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We characterize the polynomial closure of a pseudo-convergent sequence in a val-
uation domain V of arbitrary rank, and then we use this result to show that the 
polynomial closure is never topological when V has rank at least 2.
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1. Introduction

Let D be an integral domain with quotient field K and let S ⊆ K be a subset. The ring of integer-valued 
polynomial over S is

Int(S,D) := {f ∈ K[X] | f(S) ⊆ D}.

The polynomial closure of S, denoted by S, is the largest subset of K for which the equality Int(S, D) =
Int(S, D) holds, and a subset S is polynomially closed if S = S.

Chabert studied in [3] conditions under which the polynomial closure is topological, i.e., when there is a 
topology on K whose closure operator is the polynomial closure; he showed that for this to happen D must 
be a local domain, and D = V a valuation domain of rank 1 is a sufficient condition. The purpose of this 
paper is to complement the latter result by showing that, when V is a valuation domain of rank bigger than 
1, the polynomial closure is never topological.

* Corresponding author.
E-mail addresses: gperugin@math.unipd.it (G. Peruginelli), spirito@math.unipd.it, dario.spirito@uniud.it (D. Spirito).

1 Current address: Dipartimento di Scienze Matematiche, Informatiche e Fisiche, Università di Udine, Udine, Italy.
https://doi.org/10.1016/j.jpaa.2022.107133
0022-4049/© 2022 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.jpaa.2022.107133
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jpaa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpaa.2022.107133&domain=pdf
mailto:gperugin@math.unipd.it
mailto:spirito@math.unipd.it
mailto:dario.spirito@uniud.it
https://doi.org/10.1016/j.jpaa.2022.107133


2 G. Peruginelli, D. Spirito / Journal of Pure and Applied Algebra 226 (2022) 107133
We prove this result by means of the subsets that Chabert used for his own. Indeed, Chabert described the 
polynomial closure of a generic subset S of V by using pseudo-convergent sequences, originally introduced by 
Ostrowski to study extensions of valued fields [6] and later used by Kaplansky in the study of maximal fields 
[5] (see below for the definitions), as well as new related classes of pseudo-divergent and pseudo-stationary
sequences which he introduced; more precisely, he showed that the polynomial closure of S can be described 
by adding all the pseudo-limits of the sequences of these kinds contained in S [3, Theorem 5.2]; these three 
types of sequences can also be used to generalize the work of Ostrowski [8]. In this paper, we completely 
describe the polynomial closure of a pseudo-convergent sequence for valuation domains of arbitrary rank; 
this will allow to show that, for some explicitly constructed pseudo-convergent sequence E := {sn}n∈N , we 
have E �= {s1} ∪ E \ {s1}, and thus that the polynomial closure is not topological.

Throughout the article, we assume that V is a valuation domain with quotient field K. We denote by v
the valuation associated to V and by Γv the value group of V . We denote by M the maximal ideal of V . 
The rank of V is the rank of its value group, which is equal to the Krull dimension of V .

Let E := {sn}n∈N be a sequence of elements of K. We say that E is a pseudo-convergent sequence if the 
sequence δ(E) := {δn := v(sn+1 − sn)}n∈N ⊆ Γv (called the gauge of E) is strictly increasing. The breadth 
ideal of E is

Br(E) := {x ∈ K | v(x) > δn for all n ∈ N};

the breadth ideal is always a fractional ideal of V . An element α ∈ K is a pseudo-limit of E if v(α−sn) = δn
for all n ∈ N; we denote the set of pseudo-limits of E by LE . If LE is nonempty, then LE = α + Br(E) for 
any pseudo-limit α ([5, Lemma 3]). We note that, in general, pseudo-convergent sequences can be indexed 
by any well-ordered set Λ but that for our purposes it suffices to consider only those indexed by N (see 
Remark 2.5).

2. The polynomial closure of a pseudo-convergent sequence

The following lemma shows that, given a pseudo-convergent sequence E = {sn}n∈N ⊂ K, an element 
t ∈ K can be close to at most one of the elements of E (with respect to the gauge).

Lemma 2.1. Let E := {sn}n∈N ⊂ K be a pseudo-convergent sequence with gauge {δn}n∈N , and let t ∈ K. 
Then, v(sn − t) ≤ δn for all but at most one n ∈ N.

Proof. Suppose v(sn − t) > δn, and let sm ∈ E. If m < n, then

v(sm − t) = v(sm − sn + sn − t) = δm

since v(sm − sn) = δm < δn < v(sn − t); on the other hand, if m > n then

v(sm − t) = v(sm − sn + sn − t) = δn < δm

since v(sm − sn) = δn < v(sn − t). The claim is proved. �
Lemma 2.2. Let I ⊂ M ⊂ V be an ideal. Then, the largest prime ideal contained in I is equal to

⋂
tnV
t/∈I,n≥1
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Proof. Let P (I) :=
⋂

t/∈I,n≥1 t
nV . Then, P (I) is a prime ideal by [4, Theorem 17.1(3)]. If α ∈ P (I) \ I, then 

α ∈ αnV for every n, which is not possible (unless α is a unit, which we can exclude since I ⊂ M). This 
shows that P (I) ⊆ I.

Let Q ⊆ I be a prime ideal. If for some t /∈ I there exists n ∈ N such that tn ∈ Q then t ∈ Q ⊆ I, a 
contradiction. Thus Q ⊆ P (I), and P (I) is the largest prime ideal contained in I. �

The previous lemma can also be rephrased by saying that x ∈ P (I) if and only if v(x) > nv(t) for all 
t ∈ V \ I and all n ∈ N.

Proposition 2.3. Let E := {sn}n∈N ⊂ K be a pseudo-convergent sequence with gauge {δn}n∈N ; let cn :=
sn+1 − sn. Let α ∈ K and take any k ∈ N; let Pk be the largest prime ideal contained in c−1

k Br(E). Then 
the following are equivalent:

(i) v(α− sk) > λ(δr − δk) + δk for every r ≥ k and every λ ∈ N;
(ii) α ∈ sk + ckPk.

Proof. Let β := α−sk
ck

; then, v(β) = v(α − sk) − δk, and thus we have to show that β ∈ Pk if and only if 
v(β) > λ(δr − δk) for every λ ∈ N and r ≥ k.

The sequence F := c−1
k E = {c−1

k sn}n∈N is pseudo-convergent with gauge {δn − δk}n∈N , and thus 
Br(F ) = c−1

k Br(E) � V . Hence, by Lemma 2.2, β ∈ Pk if and only if β ∈ tλV for every t ∈ V \ Br(F )
and every λ ∈ N. By definition, this is equivalent to v(β) > λ(δr − δk) for every r, λ ∈ N. Hence, the two 
conditions are equivalent. �

The following lemma is essentially [3, Proposition 4.8]; we prove it explicitly to show that it holds without 
any hypothesis on the rank of V .

Lemma 2.4. Let E := {sn}n∈N be a pseudo-convergent sequence. Then, LE ⊆ E.

Proof. Let α ∈ LE , and let f ∈ Int(E, V ); we can write it as f(X) =
∑

j aj(X − α)j . By the proof of [7, 
Proposition 3.7], there is a k such that, for all large n, v(f(sn)) = v(ak(sn − α)k) < v(aj(sn − α)j) for all 
j �= k. Since v(f(sn)) ≥ 0 for all n, it follows that v(f(α)) = v(a0) ≥ 0. Hence α ∈ E. �
Remark 2.5. The previous lemma also shows why, in this context, it is enough to consider pseudo-convergent 
sequences indexed by N. Indeed, let E := {sν}ν∈Λ be a pseudo-convergent sequences indexed by a well-
ordered set Λ, and let Ein be the subsequence {sn}n∈N : then, Ein is again pseudo-convergent. Let ν ∈ Λ \N. 
Then, sν ∈ LEin ⊆ Ein, and thus E = Ein; hence, we do not lose anything by considering only Ein.

For each n ∈ N, consider the polynomial

Hn(X) :=
n−1∏
i=0

X − si
sn − si

.

Note that for each n, Hn(sj) is zero for j < n and is a unit of V for j ≥ n, as v(sj − si) = δi = v(sn − si)
when j ≥ n > i. In particular, these polynomials are integer-valued on E, and thus by [2, Proposition 20]
they form a regular basis for Int(E, V ), that is, a basis for the V -module Int(E, V ) such that deg(Hn) = n

for each n ∈ N. In particular, an element α ∈ K is in E if and only if Hn(α) ∈ V for all n ∈ N.

Theorem 2.6. Let E := {sn}n∈N be a pseudo-convergent sequence with gauge {δn}n∈N ; let cn := sn+1 − sn. 
Then,
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E = LE ∪
⋃
n≥1

(sn + cnPn), (1)

where Pn is the largest prime ideal contained in c−1
n Br(E). Furthermore, the union is disjoint.

Proof. Suppose α ∈ E.

If v(α− sn) = δn for every n then α ∈ LE , and in particular it is contained in the right hand side of (1). 
Suppose that is not the case: we distinguish two possibilities.

Suppose that v(α− sn) ≤ δn for every n ∈ N and that k is the smallest index for which v(α− sk) < δk; 
in particular, v(α− si) = δi for all i < k. We have

v(Hk+1(α)) =
k∑

i=0
v(α− si) −

k∑
i=0

δi = v(α− sk) − δk < 0

a contradiction with the fact that α ∈ E.
Suppose now that v(α−sk) > δk for some k; by Lemma 2.1 this k is unique, and for all the other indexes 

we have

v(α− si) = v(α− sk + sk − si) =
{

δi, if i < k

δk, if i > k
(2)

In particular, v(Hk+1(α)) = v(α− sk) − δk > 0 and if n > k + 1 by (2) we have

v(Hn(α)) =
k−1∑
i=0

(δi − δi) + v(α− sk) − δk +
n−1∑

i=k+1

(δk − δi) =

= v(α− sk) − δk +
n−1∑

i=k+1

(δk − δi). (3)

Let now λ, m ∈ N, m ≥ k, be fixed. Choose n so that n −m > λ. In particular, 
∑n−1

i=k+1 δi > λδm. Hence, 
by (3) and the fact that Hn(α) ∈ V we have

v(α− sk) − δk ≥
n−1∑

i=k+1

(δi − δk) > λ(δm − δk)

Since λ, m are arbitrary, by Proposition 2.3 it follows that α ∈ sk + ckPk, as we wanted to show.

Let now α be in the right hand side of (1). If α ∈ LE then α ∈ E by Lemma 2.4. Suppose that α /∈ LE

and α ∈ sk + ckPk for some k ≥ 1: then by Proposition 2.3 v(α− sk) > λ(δr − δk) + δk for every r ≥ k and 
every λ ∈ N.

In order to show that α ∈ E, it is enough to prove that Hn(α) ∈ V for all n ∈ N.
If n ≤ k, then by (2) we have

v(Hn(α)) =
n−1∑
i=0

(δi − δi) = 0.

For n = k + 1 we have v(Hk+1(α)) > 0 as we remarked above.
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Suppose now that n > k + 1. Then by (3) we have

v(Hn(α)) > v(α− sk) − δk +
n−1∑

i=k+1

(δk − δn−1) =

= v(α− sk) − δk + (n− k − 1)(δk − δn−1)

and the last quantity is greater than zero by assumption. Hence, α ∈ E.

We conclude the proof of the theorem by showing the last claim. For every t ∈ sk + ckPk, we have 
t − sk ∈ ckPk and in particular v(t − sk) > v(ck) = δk. In particular, no such t can be a pseudo-limit of E
(since otherwise v(t − sk) = δk for every k). Moreover, if t ∈ (sk + ckPk) ∩ (sk′ + ck′Pk′) for some k′ > k, 
then we should have at the same time v(t − sk) > δk and v(t − sk′) > δk′ , in contradiction with Lemma 2.1. 
Hence the union is disjoint, as claimed. �

As a consequence of Theorem 2.6, we have the main result of the paper.

Theorem 2.7. Let V be a valuation domain of rank > 1. Then, the polynomial closure is not a topological 
closure.

Proof. Since V has rank bigger than 1, there is a nonmaximal prime ideal P ′; if t ∈ V \P ′ is a nonunit, then 
the largest prime ideal P (strictly) contained in tV is different from the zero ideal. Let E := {tn}n∈N and let 
E′ := {tn}n≥2. Then, E and E′ are pseudo-convergent sequences with breadth ideal Br(E) = Br(E′) = P

and with LE = LE′ . Moreover, for every n, we have (tn+1 − tn)−1P = P .
By Theorem 2.6, it follows that

E = LE ∪
⋃
k≥1

(tk + P ) = E′ ∪ (t + P );

moreover, the first union is disjoint, and so (t +P ) ∩E′ = ∅. If the polynomial closure were topological, we 
would have E = E′ ∪ {t} = E′ ∪ {t} = E ∪ {t} (since finite sets are polynomially closed [1, Chapter IV, 
Example IV.1.3]); however, for every p ∈ P \ {0}, the element t + p is in E but not in E′ ∪ {t}. Thus, the 
polynomial closure is not topological, as claimed. �

To conclude the paper, we show when two pseudo-convergent sequences have the same polynomial closure.

Proposition 2.8. Let E := {sn}n∈N and F := {tn}n∈N be two pseudo-convergent sequences with gauges 
δ(E) := {δn}n∈N and δ(F ) := {ηn}n∈N , respectively. Then, E = F if and only if δt = ηt for every t and 
v(tk − sk) > λ(δr − δk) + δk for every k ≥ r and every λ ∈ Z.

Proof. By Theorem 2.6, we can write

E = LE ∪
⋃
k∈N

(sk + ckPk)

and

F = LF ∪
⋃
k∈N

(tk + dkQk)

for some ck, dk ∈ K and prime ideals Pk, Qk defined as in the theorem. Let Sk := sk + ckPk and Tk :=
tk + dkQk.
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Suppose that the two conditions of the statement hold. Then, by Proposition 2.3, for every k we have 
v(ck) = v(dk), Pk = Qk and sk − tk ∈ ckPk, so that Sk = Tk. Furthermore, sk − tk ∈ Br(E) for every k, and 
thus E and F are equivalent in the sense of [7, Section 5], so LE = LF by [7, Lemma 5.3] and E = F .

Conversely, suppose E = F . Let x, y ∈ E: then

• if x, y ∈ Sk then x − y ∈ ckPk ⊆ Br(E);
• if x ∈ Sk and y ∈ Sj for k < j then v(x − y) = δk;
• if x ∈ Sk and y ∈ LE then v(x − y) = δk;
• if x, y ∈ LE then x − y ∈ Br(E).

Let D(E) := {v(x − y) | x, y ∈ E}: then, D(E) = δ(E) ∪ XE , where XE is an up-closed subset of 
Γv ∪ {∞} (more precisely, X = v(Br(E)) if LE has at least two elements, while X =

⋃
i v(ciPi) otherwise). 

Analogously, D(F ) = δ(F ) ∪XF .
If E = F , then D(E) = D(F ). Since XE is the largest up-closed subset of D(E) (and analogously for 

D(F )), we must have δ(E) = δ(F ); since the gauges are linearly ordered, it must be δn = ηn for every 
n ∈ N. In particular, Br(E) = Br(F ) and v(ck) = v(dk) for every k; thus, Pk = Qk for every k.

Therefore, to prove the statement we only need to show that sk ∈ Tk for every k. For y ∈ E, let 
D(E, y) := {v(x − y) | x ∈ E}: then, with the same reasoning as above, we see that

D(E, y) =
{
{δ1, . . . , δn} ∪XE,y if y ∈ Sk

D(E) if y ∈ LE ,

where XE,y is an up-closed subset of Γv ∪ {∞}. Clearly, D(E, y) = D(F, y); in particular, D(F, sk) =
{δ1, . . . , δk} ∪XE,sk , and thus it must be sk ∈ Tk. The claim is proved. �

When V has rank 1, the two previous propositions have a very simplified form, which can also be obtained 
from Chabert’s paper [3].

Corollary 2.9. Let V be a valuation ring of rank 1, and let E := {sn}n∈N and F := {tn}n∈N be two 
pseudo-convergent sequences. Then:

(a) E = E ∪ LE;
(b) Int(E, V ) = Int(F, V ) if and only if sn = tn for every n ∈ N.

Proof. Each c−1
k Br(E) is a proper, non-maximal ideal of V ; therefore, if V has rank 1 then we must 

have Pk = (0). Hence, (a) follows from Theorem 2.6, while (b) from Proposition 2.8, since we must have 
sk − tk ∈ Pk = (0). �
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