
Topology and its Applications 273 (2020) 107101
Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

The Golomb topology on a Dedekind domain and the group of 
units of its quotients

Dario Spirito
Dipartimento di Matematica e Fisica, Università degli Studi “Roma Tre”, Roma, Italy

a r t i c l e i n f o a b s t r a c t

Article history:
Received 1 July 2019
Received in revised form 21 January 
2020
Accepted 2 February 2020
Available online 5 February 2020

MSC:
54G99
54A10
11A07
13F05

Keywords:
Golomb space
Dedekind domains
Homeomorphism problem

We study the Golomb spaces of Dedekind domains with torsion class group. In 
particular, we show that a homeomorphism between two such spaces sends prime 
ideals into prime ideals and preserves the P -adic topology on R \ P . Under certain 
hypothesis, we show that we can associate to a prime ideal P of R a partially 
ordered set, constructed from some subgroups of the group of units of R/Pn, which 
is invariant under homeomorphisms, and use this result to show that the unique self-
homeomorphisms of the Golomb space of Z are the identity and the multiplication 
by −1. We also show that the Golomb space of any Dedekind domain contained in 
the algebraic closure of Q and different from Z is not homeomorphic to the Golomb 
space of Z.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Let R be an integral domain. The Golomb topology of R is the topology on R• := R\{0} generated by the 
coprime cosets; we denote by G(R) the space R• endowed with this topology, and call it the Golomb space
of R. The Golomb topology on the set Z+ of positive integer was introduced by Brown [5] and subsequently 
studied by Golomb [13,14]. On general domains, the Golomb topology was considered alongside several 
other coset topologies (see for example [15]), and was shown to provide a way to generalize Furstenberg’s 
“topological” proof of the infinitude of primes in a more general context [11,6]. See [7, Section 4] for a more 
detailed historical overview of the subject.

Two recent articles have shed more light on the Golomb topology. The first one, due to Banakh, Mio-
duszewski and Turek [3], deals with the “classical” subject of the Golomb topology on Z+, with the explicit 
goal of deciding if this space is rigid, i.e., if it does not admit any self-homeomorphism; in particular, they 
show that any self-homeomorphism of this space fixes 1 [3, Theorem 5.1]. The second one, due to Clark, 
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Lebowitz-Lockard and Pollack [7], studies Golomb spaces on general domains, in particular when the ring 
R is a Dedekind domain with infinitely many maximal ideals: under this hypothesis, they show that G(R)
is a Hausdorff space that is not regular, and that it is a connected space that is totally disconnected at 
each of its points. They also raise the isomorphism problem: can two nonisomorphic Dedekind domains with 
infinitely many maximal ideals (or, more generally, two integral domains with zero Jacobson radical) have 
homeomorphic Golomb spaces? As a first step in this study, they prove that any homeomorphism of Golomb 
topologies sends units to units [7, Theorem 13], and thus that two domains with a different number of units 
have nonhomeomorphic Golomb spaces. We note that the rigidity problem and the isomorphism problem 
can be unified into a single question:

Problem. Let R, S be two Dedekind domains with infinitely many maximal ideals, and let h : G(R) −→
G(S) be a homeomorphism. Is it true that there is a ring isomorphism σ : R −→ S and a unit u ∈ S such 
that h(x) = uσ(x) for all x ∈ R?

In this paper, we show that the only self-homeomorphisms of the Golomb space G(Z) are the identity 
and the multiplication by −1 (Theorem 7.7), and that if R is a Dedekind domain contained in the algebraic 
closure Q of Q such that G(Z) � G(R) then R = Z, thus giving a complete answer to the above question 
for R = S = Z and a partial answer for R = Z. While the method we use works best for the ring of integers, 
we work as much as possible in a greater generality: the main restrictions we have to put (especially in 
Sections 6 and 7) are that the class group of the Dedekind domain we consider must be torsion, and that 
some quotients of the group of units of R/Pn are cyclic.

The structure of the paper is as follows. In Section 3, we generalize [3, Lemma 5.6] to the case of general 
Dedekind domains; in particular, we show that the partially ordered set V(R) formed by the subsets of 
Max(R) that can be written as V (x) := {M ∈ Max(R) | x ∈ M} for some x ∈ R• is a topological invariant 
of the Golomb topology (Proposition 3.3). Through this result, we prove that if G(R) � G(S) then the class 
groups of R and S are either both torsion or both non-torsion (Theorem 3.4) and, if they are torsion, then 
a homeomorphism between G(R) and G(S) sends prime ideals to prime ideals and radical ideals to radical 
ideals.

In Section 4, given a prime ideal P of R, we show how to construct from the Golomb topology a new 
topology on R \P (the P -topology), which allows to concentrate on the cosets in the form a +Pn. Section 5
collects some results about the groups Hn(P ) := U(R/Pn)/πn(U(R)).

In Section 6, we study the sets pow(a) := {uan | u ∈ U(R)} of powers of the elements a ∈ R \ P , and 
in particular their closure in the P -topology. We relate this closure to the cyclic subgroups of the groups 
Hn(P ); in particular, we show that under some hypothesis (among which that R has torsion class group and 
that the Hn(P ) are cyclic) the closure of pow(a) is characterized by the index of the subgroup generated 
by a in Hn(P ) for large n. Restricting to almost prime elements (i.e., irreducible elements generating a 
primary ideal) we show that there is a bijective correspondence between these closures and a set of integers 
depending on the cardinality of the Hn(P ) (Theorem 6.12), and that this structure is preserved under 
homeomorphisms of Golomb spaces (Propositions 6.5 and 6.14). In Section 7, we make this correspondence 
explicit enough to characterize completely the self-homeomorphisms of G(Z) (Theorem 7.7).

2. Dedekind domains and the Golomb topology

All unreferenced statements about Dedekind domains are standard; see for example [4, Chapter 7, §2], 
[2, Chapter 9] or [16, Chapter 1].

Throughout the paper, R will a Dedekind domain, that is, R is a commutative unitary ring with no 
zerodivisors, and such that every ideal can be written (uniquely) as a product of prime ideals. Equivalently, 
R is a Dedekind domain if it has no zerodivisors, it is Noetherian (its ideals satisfy the ascending chain 
condition), one-dimensional (all its nonzero prime ideals are maximal) and integrally closed (if p(X) is a 
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monic polynomial, then every root of p(X) in the quotient field of R belongs to R). Examples of Dedekind 
domains are Z, the ring of integers of a number field F and the polynomial ring K[X] over a field K.

For every subset I ⊆ R, we set I• := I \ {0}, and we denote by U(R) the set of units of R.
We denote by Max(R) the set of maximal ideals of R; if x ∈ R•, we set V (x) := {M ∈ Max(R) | x ∈ M}; 

this set is always finite. If I is an ideal of R, the radical of I is

rad(I) := {x ∈ R | xn ∈ I for some n ∈ N}.

The radical of I is an ideal and is also the intersection of all prime ideals containing I. If I is contained in 
a unique maximal ideal P , then I is called a primary ideal (or P -primary ideal if we want to underline P ); 
note that this definition is not the general definition of a primary ideal, but it is equivalent for a nonzero 
ideal of a Dedekind domain.

An R-submodule J of the quotient field of R is a fractional ideal of R if there is a d ∈ R• such that 
dJ ⊆ R (in particular, dJ is an ideal of R). The set F(R) of nonzero fractional ideals of R is an abelian 
group under the product of ideals. The nonzero principal ideals of R form a subgroup P(R) of F(R); the 
quotient F(R)/P(R) is called the class group (or ideal class group) of R, and is denoted by Cl(R). The class 
group of R is trivial if and only if R is a unique factorization domain.

Let I �= (0) be an ideal of R, and let a ∈ R. The coset a + I is a coprime coset if 〈a, I〉 = R, i.e., if there 
is no proper ideal containing both a and I. In particular, any coprime coset is contained in R•. Likewise, 
two nonzero ideals I and J are coprime if 〈I, J〉 = R, i.e., if there is no proper ideal containing both I and 
J .

The Golomb topology on R• is the topology generated by all coprime cosets a +I. We denote by G(R) the 
set R• endowed with the Golomb topology, and we call it the Golomb space of R. For X ⊆ R•, we denote 
by X the closure of X in the Golomb topology. If R has infinitely many maximal ideals, the Golomb space 
is an Hausdorff space that is not regular; furthermore, it is not compact and is totally disconnected [7].

The closure of the coprime cosets can be completely described.

Lemma 2.1. ([7, Lemma 15]) Let R be a Dedekind domain, let I be a nonzero ideal of R and let x ∈ R• be 
such that 〈x, I〉 = R. Let I = P e1

1 · · ·P en
n be the factorization of I into prime ideals. Then,

x + I =
(

n⋂
i=1

Pi ∪ (x + P ei
i )

)•

.

In particular, we immediately obtain the following.

Corollary 2.2. Let R be a Dedekind domain, and let I, J be coprime ideals. For every x such that 〈x, I〉 =
〈x, J〉 = R, we have x + IJ = x + I ∩ x + J .

3. Radical and prime ideals

The purpose of this section is to generalize the results obtained in [3, Section 5] on the relationship 
between the Golomb topology and the prime divisors of an element x ∈ R•. Following the methods used 
therein, we define Fx as the set of all F ⊆ R• such that there are a neighborhood Ux of x and a neighborhood 
U1 of 1 such that Ux ∩ U1 ⊆ F .

Part (b) of the following proposition corresponds to [3, Lemma 5.5(a)], while part (c) corresponds to [3, 
Lemma 5.6].

Proposition 3.1. Let R be a Dedekind domain. Let x, y ∈ R• and let M ∈ Max(R). Then, the following hold.
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(a) Fx is a filter.
(b) M• ∈ Fx if and only if x /∈ M .
(c) Fx ⊆ Fy if and only if V (y) ⊆ V (x).

Proof. (a) By the proof of [7, Theorem 8(a)] (and the discussion in Section 3 therein), for every open sets 
V1, . . . , Vn the intersection V1 ∩ · · · ∩ Vn is nonempty; the claim follows.

(b) is a direct consequence of [7, Lemma 17], applied with y = 1.
(c) Suppose Fx ⊆ Fy, and let P ∈ V (y). Then, y ∈ P , so by point (b) P /∈ Fy; hence, P /∈ Fx and thus 

again x ∈ P , i.e., P ∈ Vx.
Conversely, suppose V (y) ⊆ V (x). Let F ∈ Fx; then, there are ideals I, J of R such that 〈x, I〉 = R and 

such that x + I ∩ 1 + J ⊆ F . Without loss of generality, we can suppose that J ⊆ I and that J = IJ ′ for 
some J ′ such that 〈I, J ′〉 = R. Let I =

∏
i P

ei
i be the prime decomposition of I; by Corollary 2.2, we have

x + I ∩ 1 + J =x + I ∩ 1 + I ∩ 1 + J ′ =

=
⋂
i

x + P ei
i ∩ 1 + P ei

i ∩ 1 + J ′.

For each i, let ni be an integer such that y − 1 /∈ Pniei
i . Then, by Lemma 2.1,

y + Pniei
i ∩ 1 + Pniei

i = ((y + Pniei
i ) ∪ Pi)• ∩ ((1 + Pniei

i ) ∪ Pi)• = P •
i .

Let I ′ :=
∏

i P
eini
i : then,

y + I ′ ∩ 1 + I ′ =
⋂
i

y + Pniei
i ∩ 1 + Pniei

i =
(⋂

i

Pi

)•

⊆

⊆
⋂
i

x + P ei
i ∩ 1 + P ei

i =

=x + I ′ ∩ 1 + I ′ ⊆ x + I ∩ 1 + I,

and thus

y + I ′ ∩ 1 + I ′J ′ = y + I ′ ∩ 1 + I ′ ∩ 1 + J ′ ⊆ x + I ∩ 1 + I ∩ 1 + J ′ ⊆ F.

Since the radical of I and I ′ is the same and 〈x, I〉 = R, also 〈x, I ′〉 = R; since V (y) ⊆ V (x), we have 
〈y, I ′〉 = R, and thus y+I ′ is an open neighborhood of y. Hence, F ∈ Fy and thus Fx ⊆ Fy, as claimed. �

Let R be a Dedekind domain. We consider two sets associated to R:

F(R) := {Fx | x ∈ R•}

and

V(R) := {V (x) | x ∈ R•}.

The previous proposition establishes a relation between them.

Proposition 3.2. Let R be a Dedekind domain. The map

Ψ: F(R) −→ V(R),

F �−→ V (x)
x
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is well-defined and an anti-isomorphism (when F(R) and V(R) are endowed with the containment order).

Proof. Proposition 3.1(c) guarantees that Ψ is well-defined, injective and order-reversing, while the surjec-
tivity is obvious. �
Proposition 3.3. Let R, S be Dedekind domains and h : G(R) −→ G(S) be a homeomorphism. Then, the 
following hold.

(a) If h(1) = 1, then h(Fx) = Fh(x) for every x ∈ R•.
(b) h induces an order isomorphism

h : V(R) −→ V(S),

V (x) �−→ V (h(x)).

Proof. (a) Since h is a homeomorphism and h(1) = 1, h sends neighborhoods of x into neighborhoods of 
h(x), and neighborhoods of 1 into neighborhoods of 1, and analogously for their closures. The claim follows 
by the definition of Fx.

(b) For every unit v of S, let ψv : G(S) −→ G(S) be the multiplication by v. Clearly, ψv is a self-
homeomorphism of G(S).

Let u := h(1). By [7, Theorem 13], u is a unit of S, and thus ψu is a self-homeomorphism of G(S). Then, 
h = ψu ◦ ψu−1 ◦ h; setting h′ := ψu−1 ◦ h, it is enough to show the claim separately for ψu and for h′.

For every y ∈ S•, V (uy) = V (y); hence, the map

ψ̃u : F(S) −→ F(S),

Fx �−→ Fux

is the identity, and in particular it is an order isomorphism. Then, if Ψ is the map of Proposition 3.2, we 
have that Ψ ◦ ψ̃u ◦ Ψ−1 is an order-isomorphism of V(S) with itself; unraveling the definition we see that 
ψu = Ψ ◦ ψ̃u ◦ Ψ−1, and the claim is proved.

Consider now h′. Then, h′(1) = u−1h(1) = 1. By the previous point, h′(Fx) = Fh′(x); hence, by Propo-
sition 3.1(c), the map

h̃′ : F(R) −→ F(R),

Fx �−→ Fh′(x)

is well-defined and an order-isomorphism. As before, we see that h′ = Ψ ◦ h̃′ ◦Ψ−1 and that the right hand 
side is an order-isomorphism between V(R) and V(S), and the claim is proved. �

Since any nonzero element of a Dedekind domain is contained in only finitely many maximal ideals, V(R)
is always a subset of Pfin(Max(R)), the set of nonzero finite subsets of Max(R); the two sets are equal if and 
only if the class group of R is torsion (this is essentially proved in [12, Proposition 3.1]). Indeed, if Cl(R)
is torsion then every nonzero prime ideal P contains an element xP such that V (xP ) = {P}, and thus, if 
P1, . . . , Pn are nonzero prime ideals then {P1, . . . , Pn} = V (xP1 · · ·xPn

). Conversely, if Cl(R) is not torsion 
then there is a prime ideal P such that P k is not principal for every k, and thus V (x) �= {P} for every 
x ∈ R•, so V(R) �= Pfin(Max(R)). We can upgrade this difference.

Theorem 3.4. Let R, S be Dedekind domains such that G(R) and G(S) are homeomorphic. Then, the class 
group of R is torsion if and only if the class group of S is torsion.
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Proof. Suppose that the class group of R is torsion while the class group of S is not, and let M(R)
(respectively, M(S)) be the set of minimal elements of V(R) (resp., V(S)).

Since Cl(R) is torsion, by the reasoning above every member of M(R) is a singleton; therefore, if Δ ⊆
M(R) is finite, say Δ = {{P1}, . . . , {Pn}}, then supΔ exists and is equal to {P1, . . . , Pn}. In particular, 
sup Δ �= sup Λ for every finite Δ �= Λ.

We claim that this does not hold in V(S). Indeed, since the class group of S is not torsion there is a 
maximal ideal P such that no power of P is principal. Let x ∈ P \ P 2: then, xR = PA for some ideal A
coprime with P . By the approximation theorem for Dedekind domains (see e.g. [4, Chapter 7, §2, Proposition 
2]), we can find a y ∈ P \P 2 that is not contained in any prime ideal containing A; then, yR = PB for some 
ideal B, and by construction B must be coprime with P and A. Since PA and PB are both principal, the 
classes of A and B in the class group are the same (more precisely, they are both the inverse of the class of 
P ).

Take b ∈ P \ P 2: then, bR = PC for some ideal C coprime with P . Again by the approximation 
theorem, we can choose c ∈ C such that c /∈ P and such that c /∈ CQ for every prime ideal Q containing 
A or B: then, H := b−1cP is a proper ideal of R that is coprime with P , A and B and such that H
is in the same class of P . Therefore, HA and HB are principal, say HA = zR and HB = wR. Then, 
xwR = PAHB = PBHA = yzR, and in particular V (xw) = V (yz). Let M(x) be the set of minimal 
elements of V(R) containing V (x), and likewise define M(y), M(z) and M(w); then, sup(M(x) ∪M(w)) =
V (x) ∪ V (w) = V (xw) = V (yz) = sup(M(y) ∪M(z)). We claim that M(x) ∪M(w) �= M(y) ∪M(z).

There is an element of M(x) containing P : since the class of P is not torsion, such element cannot be 
{P}, and thus it must be equal to Θ := {P, Q1, . . . , Qn} for some prime ideals Q1, . . . , Qn containing A. 
Since z /∈ P , no element of M(z) contains P , and in particular Θ /∈ M(z). If Θ′ ∈ M(y) contains P then 
Θ′ = {P, L1, . . . , Lm} for some prime ideals L1, . . . , Lm containing B; since A and B are coprime, each Qi

is different from each Lj, and thus Θ′ �= Θ, and so Θ /∈ M(y). Hence, there are finite subsets Δ �= Λ of 
M(S) such that supΔ = sup Λ; since this property is purely order-theoretic, it follows that V(R) and V(S)
are not isomorphic. By Proposition 3.3(a), neither G(R) and G(S) are homeomorphic. �

It would be interesting to know how much further this method can be pushed: for example, is it possible 
to recover the rank of the class group of R from the order structure of V(R)?

We now consider more in detail the case where the class group of R is torsion. Given Δ ⊆ Max(R), we 
define

GΔ(R) := {x ∈ R• | V (x) = Δ}.

By the discussion before Theorem 3.4, if Cl(R) is torsion then GΔ(R) �= ∅ for every finite Δ ⊆ Max(R).
The following is an analogue of [3, Lemmas 5.8 and 5.9].

Proposition 3.5. Let R, S be Dedekind domains with torsion class group, and let h : G(R) −→ G(S) be a 
homeomorphism. Then, there is a bijection σ : Max(R) −→ Max(S) such that h(GΔ(R)) = Gσ(Δ)(S).

Proof. By [7, Theorem 13], h(1) is a unit of S. The multiplication by u is a homeomorphism of S which 
sends every GΛ(S) into itself; hence, passing to h′ : G(R) −→ G(S), x �→ h(1)−1h(x), we can suppose 
without loss of generality that h(1) = 1.

We claim that |V (x)| = |V (h(x))| for every x ∈ R•. Indeed, since Cl(R) is torsion V(R) � Pfin(Max(R)), 
and thus |V (x)| is equal to 1 plus the length of a descending chain of V(R) starting from V (x). By Propo-
sition 3.3(b), this property passes to V(S), and thus |V (x)| = |V (h(x))|.

Let σ be the restriction to M(R) (the set of minimal elements of V(R)) of the isomorphism h of Propo-
sition 3.3(b). Since M(R) is in natural bijective correspondence with Max(R) (just send {P} into P ) we 
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get a bijection σ : Max(R) −→ Max(S), such that if P ∈ Max(R) and xR is P -primary then σ(P ) is the 
unique maximal ideal of S containing h(x).

If now x ∈ GΔ(R), then Δ = {P ∈ Max(R) | P /∈ Fx}; hence, σ(Δ) = {Q ∈ Max(S) | Q /∈ Fh(x)}, and 
thus h(x) ∈ Gσ(Δ)(S), so h(GΔ(R)) ⊆ Gσ(Δ)(S). Applying the same reasoning to h−1 gives the opposite 
inclusion, and thus h(GΔ(R)) = Gσ(Δ)(S). �

If h : G(R) −→ G(S), we denote by he : R −→ S the extension of h sending 0 to 0.

Theorem 3.6. Let R, S be Dedekind domains with torsion class group, and let h : G(R) −→ G(S) be a 
homeomorphism. Let I be a radical ideal of R. Then, the following hold.

(a) he(I) is a radical ideal of S.
(b) The number of prime ideals of R containing I is equal to the number of prime ideals of S containing 

he(I).
(c) If I is prime, he(I) is prime.

Proof. Since I is radical, I =
⋃
{GΔ(R) | V (I) ⊇ Δ} ∪ {0}; hence, applying Proposition 3.5,

he(I) =h
(⋃

{GΔ(R) | V (I) ⊇ Δ}
)
∪ {0} =

=
⋃

{h(GΔ(R)) | V (I) ⊇ Δ} ∪ {0} =

=
⋃

{GΛ(S) | V (I) ⊆ σ−1(Λ)} ∪ {0} =

=
⋃

{GΛ(S) | σ(V (I)) ⊆ Λ} ∪ {0} = J

where J is the radical ideal such that V (J) = Δ, i.e., J =
⋂

Q∈Λ Q. (a) is proved.
(b) follows from the fact that the number of prime ideals containing I is the least n such that there is a 

subset Δ ⊆ Max(R) of cardinality n such that GΔ(R) ⊆ I. (c) is immediate from (b). �
4. The P -topology

The Golomb topology on a Dedekind domain R is a very “global” structure: that is, it depends at the 
same time on all the prime ideals of R. In this section, we show a way to “isolate” the neighborhoods relative 
to a single prime ideal P , i.e., in the form a + Pn. The main idea is the following.

Proposition 4.1. Let R be a Dedekind domain and let P be a prime ideal of R; take Ω ⊆ R\P . If Ω is clopen 
in R \ P , then for every x ∈ Ω there is an n ≥ 1 such that x + Pn ⊆ Ω.

Proof. Fix Ω clopen in R \ P and let x ∈ Ω. Since R \ P is open, Ω is also an open set of G(R), and thus 
there is an ideal I such that x + I ⊆ Ω; since (x + I) ∩ P = ∅, we can write I = PnJ for some n ≥ 1 and 
some ideal J coprime with P . We claim that x + Pn ⊆ Ω.

Otherwise, let y ∈ (x + Pn) \ Ω; then, y ∈ R \ P , and since (R \ P ) \ Ω is clopen in R \ P we can find, 
as in the previous paragraph, an integer m ≥ 1 and an ideal L coprime with P such that y + PmL ⊆
(R \ P ) \Ω. Since Ω is clopen in R \ P , we have Ω∩ (R \ P ) = Ω; hence, x + PnJ ∩ (R \ P ) ⊆ Ω. Likewise, 
y + PmL ∩ (R \ P ) ⊆ (R \ P ) \ Ω, and thus in particular x + PnJ ∩ y + PmL = ∅. However,

x + PnJ = x + Pn ∩ x + J = ((x + Pn) ∪ P )• ∩ x + J ⊇ (x + Pn) ∩ rad(J)•
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and likewise y + PmL ⊇ (y+Pm) ∩rad(L)•. Since y ∈ x +Pn, the intersection (x +Pn) ∩(y+Pm) is nonempty, 
and thus it contains a coset z+P t. Since J and L are coprime with P , we have (x +P t) ∩rad(J)•∩rad(L)• �= ∅; 
this contradicts the construction of J and L, and thus y cannot exist, i.e., x + Pn ⊆ Ω. The claim is 
proved. �
Corollary 4.2. Let R, S be Dedekind domain with torsion class group, let h : G(R) −→ G(S) be a homeomor-
phism, and let P be a prime ideal of R. For every x ∈ R\P , there is an n such that h(x) +he(P )n ⊆ h(x +P ).

Proof. Since x + P = (x + P ) ∪ P •, the set x + P is a clopen set of R \ P . Hence, h(x + P ) is clopen in 
S \ he(P ); we now apply the previous proposition. �

Let P be a prime ideal of R. We define the P -topology on R\P as the topology generated by the Ω ⊆ R\P
that are clopen in R \ P , with respect to the Golomb topology. Since every coprime coset a + Pn is clopen 
in R \ P , Proposition 4.1 implies that the P -topology is generated by a + Pn, for a ∈ R \ P and arbitrary 
n. Therefore, the P -topology on R \ P actually coincides with the restriction of the P -adic topology.

In our context, the most useful property of the P -topology is that it depends uniquely on the Golomb 
topology, in the following sense.

Theorem 4.3. Let R, S be Dedekind domain with torsion class group, and let h : G(R) −→ G(S) be a 
homeomorphism of Golomb topologies. Then the restriction of h to R \ P is a homeomorphism between 
R \ P with the P -topology and S \ he(P ) with the he(P )-topology.

Proof. If Ω ⊆ R \ P is clopen in R \ P , then h(Ω) is clopen in S \ he(P ). Hence, the basic open sets of the 
P -topology go to open sets in the he(P )-topology; since the same holds for h−1, the restriction of h is a 
homeomorphism between the P -topology and the he(P )-topology. �

We end this section by determining the closure of a subset in the P -topology.

Proposition 4.4. Let Y ⊆ R \ P , and let X be the closure of Y in the P -topology. For every n ≥ 1, let 
πn : R −→ R/Pn be the canonical quotient map. Then,

X =
⋂
n≥1

π−1
n (πn(Y )).

Proof. Let g be in the intersection: then, for every n, there is an ∈ Y such that πn(g) = πn(an), that is, 
g − an ∈ Pn. Hence, g ∈ X. Conversely, if g is in the closure then for every n there is an ∈ Y such that 
g − an ∈ Pn; that is, πn(g) ∈ πn(Y ), as claimed. �
5. The groups Hn(P )

Let R, S be Dedekind domain with torsion class group, and let P be a prime ideal of R. Let h : G(R) −→
G(S) be a homeomorphism. By Theorem 3.6, he(P ) = h(P ) ∪ {0} is a prime ideal of S. A natural question 
is whether this result can be generalized to cosets: that is, if a ∈ R \ P , does h(a + P ) = h(a) + he(P )? 
In particular, if h(1) = 1, does h(1 + P ) = 1 + he(P )? We are not able to prove this result; therefore, 
our strategy will be to use Proposition 3.5, the P -topology and the group structure of U(R/Pn) to obtain 
“approximate” results. We collect in this section some technical lemmas which will be useful in the following 
sections.

Let P be a prime ideal of R and let n ≥ 1 be an integer. Let πn : R −→ R/Pn be the canonical quotient; 
then, πn(U(R)) is a subgroup of the (abelian) group U(R/Pn) of the units of R/Pn. Therefore, we can 
define Hn(P ) as the quotient group
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Hn(P ) := U(R/Pn)/πn(U(R)),

and we denote by θn : U(R/Pn) −→ Hn(P ) the canonical quotient. We also denote by π̃n = θn ◦ πn :
R \ P −→ Hn(P ) the composition of the two quotients. The reason for considering Hn(P ) instead of 
U(R/Pn) is that we want to “factor out” the self-homeomorphisms of G(R) given by the multiplications by 
the units of R.

If m > n, there is a natural map from R/Pm to R/Pn, obtained by taking the quotient by Pn/Pm. An 
analogous connection holds for the groups Hn(P ).

Lemma 5.1. For every n ≥ 1, there is a surjective map λn : Hn+1(P ) −→ Hn(P ) such that the following 
diagram commutes:

R \ P U(R/Pn+1) Hn+1(P )

R \ P U(R/Pn) Hn(P ).

πn+1 θn+1

λn

πn θn

Proof. If u + Pn is a unit of R/Pn, then u /∈ P , and thus u + Pn+1 is a unit of R/Pn+1. Hence, the 
natural map R/Pn+1 −→ R/Pn restricts to a surjective map λ′ : U(R/Pn+1) −→ U(R/Pn) between the 
unit groups; thus, the left square commutes. Furthermore, λ′ sends πn+1(U(R)) onto πn(U(R)), and thus 
λ′ induces a map λn which remains surjective. �

Let L be a subgroup of Hn(P ). By the previous lemma, we can lift L to Hn+1(P ) by λn and, subsequently, 
use the maps λn+i to lift it to all groups Hn+i(P ); therefore, we obtain a sequence

L L1 := λ−1
n (L) L2 := λ−1

n+1(L1) · · ·λn λn+1 λn+2 (1)

where each Li is a subgroup of Hn+i(L). Since every λk is surjective, the index [Hn+i(P ) : Li] is always equal 
to the index [Hn(P ) : L] of L, and in particular does not depend on i; on the other hand, the cardinality 
of these subgroups may grow, as |Li+1| = |Li| · | kerλn+i|. We call the sequence {L, L1, . . . , } the telescopic 
sequence of L. When L = H1(P ), the telescopic sequence of L is just the sequence {H1(P ), H2(P ), . . .}.

We distinguish two classes of behavior.
One case is when the maps λn are isomorphisms for every n ≥ N : in this case, all the information about 

the Hn(P ) “stops at N”. If R/P is finite (and thus also U(R/Pn) and Hn(P ) are finite for every n ≥ 1) 
then in particular the sequence of the cardinalities of the Hn(P ) is bounded.

The second case is when there are infinitely many λn that are not isomorphisms: in this case, to study 
Hn(P ) we need to consider all the groups. If R/P is finite, this implies that the sequence of the cardinalities 
of the Hn(P ) is not bounded.

Example 5.2. Consider the ring of integers Z, and let p be a prime number. If p > 2, then U(Z/pnZ) is a 
cyclic group of cardinality pn−1(p −1), while πn(U(Z)) is always its two-elements subgroup. Hence, Hn(pZ)
is a cyclic group of cardinality p

n−1(p−1)
2 . In particular, none of the maps λn : Hn+1(pZ) −→ Hn(pZ) is an 

isomorphism.
When p = 2, then U(Z/2nZ) is not cyclic, but it is isomorphic (as a group) to (Z/2Z) × (Z/2n−2Z) (for 

n ≥ 2), with the class of −1 corresponding to the element (1, 0) of the direct product. Hence, Hn(2Z) is 
again a cyclic group, of cardinality 2n−2, and λn is not an isomorphism for every n ≥ 2.

Let now R := Z[1/2]: then, the units of R are 2z and −2z, with z ∈ Z. Let p �= 2 be a prime number; then, 
pR is a prime ideal of R, and R/pnR � Z/pnZ, so U(R/pnR) is a cyclic group of cardinality pn−1(p − 1). 
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The subgroup πn(U(R)) is generated by 2 and −1, and for every n ≥ 2 the index of this subgroup is equal 
to the index of π2(U(R)) in U(R/p2R) (this is a standard result, and can be proved essentially in the same 
way of Proposition 6.3, (iv) =⇒ (i) below); thus, λn is an isomorphism for every n ≥ 2.

For example, if p = 5 then 2 and −1 generate the whole unit group U(R/p2R), and thus Hn(pR) is the 
trivial group for every n ≥ 1. On the other hand, if p = 17, then the order of 2 in U(R/p2R) is 8 · 17, and 
the subgroup generated by 2 contains −1, so that Hn(pR) is cyclic of order 2 for every n.

A similar reasoning shows that, if p is a prime number and Rp := Z[1/p], then for every prime ideal Q
of Rp the maps λn between the groups Hn(Q) are isomorphisms for n ≥ 2.

Even when the cardinality of the Hn(P ) grows unbounded, however, a part of their structure is still 
bounded. Given an abelian group L and a prime number p, the non-p-component of L is the subgroup of L
formed by the elements whose order is coprime with p.

Lemma 5.3. Let R be a Dedekind domain and let P be a prime ideal such that R/P is finite; let p be 
the characteristic of R/P . Then, there is an integer η(P ), coprime with p, such that, for all n ≥ N , the 
non-p-component of Hn(P ) has order η(P ).

Proof. Let H ′
k(P ) be non-p-component of Hk(P ), and let ηk(P ) be its cardinality. Then, λk maps H ′

k+1(P )
onto H ′

k(P ), so that ηk(P ) divides ηk+1(P ). Hence, {ηk(P )}k∈N is an ascending chain with respect to the 
divisibility order. Set |R/P | = pe. Then, |U(R/Pn)| = pe(n−1)(pe−1), and thus ηk(P ) divides pe−1; hence, 
the chain is bounded above and thus finite. It follows that it stabilizes at some value η(P ). �

When R = Z, using Example 5.2, it is not hard to see that η(pZ) is equal to 1 if p = 2, while it is equal 
to p−1

2 if p is odd. For R = Z[1/p], on the other hand, there is no easy formula for η(P ).
Several results in the following sections will be valid only under the assumption that the groups Hn(P )

are cyclic. This forces a rather severe limit on the cardinalities of the residue fields.

Lemma 5.4. Let R be a Dedekind domain, and let P be a prime ideal of R. If U(R) is discrete in the 
P -topology, and Hn(P ) is cyclic for every n, then |R/P | is a prime number.

Proof. Since U(R) is discrete in the P -topology, there is an N ≥ 2 such that 1 + PN−1 contains no units 
different from 1. Fix p ∈ PN−1 \ PN , and define

σ : R −→ HN (P ),

a �−→ π̃N (1 + ap).

Since p2 ∈ PN , we have

σ(a)σ(b) = π̃N ((1 + ap)(1 + bp)) = π̃N (1 + (a + b)p) = σ(a + b).

Hence, σ is a group homomorphism from (R, +) to HN (P ). Furthermore,

kerσ ={a ∈ R | π̃N (1 + ap) = π̃N (1)} =

={a ∈ R | 1 + ap ∈ U(R) + PN} = P

by the choice of N and p. Therefore, σ factors into an embedding of (R/P, +) inside HN (P ); since HN (P )
is cyclic, it follows that also (R/P, +) is cyclic. Since R/P is a field, it follows that R/P must be isomorphic 
to the field Fp with p elements for some prime number p. In particular, |R/P | is prime. �
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Note that the fact that |R/P | is a prime number does not guarantee that Hn(P ) is cyclic: for example, if 
R = Fp[X], where p > 2 is a prime number, and P = (X), then H3(P ) has p2 elements, but every element 
has order p.

6. Closure of powers

In isolation, the P -topology is not very interesting: indeed, since it coincides with the P -adic topology, 
it makes R \ P into a metric space with no isolated points. In particular, if R is countable then R \ P is 
homeomorphic to Q [17,9], and thus a homeomorphism between the P -topology of R\P and the Q-topology 
of S \Q does not give much information. However, by Proposition 3.5, a homeomorphism h between Golomb 
spaces carries a lot more structure.

In the following, we shall mostly restrict ourselves to Dedekind domains with torsion class group; indeed, 
many of our proofs are generalizations and abstractions of arguments that can be carried more concretely 
in the ring Z of integers. The hypothesis we put on R (for example, R being Dirichlet at P and P being 
almost cyclic, see Definitions 6.6 and 6.7) are, as well, formalizations of the properties of Z that are needed 
to carry out the proofs.

Given a ∈ R \ P , set

pow(a) := {uat | u ∈ U(R), t ∈ N+}.

We want to study the closure of pow(a) in the P -topology.

Proposition 6.1. Let R be a Dedekind domain, P a prime ideal, a ∈ R \ P ; let X be the closure of pow(a)
in the P -topology. Then, the following hold.

(a) If πn(a) is torsion in U(R/Pn) for every n ≥ 1 then

X =
⋂
n≥1

π−1
n

(
〈πn(a), πn(U(R))〉

)
.

(b) If π̃n(a) is torsion in Hn(P ) for every n ≥ 1 then

X =
⋂
n≥1

π̃−1
n (〈π̃n(a)〉).

Proof. (a) If πn(a) is torsion with order k, then

πn(pow(a)) ={πn(u)πn(a)t + Pn | u ∈ U(R), t ∈ N+} =

={πn(u)πn(a)t + Pn | u ∈ U(R), t ∈ {1, . . . , k}}

is exactly the subgroup generated by πn(a) and πn(U(R)). The claim now follows from Proposition 4.4.
(b) follows as the previous point, noting that π̃n sends all of U(R) into the identity. �
The sets π̃−1

n (〈π̃n(a)〉) form a descending sequence of subsets of R \ P ; if such sequence stabilizes at N , 
then we can study pow(a) by studying the subgroup 〈π̃N (a)〉 of HN (P ). In general, this does not happen: 
for example, if a = 1 (so pow(a) = U(R) and U(R) is finite), then π̃−1

n (〈π̃n(a)〉) = U(R) +Pn and thus the 
sequence is strictly decreasing (at least for large n). However, we can characterize this case; we distinguish 
the two behaviors of the λn in the next two propositions.
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Proposition 6.2. Let R be a Dedekind domain, P a prime ideal, X ⊆ R \ P . Suppose that the canonical 
surjections λn : Hn+1(P ) −→ Hn(P ) are isomorphisms for n ≥ N . Then, the following are equivalent.

(i) X is the closure of pow(a) for some a ∈ R \ P ;
(ii) X = π̃−1

N (L) for some cyclic subgroup L of HN (P ).

Proof. Take any a ∈ R \ P . For every k ≥ 0, we have λN+k(π̃N+k+1(a)) = π̃N+k(a), and thus the sub-
group generated by π̃N+k+1(a) in HN+k+1(P ) is mapped onto the subgroup generated by π̃N+k(a). Hence, 
π̃−1
N (〈π̃N (a)〉) = π̃−1

N+k(〈π̃N+k(a)〉) for every k ≥ 0. The claim follows. �
When the canonical surjections are not isomorphisms, the picture is more complicated. For simplicity, 

we restrict to the case where R/P is finite.

Proposition 6.3. Let R be a Dedekind domain, P a prime ideal, a ∈ R \P ; let X be the closure of pow(a) in 
the P -topology. Suppose that R/P is finite and that there are infinitely many n such that λn : Hn+1(P ) −→
Hn(P ) is not an isomorphism. Then, the following are equivalent:

(i) the chain {π̃−1
n (〈π̃n(a)〉)}n∈N stabilizes;

(ii) X = π̃−1
N (L) for some N ≥ 1 and some subgroup L of HN (P );

(iii) there is an N ≥ 1 such that every element of the telescopic sequence of 〈π̃N(a)〉 is generated by the 
image of a;

(iv) there is an N ≥ 1 such that every element of the telescopic sequence of 〈π̃N(a)〉 is cyclic, and the order 
of π̃n(a) goes to infinity as n → ∞.

Proof. (i) =⇒ (ii) If the chain stabilizes at N , that is, if π̃−1
N (〈π̃N (a)〉) = π̃−1

N+k(〈π̃N+k(a)〉) for all k ≥ 0, 
then X = π̃−1

N (L) with L := 〈π̃N (a)〉.
(ii) =⇒ (iii) If X = π̃−1

N (L), then π̃N (X) = L, and thus by Proposition 6.1(a) L = 〈π̃N (a)〉. We have a 
commutative diagram

X L

X λ−1
N (L);

π̃N

π̃N+1

λN

however, we also have π̃N+1(X) = 〈π̃N+1(a)〉, and thus the telescopic sequence of L is formed by the 
subgroups is generated by (the image of) a in the various HN+k(P ).

(iii) =⇒ (iv) Since there are infinitely many n such that λn is not an isomorphism, the cardinality of 
Hn(P ) goes to infinity; since the index remains fixed among the elements of a telescopic sequence, it follows 
that the cardinality of the 〈π̃n(a)〉 is unbounded, as claimed.

(iv) =⇒ (i) Let σn be the order of π̃n(a).
By Lemma 5.3, σn = pk(n)dn for some k(n) ≥ 0 and some dn dividing η(P ); since the sequence {σn}n∈N

is unbounded, we can find N ′ such that dN ′ = dN ′+k for every k ≥ 0. Furthermore, by the hypothesis, we 
can find N ≥ N ′ such that every element of the telescopic sequence {L, L1, . . . , } of L := 〈π̃N (a)〉 is cyclic. 
We claim that each Li is generated by the image of a.

Indeed, by construction we have |Lk| = ps(k)|L| = ps(k)σN for every k ≥ 0 (and some nonnegative 
function k �→ s(k)). If φ is the Euler totient, the number of generators of Lk is

φ(|Lk|) = φ(σN+k) = φ(ps(k)σN ) = ps(k)φ(σN ),
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since p does not divide σN . Hence, every generator of L lifts to a generator of Lk; therefore, π̃−1
N (〈π̃N (a)〉) =

π̃−1
N+k(〈π̃N+k(a)〉) for all k ≥ 0, as claimed. �
One problem in applying the previous proposition to the Golomb topology is that we don’t know if the 

sets pow(a) are invariant with respect to homeomorphisms. However, if R, S are principal ideal domains, and 
q ∈ R is a prime element (i.e., if qR is a prime ideal) then pow(q) = G{qR}(R), and thus by Proposition 3.5
a homeomorphism h : G(R) −→ G(S) carries pow(q) to pow(q′), for some prime element q′ of S. Therefore, 
it carries the closure of pow(q) in the P -topology to the closure of pow(q′) in the he(P )-topology (where P
is any prime ideal of R distinct from qR).

More generally, suppose R is a Dedekind domain with torsion class group. Take a maximal ideal Q of R. 
If Qt = qR is the smallest power of Q that is a principal ideal, we say that q is an almost prime element; 
equivalently, an almost prime element is an irreducible element generating a primary ideal. In this case, we 
still have pow(q) = GQ(R), since if xR is a Q-primary ideal then xR must be in the form (Qt)k for some k. 
In particular, we must still have h(pow(q)) = pow(q′) for some almost prime element q′ of S. More precisely, 
the unique prime ideal containing q′ will be he(Q), since Q is the only prime ideal containing q.

Definition 6.4. Let P be a prime ideal. We define X (P ) as the set of closures of pow(q), as q ranges among 
the almost prime elements of R outside P .

The previous discussion shows the following.

Proposition 6.5. Let R, S be two Dedekind domains with torsion class group, and let h : G(R) −→ G(S) be 
a homeomorphism. Let P be a maximal ideal of R. Then, the map

h : X (P ) −→ X (he(P )),

X �−→ h(X)

is an order isomorphism (when X (P ) and X (he(P )) are endowed with the containment order).

We are now interested in studying the order structure of X (P ); since we will need to have plenty of 
almost prime elements, we introduce the following definition.

Definition 6.6. Let R be a principal ideal domain and P a prime ideal of R. We say that R is Dirichlet at 
P if, for every a ∈ R \ P and every n ≥ 1 the coset a + Pn contains at least one almost prime element.

For example, by Dirichlet’s theorem on primes in arithmetic progressions (see e.g. [10, Chapter 4] or [1, 
Chapter 7]), Z is Dirichlet at each of its primes. An equivalent condition is that the set of almost prime 
elements of R is dense in R \ P under the P -topology. Note that it is not known if a homeomorphism of 
Golomb spaces sends almost prime elements to almost prime elements, and thus this condition may not be 
a topological invariant.

We shall use the following terminology.

Definition 6.7. Let R be a Dedekind domain, and let P be a prime ideal of R. We say that P is almost cyclic
if R/P is finite and Hn(P ) is cyclic for every n ≥ 1.

The main example of almost cyclic prime ideals are the prime ideals of Z (see Example 5.2). Note that, 
if R is a Dedekind domain, it is possible that some prime ideals are almost cyclic and some are not: for 
example, if R = Z[i] is the ring of Gaussian integers, then Hn(P ) is cyclic if P is generated by the factor of 
a prime number congruent to 1 modulo 4 (since in this case U(R/Pn) is cyclic [8, Theorem 3]), while if P
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is generated by a prime number q ≡ 3 mod 4 then |R/P | = q2 is not prime and thus P is not almost cyclic 
by Lemma 5.4.

Our next step is to link X (P ) with the subgroups of the Hn(P ). We first show how to compare subgroups 
living in different Hn(P ).

Lemma 6.8. Let R be a Dedekind domain, and let P be an almost cyclic prime ideal. Let L and L′ be, 
respectively, subgroups of Hn(P ) and Hm(P ). Then, π̃−1

n (L) ⊆ π̃−1
m (L′) if and only if [Hm(P ) : L′] divides 

[Hn(P ) : L]; in particular, π̃−1
n (L) = π̃−1

m (L′) if and only if [Hm(P ) : L′] = [Hn(P ) : L].

Proof. Without loss of generality, suppose n ≥ m. Composing the canonical maps λk, we get a surjective 
map λ := λn−1 ◦ · · · ◦ λm from Hn(P ) to Hm(P ). Then, λ(L) is a subgroup of Hm(P ) of the same index of 
L in Hn(P ), i.e., [Hn(P ) : L] = [Hm(P ) : λ(L)]. Since Hm(P ) is cyclic, we have λ(L) ⊆ L′ if and only if 
[Hn(P ) : L] is a multiple of [Hm(P ) : L′], as claimed.

The “in particular” part follows immediately. �
Proposition 6.9. Let R be a Dedekind domain with torsion class group, and let P be an almost cyclic prime 
ideal. Then, the following hold.

(a) Let X be the closure of pow(q) in the P -topology. If pow(q) is disjoint from the closure of U(R) (with 
respect to the P -topology), then there is an n ≥ 1 and a subgroup H of Hn(P ) such that X = π̃−1

n (H).
(b) If R is Dirichlet at P , then π̃−1

n (H) ∈ X (P ) for every subgroup H of Hn(P ).

Proof. Let p be the characteristic of R/P .
(a) If the cardinality of the Hn(P ) is bounded, the claim follows from Proposition 6.2.
If the cardinality is unbounded, let q be an almost prime element such that X is the closure of pow(q), 

and let σn be the order of π̃n(q). Suppose that {σn}n∈N is bounded, and let σ be its maximum; then, π̃n(q)σ
is the identity in Hn(P ) for all n, i.e., πn(q)σ ∈ U(R) + Pn for every n. However, this implies that qσ is 
in the closure of U(R) in the P -topology, a contradiction. Therefore, σn becomes arbitrary large and the 
claim follows from Proposition 6.3.

(b) If the cardinality of the Hn(P ) is bounded, then there is an a ∈ R\P and an N such that X := π̃−1
N (H)

is the closure of pow(a) in the P -topology; since R is Dirichlet at P there is an almost prime element 
q ∈ a + PN , and X is the closure of pow(q) in the P -topology, as claimed.

Suppose that the cardinality of the Hn(P ) is not bounded. Let N ≥ n be big enough such that the 
non-p-component of HN(P ) has cardinality η(P ), and choose k > N such that |Hk(P )| > |HN (P )|. Let L
be the element of the telescopic sequence of H that is contained in Hk(P ). Then, L is cyclic, and thus there 
is an a ∈ R \ P such that π̃k(a) generates L; as in the proof of Proposition 6.3, the fact that p divides the 
cardinality of L implies that every element of the telescopic sequence of L is generated by the image of a. 
Since R is Dirichlet at P , we can find an almost prime element q ∈ a +P k; then, X is the closure of pow(q), 
and in particular X ∈ X (P ), as claimed. �
Corollary 6.10. Let R be a Dedekind domain with torsion class group, and let P be a prime ideal of R. 
Suppose that U(R) is closed in the P -topology. Then, the following hold.

(a) If R \ P ∈ X (P ), then P is almost cyclic.
(b) If R is Dirichlet at P and P is almost cyclic, then R \ P ∈ X (P ).

Proof. If R \ P ∈ X (P ), then there is an almost prime element q such that R \ P is the closure of pow(q). 
By Proposition 6.1, each Hn(P ) is generated by the image of q, and in particular they are all cyclic.
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Fig. 1. The structure of D(pZ) for p = 41. In this case, η(pZ) = 20 = 22 · 5.

Conversely, suppose P is almost cyclic. By Proposition 6.9(b), π̃−1
n (H) ∈ X (P ) for every subgroup of the 

Hn(P ); in particular, this holds for H = Hn(P ), for which we have π̃−1
n (H) = R \ P . �

Corollary 6.11. Let R, R′ be Dedekind domains with torsion class group and let P be a prime ideal of R; 
suppose that U(R) is closed in the P -topology. Let h : G(R) −→ G(R′) be a homeomorphism and let 
P ′ := he(P ).

(a) If R is Dirichlet at P and P is almost cyclic then P ′ is almost cyclic.
(b) If also R′ is Dirichlet at P ′, then P is almost cyclic if and only if P ′ is almost cyclic.

Proof. If R is Dirichlet at P and P is almost cyclic, then by Corollary 6.10 R \P ∈ X (P ); hence, R′ \P ′ =
h(R \ P ) ∈ h(X (P )) = X (P ′). Applying again the corollary we see that P ′ is almost cyclic.

The second part follows by considering the inverse h−1 : G(R′) −→ G(R). �
Set now

D(P ) := {d ∈ N | d divides |Hn(P )| for some n};

then, D(P ) has a natural order structure given by the divisibility relation (i.e., a ≤ b if and only if a|b). 
See Fig. 1 for an example. From a structural point of view, the previous proposition implies the following 
result.

Theorem 6.12. Let R be a Dedekind domain with torsion class group, P an almost cyclic prime ideals, and 
suppose that U(R) is closed in the P -topology. Let ΘP be the map

ΘP : X (P ) −→ D(P ),

X = π̃−1
n (L) �−→ [Hn(P ) : H].

Then, the following hold.

(a) ΘP is well-defined, injective and order-reversing.
(b) If R is Dirichlet at P , then ΘP is surjective, and thus ΘP is an order-reversing isomorphism.

Proof. For simplicity of notation, let Θ := ΘP .
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Since U(R) is closed in the P -topology, and every pow(q) is disjoint from U(R), by Proposition 6.9(a) 
every X ∈ X (P ) is in the form π̃−1

n (L); by Lemma 6.8, if it is also equal to π̃−1
n′ (L′) then the index of L

and L′ are the same, and thus Θ is well-defined. The same Lemma 6.8 implies also that Θ is injective and 
order-reversing.

If R is Dirichlet at P , we can apply Proposition 6.9(b), and thus Θ is also surjective. It follows that Θ is 
an order-reversing isomorphism. �

The previous theorem implies that, under good hypothesis, the structure of D(P ) is a topological invariant 
of the Golomb topology; in particular, if h : G(R) −→ G(S) is a homeomorphism, then Proposition 6.5 can 
be extended to a chain of bijections

D(P )
Θ−1

P−−−→ X (P ) h−−−→ X (he(P ))
Θhe(P )−−−−→ D(he(P )) (2)

whose composition gives an order isomorphism between D(P ) and D(he(P )).
We shall use the following shorthand.

Definition 6.13. Let z, z′ ∈ N, and let z = pe11 · · · pekk and z′ = qf1
1 · · · qfrr be their factorizations. We say that 

z and z′ have the same factorization structure if k = r and, after a permutation, ei = fi for every i.

Proposition 6.14. Let R, R′ be two Dedekind domains with torsion class group, and suppose there is a home-
omorphism h : G(R) −→ G(R′). Let P be an almost cyclic prime ideal of R, and let P ′ := he(P ); suppose 
that R′/P ′ is finite, that U(R) is closed in the P -topology, that R is Dirichlet at P and that R′ is Dirichlet 
at P ′. Then, the following hold.

(a) The sequence {|Hn(P )|}n∈N is bounded if and only if {|Hn(P ′)|}n∈N is bounded.
(b) If |Hn(P )| = z and |Hn(P )| = z′ for all n ≥ N , then z and z′ have the same factorization structure.
(c) If {|Hn(P )|}n∈N and {|Hn(P ′)|}n∈N are unbounded, then η(P ) and η(P ′) have the same factorization 

structure.

Proof. Since h is a homeomorphism in the P -topology, U(R′) = h(U(R)) is closed in the P ′-topology; 
furthermore, by Corollary 6.11, P ′ is almost cyclic. By Proposition 6.5, there is an order isomorphism 
between D(P ) and D(P ′).

The sequence {|Hn(P )|}n∈N is bounded if and only if it is finite, which happens if and only if D(P ) is 
finite. Since D(P ) and D(P ′) are isomorphic, D(P ′) is finite and thus {|Hn(P )|}n∈N is bounded if and only 
if {|Hn(P ′)|}n∈N is bounded.

If |Hn(P )| = z for all large n, then D(P ) is just the set of divisors of z; in particular, the minimal elements 
of D(P ) \ {1} correspond to the distinct prime factors of z. Since the same happens for D(P ′), the number 
of distinct prime factors of z and z′ is the same. Furthermore, the exponent of p in z is equal to the number 
of elements of D(P ) that are divisible only by p; hence, it depends only on the structure of D(P ), and thus 
it doesn’t change passing from D(P ) to D(P ′).

On the other hand, if {|Hn(P )|}n∈N is unbounded, the minimal elements of D(P ) correspond to p (the 
cardinality of R/P ) and the prime factors of η(P ). The elements of D(P ) that are larger than exactly one 
minimal element are the powers of p and of the prime factors of η(P ); hence, there are infinitely many such 
elements larger than p, while there are only finitely many of them above the factors of η(P ). Hence, in the 
chain of bijections (2) p gets sent to p′, the cardinality of R′/P ′. Similarly, the divisors of η(P ) are the 
elements of D(P ) that are not divisible by p, i.e., that are not above p; hence, the chain of bijection sends 
them to the elements of D(P ′) that are not above p′, i.e., to the divisors of η(P ′). As in the previous case, 
this implies that η(P ) and η(P ′) have the same factorization structure. �
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7. The correspondence at powers of p

Proposition 6.14 gives a very strong restriction for the image of a prime ideal under a homeomorphism of 
Golomb spaces. For example, suppose R = Z. Then, every prime ideal is almost cyclic, and by Example 5.2
we have

η(pZ) =
{

1 if p = 2
p−1
2 if p > 2.

Thus, the only prime ideals pZ such that η(pZ) = 1 (and so η(pZ) has an empty factorization) are 2 and 3; 
it follows that, for every self-homeomorphism h of G(Z), h(2Z•) can be equal only to 2Z• or 3Z•. Likewise, 
η(5Z) = 2 is prime, and thus h(5Z•) must be equal to (2q+1)Z• for some prime number q such that 2q+1
is prime.

In this section, we use a finer analysis of the structure of D(P ) to obtain even more. We concentrate on 
sets in the form

Yk(P ) := Θ−1
P (η(P )pk)

where ΘP is the map of Theorem 6.12.

Proposition 7.1. Preserve the hypothesis and the notation of Proposition 6.14, and suppose that {|Hn(P )|}n∈N
is unbounded; let p := |R/P | and p′ := |R′/P ′|. Then, the following hold.

(a) Let h� := ΘP ′ ◦ h ◦ Θ−1
P . Then, h�(η(P )pk) = η(P ′)(p′)k for every k ≥ 0.

(b) h(Yk(P )) = Yk(P ′).

Proof. As we saw in the proof of Proposition 6.14, the minimal elements of D(P ) \ {1} correspond to p and 
the prime factors of η(P ); moreover, p is the unique minimal element of D(P ) \ {1} with infinitely many 
multiples that are not divisible by any other prime. Hence, h�(p) = p′. Furthermore, η(P ) is the largest 
element of D(P ) that is not a multiple in p, and thus h�(η(P )) is the largest element of D(P ′) that is not 
a multiple of h�(p) = p′; that is, h�(η(P )) = η(P ′).

Consider now the multiples of η(P ) in D(P ): they are all in the form η(P )pk for some k ≥ 0. The map 
h� restricts to an order isomorphism between the multiples of η(P ) and the multiples of η(P ′); hence, it 
must be h�(η(P )pk) = η(P ′)(p′)k, as claimed.

By turning (2) inside-out and using the previous part of the proof, we see that

h(Yk(P )) =(Θ−1
P ′ ◦ h� ◦ ΘP )(Yk(P )) =

=(Θ−1
P ′ ◦ h�)(η(P )pk) = Θ−1

P ′ (η(P ′)(p′)k) = Yk(P ′).

The claim is proved. �
Proposition 7.1 is rather close to our hope that a homeomorphism sends cosets into cosets, since both 

Yk(P ) and Yk(P ′) are union of cosets. Further improvements of this result hinge on the explicit determination 
of the sets Yk(P ); however, this will depend closely on the actual structure of the prime ideals and the units 
of R, and in particular on the image of U(R) in R/Pn.

Proposition 7.2. Let R be a Dedekind domain with torsion class group, and let P be an almost cyclic prime 
ideal; let p := |R/P |. Suppose that U(R) is finite. Then, the following hold.
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(a) There are m ≥ 0 and t ≥ 1 such that, for every N ≥ m, we have YN (P ) = U(R) + PN+t.
(b) If |U(R)| is coprime with p, then we can take m = t = 1. Furthermore, in this case

η(P ) = |H1(P )| = p− 1
|π1(U(R))| .

Proof. (a) By Lemma 5.4, the cardinality p of R/P is a prime number.
Since U(R) is finite, we can find M ′ such that the kernel of the map π̃n : U(R) −→ Hn(P ) is equal 

to the kernel of π̃M ′ for every n ≥ M ′. Furthermore, by Lemma 5.3 there is an M ′′ such that η(P )
divides |HM ′′(P )|. Take M := max{M ′, M ′′}; then, |HM (P )| = pmη(P ) for some 0 ≤ m < M , and thus 
|HM+k(P )| = pm+kη(P ) for every k ≥ 0.

By Theorem 6.12, YN (P ) correspond to the subgroup of index pNη(P ) in Hk(P ), for k � 0. If N ≥ m, 
let N := m + k; then, |HM+k(P )| = pNη(P ), and thus YN (P ) corresponds exactly to the identity subgroup 
of HM+k(P ), i.e., YN = U(R) + PM+k. However, M + k = M + N −m; setting t := M −m we have our 
claim.

(b) If the cardinality of U(R) is coprime with p, then for every n ≥ 1 the natural map from Hn(P ) to 
H1(P ) reduces to an isomorphism between their non-p-components, and the image of U(R) in H1(P ) is sent 
onto the image of U(R) in Hn(P ); in particular, |πn(U(R))| = |π1(U(R))| and the formula holds.

With the notation of the previous part of the proof, we have M ′ = M ′′ = 1, m = 0 and t = 1 − 0 = 1. 
The claim is proved. �

We now restrict to the case R = Z; we first specialize the previous proposition.

Proposition 7.3. Let p be a prime number, and let k ≥ 0. Then, the following hold.

(a) If p = 2, then Yk(2Z) = (1 + 2k+2Z) ∪ (−1 + 2k+2Z).
(b) If p > 2, then Yk(pZ) = (1 + pk+1Z) ∪ (−1 + pk+1Z)

Proof. For p > 2 the claim is exactly the one in Proposition 7.2(b). For p = 2, we can take M = 2, so 
m = 0, t = 1 and thus Yk = ±1 + 2k+2Z, as claimed. �

A different way to express the previous proposition is the following.

Proposition 7.4. Let p be a prime number, a an integer coprime with p, and k ≥ 0. Then:

(a) if a is even, then a ∈ Yk(pZ) if and only if pk+1 divides a2 − 1;
(b) if a is odd, then a ∈ Yk(pZ) if and only if pk+1 divides a

2−1
4 .

Proof. If a is even, then p is odd. Then, a ∈ Yk(pZ) if and only if pk+1 divides a −1 or a +1. Since p cannot 
divide a − 1 and a + 1 at the same time, this happens if and only if pk+1 divides a2 − 1.

If a is odd and p is odd, the same reasoning applies (noting that pk+1 divides a2 − 1 if and only if it 
divides a

2−1
4 ). If p = 2, then one of a − 1 and a + 1 is in the form 2b for b odd, while the other is in the 

form 2jc with c odd and j ≥ 2. Hence, a ∈ Yk(2Z) if and only if j ≥ k + 2, i.e., if and only if 2k+3 divides 
a2 − 1. Dividing by 4 we have our claim. �

For any n ∈ Z, let now

n� :=
{
n2 − 1 if n is even,
n2−1 if n is odd.
4
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This notation allows to simplify the previous proposition.

Corollary 7.5. Let h be a self-homeomorphism of G(Z), and let n ∈ Z such that |n| > 1. If n� factors as 
pe11 · · · pett , then h(n)� factors as qe11 · · · qett , where h(piZ•) = qiZ•.

Proof. For every n, let X(n) be the set of all pairs (p, k) where p is a prime factor of n� and k is the largest 
integer such that pk+1 divides n�. By the previous proposition, (p, k) ∈ X(n) if and only if n ∈ Yk(pZ); 
hence, X(n) = {(p1, e1 − 1), . . . , (pt, et − 1)}.

Since h is a homeomorphism, h(Yk(piZ)) = Yk(qiZ); thus, X(h(n)) = {(q1, e1 − 1), . . . , (qt, et − 1)}. It 
follows that h(n)� = qe11 · · · qett , as claimed. �

Note that the previous corollary is similar to Proposition 6.14, in the sense that both compare the 
factorization structures of two elements linked by a homeomorphism h. However, this result is much more 
precise, since it applies to every integer (instead of only the η(P )) and, more importantly, the relationship 
between the corresponding factors pi and qi does not depend on n.

Lemma 7.6. Let n, m ∈ Z.

(a) If n and m are both even or both odd, then n� = m� if and only if |n| = |m|.
(b) If |n| > 1 and n� is prime, then |n| ∈ {2, 3}.

Proof. The first claim follows directly from the definition. For the second one, since n� = |n|� we can 
suppose without loss of generality that n > 0. If n > 3 is even, then both n −1 and n +1 have an odd prime 
factor, and thus n� = n2 − 1 = (n − 1)(n +1) has at least two factors. If n > 3 is odd, then one of n − 1 and 
n + 1 is divisible by 4 and the other one by 2, so that n� is even; however, since n − 1 > 2, there is at least 
one odd prime dividing n − 1 or n + 1, and thus n� has at least two prime factors. The claim is proved. �
Theorem 7.7. The unique self-homeomorphisms of G(Z) are the identity and the multiplication by −1.

Proof. Let h : G(Z) −→ G(Z) be a self-homeomorphism of G(Z). We first claim that, for every n ∈ Z•, 
|h(n)| = n; we proceed by induction on n.

If |n| = 1 then n is a unit and thus h(n) ∈ U(Z) = {±1}.
Suppose |n| = 2. Then, n� = 3, and thus h(n)� must be a prime number; by the previous lemma, 

h(n) ∈ {±2, ±3}. Suppose that |h(n)| = 3, so in particular h(2Z•) = 3Z• and h(3Z•) = 2Z•. Consider 
m = 7: then, m� = 12 = 22 · 3, and thus by Corollary 7.5 h(m)� must be equal to 32 · 2 = 18. Since 
h(m) /∈ 2Z• = h(3Z•), we have m2 = 18 · 4 + 1 = 73, a contradiction. Hence h(n) ∈ {±2}, and at the same 
time h(±3) ∈ {±3}.

Suppose now the claim holds for |m| < |n|, with |n| ≥ 4. In particular, h(pZ•) = pZ• for all prime 
numbers p with p < |n|; since h(2Z•) = 2Z•, n and h(n) are either both even or both odd. Let a := |n| + 1
and b := |n| − 1; then, n� = ab or n� = ab

4 (according to whether n is even or odd). If a is not prime, 
then all prime factors of a and b are smaller than |n|; hence, if n� = pe11 · · · penn by Corollary 7.5 then also 
h(n)� = pe11 · · · penn , and thus n� = h(n)�; by Lemma 7.6, |n| = |h(n)|.

Suppose that a is prime: then, n must be even. Hence, n� = (|n| −1)a, and by Corollary 7.5 and inductive 
hypothesis we have h(n)� = (|n| −1)a′ for some prime number a′. If |h(n)| �= |n|, then |h(n)| > |n| (since all 
m with |m| < |n| are image of m or −m), and in particular |h(n)| − 1 and |h(n)| + 1 are both greater than 
|n| − 1. Since h(n)� = (|h(n)| − 1)(|h(n)| + 1) = (|n| − 1)a′ and a′ is prime, it follows that a′ must divide at 
least one of |h(n)| −1 and |h(n)| +1. In the former case, |h(n)| −1 ≥ a′ and (|h(n)| −1)(|h(n)| +1) > a′(|n| −1), 
a contradiction; in the latter case, |h(n)| + 1 ≥ a′ and thus (|h(n)| − 1)(|h(n)| + 1) > (|n| − 1)a′, again a 
contradition. Thus, |h(n)| = |n|.
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Set now X := {n ∈ Z• | h(n) = n} and Y := {n ∈ Z• | h(n) = −n}: by the previous part of the proof, 
X ∪ Y = Z•, and since 0 /∈ Z• they are disjoint.

Both sets are closed in G(Z): indeed, X is the set of fixed points of h, which is closed since G(Z) is 
Hausdorff, while Y is the set of fixed point of −h (i.e., the homeomorphism that sends n to −h(n)). Since 
G(Z) is connected [7, Theorem 8(b)], they can’t be both nonempty: hence, either X = ∅ (and thus h is the 
multiplication by −1) or Y = ∅ (and thus h is the identity). The claim is proved. �
Theorem 7.8. Let K be an algebraic extension of Q, and let R be a Dedekind domain with quotient field K. 
If G(R) � G(Z), then R = Z.

Proof. By [7, Theorem 13], the number of units is an invariant of the Golomb topology, and thus |U(R)| = 2. 
Since R is a Dedekind domain (and thus in particular integrally closed), it contains the ring of integers OK of 
K; hence, by Dirichlet’s Unit Theorem (see e.g. [16, Chapter 1, §7]), [K : Q] ≤ 2. Furthermore, if R �= OK , 
then there is a prime ideal of OK such that PR = R; since OK has torsion class group, there are elements 
of OK generating a (P ∩OK)-primary ideal, and they would be units of R, a contradiction. Hence R = OK .

If K �= Q, then (since [K : Q] = 2) there exists a field automorphism σ of K, which reduces to a ring 
automorphism of OK . Therefore, the restriction σ0 of σ to O•

K is a self-homeomorphism of G(OK) which 
fixes all elements of Z. In particular, G(OK) has at least four distinct self-homeomorphisms: the identity, 
the multiplication by −1, σ0 and the composition of the latter two. By Theorem 7.7, G(OK) cannot be 
homeomorphic to Z; thus we must have K = Q and R = Z, as claimed. �
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