The polynomial closure is not topological

Giulio Peruginelli, Dario Spirito ${ }^{*, 1}$
Dipartimento di Matematica, Università di Padova, Padova, Italy

A R T I C L E I N F O

Article history:
Received 21 October 2021
Received in revised form 14 March 2022
Available online 10 May 2022
Communicated by S. Iyengar

MSC:

13F20; 13F30

Keywords:
Polynomial closure
Pseudo-convergent sequences
Valuation domains
Integer-valued polynomials

Abstract

We characterize the polynomial closure of a pseudo-convergent sequence in a valuation domain V of arbitrary rank, and then we use this result to show that the polynomial closure is never topological when V has rank at least 2.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Let D be an integral domain with quotient field K and let $S \subseteq K$ be a subset. The ring of integer-valued polynomial over S is

$$
\operatorname{Int}(S, D):=\{f \in K[X] \mid f(S) \subseteq D\}
$$

The polynomial closure of S, denoted by \bar{S}, is the largest subset of K for which the equality $\operatorname{Int}(S, D)=$ $\operatorname{Int}(\bar{S}, D)$ holds, and a subset S is polynomially closed if $S=\bar{S}$.

Chabert studied in [3] conditions under which the polynomial closure is topological, i.e., when there is a topology on K whose closure operator is the polynomial closure; he showed that for this to happen D must be a local domain, and $D=V$ a valuation domain of rank 1 is a sufficient condition. The purpose of this paper is to complement the latter result by showing that, when V is a valuation domain of rank bigger than 1, the polynomial closure is never topological.

[^0]We prove this result by means of the subsets that Chabert used for his own. Indeed, Chabert described the polynomial closure of a generic subset S of V by using pseudo-convergent sequences, originally introduced by Ostrowski to study extensions of valued fields [6] and later used by Kaplansky in the study of maximal fields [5] (see below for the definitions), as well as new related classes of pseudo-divergent and pseudo-stationary sequences which he introduced; more precisely, he showed that the polynomial closure of S can be described by adding all the pseudo-limits of the sequences of these kinds contained in S [3, Theorem 5.2]; these three types of sequences can also be used to generalize the work of Ostrowski [8]. In this paper, we completely describe the polynomial closure of a pseudo-convergent sequence for valuation domains of arbitrary rank; this will allow to show that, for some explicitly constructed pseudo-convergent sequence $E:=\left\{s_{n}\right\}_{n \in \mathbb{N}}$, we have $\bar{E} \neq \overline{\left\{s_{1}\right\}} \cup \overline{E \backslash\left\{s_{1}\right\}}$, and thus that the polynomial closure is not topological.

Throughout the article, we assume that V is a valuation domain with quotient field K. We denote by v the valuation associated to V and by Γ_{v} the value group of V. We denote by M the maximal ideal of V. The rank of V is the rank of its value group, which is equal to the Krull dimension of V.

Let $E:=\left\{s_{n}\right\}_{n \in \mathbb{N}}$ be a sequence of elements of K. We say that E is a pseudo-convergent sequence if the sequence $\boldsymbol{\delta}(E):=\left\{\delta_{n}:=v\left(s_{n+1}-s_{n}\right)\right\}_{n \in \mathbb{N}} \subseteq \Gamma_{v}$ (called the gauge of E) is strictly increasing. The breadth ideal of E is

$$
\operatorname{Br}(E):=\left\{x \in K \mid v(x)>\delta_{n} \text { for all } n \in \mathbb{N}\right\} ;
$$

the breadth ideal is always a fractional ideal of V. An element $\alpha \in K$ is a pseudo-limit of E if $v\left(\alpha-s_{n}\right)=\delta_{n}$ for all $n \in \mathbb{N}$; we denote the set of pseudo-limits of E by \mathcal{L}_{E}. If \mathcal{L}_{E} is nonempty, then $\mathcal{L}_{E}=\alpha+\operatorname{Br}(E)$ for any pseudo-limit α ([5, Lemma 3]). We note that, in general, pseudo-convergent sequences can be indexed by any well-ordered set Λ but that for our purposes it suffices to consider only those indexed by \mathbb{N} (see Remark 2.5).

2. The polynomial closure of a pseudo-convergent sequence

The following lemma shows that, given a pseudo-convergent sequence $E=\left\{s_{n}\right\}_{n \in \mathbb{N}} \subset K$, an element $t \in K$ can be close to at most one of the elements of E (with respect to the gauge).

Lemma 2.1. Let $E:=\left\{s_{n}\right\}_{n \in \mathbb{N}} \subset K$ be a pseudo-convergent sequence with gauge $\left\{\delta_{n}\right\}_{n \in \mathbb{N}}$, and let $t \in K$. Then, $v\left(s_{n}-t\right) \leq \delta_{n}$ for all but at most one $n \in \mathbb{N}$.

Proof. Suppose $v\left(s_{n}-t\right)>\delta_{n}$, and let $s_{m} \in E$. If $m<n$, then

$$
v\left(s_{m}-t\right)=v\left(s_{m}-s_{n}+s_{n}-t\right)=\delta_{m}
$$

since $v\left(s_{m}-s_{n}\right)=\delta_{m}<\delta_{n}<v\left(s_{n}-t\right)$; on the other hand, if $m>n$ then

$$
v\left(s_{m}-t\right)=v\left(s_{m}-s_{n}+s_{n}-t\right)=\delta_{n}<\delta_{m}
$$

since $v\left(s_{m}-s_{n}\right)=\delta_{n}<v\left(s_{n}-t\right)$. The claim is proved.

Lemma 2.2. Let $I \subset M \subset V$ be an ideal. Then, the largest prime ideal contained in I is equal to

Proof. Let $P(I):=\bigcap_{t \notin I, n \geq 1} t^{n} V$. Then, $P(I)$ is a prime ideal by [4, Theorem 17.1(3)]. If $\alpha \in P(I) \backslash I$, then $\alpha \in \alpha^{n} V$ for every n, which is not possible (unless α is a unit, which we can exclude since $I \subset M$). This shows that $P(I) \subseteq I$.

Let $Q \subseteq I$ be a prime ideal. If for some $t \notin I$ there exists $n \in \mathbb{N}$ such that $t^{n} \in Q$ then $t \in Q \subseteq I$, a contradiction. Thus $Q \subseteq P(I)$, and $P(I)$ is the largest prime ideal contained in I.

The previous lemma can also be rephrased by saying that $x \in P(I)$ if and only if $v(x)>n v(t)$ for all $t \in V \backslash I$ and all $n \in \mathbb{N}$.

Proposition 2.3. Let $E:=\left\{s_{n}\right\}_{n \in \mathbb{N}} \subset K$ be a pseudo-convergent sequence with gauge $\left\{\delta_{n}\right\}_{n \in \mathbb{N}}$; let $c_{n}:=$ $s_{n+1}-s_{n}$. Let $\alpha \in K$ and take any $k \in \mathbb{N}$; let P_{k} be the largest prime ideal contained in $c_{k}^{-1} \operatorname{Br}(E)$. Then the following are equivalent:
(i) $v\left(\alpha-s_{k}\right)>\lambda\left(\delta_{r}-\delta_{k}\right)+\delta_{k}$ for every $r \geq k$ and every $\lambda \in \mathbb{N}$;
(ii) $\alpha \in s_{k}+c_{k} P_{k}$.

Proof. Let $\beta:=\frac{\alpha-s_{k}}{c_{k}}$; then, $v(\beta)=v\left(\alpha-s_{k}\right)-\delta_{k}$, and thus we have to show that $\beta \in P_{k}$ if and only if $v(\beta)>\lambda\left(\delta_{r}-\delta_{k}\right)$ for every $\lambda \in \mathbb{N}$ and $r \geq k$.

The sequence $F:=c_{k}^{-1} E=\left\{c_{k}^{-1} s_{n}\right\}_{n \in \mathbb{N}}$ is pseudo-convergent with gauge $\left\{\delta_{n}-\delta_{k}\right\}_{n \in \mathbb{N}}$, and thus $\operatorname{Br}(F)=c_{k}^{-1} \operatorname{Br}(E) \subsetneq V$. Hence, by Lemma 2.2, $\beta \in P_{k}$ if and only if $\beta \in t^{\lambda} V$ for every $t \in V \backslash \operatorname{Br}(F)$ and every $\lambda \in \mathbb{N}$. By definition, this is equivalent to $v(\beta)>\lambda\left(\delta_{r}-\delta_{k}\right)$ for every $r, \lambda \in \mathbb{N}$. Hence, the two conditions are equivalent.

The following lemma is essentially [3, Proposition 4.8]; we prove it explicitly to show that it holds without any hypothesis on the rank of V.

Lemma 2.4. Let $E:=\left\{s_{n}\right\}_{n \in \mathbb{N}}$ be a pseudo-convergent sequence. Then, $\mathcal{L}_{E} \subseteq \bar{E}$.
Proof. Let $\alpha \in \mathcal{L}_{E}$, and let $f \in \operatorname{Int}(E, V)$; we can write it as $f(X)=\sum_{j} a_{j}(X-\alpha)^{j}$. By the proof of [7, Proposition 3.7], there is a k such that, for all large $n, v\left(f\left(s_{n}\right)\right)=v\left(a_{k}\left(s_{n}-\alpha\right)^{k}\right)<v\left(a_{j}\left(s_{n}-\alpha\right)^{j}\right)$ for all $j \neq k$. Since $v\left(f\left(s_{n}\right)\right) \geq 0$ for all n, it follows that $v(f(\alpha))=v\left(a_{0}\right) \geq 0$. Hence $\alpha \in \bar{E}$.

Remark 2.5. The previous lemma also shows why, in this context, it is enough to consider pseudo-convergent sequences indexed by \mathbb{N}. Indeed, let $E:=\left\{s_{\nu}\right\}_{\nu \in \Lambda}$ be a pseudo-convergent sequences indexed by a wellordered set Λ, and let $E_{\text {in }}$ be the subsequence $\left\{s_{n}\right\}_{n \in \mathbb{N}}$: then, $E_{\text {in }}$ is again pseudo-convergent. Let $\nu \in \Lambda \backslash \mathbb{N}$. Then, $s_{\nu} \in \mathcal{L}_{E_{\text {in }}} \subseteq \overline{E_{\text {in }}}$, and thus $\bar{E}=\overline{E_{\text {in }}}$; hence, we do not lose anything by considering only $\overline{E_{\text {in }}}$.

For each $n \in \mathbb{N}$, consider the polynomial

$$
H_{n}(X):=\prod_{i=0}^{n-1} \frac{X-s_{i}}{s_{n}-s_{i}}
$$

Note that for each $n, H_{n}\left(s_{j}\right)$ is zero for $j<n$ and is a unit of V for $j \geq n$, as $v\left(s_{j}-s_{i}\right)=\delta_{i}=v\left(s_{n}-s_{i}\right)$ when $j \geq n>i$. In particular, these polynomials are integer-valued on E, and thus by [2 , Proposition 20] they form a regular basis for $\operatorname{Int}(E, V)$, that is, a basis for the V-module $\operatorname{Int}(E, V)$ such that $\operatorname{deg}\left(H_{n}\right)=n$ for each $n \in \mathbb{N}$. In particular, an element $\alpha \in K$ is in \bar{E} if and only if $H_{n}(\alpha) \in V$ for all $n \in \mathbb{N}$.

Theorem 2.6. Let $E:=\left\{s_{n}\right\}_{n \in \mathbb{N}}$ be a pseudo-convergent sequence with gauge $\left\{\delta_{n}\right\}_{n \in \mathbb{N}}$; let $c_{n}:=s_{n+1}-s_{n}$. Then,

$$
\begin{equation*}
\bar{E}=\mathcal{L}_{E} \cup \bigcup_{n \geq 1}\left(s_{n}+c_{n} P_{n}\right) \tag{1}
\end{equation*}
$$

where P_{n} is the largest prime ideal contained in $c_{n}^{-1} \operatorname{Br}(E)$. Furthermore, the union is disjoint.
Proof. Suppose $\alpha \in \bar{E}$.
If $v\left(\alpha-s_{n}\right)=\delta_{n}$ for every n then $\alpha \in \mathcal{L}_{E}$, and in particular it is contained in the right hand side of (1). Suppose that is not the case: we distinguish two possibilities.

Suppose that $v\left(\alpha-s_{n}\right) \leq \delta_{n}$ for every $n \in \mathbb{N}$ and that k is the smallest index for which $v\left(\alpha-s_{k}\right)<\delta_{k}$; in particular, $v\left(\alpha-s_{i}\right)=\delta_{i}$ for all $i<k$. We have

$$
v\left(H_{k+1}(\alpha)\right)=\sum_{i=0}^{k} v\left(\alpha-s_{i}\right)-\sum_{i=0}^{k} \delta_{i}=v\left(\alpha-s_{k}\right)-\delta_{k}<0
$$

a contradiction with the fact that $\alpha \in \bar{E}$.
Suppose now that $v\left(\alpha-s_{k}\right)>\delta_{k}$ for some k; by Lemma 2.1 this k is unique, and for all the other indexes we have

$$
v\left(\alpha-s_{i}\right)=v\left(\alpha-s_{k}+s_{k}-s_{i}\right)= \begin{cases}\delta_{i}, & \text { if } i<k \tag{2}\\ \delta_{k}, & \text { if } i>k\end{cases}
$$

In particular, $v\left(H_{k+1}(\alpha)\right)=v\left(\alpha-s_{k}\right)-\delta_{k}>0$ and if $n>k+1$ by (2) we have

$$
\begin{align*}
v\left(H_{n}(\alpha)\right) & =\sum_{i=0}^{k-1}\left(\delta_{i}-\delta_{i}\right)+v\left(\alpha-s_{k}\right)-\delta_{k}+\sum_{i=k+1}^{n-1}\left(\delta_{k}-\delta_{i}\right)= \\
& =v\left(\alpha-s_{k}\right)-\delta_{k}+\sum_{i=k+1}^{n-1}\left(\delta_{k}-\delta_{i}\right) . \tag{3}
\end{align*}
$$

Let now $\lambda, m \in \mathbb{N}, m \geq k$, be fixed. Choose n so that $n-m>\lambda$. In particular, $\sum_{i=k+1}^{n-1} \delta_{i}>\lambda \delta_{m}$. Hence, by (3) and the fact that $H_{n}(\alpha) \in V$ we have

$$
v\left(\alpha-s_{k}\right)-\delta_{k} \geq \sum_{i=k+1}^{n-1}\left(\delta_{i}-\delta_{k}\right)>\lambda\left(\delta_{m}-\delta_{k}\right)
$$

Since λ, m are arbitrary, by Proposition 2.3 it follows that $\alpha \in s_{k}+c_{k} P_{k}$, as we wanted to show.
Let now α be in the right hand side of (1). If $\alpha \in \mathcal{L}_{E}$ then $\alpha \in \bar{E}$ by Lemma 2.4. Suppose that $\alpha \notin \mathcal{L}_{E}$ and $\alpha \in s_{k}+c_{k} P_{k}$ for some $k \geq 1$: then by Proposition $2.3 v\left(\alpha-s_{k}\right)>\lambda\left(\delta_{r}-\delta_{k}\right)+\delta_{k}$ for every $r \geq k$ and every $\lambda \in \mathbb{N}$.

In order to show that $\alpha \in \bar{E}$, it is enough to prove that $H_{n}(\alpha) \in V$ for all $n \in \mathbb{N}$.
If $n \leq k$, then by (2) we have

$$
v\left(H_{n}(\alpha)\right)=\sum_{i=0}^{n-1}\left(\delta_{i}-\delta_{i}\right)=0
$$

For $n=k+1$ we have $v\left(H_{k+1}(\alpha)\right)>0$ as we remarked above.

Suppose now that $n>k+1$. Then by (3) we have

$$
\begin{aligned}
v\left(H_{n}(\alpha)\right) & >v\left(\alpha-s_{k}\right)-\delta_{k}+\sum_{i=k+1}^{n-1}\left(\delta_{k}-\delta_{n-1}\right)= \\
& =v\left(\alpha-s_{k}\right)-\delta_{k}+(n-k-1)\left(\delta_{k}-\delta_{n-1}\right)
\end{aligned}
$$

and the last quantity is greater than zero by assumption. Hence, $\alpha \in \bar{E}$.
We conclude the proof of the theorem by showing the last claim. For every $t \in s_{k}+c_{k} P_{k}$, we have $t-s_{k} \in c_{k} P_{k}$ and in particular $v\left(t-s_{k}\right)>v\left(c_{k}\right)=\delta_{k}$. In particular, no such t can be a pseudo-limit of E (since otherwise $v\left(t-s_{k}\right)=\delta_{k}$ for every k). Moreover, if $t \in\left(s_{k}+c_{k} P_{k}\right) \cap\left(s_{k^{\prime}}+c_{k^{\prime}} P_{k^{\prime}}\right)$ for some $k^{\prime}>k$, then we should have at the same time $v\left(t-s_{k}\right)>\delta_{k}$ and $v\left(t-s_{k^{\prime}}\right)>\delta_{k^{\prime}}$, in contradiction with Lemma 2.1. Hence the union is disjoint, as claimed.

As a consequence of Theorem 2.6, we have the main result of the paper.
Theorem 2.7. Let V be a valuation domain of rank >1. Then, the polynomial closure is not a topological closure.

Proof. Since V has rank bigger than 1 , there is a nonmaximal prime ideal P^{\prime}; if $t \in V \backslash P^{\prime}$ is a nonunit, then the largest prime ideal P (strictly) contained in $t V$ is different from the zero ideal. Let $E:=\left\{t^{n}\right\}_{n \in \mathbb{N}}$ and let $E^{\prime}:=\left\{t^{n}\right\}_{n \geq 2}$. Then, E and E^{\prime} are pseudo-convergent sequences with breadth ideal $\operatorname{Br}(E)=\operatorname{Br}\left(E^{\prime}\right)=P$ and with $\mathcal{L}_{E}=\mathcal{L}_{E^{\prime}}$. Moreover, for every n, we have $\left(t^{n+1}-t^{n}\right)^{-1} P=P$.

By Theorem 2.6, it follows that

$$
\bar{E}=\mathcal{L}_{E} \cup \bigcup_{k \geq 1}\left(t^{k}+P\right)=\overline{E^{\prime}} \cup(t+P) ;
$$

moreover, the first union is disjoint, and so $(t+P) \cap \overline{E^{\prime}}=\emptyset$. If the polynomial closure were topological, we would have $\bar{E}=\overline{E^{\prime} \cup\{t\}}=\overline{E^{\prime}} \cup \overline{\{t\}}=\bar{E} \cup\{t\}$ (since finite sets are polynomially closed [1, Chapter IV, Example IV.1.3]); however, for every $p \in P \backslash\{0\}$, the element $t+p$ is in \bar{E} but not in $\overline{E^{\prime}} \cup \overline{\{t\}}$. Thus, the polynomial closure is not topological, as claimed.

To conclude the paper, we show when two pseudo-convergent sequences have the same polynomial closure.
Proposition 2.8. Let $E:=\left\{s_{n}\right\}_{n \in \mathbb{N}}$ and $F:=\left\{t_{n}\right\}_{n \in \mathbb{N}}$ be two pseudo-convergent sequences with gauges $\boldsymbol{\delta}(E):=\left\{\delta_{n}\right\}_{n \in \mathbb{N}}$ and $\boldsymbol{\delta}(F):=\left\{\eta_{n}\right\}_{n \in \mathbb{N}}$, respectively. Then, $\bar{E}=\bar{F}$ if and only if $\delta_{t}=\eta_{t}$ for every t and $v\left(t_{k}-s_{k}\right)>\lambda\left(\delta_{r}-\delta_{k}\right)+\delta_{k}$ for every $k \geq r$ and every $\lambda \in \mathbb{Z}$.

Proof. By Theorem 2.6, we can write

$$
\bar{E}=\mathcal{L}_{E} \cup \bigcup_{k \in \mathbb{N}}\left(s_{k}+c_{k} P_{k}\right)
$$

and

$$
\bar{F}=\mathcal{L}_{F} \cup \bigcup_{k \in \mathbb{N}}\left(t_{k}+d_{k} Q_{k}\right)
$$

for some $c_{k}, d_{k} \in K$ and prime ideals P_{k}, Q_{k} defined as in the theorem. Let $S_{k}:=s_{k}+c_{k} P_{k}$ and $T_{k}:=$ $t_{k}+d_{k} Q_{k}$.

Suppose that the two conditions of the statement hold. Then, by Proposition 2.3, for every k we have $v\left(c_{k}\right)=v\left(d_{k}\right), P_{k}=Q_{k}$ and $s_{k}-t_{k} \in c_{k} P_{k}$, so that $S_{k}=T_{k}$. Furthermore, $s_{k}-t_{k} \in \operatorname{Br}(E)$ for every k, and thus E and F are equivalent in the sense of [7, Section 5], so $\mathcal{L}_{E}=\mathcal{L}_{F}$ by [7, Lemma 5.3] and $\bar{E}=\bar{F}$.

Conversely, suppose $\bar{E}=\bar{F}$. Let $x, y \in \bar{E}$: then

- if $x, y \in S_{k}$ then $x-y \in c_{k} P_{k} \subseteq \operatorname{Br}(E)$;
- if $x \in S_{k}$ and $y \in S_{j}$ for $k<j$ then $v(x-y)=\delta_{k}$;
- if $x \in S_{k}$ and $y \in \mathcal{L}_{E}$ then $v(x-y)=\delta_{k}$;
- if $x, y \in \mathcal{L}_{E}$ then $x-y \in \operatorname{Br}(E)$.

Let $D(E):=\{v(x-y) \mid x, y \in \bar{E}\}$: then, $D(E)=\boldsymbol{\delta}(E) \cup X_{E}$, where X_{E} is an up-closed subset of $\Gamma_{v} \cup\{\infty\}$ (more precisely, $X=v(\operatorname{Br}(E))$ if \mathcal{L}_{E} has at least two elements, while $X=\bigcup_{i} v\left(c_{i} P_{i}\right)$ otherwise). Analogously, $D(F)=\boldsymbol{\delta}(F) \cup X_{F}$.

If $\bar{E}=\bar{F}$, then $D(E)=D(F)$. Since X_{E} is the largest up-closed subset of $D(E)$ (and analogously for $D(F)$), we must have $\boldsymbol{\delta}(E)=\boldsymbol{\delta}(F)$; since the gauges are linearly ordered, it must be $\delta_{n}=\eta_{n}$ for every $n \in \mathbb{N}$. In particular, $\operatorname{Br}(E)=\operatorname{Br}(F)$ and $v\left(c_{k}\right)=v\left(d_{k}\right)$ for every k; thus, $P_{k}=Q_{k}$ for every k.

Therefore, to prove the statement we only need to show that $s_{k} \in T_{k}$ for every k. For $y \in \bar{E}$, let $D(E, y):=\{v(x-y) \mid x \in \bar{E}\}$: then, with the same reasoning as above, we see that

$$
D(E, y)= \begin{cases}\left\{\delta_{1}, \ldots, \delta_{n}\right\} \cup X_{E, y} & \text { if } y \in S_{k} \\ D(E) & \text { if } y \in \mathcal{L}_{E}\end{cases}
$$

where $X_{E, y}$ is an up-closed subset of $\Gamma_{v} \cup\{\infty\}$. Clearly, $D(E, y)=D(F, y)$; in particular, $D\left(F, s_{k}\right)=$ $\left\{\delta_{1}, \ldots, \delta_{k}\right\} \cup X_{E, s_{k}}$, and thus it must be $s_{k} \in T_{k}$. The claim is proved.

When V has rank 1, the two previous propositions have a very simplified form, which can also be obtained from Chabert's paper [3].

Corollary 2.9. Let V be a valuation ring of rank 1 , and let $E:=\left\{s_{n}\right\}_{n \in \mathbb{N}}$ and $F:=\left\{t_{n}\right\}_{n \in \mathbb{N}}$ be two pseudo-convergent sequences. Then:
(a) $\bar{E}=E \cup \mathcal{L}_{E}$;
(b) $\operatorname{Int}(E, V)=\operatorname{Int}(F, V)$ if and only if $s_{n}=t_{n}$ for every $n \in \mathbb{N}$.

Proof. Each $c_{k}^{-1} \operatorname{Br}(E)$ is a proper, non-maximal ideal of V; therefore, if V has rank 1 then we must have $P_{k}=(0)$. Hence, (a) follows from Theorem 2.6, while (b) from Proposition 2.8, since we must have $s_{k}-t_{k} \in P_{k}=(0)$.

Acknowledgements

The authors wish to warmly thank the referee for suggesting a different strategy for the proof of the main Theorem 2.6 , which greatly improved its clarity.

References

[1] P.-J. Cahen, J.-L. Chabert, Integer-Valued Polynomials, Mathematical Surveys and Monographs, vol. 48, American Mathematical Society, Providence, RI, 1997.
[2] P.-J. Cahen, J.-L. Chabert, What you should know about integer-valued polynomials, Am. Math. Mon. 123 (4) (2016) 311-337.
[3] J.-L. Chabert, On the polynomial closure in a valued field, J. Number Theory 130 (2) (2010) 458-468.
[4] R. Gilmer, Multiplicative Ideal Theory, Pure and Applied Mathematics, vol. 12, Marcel Dekker Inc., New York, 1972.
[5] I. Kaplansky, Maximal fields with valuations, Duke Math. J. 9 (1942) 303-321.
[6] A. Ostrowski, Untersuchungen zur arithmetischen Theorie der Körper. Teil I, Math. Z. 39 (1) (1935) 269-320.
[7] G. Peruginelli, D. Spirito, The Zariski-Riemann space of valuation domains associated to pseudo-convergent sequences, Trans. Am. Math. Soc. 373 (11) (2020) 7959-7990.
[8] G. Peruginelli, D. Spirito, Extending valuations to the field of rational functions using pseudo-monotone sequences, J. Algebra 586 (2021) 756-786.

[^0]: * Corresponding author.

 E-mail addresses: gperugin@math.unipd.it (G. Peruginelli), spirito@math.unipd.it, dario.spirito@uniud.it (D. Spirito).
 ${ }^{1}$ Current address: Dipartimento di Scienze Matematiche, Informatiche e Fisiche, Università di Udine, Udine, Italy.

