Contents lists available at ScienceDirect

Journal of Pure and Applied Algebra

www.elsevier.com/locate/jpaa

We characterize the polynomial closure of a pseudo-convergent sequence in a val-

uation domain V of arbitrary rank, and then we use this result to show that the

polynomial closure is never topological when V has rank at least 2.

ABSTRACT

The polynomial closure is not topological

Giulio Peruginelli, Dario Spirito^{*,1}

Dipartimento di Matematica, Università di Padova, Padova, Italy

ARTICLE INFO

Article history: Received 21 October 2021 Received in revised form 14 March 2022 Available online 10 May 2022 Communicated by S. Iyengar

MSC: 13F20; 13F30

Keywords: Polynomial closure Pseudo-convergent sequences Valuation domains Integer-valued polynomials

1. Introduction

Let D be an integral domain with quotient field K and let $S \subseteq K$ be a subset. The ring of *integer-valued* polynomial over S is

$$Int(S, D) := \{ f \in K[X] \mid f(S) \subseteq D \}.$$

The polynomial closure of S, denoted by \overline{S} , is the largest subset of K for which the equality $Int(S, D) = Int(\overline{S}, D)$ holds, and a subset S is polynomially closed if $S = \overline{S}$.

Chabert studied in [3] conditions under which the polynomial closure is topological, i.e., when there is a topology on K whose closure operator is the polynomial closure; he showed that for this to happen D must be a local domain, and D = V a valuation domain of rank 1 is a sufficient condition. The purpose of this paper is to complement the latter result by showing that, when V is a valuation domain of rank bigger than 1, the polynomial closure is *never* topological.

© 2022 Elsevier B.V. All rights reserved.

^{*} Corresponding author.

E-mail addresses: gperugin@math.unipd.it (G. Peruginelli), spirito@math.unipd.it, dario.spirito@uniud.it (D. Spirito).

¹ Current address: Dipartimento di Scienze Matematiche, Informatiche e Fisiche, Università di Udine, Udine, Italy.

We prove this result by means of the subsets that Chabert used for his own. Indeed, Chabert described the polynomial closure of a generic subset S of V by using *pseudo-convergent sequences*, originally introduced by Ostrowski to study extensions of valued fields [6] and later used by Kaplansky in the study of maximal fields [5] (see below for the definitions), as well as new related classes of *pseudo-divergent* and *pseudo-stationary* sequences which he introduced; more precisely, he showed that the polynomial closure of S can be described by adding all the *pseudo-limits* of the sequences of these kinds contained in S [3, Theorem 5.2]; these three types of sequences can also be used to generalize the work of Ostrowski [8]. In this paper, we completely describe the polynomial closure of a pseudo-convergent sequence for valuation domains of arbitrary rank; this will allow to show that, for some explicitly constructed pseudo-convergent sequence $E := \{s_n\}_{n \in \mathbb{N}}$, we have $\overline{E} \neq \{s_1\} \cup \overline{E \setminus \{s_1\}}$, and thus that the polynomial closure is not topological.

Throughout the article, we assume that V is a valuation domain with quotient field K. We denote by v the valuation associated to V and by Γ_v the value group of V. We denote by M the maximal ideal of V. The rank of V is the rank of its value group, which is equal to the Krull dimension of V.

Let $E := \{s_n\}_{n \in \mathbb{N}}$ be a sequence of elements of K. We say that E is a *pseudo-convergent sequence* if the sequence $\delta(E) := \{\delta_n := v(s_{n+1} - s_n)\}_{n \in \mathbb{N}} \subseteq \Gamma_v$ (called the *gauge* of E) is strictly increasing. The *breadth ideal* of E is

$$Br(E) := \{ x \in K \mid v(x) > \delta_n \text{ for all } n \in \mathbb{N} \};$$

the breadth ideal is always a fractional ideal of V. An element $\alpha \in K$ is a *pseudo-limit* of E if $v(\alpha - s_n) = \delta_n$ for all $n \in \mathbb{N}$; we denote the set of pseudo-limits of E by \mathcal{L}_E . If \mathcal{L}_E is nonempty, then $\mathcal{L}_E = \alpha + \operatorname{Br}(E)$ for any pseudo-limit α ([5, Lemma 3]). We note that, in general, pseudo-convergent sequences can be indexed by any well-ordered set Λ but that for our purposes it suffices to consider only those indexed by \mathbb{N} (see Remark 2.5).

2. The polynomial closure of a pseudo-convergent sequence

The following lemma shows that, given a pseudo-convergent sequence $E = \{s_n\}_{n \in \mathbb{N}} \subset K$, an element $t \in K$ can be close to at most one of the elements of E (with respect to the gauge).

Lemma 2.1. Let $E := \{s_n\}_{n \in \mathbb{N}} \subset K$ be a pseudo-convergent sequence with gauge $\{\delta_n\}_{n \in \mathbb{N}}$, and let $t \in K$. Then, $v(s_n - t) \leq \delta_n$ for all but at most one $n \in \mathbb{N}$.

Proof. Suppose $v(s_n - t) > \delta_n$, and let $s_m \in E$. If m < n, then

$$v(s_m - t) = v(s_m - s_n + s_n - t) = \delta_m$$

since $v(s_m - s_n) = \delta_m < \delta_n < v(s_n - t)$; on the other hand, if m > n then

$$v(s_m - t) = v(s_m - s_n + s_n - t) = \delta_n < \delta_m$$

since $v(s_m - s_n) = \delta_n < v(s_n - t)$. The claim is proved. \Box

Lemma 2.2. Let $I \subset M \subset V$ be an ideal. Then, the largest prime ideal contained in I is equal to

$$\bigcap_{t \notin I, n \ge 1} t^n V$$

Proof. Let $P(I) := \bigcap_{t \notin I, n \ge 1} t^n V$. Then, P(I) is a prime ideal by [4, Theorem 17.1(3)]. If $\alpha \in P(I) \setminus I$, then $\alpha \in \alpha^n V$ for every n, which is not possible (unless α is a unit, which we can exclude since $I \subset M$). This shows that $P(I) \subseteq I$.

Let $Q \subseteq I$ be a prime ideal. If for some $t \notin I$ there exists $n \in \mathbb{N}$ such that $t^n \in Q$ then $t \in Q \subseteq I$, a contradiction. Thus $Q \subseteq P(I)$, and P(I) is the largest prime ideal contained in I. \Box

The previous lemma can also be rephrased by saying that $x \in P(I)$ if and only if v(x) > nv(t) for all $t \in V \setminus I$ and all $n \in \mathbb{N}$.

Proposition 2.3. Let $E := \{s_n\}_{n \in \mathbb{N}} \subset K$ be a pseudo-convergent sequence with gauge $\{\delta_n\}_{n \in \mathbb{N}}$; let $c_n := s_{n+1} - s_n$. Let $\alpha \in K$ and take any $k \in \mathbb{N}$; let P_k be the largest prime ideal contained in $c_k^{-1}Br(E)$. Then the following are equivalent:

(i) $v(\alpha - s_k) > \lambda(\delta_r - \delta_k) + \delta_k$ for every $r \ge k$ and every $\lambda \in \mathbb{N}$; (ii) $\alpha \in s_k + c_k P_k$.

Proof. Let $\beta := \frac{\alpha - s_k}{c_k}$; then, $v(\beta) = v(\alpha - s_k) - \delta_k$, and thus we have to show that $\beta \in P_k$ if and only if $v(\beta) > \lambda(\delta_r - \delta_k)$ for every $\lambda \in \mathbb{N}$ and $r \geq k$.

The sequence $F := c_k^{-1}E = \{c_k^{-1}s_n\}_{n \in \mathbb{N}}$ is pseudo-convergent with gauge $\{\delta_n - \delta_k\}_{n \in \mathbb{N}}$, and thus $\operatorname{Br}(F) = c_k^{-1}\operatorname{Br}(E) \subsetneq V$. Hence, by Lemma 2.2, $\beta \in P_k$ if and only if $\beta \in t^{\lambda}V$ for every $t \in V \setminus \operatorname{Br}(F)$ and every $\lambda \in \mathbb{N}$. By definition, this is equivalent to $v(\beta) > \lambda(\delta_r - \delta_k)$ for every $r, \lambda \in \mathbb{N}$. Hence, the two conditions are equivalent. \Box

The following lemma is essentially [3, Proposition 4.8]; we prove it explicitly to show that it holds without any hypothesis on the rank of V.

Lemma 2.4. Let $E := \{s_n\}_{n \in \mathbb{N}}$ be a pseudo-convergent sequence. Then, $\mathcal{L}_E \subseteq \overline{E}$.

Proof. Let $\alpha \in \mathcal{L}_E$, and let $f \in \text{Int}(E, V)$; we can write it as $f(X) = \sum_j a_j (X - \alpha)^j$. By the proof of [7, Proposition 3.7], there is a k such that, for all large n, $v(f(s_n)) = v(a_k(s_n - \alpha)^k) < v(a_j(s_n - \alpha)^j)$ for all $j \neq k$. Since $v(f(s_n)) \ge 0$ for all n, it follows that $v(f(\alpha)) = v(a_0) \ge 0$. Hence $\alpha \in \overline{E}$. \Box

Remark 2.5. The previous lemma also shows why, in this context, it is enough to consider pseudo-convergent sequences indexed by \mathbb{N} . Indeed, let $E := \{s_{\nu}\}_{\nu \in \Lambda}$ be a pseudo-convergent sequences indexed by a well-ordered set Λ , and let E_{in} be the subsequence $\{s_n\}_{n \in \mathbb{N}}$: then, E_{in} is again pseudo-convergent. Let $\nu \in \Lambda \setminus \mathbb{N}$. Then, $s_{\nu} \in \mathcal{L}_{E_{\text{in}}} \subseteq \overline{E_{\text{in}}}$, and thus $\overline{E} = \overline{E_{\text{in}}}$; hence, we do not lose anything by considering only $\overline{E_{\text{in}}}$.

For each $n \in \mathbb{N}$, consider the polynomial

$$H_n(X) := \prod_{i=0}^{n-1} \frac{X - s_i}{s_n - s_i}.$$

Note that for each n, $H_n(s_j)$ is zero for j < n and is a unit of V for $j \ge n$, as $v(s_j - s_i) = \delta_i = v(s_n - s_i)$ when $j \ge n > i$. In particular, these polynomials are integer-valued on E, and thus by [2, Proposition 20] they form a *regular basis* for Int(E, V), that is, a basis for the V-module Int(E, V) such that $deg(H_n) = n$ for each $n \in \mathbb{N}$. In particular, an element $\alpha \in K$ is in \overline{E} if and only if $H_n(\alpha) \in V$ for all $n \in \mathbb{N}$.

Theorem 2.6. Let $E := \{s_n\}_{n \in \mathbb{N}}$ be a pseudo-convergent sequence with gauge $\{\delta_n\}_{n \in \mathbb{N}}$; let $c_n := s_{n+1} - s_n$. Then,

$$\overline{E} = \mathcal{L}_E \cup \bigcup_{n \ge 1} (s_n + c_n P_n), \tag{1}$$

where P_n is the largest prime ideal contained in $c_n^{-1}Br(E)$. Furthermore, the union is disjoint.

Proof. Suppose $\alpha \in \overline{E}$.

If $v(\alpha - s_n) = \delta_n$ for every *n* then $\alpha \in \mathcal{L}_E$, and in particular it is contained in the right hand side of (1). Suppose that is not the case: we distinguish two possibilities.

Suppose that $v(\alpha - s_n) \leq \delta_n$ for every $n \in \mathbb{N}$ and that k is the smallest index for which $v(\alpha - s_k) < \delta_k$; in particular, $v(\alpha - s_i) = \delta_i$ for all i < k. We have

$$v(H_{k+1}(\alpha)) = \sum_{i=0}^{k} v(\alpha - s_i) - \sum_{i=0}^{k} \delta_i = v(\alpha - s_k) - \delta_k < 0$$

a contradiction with the fact that $\alpha \in \overline{E}$.

Suppose now that $v(\alpha - s_k) > \delta_k$ for some k; by Lemma 2.1 this k is unique, and for all the other indexes we have

$$v(\alpha - s_i) = v(\alpha - s_k + s_k - s_i) = \begin{cases} \delta_i, & \text{if } i < k\\ \delta_k, & \text{if } i > k \end{cases}$$
(2)

In particular, $v(H_{k+1}(\alpha)) = v(\alpha - s_k) - \delta_k > 0$ and if n > k+1 by (2) we have

$$v(H_n(\alpha)) = \sum_{i=0}^{k-1} (\delta_i - \delta_i) + v(\alpha - s_k) - \delta_k + \sum_{i=k+1}^{n-1} (\delta_k - \delta_i) =$$
$$= v(\alpha - s_k) - \delta_k + \sum_{i=k+1}^{n-1} (\delta_k - \delta_i).$$
(3)

Let now $\lambda, m \in \mathbb{N}, m \geq k$, be fixed. Choose *n* so that $n - m > \lambda$. In particular, $\sum_{i=k+1}^{n-1} \delta_i > \lambda \delta_m$. Hence, by (3) and the fact that $H_n(\alpha) \in V$ we have

$$v(\alpha - s_k) - \delta_k \ge \sum_{i=k+1}^{n-1} (\delta_i - \delta_k) > \lambda(\delta_m - \delta_k)$$

Since λ, m are arbitrary, by Proposition 2.3 it follows that $\alpha \in s_k + c_k P_k$, as we wanted to show.

Let now α be in the right hand side of (1). If $\alpha \in \mathcal{L}_E$ then $\alpha \in \overline{E}$ by Lemma 2.4. Suppose that $\alpha \notin \mathcal{L}_E$ and $\alpha \in s_k + c_k P_k$ for some $k \ge 1$: then by Proposition 2.3 $v(\alpha - s_k) > \lambda(\delta_r - \delta_k) + \delta_k$ for every $r \ge k$ and every $\lambda \in \mathbb{N}$.

In order to show that $\alpha \in \overline{E}$, it is enough to prove that $H_n(\alpha) \in V$ for all $n \in \mathbb{N}$.

If $n \leq k$, then by (2) we have

$$v(H_n(\alpha)) = \sum_{i=0}^{n-1} (\delta_i - \delta_i) = 0.$$

For n = k + 1 we have $v(H_{k+1}(\alpha)) > 0$ as we remarked above.

Suppose now that n > k + 1. Then by (3) we have

$$v(H_n(\alpha)) > v(\alpha - s_k) - \delta_k + \sum_{i=k+1}^{n-1} (\delta_k - \delta_{n-1}) =$$

= $v(\alpha - s_k) - \delta_k + (n - k - 1)(\delta_k - \delta_{n-1})$

and the last quantity is greater than zero by assumption. Hence, $\alpha \in \overline{E}$.

We conclude the proof of the theorem by showing the last claim. For every $t \in s_k + c_k P_k$, we have $t - s_k \in c_k P_k$ and in particular $v(t - s_k) > v(c_k) = \delta_k$. In particular, no such t can be a pseudo-limit of E (since otherwise $v(t - s_k) = \delta_k$ for every k). Moreover, if $t \in (s_k + c_k P_k) \cap (s_{k'} + c_{k'} P_{k'})$ for some k' > k, then we should have at the same time $v(t - s_k) > \delta_k$ and $v(t - s_{k'}) > \delta_{k'}$, in contradiction with Lemma 2.1. Hence the union is disjoint, as claimed. \Box

As a consequence of Theorem 2.6, we have the main result of the paper.

Theorem 2.7. Let V be a valuation domain of rank > 1. Then, the polynomial closure is not a topological closure.

Proof. Since V has rank bigger than 1, there is a nonmaximal prime ideal P'; if $t \in V \setminus P'$ is a nonunit, then the largest prime ideal P (strictly) contained in tV is different from the zero ideal. Let $E := \{t^n\}_{n \in \mathbb{N}}$ and let $E' := \{t^n\}_{n \geq 2}$. Then, E and E' are pseudo-convergent sequences with breadth ideal Br(E) = Br(E') = P and with $\mathcal{L}_E = \mathcal{L}_{E'}$. Moreover, for every n, we have $(t^{n+1} - t^n)^{-1}P = P$.

By Theorem 2.6, it follows that

$$\overline{E} = \mathcal{L}_E \cup \bigcup_{k \ge 1} (t^k + P) = \overline{E'} \cup (t + P);$$

moreover, the first union is disjoint, and so $(t+P) \cap \overline{E'} = \emptyset$. If the polynomial closure were topological, we would have $\overline{E} = \overline{E'} \cup \{t\} = \overline{E'} \cup \{t\} = \overline{E} \cup \{t\}$ (since finite sets are polynomially closed [1, Chapter IV, Example IV.1.3]); however, for every $p \in P \setminus \{0\}$, the element t + p is in \overline{E} but not in $\overline{E'} \cup \{t\}$. Thus, the polynomial closure is not topological, as claimed. \Box

To conclude the paper, we show when two pseudo-convergent sequences have the same polynomial closure.

Proposition 2.8. Let $E := \{s_n\}_{n \in \mathbb{N}}$ and $F := \{t_n\}_{n \in \mathbb{N}}$ be two pseudo-convergent sequences with gauges $\delta(E) := \{\delta_n\}_{n \in \mathbb{N}}$ and $\delta(F) := \{\eta_n\}_{n \in \mathbb{N}}$, respectively. Then, $\overline{E} = \overline{F}$ if and only if $\delta_t = \eta_t$ for every t and $v(t_k - s_k) > \lambda(\delta_r - \delta_k) + \delta_k$ for every $k \ge r$ and every $\lambda \in \mathbb{Z}$.

Proof. By Theorem 2.6, we can write

$$\overline{E} = \mathcal{L}_E \cup \bigcup_{k \in \mathbb{N}} (s_k + c_k P_k)$$

and

$$\overline{F} = \mathcal{L}_F \cup \bigcup_{k \in \mathbb{N}} (t_k + d_k Q_k)$$

for some $c_k, d_k \in K$ and prime ideals P_k, Q_k defined as in the theorem. Let $S_k := s_k + c_k P_k$ and $T_k := t_k + d_k Q_k$.

Suppose that the two conditions of the statement hold. Then, by Proposition 2.3, for every k we have $v(c_k) = v(d_k)$, $P_k = Q_k$ and $s_k - t_k \in c_k P_k$, so that $S_k = T_k$. Furthermore, $s_k - t_k \in Br(E)$ for every k, and thus E and F are equivalent in the sense of [7, Section 5], so $\mathcal{L}_E = \mathcal{L}_F$ by [7, Lemma 5.3] and $\overline{E} = \overline{F}$.

Conversely, suppose $\overline{E} = \overline{F}$. Let $x, y \in \overline{E}$: then

- if $x, y \in S_k$ then $x y \in c_k P_k \subseteq Br(E)$;
- if $x \in S_k$ and $y \in S_j$ for k < j then $v(x y) = \delta_k$;
- if $x \in S_k$ and $y \in \mathcal{L}_E$ then $v(x-y) = \delta_k$;
- if $x, y \in \mathcal{L}_E$ then $x y \in Br(E)$.

Let $D(E) := \{v(x - y) \mid x, y \in \overline{E}\}$: then, $D(E) = \delta(E) \cup X_E$, where X_E is an up-closed subset of $\Gamma_v \cup \{\infty\}$ (more precisely, $X = v(\operatorname{Br}(E))$ if \mathcal{L}_E has at least two elements, while $X = \bigcup_i v(c_i P_i)$ otherwise). Analogously, $D(F) = \delta(F) \cup X_F$.

If $\overline{E} = \overline{F}$, then D(E) = D(F). Since X_E is the largest up-closed subset of D(E) (and analogously for D(F)), we must have $\delta(E) = \delta(F)$; since the gauges are linearly ordered, it must be $\delta_n = \eta_n$ for every $n \in \mathbb{N}$. In particular, Br(E) = Br(F) and $v(c_k) = v(d_k)$ for every k; thus, $P_k = Q_k$ for every k.

Therefore, to prove the statement we only need to show that $s_k \in T_k$ for every k. For $y \in \overline{E}$, let $D(E, y) := \{v(x - y) \mid x \in \overline{E}\}$: then, with the same reasoning as above, we see that

$$D(E, y) = \begin{cases} \{\delta_1, \dots, \delta_n\} \cup X_{E, y} & \text{if } y \in S_k \\ D(E) & \text{if } y \in \mathcal{L}_E \end{cases}$$

where $X_{E,y}$ is an up-closed subset of $\Gamma_v \cup \{\infty\}$. Clearly, D(E,y) = D(F,y); in particular, $D(F,s_k) = \{\delta_1, \ldots, \delta_k\} \cup X_{E,s_k}$, and thus it must be $s_k \in T_k$. The claim is proved. \Box

When V has rank 1, the two previous propositions have a very simplified form, which can also be obtained from Chabert's paper [3].

Corollary 2.9. Let V be a valuation ring of rank 1, and let $E := \{s_n\}_{n \in \mathbb{N}}$ and $F := \{t_n\}_{n \in \mathbb{N}}$ be two pseudo-convergent sequences. Then:

(a) $\overline{E} = E \cup \mathcal{L}_E$; (b) $\operatorname{Int}(E, V) = \operatorname{Int}(F, V)$ if and only if $s_n = t_n$ for every $n \in \mathbb{N}$.

Proof. Each c_k^{-1} Br(E) is a proper, non-maximal ideal of V; therefore, if V has rank 1 then we must have $P_k = (0)$. Hence, (a) follows from Theorem 2.6, while (b) from Proposition 2.8, since we must have $s_k - t_k \in P_k = (0)$. \Box

Acknowledgements

The authors wish to warmly thank the referee for suggesting a different strategy for the proof of the main Theorem 2.6, which greatly improved its clarity.

References

- P.-J. Cahen, J.-L. Chabert, Integer-Valued Polynomials, Mathematical Surveys and Monographs, vol. 48, American Mathematical Society, Providence, RI, 1997.
- [2] P.-J. Cahen, J.-L. Chabert, What you should know about integer-valued polynomials, Am. Math. Mon. 123 (4) (2016) 311–337.

- [3] J.-L. Chabert, On the polynomial closure in a valued field, J. Number Theory 130 (2) (2010) 458-468.
- [4] R. Gilmer, Multiplicative Ideal Theory, Pure and Applied Mathematics, vol. 12, Marcel Dekker Inc., New York, 1972.
- [5] I. Kaplansky, Maximal fields with valuations, Duke Math. J. 9 (1942) 303–321.
- [6] A. Ostrowski, Untersuchungen zur arithmetischen Theorie der Körper. Teil I, Math. Z. 39 (1) (1935) 269–320.
- [7] G. Peruginelli, D. Spirito, The Zariski-Riemann space of valuation domains associated to pseudo-convergent sequences, Trans. Am. Math. Soc. 373 (11) (2020) 7959–7990.
- [8] G. Peruginelli, D. Spirito, Extending valuations to the field of rational functions using pseudo-monotone sequences, J. Algebra 586 (2021) 756-786.