the
elements of P as {(0), P1, . . . , Pk}, we can define a function 6P : N

k
→ N such that 6P(a1, . . . , ak) is

the cardinality of SStar(D), where Spechi(D)' P and ω(Pi )= ai for each i .
Similarly, if P ' Spechi(D) = {(0), P1, . . . , Pk,M1, . . . ,Mt }, where M1, . . . ,Mt are the maximal

ideals of D, we define 6̃P as the function Nk+t
×{1, 2}t → N such that the cardinality of (S)Star(D) is

6̃P(a1, . . . , ak, b1, . . . , bt , c1, . . . , ct), where ω(Pi )= ai , ω(M j )= b j and ε(Ml)= cl for each i, j, l.
To study what kind of functions 6P and 6̃P are, we shall use the following extension of [30, Theo-

rem 1]; we will denote by n the set {1, . . . , n}, endowed with the usual ordering.

Proposition 6.5. Let P,Q be two partially ordered sets, and let HP,Q(n) := |hom(P,Q⊕ n)|. Then,
HP,Q is a polynomial of degree |P|.
Proof. For any order-preserving map ψ : P→ Q⊕ n, let ↓ψ := {p ∈ P | ψ(p) ∈ Q} and ↑ψ := {p ∈
P | ψ(p) ∈ n}. Then, if p ∈ ↓ψ and q ∈ ↑ψ , we have p ≤ q. We can see any ψ ∈ hom(P,Q⊕ n) as
the union of a map ψ1 : ↓ψ→Q and a map ψ2 : ↑ψ→ n, both of which are order-preserving, that are
independent one from the other.

For any 1, let hom1(P,Q⊕ n) := {ψ ∈ hom(P,Q⊕ n) | ↓ψ = 1}. Clearly, hom(P,Q⊕ n) is the
union of the various hom1; moreover, by the previous reasoning, if 1= ↓ψ for some ψ , we have

|hom1(P,Q⊕ n)| = |hom(1,Q)| · |hom(P \1, n)|.

For a fixed Q, the first factor depends uniquely on 1. On the other hand, by [30, Theorem 1], the second
factor is a polynomial HP\1 of degree |P \1|. Since HP,Q(n) is the sum of the cardinalities of the
hom1, also HP,Q is a polynomial; moreover, there is a unique summand of maximal degree, namely
|hom∅(P,Q⊕ n)| = |hom(P, n)|, whose degree is |P|. Hence, HP,Q has degree |P|. �

Remark 6.6. (1) If Q=∅, the result above falls back to [30, Theorem 1].

(2) If P = k is linearly ordered, we denote Hk,∅ as Hk . Order-preserving maps from k to n correspond to
ways of dividing n into k (possibly empty) segments, or equivalently to combinations with repetition
of k elements in {1, . . . , n}; therefore, Hk =

(n+k−1
k

)
. For example, H1(n) = n, while H2(n) =

n(n+ 1)/2 and H3(n)= n(n+ 1)(n+ 2)/6.

Theorem 6.7. Let P = {0, p1, . . . , pn} be a finite rooted homeomorphically irreducible tree, with root 0,
and let {p1, . . . , pk} be the minimal elements of P \ {0}. Then, for every bk+1, . . . , bn ∈ N, the function

πP(X1, . . . , Xk) :=6P(X1, . . . , Xk, bk+1, . . . , bn)

is a polynomial of degree k · 2k−1.
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Proof. Let D be a semilocal finite-dimensional Prüfer domain such that Spechi(D)= {(0), P1, . . . , Pn} '

P , with ω(Pi ) = bi for k < i ≤ n. By definition, the cardinality of SStar(D) is equal to the sum
of the cardinalities of SStar1(D), as 1 ranges among the possible supports. Let 2 be the standard
decomposition of D.

For every such 1, by Theorem 4.3 we have

|SStar1(D)| =
∏
{|hom(1(T ),FStar(T ))| : T ∈2,1(T ) 6=∅}.

By Proposition 2.2, FStar(T ) is equal to the union of SStar(T/P) and FStar(TP)\{d}, where P is the mini-
mal element of Spechi(T )\{(0)}; moreover, SStar(T/P) has a maximum (namely ∧{k}, where k is the quo-
tient field of T/P), and thus we can write FStar(T ) as Q(T )

⊕ω(P), where Q(T )
:= SStar(T/P) \ {∧{k}}.

Applying Proposition 6.5, we see that |hom(1(T ),FStar(T ))| = H1(T ),Q(T )(ω(P)) is a polynomial in
ω(P) of degree |1(T )|; hence, each |SStar1(D)| is a polynomial in ω(P1), . . . , ω(Pk). In particular,
πP is a polynomial.

Moreover, the term of maximal degree of each |SStar1(D)| has degree |1(T )| in ω(P), where P is
the minimal element of Spechi(T ) \ {(0)}; in particular, this degree is maximal when 1(T ) is just the set
of intersections of the subsets of the standard decomposition 2 containing T , where it is 2k−1. Hence,
the maximal term of πP comes from the case 1 = SkOver(D), where each ω(P) has degree 2k−1. It
follows that the total degree of πP is k · 2k−1. �

Theorem 6.8. Let P := {0, p1, . . . , pn,m1, . . . ,mt } be a finite rooted homeomorphically irreducible tree,
with root 0, and let {p1, . . . , pk} be the minimal elements of P \ {0}. Then, for every bk+1, . . . , bn ∈ N,
c1, . . . , ct ∈ {1, 2} the function

π̃P(X1, . . . , Xk) := 6̃P(X1, . . . , Xk, bk+1, . . . , bn, c1, . . . , ct)

is a polynomial of degree k(2k−1
− 1).

Proof. As in the proof of Theorem 6.7, we need only to show that each |(S)Star1(DP)| is a polynomial,
and since we are considering (semi)star operations, we can consider only sets 1 containing D.

Consider a set 1(T ), and let 3(T )=1(T ) \ {D}. For each ∗ ∈ Star(T ), set

h̃om∗(1(T ),FStar(T )) := {ψ ∈ h̃om(1(T ),FStar(T )) | ψ(D)= ∗}.

Then, the cardinality of h̃om∗(1(T ),FStar(T )) is equal to the cardinality of hom(3(T ), {] ∈ FStar(T ) |
]≥ ∗}), which by Proposition 6.5 is a polynomial of degree |3(T )| = |1(T )| − 1 in ω(P), where P is
the minimal element of Spechi(T ) \ {(0)} (note that a star operation on T corresponds to a star operation
coming from SStar(T/P)).

Following the reasoning of Theorem 6.7, this is maximal when |1(T )| = 2k−1; hence, π̃P is a poly-
nomial of degree k(2k−1

− 1). �

A good measure of the complexity of the calculation of the polynomials πP and π̃P is the height h(P)
of P = Spechi(D), that is, the maximal length among the chains of P . When the height is 0, D is a
field; hence, the first interesting case is when h(P)= 1. In algebraic terms, this happens if and only if
D is h-local, that is, if D is locally finite (which is automatic when D is semilocal) and DM DN = K for
M 6= K in Max(D) (see e.g., [27] for a study of Prüfer h-local domains).
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In this case, the calculation of star and fractional star operations does not need the theory developed in
this article; indeed, by [29, Theorem 5.4] (and Section 2C), if D is h-local and Max(D)= {M1, . . . ,Mn},
then |Star(D)| = ε(M1) · · · ε(Mn) while |FStar(D)| =ω(M1) · · ·ω(Mn). The case of semistar operations,
on the other hand, is not so immediate, but it is a mere consequence of Theorem 6.7.

Corollary 6.9. There is a symmetric polynomial πn ∈Q[X1, . . . , Xn] of degree n · 2n−1 such that, if D
is a h-local Prüfer domain and Max(D)= {M1, . . . ,Mn}, then |SStar(D)| = πn(ω(M1), . . . , ω(Mn)).

Proof. If D is h-local, then Spechi(D)= {(0)} ∪Max(D). Then, πn is a polynomial by Theorem 6.7, and
it is obviously symmetric. �

The case of (semi)star operations is more interesting, since we can actually make the numbers ε(Mi )

variables, instead of parameters as it was in Theorem 6.8.

Proposition 6.10. There is a polynomial π̃n ∈Q[X1, . . . , Xn, Y1, . . . , Yn] of degree n · 2n−1 such that, if
D is a h-local Prüfer domain and Max(D)= {M1, . . . ,Mn}, then

|(S)Star(D)| = π̃n(ω(M1), . . . , ω(Mn), ε(M1), . . . , ε(Mn)).

Proof. As in the proof of Theorem 6.8, we must calculate the cardinality of the sets

h̃om∗(1(T ),FStar(T )) := {ψ ∈ h̃om(1(T ),FStar(T )) | ψ(D)= ∗},

as T ranges in the standard decomposition of D and ∗ ∈ Star(T ).
Since D is h-local, each T is a localization at a maximal ideal of D; hence, each T = DP is a valuation

domain, and the possible star operations ∗ are the identity and the v-operation. If ∗ is the identity d , then

|h̃om∗(1(DP),FStar(DP))| = |hom(3(DP),FStar(DP))| = H3(DP ),∅(ω(P))

(where 3(DP)=1(DP) \ {DP}). On the other hand, if ∗ = v, then

|h̃om∗(1(DP),FStar(DP))| = |hom(3(DP),FStar(DP) \ {d})| = H3(DP ),∅(ω(P)− 1).

The latter summand exists only when ε(P)= 2; therefore, we have

|h̃om(1(DP),FStar(DP))| = H3(DP ),∅(ω(P))+ (ε(P)− 1)H3(DP ),∅(ω(P)− 1).

Putting all together, we see that π̃n is a polynomial of degree 2n−1
− 1 in each X i and 1 in each Yi ; the

total degree is thus n · 2n−1. �

We can use these results, along with Proposition 2.2, to study star and fractional star operations when
the height of Spechi(D) is 2.

Proposition 6.11. Let D be a semilocal Prüfer domain, and let Spechi(D)={(0)}tAtMax(D); suppose
that the elements of A are pairwise not comparable. For any P ∈A, let M(P) := {M ∈Max(D) | P ⊆
M} = {MP,1, . . . ,MP,|M(P)|}. Let ω, ε, πn and π̃n as above. Then,

|FStar(D)| =
∏
P∈A

[π|M(P)|(ω(MP,1), . . . , ω(MP,|M(P)|))+ω(P)− 1],

and
|Star(D)| =

∏
P∈A

π̃|M(P)|(ω(MP,1), . . . , ω(MP,|M(P)|), ε(MP,1), . . . , ε(MP,|M(P)|)).
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Proof. For every P ∈ A, let T (P) :=
⋂
{DM | M ∈ M(P)}. Then, {T (P) | P ∈ A} is the standard

decomposition of D; hence, |FStar(D)| =
∏
{|FStar(T (P))| : P ∈A}, and likewise for |Star(D)|.

By Proposition 2.2, for each P the set FStar(T (P)) is equal to the ordinal sum of SStar(T/P) and
FStar(T (P)PTP ) \ {d}; the cardinality of the former is π|M(P)|(MP,1, . . . ,MP,|M(P)|) (by Theorem 6.7)
while the cardinality of the latter is ω(P)− 1, since T (P)PTP = Z(P). The first claim follows.

Analogously, Star(T (P)) corresponds bijectively to (S)Star(T/P), whose cardinality is given by π̃n

(by Theorem 6.8). The second claim follows. �

We end the paper by calculating two of the polynomials πP and π̃P .

Example 6.12. The calculation of π2 and π̃2.
Let D be a semilocal Prüfer domain with Spechi(D)= {(0),M, N }. Then,

SkOver(D)= {D, DM , DN , K };

let1⊆SkOver(D) be a possible support for a semistar operation on D. Then, K ∈1, and if DM , DN ∈1

then also D ∈1, Hence, there are seven acceptable 1.

1= {K }: In this case, 1(M)=1(N )=∅, and we have a single semistar operation;

1= {D, K }: In this case, 1(M)=1(N )= {D} are both isomorphic to 1;

1= {DM , K }: In this case, 1(M)= {DM} ' 1 while 1(N )=∅;

1= {DN , K }: Symmetrically, 1(M)=∅ while 1(N )= {DN } ' 1;

1= {D, DM , K }: In this case, 1(M)= {D, DM} ' 2 while 1(N )= {D} ' 1;

1= {D, DN , K }: Symmetrically, 1(M)= {D} ' 1 while 1(N )= {D, DN } ' 2;

1= {D, DM , DN , K }: In this case, 1(M)= {D, DM} ' 2 and 1(M)= {D, DN } ' 2;

Let now a := ω(M) and b := ω(N ). Adding all the cases, Star(D) is equal to

1+ H1(a)H1(b)+ H1(a)+ H1(b)+ H2(a)H1(b)+ H1(a)H2(b)+ H2(a)H2(b)
= 1+ ab+ a+ b+ 1

2a(a+ 1)b+ 1
2ab(b+ 1)+ 1

4a(a+ 1)b(b+ 1)

= 1+ a+ b+ 9
4ab+ 3

4(a
2b+ ab2)+ 1

4a2b2

and the last line represents exactly π2(a, b).
For the (semi)star operations, we must not consider the supports {K }, {DM , K } and {DN , K }. Let

ε1 := ε(M) and ε2 := ε(N ).
The possible 1(·) are, as above, 1 and 2; in the former case, we have H ′1(n, ε)= ε possibilities, while

in the latter we have, following the proof of Theorem 5.2,

H ′2(n, ε)= H1(n)+ (ε− 1)(H1(n− 1))= n+ (ε− 1)(n− 1)= εn− ε+ 1.

Thus the cardinality of (S)Star(D) is equal to:

H ′1(a, ε1)H ′2(b, ε2)+ H ′2(a, ε1)H ′1(b, ε2)+ H ′1(a, ε1)H ′2(b, ε2)+ H ′2(a, ε)+ H ′2(b, ε)

= ε1ε2+ (ε1a− ε1+ 1)ε2+ ε1(ε2b− ε2+ 1)+ (ε1a− ε1+ 1)(ε2b− ε2+ 1)

= (1+ ε1a)(1+ ε2b),

i.e., π̃2(a, b, ε1, ε2)= (1+ ε1a)(1+ ε2b).
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Using Proposition 6.11, this provides a different proof of [22, Theorem 4.3]. Indeed, suppose that A is
a Prüfer domain with Y-shaped spectrum: that is, suppose that Max(A)= {M1,M2} and that the largest
prime ideal in M1 ∩M2 is P 6= 0. Under these hypothesis, using the previous calculation,

|Star(A)| = (1+ ε(M1)ω(M1))(1+ ε(M2)ω(M2)).

In the notation of [22, Theorem 4.3], let mi (respectively, ni ) be the number of nonidempotent (respec-
tively, idempotent) prime ideals strictly between Mi and P . Then, ω(Mi )=mi+2ni+ε(Mi ); substituting
this expression in the previous one, and considering the cases ε(Mi )= 1 and ε(Mi )= 2, we obtain exactly
the statement of [22, Theorem 4.3].

Remark 6.13. The previous example shows that π̃2 splits nicely into two factors, each one containing
quantities relative to a single maximal ideal. This is most likely a phenomenon restricted to the case
n = 2. Indeed, by [22, Theorem 4.6], π̃3(1, 1, 1, 1, 1, 1)= 45; if π̃3 would have three factors, each one
relative to one maximal ideal, by symmetry we should expect 45 to be the cube of a rational number, and
this is clearly not the case.

It is also possible to repeat the calculation of Example 6.12 for three maximal ideals; the resulting
polynomials π3 and π̃3 turn out to be several lines long.

Example 6.14. Let D be a Prüfer domain such that Spechi(D) is the following set:

M1 M2 N

P

(0)

Suppose ω(M1)= ω(M2)= 1 and let ω(P)= a, ω(N )= b. We want to calculate |SStar(D)|.
We have 2 := {DN , D{P}}, where D{P} := DM1 ∩ DM2 . As in the previous example, we obtain

|SStar(D)| = 1+ R1(a)H1(b)+ R1(a)+ H1(b)+ R2(a)H1(b)+ R1(a)H2(b)+ R2(a)H2(b),

where R1(a) and R2(a) denotes the number of order-preserving maps from (respectively) 1 and 2 to
FStar(D{P}).

Let A := D{P}/P D{P}, and let k be its quotient field. By Proposition 2.2, there is a bijection

FStar(D{P})↔ SStar(A)⊕ (FStar(DP) \ {d}).

Since ω(M1) = ω(M2) = 1, the set SStar(A) corresponds to the subsets of SkOver(A) \ {k} that are
closed under intersections; if Z and W are the maximal ideals of A, we have seven possibilities, namely

∅, {A}, {AZ }, {AW }, {A, AZ }, {A, AW }, and {A, AZ , AW }.
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Hence, the order on SStar(A) \ {∧{k}} corresponds to the following:

{AZ } {A} {AW }

{A, AZ } {A, AW }

{A, AZ , AW }

It follows that R1(a)= 6+ a, while

R2(a)= 15+ 6a+ 1
2a(a+ 1)= 1

2a2
+

13
2 a+ 15,

and thus (at the end of the calculation) we have

|SStar(D)| = 1
4a2b2

+
3
4a2b+ 15

4 ab2
+

21
2 b2
+

45
4 ab+ a+ 65

2 b+ 7.
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