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The Derived Sequence of a Pre-Jaffard
Family

Dario Spirito

Abstract. We introduce the concept of pre-Jaffard family, a generaliza-
tion of Jaffard families obtained by substituting the locally finite hy-
pothesis with a much weaker compactness hypothesis. From any such
family, we construct a sequence of overrings of the starting domain that
allows to decompose stable semistar operations and singular length func-
tions in more cases than what is allowed by Jaffard families. We also
apply the concept to one-dimensional domains, unifying the treatment
of sharp and dull degree of a Prüfer domain.
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1. Introduction

A Jaffard family of an integral domain D is a family of flat overrings of D that
satisfy some strong independence property, while simultaneously respecting
the structure of the whole ring (see Definition 3.7 for a precise definition).
This notion allows to extend several results of h-local domains to more gen-
eral rings; in particular, it was used to extend factorization properties from
domains of Dedekind type to a wider class of domains [1, Chapter 6]. Jaffard
families were subsequently used to factorize the set of star operations [2,3]
and the set of length functions [4] on an integral domain as the product of
the analogous sets on the members of the family.

In this paper, we introduce two generalizations of Jaffard families, namely
weak Jaffard families and pre-Jaffard families.

Weak Jaffard families (see Sect. 5) are very similar to Jaffard families,
with the exception that we allow for a single member of the family to behave
“badly”.

Pre-Jaffard families (see Sect. 4), on the other hand, need to satisfy
weaker hypothesis, but for these reason are much more common; for example,
the set of localizations at the maximal ideals of a domain of dimension 1 is
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always a pre-Jaffard family. We show in Sect. 6 how every pre-Jaffard family
Θ generates a sequence of weak Jaffard families; this sequence is constructed
very similarly to the sequence of derived sets of a topological space, and for
this reason we call it the derived sequence of Θ. Indeed, when the dimension
of the base ring D is 1, the members of the derived sequence of Θ correspond
naturally to the member of the sequence of derived sets of the maximal space
of D, endowed with the inverse topology. In particular, our construction is a
generalization of the study of sharp and dull primes tackled in [5, Section 6]
for one-dimensional Prüfer domains; moreover, our terminology symmetrizes
some of their results by unifying the concept of sharp and dull degree of a
one-dimensional domain into the concept of Jaffard degree of a pre-Jaffard
family. See Sect. 8 for the discussion.

In Sect. 7, we apply weak Jaffard families to the study of singular length
functions and of star operations: we show that, given a pre-Jaffard family, we
can factorize their set through the derived sequence (Theorem 7.5) allowing
a wide generalization of the results on Jaffard families and of [4, Example
6.9].

2. Preliminaries

Throughout the paper, all rings will be commutative, unitary and without
zero-divisors, i.e., integral domains; we denote such a ring by D, and we will
always use K to denote its quotient field.

We use Spec(D) and Max(D), respectively, to denote the spectrum and
the maximal spectrum of D, and we denote by D(I) and V(I), respectively,
the open and the closed set of Spec(D) associated to the ideal I. The inverse
topology on Spec(D) is the topology generated by the V(I), as I ranges among
the finitely generated ideals of D. We denote by Δinv a subset Δ ⊆ Spec(D)
endowed with the inverse topology.

The constructible topology is the topology generated by the D(I) and
the V(J) (as I ranges among all finitely generated ideals and J among all
ideals); the constructible topology is still compact, but it is also Hausdorff.
We denote by Δcons a subset Δ ⊆ Spec(D) endowed with the constructible
topology. See [6, Chapter 1] for the construction and properties of the inverse
and the constructible topology.

2.1. Overrings

An overring of D is a ring T such that D ⊆ T ⊆ K; the set of all overrings of
D is denoted by Over(D). This set can be endowed with a topology (called
the Zariski topology) by taking as a subbasis the family of sets

B(x1, . . . , xn) := {T ∈ Over(D) | x1, . . . , xn ∈ T},

as x1, . . . , xn range in K. Under this topology, Over(D) is a compact space
that is not Hausdorff, and furthermore it is a spectral space in the sense of
Hochster [7], i.e., there is a ring A (in general not determined explicitly)
such that Spec(A) (endowed with the Zariski topology) is homeomorphic to
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Over(D) (see e.g. [8, Proposition 3.5]). The name “Zariski topology” is also
due to the fact that the localization map

λ : Spec(D) −→ Over(D),
P �−→ DP

is continuous and, indeed, a topological embedding [9, Lemma 2.4].
The closure under generizations of a set Θ ⊆ Over(D) is

Θ↑ := {T ∈ Over(D) | T ⊇ S for some S ∈ Θ};

a family Θ is closed by generizations if Θ = Θ↑. The family of all sets that
are closed by generizations and compact with respect to the Zariski topol-
ogy is the family of closed sets of a topology, called the inverse topology of
Over(D); equivalently, the inverse topology is the topology generated by the
complements of the sets B(x1, . . . , xn).

The constructible topology on Over(D) is the topology generated by
both the sets B(x1, . . . , xn) and their complements. The space of all overrings,
under both the inverse and the constructible topology, is again compact and
a spectral space; moreover, under the constructible topology it is Hausdorff.
Every set that is closed in the constructible topology is compact with respect
to the Zariski topology.

2.2. Isolated Points

Let X be a topological space. A point x ∈ X is isolated if {x} is an open set;
we denote the set of isolated points of X by I(X). The set of non-isolated
(i.e., limit) points is called the derived set of X and is denoted by by D(X).

We set D0(X) := X and, for every ordinal α, we define:

Dα(X) :=
{D(Dγ(X)) if α = γ + 1 is a successor ordinal,⋂

β<α Dβ(X) if α is a limit ordinal.

The set Dα(X) is called the α-th Cantor–Bendixson derivative of X, and
the smallest ordinal α such that Dα(X) = Dα+1(X) is called the Cantor–
Bendixson rank of X. If Dα(X) = ∅ for some ordinal α, the space X is said
to be scattered ; equivalently, X is scattered if and only if every nonempty
subspace has an isolated point.

2.3. Semistar Operations and Length Functions

Let D be a domain and let FD(K) be the set of D-submodules of K. A
semistar operation on D is a map � : FD(K) −→ FD(K), I �→ I�, such that,
for every I, J ∈ FD(K) and every x ∈ K:

• I ⊆ I�;
• if I ⊆ J , then I� ⊆ J�;
• (I�)� = I�;
• x · I� = (xI)�.

If (I ∩ J)� = I� ∩ J� for every I, J , we say that � is stable. We denote the
sets of semistar operations and of stable semistar operations, respectively,
by SStar(D) and SStarst(D). These two sets have a partial order, given by
�1 ≤ �2 if and only if I�1 ⊆ I�2 for every ideal I; the infimum of a family Δ
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of semistar operations is the map � : I �→ ⋂{I� | � ∈ Δ}. If Δ ⊆ SStarst(D),
then also their infimum � is stable.

Let Mod(D) be the category of D-modules. A length function on D is
a function � : Mod(D) −→ R

≥0 ∪ {∞} such that:
• �(0) = 0;
• if 0 −→ N −→ M −→ P −→ 0 is an exact sequence, then �(M) =

�(P ) + �(N);
• for every module M , we have �(M) = sup{�(N) | N is a finitely gener-

ated submodule of M}.

The sum of a family Λ of length functions is defined as the map such that(∑
�∈Λ

�

)
(M) = sup{�1(M) + · · · + �n(M)},

as {�1, . . . , �n} ranges among the finite subsets of Λ.
If T is a flat overring of D, then we can associate to any length function �

on D a length function �D on T by restriction of scalars, i.e., setting �D(M) :=
�(M) for all T -modules M . Moreover, we can defined a new length function
� ⊗ T on D by setting

(� ⊗ T )(M) := �(M ⊗ T ).

for all D-modules M .
By [4, Theorem 6.5] and the subsequent discussion, there is a bijection

between the set Lsing(D) of length functions such that �(M) ∈ {0,+∞} for
all M ∈ Mod(D) and the set SStarst(D) of stable semistar operations on
D, and by [4, Proposition 6.6] the infimum of a family of stable operations
correspond to the sum of the corresponding length functions. Moreover, the
passage from a length function � on a flat overring T to �D correspond to the
passage from the a stable operation � on D to the closure I �→ (IT )� on T .

3. Jaffard Overrings

In this paper we will mostly use families consisting of flat overrings, i.e., over-
rings of a domain D that are flat when considered as D-modules. However,
in many case we will define rings by intersecting localizations; thus we need
the following definition.

Definition 3.1. An overring T of D is a sublocalization of D if there is a set
Δ ⊆ Spec(D) such that T =

⋂{DP | P ∈ Δ}.
If T is a sublocalization of D, we set:

• σ(T ) := {Q ∩ D | Q ∈ Spec(T )};
• Σ(T ) := {P ∈ Spec(D) | T ⊆ DP };
• T⊥ :=

⋂{DP | P = (0) or P ∈ Spec (D)\Σ(T )}.

Note that, by definition, T⊥ is a sublocalization too, and thus it makes
sense to consider σ(T⊥) and Σ(T⊥).

Lemma 3.2. For every sublocalization T of D, we have Σ(T ) ∪ Σ(T⊥) =
Spec(D).
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Proof. If P /∈ Σ(T ), then by definition T⊥ ⊆ DP , and thus P ∈ Σ(T⊥). �

Every flat overring is a sublocalization [10, Corollary to Theorem 2], but
the converse is not true (see [11] and [12, Example 6.3]). We can characterize
when a sublocalization is flat.

Lemma 3.3. Let T be a sublocalization of D. Then, T is flat over D if and
only if Σ(T ) = σ(T ).

Proof. The containment Σ(T ) ⊆ σ(T ) holds for every sublocalization.
If T is flat and P ∈ σ(T ), then PT = T , and by [10, Theorem 1] we have

T ⊆ DP , i.e., P ∈ Σ(T ). Conversely, if σ(T ) = Σ(T ) and PT = T , let Q be
a prime ideal of T above PT : then, P ′ := Q ∩ D ∈ σ(T ) and thus T ⊆ DP ′ .
Hence, PT ∩D ⊆ PDP ′ ∩D = P , and so P ′ = P , and in particular T ⊆ DP .
Again by [10, Theorem 1], T is flat. �

Lemma 3.4. Let A be a flat overring and B a sublocalization of D. Then,
AB = K if and only if σ(A) ∩ σ(B) = {(0)}.
Proof. Suppose that AB = K, and let P ∈ σ(A) ∩ σ(B). Since A is flat,
P ∈ Σ(A) and so A ⊆ DP ; on the other hand, if Q is a prime ideal of B above
P , then DP ⊆ BQ. Hence, K = ABDP = (ADP )(BDP ) ⊆ DP BQ = BQ. It
follows that Q = (0) and so P = (0) too.

Conversely, if σ(A) ∩ σ(B) = {(0)} then the claim follows from [1,
Lemma 6.2.1]. �

Definition 3.5. Let D be an integral domain with quotient field K and let Θ
be a family of overrings of D. We say that Θ is:

• complete if, for every ideal I of D, we have I =
⋂{IT | T ∈ Θ};

• independent if, for every A,B ∈ Θ such that A = B, we have σ(A) ∩
σ(B) = {(0)};

• strongly independent if, for every A ∈ Θ, we have

A ·

⎛
⎜⎝ ⋂

B∈Θ
B �=A

B

⎞
⎟⎠ = K

• locally finite if every x ∈ K, x = 0, is a nonunit in only finitely many
members of Θ.

By Lemma 3.4, if Θ is a family of flat subsets, then Θ is independent
if and only if AB = K for every A = B in Θ; in particular, a strongly
independent set of flat overrings is always independent. We can prove when
the converse happens.

Proposition 3.6. Let Θ be a complete and independent set of flat overring of
D. Then, Θ is strongly independent if and only if Θ is locally finite.

Proof. If Θ is locally finite, the claim follows from [1, Theorem 6.3.1(4)] (see
below for the definitions used in the reference). Suppose that Θ is strongly
independent but not locally finite: then, there is a nonzero x ∈ D such that
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xT = T for an infinite family Θ′ ⊆ Θ. Hence, for each T ∈ Θ′ there is a prime
ideal PT ∈ Spec(D) such that x ∈ PT and PT T = T ; let Λ be the family of
such ideals. Then, Λ is an infinite subset of the compact space Spec(D)cons,
and thus it has a limit point Q; furthermore, Λ is contained in the clopen
set V(x) of Spec(D)cons and thus also Q ∈ V(x), i.e., x ∈ Q; in particular,
Q = (0).

Since Θ is complete and independent, there is a unique S ∈ Θ such
that QS = S; let A :=

⋂{T ∈ Θ | T = S}. Then, A is a sublocalization of
D; by [10, Theorem 1], σ(A) is the image of Spec(A) under the restriction
map Z �→ Z ∩ D, and thus σ(A) is a closed set in the constructible topology.
Moreover, σ(A) contains all the elements of Λ except one (the ideal PS), and
thus it must contain also the limit point Q of Λ\{PS}. Therefore, DQA = K.
However, S ⊆ DQ since S is flat; therefore, AS ⊆ DQS = K. This contradicts
the fact that Θ is strongly independent: hence Θ must be locally finite. �

Note that the above result does not hold without the hypothesis that
Θ is complete: see Example 6.7 below.

Families satisfying the hypothesis of the previous proposition have their
own name.

Definition 3.7. Let Θ be a family of overrings of D. We say that Θ is a Jaffard
family of D if:

• either K /∈ Θ or Θ = {K};
• every T ∈ Θ is flat;
• Θ is complete;
• Θ is independent;
• Θ is locally finite.

We say that an overring T of D is a Jaffard overring if it belongs to a Jaffard
family of D.

Remark 3.8.
(1) Definition 3.7 is not the original one of a Jaffard family, but it is the

one most useful for our purpose; see [1, Section 6.3] and [2, Proposition
4.3].

(2) By Proposition 3.6 (see also [1, Theorem 6.3.1(4)]) the two conditions
“Θ is independent” and “Θ is locally finite” can be unified into the
single one “Θ is strongly independent”.

(3) If P is a nonzero prime of D, then there is exactly one T ∈ Θ such that
PT = T : indeed, such a T must exists since Θ is complete, while there
cannot be two of them due to independence condition and the fact that
a flat extension satisfies going-down. In particular, Θ induces a partition
on Max(D), called a Matlis partition [1, Section 6.3].

(4) If Θ ∈ K (i.e., Θ = {K}) then since Θ must be complete we must have
also D = K, i.e., D must be a field.

Proposition 3.9. Let T be a flat overring of D. Then, the following are equiv-
alent:
(i) T is a Jaffard overring of D;
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(ii) T · T⊥ = K;
(iii) {T, T⊥} is a Jaffard family of D;
(iv) σ(T ) ∩ σ(T⊥) = {(0)};
(v) for every nonzero P ∈ σ(T ), we have PT⊥ = T⊥;
(vi) there is a sublocalization A of D such that {T,A} is complete and TA =

K.

Proof. (iii) =⇒ (i) follows from the definitions.
(i) =⇒ (ii) Let Θ be a Jaffard family containing T , and let Θ⊥(T ) :=⋂{S ∈ Θ | S = T}. For every nonzero prime ideal P of D out of Σ(T ), there

is a unique S ∈ Θ such that PS = S; since S is flat, we have S ⊆ DP , and
so

Θ⊥(T ) ⊆
⋂

{P ∈ Spec(D) | P /∈ Σ(T )} = T⊥.

Since Θ is strongly independent, T · Θ⊥(T ) = K, and so TT⊥ = K.
(ii) =⇒ (iii) Let Θ := {T, T⊥}. Clearly, Θ is locally finite and complete,

while it is independent by Lemma 3.4 (since T is flat by hypothesis). Since
T ∩ T⊥ = D, by [1, Theorem 6.2.2(1)] T⊥ is also flat; hence, Θ is a Jaffard
family.

(ii) ⇐⇒ (iv) is exactly Lemma 3.4.
(ii) =⇒ (vi) is obvious. To show (vi) =⇒ (i), it is enough to show that

Θ := {T,A} is a Jaffard family. By hypothesis, Θ is complete and locally
finite, while it is independent by Lemma 3.4. In particular, by [1, Theorem
6.2.2(1)] A is also flat, and thus Θ is a Jaffard family.

(iii) =⇒ (v) If P ∈ σ(T ), P = (0), then PT = T ; but since {T, T⊥}
is a Jaffard family, no nonzero prime can survive in both T and T⊥, and so
PT⊥ = T⊥

(v) =⇒ (ii) Suppose that T · T⊥ = K: then, there is a nonzero Q ∈
Spec(D) such that QTT⊥ = TT⊥, and so both QT = T and QT⊥ = T⊥.
However, the first condition implies that Q ∈ σ(T ), contradicting the hy-
pothesis. �

Corollary 3.10. Let Θ be a complete and independent family of flat overrings
of D. Then, Θ is a Jaffard family if and only if each T ∈ Θ is a Jaffard
overring.

Proof. If Θ is a Jaffard family then every T ∈ Θ is a Jaffard overring by
definition. Conversely, suppose each T ∈ Θ is a Jaffard overring; by Proposi-
tion 3.6 we only need to show that Θ is strongly independent.

Fix T ∈ Θ. If S ∈ Θ\{T}, then σ(S) ∩ σ(T ) = Σ(S) ∩ Σ(T ) = ∅, and
thus T⊥ ⊆ S. Therefore,

T

⎛
⎝ ⋂

S∈Θ\{T}
S

⎞
⎠ ⊇ TT⊥ = K

using Proposition 3.9. Hence, Θ is strongly independent and thus a Jaffard
family. �

We conclude this section with a lemma that will be useful later.
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Lemma 3.11. Let Θ be a complete and independent family of flat overrings
of D and let P = (0) be a prime ideal of D. For every S ∈ Θ, either PS = S
or DP S = K.

Proof. Suppose that PS = S. Since Θ is complete, there is a S′ ∈ Θ such
that PS′ = S′; since S′ is flat, by Lemma 3.3 S′ ⊆ DP . Hence, SS′ ⊆ SDP ;
however, since Θ is independent SS′ = K. Hence K = SDP . �

4. Pre-Jaffard Families

The hypothesis that a family is locally finite is usually very strong. To ex-
pand our reach beyond Jaffard families, we define a new class of families by
weakening this condition.

Definition 4.1. Let Θ be a family of overrings of D. We say that Θ is a pre-
Jaffard family of D if:

• either K /∈ Θ or Θ = {K};
• every element of Θ is flat over D;
• Θ is independent;
• Θ is complete;
• Θ is compact in the Zariski topology.

Remark 4.2. We do not know any example of a family of overring satisfying
the first four conditions of Definition 4.1 but that is not compact; it is possible
that the compactness condition is actually redundant.

Proposition 4.3. A pre-Jaffard family is Hausdorff, with respect to the inverse
topology.

Proof. Without loss of generality we can suppose that K /∈ Θ. Fix two dis-
tinct overrings T, S ∈ Θ. Let C := {B(x) | x ∈ T\S} ∪ {B(y) | y ∈ S\T}; we
claim that C is a cover of Θ.

Since ST = K, we have S � T and T � S, and thus T\S and S\T are
both nonempty; it follows that S, T belong to some member of C.

Let A ∈ Θ\{S, T}: then,

A ∩ (T\S) = A ∩ T ∩ (K\S),

and thus if A∩(T\S) = ∅ then A∩T ⊆ S. However, (A∩T )S = AS∩TS = K;
hence, A∩ (T\S) = ∅ and so there is an x ∈ A∩ (T\S), i.e., A ∈ B(x). Thus,
any such A belong to some member of C, and C is a cover of Θ.

Since Θ is compact in the Zariski topology, we can find x1, . . . , xn, y1,
. . . , ym such that {B(x1), . . . ,B(xn),B(y1), . . . ,B(ym)} is a finite subcover.
Let

Ω1 :=
n⋂

i=1

B(xi)c and Ω2 :=
m⋂

j=1

B(yj)c;

then, Ω1 and Ω2 are both open in the inverse topology, since they are a finite
intersection of subbasic open sets. Moreover, S ∈ Ω1 since xi /∈ S for every
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i, while T ∈ Ω2 since yj /∈ T for every j. Finally,

Ω1 ∩ Ω2 =
n⋂

i=1

B(xi)c ∩
m⋂

j=1

B(yj)c =

⎛
⎝ n⋃

i=1

B(xi) ∪
m⋃

j=1

B(yj)

⎞
⎠

c

⊆ Θc,

that is, Ω1 ∩ Ω2 does not intersect Θ. Hence, Ω1 ∩ Θ and Ω2 ∩ Θ are disjoint
neighborhoods of S and T in Θ, with respect to the inverse topology. Thus,
Θ is Hausdorff in the inverse topology. �

Proposition 4.4. A Jaffard family of D is a pre-Jaffard family.

Proof. By definition, any Jaffard family of D is independent, complete and
composed of flat overrings. Furthermore, any locally finite family of overrings
is compact (see e.g. the proof of [13, Corollary 8]), and thus a Jaffard family
is also pre-Jaffard. �

Proposition 4.5. Let Θ be a pre-Jaffard family of D, and let T ∈ Θ. Then,
T is a Jaffard overring of D if and only if Θ\{T} is compact in the Zariski
topology. Furthermore, if this happens, then T is isolated in Θ, with respect
to the inverse topology.

Proof. If T is a Jaffard overring, by Proposition 3.9 we have TT⊥ = K, and
in particular no overring of D different from K contains both T⊥ and T .
Then, Θ↑ ∩ {T⊥}↑ = (Θ\{T})↑: however, since Θ↑ and {T⊥}↑ are closed in
the inverse topology (the former since Θ is compact by hypothesis), then also
(Θ\{T})↑ is inverse-closed. Therefore, Θ\{T}, which is the set of minimal
elements of (Θ\{T})↑, is compact with respect to the Zariski topology. This
also shows that T is isolated in Θ, with respect to the inverse topology.

Suppose Θ\{T} is compact, and let A :=
⋂{S | S ∈ Θ, S = T}. Then,

A is a sublocalization of D; moreover, since T is flat and Θ\{T} is compact,
by [13, Corollary 5] we have

TA = T
⋂

S∈Θ

S =
⋂

S∈Θ

TS = K.

Hence, T is a Jaffard overring by Proposition 3.9. �

Remark 4.6. Proposition 4.5 cannot be improved to a full equivalence be-
tween being a Jaffard overring and being and isolated point of Θinv. Consider
the ring D defined in [14, Example 2]. Then, D is a two-dimensional domain
such that:

• all its finitely generated ideals are principal (i.e., D is a Bézout domain);
in particular, DM is a valuation domain for all maximal ideals M ;

• all its maximal ideals, except for one (say M∞), have height 1;
• M∞ is the radical of a principal ideal;
• the unique nonzero, nonmaximal prime ideal P is contained in a unique

maximal ideal (M∞), but also in the union of all maximal ideals distinct
from M∞.

Let Θ := {DM | M ∈ Max(D)}. Then, every T ∈ Θ is flat and Θ is complete;
furthermore, Θ is independent (if DMDN = K, then M ∩ N should contain
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a nonzero prime ideal, a contradiction) and compact in the Zariski topology
(since the localization map is continuous by [9, Lemma 2.4] and so Θ is
homeomorphic to Max(D)); thus, Θ is a pre-Jaffard family.

Let V := DM∞ : then, V is not a Jaffard overring of D. Indeed, V ⊥ =⋂{DM | M ∈ Max(D),M = M∞} is such that PV ⊥ = V ⊥: otherwise, since
D is Bézout, there would be an a ∈ P such that aV ⊥ = V ⊥. However, there
is also a maximal ideal M = M∞ such that a ∈ M : hence, MV ⊥ = V ⊥,
against the fact that V ⊥ ⊆ DM by construction. Hence, PV ⊥ = V ⊥ and
so V ⊥ ⊆ DP , so that V V ⊥ ⊆ V DP = DP (since V = DM∞ ⊆ DP ). By
Proposition 3.9, V is not a Jaffard overring of D.

We claim that V is isolated in Θ, with respect to the inverse topology.
Indeed, M∞ is the radical of a principal ideal, say bD; hence, M∞ is the
unique T ∈ Θ such that b−1 /∈ T , i.e., B(b−1)c ∩ Θ = {M∞}. However,
B(b−1)c is the complement of an open and compact subset of Over(D), and
thus it is open in the inverse topology; hence, V is isolated in Θinv.

The following two results show how to construct pre-Jaffard families
from other such families by taking intersections.

Lemma 4.7. Let Θ be a family of overrings that is compact in the Zariski
topology. Let Θ1, . . . ,Θn be subsets of Θ, and for each i let Si :=

⋂{T | T ∈
Θi}. Then, the family

Θ′ :=

(
Θ\

n⋃
i=1

Θi

)
∪ {S1, . . . , Sn}

is compact in the Zariski topology.

Proof. Let Ω := {Ωα}α∈A be an open cover of Θ′. If Si ∈ Ωα, then Θi ⊆ Ωα

(since this holds for every subbasic open set B(x)); hence, Ω is also an open
cover of Θ. Since Θ is compact, we can find a finite subcover {Ωα1 , . . . ,Ωαk

}
of Θ; furthermore, for every i we can find a βi ∈ A such that Si ∈ Ωβi

. Then,
{Ωα1 , . . . ,Ωαk

,Ωβ1 , . . . ,Ωβn
} is a finite subcover of Θ′. Thus, Θ′ is compact.

�

Proposition 4.8. Let Θ be a pre-Jaffard family, and let Θ1, . . . ,Θn be pairwise
disjoint subsets of Θ that are compact in the Zariski topology. For every i, let
Si :=

⋂{T | T ∈ Θi}. Then, the family

Θ′ :=

(
Θ\

n⋃
i=1

Θi

)
∪ {S1, . . . , Sn}

is a pre-Jaffard family.

Proof. By induction, it is enough to prove the claim for n = 1; let S := S1.
By construction, Θ′ is complete, and by Lemma 4.7 it is compact in the

Zariski topology. It is independent: indeed, take T1, T2 ∈ Θ′. If T1 = S = T2

then T1T2 = K since Θ is independent, while if S = T2 then

T1S = T1

⋂
T∈Θ1

T =
⋂

T∈Θ1

T1T = K
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by [13, Corollary 5], since Θ1 is compact and every T ∈ Θ1 is in Θ and is
different from T1. Thus, Θ is independent.

We only need to prove that S is flat. By construction, S is a sublocaliza-
tion. If P ∈ σ(Spec(S)) is a nonzero prime, then PT = T for every T ∈ Θ\{S}
(otherwise K = TS ⊆ DP , a contradiction); on the other hand, there is a
S′ ∈ Θ1 such that P ∈ Σ(S′), and thus P ∈ Σ(S). Hence, σ(Spec(S)) = Σ(S),
and S is flat by Lemma 3.3. �

5. Weak Jaffard Families

Let Θ be a pre-Jaffard family. In general, we cannot expect the properties of a
Jaffard family to hold also for Θ; however, we want to show that at least some
properties hold also under the weaker pre-Jaffard hypothesis. To do so, we
want to proceed “step-by-step”, isolating first the Jaffard overring belonging
to Θ; from a technical point of view, we need the following definition.

Definition 5.1. Let Θ be a family of overrings of D and let T∞ ∈ Θ. We say
that Θ is a weak Jaffard family of D pointed at T∞ if:

• either K /∈ Θ or Θ = {K};
• Θ is complete and independent;
• every T ∈ Θ\{T∞} is a Jaffard overring of D;
• T∞ is flat over D.

Lemma 5.2. Let Θ be a family of flat overrings of D, and let B be an overring
of D. Let ΘB := {TB | T ∈ Θ}
(a) If Θ is independent, ΘB is independent.
(b) If Θ is complete with respect to D, then ΘB is complete with respect to

B.
(c) If every T ∈ Θ is flat as a D-module, every TB ∈ ΘB is flat as a

B-module.
(d) If T is a Jaffard overring of B and TB = K, then TB is a Jaffard

overring of B.
(e) If Θ is a Jaffard family of B, then ΘB\{K} is a Jaffard family of B.

Proof. (a) If TB = T ′B with T = T ′ in Θ, then (TB)(T ′B) = (TT ′)B = K.
(b) Let I be a B-submodule of the quotient field K. Then, IB = I, and

thus

I = IB =
⋂

T∈Θ

(IB)T =
⋂

T∈Θ

I(BT ) =
⋂

S∈ΘB

IS

so that ΘB is complete with respect to B.
(c) Since B is an overring, the extension A ⊆ B is an epimorphism, and

thus TB � T ⊗ B [15, Lemma 1.0]. The claim follows.
(d) If T is a Jaffard overring, then by Proposition 3.9 Θ := {T, T⊥} is a

Jaffard family of D. By the previous points, ΘB = {TB, T⊥B} is complete,
independent and formed by flat overrings; since it is clearly locally finite, it
is a Jaffard family, and thus TB is a Jaffard overring.

(e) follows from the previous points and from Corollary 3.10. �
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A Jaffard family is always a weak Jaffard family, pointed at any of its
elements. Analogously, a weak Jaffard family is pre-Jaffard, as we show next.

Proposition 5.3. Let Θ be a weak Jaffard family of D pointed at S.

(a) If J is a proper ideal of D and JS = S, then JT = T for only finitely
many T ∈ Θ.

(b) Θ is a pre-Jaffard family of D.

Proof. (a) Let B :=
⋂{DM | M ∈ V(J)}: we claim that BS = K. Indeed,

V(J) is a compact subset of Spec(D), and thus

BS =

⎛
⎝ ⋂

M∈V(J)

DM

⎞
⎠ S =

⋂
M∈V(J)

DMS = K

since if J ⊆ M then JT = T for some T ∈ Θ and thus DMS ⊇ TS = K.
Consider the family ΘB := {BT | T ∈ Θ}\{K}: by Lemma 5.2, ΘB

is a complete and independent set of flat overrings of B, and all its element
except BS are Jaffard overrings of B. By Corollary 3.10, ΘB is a Jaffard
family of B, and thus it is locally finite. For every T ∈ Θ such that JT = T ,
also JTB = TB; hence, there are at most finitely many elements of Θ such
that JT = T , as claimed.

(b) We need only to show that Θ is compact, with respect to the Zariski
topology. Let {B(xα)}α∈I be an open cover of Θ, and suppose S ∈ B(x).
Let J := (D :D x): then, JS = (S :S x) = S (using the flatness of S),
and thus there are only finitely many T ∈ Θ such that JT = T ; call them
T1, . . . , Tn. Therefore, if A ∈ Θ\{T1, . . . , Tn} then JA = A and (A :A x) = A,
i.e., x ∈ A; thus B(x)\Θ is finite. It follows that we can find a subcover
{B(x),B(x1), . . . ,B(xn)} by choosing x1, . . . , xn such that xi ∈ Ti. Since the
cover was arbitrary, Θ ∪ {S} is compact. �

Weak Jaffard families are much more ubiquitous than Jaffard families;
the main reason is that a weak Jaffard family has a place to “hide the singu-
larities” of D (namely, the ring T∞ to which the family is pointed), while a
Jaffard family does not have such a luxury. A first way in which weak Jaffard
families arise is from a set of Jaffard overrings.

Proposition 5.4. Let Θ be an independent set of Jaffard overrings of D, and
let

S :=
⋂

{DP | PT = T for every T ∈ Θ}.

Then, Θ ∪ {S} is a weak Jaffard family of D pointed at S.

Proof. Let P ∈ Spec(D). If PT = T for some T ∈ Θ, then T ⊆ DP since T
is flat [10, Theorem 1]; if PT = T for every T ∈ Θ, then S ⊆ DP . Therefore,
every localization DP of D contains at least one element of Θ ∪ {S}. Hence,
for every ideal I of D,
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I =
⋂

M∈Max(D)

IDM ⊇
⋂

T∈Θ∪{S}
IT ⊇ I.

Thus Θ ∪ {S} is complete.
If T, T ′ ∈ Θ, T = T ′, then TT ′ = K by hypothesis. To show that Θ∪{S}

is independent, let Σ := {P ∈ Spec(T ) | PT = T for every T ∈ Θ}. We claim
that Σ =

⋂{Spec(D)\Σ(T ) | T ∈ Θ}. Indeed, if P ∈ Σ then PT = T for every
T ∈ Θ, and thus P is in the intersection; conversely, if P /∈ Σ(T ) for every
T ∈ Θ, then (since each T is flat) we have by Lemma 3.3 P /∈ σ(T ), and thus
PT = T , so that P ∈ Σ. By Proposition 3.9, Spec(D)\Σ(T ) = Σ(T⊥)\{(0)};
hence,

Σ ∪ {(0)} =
⋂

T∈Θ

(Σ(T⊥)\{(0)}) ∪ {(0)} =
⋂

T∈Θ

Σ(T⊥)

Again by Proposition 3.9, T⊥ is a Jaffard overring of D, and thus it is flat;
hence, Σ(T⊥) = σ(T⊥) is closed in the constructible topology, and thus
also Σ ∪ {(0)} is closed in the constructible topology, and in particular it is
compact. Fix now a T ∈ Θ. Using the flatness of T , we have

TS = T

⎛
⎝ ⋂

P∈Σ∪{(0)}
DP

⎞
⎠ = K ∩

⋂
P∈Σ

TDP = K,

since DP ⊇ T⊥ for every nonzero P ∈ Σ ⊇ Σ(T⊥). Hence, Θ ∪ {S} is
independent.

Since every T ∈ Θ is a Jaffard overring, we only need to show that S is
flat. Suppose that P ∈ σ(S): since Θ ∪ {S} is complete and independent, we
must have PT = T for every T ∈ Θ, and thus P ∈ Σ, so that, by definition
S ⊆ DP . Thus P ∈ Σ(S) and σ(S) = Σ(S); by Lemma 3.3, S is flat. �

The previous two propositions provide a way to pass from a pre-Jaffard
family to a weak Jaffard family.

Definition 5.5. If Θ is a pre-Jaffard family of D, we denote by ΘJ the set of
Jaffard overrings contained in Θ.

Proposition 5.6. Let Θ be a pre-Jaffard family of D, and suppose that ΘJ =
Θ. Let S :=

⋂{T | T ∈ Θ\ΘJ}. Then:

(a) ΘJ ∪ {S} is a weak Jaffard family of D pointed at S;
(b) Θ\ΘJ is a pre-Jaffard family of S.

Proof. (a) The set ΘJ is a set of Jaffard overrings of D; we claim that S =⋂{DP | PT = T for every T ∈ Θ}. Indeed, since every T ∈ Θ is flat we have

S =
⋂

T∈Θ\ΘJ

⋂
P∈Σ(T )

DP =
⋂

P∈Σ

DP

where Σ :=
⋃{Σ(T ) | T ∈ Θ\ΘJ}. Hence, ΘJ ∪ {S} is a weak Jaffard family

by Proposition 5.4.
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(b) Let Θ′ := Θ\ΘJ . Then, Θ′ is an independent family of flat overrings
of S, and is complete with respect to S, since if I is an ideal of S then

I = IS =
⋂

T∈Θ

IST =
⋂

T∈ΘJ

IST ∩
⋂

T∈Θ′
IST =

⋂
T∈Θ′

IS

as S ⊆ T if T ∈ Θ′ while ST = K if T ∈ ΘJ . We thus need to show that Θ′

is compact.
For every T ∈ ΘJ , by Proposition 4.5 Θ\{T} is compact in the Zariski

topology, and thus ΛT := (Θ\{T})↑ is closed in the inverse topology. Thus,
also the intersection Λ :=

⋂{ΛT | T ∈ ΘJ} is closed in the inverse topology.
However, since {S}↑ ∩{S′}↑ = {K} for every S = S′ in Θ, the set of minimal
elements of Λ is exactly Θ\ΘJ = Θ′; hence, Θ′ is compact, as claimed. �

6. The Derived Sequence

Let Θ be a pre-Jaffard family of D, and let ΘJ be the set of Jaffard overrings
inside Θ. If Θ = ΘJ , then by Corollary 3.10 Θ is a Jaffard family; on the
other hand, if Θ = ΘJ then by Proposition 5.6 we can define an overring T1

of D such that:
• ΘJ ∪ {T1} is a weak Jaffard family of D;
• Θ1 := Θ\ΘJ is a pre-Jaffard family of T1.

In particular, we can repeat the same construction on Θ1: either Θ1 is a
Jaffard family of T1 or we can find an overring T2 of T1 (and so of D) such
that (Θ1)J ∪ {T2} is a weak Jaffard family of T1 and Θ2 := Θ1\(Θ1)J is a
pre-Jaffard family of T2; then we can use the same construction on T2, and
so on. We now want to define rings Tα and subfamilies Θα for every ordinal
α.

To start, define T0 := D and Θ0 := Θ.
Suppose that for every ordinal β < α we have defined a ring Tβ and a

subset Θβ ⊆ Θ that is a pre-Jaffard family of Tβ . Then:
• if α = γ + 1 is a successor ordinal, we define

Θα := Θγ\(Θγ)J ;

• if α is a limit ordinal, we define

Θα :=
⋂

β<α

Θβ .

In both cases, we define

Tα :=
⋂

{S | S ∈ Θα}
with the convention that Tα := K if Θα = ∅.

Proposition 6.1. Preserve the notation above. Then:
(a) Θα is a pre-Jaffard family of Tα;
(b) if α = γ + 1 is a successor ordinal, then Θα ∪ {Tα} is a weak Jaffard

family of Tγ pointed at Tα.



MJOM The Derived Sequence of a Pre-Jaffard Family Page 15 of 25   146 

Proof. We proceed by transfinite induction: the claim is true by hypothesis
for α = 0. Suppose that it holds for every β < α. If α = γ + 1 is a successor
ordinal, then the two statements are exactly Proposition 5.6. Suppose thus
that α is a limit ordinal.

Each T ∈ Θα is flat over D and thus over Tα; furthermore, Θα is inde-
pendent since it is contained in the independent set Θ. Since also every Θβ

(for β < α) is independent, as in the proof of Proposition 5.6 we have

Θ↑
α =

⎛
⎝ ⋂

β<α

Θβ

⎞
⎠

↑

=
⋂

β<α

Θ↑
β

which is closed in the inverse topology since each Θβ is compact with respect
to the Zariski topology (being a pre-Jaffard family by inductive hypothesis),
and so also Θα, which is the set of minimal elements of Θ↑

α, is compact in
the Zariski topology. Thus, we only need to show that Θα is complete. Let P
be a nonzero prime ideal of Tα, and suppose that PS = S for some S ∈ Θα:
then, by Lemma 3.11, SDP = K. Therefore, if PS = S for all S ∈ Θα then,
by the flatness of DP and the compactness of Θα, by [13, Corollary 5] we
have

DP = DP Tα = DP

⋂
S∈Θα

S =
⋂

S∈Θα

DP S = K,

a contradiction. Hence Θα is complete and thus it is a pre-Jaffard family.
�

Definition 6.2. We call the family {Tα} defined in this way the derived se-
quence with respect to Θ.

By construction, the derived sequence of Θ is an ascending chain of
rings:

D = T0 ⊆ T1 ⊆ T2 ⊆ · · · ⊆ Tω ⊆ · · · ,

which corresponds to a descending chain of sets of overrings:

Θ = Θ0 ⊇ Θ1 ⊇ Θ2 ⊇ · · · ⊇ Θω ⊇ · · · .

Proposition 6.3. Preserve the notation above. There is an ordinal α such that
Tα = Tα′ for all α′ > α (equivalently, such that Θα = Θα′ for all α′ > α).

Proof. Note that, if Tα = Tα+1, then Tα = Tα′ for all α′ > α; thus, suppose
by contradiction that Tα � Tα+1 for all α. Then, Tα+1\Tα is nonempty for
all α; but since all the Tα are contained inside K, this is impossible if the
cardinality of α is larger than the cardinality of K. �

Definition 6.4. We call the minimal ordinal α such that Tα = Tα′ for all
α′ > α the Jaffard degree of the family Θ, and we call Tα the dull limit of Θ.
We say that Θ is:

• a sharp family if Tα = K;
• a dull family if Tα = K.
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Equivalently, Θ is a sharp family if Θα = ∅ for some α, while it is a dull
family otherwise.

The terminology sharp/dull family is chosen in analogy with [5,16],
where sharp and dull domains (and, in correspondence, sharp and dull de-
grees) are defined, respectively, for almost Dedekind domains and for one-
dimensional Prüfer domains; our definition can be seen as a wide generaliza-
tion of their concept. However, we do not use the terminology “sharp degree”
and “dull degree”, both because the definition of Jaffard degree unifies them
and because there is actually a small difference in the sharp case. See Sect. 8
for a more detailed discussion.

Example 6.5. Let Θ be a Jaffard family of D, with D = K. Then, Θ = ΘJ ,
and so Θ1 = ∅; thus, T1 = K = Tα for all ordinals α > 0. Hence, Θ is sharp
with Jaffard degree 1.

Example 6.6. Let Θ be a weak Jaffard family of D pointed at S. Then, Θ1 =
{S}, and so T1 = S; on the other hand, Θ2 = ∅ and so T2 = K. Thus Θ is
sharp with Jaffard degree 2.

Example 6.7. Let D be an almost Dedekind domain with only finitely many
maximal ideals that are not finitely generated, say M1, . . . ,Mn. (Those rings
do indeed exists: see [17].) Let Θ := {DM | M ∈ Max(D)}: then, Θ is a
pre-Jaffard family of D (see Proposition 8.1 below).

If P is a maximal ideal of D different from the Mi, then DP is a Jaffard
overring of D, since Max(D)\{P} is compact and thus DP D⊥

P = K. On
the other hand, the DMi

are not Jaffard overrings, since D⊥
Q =

⋂{DQ |
Q ∈ Max(D)\{Mi}} = D; in particular, there is no weak Jaffard family
of D that contains at the same time every DMi

. Furthermore, the family
Θ′ := {DM | M ∈ Max(D),M = M1, . . . ,Mn} is strongly independent
(since every DM is a Jaffard overring and D⊥

M contains the intersection of
all T ∈ Θ′\{DM}), but it is not locally finite, since otherwise the whole
Θ = Θ′ ∪ {DM1 , . . . , DMn

} would be locally finite and thus a Jaffard family.
The set Θ1 is equal to {M1, . . . ,Mn} and thus it is finite; moreover,

T1 = DM1 ∩ · · · ∩ DMn
is a semilocal almost Dedekind domain, and thus a

PID. Therefore, Θ2 = ∅ and T2 = K, so that Θ is sharp with Jaffard degree
2.

Example 6.8. Let D be the ring of all algebraic integers, i.e., the integral
closure of Z in Q. Then, D is a one-dimensional Bézout (in particular, Prüfer)
domain such that none of its maximal ideals are finitely generated, nor any
nonzero primary ideal is finitely generated.

Therefore, Θ := {DM | M ∈ Max(D)} is a pre-Jaffard family of D (as in
the previous example), but none of its elements are Jaffard overrings: hence
Θ1 = ∅ and T1 = D = T0. Therefore, Θ is dull with Jaffard degree 0 and its
dull limit is D itself.

Let now Θ′ := {DM | M ∈ Max(D), 2 ∈ M} ∪ {D[1/2]}. Then, Θ′ is
obtained from Θ with the construction of Proposition 4.8 applied to Θ1 :=
{S ∈ Θ | 1/2 ∈ S} = B(1/2) ∩ Θ (which is compact), and thus is a pre-
Jaffard family. The ring D[1/2] is a Jaffard overring of D, since it belongs to
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the Jaffard family {D[1/p] | p is a prime number}, while no other element of
Θ′ is a Jaffard overring; hence, (Θ′)1 = {DM | M ∈ Max(D), 2 ∈ M}, while
(Θ′)2 = (Θ′)1. Hence Θ′ is dull with Jaffard degree 1, and its dull limit is

T1=
⋂

M ∈ Max (D)
2 ∈ M

DM=D[1/3, 1/5, . . .]=D[1/p | p = 2 is a prime number].

Remark 6.9. Note that, if D is not a field and Θ is sharp, then the Jaffard
degree of D cannot be 0.

7. Stable Operations

Let T be an overring of D. Then, FD(K) ⊆ FT (K), and the image of any
T -submodule of K by any semistar operation on D is still a T -module. Then,
we have two ways to relate the semistar operations on D and T : the first one
is the restriction map

ψT : SStar(D) −→ SStar(T ),

� �−→ �|FT (K),

while the second is the extension map
φT : SStar(T ) −→ SStar(D),

� �−→ φT (�) :
FD(K) −→ FD(K),

I �−→ (IT )�.

If now we have a family Θ of overrings of D, then we can put together
the maps relative to each member of the family: we obtain a restriction map

ΨΘ : SStar(D) −→
∏
T∈Θ

SStar(T ),

� �−→ (ΨT (�))

and an extension map

ΦΘ :
∏
T∈Θ

SStarst(T ) −→ SStarst(D),

(�(T ))T∈Θ �−→ inf
T∈Θ

ΦT (�(T )).

All these maps are order-preserving when SStar(D) and SStar(T ) are en-
dowed with the natural order, and when the product is endowed with the
product order.

Proposition 7.1. Let Θ be a complete and independent family of overrings of
D. Then, ΨΘ ◦ ΦΘ is the identity on

∏
T∈Θ SStar(T ).

Proof. For every T , let �(T ) ∈ SStar(T ), and let � := ΦΘ((�(T ))T∈Θ). Fix
S ∈ Θ and let I ∈ FS(D). Then, I = IS = (0); since I is complete, we have

I�S = I� =
⋂

T∈Θ

(IT )�(T )
= (IS)�(S) ∩

⋂
T∈Θ\{S}

(IST )�(T )
= I�(S)
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as ST = K for every T ∈ Θ\{S} (since Θ is independent). The claim is
proved. �

Definition 7.2. Let Θ be a family of overrings of D. We say that Θ is stable-
preserving if, for every � ∈ SStarst(D) and every I ∈ FD(K), we have

I� =
⋂

T∈Θ

(IT )�.

A stable semistar operation is uniquely determined by its action on
proper ideals of D. Hence, if � is a stable semistar operation fixing D, then
the notion of extension of a star operation studied in [2] can be used to show
that if Θ is a Jaffard family then I� =

⋂
T∈Θ(IT )� (see, in particular, [2,

Theorems 5.4 and 5.6]); a similar result, without the hypothesis D = D�,
can be shown joining the results in [4, Sections 3 and 6] (passing through
length functions), so that any Jaffard family is stable-preserving. We want to
generalize this case, but we first point out why stable-preserving properties
are useful.

Proposition 7.3. Let Θ be a stable-preserving family of flat overrings of D.
Then, ΨΘ and ΦΘ establish an order-preserving isomorphism between
SStarst(D) and

∏{SStarst(T ) | T ∈ Θ}.
Proof. If � is a stable semistar operation, then the restriction ΨT (�) is stable
for every overring T ; conversely, the infimum of a family of restriction of
stable operations is still stable, since

(I ∩ J)ΦΘ(�(T )) =
⋂

T∈Θ

((I ∩ J)T )�(T )
=

⋂
T∈Θ

((IT ∩ JT ))�(T )
=

=
⋂

T∈Θ

(IT )�(T ) ∩ (JT )�(T )
= IΦΘ(�(T )) ∩ JΦΘ(�(T )),

using the flatness of the members of Θ. Hence, the maps ΦΘ and ΨΘ restrict
to maps from SStarst(D) to

∏
T∈Θ SStarst(T ).

By Proposition 7.1, ΨΘ ◦ ΦΘ is the identity. Let now � ∈ SStarst(D).
Then,

IΦΘ◦ΨΘ(�) =
⋂

T∈Θ

(IT )� = I�

since Θ is stable-preserving. Hence, ΦΘ ◦ ΨΘ is the identity of SStarst(D),
and thus ΦΘ and ΨΘ are isomorphism. �

Proposition 7.4. A weak Jaffard family is stable-preserving.

Proof. Let Θ be a weak Jaffard family pointed at T∞. Fix any � ∈ SStarst(D),
and let � be the map I �→ ⋂

T∈Θ(IT )�. Then, � is stable, and � ≤ �; in
particular, if 1 ∈ I� then 1 ∈ I�.

Conversely, let I ⊆ D be such that 1 ∈ I�; without loss of generality, we
can suppose that I = I�. Let T ∈ Θ\{T∞}: then, T is a Jaffard overring of
D, and thus {T, T⊥} is a Jaffard family of D by Proposition 3.9. Hence,

IT = I�T = (IT ∩ IT⊥)�T = ((IT )� ∩ (IT⊥)�)T = (IT )� ∩ (IT⊥)�T.
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By definition, I� ⊆ (IT )�, and thus 1 ∈ (IT )�; on the other hand, TT⊥ = K
and thus (IT⊥)�T = K. Thus, 1 ∈ IT and IT = T .

Since Θ is complete, we have I = (IT∞ ∩ D), and so

IT∞ = I�T∞ = (IT∞ ∩ D)�T∞ = (IT∞)� ∩ D�T∞.

Again, by construction 1 belongs to both (IT∞)� and D�T∞, and thus 1 ∈
IT∞, so that IT∞ = T∞. Hence, IT = T for every T ∈ Θ, and thus I = D.
Therefore, for every I ⊆ D we have 1 ∈ I� if and only if 1 ∈ I�; since � and �
are stable, it follows that � = �, as claimed. Thus, Θ is stable-preserving, as
claimed. �
Theorem 7.5. Let Θ be a Jaffard family, α an ordinal, and let Θ′ := (Θ\Θα)∪
{Tα}. Then, Θ′ is stable-preserving.

Proof. For every β ≤ α, let Λβ := (Θ\Θβ) ∪ {Tβ}: we want to show by
induction that Λβ is stable-preserving. Note that each Λβ is complete and,
by definition, Λα = Θ′.

If β = 0 then Λ0 = (Θ\Θ) ∪ {T0} = {T0} = {D} is clearly stable-
preserving; suppose thus β > 0, and suppose that the claim holds for every
γ < β; we distinguish two cases.

If β = γ + 1 is a successor ordinal, then Θβ = Θγ\(Θγ)J and thus

Λβ = (Θ\(Θγ\(Θγ)J )) ∪ {Tβ} = (Θ\Θγ) ∪ (Θγ)J ∪ {Tβ}.

Let Λ′ := Θ\Θγ , and take a stable semistar operation on D. By inductive
hypothesis, Λγ = Λ′ ∪ {Tγ} is stable-preserving, and thus

I� =
⋂

A∈Λ′
(IA)� ∩ (ITγ)�.

Moreover, by construction, (Θγ)J∪{Tβ} is a weak Jaffard family of Tγ pointed
at Tβ ; by Proposition 7.4, it is stable-preserving on Tβ , and thus

(ITγ)� =
⋂

A∈(Θγ)J∪{Tβ}
(ITγA)� =

⋂
A∈(Θγ)J∪{Tβ}

(IA)�,

so that

I� =
⋂

A∈Λ′
(IA)� ∩

⋂
A∈(Θγ)J∪{Tβ}

(IA)� =
⋂

A∈Λβ

(IA)�.

Hence, Λβ is stable-preserving.
Suppose now that β is a limit ordinal: then, Θβ =

⋂
γ<β Θγ , and thus

Λβ =

⎛
⎝Θ\

⋂
γ<β

Θγ

⎞
⎠ ∪ {Tβ} =

⋃
γ<β

(Θ\Θγ) ∪ {Tβ}.

Let � be a stable semistar operation, and let � be the map

� : I �→
⋂

A∈Λβ

(IA)� =

⎡
⎣ ⋂

γ<β

⋂
A∈Θγ

(IA)�

⎤
⎦ ∩ (ITβ)�.

Then, � is a stable semistar operation, and I� ⊆ I� for all ideals I (as I� is
contained in all (IA)� and in (ITβ)�). We claim that it is equal to �, and to
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do so it is enough to show that if 1 ∈ I� then also 1 ∈ I�, where I is a proper
ideal of D (this follows from condition (4) of [18, Theorem 2.6]).

Take thus a proper ideal I such that 1 ∈ I�, and let Γ := {γ < β | IT =
T for some T ∈ Θγ\Θγ+1}.

Suppose that Γ is nonempty: then, it has a minimum γ. Since Λγ is
complete and IS = S for all S ∈ Θδ with δ < γ, we must have I = ITγ ∩ D;
as above, it follows that I� = (ITγ)� ∩ D�. Let T ∈ Θγ\Θγ+1: then, T is a
Jaffard overring of Tγ . Let

A :=
⋂

{(Tγ)P | P ∈ Spec(Tγ), PT = T},

that is, A = T⊥ with respect to Tγ . Then, TA = K and J = JT ∩ JA for all
Tγ-submodules J of K. Thus,

(ITγ)�T = (ITγT ∩ ITγA)�T = (IT )� ∩ ((IA)�)T = (IT )�.

Therefore,

I�T = ((ITγ)� ∩ D�)T = (IT )� ∩ D�T

contains 1 since it contains I�. Since T was arbitrary in Θγ\Θγ+1, this is a
contradiction.

Therefore, Γ must be empty. Since β is a limit ordinal, Λβ is also equal
to

⋃
γ<β(Θγ\Θγ+1); therefore, since Λβ is complete and I is proper, we must

have I = ITβ ∩ D. Hence, I� = (ITβ ∩ D)� = (ITβ)� ∩ D� since � is stable.
However, 1 ∈ (ITβ)� since (ITβ)� contains I�, while obviously 1 ∈ D�; hence,
1 ∈ I�.

By induction, it follows that Λα = Θ′ is stable-preserving, as claimed.
�

Corollary 7.6. Let Θ be a Jaffard family, α an ordinal, and let Θ′ := (Θ\Θα)∪
{Tα}. Then:
(1) for every stable semistar operation � on D, we have I� =

⋂{(IT )� |
T ∈ Θ′};

(2) SStarst(D) � ∏{SStarst(T ) | T ∈ Θ′}.
Proof. The first part follows by joining Theorem 7.5 with Definition 7.2, the
second part from Theorem 7.5 and Proposition 7.3. �

From the correspondence between stable semistar operations and length
functions we have the following.

Proposition 7.7. Let D be an integral domain and let Θ be a stable-preserving
family of flat overrings of D. Then, for every � ∈ Lsing(D), we have

� =
∑
T∈Θ

� ⊗ T.

In particular, this holds for Jaffard families, as was proved in [4, Theo-
rem 3.10]; likewise, the analogue of Corollary 7.6 holds.

Corollary 7.8. Let Θ be a Jaffard family, α an ordinal, and let Θ′ := (Θ\Θα)∪
{Tα}. Then:
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(1) for every length function � on D, we have � =
∑{� ⊗ T | T ∈ Θ′};

(2) Lsing(D) � ∏{Lsing(T ) | T ∈ Θ′}.
Obviously, the previous results are at their strongest when α is the

Jaffard degree of Θ, so that Tα is the dull limit of Θ.

8. The Dimension 1 Case

In this section, we specialize the results of the previous sections to domains
of dimension 1. In this case, there is a natural pre-Jaffard family to consider.

Proposition 8.1. Let D be a domain of dimension 1, and let Θ := {DM |
M ∈ Max(D)}. Then, Θ is a pre-Jaffard family of D.

Proof. The family Θ is clearly complete, independent (no nonzero prime sur-
vives in DM and in DN for M = N) and composed of flat overrings. Further-
more, the localization map λ : Spec(D) −→ Over(D) is a homeomorphism
between Spec(D) and λ(Spec(D)) when the spaces are endowed with the re-
spective Zariski topologies [9, Lemma 2.4]; in particular, Θ = λ(Max(D)) is
compact. Hence, Θ is a pre-Jaffard family. �

Definition 8.2. Let D be a one-dimensional integral domain, and let Θ :=
{DM | M ∈ Max(D)}. We say that D is:

• ultimately sharp if Θ is sharp;
• ultimately dull if Θ is dull.

The second reason why the dimension 1 hypothesis is powerful is that
we can improve Proposition 4.5.

Proposition 8.3. Let D be a domain of dimension 1, and let Θ := {DM |
M ∈ Max(D)}. Let M ∈ Max(D). Then, the following are equivalent:
(i) DM is a Jaffard overring of D;
(ii) Θ\{DM} is compact, with respect to the Zariski topology;
(iii) Max(D)\{M} is compact, with respect to the Zariski topology;
(iv) M is isolated in Max(D), with respect to the inverse topology.

Proof. The equivalence of (i) and (ii) follows from Proposition 4.5 (and
Proposition 8.1), while the equivalence of (ii) and (iii) from the fact that
Θ\{DM} � Max(D)\{M} via the localization map. Again by Proposition 4.5,
(i) implies (iv).

Suppose (iv) holds. Then, Max(D)\{M} is closed in Max(D), with
respect to the inverse topology. Since D has dimension 1, it follows that
Spec(D)\{M} is closed in the inverse topology, and thus that Max(D)\{M}
is compact. Hence, (iii) holds and all the conditions are equivalent. �

Recall that, for a topological space X, I(X) and D(X) are, respectively,
the set of isolated points and the set of limit points of X. Proposition 8.3
allows to describe the derived sequence in a purely topological way.
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Theorem 8.4. Let D be a one-dimensional domain, let Θ := {DM | M ∈
Max(D)} and let X := Max(D)inv. Let {Tα} be the derived sequence of Θ and
let {Θα} be the corresponding chain of subsets of Θ. Then, for every ordinal
α and every M ∈ Max(D), we have MTα = Tα if and only if M ∈ Dα(X),
and Θα = {DM | M ∈ Dα(X)}.
Proof. Let Λα := {M ∈ Max(D) | MTα = Tα}; then, {Λα} is a descending
chain of subsets of Max(D), and we need to show that Λα = Dα(X). By
definition, Θα is a pre-Jaffard family of Tα; it follows that M ∈ Λα if and
only if DM ∈ Θα.

We proceed by transfinite induction. For α = 0, Θ0 = Max(D) and
D0(X) = X, so the claim is proved. Suppose that the claim holds for every
β < α; we distinguish two cases.

Suppose first that α = γ +1 is a successor ordinal. Then, by hypothesis,
{M ∈ Max(D) | MTγ = Tγ} = Dγ(X); hence, the restriction map ρ :
Max(Tγ) −→ Max(D), P �→ P ∩ D establishes a homeomorphism between
Max(Tγ) and its image Dγ(X) = Λγ(X) both in the Zariski and in the inverse
topology. By definition and by Proposition 8.3, Θα = Θγ+1 = {(Tγ)P | P ∈
(Max(Tγ))inv}, i.e., given a maximal ideal M of D, we have DM ∈ Θα if and
only if MTγ is a limit point of (Max(Tγ))inv. Since ρ is a homeomorphism
in the inverse topology, this is equivalent to saying that M ∈ Dγ+1(X) =
Dα(X); that is, DM ∈ Θα if and only if M ∈ Dα(X). By the remark at the
beginning of the proof, we have our claim.

Suppose now that α is a limit ordinal. If M ∈ Λα, then M ∈ Λβ for
all β < α, and thus by induction M ∈ Dβ(X) for all β < α; by definition,
this is exactly the condition M ∈ Dα(X). Conversely, if M ∈ Dα(X) then
M ∈ Dβ(X) for all β < α, and thus by induction DM ∈ Θβ for all β < α;
therefore, DM ∈ Θα by definition and M ∈ Λα. Thus M ∈ Λα if and only if
M ∈ Dα(X), and the claim is proved. �
Corollary 8.5. Let D be a one-dimensional integral domain. Then, the Jaffard
degree of Θ is equal to the Cantor–Bendixson rank of Max(D)inv.

Proof. By definition, the Cantor–Bendixson rank of X is the least ordinal α
such that Dα(X) = Dα+1(X). By Theorem 8.4, when X = Max(D)inv the
latter condition is equivalent to Θα = Θα+1, and thus α is also the Jaffard
degree of Θ. �
Corollary 8.6. Let D be a one-dimensional integral domain, and let X :=
Max(D)inv. Then, D is ultimately sharp if and only if X is a scattered space.

Proof. By Theorem 8.4, Dα(X) becomes empty if and only if there is an α
such that MTα = Tα for all maximal ideal M , where Tα is the α-th element
of the derived sequence of Θ. However, the latter condition is equivalent to
Tα = K, i.e., to the fact that D is ultimately sharp. �

When D is a Prüfer domain, a similar construction has been given in
[5, Section 6], following ideas introduced in [16]. In this case, a maximal ideal
M is said to be sharp if

⋂{DN | N ∈ Max(D), N = M} � DM , while dull
otherwise; by [5, Lemma 6.3(2)] and Proposition 8.3 (or by direct proof) we
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have that M is sharp if and only if DM is a Jaffard overring of D. If Max�(D)
is the set of sharp maximal ideals of D, they define recursively an ascending
sequence of rings by

Dα :=
{⋂{(Dγ)M | M ∈ Max �(Dγ)} if α = γ + 1 is a successor ordinal,⋃{Dγ | γ < α} if α is a limit ordinal,

and they show [5, Lemma 6.5(2)] that Max(Dα) = {MDα | M ∈ Dα(Max(D)
inv)}, so that Dα actually coincides with our Tα, the α-th element of the
derived sequence of Θ := {DM | M ∈ Max(D)} (this also, a fortiori, for limit
ordinals α, for which the definitions of Tα and Dα do not coincide). Then,
they say that D has sharp degree α if Dα = K while Dα+1 = K, and that D
has dull degree α if Dα = Dα+1 = K and Dβ = Dα for all β < α.

In the case of the dull degree, our definition agrees with theirs: it is
straightforward to see (using Dα = Tα) that D has a dull degree if and only
if D is ultimately dull, and that the dull degree of D coincides with the
Jaffard degree of Θ.

On the other hand, for the sharp degree, there is a difference: indeed, if
D has sharp degree α then Θ has Jaffard degree α + 1, and conversely if the
Jaffard degree of Θ is a successor ordinal α + 1 then D has sharp degree α.
However, if the Jaffard degree of Θ is a limit ordinal α, then the sharp degree
of D does not exist, because the definition requires that the first β such that
Dβ = K is a successor ordinal. Thus, D has a sharp degree if and only if D
is ultimately sharp and the Jaffard degree of Θ is a successor ordinal.

Our approach allows to give a simpler form to some of their results.
Indeed, Corollary 8.6 above is a more symmetric version of [5, Theorem 6.6],
because it gives a complete equivalence between a topological fact (Max(D)inv

is scattered) and the sharpness of D, without requiring that the Jacobson
radical of D is nonzero (as in part (2) of the reference) and we do not need
to separate the dull and the sharp case (as in parts (1) and (3)).

To conclude the paper, we apply the results of Section 7 to
one-dimensional domain.

Proposition 8.7. Let D be a one-dimensional domain. Let Tα be the dull limit
of Θ := {DM | M ∈ Max(D)}. Then, the family

Θ′ := {DM | M ∈ Max(D),MT∞ = Tα} ∪ {Tα}
is stable-preserving.

Proof. The claim is a direct consequence of Theorem 7.5. �

Proposition 8.8. Let D be a one-dimensional Prüfer domain. Then, the fam-
ily Θ := {DM | M ∈ Max(D)} is stable-preserving if and only if D is ulti-
mately sharp.

Proof. If D is ultimately sharp, then its dull limit Tα is equal to K, and thus
the family Θ′ = {DM | M ∈ Max(D),MT∞ = Tα} ∪ {Tα} of Θ coincides
with Θ ∪ {K}. Hence, Θ ∪ {K} is stable-preserving and so is Θ.

Suppose D is ultimately dull, and let T := Tα be its dull limit. Consider
the set Λ := {N | NT = T}. For every N ∈ Λ, DN = TNT is not a Jaffard
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overring of T (by construction of Tα), and thus Max(T )\{NT} is not com-
pact; hence,

⋂
N ′ �=N TN ′ = T . For every N ∈ Λ, let �N be the stable semistar

operation

�N : I �→
⋂

N ′∈Λ
N ′ �=N

IDN .

Then, �N fixes T , but I�N = K for all I that are DN -modules or DM -
modules for some M /∈ Λ. Let � be the supremum of all the �N ; then, � fixes
T . However, (TDM )�N = K for every M ∈ Max(D), and thus

K =
⋂

M∈Max(D)

(TDM )�N = T �N .

Hence, Θ is not stable-preserving. �

Corollary 8.9. Let D be an almost Dedekind domain that is ultimately sharp.
Then, there is a natural bijection between SStarst(D) and the power set of
Max(D).

Proof. By Propositions 7.3 and 8.8, SStarst(D) is isomorphic to the product∏{SStarst(DM ) | M ∈ Max(D)}. However, each DM is a discrete valuation
ring, and thus SStarst(DM ) contains exactly two operations (the identity and
the one sending everything to K). The claim follows. �
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